第1章 材料磁性
(完整word版)磁学基础与磁性材料+严密第一章、三章以及第七章答案
磁性材料的分类第一章磁学基础知识答案:1、磁矩2、磁化强度3、磁场强度H4、磁感应强度 B磁感应感度,用B表示,又称为磁通密度,用来描述空间中的磁场的物理量。
其定义公式为中磁场的强弱使用磁感强度(也叫磁感应强度)来表示,磁感强度大表示磁感强;磁感强度小,表示磁感弱。
5、磁化曲线6、磁滞回线()(6 磁滞回线 (hysteresis loop):在磁场中,铁磁体的磁感应强度与磁场强度的关系可用曲线来表示,当磁化磁场作周期性变化时,铁磁体中的磁感应强度与磁场强度的关系是一条闭合线,这条闭合线叫做磁滞回线。
)7、磁化率磁化率,表征磁介质属性的物理量。
常用符号x表示,等于磁化强度M与磁场强度H之比。
对于各向同性磁介质,x是标量;对于各向异性磁介质,磁化率是一个二阶张量。
8、磁导率磁导率(permeability):又称导磁系数,是衡量物质的导磁性能的一个物理量,可通过测取同一点的B、H值确定。
二矫顽力----内禀矫顽力和磁感矫顽力的区别与联系矫顽力分为磁感矫顽力(Hcb)和内禀矫顽力(Hcj)。
磁体在反向充磁时,使磁感应强度B降为零所需反向磁场强度的值称之为磁感矫顽力。
但此时磁体的磁化强度并不为零,只是所加的反向磁场与磁体的磁化强度作用相互抵消。
(对外磁感应强度表现为零)此时若撤消外磁场,磁体仍具有一定的磁性能。
使磁体的磁化强度M降为零所需施加的反向磁场强度,我们称之为内禀矫顽力。
内禀矫顽力是衡量磁体抗退磁能力的一个物理量,是表示材料中的磁化强度M退到零的矫顽力。
在磁体使用中,磁体矫顽力越高,温度稳定性越好。
(2)退磁场是怎样产生的?能克服吗?对于实测的材料磁化特性曲线如何进行退磁校正?产生:能否克服:因为退磁场只与材料的尺寸有关,短而粗的样品,退磁场就很大,因此可以将样品做成长而细的形状,退磁场就将会减小。
然而实际工作中,材料的尺寸收到限制,因此不可避免的受到退磁场的影响。
校正:由于受到退磁场的影响,作用在材料中的有效磁场Heff比外加磁场Hex要小。
电机学:第一章 磁路2
将铁磁材料放入磁场后,磁场会显著增强,铁磁材料在磁场中 呈现很强的磁性这一现象,称为铁磁物质的磁化。
原因:铁磁物质中有许多称为磁畴的天然磁化区,当未投入磁场时, 磁畴杂乱无章的排列,磁效应相互抵消对外不显磁性。当放入磁场 后,磁畴按外磁场方向排列起来,形成一附加磁场叠加在外磁场上。
如图1-6所示。
二.磁化曲线
1-3直流磁路
本节介绍直流磁路的分析和计算 一、直流磁路的计算
磁路计算分为:1、给定磁通,计算所需的励磁磁动势(正问题)
2、给定励磁磁动势,计算磁路内的磁通量(逆问题)
1、正问题计算步骤:
1)将磁路按材料性质和不同截面分成数段
2)计算各段的有效面积和平均长度Ai、Li
3)根据各段中的 i 计算各段
磁路中的磁通与磁动势成正比,与磁阻成反比。
例1-1 有一闭合的铁心磁路,铁心的截面积 A 9104 m2。磁路的 平均长度L=0.3m ,铁心的磁导率 Fe 5000 0 ,0 4 10 7 。套
装在铁心上的励磁绕组为 500 匝。试求在铁心中产生1T的磁通密度
时所需的励磁磁动势和励磁电流。
n
n
Ni H k lk k Rmk
k 1
k 1
该定律称为磁路的基尔霍夫第二定律。
电机和变压器的磁路是由数段 不同截面,不同材料的铁心组成, 而且还可能含有气隙,在进行磁路 计算时总是将磁路分成若干段,每 段为同一材料,且截面积相等,则 磁场强度相等。由左图可见,磁路 由三段组成,两段为截面积不同的 铁磁材料,一段为空气隙,励磁磁
范围内。所以电机和变压器的铁心用导磁率较高的铁磁材料组成。
一、铁磁物质的磁化
1 、铁磁物质
铁磁物质的磁导率都很大,一般是
钕铁硼基本知识
磁材基本知识讲座主要内容:第一章磁物理基础第二章磁性材料的发展概况第三章钕铁硼的主要特点及应用第四章钕铁硼的主要成份组成第五章钕铁硼生产工艺及设备第六章性能参数测量原理及设备第七章机械加工工艺及设备第八章表面处理工艺及设备第九章充磁包装第一章磁物理基础1 物质的磁现象磁性材料:magnetic material钕铁硼磁铁:nd-fe-b magnet铁氧体磁铁:ferrite magnet牛磁棒:magnetic bar for cattle?磁力架:magnetic separator物质的磁性是一个历史悠久的研究领域,约在三千年前就已受到人们的注意。
中国是最早应用磁性的国家,公元前四世纪,我国制成了世界上最早的指南针,成为中国的四大发明之一。
磁学史上第一部关于磁性的专著是英国(WGilbert)吉耳伯特的《论磁石》(1600年),这本书介绍了那时书籍有关的磁性知识。
然而,磁性作为一门科学却到19世纪前半期才开始发展。
1820年,丹麦物理学家奥斯特发现电流的磁效应,拉开了磁电之间联系的序幕;1820年末,法国物理学安培证明通电圆形线圈和普通的磁铁一样具有吸引和排斥的现象。
1831年,英国科学家法拉第发现了电磁感应现象,并提出电磁感应定律,从而揭示电和磁之间的内在联系;后来,苏格兰科学家麦克斯韦,将电磁的联系建立起严密的电磁场理论。
他发展了法拉第的思想,用数学的形式总结出电场和磁场的联系,即麦克斯韦方程。
2 磁性的起源物质的磁性起源于原子磁矩。
原子物理学告诉我们,组成物质的最小单元是原子,原子又由电子和原子核组成。
电子的排布遵循三大原则:1 洪特规则,2泡利不相容规则,3 能量最低原理。
原子中的电子绕着原子核进行高速运转,电子运转时同时有两种运动形式,即电子绕原子核的轨道运动和电子绕本身轴的旋转。
前者叫电子轨道运动,后者叫电子自旋。
处于旋转运动状态的电子相当于电流闭合回路,必然伴随有磁矩的发生,电子轨道和电子自旋产生的总磁矩称为原子磁矩。
磁性材料的分类
(5)亚铁磁性:宏观磁性和铁磁性相同,量级100~103。 在温度低于TC 时的磁化率不如铁磁体那么大,它的自 发磁化强度也没有铁磁体的大。典型的亚铁磁材料是 铁氧体,如Fe3O4。
二、五种磁性物质的磁化率-温度曲线
抗磁性
顺磁性
反铁磁性
Tp
铁磁性
Tp 亚铁磁性
1.3 磁性和磁性材料的分类
三、五种磁性物质的磁结构
第一章 磁学基础知识
1.3 磁性和磁性材料的分类
1.3 磁性和磁性材料的分类
一、 物质的磁性分类:抗磁性,顺磁性,反铁磁性, 铁磁性,亚铁磁性
(1) 抗磁性:磁化率是数值很小的负数,量
M
级~10-5。大部分的绝缘体和一部分简单金属。 O
H
抗磁性物质:惰性气体、许多有机化合物,
部分金属(Bi,Zn,Ag和Mg等)、非金属
3、信磁材料:在信息技术中获得应用的磁性材料。 磁记录材料、磁存储材料、磁微波材料、和磁光效应 材料。
4、特磁材料:磁滞伸缩材料、磁电阻材料、磁 性液体、磁制冷材料和复合磁性材料等。
四、磁性材料的分类:
1、软磁材料: 软磁材料的特征:
(1)高的µi和高的µmax (2)低的Hc (3)高Ms和低Br (4)低的铁损 (5)低的磁滞伸缩系数 (6)低的磁各向异性常数
2、硬磁材料: 硬磁材料的特征:
(1)高的Br和Mr (2)高的Hc (3)高的(BH)max (4)高的稳定性
(Si,P和S等)。
(2) 顺磁性:磁化率是数值比较小的正数, M
量级10-3~10-6。顺磁性物质:大部分金属、稀
土金属、铁族元素的盐类。
O
H
(3) 反铁磁性:这类材料的磁化率是小的正数。在温度
磁学基础与磁性材料+严密第一章、三章以及第七章答案
磁性材料的分类^《}第一章》第二章磁学基础知识答案:1、磁矩2、磁化强度3、·4、磁场强度 H5、磁感应强度 B磁感应感度,用B表示,又称为磁通密度,用来描述空间中的磁场的物理量。
其定义公式为(百度百科)磁感应强度(magnetic flux density),描述磁场强弱和方向的基本物理量。
是矢量,常用符号B表示。
磁感应强度也被称为磁通量密度或磁通密度。
在物理学中磁场的强弱使用磁感强度(也叫磁感应强度)来表示,磁感强度大表示磁感强;磁感强度小,表示磁感弱。
6、磁化曲线磁化曲线是表示物质中的磁场强度H与所感应的磁感应强度B或磁化强度M之间的关系7、磁滞回线—()(6 磁滞回线 (hysteresis loop):在磁场中,铁磁体的磁感应强度与磁场强度的关系可用曲线来表示,当磁化磁场作周期性变化时,铁磁体中的磁感应强度与磁场强度的关系是一条闭合线,这条闭合线叫做磁滞回线。
)8、磁化率磁化率,表征磁介质属性的物理量。
常用符号x表示,等于磁化强度M与磁场强度H之比。
对于各向同性磁介质,x是标量;对于各向异性磁介质,磁化率是一个二阶张量。
9、磁导率磁导率(permeability):又称导磁系数,是衡量物质的导磁性能的一个物理量,可通过测取同一点的B、H值确定。
二'矫顽力----内禀矫顽力和磁感矫顽力的区别与联系矫顽力分为磁感矫顽力(Hcb)和内禀矫顽力(Hcj)。
磁体在反向充磁时,使磁感应强度B降为零所需反向磁场强度的值称之为磁感矫顽力。
但此时磁体的磁化强度并不为零,只是所加的反向磁场与磁体的磁化强度作用相互抵消。
(对外磁感应强度表现为零)此时若撤消外磁场,磁体仍具有一定的磁性能。
使磁体的磁化强度M降为零所需施加的反向磁场强度,我们称之为内禀矫顽力。
内禀矫顽力是衡量磁体抗退磁能力的一个物理量,是表示材料中的磁化强度M退到零的矫顽力。
在磁体使用中,磁体矫顽力越高,温度稳定性越好。
(2)退磁场是怎样产生的能克服吗对于实测的材料磁化特性曲线如何进行退磁校正产生:能否克服:因为退磁场只与材料的尺寸有关,短而粗的样品,退磁场就很大,因此可以将样品做成长而细的形状,退磁场就将会减小。
第一章磁路
第一章 磁路
电力拖动中广泛应用的电机、变压 器及部分控制电机都是依靠电与磁相 互作用而运行的,它们的工作原理既 涉及电路又涉及磁路。
电机学
1.1 1.2 1.3 1.4 1.5
磁场基本物理量 磁性材料 磁路的计算 交流铁心线圈 电磁铁
电机学
1.1 磁场的基本物理量
• 磁感应强度B
描述磁场强弱与方向的物理量 定义:单位正电荷以单位速度向垂直于磁场方向的方 向上运动时所受的机械力。 方向: B与产生磁场的电流方向符合右手螺旋定则。 单位:磁感应强度的单位: T(特斯拉) (高斯)
Φ2 B2
Φ3 B3 S3
2 B2S2 =1 6 10-4 =6 10-4 wb 截面S3中的磁通为: 3 1 2 10 104 6 104 4 104 wb 3 4 104 B3 0.8T 4 S3 5 10
电机学
例4:如图是一个对称磁路,中间柱截面积S3 是两边柱截面积S1或S2的两倍,假使N1I1=N2I2 , 求Φ1 ,Φ2,Φ3的大小关系和B1,B2,B3的大 小关系。
电机学
磁路
电路
磁动势F 磁通Φ 磁感应强度B 磁阻Rm=l/μS 欧姆定律φ=NI/Rm 克希荷夫磁通定律ΣΦk=0 克希荷夫定律磁压定律 ΣIN=Σ(H l)
电动势E 电流I 电流密度J 电阻R=l/rS 欧姆定律I=E/R 克希荷夫定律电流定律ΣI=0 克希荷夫定律电压定律 ΣE =Σ(IR)
1 2 , 3 21 2 2 B 1 =B 2 =B 3
电机学
例1.3.2 已知:l1=l3=60cm,l2=20cm, S2=S3=10cm2 , S1=20cm2 ,Φ3=5*10-4wb,材料为铸钢,求磁动势。
第1章磁学与磁性材料基础知识汇总
★ 静磁现象
磁矩 磁化强度M 磁场强度H和磁感应强度B 磁化率和磁导率 退磁场 静磁能
★ 材料的磁化 磁化曲线
磁滞回线
物质的磁性分类
★ 磁性与磁性材料的分类
磁性材料分类
1
1.1 静磁现象
▼磁场 电荷周围存在电场,可以用电力线来表示
电荷之间存在相互作用
F
k
q1q2 r2
那么磁场呢?是否有和电场相似的性质呢?
HCl,NO,有机化合物中的自由基 少数含有偶数个电子的化合物:
O2,有机物中的双自由基等
35
3. 反铁磁性(Antiferromagnetism)
反铁磁性是1936年首先由法国科学家Neel从理论上预言、 1938年发现,1949年被中子实验证实的,它的基本特征是存在 一个磁性转变温度,在此点磁化率温度关系出现峰值。
上世纪 70 年代以后,随着非晶材料和纳米材料的兴起, 又发现了一些新的磁性类型,对它们的研究尚在深化之中, 课程只做初步介绍。
27
▼物质的磁性分类
按磁化率的大小,可将物质磁性分为五个种类:
★抗磁性 ★顺磁性 ★反铁磁性
普遍性 c 0 且绝对值也很小 d
遵守居里-外斯定律:c
P
T
C TP
0
存在奈尔温度 TN
(或离子),具有一定的磁矩,是无规分布的原子磁矩在外磁
场中的取向产生了顺磁性。此外,传导电子也具有一定的顺磁
性。
33
顺磁性
磁 场
顺磁性 cm=10-6 ~10-3 磁矩的排列与磁性的关系
34
顺磁性物质也很多,常见的顺磁性物质: 过渡族元素、稀土元素和锕系元素金属:Mn,Cr,W,La,Nd,
电机学第1章
if 1T Bm 1.8T then
pFe CFe f 1.3Bm2G
2020年1月23日星期四
20
1.3 磁路的计算
1.直流磁路的计算 2.直流电机的空载磁路和磁化曲线 3.永磁磁路的计算特点 4.交流磁路的特点
2020年1月23日星期四
15
3.铁磁材料
材料名称 磁性能
表1-1 永磁材料的磁性能
铝镍钴(AL 铁氧体(Y35) 稀土钴(YX 钕铁硼(N42
NICO 56/6)
G-26)
H)
剩磁T
1.35
0.39
1.03
1.33
矫顽力(kA/m)
60
200
765
907
最大磁能积
56
31.8
198
326
BH(kJ/)
2020年1月23日星期四
2
1.磁路的概念
图1-1 两种常见的磁路 a)变压器的磁路 b)四极直流电机的磁路
2020年1月23日星期四
3
2.磁路的基本定律
分析和计算磁场时,常常要用到两条基本定律: ➢ 安培环路定律, ➢ 磁通连续性定律
把这两条定律应用到磁路,可得磁路的 ➢ 欧姆定律 ➢ 磁路的基尔霍夫第一和第二定律
2020年1月23日星期四
图1-5 磁路的基尔霍夫第二定律
9
1.2 常用的铁磁材料及其特性
1.铁磁材料的磁化 2.磁化曲线和磁滞回线 3.铁磁材料 4.铁心损耗
2020年1月23日星期四
10
1.铁磁材料的磁化
磁化:铁磁材料在外磁场中呈现很强的磁性
图1-6 磁畴示意图 a)未磁化时 b)磁化后
磁性物理学 课后习题(宛德褔 马兴隆)
磁性物理学课后习题(宛德褔马兴隆)第一章物质磁性概述1.1 在一小磁铁的垂直方向R处,测得它的磁场强度为H,试求这磁铁的次偶极矩j m和磁矩μm。
1.2 垂直板面方向磁化的大薄片磁性材料在去掉磁化场后,它的磁极化强度是1[Wb·m-2],试计算板中心的退磁场H d等于多少?1.3 退磁因子N d与哪些因素有关? 试证处于均匀磁化的铁磁球形体的退磁因子N d=1/3。
设该球形铁磁体的磁化强度M在球表面面积元ds上可产生磁极dm,在球心有一单位磁极m1,它与dm的作用服从磁的库伦定律。
1.4设铁磁体为开有小缺口l1的圆环,其圆环轴线周长为l2,当沿圆环周均匀磁化时,该铁磁体磁化强度为M,试证在缺口处产生的退磁场H d为:H d=-l1l1+l2M第二章磁性起源2.1 试计算自由原子Fe、Co、Ni、Gd、Dy等的基态具有的原子磁矩μJ各为多少?2.2 为什么铁族元素有的有效玻尔磁子数n f的实验值与理论公式n f = g J[J(J+1)]1/2不符合而与公式n f = 2[S(S+1)]1/2较为一致?2.3 何谓轨道角动量冻结现象?2.4 证明g J = 1 + J(J+1)+S(S+1)-L(L+1)2J(J+1)第三章自发磁化理论3.1推导居里-外斯定律x=CT−T P,说明磁化率与温度的关系。
3.2铁(金属)原子的玻尔磁子数为 2.22,铁原子量为55.9,密度为7.86×103 [kg·m-3],求出在0(K)下的饱和磁化强度。
3.3铁氧体的N型M s(T)曲线有什么特点?试比较抵消点温度T d和居里温度T c 的异同。
3.4 计算下列铁氧体的分子磁矩:Fe3O4, CuFe2O4, ZnFe2O4,CoFe2O4, NiFe2O4, BaFe12O19和GdFe5O123.5 自发磁化的物理本质是什么? 材料具有铁磁性的充要条件是什么?3.6超交换作用有哪些类型?为什么A-B类型作用最强?3.7 论述各类磁性χ-T的相互关系3.8设图示中的次晶格A-B间的交换作用小于B1-B2次晶格内的交换作用。
磁性物理第一章磁学基础知识
17
磁导率的不同定义: 1、起始磁导率μi 2、最大磁导率μmax
3、复数磁导率 ~
4、振幅磁导率μa
lim i
1
0
H0
B H
max
1
0
B
Hmax
~'i''
a
1
0
Ba Ha
18
5、增量磁导率μΔ
1 0
B H
6、可逆磁导率μrev
revlim H0
所有磁导率的值都是H的函数:
19
第二节 磁化状态下磁体中的静磁能量
4
用环形电流描述磁偶极子:
磁矩:μm iA单位:A ∙m2
二者的物理意义:
表j征m磁偶0μ极m子磁性强弱与方向
o 410-7Hm1
电子的轨道运动相当于一个恒定的电流回路,必 有一个磁矩(轨道磁矩),但自旋也会产生磁矩(自 旋磁矩),自旋磁矩是基本粒子的固有磁矩。
5
二、磁化强度 M (magnetization)
21
即,磁偶极子在磁场中磁位能:
U W Ld m lH sin d
mlH cos c, (取 c 0)
jm H
22
∴单位体积中外磁场能(即磁场能量密度)
FU
V
jm H
V J H
0M H 0M H cos
(J/m 3 )
FH 是各向异性的能量
23
二、退磁场与退磁场能量
d
磁矩为零。在外磁场作用下,电子运
动将产生一个附加的运动(由电磁感
O
T
应定律而定),出现附加角动量,感
生出与H反向的磁矩。因此:χd<0,且 | χd|~10-5,与H、T无关。
磁学性能
3. 物质的顺磁性
来源:原子(离子)的固有磁矩。 无外H时:由于热运动的影响,固有磁矩取向无序,宏观上无磁性。 外H作用下:固有磁矩与H作用,有较高的静磁能,为降低静磁能,固 有磁矩改变与H的夹角,趋于排向外H方向,表现为正向磁化。在常温和 H不是很高的情况下,M与H成正比,磁化要克服热运动的干扰,磁矩难 以有序排列,故顺磁化进行十分困难,磁化率较小。 常温下顺磁体达到饱和磁化所需的H非常大,技术上难以达到,但温度 降至接近0K时,就容易了。 根据顺磁磁化率与温度的关系,可把顺磁体分为三类: 正常顺磁体:磁化率随温度升高而降低的顺磁体。 符合居里定律: 或居里-外斯定律:
根据磁化率符号和大小,可把磁介质分为五类。
亚铁磁性材料
顺磁性材料 反铁磁性材料
0
抗磁性材料
H
2. 磁化率与物质磁性的分类
1)抗磁体 χ为甚小负常数,约在10-6数量级,即M与H方向相反,在磁场中使磁场稍减弱, 受微弱斥力,约有一半的简单金属是抗磁体。分为: (1)“经典”抗磁体,χ 不随T变化,如铜、银、金、汞、锌等。 (2)反常抗磁体,χ 随T变化,为前者10~100倍,如铋、镓、锑、锡等。 2)顺磁体 χ为正常数,约为10-3~10-6数量级,即M与H方向相同,在磁场中使磁场稍增 强,受微弱引力,分为: (l)正常顺磁体,χ 随T变化,且符合与T反比关系,如铂、钯、奥氏体不锈钢、 稀土金属等。 (2)χ 与T无关的顺磁体,如锂、钠、钾、铷等。 3)反铁磁体 χ是甚小的正常数,当T高于某个温度时(尼尔温度TN),转换为顺磁体,T- χ曲线?如α-Mn、铬、氧化镍、氧化锰等。 4)铁磁体 χ为很大的正变数,约在10~106数量级,且不大的H就能产生很大的M,在磁场 中被强烈磁化,受强大的吸力,如铁、钴、镍等。其M-H 、 χ-H曲线? 5)亚铁磁体 类似铁磁体,但χ值没有铁磁体大,如磁铁矿(Fe3O4)等。
材料的磁学性能
运动电子的磁矩,一般是轨道磁矩和自旋磁矩的矢量和。
3) 原子的磁矩 由原子的结构决定 原子中的一个次电子层被排满时,这个电子层的磁矩总和 为零 原子中的电子层均被排满时,原子没有磁矩
只有原子中存在未被排满的电子层时,原子才具有磁矩,
这种磁矩称为原子的固有磁矩 如原子序数为26的Fe原子,电子层分布为
玻璃瓶里的磁流体
磁化泥吞金属
磁流体变成圣诞树形
---------------《材料性能学》----------------
第九章
材料的磁学性能
本章主要对材料磁性的本质、抗磁 性、顺磁性以及铁磁性的特点及影响 因素进行简要介绍。
第一节 基本磁学性能 第二节 抗磁性与顺磁性 第三节 铁磁性与反铁磁性
• 磁性是最早发现一切物质的基本属性之一。
• 一个好的磁芯必须有高的磁导率。 • μ合金是一种镍-铁合金(75%镍,15%铁,外加铜和钼),并有非常高的磁 导率。 • 磁导率最高的材料是钴基非晶态磁性合金,其高频退火磁导率为1,000,000( 直流磁导率最大值(µ ))。氢退火的(纯铁-N5级)可达到160,000(µ )的 磁导率,但相对很昂贵。
m IS
m
在均匀磁场中,磁矩受到磁场作用的力矩J
J m B
磁矩在磁场中所受的力
dB Fx m dx
所以,磁矩是表征磁性物体磁性大小的物理量。磁矩愈大, 磁性愈强,即物体在磁场中所受的力也大。磁矩只与物体 本身有关,与外磁场无关。
1) 轨道磁矩:由电子循轨运动产生的磁矩,以ml表示,ml为 矢量,它垂直于电子运动的轨道平面,其大小为
ml li li 1mB
式中:l为轨道角量子数,可取0,1,2, 3,…,( n-1),分别 代表s, p, d, f,g层的电子态,mB为玻尔磁子,mB=9.27×10-24 Am2,是磁矩的最小单元。
磁性材料 第 章 物质磁性概述
diff
1
0
dB dH
NOTE:所有磁导率都是磁场强度H的函数
第二节 物质按磁性分类
Classification of Magnetic Materials
一. 物质磁性的分类
为了方便研究物质磁性的起因,我们可以按其在磁场 中的表现把物质进行分类, 例如依据磁化率的正负、大小 及其与温度的关系来进行分类,分类是否科学取决于是否 反映了内在磁性机理上的不同。随着研究的深入,分类也 在不断完善和细化,到上个世纪 70 年代为止,在晶状固 体里,共发现了五种主要类型的磁结构物质,它们的形成 机理和宏观特征各不相同,对它们的成功解释形成了今天 的磁性物理学核心内容。
顺磁性物质也很多,常见的顺磁性物质: 过渡族元素、稀土元素和锕系元素金属:Mn,Cr,W,La,Nd,
Pt,Pa, 含有以上元素的化合物:MnSO4,FeCl3,FeSO4,Gd2O3, 碱金属和碱土金属:Li,Na,K,Ru,Cs,Mg,Ca,Sr,Ba 包含有奇数个电子的原子或分子:
HCl,NO,有机化合物中的自由基 少数含有偶数个电子的化合物:
i
磁场强度Hu被r 定义为:
uur H
F
单位:Oe
m
在Guass单位制中,M 和H 都有 明确的物理意义,是基本物理
量,而B只是一个导出量
引入磁感应强度B,使之 满足如下关系:
u B ru H u r 4 u M u r
四、磁化率 与 磁导率
磁体置于外磁场中磁化强度M将发生变化(磁化)
MH,M
H 其中称为磁体的磁化率(susceptibility),是单位磁场强度 H在磁体内感生的M,表征磁体磁化难易程度的物理量
FeO, MnO, NiO, CoO, Cr2O3, FeCl2, FeF2, MnF2, FeS, MnS
第一章 磁学基础知识
1. 抗磁性(Diamagnetism)
这是19世纪后半叶就已经发现并研究的一类弱磁性。它的 最基本特征是磁化率为负值且绝对值很小,<0, <<1 显示抗磁质在外磁场中产生的磁化强度与磁场反向,在不均匀 的磁场中被推向磁场减小的方向,所以又称逆磁性。典型抗磁 性物质的磁化率是常数,不随温度、磁场而变化。有少数的反 常。 深入研究发现,典型抗磁性是轨道电子在外磁场中受到电 磁作用而产生的,因而所有物质都具有的一定的抗磁性,但只 是在构成原子(离子)或分子的磁距为零,不存在其它磁性的 物质中, 才会在外磁场中显示出这种抗磁性。在外场中显示抗 磁性的物质称作抗磁性物质。除了轨道电子的抗磁性外,传导 电子也具有一定的抗磁性,并造成反常。
原子、离子的磁矩(顺、抗磁) 晶体结构和晶场类型(自旋、轨道贡献) 相邻原子、电子间的相互作用(磁有序)
固 体 磁 性
研究凝聚态物质各种磁性表现的起因是磁性物理的主要 任务,其中强磁性物质在技术领域有着突出作用,所以影响 强磁性物质磁性的机理是我们课程最为关注的。
一. 物质的磁性分类
为了方便研究物质磁性的起因,我们可以按其在磁场
N 是磁化方向的退磁因子。对于非球形样品,沿不同方向磁 化时退磁场能大小不同,这种由形状造成的退磁场能随磁化 方向的变化,通常也称形状各向异性能。退磁能的存在是自
发磁化后的强磁体出现磁畴的主要原因。
对椭球体:
H d N x M x i N y M y j N z M z k 1 2 2 Fd 0 N x M x N y M y N z M z2 2 N x N y N z 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
符号决定于电子自旋方向
轨道磁矩
自旋磁矩 Orbita Spin
3、 原子核磁矩:
原子核自旋 —— 磁矩。 但原子核质量是电子约 1800 倍,运动速度仅为电子速度 几千分之一,原子核自旋磁矩仅为电子自旋磁矩千分之几,故 忽略不计。
4、原子磁矩: 为原子中各电子磁矩总和。 原子中每个电子都可看作一小磁体,具有永久轨道磁矩和 自旋磁矩。
绝对磁导率
相对磁导率 µ r = µ /µ 0 起始磁导率 复数磁导率
二、物质的磁性分类
根据物质磁化率,磁性分为 5 类: 1. 抗磁性 磁化强度 M 为负,即 χ< 0, 说明产生的附加磁场 H′使外磁场 H 减弱。 抗磁性物质的磁化强度 M 是磁场强度 H 的线性函数; “经典”抗磁体: χ 不随温度变化,例 Cu、Ag、Au、Zn等;
1. 来源:当抗磁性物质放如入外磁场中,外磁场使电子轨道
改变,围绕原子核作轨道运动的电子按照楞次定律会产生感生
电流,此电流产生与外加磁场方向相反的磁场 —— 抗磁性
2.特征
感应的磁矩很小,方向与外磁场相反,即磁化强度 M 为很小 的负值;磁化率χ < 0,约为 -10-5; 原子的本征磁矩为零,外磁场作用使电子的轨道运动发生变化 引起; 一种很弱、非永久性磁性,只有外磁场存在时、其它类型磁性 完全消失时才能被观察; 所有物质都有抗磁性,但不能认为所有物质都是抗磁性物质; 电子壳层被添满的物质属于抗磁性物质,如惰性气体; 离子型固体(如氯化钠);共价键的碳、硅等;有些金属如 Bi、Cu、Ag 等。
“反常”抗磁体: χ 随温度变化,例 Bi、Ga、Sn、Sb等;
2. 顺磁性 磁化强度 M 为正,即χ> 0,数值小 10-3-10-6 ,产生的附
加磁场 H′使外磁场 H 略有增强。
顺磁性物质的磁化强度 M 与外磁场强度 H 成正比; χ与温度的关系:
正常顺磁体: χ = C / T
Pt、Pd、A 不锈钢、稀土金属等; Χ 与温度无关的顺磁体: Li、Na、K、Rb 等
二、顺磁性
1. 来源
电子壳层未被填满的原子或离子,固有磁矩不为零; 无外磁场时,材料中原子磁矩无序排列,表现不出宏观磁性; 受外磁场作用时,原子磁矩能通过旋转而沿外场方向择优取向,
显示出极弱宏观磁性 —— 顺磁性。
2. 特征: 原子磁矩沿外磁场方向排列,磁场强度获得增强,磁化 强度为正值,磁化率χ>0,也很小,只有10-5~10-2;
z:外磁场方向
μB:玻尔( Bohr)磁子 ,电子磁矩最小单位,理论计算
eh B 9.27 x 10 -24 A m 2 4m
2. 电子自旋产生磁矩 电子本身自旋运动产生一沿自旋轴方向磁矩 —— 自旋磁矩 实验测定:电子自旋磁矩在外磁场方向分量恰为1个Bohr磁子 即
ms
z
= ± μB
列,结果磁矩相互对消,整个固体材料总磁矩为零。
1-6 自发磁化与技术磁化理论
一、自发磁化理论 1. 铁磁性产生的条件 1)原子内部有未填满电子壳层,即电子自旋磁矩未被抵消; 2)原子按一定方式排列;产生自发磁化,形成磁畴。 自发磁化:电子自旋磁矩自动地在一个个小区域内取向一致。
:
磁畴:无外磁场条件下,
第 1 章
材料的磁性能
主要内容
材料的磁性概述 磁学基本量及磁性分类 磁性的物理本质
材料的抗磁性与顺磁性理论
材料的铁磁性理论(自发磁化与技术磁化理论)
磁性材料
磁性测量及其应用
§1.材料的磁性概述
1.1 磁性材料发展简历
磁性材料:新兴基础功能材料。早在 3000 多年前我国就已 发现磁石相互吸引和磁石吸铁的现象,并在世界上最先发明用磁石
子,这些原子磁矩都象一个个小磁铁那样整齐排列,但相邻 不同区域之间原子磁矩排列方向不同。 各个磁畴之间交界面 —— 磁畴壁
宏观物体一般总是具有很多磁畴,磁畴磁矩方向各不相同,
结果相互抵消,矢量和为零,整个物体磁矩为零,不能 吸引其它磁性材料。 磁性材料在正常情况下对外不显示磁性。只有被磁化以后, 才能对外显示出磁性。
现和研究,同时磁性材料的理论出现,涌现出了象法拉第、安培、韦伯、 高斯、奥斯特、麦克丝韦、赫兹等大批现代电磁学大师。
20 世纪初,法国的外斯提出了著名的磁性物质的分子场假说,奠定了现
代磁学的基础。
1-1
磁学基本量及磁性分类
一、磁学基本量
1. 磁场 传递运动电荷或电流之间相互作用的物理场,“磁” 来源于“电”。 2. 磁场强度 H: 表示磁场大小和方向的物理量。 如果磁场由长度为 L,电流为 I 圆柱状线圈(N 匝)产生, 则 H = N I / L
甚小 —— 顺磁性。 铁磁性材能达到的最大磁化强度 —— 饱和磁化强度 Ms
2.
铁磁性材料的居里温度
对于磁性材料来说,并不是在任何温度下都具有磁性。
一般,磁性材料具有一个临界温度 Tc;T > Tc,由于原子剧 烈热运动,原子磁矩排列混乱无序。 T < Tc,原子磁矩排列整齐,产生自发磁化,物体变成铁磁性 或亚铁磁性。
7. 磁感应强度 B
表示材料在外磁场 H 作用下材料内部的磁通量密度。 B 的单位:T (特斯拉)或 Wb/m2 (韦伯 / 米2) 在真空中,磁感应强度为
Bo = μo H
式中μ0:真空磁导率,单位:H(亨利)/m
在磁场 H 中放入一磁介质,磁感应强度为
B = μ H = μ o (H + M ) 式中μ:介质磁导率,只与介质有关,材料特征常数。 μ = B / H 磁导率物理意义: 单位磁场强度的外磁场作用下,材料内部磁通量密度,表 示磁性材料传导和通过磁力线的能力,或 B 随 H 变化速率。
任何铁磁体和亚铁磁体,在温度
低于居里温度 Tc 时,是由磁畴
组成; 磁畴是自发磁化到饱和(即磁矩 均朝一个方向排列)小区域; 相邻磁畴之间界线——磁畴壁;
磁畴壁有一定厚度过渡层,磁矩
一原子净磁矩是所有电子磁矩相互作用矢量和 —— 固有
磁矩或本征磁矩。 电子对的轨道磁矩相互对消,自旋磁矩也可能相互对消, 所以当原子所有电子壳层完全填滿:磁矩为零,如 He, Ne, Ar 以及某些离子材料。
1-3
抗磁性和顺磁性理论
为确定材料是抗磁性还是顺磁性 ,把它放入外磁场中观察
其磁性变化。
一、抗磁性
,
自发磁化的小区域。 :
材料是否具有自发磁化形成磁畴 ? 晶格中原子间距 Rab 与未添满电子壳层半径 r 之比有关,即
当 R
a b
/ r
> 3,交换积分 A > 0,原子磁矩平行排列,
即产生自发磁化,形成磁畴。
:
, :
交换积分 A 与 a/r 的关系
R
a b
/ r > 3,交换积分 A > 0 材料,如铁、钴、镍
作为指示方向和校正时间的应用,但毕竟只是单一应用天然的磁性
材料。 人类注意磁性材料的性能特点、制造、应用等研究,经过近百
年发展, 磁性材料已经形成一庞大家族。
按材料磁特性分:软磁、永磁、旋磁、记忆磁、压磁等; 按材料构成来分:合金磁性材料,铁氧体磁性材料。
公元 17 世纪,英国吉尔伯特发表世界上第一部磁学专著<<论磁石>>。 公元 18 世纪,瑞典科学家在磁学著作中对磁性材料的磁化作大胆描绘。 公元 19 世纪,近代物理学大发展,电流的磁效应、电磁感应等相继被发
式中 C 为居里常数
2 N J C 3k B
通过测量χ-T 依赖关系,便可确定居里常数,代入居里常数
定义式,可求出每个原子磁矩大小。
郎之万最早从理论上推导出居里定律,开创从微观
出发,用统计方法研究物质磁性道路。 该理论没有考虑到磁矩在空间的量子化,与实验结果 相比,在定量上有较大差别。 三、影响金属抗磁性、顺磁性的因素(自学)
轨道磁矩
自旋磁矩
Orbita
Spin
设电子质量为 m,电荷为 e,圆周运动半径为 r,角速度为 ω,则电子轨道磁矩
me =平面,并符合右手螺旋定则;
它在外磁场上的分量,满足量子化条件,即
me
z
= ml μB
ml:磁量子数 (ml = 0, ±1,±2,… ,±l)
1- 4
铁磁性理论
1. 铁磁性来源:电子自旋磁矩和自发磁化; 2. 特征
有些铁磁性材料在不很强外磁场作用下,产生很大磁化强度;
磁化率可高达 103,M >> H,磁化率不是常数;
有些铁磁性材料在外磁场除去后仍保持相当大永久磁性;
有居里温度( Tc );
过渡金属铁、钴、镍和某些稀土金属如钆、钇、钐等具有铁磁性。
居里温度是铁磁体或亚铁磁体的相变转变点
铁磁态或亚铁磁态
顺磁态
Tc
铁磁体居里温度 —— 应用实例
利用这个特点,人们开发出了很多控制元件。
例:电饭锅就利用磁性材料居里点的特性
底部中央装一块磁铁和一块居里点为 105℃ 磁性材料 —— 自动停止加热
3. 磁畴结构
磁畴指磁性材料内部一个个小区域,每个区域内包含大量原
顺磁性物质磁化率是抗磁性物质 1-103倍,所以顺磁性
物质中抗磁性被掩盖;
大多数物质都属于顺磁性物质,如室温下的稀土金属,居
里点以上 Fe、Co、Ni等; 注:抗磁体和顺磁体对于磁性材料应用来说视为无磁性。
3. 顺磁性理论
1905 年郎之万在经典统计理论基础上,首先给出第一个顺 磁性理论,其要点如下:
3. 铁磁性 磁化强度 M 为正,即χ> 0,数值很大,产生的附加磁场 H′ 使外磁场强度 H 大大增强。
磁化强度 M 与外磁场强度 H 呈非线性关系。 铁磁性物质:Fe、Co、Ni