七年级数学上册第二单元的知识点:整式的加减

合集下载

7年级上册数学整式的加减

7年级上册数学整式的加减

7年级上册数学整式的加减
7年级上册数学整式的加减,指的是在七年级上学期数学课程中,学习整式加减的内容。

整式加减是代数中的基础知识点,主要涉及单项式、多项式、同类项、合并同类项等概念,以及整式的加减运算。

整式加减的示例包括:
1.单项式的加减:例如,2x和3x的加法,结果为5x。

2.多项式的加减:例如,2x+3y和3x+4y的加法,结果为5x+7y。

3.同类项的合并:例如,2x+3x可以合并为5x,2y-2y可以合并为0。

4.整式的加减混合运算:例如,(2x+3y)-(-4x+5y)可以化简为6x-2y。

总结:7年级上册数学整式的加减指的是七年级上学期数学课程中学习的整式加减的知识点。

通过学习整式的加减,学生可以掌握单项式、多项式、同类项等概念,并能够进行整式的加减运算和化简。

这些知识点是代数学习的基础,对于培养学生的数学思维和解决问题的能力具有重要意义。

七年级数学上册第二章整式的加减整式的加减《整式的加减运算》

七年级数学上册第二章整式的加减整式的加减《整式的加减运算》

教学设计:2024秋季七年级数学上册第二章整式的加减整式的加减《整式的加减运算》教学目标(核心素养)1.知识与技能:学生能够理解整式加减运算的意义,掌握整式加减的基本法则,能够准确进行整式的加减运算。

2.数学思维:培养学生的代数运算能力,通过整式加减运算的练习,提高学生的逻辑思维和抽象思维能力。

3.情感态度:激发学生对数学学习的兴趣,体验代数运算的简洁性和美感,培养耐心和细致的学习态度。

教学重点•整式加减的基本法则及其应用。

•准确进行整式加减运算,特别是含有同类项的整式运算。

教学难点•理解整式加减运算中同类项合并的必要性。

•在复杂整式中准确应用加减法则进行运算,避免符号错误和运算顺序错误。

教学资源•多媒体课件(包含整式加减运算示例、练习题)•黑板及粉笔(用于板书关键概念和例题)•学生笔记本(用于记录课堂笔记和练习)•实物教具(如可拆卸的代数式卡片,用于直观展示整式加减过程)教学方法•直观演示法:利用多媒体课件和实物教具,直观展示整式加减的过程和结果。

•讲授法:结合具体例子,详细讲解整式加减的基本法则和运算步骤。

•练习巩固法:通过分层练习,巩固学生对整式加减运算的掌握。

•合作学习法:组织小组合作,让学生共同解决整式加减运算中的问题,促进相互学习和交流。

教学过程要点导入新课•复习引入:回顾整式的概念、同类项以及去括号法则,为整式加减运算做铺垫。

•情境导入:通过一个实际问题(如计算两个多边形面积的差或和),引导学生思考如何用整式表示并求解,引出整式加减运算的必要性。

新课教学•整式加减法则:明确整式加减的基本法则(即同类项相加减,非同类项不能合并)。

•示例演示:选取几个典型例题,逐步演示整式加减的过程,强调同类项合并和符号处理。

•注意事项:提醒学生在运算过程中注意符号的正确性、同类项的准确识别以及运算顺序的遵循。

课堂小结•知识回顾:总结整式加减的基本法则和运算步骤,强调其在代数运算中的重要性。

•方法提炼:引导学生提炼整式加减运算的技巧,如先识别同类项再合并、注意符号变化等。

七年级数学上册第二章整式的加减基础知识点归纳总结

七年级数学上册第二章整式的加减基础知识点归纳总结

(名师选题)七年级数学上册第二章整式的加减基础知识点归纳总结单选题1、已知:关于x,y的多项式ax2+2bxy+3x2−3x−4xy+2y不含二次项,则3a−4b的值是()A.-3B.2C.-17D.18答案:C分析:先对多项式ax2+2bxy+3x2−3x−4xy+2y进行合并同类项,然后再根据不含二次项可求解a、b 的值,进而代入求解即可.解:ax2+2bxy+3x2−3x−4xy+2y=(a+3)x2+(2b−4)xy−3x+2y,∵不含二次项,∴a+3=0,2b−4=0,∴a=-3,b=2,∴3a−4b=−9−8=−17.故选:C.小提示:本题主要考查整式加减中的无关型问题,熟练掌握整式的加减是解题的关键.2、若﹣2xm+7y4与3x4y2n是同类项,则mn的值为()A.1B.5C.6D.﹣6答案:D分析:根据同类项的定义,得到关于m、n的等式,然后求出m、n的值并计算即可得到答案.解:由同类项的概念可知:m+7=4,2n=4,解得:m=﹣3,n=2,∴mn=(﹣3)×2=﹣6,故选D.小提示:本题考查了同类项的定义,掌握相关知识并熟练使用,是解题关键.3、等号左右两边一定相等的一组是()A.−(a+b)=−a+b B.a3=a+a+a C.−2(a+b)=−2a−2b D.−(a−b)=−a−b答案:C分析:利用去括号法则与正整数幂的概念判断即可.解:对于A,−(a+b)=−a−b,A错误,不符合题意;对于B,a3=a⋅a⋅a,B错误,不符合题意;对于C,−2(a+b)=−2a−2b,C正确,符合题意;对于D,−(a−b)=−a+b,D错误,不符合题意.故选:C.小提示:本题考查了去括号法则,以及正整数幂的概念,熟练掌握相关定义与运算法则是解题的关键.4、已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=-|a1+1|,a3=-|a2+2|,a4=-|a3+3|,…,依此类推,则a2022的值为()A.-1010B.-1011C.-1012D.-2022答案:B分析:分别求得a1,a2,a3,a4,…找到规律,当下标为偶数时,其值等于下标的一半的相反数,据此即可求解.解:∵a1=0,a2=-|a1+1|=-1,a3=-|a2+2|=-1,a4=-|a3+3|=-2,a5=−|−a4+4|=−2,a6=−|−a5+5|=−3…,当下标为偶数时,其值等于下标的一半的相反数,∴a2022的值为-1011.故选B.小提示:本题考查了数字类规律,找到规律是解题的关键.5、一个矩形的周长为l,若矩形的长为a,则该矩形的宽为( )A.l2−a B.l−a2C.l−a D.l2a答案:A分析:根据矩形的周长公式进行计算即可.解:∵矩形的周长为l,矩形的长为a,∴矩形的宽为l−a.2故选A.小提示:本题考查列代数式,解题的关键是熟记矩形的周长=2(长+宽).6、多项式4x3−3x2y4+2m−7的项数和次数分别是()A.4,9B.4,6C.3,9D.3,6答案:B分析:由于组成该多项式的单项式(项)共有四个4x3,﹣3x2y4,2m,﹣7,然后根据多项式的项的定义,多项式的次数的定义即可确定其项数与次数.解:由于组成该多项式的单项式(项)共有四个4x3,﹣3x2y4,2m,﹣7,其中最高次数为2+4=6.故选:B.小提示:本题考查了对多项式的项和次数的掌握情况,难度不大.多项式的次数是多项式中最高次项的次数,多项式的项数为组成多项式的单项式的个数.7、如图所示的图案是用长度相同的木条按一定规律摆成的.摆第1个图案需8根木条,摆第2个图案需15根木条,摆第3个图案需22根木条,…,按此规律摆第n个图案需要木条( )A.(6n+2)根B.(7n+1)根C.(7n−1)根D.8n根答案:B分析:根据图形可以写出前几个图案需要的小木棒的数量,即可发现小木棒数量的变化规律,从而可以解答本题.解:由图可得,图案①有:1+7=8根小木棒,图案②有:1+7×2=15根小木棒,图案③有:1+7×3=22根小木棒,…则第n个图案有:(7n+1)根小木棒,故选:B.小提示:本题考查图形的变化类、列代数式,解答本题的关键是明确题意,利用数形结合的思想解答.8、将多项式−9+x3+3xy2−x2y按x的降幂排列的结果为()A.x3+x2y−3xy2−9B.−9+3xy2−x2y+x3C.−9−3xy2+x2y+x3D.x3−x2y+3xy2−9答案:D分析:根据降幂排列的定义,我们把多项式的各项按照x的指数从大到小的顺序排列起来即可.解:多项式−9+x3+3xy2−x2y按x的降幂排列为x3−x2y+3xy2−9.故选D.小提示:此题考查了多项式的降幂排列的定义.首先要理解降幂排列的定义,然后要确定是哪个字母的降幂排列,这样才能比较准确解决问题.9、用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.41答案:C分析:第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,……,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n个图形的算式,然后再解答即可.解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+4×1;第3个图中有13个正方形,可以写成:5+4+4=5+4×2;第4个图中有17个正方形,可以写成:5+4+4+4=5+4×3;...第n个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:4×9+1=37.故选:C.小提示:本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.10、下列整式与ab2为同类项的是()A.a2b B.−2ab2C.ab D.ab2c答案:B分析:根据同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,结合选项求解.解:由同类项的定义可知,a的指数是1,b的指数是2.A、a的指数是2,b的指数是1,与ab2不是同类项,故选项不符合题意;B、a的指数是1,b的指数是2,与ab2是同类项,故选项符合题意;C、a的指数是1,b的指数是1,与ab2不是同类项,故选项不符合题意;D、a的指数是1,b的指数是2,c的指数是1,与ab2不是同类项,故选项不符合题意.故选:B.小提示:此题考查了同类项,判断同类项只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.填空题+cd的值是_________.11、若a、b互为相反数,c、d互为倒数,m是(−3)的相反数,则m+a+b9答案:4分析:利用相反数、倒数的定义,以及绝对值的代数意义求出各自的值,代入原式计算即可求出值.解:根据题意得:a+b=0,cd=1,m=3,原式=3+0+1=4.所以答案是:4.小提示:本题主要考查了有理数的混合运算,相反数、倒数的定义,根据题意得出a+b=0,cd=1,m=3,是解本题的关键.12、立信初一年级周二体锻课站队时,有三个人数一样多的小组(假设人数足够多)分别记为A、B、C三个小组,依次完成以下三个步骤:第一步,A组二个人去B组;第二步,C组三个人去B组;第三步,A组还有几个人,B组就去多少人到A组.请你确定,最终B组人数为 _____人.答案:7分析:设A、B、C原来人数为a人,根据题意列出关系式,去括号合并即可得到结果.解:设A、B、C原来人数为a人,根据题意得:a+2+3﹣(a﹣2)=a+2+3﹣a+2=7(人),则最终B组人数为7人.所以答案是:7.小提示:此题考查了整式的加减,弄清题意是解本题的关键.13、若一个多项式加上3xy+2y2−8,结果得2xy+3y2−5,则这个多项式为___________.答案:y2−xy+3分析:设这个多项式为A,由题意得:A+(3xy+2y2−8)=2xy+3y2−5,求解即可.设这个多项式为A,由题意得:A+(3xy+2y2−8)=2xy+3y2−5,∴A=(2xy+3y2−5)−(3xy+2y2−8)=2xy+3y2−5−3xy−2y2+8=y2−xy+3,所以答案是:y2−xy+3.小提示:本题考查了整式的加减,准确理解题意,列出方程是解题的关键.14、实数a、b、c在数轴上的位置如图所示,√a2+|a−c|−|c−b|化简的结果是______.答案:-b分析:根据数轴上点的位置得到c<a<0<b,得到a-c>0,c-b<0,由此化简绝对值及算术平方根,再计算即可.解:由数轴得c<a<0<b,∴a-c>0,c-b<0,∴√a2+|a−c|−|c−b|=-a+a-c-(b-c)=-c-b+c=-b,所以答案是:-b.小提示:此题考查了根据数轴上点的位置判断式子的符号,化简绝对值,计算算术平方根,正确理解数轴上点的位置得到式子的符号是解题的关键.15、按照列代数式的规范要求重新书写:a×a×2−b÷3,应写成_________.答案:2a2-b3分析:根据代数式的书写要求填空.解:应写成:2a2-b.3.所以答案是:2a2-b3小提示:本题考查了代数式的书写要求.解题的关键是掌握代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.解答题.16、先化简,再求值:a2b-[2a2-2(ab2-2a2b)-4]-2ab2,其中a=-2,b=12答案:−3a2b−2a2+4;-10分析:原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.解:原式=a2b−(2a2−2ab2+4a2b−4)−2ab2=a2b−2a2+2ab2−4a2b+4−2ab2=−3a2b−2a2+4当a=-2,b=12时,原式=−3×(−2)2×12−2×(−2)2+4=−6−8+4=-10小提示:此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.17、东坡区某学校举办“传承三苏家国情怀弘扬中华传统文化”的校园演讲比赛,设立了一、二、三等奖,根据设奖情况买了36件奖品,且一等奖奖品数比二等奖奖品数的12倍少1件,各奖品单价如表所示.若二等奖奖品买了a件,全部奖品的总价是b元.a的代数式表示b,并化简;(2)当a=8时,买一等奖奖品和三等奖奖品分别花费了多少元?(3)若买二等奖奖品花费504元,则买全部奖品花费了多少元?答案:(1)12a−1;37−32a;b=42a +680(2)买一等奖奖品花费180元,买三等奖奖品花费500元(3)1184元分析:(1)利用题干中的数量关系即可表示出一等奖的件数,用总数减去一、二奖的奖品数量即可得到三等奖的奖品数量;利用表格中的信息分别计算三种奖品的费用再相加即可得出结论;(2)利用费用=件数×单价分别列出代数式,再将a=8代入计算即可得出结论;(3)利用已知条件求得a值,再将a值代入(1)中的代数式b=42a+680,计算即可得出结论.(1)一等奖奖品12a−1(件),三等奖奖品36-a-(12a−1)=37−32a(件)所以答案是:12a−1;37−32a.用含有a的代数式表示b是:b=(12a−1)×60+42a+(37−32a)×20=30a-60+42a +740-30a=42a +680;即b=42a +680.(2)当a=8时,买一等奖奖品花费(12×8−1)×60=180(元)买三等奖奖品花费(37−32×8)×20=25×20=500(元)答:当a=8时,买一等奖奖品花费180元,买三等奖奖品花费500元.(3)买二等奖奖品花费504元,则二等奖奖品买了504÷42=12(件),即a=12,又(1)可知b=42a +680,故买全部奖奖品花费了42×12+680=1184(元)答:若买二等奖奖品花费504元,则买全部奖奖品花费了1184元.小提示:本题主要考查了列代数式,求代数式的值,利用公式:费用=件数×单价解答是解题的关键.18、化简:(1)4xy-(3x2-3xy)-2y+2x2(2)(a+b)-2(2a-3b)+3(a-2b)答案:(1)-x2+7xy-2y;(2)b-3a.分析:(1)去括号,根据合并同类项法则计算;(2)去括号,根据整式的加减混合运算法则计算.(1)解:4xy-(3x2-3xy)-2y+2x2=4xy-3x2+3xy-2y+2x2=-x2+7xy-2y;(2)解:(a+b)-2(2a-3b)+3(-2b)=a+b-4a+6b-6b=b-3a.小提示:本题考查的是整式的加减,掌握整式的加减运算法则是解题的关键.。

七年级数学上册(人教版)2.2.3整式的加减说课稿

七年级数学上册(人教版)2.2.3整式的加减说课稿
二、学情分析导
(一)学生特点
面对七年级的学生,他们正处于青少年时期,好奇心强,求知欲旺盛。他们在小学阶段已经接触过一些代数知识,具备了一定的数学基础。然而,由于年龄特征,他们可能存在注意力不集中、自控能力较弱等问题。因此,在教学过程中,需要充分考虑这些特点,采用生动有趣的教学方法,激发他们的学习兴趣,帮助他们建立良好的学习习惯。
四、教学过程设计
(一)导入新课
为了快速吸引学生的注意力和兴趣,我将以生活实例导入新课。例如,我会提出这样一个问题:“如果你有3个苹果,你的朋友给你带来了2个苹果,你一共有多少个苹果?”这个问题既简单又贴近生活,能够激发学生的兴趣,使他们积极参与到课堂中来。通过这个问题,我会引入整式的加减法,并解释整式就是数学中的“苹果”。这样的导入方式能够使学生产生好奇心,激发他们对整式加减法的探究欲望。
本节课通过具体的例子引导学生掌握整式的加减法,培养学生运用数学知识解决实际问题的能力。学生在学习本节课的过程中,能够进一步巩固和运用之前学过的知识,如加减法、同类项、代数表达式等,同时为后续学习更复杂的代数知识打下基础。
(二)教学目标
1.知识与技能:使学生掌握整式的加减法,能够正确进行整式的加减运算,理解并运用合并同类项的法则。
1.通过生活实例引入整式的加减法,让学生感受到数学与生活的紧密联系,提高他们的学习兴趣。
2.设计有趣的课堂游戏,如“整式接龙”,让学生在游戏中巩固整式的加减法知识,增强学习的趣味性。
3.组织小组讨论,让学生合作4.对学习有困难的学生进行个别辅导,关注他们的学习进步,增强他们的自信心。
2.过程与方法:通过具体的例子,引导学生运用已有知识解决新问题,培养学生独立思考、合作交流的能力。
3.情感态度与价值观:培养学生对数学的兴趣,使学生感受到数学在生活中的应用,培养学生的抽象思维能力。

七上数学第二章整式的加减

七上数学第二章整式的加减

七上数学第二章整式的加减
一、教学目标
(一)知识与技能
通过具体实例,感受字母表示数的意义,会用代数式表示简单的数量关系,会写含有字母的式子,会求简单的代数式的值.
(二)过程与方法
通过实例,归纳、类比、抽象、概括,从而认识整式的概念,掌握单项式、多项式的概念,并会用单项式、多项式的概念判断一个式子是否是单项式或多项式. 通过具体例子的讨论,理解合并同类项的方法,会进行单项式的加减.
通过实例,理解整式的概念、单项式、多项式的概念,会进行单项式的加减. (三)情感态度和价值观
初步建立符号意识,知道符号的作用,通过实例感受数学符号的简洁美和对称美.
二、教学重难点
教学重点:用代数式表示简单的数量关系,会写含有字母的式子,会求简单的代数式的值.
教学难点:正确判断一个式子是否是单项式或多项式,能进行单项式的加减.
三、教学过程
(一)引入新课
1. 通过实例引入整式的概念、单项式、多项式的概念,体会用字母表示数的优越性.
2. 通过例题学习合并同类项的方法,让学生经历从具体到抽象的过程.
3. 通过练习加深学生对新知识的印象,巩固对新知识的掌握.
4. 通过小结和思考让学生自主发现本节课所学知识之间的联系和区别,加深对知识的理解和记忆.
5. 通过作业布置,进一步巩固所学知识并适当延伸到下节课的内容.。

人教版七年级数学上册整式的加减知识点总结及题型汇总(无答案)

人教版七年级数学上册整式的加减知识点总结及题型汇总(无答案)

人教版七年级数学上册整式的加减知识点总结及题型汇总(无答案)整式的加减知识点总结及题型汇总整式知识点1.单项式:在代数式中,若只含有乘法(包括乘方)运算。

或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a 、b 、c 、p 、q 是常数)ax 2+bx+c 和x 2+px+q 是常见的两个二次三项式. 5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式. 整式分类为:⎩⎨⎧多项式单项式整式 .6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项. 7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.11. 列代数式列代数式首先要确定数量与数量的运算关系,其次应抓住题中的一些关键词语,如和、差、积、商、平方、倒数以及几分之几、几成、倍等等.抓住这些关键词语,反复咀嚼,认真推敲,列好一般的代数式就不太难了.12.代数式的值根据问题的需要,用具体数值代替代数式中的字母,按照代数式中的运算关系计算,所得的结果是代数式的值. 13. 列代数式要注意①数字与字母、字母与字母相乘,要把乘号省略; ②数字与字母、字母与字母相除,要把它写成分数的形式; ③如果字母前面的数字是带分数,要把它写成假分数。

洛阳市七年级数学上册第二章整式的加减知识点汇总

洛阳市七年级数学上册第二章整式的加减知识点汇总

洛阳市七年级数学上册第二章整式的加减知识点汇总单选题1、谢尔宾斯基地毯,最早是由波兰数学家谢尔宾斯基制作出来的:把一个正三角形分成全等的4个小正三角形,挖去中间的一个小三角形;对剩下的3个小正三角形再分别重复以上做法…将这种做法继续进行下去,就得到小格子越来越多的谢尔宾斯基地毯(如图).若图1中的阴影三角形面积为1,则图5中的所有阴影三角形的面积之和是( )A .2764B .81256C .27256D .81128答案:B分析:根据题意,每次挖去等边三角形的面积的14,剩下的阴影部分面积等于原阴影部分面积的34,然后根据有理数的乘方列式计算即可得解.解:图2阴影部分面积=1−14=34, 图3阴影部分面积=34×34=(34)2图4阴影部分面积=34×(34)2=(34)3图5阴影部分面积=34×(34)3=(34)4=81256故选:B .小提示:本题是考查探索和表达规律问题,根据已知条件推算出相关数据规律是解题的切入点.2、某冰箱降价30%后,每台售价a 元,则该冰箱每台原价应为( )A .a 0.3元B .a 0.7元C .0.3a 元D .0.7a 元答案:B分析:根据原价=售价÷(1−折扣率)即可得.解:由题意得:该冰箱每台原价应为a 1−30%=a 0.7(元),故选:B.小提示:本题考查了列代数式,理解题意,掌握原价与售价之间的关系是解题关键.3、如果代数式2x−3y+2的值为5,那么代数式5+6y−4x的值为()A.−1B.11C.7D.−3答案:A分析:先根据题意得到2x−3y=3,然后整体代入到5+6y−4x=5−2(2x−3y)中进行求解即可.解:∵代数式2x−3y+2的值为5,∴2x−3y+2=5,∴2x−3y=3,∴5+6y−4x=5−2(2x−3y)=5−2×3=−1,故选A.小提示:本题主要考查了代数式求值,正确得到2x−3y=3是解题的关键.4、下列各组中的两个代数式属于同类项的是()A.3xy与−12x2y B.−2.1与34C.2a3b与2ab3D.3ab2与0.001ba2答案:B分析:根据同类项的定义:所含字母相同,相同字母的指数也相同的项,逐一判断即可.解:A.3xy与−12x2y相同字母的指数不相同,不是同类项,故A不符合题意;B.-2.1与34是同类项,故B符合题意;C.2a3b与2ab3相同字母的指数不相同,不是同类项,故C不符合题意;D.3ab2与0.001ba2相同字母的指数不相同,不是同类项,故D不符合题意;故选:B.小提示:本题考查了同类项,熟练掌握同类项的定义是解题的关键.5、如果单项式−12x m+3y与2x4y n+3的差是单项式,那么(m+n)2021的值为()A.-1B.0C.1D.2021答案:A分析:单项式−12x m+3y与2x4y n+3的差是单项式,得到单项式−12x m+3y与2x4y n+3是同类项,得到m+3=4,n+3=1,从而得到m+n=-1,从而到(m+n)2021= -1,判断即可.∵单项式−12x m+3y与2x4y n+3的差是单项式,∴单项式−12x m+3y与2x4y n+3是同类项,∴m+3=4,n+3=1,∴m+n=-1,∴(m+n)2021= -1,故选A.小提示:本题考查了同类项的定义即含有的字母相同且相同字母的指数相同,熟练掌握定义是解题的关键.6、若﹣2xm+7y4与3x4y2n是同类项,则mn的值为()A.1B.5C.6D.﹣6答案:D分析:根据同类项的定义,得到关于m、n的等式,然后求出m、n的值并计算即可得到答案.解:由同类项的概念可知:m+7=4,2n=4,解得:m=﹣3,n=2,∴mn=(﹣3)×2=﹣6,故选D.小提示:本题考查了同类项的定义,掌握相关知识并熟练使用,是解题关键.7、等号左右两边一定相等的一组是()A.−(a+b)=−a+b B.a3=a+a+a C.−2(a+b)=−2a−2b D.−(a−b)=−a−b答案:C分析:利用去括号法则与正整数幂的概念判断即可.解:对于A,−(a+b)=−a−b,A错误,不符合题意;对于B,a3=a⋅a⋅a,B错误,不符合题意;对于C,−2(a+b)=−2a−2b,C正确,符合题意;对于D,−(a−b)=−a+b,D错误,不符合题意.故选:C.小提示:本题考查了去括号法则,以及正整数幂的概念,熟练掌握相关定义与运算法则是解题的关键.8、下列添括号正确的是()A.−b−c=−(b−c)B.−2x+6y=−2(x−6y)C.x−y−1=x−(y−1)D.a−b=+(a−b)答案:D分析:根据添括号的法则即可进行解答.解:A、−b−c=−(b+c),故A不正确,不符合题意;B、−2x+6y=−2(x−3y),故B不正确,不符合题意;C、x−y−1=x−(y+1),故C不正确,不符合题意;D、a−b=+(a−b),故D正确,符合题意;故选:D.小提示:本题主要考查了添括号的法则,解题的关键是熟练掌握添加括号的法则,添加括号时,括号前是正号时,括号里面符号不改变;括号前是负号时,括号里面要变号.x m+3y与2x4y n+3是同类项,则(m+n)2021的值为()9、若单项式12A.1B.2021C.-1D.-2021答案:Cx m+3y与2x4y n+3是同类项,得到m+3=4,n+3=1,从而得到m+n=-1,然后计算即可.分析:单项式−12x m+3y与2x4y n+3是同类项,解:∵单项式−12∴m+3=4,n+3=1,∴m=1,n=-2,∴m+n=-1,∴(m+n)2021=-1,故选:C.小提示:本题考查了同类项的定义即含有的字母相同且相同字母的指数相同,熟练掌握定义是解题的关键.10、多项式4x3−3x2y4+2m−7的项数和次数分别是()A.4,9B.4,6C.3,9D.3,6答案:B分析:由于组成该多项式的单项式(项)共有四个4x3,﹣3x2y4,2m,﹣7,然后根据多项式的项的定义,多项式的次数的定义即可确定其项数与次数.解:由于组成该多项式的单项式(项)共有四个4x3,﹣3x2y4,2m,﹣7,其中最高次数为2+4=6.故选:B.小提示:本题考查了对多项式的项和次数的掌握情况,难度不大.多项式的次数是多项式中最高次项的次数,多项式的项数为组成多项式的单项式的个数.11、如图所示的图案是用长度相同的木条按一定规律摆成的.摆第1个图案需8根木条,摆第2个图案需15根木条,摆第3个图案需22根木条,…,按此规律摆第n个图案需要木条( )A.(6n+2)根B.(7n+1)根C.(7n−1)根D.8n根答案:B分析:根据图形可以写出前几个图案需要的小木棒的数量,即可发现小木棒数量的变化规律,从而可以解答本题.解:由图可得,图案①有:1+7=8根小木棒,图案②有:1+7×2=15根小木棒,图案③有:1+7×3=22根小木棒,…则第n个图案有:(7n+1)根小木棒,故选:B.小提示:本题考查图形的变化类、列代数式,解答本题的关键是明确题意,利用数形结合的思想解答.12、按一定规律排列的单项式:2x,-3x2,4x3,-5x4,6x5,-7x6,…第n个单项式是()A.(n+1)x n B.−(n+1)x n C.(−1)n(n+1)x n D.(−1)n+1(n+1)x n答案:D分析:通过观察题意可得:奇数项的系数为正,偶数项的系数为负,且系数的绝对值是从2开始的连续整数,次数是连续整数,由此可解出本题.解:第1个单项式是2x=(-1)1+1(1+1)x1,第2个单项式是-3x2=(-1)2+1(1+2)x2,第3个单项式是4x3=(-1)3+1(1+3)x3,•••,第n个单项式是(-1)n+1(n+1)xn.故选:D.小提示:本题考查单项式规律题,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.13、若x+y−2=0,则代数式−x−y+8的值是()A.10B.8C.6D.4答案:C分析:由题意得x+y=2,将代数式﹣x﹣y+8变形为﹣(x+y)+8,再将x+y=2整体代入进行计算即可.解:∵x+y﹣2=0,∴x+y=2,∴﹣x﹣y+8=﹣(x+y)+8=﹣2+8=6,故选:C.小提示:本题考查了运用整体思想求代数式的值的能力,关键是能通过观察、变形,运用整体思想进行代入求值.14、下列关于“代数式4x+2y”的意义叙述正确的有()个.①x的4倍与y的2倍的和是4x+2y;②小明以x米/分钟的速度跑了4分钟,再以y米/分钟的速度步行了2分钟,小明一共走了(4x+2y)米;③苹果每千克x元,橘子每千克y元,买4千克橘子、2千克苹果一共花费(4x+2y)元.A.3B.2C.1D.0答案:B分析:根据代数式4x+2y的意义分别对三个叙述进行判断即可.解:①x的4倍与y的2倍的和是4x+2y,正确;②小明以x米/分钟的速度跑了4分钟,再以y米/分钟的速度步行了2分钟,小明一共走了(4x+2y)米,正确;③苹果每千克x元,橘子每千克y元,买4千克橘子、2千克苹果一共花费(2x+4y)元,错误;故正确的有2个故选:B.小提示:此题考查了代数式的问题,解题的关键是掌握代数式的意义以及性质.15、下列代数式符合书写要求的是()A.123x2y B.ab÷c2C.xyD.mn⋅32答案:C分析:根据代数式的书写要求,依次分析各个选项,选出正确的选项即可.解:A、系数应为假分数,原书写错误,故此选项不符合题意;B、应写成分式的形式,原书写错误,故此选项不符合题意;C、符合要求,故此选项符合题意;D、系数应写在字母的前面,原书写错误,故此选项不符合题意;故选:C.小提示:本题考查了代数式的书写要求.正确掌握代数式的书写要求是解题的关键.填空题16、已知x2−3x+1=0,则3x2−9x+5=_________.答案:2分析:将3x2−9x+5变形为3(x2−3x+1)+2即可计算出答案.3x2−9x+5=3x2−9x+3+2=3(x2−3x+1)+2∵x2−3x+1=0∴3x2−9x+5=0+2=2所以答案是:2.小提示:本题考查代数式的性质,解题的关键是熟练掌握代数式的相关知识.17、若2y−x=16,则化简3(x−2y)−23(x−2y)−4(x−2y)−13(x−2y)并代入后的结果是_______.答案:13分析:先求出x−2y=−16,然后化简原式=−2(x−2y),据此求解即可.解:∵2y−x=16,∴x−2y=−16,∴3(x−2y)−23(x−2y)−4(x−2y)−13(x−2y)=(3−23−4−13)(x−2y)=−2(x−2y)=−2×(−16)=13,所以答案是:13.小提示:本题主要考查了整式的化简求值,解题的关键在于能够把(x−2y)当成一个整体.18、某超市的苹果价格如图,试说明代数式100−6.8x的实际意义______.答案:用100元钱买了x斤6.8元/斤的苹果,还剩多少钱?(答案不唯一,合理即可)分析:根据所给图的信息和代数式结构解释,合理即可.解:根据题意,可以解释为:用100元钱买了x斤6.8元/斤的苹果,还剩多少钱?所以答案是:用100元钱买了x斤6.8元/斤的苹果,还剩多少钱?(答案不唯一,合理即可).小提示:本题考查代数式,理解题意,掌握代数式的结构是解答的关键.19、关于整式4x3﹣3x3y+3x3﹣(7x3﹣3x3y)的值有下列几个结论:(1)与x,y有关(2)与x有关(3)与y有关(4)与x,y无关其中说法正确的结论是______.(直接填写序号)答案:(4)分析:把整式进行化简,再判断即可.4x3﹣3x3y+3x3﹣(7x3﹣3x3y)=4x3﹣3x3y+3x3﹣7x3+3x3y=0.则整式的值与x,y无关.所以答案是:(4).小提示:本题主要考查整式的加减,解答的关键是对相应的运算法则的掌握.20、计算4a+2a−a的结果等于_____.答案:5a分析:根据合并同类项的性质计算,即可得到答案.4a+2a−a=(4+2−1)a=5a所以答案是:5a.小提示:本题考查了整式加减的知识;解题的关键是熟练掌握合并同类项的性质,从而完成求解.。

河南省七年级数学上册第二章整式的加减知识点总结归纳完整版

河南省七年级数学上册第二章整式的加减知识点总结归纳完整版

河南省七年级数学上册第二章整式的加减知识点总结归纳完整版单选题1、单项式mxy3与x n+2y3的和是5xy3,则m−n(()A.﹣4B.3C.4D.5答案:D分析:根据单项式的和是单项式,可得两个单项式是同类项,根据同类项是字母相同且相同字母的指数也相同,可得m、n的值,再代入计算可得答案.解:解:∵单项式mxy3与x n+2y3的和是5xy3,∴单项式mxy3与x n+2y3是同类项,∴n+2=1,m+1=5,解得n=−1,m=4,∴m−n=4−(−1)=5,故选:D.小提示:本题考查了同类项的概念,同类项定义中的两个“相同”:字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.2、下列计算正确的是( )A.3ab+2ab=5ab B.5y2−2y2=3C.7a+a=7a2D.m2n−2mn2=−mn2答案:A分析:运用合并同类项的法则∶1.合并同类项后,所得项的系数是合并前各同类项的系数之和,且字母连同它的指数不变.字母不变,系数相加减.2.同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.即可得出答案.解:A、3ab+2ab=5ab,故选项正确,符合题意;B、5y2−2y2=3y2,故选项错误,不符合题意;C、7a+a=8a,故选项错误,不符合题意;D、m2n和2mn2不是同类项,不能合并,故选项错误,不符合题意;故选:A.小提示:本题考查了合并同类项,解题的关键是知道如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项,还要掌握合并同类项的运算法则.3、若21=2,22=4,23=8,24=16,25=32……,则22022的末位数字是()A.2B.4C.8D.6答案:B分析:由题意可得2n的末位数字按2,4,8,6四次一循环的规律出现,再计算2022÷4结果的余数即可.解:∵21=2,22=4,23=8,24=16,25=32……,∴2n的末位数字按2,4,8,6四次一循环的规律出现,∵2022÷4=505…2,∴22022的末位数字是4,故选:B.小提示:此题考查了乘方的尾数规律问题的解决能力,关键是能归纳出问题中尾数循环出现的规律.4、如图,用相同的圆点按照一定的规律拼出图形.第一幅图4个圆点,第二幅图7个圆点,第三幅图10个圆点,第四幅图13个圆点……按照此规律,第一百幅图中圆点的个数是()A.297B.301C.303D.400答案:B分析:首先根据前几个图形圆点的个数规律即可发现规律,从而得到第100个图摆放圆点的个数.解:观察图形可知:第1幅图案需要4个圆点,即4+3×0,第2幅图7个圆点,即4+3=4+3×1;第3幅图10个圆点,即4+3+3=4+3×2;第4幅图13个圆点,即4+3+3+3=4+3×3;第n幅图中,圆点的个数为:4+3(n-1)=3n+1,……,第100幅图,圆中点的个数为:3×100+1=301.故选:B.小提示:本题主要考查了图形的变化规律,解答的关键是由所给的图形总结出存在的规律.5、下列等式中正确的是()A.2x−5=−(5−2x)B.7a+3=7(a+3)C.−(a−b)=−a−b D.2x−5=−(2x−5)答案:A分析:根据去括号和添括号法则逐项进行判断即可.A.2x−5=−(5−2x),故A正确,符合题意;B.7a+3=7(a+37),故B错误,不符合题意;C.−(a−b)=−a+b,故C错误,不符合题意;D.2x−5=−(−2x+5),故D错误,不符合题意.故选:A.小提示:本题主要考查了去括号和添括号法则,熟练掌握去括号法则:括号前面是加号时,去掉括号,括号内的算式不变。

七年级数学上册 第二章 整式的加减单元复习课件

七年级数学上册 第二章 整式的加减单元复习课件
解:原式=(3-4+1)a3b3+(-12 +14 +14 )a2b+(1-2)b2+b+3=b- b2+3.因为多项式化简的结果中不含有字母 a,所以多项式的值与 a 的 取值无关
第十二页,共十七页。
考点四 整式规律探究
16.(青海中考)如图,将图1中的菱形剪开得到(dédào)图2,图中共有4个菱形;将 图2中的一个菱形剪开得到图3,图中共有7个菱形;如此剪下去,第5个图中共有 ______个菱形……第13n个图中共有_______个菱形. 3n-2
第八页,共十七页。
11.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余
(shèngyú)部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为3,则周
长是(
)
B
ቤተ መጻሕፍቲ ባይዱ
A.2m+6 B.4m+12 C.2m+3 D.m+6
第九页,共十七页。
12.求3x2+y2-5xy与4xy-x2+7y2的2倍的差. 解:5x2-13y2-13xy
第十三页,共十七页。
考点五 数学思想方法的应用 (整体思想) 17.(菏泽(hézé)中考)一组“数值转换机”按下面的程序计算,如果输入的数是 36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是 _____1_5_.
第十四页,共十七页。
18.已知x+y=-2,xy=3,求2xy+x+y的值. 解:4 19.已知2x2-5x+4=5,求式子(shìzi)(15x2-18x+4)-(-3x2+19x-32)-8x的
第四页,共十七页。
5.-13 πx2y 的系数是_-__13__π_______次数是___3_____
6.3x2-y+5是_____二次______三_项式. 7.(三门峡期中(qī zhōnɡ))若3a3bnc2-5amb4c2所得的差是单项式,则这个 单项式为___-__2_a_3_b_4_c_2 ______.

人教版初中七年级数学上册第二章《整式的加减》知识点(含答案解析)

人教版初中七年级数学上册第二章《整式的加减》知识点(含答案解析)

一、选择题1.(0分)若2312a b x y +与653a b x y -的和是单项式,则+a b =( ) A .3-B .0C .3D .6C 解析:C【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值.【详解】解:根据题意可得:26{3a b a b +=-=, 解得:3{0a b ==, 所以303a b +=+=,故选:C .【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.2.(0分)单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( ) A .14 B .14- C .4 D .-4B解析:B【分析】直接利用同类项的概念得出n ,m 的值,即可求出答案.【详解】21412n a b --与83m ab 是同类项, ∴21184n m -=⎧⎨=⎩解得:121m n ⎧=⎪⎨⎪=⎩ 则()()5711n m +-=14- 故答案选B.【点睛】本题考查的知识点是同类项,解题的关键是熟练的掌握数轴同类项.3.(0分)如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n个“金鱼”需用火柴棒的根数为()A.2+6n B.8+6n C.4+4n D.8n A解析:A【分析】根据前3个“金鱼”需用火柴棒的根数找到规律:每增加一个金鱼就增加6根火柴棒,然后根据规律作答.【详解】解:由图形可得:第一个“金鱼”需用火柴棒的根数为6+2=8;第二个“金鱼”需用火柴棒的根数为6×2+2=14;第三个“金鱼”需用火柴棒的根数为6×3+2=20;……;第n个“金鱼”需用火柴棒的根数为6n+2.故选:A.【点睛】本题考查了用代数式表示规律,属于常考题型,找到规律并能用代数式表示是解题关键.4.(0分)下列说法正确的是()A.单项式34xy-的系数是﹣3 B.单项式2πa3的次数是4C.多项式x2y2﹣2x2+3是四次三项式D.多项式x2﹣2x+6的项分别是x2、2x、6C 解析:C【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【详解】解:A、单项式34xy-的系数是34-,此选项错误;B、单项式2πa3的次数是3,此选项错误;C、多项式x2y2﹣2x2+3是四次三项式,此选项正确;D、多项式x2﹣2x+6的项分别是x2、﹣2x、6,此选项错误;故选:C.【点睛】本题考查了单项式及多项式的定义,解题的关键是牢记单项式的系数、次数及多项式的次数、项数,难度不大.5.(0分)如图所示,直线AB 、CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为2,-4,6,-8,10,-12,….那么标记为“-2020”的点在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上C解析:C【分析】 由图可观察出负数在OC 或OD 射线上,在OC 射线上的数为-4的奇数倍,在OD 射线上的数为-4的偶数倍,即可得出答案.【详解】解:∵由图可观察出负数在OC 或OD 射线上,排除选项A,B ,∵在射线OC 上的数符合:44112432045-=-⨯-=-⨯-=-⨯,,┈在射线OD 上的数符合:84216442446-=-⨯-=-⨯-=-⨯,,┈∵20204505-=-⨯,505为奇数,因此标记为“-2020”的点在射线OC 上.故答案为:C.【点睛】本题是一道探索数字规律的题目,具有一定的挑战性,可以根据已给数字多列举几个,更容易得出每条射线上数字的规律.6.(0分)下列各式中,去括号正确的是( )A .2(1)21x y x y +-=+-B .2(1)22x y x y --=++C .2(1)22x y x y --=-+D .2(1)22x y x y --=-- C解析:C【分析】各式去括号得到结果,即可作出判断.【详解】解:2(1)22x y x y +-=+-,故A 错误; 2(1)22x y x y --=-+,故B,D 错误,C 正确.故选:C .【点睛】此题考查了去括号与添括号,熟练掌握去括号法则是解本题的关键.7.(0分)古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13=3+10B .25=9+16C .36=15+21D .49=18+31C 解析:C【分析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为12n (n+1)和12(n+1)(n+2),所以由正方形数可以推得n 的值,然后求得三角形数的值.【详解】∵A 中13不是“正方形数”;选项B 、D 中等式右侧并不是两个相邻“三角形数”之和. 故选:C .【点睛】此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.8.(0分)已知多项式()210m xm x +--是二次三项式,m 为常数,则m 的值为( ) A .2-B .2C .2±D .3± A 解析:A【分析】根据已知二次三项式得出m-2≠0,|m|=2,从而求解即可.【详解】解:因为多项式()210m x m x +--是二次三项式,∴m-2≠0,|m|=2,解得m=-2,故选:A.【点睛】本题考查了二次三项式的定义,掌握多项式的项和次数的定义是本题的解题关键. 9.(0分)根据图中数字的规律,则x y +的值是( )A .729B .593C .528D .738B解析:B【分析】观察题中的数据发现,表格内左下角的数值是上面数的平方加一,右下角的数值是:上面的数×左下角的数+上面的数=右下角的数.【详解】根据题中的数据可知:左下角的数=上面的数的平方+1∴28165x =+=右下角的值=上面的数×左下角的数+上面的数∴888658528y x =+=⨯+=∴65528593x y +=+=故选:B.【点睛】本题主要考查数字的变化规律,关键是找出规律,列出通式.10.(0分)如图是按照一定规律画出的“树形图”,经观察可以发现:图A 2比图A 1多出2个“树枝”,图A 3比图A 2多出4个“树枝”,图A 4比图A 3多出8个“树枝”……照此规律,图A 6比图A 2多出“树枝”( )A .32个B .56个C .60个D .64个C解析:C【分析】根据所给图形得到后面图形比前面图形多的“树枝”的个数用底数为2的幂表示的形式,代入求值即可.【详解】∵图A 2比图A 1多出2个“树枝”,图A 3比图A 2多出4个“树枝”,图A 4比图A 3多出8个“树枝”,…,∴图形从第2个开始后一个与前一个的差依次是:2, 22,…, 12n -.∴第5个树枝为15+42=31,第6个树枝为:31+52=63,∴第(6)个图比第(2)个图多63−3=60个故答案为C【点睛】此题考查图形的变化类,解题关键在于找出其规律型. 二、填空题11.(0分)多项式2213383x kxy y xy --+-中,不含xy 项,则k 的值为______.【分析】根据不含xy 项即xy 项的系数为0求出k 的值【详解】解:原式∵不舍项∴故答案为【点睛】本题考查了多项式要求多项式中不含有那一项应让这一项的系数为0解析:19【分析】根据不含xy 项即xy 项的系数为0求出k 的值.【详解】 解:原式2213383x k xy y ⎛⎫=+--+ ⎪⎝⎭,∵不舍xy 项,∴1303k -=,19k =, 故答案为19. 【点睛】 本题考查了多项式,要求多项式中不含有那一项,应让这一项的系数为0.12.(0分)化简:226334x x x x _________.【分析】先去括号再根据合并同类项法则进行计算即可【详解】解:=故答案为:【点睛】此题考查整式的加减运算去括号法则合并同类项法则正确去括号是解题的关键解析:2106x x -+【分析】先去括号,再根据合并同类项法则进行计算即可.【详解】解:226334x x x x 226334xx x x 2(64)(33)x x=2106x x -+,故答案为:2106x x -+.【点睛】此题考查整式的加减运算、去括号法则、合并同类项法则,正确去括号是解题的关键. 13.(0分)合并同类项(1)21123x x x --=____________________;(按字母x 升幂排列)(2)3222232223x y x y y x x y --+=_____________________;(按字母x 降幂排列) (3)222234256a b ab a b =_____________________;(按字母b 降幂排列)【分析】(1)先合并同类项再将多项式按照字母x 的次数由小到大重新排列即可;(2)先合并同类项再将多项式按照字母x 的次数由大到小重新排列即可;(3)先合并同类项再将多项式按照字母b 的次数由大到小重新排 解析:256x x -+ 32222x y x y -- 221022b ab a -- 【分析】(1)先合并同类项,再将多项式按照字母x 的次数由小到大重新排列即可;(2)先合并同类项,再将多项式按照字母x 的次数由大到小重新排列即可;(3)先合并同类项,再将多项式按照字母b 的次数由大到小重新排列即可.【详解】解:(1)2222111155232366x x x x x x x x x x ⎛⎫--=-+=-=-+ ⎪⎝⎭; 故答案为:256x x -+; (2)解:322223223222232x y x y y x x y x y x y --+=--; 故答案为:32222x y x y --;(3)解:222222223425621021022a b ab a b a b ab b ab a +--+=-+-=--; 故答案为:221022b ab a --.【点睛】此题考查整式的降幂及升幂排列,合并同类项法则,将多项式按照某个字母重新排列时注意该项的次数及符号,利用交换律将多项式重新排列.14.(0分)m ,n 互为相反数,则(3m –2n )–(2m –3n )=__________.0【解析】由题意m+n=0所以(3m -2n)-(2m -3n)=3m-2n-2m+3n=m+n=0【点睛】本题考查相反数去括号法则等解题的关键是根据题意得出m+n=0然后再对所求的式子进行去括号合并同解析:0【解析】由题意m+n=0,所以(3m -2n)-(2m -3n)=3m-2n-2m+3n=m+n=0.【点睛】本题考查相反数、去括号法则等,解题的关键是根据题意得出m+n=0,然后再对所求的式子进行去括号,合并同类项,整体代入数值即可.15.(0分)为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n 个图,需用火柴棒的根数为_______________.6n+2【解析】寻找规律:不难发现后一个图形比前一个图形多6根火柴棒即:第1个图形有8根火柴棒第2个图形有14=6×1+8根火柴棒第3个图形有20=6×2+8根火柴棒……第n 个图形有6n+2根火柴棒解析:6n+2.【解析】寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即:第1个图形有8根火柴棒,第2个图形有14=6×1+8根火柴棒,第3个图形有20=6×2+8根火柴棒,……,第n 个图形有6n+2根火柴棒.16.(0分)某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:第一步,A 同学拿出二张扑克牌给B 同学;第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为______.7【分析】本题是整式加减法的综合运用设每人有牌x 张解答时依题意列出算式求出答案【详解】设每人有牌x 张B 同学从A 同学处拿来二张扑克牌又从C 同学处拿来三张扑克牌后则B 同学有张牌A 同学有张牌那么给A 同学后解析:7【分析】本题是整式加减法的综合运用,设每人有牌x 张,解答时依题意列出算式,求出答案.【详解】设每人有牌x 张,B 同学从A 同学处拿来二张扑克牌,又从C 同学处拿来三张扑克牌后, 则B 同学有()x 23++张牌,A 同学有()x 2-张牌,那么给A 同学后B 同学手中剩余的扑克牌的张数为:()x 23x 2x 5x 27++--=+-+=.故答案为:7.【点睛】本题考查列代数式以及整式的加减,解题关键根据题目中所给的数量关系,建立数学模型,根据运算提示,找出相应的等量关系.17.(0分)将代数式4a 2b +3ab 2﹣2b 3+a 3按a 的升幂排列的是_____.﹣2b3+3ab2+4a2b+a3【分析】找出a 的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本解析:﹣2b 3+3ab 2+4a 2b+a 3.【分析】找出a 的次数的高低后,由低到高排列即可得出答案.【详解】可得出﹣2b 3+3ab 2+4a 2b+a 3.【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.18.(0分)将一列数1,2,3,4,5,6---,…,按如图所示的规律有序排列.根据图中排列规律可知,“峰1”中峰顶位置(C 的位置)是4,那么“峰206”中C 的位置的有理数是______.-1029【分析】由题意根据图中排列规律得出每5个数为一组依次排列所以峰n 中峰顶C 的位置的有理数的绝对值为以此进行分析即可【详解】解:由图可知每5个数为一组依次排列所以峰n 中峰顶C 的位置的有理数的绝解析:-1029【分析】由题意根据图中排列规律得出每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -,以此进行分析即可.【详解】解:由图可知,每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -,当206n =时,52061103011029⨯-=-=,因为1029是奇数,所以“峰206”中C 的位置的有理数是1029-.故答案为:1029-.【点睛】本题考查图形的数字规律,熟练掌握根据图中排列规律得出每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -是解题的关键.19.(0分)王马虎同学在做有理数的加减法时,将一个100以内的含两位小数的数看错了,他将小数点前后的两位数看反了(比如56.78错看成了78.56),然后用看错的数字减3.5,发现差恰好就是原正确数字的2倍,则正确的结果应该是_____.32【分析】根据用看错的数字减35发现差恰好就是原正确数字的2倍利用有理数的加减混合运算即可求解【详解】∵100以内的含两位小数的数看错了根据归纳猜想得:原数为1432看错的两位数为32143214解析:32.【分析】根据用看错的数字减3.5,发现差恰好就是原正确数字的2倍,利用有理数的加减混合运算即可求解.【详解】∵100以内的含两位小数的数看错了,根据归纳猜想得:原数为14.32,看错的两位数为32.14,32.14﹣3.5=28.64,14.32×2=28.64.∴32.14﹣3.5=2×14.32.故答案为14.32.【点睛】本题考查有理数的加减混合运算,解题的关键是利用探究猜想的方法进行计算. 20.(0分)两堆棋子,将第一堆的2个棋子移到第二堆去之后,第二堆棋子数就成了第一堆棋子数的2倍.设第一堆原有a 个棋子,第二堆原有______个棋子.【分析】根据题意可得第二堆现在的棋子数是2(a-2)因此原来的棋子数为2(a-2)-2【详解】解:由题意可得:现在第二堆有2(a-2)个棋子因此原来第二堆有2(a-2)-2=2a-6个棋子故答案为:解析:()26a -【分析】根据题意可得第二堆现在的棋子数是2(a -2),因此原来的棋子数为2(a -2)-2.【详解】解:由题意可得:现在第二堆有2(a -2)个棋子,因此原来第二堆有2(a -2)-2=2a -6个棋子.故答案为:(2a -6).【点睛】本题考查了整式加减的应用,根据题意列出代数式是解决此题的关键.三、解答题21.(0分)观察下列式子:0×2+1=12……①1×3+1=22……②2×4+1=32……③3×5+1=42……④……(1)第⑤个式子____,第⑩个式子_____;(2)请用含n(n 为正整数)的式子表示上述的规律,并证明.解析:(1)4×6+1=52,9×11+1=102;(2)(n ﹣1)(n+1)+1=n 2;证明见解析.【分析】(1)根据已知等式中的规律即可得;(2)根据整数的平方等于前一个整数与后一个整数乘积与1的和可得,利用整理的运算法则即可验证.【详解】(1)第⑤个式子为4×6+1=52,第⑩个式子9×11+1=102;故答案为4×6+1=52,9×11+1=102;(2)第n 个式子为(n ﹣1)(n+1)+1=n 2,证明:左边=n 2﹣1+1=n 2,右边=n 2,∴左边=右边,即(n ﹣1)(n+1)+1=n 2.【点睛】本题主要考查数字的变化规律,解题的关键是根据已知等式得出(n ﹣1)(n+1)+1=n 2的规律,并熟练加以运用.22.(0分)先化简,再求值(1)()223421332a a a a -+-+-,其中23a =- (2)()()22352542m mn mn m -+--+,其中22m mn -=解析:(1)原式=23362a a --+;256;(2)原式()2111m mn =-+;23. 【分析】(1)根据整式的运算法则,先将整式进行化简,再将字母的值代入计算求值即可.(2)根据整式的运算法则,去括号合并同类项,将整式化成最简,然后将字母的值代入计算即可.【详解】解(1)原式=22333-4233222a a a a ⨯-⨯++-=22363332a a a a --++-=23362a a --+ 将23a =-代入得:222336332⎛⎫⎛⎫-⨯--⨯-+ ⎪ ⎪⎝⎭⎝⎭=256; (2)原式=()()2222352542351084m mn mn m m mn mn m -+--+=+-+-- ()2111m mn =-+将22m mn -=代入得:11×2+1=23【点睛】本题考查了整式的化简求值,解决本题的挂件是正确理解题意,熟练掌握整式的运算法则,将整式正确进行化简.23.(0分)观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=36,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(______ )2= ______ .根据以上规律填空:(1)13+23+33+…+n 3=(______ )2=[ ______ ]2.(2)猜想:113+123+133+143+153= ______ .解析:1+2+3+4+5;225;1+2+…+n ;()n n 12+;11375【解析】分析:观察题中的一系列等式发现,从1开始的连续正整数的立方和等于这几个连续正整数和的平方,根据此规律填空;(1)、根据上述规律填空,然后把1+2+…+n 变为2n 个(n+1)相乘,即可化简;(2)、对所求的式子前面加上1到10的立方和,然后根据上述规律分别求出1到15的立方和与1到10的立方和,求出的两数相减即可求出值.详解:由题意可知:13+23+33+43+53=(1+2+3+4+5)2=225(1)、∵1+2+…+n=(1+n )+[2+(n-1)]+…+[n 2+(n-n 2+1)]=()n n 12+, ∴13+23+33+…+n 3=(1+2+…+n )2=[()n n 12+]2; (2)、113+123+133+143+153=13+23+33+...+153-(13+23+33+ (103)=(1+2+…+15)2-(1+2+…+10)2 =1202-552=11375.点睛:此题要求学生综合运用观察、想象、归纳、推理概括等思维方式,探索问题,获得解题途径.考查了学生善于观察,归纳总结的能力,以及运用总结的结论解决问题的能力.24.(0分)已知多项式﹣3x 2+mx+nx 2﹣x+3的值与x 无关,求(2m ﹣n )2017的值. 解析:-1【分析】先把多项式进行合并同类项得(n-3)x 2+(m-1)x+3,由于关于字母x 的二次多项式-3x 2+mx+nx 2-x+3的值与x 无关,即不含x 的项,所以n-3=0,m-1=0,然后解出m 、n ,代入计算(2m-n )2017的值即可.【详解】合并同类项得(n ﹣3)x 2+(m ﹣1)x+3,根据题意得n ﹣3=0,m ﹣1=0,解得m=1,n=3,所以(2m ﹣n )2017=(﹣1)2017=﹣1.【点睛】考查了多项式及相关概念:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数. 25.(0分)已知有理数a 和b 满足多项式A ,且A=(a ﹣1)x 5+x |b+2|﹣2x 2+bx+b (b≠﹣2)是关于x 的二次三项式,求(a ﹣b )2的值.解析:16或25【解析】试题分析:根据有理数a 和b 满足多项式A .A =(a ﹣1)x 5+x |b +2|﹣2x 2+bx +b 是关于x 的二次三项式,求得a 、b 的值,然后分别代入计算可得.试题解:∵有理数a 和b 满足多项式A .A =(a ﹣1)x 5+x |b +2|﹣2x 2+bx +b 是关于x 的二次三项式,∴a ﹣1=0,解得:a =1.(1)当|b +2|=2时,解得:b =0或b =4.①当b =0时,此时A 不是二次三项式;②当b =﹣4时,此时A 是关于x 的二次三项式.(2)当|b +2|=1时,解得:b =﹣1(舍)或b =﹣3.(3)当|b +2|=0时,解得:b =﹣2(舍)∴a =1,b =﹣4或a =1,b =﹣3.当a =1,b =﹣4时,(a ﹣b )2=25;当a =1,b =﹣3时,(a ﹣b )2=16.点睛:本题考查了多项式的知识,解题的关键是根据题意求得a 、b 的值,题目中重点渗透了分类讨论思想.26.(0分)数a 、b 、c 在数轴上对应的位置如图所示,化简a c c b a b +-++-.解析:0;【分析】由数轴可得a >0>b >c ,并从数轴上可得出a ,b ,c 绝对值的大小,从而可以得出各项式子的正负,去绝对值可得出答案.【详解】解:由数轴得,c b 0a <<<,且c a b >>,a c cb a b +-++-a c cb a b =--+++-0=.【点睛】本题考查了数轴上数的大小,去绝对值,熟悉掌握定义是解决本题的关键.27.(0分)某校利用二维码进行学生学号统一编排.黑色小正方形表示1,白色小正方形表示0,将每一行数字从左到右依次记为a ,b ,c ,d ,那么利用公式321222a b c d ⨯+⨯+⨯+计算出每一行的数据.第一行表示年级,第二行表示班级,第三行表示班级学号的十位数,第四行表示班级学号的个位数.如图1所示,第一行数字从左往右依次是1,0,0,1,则表示的数据为1×23+0×22+0×21+1=9,计作09,第二行数字从左往右依次是1,0,1,0,则表示的数据为1×23+0×22+1×21=10,计作10,以此类推,图1代表的统一学号为091034,表示9年级10班34号.小明所对应的二维码如图2所示,则他的统一学号为________.解析:070629【分析】利用公式求出图2中每行表示的数据,将其组合起来即可得出结论.【详解】解:∵第一行:0×23+1×22+1×21+1=7,计作07,第二行:0×23+1×22+1×21+0=6,计作06,第三行:0×23+0×22+1×21+0=2,计作2,第四行:1×23+0×22+0×21+1=9,计作9,∴他的统一学号为070629.故答案为:070629.【点睛】本题考查了规律型:图形的变化类以及尾数特征,读懂题意,利用公式求出图2中每行表示的数据是解题的关键.28.(0分)已知22332A x y xy =+-,2222B xy y x =--.(1)求23A B -.(2)若|23|1x -=,29y =,且||x y y x -=-,求23A B -的值.解析:(1)2212127x y xy +-;(2)114或99.【分析】(1)把22332A x y xy =+-,2222B xy y x =--代入23A B -计算即可;(2)根据|23|1x -=,29y =,且||x y y x -=-求出x 和y 的值,然后代入(1)中化简的结果计算即可.【详解】解:(1)()()2222232332322A B x y xy xy y x -=+----2222664366x y xy xy y x =+--++2212127x y xy =+-;(2)由题意可知:231x -=±,3=±y ,∴2x =或1,3=±y ,由于||x y y x -=-,∴2x =,3y =或1x =,3y =.当2x =,3y =时,23114A B -=.当1x =,3y =时,2399A B -=.所以,23A B -的值为114或99.【点睛】本题考查了整式的加减运算,绝对值的意义,以及分类讨论的数学思想,熟练掌握整式的加减运算法则是解(1)的关键,分类讨论是解(2)的关键.。

人教版七年级数学上册:2.2《整式的加减—— 合并同类项》教学设计

人教版七年级数学上册:2.2《整式的加减—— 合并同类项》教学设计

人教版七年级数学上册:2.2《整式的加减——合并同类项》教学设计一. 教材分析《人教版七年级数学上册》第二章第二节《整式的加减——合并同类项》是学生在学习了整式的加减法法则后,进一步深入研究整式加减的运算方法。

通过这一节的学习,学生能够理解同类项的概念,掌握合并同类项的方法,提高解决实际问题的能力。

二. 学情分析七年级的学生已经掌握了整数和分数的加减法运算,具备了一定的数学基础。

但是,对于整式加减的运算规则和同类项的概念可能还不够清晰,需要通过实例和练习来进一步理解和掌握。

三. 教学目标1.知识与技能:理解同类项的概念,学会合并同类项的方法。

2.过程与方法:通过实例分析和练习,培养学生的数学思维能力和解决问题的能力。

3.情感态度价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和克服困难的决心。

四. 教学重难点1.重点:同类项的概念和合并同类项的方法。

2.难点:理解同类项的定义,以及如何在实际问题中正确合并同类项。

五. 教学方法1.采用问题驱动的教学方法,通过实例和练习引导学生主动探索和解决问题。

2.利用多媒体和板书辅助教学,直观展示整式加减的过程,帮助学生理解和记忆。

3.分组讨论和合作学习,培养学生的团队合作意识和交流沟通能力。

六. 教学准备1.多媒体教学设备和相关软件。

2.教学PPT和教案。

3.练习题和测试题。

七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题,如:“小明有2个苹果,妈妈给了他3个苹果,小明现在有多少个苹果?”引导学生思考和讨论如何解决这个问题。

2.呈现(10分钟)通过PPT展示整式加减的例子,如:3x + 2x = ?,引导学生观察和分析,引出同类项的概念和合并同类项的方法。

3.操练(10分钟)让学生分组进行练习,给出一些简单的整式加减问题,让学生运用所学的方法进行解决。

教师巡回指导,解答学生的疑问。

4.巩固(5分钟)针对学生练习中出现的问题,进行讲解和总结,再次强调同类项的概念和合并同类项的方法。

楚雄市第一中学七年级数学上册第二章《整式的加减》知识点总结(培优提高)

楚雄市第一中学七年级数学上册第二章《整式的加减》知识点总结(培优提高)

1.在代数式a2+1,﹣3,x2﹣2x,π,1x中,是整式的有()A.2个B.3个C.4个D.5个C 解析:C【分析】单项式和多项式统称为整式,分母中含有字母的不是整式.【详解】解:a2+1和 x2﹣2x是多项式,-3和π是单项式,1x不是整式,∵单项式和多项式统称为整式,∴整式有4个.故选择C.【点睛】本题考查了整式的定义.2.由于受H7N9禽流感的影响,某市城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/kg.则3月份鸡的价格为()A.24(1-a%-b%)元/kg B.24(1-a%)b% 元/kgC.(24-a%-b% )元/kg D.24(1-a%)(1-b%)元/kg D解析:D【分析】首先求出二月份鸡的价格,再根据三月份比二月份下降b%即可求出三月份鸡的价格.【详解】∵今年2月份鸡的价格比1月份下降a%,1月份鸡的价格为24元/kg,∴2月份鸡的价格为24(1-a%)元/kg,∵3月份比2月份下降b%,∴三月份鸡的价格为24(1-a%)(1-b%)元/kg.故选:D.【点睛】本题主要考查了列代数式,解题的关键是掌握每个月份的数量增长关系.3.有一组单项式如下:﹣2x,3x2,﹣4x3,5x4……,则第100个单项式是()A.100x100B.﹣100x100C.101x100D.﹣101x100C解析:C【分析】由单项式的系数,字母x的指数与序数的关系求出第100个单项式为101x100.【详解】由﹣2x,3x2,﹣4x3,5x4……得,单项式的系数的绝对值为序数加1,系数的正负为(﹣1)n,字母的指数为n,∴第100个单项式为(﹣1)100(100+1)x 100=101x 100,故选C .【点睛】本题综合考查单项式的概念,乘方的意义,数字变化规律与序数的关系等相关知识点,重点掌握数字的变化与序数的关系.4.已知5a b +=,4ab =,则代数式()()35834ab a b a ab +++-的值为( ) A .36B .40C .44D .46A解析:A【分析】原式去括号整理后,将已知等式代入计算即可求出值.【详解】∵a+b=5,ab=4,∴原式=3ab+5a+8b+3a−4ab=8(a+b)−ab=40−4=36,故选A.【点睛】本题考查的是代数式的求值,熟练掌握先化简再求值是解题的关键.5.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为( )A .64B .77C .80D .85D解析:D【分析】 观察图形特点,从中找出规律,小圆圈的个数分别是3+12,6+22,10+32,15+42,…,总结出其规律为()()122n n +++n 2,根据规律求解. 【详解】通过观察,得到小圆圈的个数分别是:第一个图形为:()1222+⨯+12=4, 第二个图形为:()1332+⨯+22=10, 第三个图形为:()1442+⨯+32=19,第四个图形为:()1552+⨯+42=31, …, 所以第n 个图形为:()()122n n +++n 2, 当n=7时,()()72712+++72=85, 故选D .【点睛】 此题主要考查了学生分析问题、观察总结规律的能力.关键是通过观察分析得出规律. 6.下列计算正确的是( )A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣9D 解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A .﹣1﹣1=﹣2,故本选项错误;B .2(a ﹣3b )=2a ﹣6b ,故本选项错误;C .a 3÷a =a 2,故本选项错误;D .﹣32=﹣9,正确;故选:D .【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 7.下列去括号正确的是( )A .112222x y x y ⎛⎫ =⎭-⎪⎝--- B .()12122x y x y ++=+- C .()16433232x y x y --+=-++ D .()22x y z x y z +-+=-+ D 解析:D【分析】根据整式混合运算法则和去括号的法则计算各项即可. 【详解】 A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误; B. ()12122x y x y ++=++,错误; C. ()136433222x y x y --+=-+-,错误;D. ()22x y z x y z +-+=-+,正确;故答案为:D .【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键. 8.下列各代数式中,不是单项式的是( )A .2m -B .23xy -C .0D .2tD 解析:D【分析】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,可以做出选择.【详解】 A 选项,2m -是单项式,不合题意;B 选项,23xy -是单项式,不合题意;C 选项,0是单项式,不合题意;D 选项,2t不是单项式,符合题意. 故选D .【点睛】 本题考查单项式的定义,较为简单,要准确掌握定义.9.已知整数1234,,,a a a a ……满足下列条件:12132430,1,2,3a a a a a a a ==-+=-+=-+……,依次类推,则2019a 的值为( ) A .2018B .2018-C .1009-D .1009C 解析:C【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于-12(n-1),n 是偶数时,结果等于-2n ,然后把n 的值代入进行计算即可得解. 【详解】解: 123450|01|1|12|1|13|2|24|2a a a a a ==-+=-=--+=-=--+=-=--+=-678|25|3|36|3|37|4a a a =--+=-=-+=-=--+=-⋯⋯∴201920181009a a ==-,故选择C【点睛】本题考查了数字变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.10.我们知道,用字母表示的代数式是具有一般意义的.请仔细分析下列赋予3a 实际意义的例子中不正确的是( )A .若葡萄的价格是3 元/kg ,则3a 表示买a kg 葡萄的金额B .若a 表示一个等边三角形的边长,则3a 表示这个等边三角形的周长C .某款运动鞋进价为a 元,若这款运动鞋盈利50%,则销售两双的销售额为3a 元D .若3和a 分别表示一个两位数中的十位数字和个位数字,则3a 表示这个两位数D 解析:D【分析】根据单价×数量=总价,等边三角形周长=边长×3,售价=进价+利润,两位数的表示=十位数字×10+个位数字进行分析即可.【详解】A 、根据“单价×数量=总价”可知3a 表示买a kg 葡萄的金额,此选项不符合题意;B 、由等边三角形周长公式可得3a 表示这个等边三角形的周长,此选项不符合题意;C 、由“售价=进价+利润”得售价为1.5a 元,则2×1.5a =3a (元),此选项不符合题意;D 、由题可知,这个两位数用字母表示为10×3+a =30+a ,此选项符合题意. 故选:D .【点睛】本题主要考查了列代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.11.下列式子中,是整式的是( )A .1x +B .11x +C .1÷xD .1x x + A 解析:A【分析】根据整式的定义即单项式和多项式统称为整式,找出其中的单项式和多项式即可.【详解】解:A. 1x +是整式,故正确; B. 11x +是分式,故错误; C. 1÷x 是分式,故错误;D.1x x+是分式,故错误. 故选A.【点睛】 本题主要考查了整式,关键是掌握整式的概念.12.小明通常上学时走上坡路,通常的速度为m 千米时,放学回家时,原路返回,通常的速度为n 千米时,则小明上学和放学路上的平均速度为( )千米/时A .2m n + B .mn m n + C .2mn m n + D .m n n m + C 解析:C【分析】平均速度=总路程÷总时间,题中没有单程,可设从家到学校的单程为1,那么总路程为2.【详解】 解:依题意得:1122()2m n mn m n mn m n+÷+=÷=+. 故选:C .【点睛】本题考查了列代数式;解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.当题中没有一些必须的量时,为了简便,可设其为1.13.下列判断中错误的个数有( ) (1)23a bc 与2bca -不是同类项; (2)25m n 不是整式; (3)单项式32x y -的系数是-1; (4)2235x y xy -+是二次三项式.A .4个B .3个C .2个D .1个B解析:B【分析】 根据同类项概念和单项式的系数以及多项式的次数的概念分析判断.【详解】解:(1)23a bc 与2bca -是同类项,故错误;(2)25m n 是整式,故错; (3)单项式-x 3y 2的系数是-1,正确;(4)3x 2-y+5xy 2是3次3项式,故错误.故选:B .【点睛】本题主要考查了整式的有关概念.并能掌握同类项概念和单项式的系数以及多项式的次数的确定方法.14.式子5xx-是().A.一次二项式B.二次二项式C.代数式D.都不是C 解析:C【分析】根据代数式以及整式的定义即可作出判断.【详解】式子5xx-分母中含有未知数,因而不是整式,故A、B错误,是代数式,故C正确.故选:C.【点睛】本题考查了代数式的定义,就是利用运算符号把数或字母连接而成的式子,单独的数或字母都是代数式.15.﹣(a﹣b+c)变形后的结果是()A.﹣a+b+c B.﹣a+b﹣c C.﹣a﹣b+c D.﹣a﹣b﹣c B解析:B【分析】根据去括号法则解题即可.【详解】解:﹣(a﹣b+c)=﹣a+b﹣c故选B.【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.1.填在各正方形中的四个数字之间具有相同的规律,根据这种规律,m的值应是_______.184【分析】根据题意知:前三个图形的左上角与右下角数的和等于右上角与左下角数的积且左上左下右上三个数是相邻的奇数据此解答【详解】由前面数字关系:135;357;579可得最后一个三个数分别为:11解析:184【分析】根据题意知:前三个图形的左上角与右下角数的和等于右上角与左下角数的积,且左上,左下,右上三个数是相邻的奇数.据此解答.【详解】由前面数字关系:1,3,5;3,5,7;5,7,9,可得最后一个三个数分别为:11,13,15,3×5-1=14;5×7-3=32;7×9-5=58;由于左上的数是11,则左下角的是13,右上角的是15,∴m=13×15-11=184.故答案为:184.【点睛】本题考查了数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出m 的值.2.将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m 组第n 个数字,则m +n =_____.65【分析】根据题目中数字的特点可知每组的个数依次增大每组中的数字都是连续的偶数然后即可求出2020是多少组第多少个数从而可以得到mn 的值然后即可得到m+n 的值【详解】解:∵将正偶数按照如下规律进行解析:65【分析】根据题目中数字的特点,可知每组的个数依次增大,每组中的数字都是连续的偶数,然后即可求出2020是多少组第多少个数,从而可以得到m 、n 的值,然后即可得到m +n 的值.【详解】解:∵将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,∴第m 组有m 个连续的偶数,∵2020=2×1010,∴2020是第1010个偶数,∵1+2+3+ (44)44(441)2⨯+=990,1+2+3+…+45=45(451)2⨯+=1035, ∴2020是第45组第1010-990=20个数,∴m =45,n =20,∴m +n =65.故答案为:65.【点睛】本题考查探索规律,认真观察所给数据总结出规律是解题的关键. 3.在多项式422315x x x x 中,同类项有_________________;-2x5x 【分析】根据同类项:所含字母相同并且相同字母的指数也相同进行判断即可【详解】解:-2x 与5x 是同类项;故答案为:-2x5x 【分析】本题考查了同类项的知识解题的关键是掌握同类项的定义解析:-2x ,5x【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,进行判断即可.【详解】解: -2x 与5x 是同类项;故答案为:-2x ,5x .【分析】本题考查了同类项的知识,解题的关键是掌握同类项的定义.4.如图,图1是“杨辉三角”数阵;图2是(a+b )n 的展开式(按b 的升幂排列).若(1+x )45的展开式按x 的升幂排列得:(1+x )45=a 0+a 1x+a 2x 2+…+a 45x 45,则a 2=_____.990【分析】根据图形中的规律即可求出(1+x )45的展开式中第三项的系数为前44个数的和计算得到结论【详解】解:由图2知:(a+b )1的第三项系数为0(a+b )2的第三项的系数为:1(a+b )3的解析:990【分析】根据图形中的规律即可求出(1+x )45的展开式中第三项的系数为前44个数的和,计算得到结论.【详解】解:由图2知:(a+b )1的第三项系数为0,(a+b )2的第三项的系数为:1,(a+b )3的第三项的系数为:3=1+2,(a+b )4的第三项的系数为:6=1+2+3,…∴发现(1+x )3的第三项系数为:3=1+2;(1+x )4的第三项系数为6=1+2+3;(1+x )5的第三项系数为10=1+2+3+4;不难发现(1+x )n 的第三项系数为1+2+3+…+(n ﹣2)+(n ﹣1),∴(1+x )45=a 0+a 1x+a 2x 2+...+a 45x 45,则a 2=1+2+3+ (44)44(441)2⨯+=990; 故答案为:990.【点睛】本题考查了完全平方式,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b )n 中,相同字母a 的指数是从高到低,相同字母b 的指数是从低到高.5.如图,是由一些点组成的图形,按此规律,在第n 个图形中,点的个数为_____.n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2解析:n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2n﹣1)=n2+2.故答案为:n2+2.【点睛】本题考查规律型:图形的变化类.6.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点从而得出结论【详解】解:第2个图形比第1个图形多2×3个点第3个图形比第2个图形多3×3个点…即每个图形比前一个图形多序号×3个点∴第4个解析:12631【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点,从而得出结论.【详解】解:第2个图形比第1个图形多2×3个点,第3个图形比第2个图形多3×3个点,…,即每个图形比前一个图形多序号×3个点.∴第4个图中共有点的个数比第3个图中共有点的个数多4×3=12个点.第20个图形共有4+2×3+3×3+…+19×3+20×3=4+3×(2+3+…+19+20)=4+3×209=4+627=631(个).故答案为:12;631.【点睛】本题考查了图形的变化,解题的关键是:发现“每个图形比前一个图形多序号×3个点”.本题属于中档题型,解决形如此类题型时,将射线上的点算到同一方向,即可发现规律.7.将连续正整数按以下规律排列,则位于第7行第7列的数x是________________.?136********259142027?48131926??7121825??111724??1623??22?????x?【分析】先根据第一行的第一列的数以及第二行的第二列的数第三行的第三列数第四行的第四列数进而得出变化规律由此得出结果【详解】第一行的第一列的数是1;第二行的第二列的数是5=1+4;第三行的第三列的数是解析:85【分析】先根据第一行的第一列的数,以及第二行的第二列的数,第三行的第三列数,第四行的第四列数,进而得出变化规律,由此得出结果.【详解】第一行的第一列的数是 1;第二行的第二列的数是 5=1+4;第三行的第三列的数是 13=1+4+8;第四行的第四列的数是 25=1+4+8+12;......第n 行的第n 列的数是1+4+8+12+...+4(n-1)=1+4[1+2+3+...+(n+1)]=1+2n(n-1); ∴第七行的第七列的数是1+2×7×(7-1)=85; 故答案为:85. 【点睛】本题考查数字的变化规律,学生通过观察、分析、归纳发现其中的规律,从而利用规律解决问题.8.如图:矩形花园ABCD 中,,AB a AD b ==,花园中建有一条矩形道路LMPQ 及一条平行四边形道路RSTK .若LM RS c ==,则花园中可绿化部分的面积为______.【分析】由长方形的面积减去PQLM 与RKTS 的面积再加上重叠部分面积即可得到结果【详解】S 矩形ABCD=AB•AD=abS 道路面积=ca+cb-c2所以可绿化面积=S 矩形ABCD-S 道路面积=ab- 解析:2ab bc ac c --+【分析】由长方形的面积减去PQLM 与RKTS 的面积,再加上重叠部分面积即可得到结果. 【详解】S 矩形ABCD =AB•AD=ab , S 道路面积=ca+cb-c 2,所以可绿化面积=S 矩形ABCD -S 道路面积 =ab-(ca+cb-c 2), =ab-ca-cb+c 2. 故答案为:ab-bc-ac+c 2. 【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.9.已知5a b -=,3c d +=,则()()b c a d +--的值等于______.-2【分析】把原式去括号转化为含有(a-b)和(c+d)的式子然后代入求值即可【详解】故答案为:-2【点睛】本题考查了整式的化简求值把原式转化为含有(a-b)和(c+d)的式子是解决此题的关键解析:-2 【分析】把原式去括号转化为含有(a -b )和(c +d )的式子,然后代入求值即可. 【详解】()()()()532b c a d b c a d b a c d +--=+-+=-++=-+=-.故答案为:-2. 【点睛】本题考查了整式的化简求值,把原式转化为含有(a -b )和(c +d )的式子是解决此题的关键. 10.“a 的3倍与b 的34的和”用代数式表示为______.【分析】a 的3倍表示为3ab 的表示为b 然后把它们相加即可【详解】根据题意得3a +b ;故答案为:3a +b 【点睛】本题考查了列代数式:把问题中与数量有关的词语用含有数字字母和运算符号的式子表示出来就是列解析:334a b +【分析】a 的3倍表示为3a ,b 的34表示为34b ,然后把它们相加即可. 【详解】 根据题意,得3a +34b ; 故答案为:3a +34b . 【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式. 列代数式时,要先认真审题,抓住关键词语,仔细辩析词义;再分清数量关系;规范地书写.11.已知22211m mn n ++=,26mn n +=,则22m n +的值为______.5【分析】观察多项式之间的关系可知将已知两式相减再化简即可得到结果【详解】∵∴∴的值为5【点睛】本题考查整式的加减观察得出整式之间的关系再进行去括号化简是解题的关键解析:5 【分析】观察多项式之间的关系可知,将已知两式相减,再化简即可得到结果. 【详解】∵22211m mn n ++=,26mn n +=, ∴()22222222221165mn m mn n m n n mn n mmn n ---=+++=++=-=+,∴22m n +的值为5. 【点睛】本题考查整式的加减,观察得出整式之间的关系再进行去括号化简是解题的关键. 1.计算:(1)()()312⨯-+-(2)2235223x x x x -+-+- 解析:(1)5-;(2)241x x -- 【分析】(1)直接根据有理数的混合运算法则即可求解. (2)直接根据整式的加减混合运算法则即可求解. 【详解】解:(1)原式(3)(2)=-+-5=-;(2)原式2(32)(51)(23)x x =---+-241x x =--.【点睛】此题主要考查有理数的加减运算和整式的加减运算,熟练掌握运算法则是解题关键. 2.如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A ,B 是数轴上的点,请参照下图并思考,完成下列各题.(1)如果点A 表示数-3,将A 点向右移动7个单位长度,那么终点B 表示的数是 ,A ,B 两点间的距离为 .(2)如果点A 表示数3,将A 点向左移动7个单位长度,再向右移动5个单位长度,那么终点B 表示的数是 ,A ,B 两点间的距离为 .(3)如果点A 表示数4-,将A 点向右移动168个单位长度,再向左移动256个单位长度,那么终点B 表示的数是 ,A ,B 两点间的距离是 .(4)一般地,如果A 点表示数为m ,将A 点向右移动n 个单位长度,再向左移动P 个单位长度,那么,请你猜想终点B 表示什么数?A ,B 两点间的距离为多少? 解析:(1)4,7;(2) 1,2;(3) -92,88;(4)m+n-p ,|n-p| 【分析】(1)根据数轴上的点向右平移加,向左平移减,可得B 点表示的数为-3+7=4,根据数轴上两点间的距离是大数减小数,可得答案;(2)根据数轴上的点向右平移加,向左平移减,可得B 点表示的数3-7+5=1,根据数轴上两点间的距离是大数减小数,可得答案;(3)根据数轴上的点向右平移加,向左平移减,可得B 点表示的数-4+168-256=-92,根据数轴上两点间的距离是大数减小数,可得答案; (4)按照(1)(2)(3)中的方法讨论更加一般的情况即可求解. 【详解】解:(1)∵点A 表示数-3,∴将A 点向右移动7个单位长度,那么终点B 表示的数是-3+7=4,A ,B 两点间的距离为4-(-3)=7,故答案为:4,7;(2)∵点A 表示数3,∴将A 点向左移动7个单位长度,再向右移动5个单位长度,那么终点B 表示的数是3-7+5=1,A ,B 两点间的距离为3-1=2, 故答案为:1,2;(3)∵点A 表示数-4,将A 点向右移动168个单位长度,再向左移动256个单位长度,那么终点B 表示的数是-4+168-256=-92,A ,B 两点间的距离是-4-(-92)=88, 故答案为:-92,88;(4)∵A 点表示的数为m ,∴将A 点向右移动n 个单位长度,再向左移动p 个单位长度, 那么点B 表示的数为m+n-p ,A ,B 两点间的距离为|m-(m+n-p)|=|n-p|. 故答案为:m+n-p ,|n-p|. 【点睛】本题考查的是数轴上点的平移规律及数轴上两点之间的距离公式,点在数轴上平移遵循“左减右加”原则;注意数轴上两点之间的距离为大数减小数,当不确定谁大谁小时记得加绝对值符号;正确利用数形结合分析是解题关键. 3.已知31AB x ,且3223A x x ,求代数式B .解析:2322x x -++【分析】将A 代入A-B=x 3+1中计算即可求出B . 【详解】解:∵A-B=x 3+1,且A=-2x 3+2x+3, ∴B=A-(x 3+1)=-2x 3+2x+3-x 3-1=-3x 3+2x+2. 【点睛】本题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解题的关键.4.有这样一道题“求多项式3323323763363101a a b a b a a b a b a -+++--+的值,其中99.01,123.89a b ==-”,有一位同学把99.01a =抄成99.01,123.89a b =-=-抄成123.89b =,结果也正确,为什么? 解析:见解析 【分析】原式合并同类项得到最简结果为常数1,这个多项式的值与a 、b 的值无关,故a ,b 的值抄错后,答案仍然是1 【详解】解:∵3323323763363101a a b a b a a b a b a -+++--+()()()33333227310663311a a a a b a b a b a b =+-+-++-+=;∴这个多项式的值与,a b 的值无关, 故,a b 的值抄错后结果也正确. 【点睛】此题考查了整式的加减——化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.。

大连市七年级数学上册第二章《整式的加减》知识点(含答案解析)

大连市七年级数学上册第二章《整式的加减》知识点(含答案解析)

一、选择题1.(0分)代数式x 2﹣1y 的正确解释是( ) A .x 与y 的倒数的差的平方B .x 的平方与y 的倒数的差C .x 的平方与y 的差的倒数D .x 与y 的差的平方的倒数B 解析:B【分析】根据代数式的意义,可得答案.【详解】解:代数式x 2﹣1y的正确解释是x 的平方与y 的倒数的差, 故选:B .【点睛】 本题考查了代数式,理解题意(代数式的意义)是解题关键.2.(0分)若2312a b x y +与653a b x y -的和是单项式,则+a b =( ) A .3-B .0C .3D .6C 解析:C【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值.【详解】解:根据题意可得:26{3a b a b +=-=, 解得:3{0a b ==, 所以303a b +=+=,故选:C .【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.3.(0分)已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2B .3C .4D .5B 解析:B【分析】根据同类项的概念可得关于n 的一元一次方程,求解方程即可得到n 的值.【详解】解:∵132n x y +与4313x y 是同类项, ∴n+1=4,解得,n=3,故选:B.【点睛】本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.4.(0分)如图所示,直线AB 、CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为2,-4,6,-8,10,-12,….那么标记为“-2020”的点在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上C解析:C【分析】 由图可观察出负数在OC 或OD 射线上,在OC 射线上的数为-4的奇数倍,在OD 射线上的数为-4的偶数倍,即可得出答案.【详解】解:∵由图可观察出负数在OC 或OD 射线上,排除选项A,B ,∵在射线OC 上的数符合:44112432045-=-⨯-=-⨯-=-⨯,,┈在射线OD 上的数符合:84216442446-=-⨯-=-⨯-=-⨯,,┈∵20204505-=-⨯,505为奇数,因此标记为“-2020”的点在射线OC 上.故答案为:C.【点睛】本题是一道探索数字规律的题目,具有一定的挑战性,可以根据已给数字多列举几个,更容易得出每条射线上数字的规律.5.(0分)下列式子中,是整式的是( )A .1x +B .11x +C .1÷xD .1x x+ A 解析:A根据整式的定义即单项式和多项式统称为整式,找出其中的单项式和多项式即可.【详解】解:A. 1x +是整式,故正确; B. 11x +是分式,故错误; C. 1÷x 是分式,故错误;D.1x x+是分式,故错误. 故选A.【点睛】 本题主要考查了整式,关键是掌握整式的概念.6.(0分)把一个大正方形和四个相同的小正方形按图①、②两种方式摆放,则大正方形的周长与小正方形的周长的差是( )A .2+a bB .+a bC .3a b +D .3a b + D解析:D【分析】 利用大正方形的周长减去4个小正方形的周长即可求解.【详解】解:根据图示可得:大正方形的边长为2a b +,小正方形边长为4a b -, ∴大正方形的周长与小正方形的周长的差是:2a b +×4-4a b -×4=a+3b. 故选;D.【点睛】本题考查了列代数式,正确求出大小正方形的边长列代数式,以及整式的化简,正确对整式进行化简是关键.7.(0分)下列去括号正确的是( )A .221135135122x y x x y y ⎛⎫--+=-++ ⎪⎝⎭B .()8347831221a ab b a ab b --+=---C .()()222353261063x y xx y x +--=+-+ D .()()223423422x y x x y x --+=--+ C【分析】依据去括号法则计算即可判断正误.【详解】 A. 221135135122x y x x y x ⎛⎫--+=-+- ⎪⎝⎭,故此选项错误; B. ()8347831221a ab b a ab b --+=-+-,故此选项错误;C. ()()222353261063x y xx y x +--=+-+,此选项正确; D. ()()223423422x y xx y x --+=---,故此选项错误;故选:C.【点睛】此题考查整式的化简,注意去括号法则.8.(0分)张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b +元的价格出售.在这次买卖中,张师傅的盈亏状况为( ) A .赚了(25a+25b )元 B .亏了(20a+30b )元 C .赚了(5a-5b )元D .亏了(5a-5b )元C解析:C【分析】用(售价-甲的进价)×甲的件数+(售价-乙的进价)×乙的件数列出关系式,去括号合并得到结果,即为张师傅赚的钱数【详解】根据题意列得:20(-2-23020302222a b a b a b a a b a a b ++++-+-=⨯+⨯)() =10(b-a )+15(a-b )=10b-10a+15a-15b=5a-5b ,则这次买卖中,张师傅赚5(a-b )元.故选C .【点睛】此题考查整式加减运算的应用,去括号法则,以及合并同类项法则,熟练掌握法则是解题关键.9.(0分)某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元A .(115%)(120%)a ++B .(115%)20%a +C .(115%)(120%)a +-D .(120%)15%a + A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a 元.故选A .【点睛】此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.10.(0分)多项式33x y xy +-是( )A .三次三项式B .四次二项式C .三次二项式D .四次三项式D解析:D【分析】根据多项式的项及次数的定义确定题目中的多项式的项和次数就可以了.【详解】解:由题意,得该多项式有3项,最高项的次数为4,该多项式为:四次三项式.故选:D .【点睛】本题考查了多项式,正确把握多项式的次数与系数确定方法是解题的关 二、填空题11.(0分)在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n 时,最多可有的交点数m 与直线条数n 之间的关系式为:m =_____.(用含n 的代数式填空)【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n 条直线相交最多有1+2+3+…+(n-1)=个解析:()12n n - 【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n 条直线相交,最多有1+2+3+…+(n-1)=()12n n -个交点. 【详解】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n 条直线相交,最多有1+2+3+…+(n-1)=()12n n - 个交点.即()12n n m -= 故答案为:()12n n -. 【点睛】本题主要考查了相交线,图形的规律探索,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.12.(0分)观察如图,发现第二个和第三个图形是怎样借助第一个图形得到的,概括其中的规律在第n 个图形中,它有n 个黑色六边形,有_______个白色六边形.【分析】发现规律下一个图形是在上一个图形的基础上加上1个黑色六边形和4个白色六边形【详解】解:第一个图形中有6个白色六边形第二个图形有6+4个白色六边形第三个图形有6+4+4个白色六边形根据发现的规解析:42n +【分析】 发现规律,下一个图形是在上一个图形的基础上加上1个黑色六边形和4个白色六边形.【详解】解:第一个图形中有6个白色六边形,第二个图形有6+4个白色六边形,第三个图形有6+4+4个白色六边形,根据发现的规律,第n 个图形中有6+4(n -1)个白色四边形.故答案是:4n +2.【点睛】本题考查规律的探究,解题的关键是先发现图形之间的规律,再去归纳总结出公式. 13.(0分)合并同类项(1)21123x x x --=____________________;(按字母x 升幂排列)(2)3222232223x y x y y x x y --+=_____________________;(按字母x 降幂排列) (3)222234256a b ab a b =_____________________;(按字母b 降幂排列)【分析】(1)先合并同类项再将多项式按照字母x 的次数由小到大重新排列即可;(2)先合并同类项再将多项式按照字母x 的次数由大到小重新排列即可;(3)先合并同类项再将多项式按照字母b 的次数由大到小重新排 解析:256x x -+ 32222x y x y -- 221022b ab a -- 【分析】 (1)先合并同类项,再将多项式按照字母x 的次数由小到大重新排列即可;(2)先合并同类项,再将多项式按照字母x 的次数由大到小重新排列即可;(3)先合并同类项,再将多项式按照字母b 的次数由大到小重新排列即可.【详解】解:(1)2222111155232366x x x x x x x x x x ⎛⎫--=-+=-=-+ ⎪⎝⎭; 故答案为:256x x -+; (2)解:322223223222232x y x y y x x y x y x y --+=--; 故答案为:32222x y x y --;(3)解:222222223425621021022a b ab a b a b ab b ab a +--+=-+-=--; 故答案为:221022b ab a --.【点睛】此题考查整式的降幂及升幂排列,合并同类项法则,将多项式按照某个字母重新排列时注意该项的次数及符号,利用交换律将多项式重新排列.14.(0分)===,……=m =_____________9【分析】根据观察可知:将代入即可得出答案【详解】解:……故答案为:【点睛】主要考查了学生的分析总结归纳能力规律型的习题一般是从所给的数据和运算方法进行分析从特殊值的规律上总结出一般性的规律解析:9【分析】13n +,将210n +=代入即可得出答案. 【详解】解:==……,13n +210n +=8n ∴=19m n ∴=+=故答案为:9.【点睛】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.15.(0分)礼堂第一排有a个座位,后面每排都比第一排多1个座位,则第n排座位有________________.【分析】有第1排的座位数看第n排的座位数是在第1排座位数的基础上增加几个1即可【详解】解:∵第一排有个座位∴第2排的座位为a+1第3排的座位数为a+2…第n排座位有(a+n-1)个故答案为:(a+n解析:a n1+-【分析】有第1排的座位数,看第n排的座位数是在第1排座位数的基础上增加几个1即可.【详解】解:∵第一排有a个座位,∴第2排的座位为a+1,第3排的座位数为a+2,…第n排座位有(a+n-1)个.故答案为:(a+n-1).【点睛】考查列代数式;得到第n排的座位数与第1排座位数的关系式的规律是解决本题的关键.16.(0分)有一列数:12,1,54,75,…,依照此规律,则第n个数表示为____.【分析】根据分母是从2开始连续的自然数分子是从1开始连续的奇数解答即可【详解】这列数可以写为因此分母为从2开始的连续正整数分子为从1开始的奇数故第n个数为故答案为:【点睛】本题考查了数字的变化规律找解析:211nn-+.【分析】根据分母是从2开始连续的自然数,分子是从1开始连续的奇数解答即可.【详解】这列数可以写为12,33,54,75,因此,分母为从2开始的连续正整数,分子为从1开始的奇数,故第n个数为211nn-+.故答案为:211nn-+.【点睛】本题考查了数字的变化规律,找出分子分母的联系,得出运算规律是解决问题的关键. 17.(0分)已知在没有标明原点的数轴上有四个点,且它们表示的数分别为a 、b 、c 、d .若|a ﹣c |=10,|a ﹣d |=12,|b ﹣d |=9,则|b ﹣c |=___.7【分析】根据数轴和题目中的式子可以求得c ﹣b 的值从而可以求得|b ﹣c|的值【详解】∵|a ﹣c|=10|a ﹣d|=12|b ﹣d|=9∴c ﹣a=10d ﹣a=12d ﹣b=9∴(c ﹣a )﹣(d ﹣a )+(d解析:7【分析】根据数轴和题目中的式子可以求得c ﹣b 的值,从而可以求得|b ﹣c |的值.【详解】∵|a ﹣c |=10,|a ﹣d |=12,|b ﹣d |=9,∴c ﹣a =10,d ﹣a =12,d ﹣b =9,∴(c ﹣a )﹣(d ﹣a )+(d ﹣b )=c ﹣a ﹣d +a +d ﹣b=c ﹣b=10﹣12+9=7.∵|b ﹣c |=c ﹣b ,∴|b ﹣c |=7.故答案为:7.【点睛】本题考查了数轴、绝对值以及整式的加减,解答本题的关键是明确数轴的特点,可以将绝对值符号去掉,求出相应的式子的值.18.(0分)多项式223324573x x y x y y --+-按x 的降幂排列是______。

人教版初中七年级数学上册第二章《整式的加减》知识点(含答案解析)

人教版初中七年级数学上册第二章《整式的加减》知识点(含答案解析)

1.与(-b)-(-a)相等的式子是( ) A .(+b)-(-a) B .(-b)+a C .(-b)+(-a) D .(-b)-(+a)B解析:B 【分析】将各选项去括号,然后与所给代数式比较即可﹒ 【详解】解: (-b)-(-a)=-b+a A. (+b)-(-a)=b+a ; B. (-b)+a=-b+a ; C. (-b)+(-a)=-b-a ; D. (-b)-(+a)=-b-a ;故与(-b)-(-a)相等的式子是:(-b)+a ﹒ 故选:B ﹒ 【点睛】本题考查了去括号的知识,熟练去括号的法则是解题关键﹒ 2.若2312a b x y +与653a bx y -的和是单项式,则+a b =( ) A .3- B .0C .3D .6C解析:C 【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值. 【详解】解:根据题意可得:26{3a b a b +=-=, 解得:3{0a b ==,所以303a b +=+=, 故选:C . 【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键. 3.下列计算正确的是( ) A .﹣1﹣1=0 B .2(a ﹣3b )=2a ﹣3b C .a 3﹣a=a 2D .﹣32=﹣9D解析:D 【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答. 【详解】解:A .﹣1﹣1=﹣2,故本选项错误; B .2(a ﹣3b )=2a ﹣6b ,故本选项错误; C .a 3÷a =a 2,故本选项错误; D .﹣32=﹣9,正确; 故选:D . 【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 4.下列去括号正确的是( ) A .112222x y x y ⎛⎫ =⎭-⎪⎝--- B .()12122x y x y ++=+- C .()16433232x y x y --+=-++ D .()22x y z x y z +-+=-+ D解析:D 【分析】根据整式混合运算法则和去括号的法则计算各项即可.【详解】 A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误; B. ()12122x y x y ++=++,错误; C. ()136433222x y x y --+=-+-,错误; D. ()22x y z x y z +-+=-+,正确; 故答案为:D . 【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键. 5.观察下列单项式:223344191920202,2,2,2,,2,2,x x x x x x ---,则第n 个单项式是( ) A .2n n x B .(1)2n n n x -C .2n n x -D .1(1)2n n n x +- B解析:B 【分析】要看各单项式的系数和次数与该项的序号之间的变化规律.本题中,奇数项符号为负,偶数项符号为正,数字变化规律是(-1)n 2n ,字母变化规律是x n . 【详解】因为第一个单项式是1112(1)2x x -=-⨯; 第二个单项式是222222(1)2x x =-⨯; 第三个单项式是333332(1)2x x -=-⨯, …,所以第n 个单项式是(1)2nnnx -. 故选:B . 【点睛】本题考查了单项式的系数和次数的规律探索,确定单项式的系数和次数时,把一个单项式改写成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键. 6.下列式子:222,32,,4,,,22ab x yz ab c a b xy y m x π+---,其中是多项式的有( ) A .2个 B .3个 C .4个 D .5个A解析:A 【分析】几个单项式的和叫做多项式,结合各式进行判断即可. 【详解】22a b ,3,2ab,4,m -都是单项式; 2x yzx+分母含有字母,不是整式,不是多项式; 根据多项式的定义,232ab cxy y π--,是多项式,共有2个.故选:A . 【点睛】本题考查了多项式,解答本题的关键是理解多项式的定义.注意:几个单项式的和叫做多项式.7.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- C解析:C 【分析】本题首先求解矩形面积,继而求解空白部分的圆形面积,最后作差求解阴影面积. 【详解】由已知得:矩形面积为2ab ,空白圆形半径为a ,故圆形面积为2a π,则阴影部分的面积为22ab a π-. 故选:C . 【点睛】本题考查几何图形阴影面积的求法,涉及矩形面积公式以及圆形面积公式运用,求解不规则图形面积时通常利用割补法.8.设a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式﹣x 3y 的系数和次数,则a ,b ,c ,d 四个数的和是( ) A .1 B .2 C .3 D .4D解析:D 【分析】根据题意求得a ,b ,c ,d 的值,代入求值即可. 【详解】∵a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式-x 3y 的系数和次数, ∴a=0,b=1,c=-1,d=4, ∴a ,b ,c ,d 四个数的和是4, 故选:D . 【点睛】本题考查了有理数、整式的加减以及单项式的系数和次数,,认真掌握有理数的分类是本题的关键;注意整数、0、正数之间的区别,0既不是正数也不是负数,但是整数. 9.若关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,则m =( ) A .2 B .﹣2 C .3 D .﹣3D解析:D 【分析】先将多项式合并同类型,由不含x 的二次项可列 【详解】6x 2﹣7x+2mx 2+3=(6+2m )x 2﹣7x +3,∵关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项, ∴6+2m=0, 解得m =﹣3, 故选:D . 【点睛】此题考查多项式不含项的计算,此类题需先将多项式合并同类型后,由所不含的项得到该项的系数等于0来求值. 10.下列去括号正确的是( ) A .221135135122x y x x y y ⎛⎫--+=-++⎪⎝⎭B .()8347831221a ab b a ab b --+=---C .()()222353261063x y x x y x+--=+-+D .()()223423422x y x x y x--+=--+ C解析:C 【分析】依据去括号法则计算即可判断正误. 【详解】 A. 221135135122x y x x y x ⎛⎫--+=-+-⎪⎝⎭,故此选项错误;B. ()8347831221a ab b a ab b --+=-+-,故此选项错误;C. ()()222353261063x y x x y x+--=+-+,此选项正确;D. ()()223423422x y x x y x--+=---,故此选项错误;故选:C. 【点睛】此题考查整式的化简,注意去括号法则.11.已知m ,n 是不相等的自然数,则多项式2m n m n x x +-+的次数是( ) A .m B .n C .m n + D .m ,n 中较大者D解析:D 【分析】由于多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,因为m ,n 均为自然数,而2m n +是常数项,据此即可确定选择项. 【详解】因为2m n +是常数项,所以多项式2m n m n x x +-+的次数应该是,mnx x 中指数大的,即m ,n 中较大的,故答案选D. 【点睛】本题考查的是多项式的次数,解题关键是确定2m n +是常数项.12.多项式3336284a a x y x --+中,最高次项的系数和常数项分别为( ) A .2和8 B .4和8-C .6和8D .2-和8- D解析:D 【分析】根据多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,以及单项式系数、常数项的定义来解答. 【详解】多项式6a-2a 3x 3y-8+4x 5中,最高次项的系数和常数项分别为-2,-8. 故选D . 【点睛】本题考查了同学们对多项式的项和次数定义的掌握情况.在处理此类题目时,经常用到以(1)单项式中的数字因数叫做这个单项式的系数; (2)多项式中不含字母的项叫常数项;(3)多项式里次数最高项的次数,叫做这个多项式的次数.13.若252A x x =-+,256B x x =--,则A 与B 的大小关系是( ) A .A B > B .A B =C .A B <D .无法确定A解析:A 【分析】作差进行比较即可. 【详解】解:因为A -B =(x 2-5x +2)-( x 2-5x -6) =x 2-5x +2- x 2+5x +6 =8>0, 所以A >B . 故选A . 【点睛】本题考查了整式的加减和作差比较法,若A -B >0,则A >B ,若A -B <0,则A <B ,若A -B =0,则A =B . 14.式子5x x-是( ). A .一次二项式 B .二次二项式C .代数式D .都不是C解析:C 【分析】根据代数式以及整式的定义即可作出判断. 【详解】式子5x x -分母中含有未知数,因而不是整式,故A 、B 错误,是代数式,故C 正确. 故选:C . 【点睛】本题考查了代数式的定义,就是利用运算符号把数或字母连接而成的式子,单独的数或字母都是代数式.15.﹣(a ﹣b +c )变形后的结果是( ) A .﹣a +b +c B .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B解析:B 【分析】根据去括号法则解题即可. 【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c 故选B .本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.1.填在各正方形中的四个数字之间具有相同的规律,根据这种规律,m的值应是_______.184【分析】根据题意知:前三个图形的左上角与右下角数的和等于右上角与左下角数的积且左上左下右上三个数是相邻的奇数据此解答【详解】由前面数字关系:135;357;579可得最后一个三个数分别为:11解析:184【分析】根据题意知:前三个图形的左上角与右下角数的和等于右上角与左下角数的积,且左上,左下,右上三个数是相邻的奇数.据此解答.【详解】由前面数字关系:1,3,5;3,5,7;5,7,9,可得最后一个三个数分别为:11,13,15,3×5-1=14;5×7-3=32;7×9-5=58;由于左上的数是11,则左下角的是13,右上角的是15,∴m=13×15-11=184.故答案为:184.【点睛】本题考查了数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出m的值.2.数字解密:第一个数是3=2+1,第二个数5=3+2,第三个数是9=5+4,第四个数17=9+8,……,观察并猜想第六个数是_______.65【分析】设该数列中第n个数为an (n为正整数)根据给定数列中的前几个数之间的关系可找出变换规律an=2an ﹣1﹣1依此规律即可得出结论【详解】解:设该数列中第n个数为an(n为正整数)观察发现规解析:65【分析】设该数列中第n个数为a n(n为正整数),根据给定数列中的前几个数之间的关系可找出变换规律“a n=2a n﹣1﹣1”,依此规律即可得出结论.【详解】解:设该数列中第n个数为a n(n为正整数),观察,发现规律:a1=3=2+1,a2=5=2a1﹣1,a3=9=2a2﹣1,a4=17=2a3﹣1,…,a n=2a n﹣1﹣1.∴a 6=2a 5﹣1=2×(2a 4﹣1)﹣1=2×(2×17﹣1)﹣1=65. 故答案为65.3.观察下面的一列单项式:2342,4,8,16,,x x x x --根据你发现的规律,第n 个单项式为__________.【分析】分别从单项式的系数与次数两方面总结即可得出规律进而可得答案【详解】解:由已知单项式的排列规律可得第n 个单项式为:故答案为:【点睛】本题考查了单项式的规律探求通过所给的单项式找到规律并能准确的 解析:(2)n n x -【分析】分别从单项式的系数与次数两方面总结即可得出规律,进而可得答案. 【详解】解:由已知单项式的排列规律可得第n 个单项式为:(2)nnx -. 故答案为:(2)nnx -. 【点睛】本题考查了单项式的规律探求,通过所给的单项式找到规律,并能准确的用代数式表示是解题的关键.4.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n =__________(用含n 的代数式表示).所剪次数 1 2 3 4 … n 正三角形个数471013…a n3n+1【解析】试题分析:从表格中的数据不难发现:多剪一次多3个三角形即剪n 次时共有4+3(n-1)=3n+1试题解析:3n+1. 【解析】试题分析:从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n 次时,共有4+3(n-1)=3n+1. 试题故剪n 次时,共有4+3(n-1)=3n+1. 考点:规律型:图形的变化类.5.化简:226334xx x x_________.【分析】先去括号再根据合并同类项法则进行计算即可【详解】解:=故答案为:【点睛】此题考查整式的加减运算去括号法则合并同类项法则正确去括号是解题的关键 解析:2106x x -+【分析】先去括号,再根据合并同类项法则进行计算即可. 【详解】 解:226334xx x x226334xx x x2(64)(33)xx=2106x x -+, 故答案为:2106x x -+. 【点睛】此题考查整式的加减运算、去括号法则、合并同类项法则,正确去括号是解题的关键. 6.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为__元.08a 【解析】试题分析:根据题意得:a•(1+20)×90=108a ;故答案为108a 考点:列代数式解析:08a 【解析】试题分析:根据题意得:a•(1+20%)×90%=1.08a ;故答案为1.08a . 考点:列代数式.7.计算7a 2b ﹣5ba 2=_____.2a2b 【分析】根据合并同类项法则化简即可【详解】故答案为:【点睛】本题考查了合并同类项解题的关键是熟练运用合并同类项的法则本题属于基础题型解析:2a 2b 【分析】根据合并同类项法则化简即可. 【详解】()22227a b 5ba =75a b=2a b ﹣﹣.故答案为:22a b【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型. 8.如图:矩形花园ABCD 中,,AB a AD b ==,花园中建有一条矩形道路LMPQ 及一条平行四边形道路RSTK .若LM RS c ==,则花园中可绿化部分的面积为______.【分析】由长方形的面积减去PQLM 与RKTS 的面积再加上重叠部分面积即可得到结果【详解】S 矩形ABCD=AB•AD=abS 道路面积=ca+cb-c2所以可绿化面积=S 矩形ABCD-S 道路面积=ab- 解析:2ab bc ac c --+【分析】由长方形的面积减去PQLM 与RKTS 的面积,再加上重叠部分面积即可得到结果. 【详解】S 矩形ABCD =AB•AD=ab , S 道路面积=ca+cb-c 2,所以可绿化面积=S 矩形ABCD -S 道路面积 =ab-(ca+cb-c 2), =ab-ca-cb+c 2. 故答案为:ab-bc-ac+c 2. 【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.9.已知()11nn a =-+,当1n =时,10a =;当2n =时,22a =;当3n =时,30a =;…;则123a a a ++456a a a +++的值为______.【分析】利用乘方符号的规律当n 为奇数时(-1)n=-1;当n 为偶数时(-1)n=1找到此规律就不难得到答案6【详解】∵当n 为奇数时此时;当n 为偶数时(-1)n=1此时∴故填:6【点睛】本题乘方符号的解析:【分析】利用乘方符号的规律,当n 为奇数时,(-1)n =-1;当n 为偶数时,(-1)n =1.找到此规律就不难得到答案6. 【详解】∵当n 为奇数时,(1)1n -=-,此时110n a =-+=;当n 为偶数时,(-1)n =1,此时112n a =+=.∴1234560202026a a a a a a +++++=+++++=.故填:6.【点睛】本题乘方符号的规律,解题的关键是找出(1)n -的符号规律.10.观察下列各式,你会发现什么规律:3515⨯=,而21541=-;5735⨯=,而23561=-;1113143⨯=,而2143121=-……请将你猜想到的规律用只含一个字母的式子表示出来:______.【分析】观察各式的特点找出关于n 的式子用2n+1和2n-1表示奇数用2n 表示偶数即可得出答案【详解】根据题意可得:当n≥1时可归纳出故答案为:【点睛】本题考查的是找规律这类题型在中考中经常出现对于找 解析:()()()2212121n n n -+=-【分析】观察各式的特点,找出关于n 的式子,用2n+1和2n-1表示奇数,用2n 表示偶数,即可得出答案.【详解】根据题意可得:当n≥1时,可归纳出()()()2212121n n n -+=-故答案为:()()()2212121n n n -+=-.【点睛】本题考查的是找规律,这类题型在中考中经常出现,对于找规律的题目首先应该找出哪些部分发生了变化,是按照什么规律变化的.11.关于a ,b 的多项式-7ab-5a 4b+2ab 3+9为______次_______项式.其次数最高项的系数是__________.五四-5【分析】多项式共有四项其最高次项的次数为5次系数为-5由此可以确定多项式的项数次数及次数最高项的系数【详解】∵该多项式共有四项其最高次项是为5次∴该多项式为五次四项式∵次数最高项为∴它的系数 解析:五 四 -5【分析】多项式共有四项437,5,2,9ab a b ab --,其最高次项45a b -的次数为5次,系数为-5,由此可以确定多项式的项数、次数及次数最高项的系数.【详解】∵该多项式共有四项437,5,2,9ab a b ab --,其最高次项是45a b -,为5次∴该多项式为五次四项式∵次数最高项为45a b -∴它的系数为-5故填:五,四,-5.【点睛】本题考查了多项式的项数,次数和系数的求解.多项式中含有单项式的个数即为多项式的项数,包含的单项式中未知数的次数总和的最大值即为多项式的次数.1.数学课上,老师出示了这样一道题目:“当1,22a b ==-时,求多项式3233233733631061a a b a a b a b a a b +++----的值”.解完这道题后,张恒同学指出:“1,22a b ==-是多余的条件”师生讨论后,一致认为这种说法是正确的,老师及时给予表扬,同学们对张恒同学敢于提出自己的见解投去了赞赏的目光.(1)请你说明正确的理由;(2)受此启发,老师又出示了一道题目,“无论x 取任何值,多项式2233x mx nx x -++-+的值都不变,求系数m 、n 的值”.请你解决这个问题. 解析:(1)见解析;(2)3n =,1m =.【分析】(1)将原式进行合并同类项,然后进一步证明即可;(2)将原式进行合并同类项,根据“无论x 取任何值,多项式值不变”进一步求解即可.【详解】(1)3233233733631061a a b a a b a b a a b +++----=3332233731033661a a a a b a b a b a b +-+-+--=1-,∴该多项式的值与a 、b 的取值无关, ∴1,22a b ==-是多余的条件. (2)2233x mx nx x -++-+=2233x nx mx x -++-+=2(3n)(1)3x m x -++-+∵无论x 取任何值,多项式值不变,∴30n -+=,10m -=,∴3n =,1m =.【点睛】本题主要考查了多项式运算中的无关类问题,熟练掌握相关方法是解题关键.2.某校利用二维码进行学生学号统一编排.黑色小正方形表示1,白色小正方形表示0,将每一行数字从左到右依次记为a ,b ,c ,d ,那么利用公式 321222a b c d ⨯+⨯+⨯+计算出每一行的数据.第一行表示年级,第二行表示班级,第三行表示班级学号的十位数,第四行表示班级学号的个位数.如图1所示,第一行数字从左往右依次是1,0,0,1,则表示的数据为1×23+0×22+0×21+1=9,计作09,第二行数字从左往右依次是1,0,1,0,则表示的数据为1×23+0×22+1×21=10,计作10,以此类推,图1代表的统一学号为091034,表示9年级10班34号.小明所对应的二维码如图2所示,则他的统一学号为________.解析:070629【分析】利用公式求出图2中每行表示的数据,将其组合起来即可得出结论.【详解】解:∵第一行:0×23+1×22+1×21+1=7,计作07,第二行:0×23+1×22+1×21+0=6,计作06,第三行:0×23+0×22+1×21+0=2,计作2,第四行:1×23+0×22+0×21+1=9,计作9,∴他的统一学号为070629.故答案为:070629.【点睛】本题考查了规律型:图形的变化类以及尾数特征,读懂题意,利用公式求出图2中每行表示的数据是解题的关键.3.有理数,,a b c 在数轴上的位置如图所示,化简代数式||||||||a c b b a b a ----++.解析:3a b c --+【分析】首先判断出a c -,b b a b a -+,,的正负,再去掉绝对值符号,然后合并同类项即可.【详解】由题意可知0a c -<,0b >,0b a ->,0b a +<,||||||||a c b b a b a ----++3a c b b a b a a b c =-+--+--=--+.故答案为:3a b c --+.【点睛】本题主要考查了整式的化简求值,数轴,绝对值,熟练掌握运算法则以及数轴上右边的数总比左边的数大是解答本题的关键.4.计算:(1)()223537a ab a ab -+-++;(2)()222312424a a a a ⎛⎫+--- ⎪⎝⎭. 解析:(1)62ab --;(2)2321a a --+【分析】先去括号,然后合并同类项即可.【详解】解:(1)()223537a ab a ab -+-++ 223537a ab a ab =-+--- 2ab =-6-;(2)()222312424a a a a ⎛⎫+--- ⎪⎝⎭ 2222261a a a a =+--+ 2321a a =--+.【点睛】本题考查了整式的加减运算,熟记去括号法则和合并同类项的法则是解决此题的关键.。

七年级数学上册第二章整式的加减重点知识点大全

七年级数学上册第二章整式的加减重点知识点大全

(名师选题)七年级数学上册第二章整式的加减重点知识点大全单选题1、黑板上有一道题,是一个多项式减去3x2−5x+1,某同学由于大意,将减号抄成加号,得出结果是5x2+ 3x−7,这道题的正确结果是().A.8x2−2x−6B.14x2−12x−5C.2x2+8x−8D.−x2+13x−9答案:D分析:先利用加法的意义列式求解原来的多项式,再列式计算减法即可得到答案.解:5x2+3x−7−(3x2−5x+1)=5x2+3x−7−3x2+5x−1=2x2+8x−8所以的计算过程是:2x2+8x−8−(3x2−5x+1)=2x2+8x−8−3x2+5x−1=−x2+13x−9故选:D.小提示:本题考查的是加法的意义,整式的加减运算,熟悉利用加法的意义列式,合并同类项的法则是解题的关键.2、下列计算正确的是()A.2a2b+3a2b=5a2b B.2a2+3a2=5a4C.2a+3b=5ab D.2a2−3a2=−a答案:A分析:根据合并同类项法则计算即可判断.解:A、2a2b+3a2b=5a2b,故正确;B、2a2+3a2=5a2,故错误;C、2a+3b不能合并,故错误;D、2a2−3a2=−a2,故错误;故选A.小提示:本题考查了合并同类项,属于基础题,解答本题的关键是掌握合并同类项的法则.3、若多项式 36x2-3x+5 与 3x3+12mx2-5x相加后不含二次项,则常数m的值是( )A.-3B.-2C.2D.3答案:A分析:对两个多项式的二次项进行合并,再根据二次项系数为0建立关于m的方程求解,即可解答.解:两个多项式的二次项分别为:36x2和12mx2,则有:36x2+12mx2=(36+12m)x2,令36+12m=0,解得m=−3.故选:A.小提示:本题考查了多项式合并和无关项问题,特别是掌握无关项问题的解答方法是解答本题的关键.4、下列计算正确的是( )A.3ab+2ab=5ab B.5y2−2y2=3C.7a+a=7a2D.m2n−2mn2=−mn2答案:A分析:运用合并同类项的法则∶1.合并同类项后,所得项的系数是合并前各同类项的系数之和,且字母连同它的指数不变.字母不变,系数相加减.2.同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.即可得出答案.解:A、3ab+2ab=5ab,故选项正确,符合题意;B、5y2−2y2=3y2,故选项错误,不符合题意;C、7a+a=8a,故选项错误,不符合题意;D、m2n和2mn2不是同类项,不能合并,故选项错误,不符合题意;故选:A.小提示:本题考查了合并同类项,解题的关键是知道如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项,还要掌握合并同类项的运算法则.5、若21=2,22=4,23=8,24=16,25=32……,则22022的末位数字是()A.2B.4C.8D.6答案:B分析:由题意可得2n的末位数字按2,4,8,6四次一循环的规律出现,再计算2022÷4结果的余数即可.解:∵21=2,22=4,23=8,24=16,25=32……,∴2n的末位数字按2,4,8,6四次一循环的规律出现,∵2022÷4=505…2,∴22022的末位数字是4,故选:B.小提示:此题考查了乘方的尾数规律问题的解决能力,关键是能归纳出问题中尾数循环出现的规律.6、下列计算结果为5的是()A.−(+5)B.+(−5)C.−(−5)D.−|−5|答案:C分析:根据去括号法则及绝对值化简依次计算判断即可.解:A、-(+5)=-5,不符合题意;B、+(-5)=-5,不符合题意;C、-(-5)=5,符合题意;D、−|−5|=−5,不符合题意;故选:C.小提示:题目主要考查去括号法则及化简绝对值,熟练掌握去括号法则是解题关键.7、如图,用相同的圆点按照一定的规律拼出图形.第一幅图4个圆点,第二幅图7个圆点,第三幅图10个圆点,第四幅图13个圆点……按照此规律,第一百幅图中圆点的个数是()A.297B.301C.303D.400答案:B分析:首先根据前几个图形圆点的个数规律即可发现规律,从而得到第100个图摆放圆点的个数.解:观察图形可知:第1幅图案需要4个圆点,即4+3×0,第2幅图7个圆点,即4+3=4+3×1;第3幅图10个圆点,即4+3+3=4+3×2;第4幅图13个圆点,即4+3+3+3=4+3×3;第n幅图中,圆点的个数为:4+3(n-1)=3n+1,……,第100幅图,圆中点的个数为:3×100+1=301.故选:B.小提示:本题主要考查了图形的变化规律,解答的关键是由所给的图形总结出存在的规律.8、下列说法正确的是()A.23πa3的次数是4B.mn-12不是整式C.3x2y与−2yx2是同类项D.y−2x2+3xy2是二次三项式答案:C分析:根据单项式,整式,同类项及多项式的有关定义分析四个选项,即可得出结论解:A. 23πa3的次数是3次,故本选项错误,不符合题意;B.mn-12是整式,故本选项错误,不符合题意;C. 3x2y与−2yx2是同类项,故本选项正确,符合题意;D. y−2x2+3xy2是关于x,y的三次三项式;故本选项错误,不符合题意;故选择:C小提示:本题考查了整式,同类项,单项式,多项式的有关定义的问题,解题的关键是牢记这些定义.9、古希腊著名的毕达哥拉斯学派把1、3、6、10…,这样的数称为“三角形数”,而把1、4、9、16…,这样的数称为“正方形数”.则第5个“三角形数”与第5个“正方形数”的和是()A.35B.40C.45D.50答案:B分析:分别探究“三角形数”与“正方形数”的存在规律,求出第5个“三角形数”与第5个“正方形数”,再求第5个“三角形数”与第5个“正方形数”的和.第1个“三角形数”:1,第2个“三角形数”:1+2=3,第3个“三角形数”:1+2+3=6,第4个“三角形数”:1+2+3+3=10,第5个“三角形数”:1+2+3+4+5=15,第1个“正方形数”:1,第2个“正方形数”:22=4,第3个“正方形数”:32=9,第4个“正方形数”:42=16,第5个“正方形数”:52=25,∴15+25=40.故选:B.小提示:本题主要考查了“三角形数”与“正方形数”,解决问题的关键是探究“三角形数”与“正方形数”的规律,运用规律求数.10、如图,下列四个式子中,不能表示阴影部分面积的是()A.3(x+2)+x2B.x(x+3)+6C.x2+5D.(x+3)(x+2)−2x答案:C分析:根据图形列出各个算式,再得出答案即可.解:阴影部分的面积S=x2+3(2+x)=x(x+3)+3×2=(x+3)(x+2)﹣2x,故A、B、D都可以表示阴影部分面积,只有C不能,故选:C.小提示:本题考查了列代数式,能根据图列出算式是解此题的关键.填空题11、观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n的值为____________.答案:不存在分析:首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n个图形中“•”的个数是3n;然;最后根据图形中的后根据n=1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n个“○”的个数是n(n+1)2“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n的值是多少即可.解:∵n=1时,“•”的个数是3=3×1;n=2时,“•”的个数是6=3×2;n=3时,“•”的个数是9=3×3;n=4时,“•”的个数是12=3×4;……∴第n个图形中“•”的个数是3n;又∵n=1时,“○”的个数是1=1×(1+1)2;n=2时,“○”的个数是3=2×(2+1)2,n=3时,“○”的个数是6=3×(3+1)2,n=4时,“○”的个数是10=4×(4+1)2,……∴第n个“○”的个数是n(n+1)2,由图形中的“○”的个数和“.”个数差为2022∴3n−n(n+1)2=2022①,n(n+1)2−3n=2022②解①得:无解解②得:n1=5+√162012,n2=5−√162012所以答案是:不存在小提示:本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.12、已知a2−2a=1,则3a2−6a−4的值为________答案:−1分析:将a2−2a=1作为整体代入计算即可得.解:∵a2−2a=1,∴3a2−6a−4=3(a2−2a)−4=3×1−4=−1,所以答案是:−1.小提示:本题考查了代数式求值,熟练掌握整体代入思想是解题关键.13、已知a+b=2,则2a+2b−5=______.答案:−1分析:先添括号把2a+2b−5化为2(a+b)−5,然后将a+b=2整体代入即可求解.解:∵a+b=2,∴2a+2b−5=2(a+b)−5=2×2−5=−1,所以答案是:−1.小提示:本题考查了代数式求值,熟练掌握添括号法则和整体代入思想是解题关键.14、若关于x、y的多项式27x2y−9mxy−38y3−3xy+2化简后不含二次项.则m=________.答案:−13分析:首先合并同类项,不含二次项,说明xy项的系数是0,由此进一步计算得出结果即可.解:27x2y−9mxy−38y3−3xy+2=2 7x2y−38y3−(9m+3)xy+2,∵化简后不含二次项,∴9m+3=0,解得m=−13,所以答案是:−13.小提示:此题考查并同类项的方法,明确没有某一项的含义,就是这一项的系数为0.15、在代数式3xy2,m,6a2−a+3,12,4x2yzx−15xy2,23ab中,单项式有___________个.答案:3分析:根据单项式的定义,进行逐一判断即可.解:在3xy2,m,6a2−a+3,12,4x2yzx−15xy2,23ab中,单项式有3xy2,m,12,一共3个,所以答案是:3.小提示:本题主要考查了单项式的定义,解题的关键在于能够熟知相关定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数.解答题16、如图,在数轴上,点A向右移动1个单位到点B,点B向右移动(n+1)(n为正整数)个单位得到点C,点A、B、C分别表示有理数a、b、c.(1)当n=1时,A、B、C三点在数轴上的位置如图所示,a、b、c三个数的乘积为负数.①数轴上原点的位置可能在()A.在点A左侧或在A、B两点之间B.在点C右侧或在A、B两点之间C.在点A左侧或在B、C两点之间D.在点C右侧或在B、C两点之间②若a、b、c中两个数的和等于第三个数,求a的值.(2)将点C向右移动(n+2)个单位得到点D,点D表示有理数d,若a、b、c、d四个数的积为正数,且这四个数的和与其中的两个数的和相等,a为整数.若n分别取1,2,3,…,80时,对应的a的值分别为a1,a2,a3,…,a80,求a1+a2+a3+⋅⋅⋅+a80的值.答案:(1)①B;②a=−4(2)-1720分析:(1)①把n=1代入即可得出AB=1,BC=2,再根据a、b、c三个数的乘积为正数即可选择出答案;②分三种情形构建方程即可解决问题.(2)依据题意得,b=a+1,c=b+n+1=a+n+2,d=c+n+2=a+2n+4.根据a、b、c、d四个数的积为正数,且这四个数的和与其中的两个数的和相等,即可得出用含n的式子表示a,由a为整数,分两种情况讨论:当n为奇数时;当n为偶数时,得出a1=-2,a2=-2,a3=-3,a4=-3,…,a79=−41,a80=−41,从而得出a1+a2+a3+⋅⋅⋅+a80=−1720.(1)①B把n=1代入即可得出AB=1,BC=2,∵a、b、c三个数的乘积为负数,∴从而可得出在在点C右侧或在A、B两点之间;选B.②b =a +1,c =a +3当a +a +1=a +3时,a =2(不满足三个数积为负,舍去)当a +a +3=a +1时,a =−2(不满足三个数积为负,舍去)当a +1+a +3=a 时,a =−4综上,a =−4.(2)依据题意得,b =a +1,c =b +n +1=a +n +2,d =c +n +2=a +2n +4∵a 、b 、c 、d 四个数的积为正数,且这四个数的和与其中的两个数的和相等,∴a 、b 为负,c 、d 为正.(排除四个数同正或同负情况)∴a +c =0或b +c =0.【排除a +b =0,c +d =0,b +d =0(a 变分数),a +d =0(c 变原点)四种情况】∴a =−n +22或a =−n +32;∵a 为整数,n 为正整数,∴当n 为奇数时,a =−n+32, 当n 为偶数时,a =−n+22.∴a 1=−2,a 2=−2,a 3=−3,a 4=−3,…,a 79=−41,a 80=−41,∴a 1+a 2+a 3+⋅⋅⋅+a 80=−1720.小提示:本题考查了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.17、某旅游景点的门票价格是:成人票10元/人,学生票5元/人,总人数满50人可以购买团体票(按原价打8折).(1)如果某旅游团共有30人,其中成人有12人,那么应付门票费多少元?(2)某旅游团总人数有x 人(x >50),其中学生人数为y 人.请用含x ,y 的代数式表示该旅游团应付的门票费用.答案:(1)210元;(2)8x -4y分析:(1)由于没有超过50人,不可以打折,那么门票费=成人数×10+学生数×5;(2)由于超过50人,可以打折,那么门票费=(成人数×10+学生数×5)×0.8.解:(1)12×10+(30-12)×5=120+90=210(元)(2)[10(x-y)+5y]×0.8=(10x-5y)×0.8=8x-4y.小提示:此题主要考查了列代数式,正确理解题意得出关系式是解题关键.18、定义:若x−y=m,则称x与y是关于m的相关数.(1)若5与a是关于2的相关数,则a=_____.(2)若A与B是关于m的相关数,A=3mn−5m+n+6,B的值与m无关,求B的值.答案:(1)3(2)B=8分析:(1)根据定义列出式子求解即可;(2)根据新定义求得B,进而根据题意B的值与m无关,令含m项的系数为0即可求解.(1)解:∵5与a是关于2的相关数,∴5−a=2解得a=3;(2)解:∵A与B是关于m的相关数,A=3mn−5m+n+6,∴A−B=m∴B=A−m=3mn−5m+n+6−m=3mn−6m+6+n=3m(n−2)+6+n∵B的值与m无关,∴n-2=0,得n=2,∴B=8.小提示:本题考查了新定义运算,整式的加减无关类型,理解新定义是解题的关键.。

七年级上册数学整式的加减全章知识点总结

七年级上册数学整式的加减全章知识点总结

七年级上册数学整式的加减全章知识点总结第二章整式的加减知识点1:单项式的概念单项式是由数或字母的积组成的式子。

它只包含一种运算,即乘法,不能有加、减、除等运算符号。

单项式可以分为三种类型:数字与字母相乘组成的式子,如2ab;字母与字母组成的式子,如xy;单独的一个数或字母,如2,-a,m。

知识点2:单项式的系数单项式中的数字因数叫做这个单项式的系数。

系数可以是整数、分数或小数,并且可以是正数或负数。

对于只含有字母因素的单项式,其系数是1或-1,不能认为是0.表示圆周率的π,在单项式中应将其作为系数的一部分,而不能当成字母。

知识点3:单项式的次数一个单项式中,所有字母的指数和叫做这个单项式的次数。

计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1的情况。

单项式是一个单独字母时,它的指数是1,单项式是单独的一个常数时,一般不讨论它的次数。

单项式的指数只和字母的指数有关,与系数的指数无关。

知识点4:多项式的有关概念多项式是由几个单项式相加组成的式子。

多项式中的每个单项式叫做多项式的项。

不含字母的项叫做常数项。

多项式里次数最高项的次数叫做多项式的次数。

单项式与多项式统称整式。

B、一个多项式中的每一项都包含符号,例如多项式-2xy+6a-9共有三项,分别是-2xy,6a,-9.一个多项式中包含几个单项式,就称这个多项式为几项式,例如-332xy3+6a-9就是一个三项式。

C、多项式的次数不是所有项的次数之和,也不是各项字母的指数和,而是组成这个多项式的单项式中次数最高的那个单项式的次数。

例如多项式-2xy+6a-9由三个单项式-2xy,6a,-9组成,其中-2xy的次数最高,为4次,因此这个多项式的次数就是4.它是一个四次三项式。

对于一个多项式而言,没有系数这一说法。

1)书写含乘法运算的式子时,要注意省略乘号,数字与字母相乘时,数字必须写在字母的前面。

带分数要化成假分数。

2)书写含除法运算的式子时,结果一般用分数线表示。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学上册第二单元的知识点:整式的
加减
一、目标与要求
1.理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。

2.理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。

在准确判断、正确合并同类项的基础上,进行整式的加减运算。

3.理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。

4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来。

二、重点
单项式及其相关的概念;
多项式及其相关的概念;
去括号法则,准确应用法则将整式化简。

三、难点
区别单项式的系数和次数;
区别多项式的次数和单项式的次数;
括号前面是“-”号去括号时,括号内各项变号容易产生错误。

这篇数学上册第二单元的知识点的内容,希望会对各位同学带来很大的帮助。

相关文档
最新文档