初一数学知识点归纳教学文案
完整版)初一数学知识点归纳
完整版)初一数学知识点归纳
初一数学知识点总结(初一上学期)
代数初步知识
1、代数式是用运算符号“+-×÷……”连接数及表示数的字母的式子。注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式。
2、列代数式时需要注意以下几点:
1)数与字母相乘,或字母与字母相乘通常使用“· ”乘,或省略不写。
2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号。
3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a。
4)在代数式中出现除法运算时,一般用分数线将被除式
和除式联系,如3÷a写成形式。
5)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a。
3、几个重要的代数式:
1)a与b的平方差是:a-b;a与b差的平方是:(a-b)。
2)若a、b、c是正整数,则两位整数是:10a+b;则三位
整数是:100a+10b+c。
3)若m、n是整数,则被5除商XXX的数是:5m+n;
偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1.
4)若b>0,则正数是:a+b,负数是:-a-b,非负数是:b,非正数是:-b。
有理数
1、有理数是指能写成b(a、b都是整数且a≠0)形式的数,都是有理数。正整数、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。
注意:即不是正数,也不是负数;-a不一定是负数,+a 也不一定是正数;p不是有理数)
文案初一数学教学文案
文案初一数学教学文案
一、教学背景
初一数学是学生初次接触中学数学的阶段,对于学生的数学基础打
牢至关重要。本篇文案旨在通过有效的教学方法和实用的教学内容,
帮助初一学生建立起对数学的兴趣和信心,提高他们的数学学习能力。
二、教学目标
1. 理解数的概念及数的分类,并能进行数的读写和整数大小的比较。
2. 掌握小数的读写、比较和运算,能够进行小数加减乘除的计算。
3. 理解分数的概念、性质和分数的加减乘除法,并能够应用到实际
生活中。
4. 学习正负数的概念和运算,能够进行正负数的加减法运算。
5. 能够解决实际问题,培养解决问题的能力和数学思维。
三、教学内容及安排
1. 数的概念和整数
a) 数的基本概念和分类
b) 数的读写和大小比较
c) 整数的加减法运算
d) 整数的应用实例解析
2. 小数
a) 小数的定义和读写
b) 小数的大小比较和运算
c) 小数的应用实例解析
3. 分数
a) 分数的概念和基本性质
b) 分数的加减乘除法
c) 分数的应用实例解析
4. 正负数
a) 正负数的概念和表示方法
b) 正负数的加减法运算
c) 正负数的应用实例解析
5. 实际问题的解决
a) 培养学生的问题解决能力
b) 引导学生运用所学知识解决实际问题
四、教学方法
1. 启发式教学法:通过提问、讨论和实例分析等方式激发学生的思考和兴趣,培养他们的自主学习能力。
2. 运用多媒体教学:利用投影仪、计算机等多媒体设备展示生动、
形象的数学概念和实例,提高学生的理解和记忆能力。
3. 分组合作学习:鼓励学生在小组中相互合作、讨论和解决问题,
培养他们的团队合作和沟通能力。
初一数学课题完整教案文案
初一数学课题完全教案文案
我们对于教学设计的结构安排终究还是要以具体的课程内容、教学任务以及实际班级学情为准绳,这需要我们要灵活地知道和处理教学设计的基本结构,针对不同的课型做出多样化的安排。今天作者在这里整理了一些最新初一数学课题完全教案文案,我们一起来看看吧!
最新初一数学课题完全教案文案1
教学目标
1.了解代数和的概念,知道有理数加减法可以相互转化,会进行加减混合运算;
2. 通过学习一切加减法运算,都可以统一成加法运算,连续渗透数学的转化思想;
3.通过加法运算练习,培养学生的运算能力。
教学建议
(一)重点、难点分析
本节课的重点是根据运算法则和运算律准确迅速地进行,难点是省略加号与括号的代数和的运算.
由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,这是由于有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化运算.
(二)知识结构
(三)教法建议
1.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算常常犯的毛病,以便在这节课分析习题时,成心识地帮助学生改正.
2.关于“去括号法则”,只要学生了解,并不要求追究所以然.
3.任意含加法、减法的算式,都可把运算符号知道为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。再例如
-3-4表示-3、-4两数的代数和,
-4+3表示-4、+3两数的代数和,
3+4表示3和+4的代数和
七年级数学知识点归纳总结
七年级数学知识点归纳总结
每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学作为最烧脑的科目之一,也是要记、要背、要讲技能的。下面是作者给大家整理的一些七年级数学知识点归纳总结的学习资料,期望对大家有所帮助。
初一上学期数学知识点归纳总结
(一)正负数
1.正数:大于0的数。
2.负数:小于0的数。
3.0即不是正数也不是负数。
4.正数大于0,负数小于0,正数大于负数。
(二)有理数
1.有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的情势。(无理数是不能写成两个整数之比的情势,它写成小数情势,小数点后的数字是无穷不循环的。如:π)
2.整数:正整数、0、负整数,统称整数。
3.分数:正分数、负分数。
(三)数轴
1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)
2.数轴的三要素:原点、正方向、单位长度。
3.相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。
4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。
(四)有理数的加减法
1.先定符号,再算绝对值。
2.加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。
3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。
初一数学知识点总结归纳范文(2篇)
初一数学知识点总结归纳范文
第一章有理数
1、大于0的数是正数。
2、有理数分类:正有理数、0、负有理数。
3、有理数分类:整数(正整数、0、负整数)、分数(正分数、负分数)
4、规定了原点,单位长度,正方向的直线称为数轴。
5、数的大小比较:
①正数大于0,0大于负数,正数大于负数。
②两个负数比较,绝对值大的反而小。
6、只有符号不同的两个数称互为相反数。
7、若a+b=0,则a,b互为相反数
8、表示数a的点到原点的距离称为数a的绝对值
9、绝对值的三句:正数的绝对值是它本身,
负数的绝对值是它的相反数,
0的绝对值是0。
10、有理数的计算:先算符号、再算数值。
11、加减:①正+正②大-小③小-大=-(大-小)④-☆-О=-
(☆+О)
12、乘除:同号得正,异号的负
13、乘方:表示n个相同因数的乘积。
14、负数的奇次幂是负数,负数的偶次幂是正数。
15、混合运算:先乘方,再乘除,后加减,同级运算从左到右,有括号的先算括号。
16、科学计数法:用ax10n表示一个数。(其中a是整数数位只有一位的数)
17、左边第一个非零的数字起,所有的数字都是有效数字。
【知识梳理】
1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。
2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
3.倒数:若两个数的积等于1,则这两个数互为倒数。
4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;
初一数学教案文案(精选20篇)
初一数学教案文案(精选20篇)
(实用版)
编制人:__________________
审核人:__________________
审批人:__________________
编制单位:__________________
编制时间:____年____月____日
序言
下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!
并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、党团范文、工作计划、演讲稿、活动总结、行政公文、文秘知识、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!
Download tips: This document is carefully compiled by this editor.
I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!
Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, Party and Youth League model essays, work plans, speeches, activity summaries, administrative documents, secretarial knowledge, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!
初一数学教案的文案
初一数学教案的文案
初一数学教案最新的文案1
教学目的:
(一)知识点目标:
1.了解正数和负数在实际生活中的应用。
2.深刻理解正数和负数是反映客观世界中具有相反意义的理。
3.进一步理解0的特殊意义。
(二)能力训练目标:
1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量。
2.熟练地用正、负数表示具有相反意义的量。
(三)情感与价值观要求:
通过师生合作,联系实际,激发学生学好数学的热情。
教学重点:能用正、负数表示具有相反意义的量。
教学难点:进一步理解负数、数0表示的量的意义。
教学方法:小组合作、师生互动。
教学过程:
创设问题情境,引入新课:分小组派代表,注意数学语言规范。
1.认真想一想,你能用学过的知识解决下列问题吗?
某零件的直径在图纸上注明是,单位是毫米,这样标注表示零件直径的标准尺寸是毫米,加工要求直径可以是毫米,最小可以是毫米。
2.下列说法中正确的( )
A、带有“一”的数是负数;
B、0℃表示没有温度;
C、0既可以看作是正数,也可以看作是负数。
D、0既不是正数,也不是负数。
[师]这节课我们就来继续认识正、负数及它们在生活中的实际意义,特别是数0。
讲授新课:
例1. 仔细找一找,找了具有相反意义的量:
甲队胜5场;零下6度;向南走50米;运进粮食40吨;乙队负4场;零上10度;向北走20米;支出1000元;收入3500元。
例2 (1)一个月内,小明的体重增加2千克,小华体重减少1千克,小强体重无变化,写出他们这个月的体重增长值;
(2)2001年下列国家的商品进出口总额比上年的变化情况是:
完整版初一数学知识点归纳
完整版初一数学知识点归纳
初一数学知识点归纳如下:
1. 数的基本概念和运算:包括正整数、负整数、零、自然数等的概念与性质,加法、减法、乘法和除法的基本运算法则。
2. 算式的变形和计算:包括整数的加减法计算、乘法计算、除法计算,以及计算过程中的算式变形。
3. 分数:包括分数的概念、分数的加减法、乘法和除法,以及分数的化简和比较大小。
4. 百分数和百分数的应用:包括百分数的概念和运算、百分数与实际生活中的应用。
5. 小数:包括小数的概念与性质、小数的加减法、乘法和除法,以及小数和分数之间的转化。
6. 坐标系和平面图形:包括平面直角坐标系的构建和使用,平面图形的基本概念与性质,如点、直线、线段、角等。
7. 四边形和三角形的面积:包括四边形和三角形的面积的计算和应用。
8. 平移、旋转和对称:包括平移、旋转和对称操作的概念和性质,以及平移、旋转和对称对图形的影响。
9. 数据的收集和处理:包括调查数据的收集方法、数据的分类和统计,以及数据图表的制作和解读。
10. 简单方程的解法:包括一元一次方程式和应用问题的解法。
初一数学教案范文合集总汇
初一数学教案范文合集总汇
初一数学是一个非常重要的阶段,它涉及到很多基本的数学概念和方法的学习。在这个阶段,教师的教学效果很大程度上决定了学生今后在数学领域的发展。因此,有一些优秀的教案可以帮助教师更好地开展教学工作。
下面是对初一数学教案范文的一些总结和介绍。
教案一:《初中数学运算符号与集合》
本教案是以学生的叛逆性心理来引入的,通过这种引导方式使学生能够积极参与到教学中来。在教学中,教师通过设计多种教学方式,如课堂讲解、互动交流、小组合作等,使学生更好地理解数学运算符号和集合的概念和运用。
教案二:《初中三角形》
三角形是初中数学中非常重要的一个知识点,本教案主要介绍三角形的性质和相关定理,并通过各种练习和例题的讲解来帮助学生更好地掌握三角形的知识。在教学中,教师注重学生的实践操作,通过多种实例让学生自行解答,使学生掌握三角形概念的深度和广度。
教案三:《初中代数基础》
代数基础是初中数学中教学难度大、学生容易掌握的一个知识点。本教案主要通过举例和试题讲解的方式来帮助学生更好地理解代数基础的概念和应用。在教学中,教师注重讲解代数基础的方法和思路,鼓励学生多角度、多方面地思考。
教案四:《初中度量学基础》
度量学是初中数学中非常重要的一个知识点,本教案主要讲解了度量学概念和应用,如体积、重量等。同时,教案提供了多种实例和例题,让学生可以从多个角度来掌握度量学知识。在教学中,注重师生互动和学生实践操作,尤其是实验操作,让学生真正地感受和体验度量学知识的应用。
教案五:《初中三维图形》
三维图形作为初中数学中的一个难点知识点,本教案主要介绍了各类立体图形的知识,并通过多种实例和策略的介绍和分析来帮助学生掌握三维图形的知识。在教学中,注重让学生实际进行三维图形的制作和观察,通过实际操作提高学生对各种立体图形的认知和理解。
2024七年级数学知识点归纳整理上册
2024七年级数学知识点归纳整理上册
下载温馨提示:文档由本店精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。文档下载后可定制随意修改,部分格式可能存在问题,请根据实际需要进行相应的调整和使用,谢谢!
并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!
2022七年级数学知识点归纳整理上册
初中上册知识点
二元一次方程组1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注
意:一般说二元一次方程有无数个解.
2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.
3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有解(即公共解).
4.二元一次方程组的解法:
(1)代入消元法;(2)加减消元法;(3)注意:判断如何解简单是关键.
※5.一次方程组的应用:
(1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,
反之则难列易解
(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;
(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.
一元一次不等式(组)1.不等式:用不等号,把两个代数式连接起来的式子叫不等式.
2.不等式的基本性质:
不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;
初一数学知识点归纳总结
初一数学知识点归纳总结
初一是打下知识基础的好时机,为了帮助同学们更好打下牢固的学习基础。下面是由小编为大家整理的“初一数学知识点归纳总结”,仅供参考,欢迎大家阅读。
初一数学知识点归纳总结
初一数学知识点总结1-3章
第一章有理数
1.1 正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。
与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。
1.2 有理数
正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
整数和分数统称有理数(rational number)。
通常用一条直线上的点表示数,这条直线叫数轴(number axis)。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点(origin)。
只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
1.3 有理数的加减法
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,
并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
初一数学知识点归纳总结
初一数学知识点归纳总结
初一数学知识点归纳
第一章有理数
1.1正数与负数
①正数:大于0的数叫正数。(根据需要,有时在正数前面也加上“+”)
②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。与正数具有相反意义。
③0既不是正数也不是负数。0是正数和负数的分界,是的中性数。
注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等 1.2有理数
1有理数(1)整数:正整数0负整数统称整数;(2)分数;正分数和负分数统称分数;
(3)有理数:整数和分数统称有理数。
2数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;
(2)数轴三要素:原点正方向单位长度;
(3)原点:在直线上任取一个点表示数0,这个点叫做原点;
(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
3相反数:只有符号不同的两个数叫做互为相反数。(例:2的相反数是-2;0的相反数是0)
4绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。从几何意义上讲,数的绝对值是两点间的距离。
(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
1.3有理数的加减法
①有理数加法法则:
1同号两数相加,取相同的符号,并把绝对值相加。
2绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3一个数同0相加,仍得这个数。加法的交换律和结合律。
初一数学重要知识点归纳
初一数学重要知识点归纳
(经典版)
编制人:__________________
审核人:__________________
审批人:__________________
编制单位:__________________
编制时间:____年____月____日
序言
下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!
并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!
Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!
In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!
数学初一知识点总结(精选15篇)
数学初一知识点总结
数学初一知识点总结(精选15篇)
数学初一知识点总结1
一、一元一次不等式的解法:
一元一次不等式的解法与一元一次方程的解法类似,其步骤为:
1、去分母;
2、去括号;
3、移项;
4、合并同类项;
5、系数化为1
二、不等式的基本性质:
1、不等式的两边都加上(或减去)同一个整式,不等号的方向不变;
2、不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;
3、不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
三、不等式的解:
能使不等式成立的未知数的值,叫做不等式的解。
四、不等式的解集:
一个含有未知数的不等式的所有解,组成这个不等式的解集。
五、解不等式的依据不等式的基本性质:
性质1:不等式两边加上(或减去)同一个数(或式子),不等号的方向不变,
性质2:不等式两边乘以(或除以)同一个正数,不等号的方向不变,
性质3:不等式两边乘以(或除以)同一个负数,不等号的方向改变,
常见考法
(1)考查一元一次不等式的解法;
(2)考查不等式的性质。
误区提醒
忽略不等号变向问题。
初中数学重点知识点归纳
有理数乘法的运算律
1、乘法的交换律:ab=ba;
2、乘法的结合律:(ab)c=a(bc);
3、乘法的分配律:a(b+c)=ab+ac
单项式
只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的。
多项式
1、几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。
2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。
初一数学重要知识点总结
初一数学重要知识点总结
【导语】以下是作者精心整理的初一数学重要知识点总结(共17篇),供大家阅读参考。
篇1:初一数学重要知识点总结
初中一年级数学上册知识点
二元一次方程组
1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.
2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.
3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有解(即公共解).
4.二元一次方程组的解法:
(1)代入消元法;(2)加减消元法;
(3)注意:判断如何解简单是关键.
※5.一次方程组的应用:
(1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则难列易解
(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;
(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.
一元一次不等式(组)
1.不等式:用不等号,把两个代数式连接起来的式子叫不等式.
2.不等式的基本性质:
不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;
不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;
不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向
要改变.
3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集.
七年级数学知识点总结归纳大全
七年级数学知识点总结归纳大全
经过一年的学习,你掌握了哪些知识点呢,一起来查漏补缺吧!下面是由编辑为大家整理的“七年级数学知识点总结归纳大全”,仅供参考,欢迎大家阅读本文。
七年级数学知识点总结归纳大全
七年级数学知识点总结1
1.有理数:
(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;
(2)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;
4.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2)绝对值可表示为:
绝对值的问题经常分类讨论;
(3)a|是重要的非负数,即|a|≥0;注意:|a|?|b|=|a?b|,
5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学知识点归纳
初一数学知识点总结
(初一上学期)
代数初步知识
1、代数式:用运算符号“+ - × ÷ …… ”连接数及表示数的字母的式子称为代数式。
注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式。 2、列代数式的几个注意事项:
(1)数与字母相乘,或字母与字母相乘通常使用“· ” 乘,或省略不写。 (2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号。 (3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a 。 (4)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a 写成a
3的形式;
(5)a 与b 的差写作a-b ,要注意字母顺序;若只说两数的差,当分别设两数为a 、b 时,则应分类,写做a-b 和b-a . 3、几个重要的代数式:
(1)a 与b 的平方差是:a 2
-b 2
; a 与b 差的平方是:(a-b )2
。
(2)若a 、b 、c 是正整数,则两位整数是:10a+b ;则三位整数是:100a+10b+c 。 (3)若m 、n 是整数,则被5除商m 余n 的数是:5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是:n-1、n 、n+1。
(4)若b >0,则正数是:a 2
+b ,负数是:-a 2
-b ,非负数是:b 2
,非正数是:-b 2
。
有理数
1、有理数: (1)凡能写成
a
b
(a 、b 都是整数且a≠0)形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。
(注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;p 不是有理数)
(2)有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性。
(3)自然数是指0和正整数;a >0,则a 是正数;a <0,则a 是负数;a≥0 ,则a 是正数或0(即a 是非负数);a≤0,则a 是负数或0(即a 是非正数)。 2、数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3、相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0。 (2)注意:a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (3)相反数的和为0时,则a+b=0;即a 、b 互为相反数。 4、绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数。 (注意:绝对值的意义是数轴上表示某数的点离开原点的距离)。 (2)绝对值可表示为|a|。
(3)|a|是重要的非负数,即|a|≥0。(注意:|a|·|b|=|a·b|)。 5、有理数比大小:
(1)正数的绝对值越大,这个数越大; (2)正数永远比0大,负数永远比0小; (3)正数大于一切负数;
(4)两个负数比大小,绝对值大的反而小; (5)数轴上的两个数,右边的数总比左边的数大; (6)大数-小数 > 0,小数-大数< 0. 6、互为倒数:
乘积为1的两个数互为倒数。 (注意:0没有倒数;若 a 、b ≠0,那么
a
b 的倒数是b a
;倒数是本身的数是±1;若
ab=1,则a 、b 互为倒数;若ab=-1,则a 、b 互为负倒数。 7、有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。 (3)一个数与0相加,仍得这个数。 8、有理数加法的运算律:
(1)加法的交换律:a+b=b+a 。
(2)加法的结合律:(a+b )+c=a+(b+c )。
9、有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b )。 10、有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘。
(2)任何数同零相乘都得零。
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。
11、有理数乘法的运算律:
(1)乘法的交换律:ab=ba。
(2)乘法的结合律:(ab)c=a(bc)。
(3)乘法的分配律:a(b+c)=ab+ac。
12、有理数除法法则:除以一个数等于乘以这个数的倒数。(注意:零不能做除数)
13、有理数乘方的法则:
(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数。注意:当n为正奇数时: (-a)n=-a n 或(a -b)n=-(b-a)n ,当n为正偶数时: (-a)n =a n 或 (a-b)n=(b-a)n。
14、乘方的定义:
(1)求相同因式积的运算,叫做乘方。
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂。
(3)a2是重要的非负数,即a2≥0;若a2+|b|=0 ,则a=0,b=0。
(4)底数的小数点移动一位,平方数的小数点移动二位。
15、科学记数法:
把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。
16、近似数的精确位:
一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。
17、有效数字:
从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。
18、混合运算法则:
先乘方,后乘除,最后加减。注意:怎样算简单,怎样算准确,是数学计算的最重要的原则。
19、特殊值法:
是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明。
整式的加减