计量经济学多元线性回归、多重共线性、异方差实验报告(推荐文档)
EViews计量经济学实验报告-多重共线性的诊断与修正的讨论
实验题目 多重共线性的诊断与修正一、实验目的与要求:要求目的:1、对多元线性回归模型的多重共线性的诊断;2、对多元线性回归模型的多重共线性的修正。
二、实验内容根据书上第四章引子“农业的发展反而会减少财政收入”,1978-2007年的财政收入,农业增加值,工业增加值,建筑业增加值等数据,运用EV 软件,做回归分析,判断是否存在多重共线性,以及修正。
三、实验过程:(实践过程、实践所有参数与指标、理论依据说明等)(一)模型设定及其估计经分析,影响财政收入的主要因素,除了农业增加值,工业增加值,建筑业增加值以外,还可能与总人口等因素有关。
研究“农业的发展反而会减少财政收入”这个问题。
设定如下形式的计量经济模型:i Y =1β+2β2X +3β3X +4β4X +5β5X +6β6X +7β7X +i μ其中,i Y 为财政收入CS/亿元;2X 为农业增加值NZ/亿元;3X 为工业增加值GZ/亿元;4X 为建筑业增加值JZZ/亿元;5X 为总人口TPOP/万人;6X 为最终消费CUM/亿元;7X 为受灾面积SZM/千公顷。
图1: 1978~2007年财政收入及其影响因素数据年份财政收入CS/亿元 农业增加值NZ/亿元 工业增加值GZ/亿元 建筑业增加值JZZ/亿元总人口TPOP/万人最终消费CUM/亿元受灾面积SZM/千公顷 1978 1132.3 1027.5 1607 138.2 96259 2239.1 50790 1979 1146.4 1270.2 1769.7 143.8 97542 2633.7 39370 1980 1159.9 1371.6 1996.5 195.5 98705 3007.9 44526 1981 1175.8 1559.5 2048.4 207.1 100072 3361.5 39790 1982 1212.3 1777.4 2162.3 220.7 101654 3714.8 33130 1983 1367 1978.4 2375.6 270.6 103008 4126.4 34710 1984 1642.9 2316.1 2789 316.7 104357 4846.3 31890 1985 2004.8 2564.4 3448.7 417.9 105851 5986.3 44365 1986 2122 2788.7 3967 525.7 107507 6821.8 47140 1987 2199.4 3233 4585.8 665.8 109300 7804.6 42090 1988 2357.2 3865.4 5777.2 810 111026 9839.5 50870 1989 2664.9 4265.9 6484 794 112704 11164.2 46991 1990 2937.1 5062 6858 859.4 114333 12090.5 38474 1991 3149.48 5342.2 8087.1 1015.1 115823 14091.9 55472 1992 3483.37 5866.6 10284.5 1415 117171 17203.3 51333 1993 4348.95 6963.8 14188 2266.5 118517 21899.9 48829 1994 5218.1 9572.7 19480.7 2964.7 119850 29242.2 55043 19956242.2 12135.8 24950.6 3728.8 12112136748.2458211996 7407.99 14015.4 29447.6 4387.4 122389 43919.5 46989 1997 8651.14 14441.9 32921.4 4621.6 123626 48140.6 53429 1998 9875.95 14817.6 34018.4 4985.8 124761 51588.2 50145 1999 11444.08 14770 35861.5 5172.1 125786 55636.9 49981 2000 13395.23 14944.7 40036 5522.3 126743 61516 54688 2001 16386.04 15781.3 43580.6 5931.7 127627 66878.3 52215 2002 18903.64 16537 47431.3 6465.5 128453 71691.2 47119 2003 21715.25 17381.7 54945.5 7490.8 129227 77449.5 54506 2004 26396.47 21412.7 65210 8694.3 129988 87032.9 37106 2005 31649.29 22420 76912.9 10133.8 130756 96918.1 38818 2006 38760.2 24040 91310.9 11851.1 131448 110595.3 41091 2007 51321.78 28095 107367.2 14014.1 132129 128444.6 48992利用EV 软件,生成i Y 、2X 、3X 、4X 、5X 、6X 、7X 等数据,采用这些数据对模型进行OLS 回归。
计量经济学实验报告
上海海关学院
实验报告
实验课程名称 __ 计量经济学_ _
指导教师姓名 __ 高军______
学生姓名__王圣___
学生专业班级__税收1401 __
填写日期__2017.6.10
四、模型设定
为分析建筑业企业利润总额(Y)和建筑业总产值(X)的关系,作如下散点图:
Y i=2.368138+0.034980X i (9.049371) (0.001754)
检验
F=;查表可得
绝原假设,此即表明模型存在异方差。
表.用权数w2的结果
(3) w3=1/x^0.5
经估计检验发现用权数w2的效果最好。
可以看出,运用加权最小二乘法消除了异方检验均显著,F检验也显著,即估计结果为
表示国内生产总值。
三、检验自相关
该回归方程可决系数较高,回归系数显著。
dL=1.316,dU=1.469, DW<dL,
,说明在
4.利用EViews软件作如图残差图
LM=TR²=27×0.517409=13.970043,其中p 值为0.0009,表明存在自相关。
自相关问题的处理
由最终模型可知,中国进口需求总额每增加1亿元,平均说来国内生产总值
20。
计量经济学实验操作指导(完整版)
计量经济学试验(完整版)-—李子奈ﻬ目录实验一一元线性回归ﻩ错误!未定义书签。
一实验目得..................................... 错误!未定义书签。
二实验要求.................................... 错误!未定义书签。
三实验原理ﻩ错误!未定义书签。
四预备知识ﻩ错误!未定义书签。
五实验内容ﻩ错误!未定义书签。
六实验步骤..................................... 错误!未定义书签。
1、建立工作文件并录入数据................... 错误!未定义书签。
2、数据得描述性统计与图形统计: .............. 错误!未定义书签。
3、设定模型,用最小二乘法估计参数:ﻩ错误!未定义书签。
4、模型检验: ............................... 错误!未定义书签。
5、应用:回归预测:ﻩ错误!未定义书签。
实验二可化为线性得非线性回归模型估计、受约束回归检验及参数稳定性检验............................... 错误!未定义书签。
一实验目得:ﻩ错误!未定义书签。
二实验要求..................................... 错误!未定义书签。
三实验原理..................................... 错误!未定义书签。
四预备知识.................................... 错误!未定义书签。
五实验内容ﻩ错误!未定义书签。
六实验步骤ﻩ错误!未定义书签。
实验三多元线性回归...................... 错误!未定义书签。
一实验目得..................................... 错误!未定义书签。
三实验原理ﻩ错误!未定义书签。
四预备知识.................................... 错误!未定义书签。
实验报告计量经济学
计量经济学实验报告书实验二、实验开设对象本实验的开设对象为《计量经济学》课程的学习者,实验为必修内容、实验目的实验二、掌握计量经济学多元模型的建立,模型形式的设定,模型拟合度、t检验和F 检验判断过程;三、实验环境微型计算机(要求必须能够连接In ternet,且安装有Eviews6.0软件。
)四、实验成果根据所给定的范例数据和要求,利用Eviews6.0软件对其进行分析和处理,并撰写实验报告。
Workflle U*mTLEDViaw | Prc-c d Oku"^1 | P-ranl N HIWH rra«x«DW BL *▼ | I Sia-r^ Tranap-aiiB E-drlI3T ■3MB ■工:xi 沁4b3-¥ XtX2IP 阴rn 丁也电niSb0.6534101985175 479724.11729 0.057131inn. IH ^I I :史Nfl 昭却* n 1*寻 1SB7 壬 g B2S£I7-2-4.13-112 ” D 日皿N 10BS2J.17 3J9 0.74200<5 I 總HP 71. 1 HURT口 TTiflHR?23:7j2S3:21.7S-103 D.7487B6-IB9-I £55 5541 2a.344*ie 0.7300821R>Ri77nn )npeii in 口 口 丁7■口sji-4 鬧 13 S1437 D.76B2&71^94 3&3 E7&& 17-93 17^ 0 61320BTRiR ■刍Hon R,Df»ri in :1:7口□ 口 riAHH433 03:2H 1占:&也斗出-IBBT 4眄 44&Z is.33333 0.9171051DEII1SiD 1 HUA ia CHI 孑pp □ 071斗口 Tis.ess«e 1.006117ZDDD &丁口 48TS 1庁方"5昌 1.069^627DD1 & 1 U 74+4 13 U7Q3Q 1 了曰□斗12002 67& 4-3^2 Ifi 12>D€2 1.^845072QQ3 T33 0&54is1.5301963DD4"iiI 葩 I Grc-up: LflN RJ I LE J D WcdJil*: (JNTTTLE&rLinfcrtiaKT'. J |optic-rii Jupdata Ad-dTri^L ・・l <oraph: UMTTT L ED Wnrkfii ■:: <jNTin"LED::Urrtrt:l«d i,i PtCTc|obj«ct j|^!Print|HMnBCarjpK Opliion-Si—Grap*! typ«-OetalwiSrapH dat-a:Fit Ihnesi!Axi^i tKJV iJdrr :1^1^ ■|~s l li^«■C^K£i[U¥|X1O[k&*朗X21333137?D146 |23 -IBD-IS ft fii 122-41^3-4 1S6.773324 OB&^D0 *£^41Qi^as175.470724 317230EW134fosei laa.teaa24 2D&&1 C €441251537 206.SJ9724 13-112 G1>QS8226.273224 1734&G.742<XM1339 231 aes?22 3G7B40 73511-321>E190237.2836S1.751D30.74^76619912S5.!ifiJ12D 3G4-SB0.73OTB21992286.390613 9DB3D0 7707171393 32i 90531E 519BT0 TBAZUj?363.27C517.BB174 O.S132tlS1995390.SO9S-IE 32DDE.0W7M11995433.932515.BZ244Q WB Mfi19S7ilGgjdiSS15.233BE0/9171Miggg50 1.385 J15.DG7B90 97H4A1199953J.9-392 1 CMW1172000 575.-337915.3E55412001 fiig n7ddldi B7-D59 1 2W4152002 570.J12215.12953 1 ML4W72003 733.CJC5d!15.424BD% si^iggzog 4in* _ b回Groupi UrrrnLED Worwila UNrTTTLEDiiUrt4iecr>. . 5 X[vfcaw] [ Ptlnt] M«n・]rriMM_| [ifWi. F J [ WDrt[Tkiam口■■[lE曰5M(I IL'L;. Grnun: UNTril l O Warlcf ik< UNTITI. ri? IJnfcrilwiA,「召斫i凶。
多元线性回归计量经济学实验报告
多元线性回归计量经济学实验报告
标题:多元线性回归在计量经济学实验中的应用及分析
摘要:本实验旨在利用多元线性回归方法探究不同因素对经济增长的影响。
通过选择适当的自变量,运用OLS(普通最小二乘法)估计模型,得到回归系数,并验证其显著性。
结果表明,在经济增长中,投资、劳动力和科技发展是重要的影响因素。
本实验的结果为制定经济政策提供了理论依据。
一、引言
计量经济学中的多元线性回归是一种常用的经济模型分析方法,可以用于解释和预测经济现象。
在本实验中,我们采用多元线性回归模型,考察了投资、劳动力和科技发展对经济增长的影响,并验证其显著性。
异方差、自相关、多重共线性比较(计量经济学)
基本思想:
由OLS法得到残差e,取e的绝对值,然后将此绝对值对某个解释变量X回归,根部回归模型的显著性和拟合优度来判断是否存在异方差。
操作步骤:
1.根据样本数据建立回归模型,并求残差序列e.
2.用残差绝对值对X进行回归,由于|e|与X的真实函数形式并不知道,可用各种函数形式去试验,从中选择最佳形式。
2.quick/equation estimation输入“e2 c e2(-1) e2(-2) e2(-3) e2(-4) e2(-5) e2(-6)”
3.view/residual diagnostics/heteroskedasticity tests,选择arch。
2.Quick/graph,在series list对话框中输入“e(-1) e”,选择scatter’,得到e(-1)与e的散点图。
方法二:1.用OLS估计Resid→e。
2.Quick/graph,在series list对话框中输入“e”,得到e随时间t的变化图示。
操作思想
操作步骤
适用性
软件操作
实际检验中可逐次向更高阶检验,并结合辅助回归中滞后项参数的显著性去帮助判断自相关的阶数。
ห้องสมุดไป่ตู้DW检验
操作思想:
DW与ρ的关系:DW≈2(1-ρ)
ρ的取值范围0≤DW≤4.
根据样
本容量n和解释变量的数目k'(不包括常数项),查DW分布表,可得临界值dl和du,
DW取值范围
自相关状态
[0,dl]
正自相关
(dl,du]
5.判断。给定显著性水平α,查F分布表,得临界值。 > ,拒绝 ,反之不拒绝 。
适用性:
该方法得到的F分布是近似的,而且只是对异方差是否存在进行判断,在多个解释变量的情况下,对判断是哪一个变量引起异方差还存在局限。此检验方法也可将样本分为多个组,从中任选两个组进行检验。
计量经济学(第四章多重共线性)
06
总结与展望
研究结论总结
多重共线性现象普遍存在于经济数据中,对计量 经济学模型的估计和解释产生了重要影响。
通过使用多种诊断方法,如相关系数矩阵、方差膨 胀因子(VIF)和条件指数(CI),可以有效地识别 多重共线性问题。
在存在多重共线性的情况下,普通最小二乘法 (OLS)估计量虽然仍然是无偏的,但其方差可能 变得很大,导致估计结果不稳定。
主成分分析法的优点
可以消除多重共线性的影响,同 时降低自变量的维度,简化模型。
岭回归法
岭回归法的基本思想
通过在损失函数中加入L2正则化项(即所有自变量的平方和),使得回归系数的估计更加稳定, 从而消除多重共线性的影响。
岭回归法的步骤
首先确定正则化参数λ的值,然后求解包含L2正则化项的损失函数最小化问题,得到岭回归系数的估 计值。
逐步回归法的优点
可以自动选择重要的自变量,同时消除多重共线性的影响。
主成分分析法
主成分分析法的基本思想
通过正交变换将原始自变量转换 为互不相关的主成分,然后选择 少数几个主成分进行回归分析。
主成分分析法的步骤
首先对原始自变量进行标准化处理, 然后计算相关系数矩阵并进行特征值 分解,得到主成分及其对应的特征向 量。最后,选择少数几个主成分作为 新的自变量进行回归分析。
岭回归法的优点
可以有效地处理多重共线性问题,同时避免过拟合现象的发生。此外,岭回归法还可以提供对所 有自变量的系数进行压缩估计的功能,使得模型更加简洁易懂。
05
实证研究与结果分
析
数据来源及预处理
数据来源
本研究采用的数据集来自于公开的统 计数据库,涵盖了多个经济指标和影 响因素的观测值。
数据预处理
计量经济学》实验报告
计量经济学》实验报告一、经济学理论概述1、需求是指消费者(家庭)在某一特定时期内,在每一价格水平时愿意而且能够购买的某种商品量。
需求是购买欲望与购买能力的统一。
2、需求定理是说明商品本身价格与其需求量之间关系的理论。
其基本内容是:在其他条件不变的情况下,一种商品的需求量与其本身价格之间成反方向变动,即需求量随着商品本身价格的上升而减少,随商品本身价格的下降而增加。
3、需求量的变动是指其他条件不变的情况下,商品本身价格变动所引起的需求量的变动。
需求量的变动表现为同一条需求曲线上的移动。
二、经济学理论的验证方法在此次试验中,我运用了Eviews和Excel软件对相关数据进行处理和分析。
1、拟合优度检验——可决系数R2统计量回归平方和反应了总离差平方和中可由样本回归线解释的部分,它越大,参差平方和越小,表明样本回归线与样本观测值的拟合程度越高。
2、方程总体线性的显着性检验——F检验(1)方程总体线性的显着性检验,旨在对模型中被解释变量与解释变量之间的线性关系在总体上是否显着成立作出判断。
(2)给定显着性水平α,查表得到临界值Fα(k,n-k-1),根据样本求出F统计量的数值后,可通过F>Fα(k,n-k-1) (或F ≤Fα(k,n-k-1))来拒绝(或接受)原假设H0,以判定原方程总体上的线性关系是否显着成立。
3、变量的显着性检验——t检验4、异方差性的检验——怀特检验怀特检验不需要排序,对任何形式的异方差都适用。
5、序列相关性的检验——图示法和回归检验法6、多重共线性的检验——逐步回归法以Y为被解释变量,逐个引入解释变量,构成回归模型,进行模型估计。
三、验证步骤1、确定变量(1)被解释变量“货币流通量”在模型中用“Y”表示。
(2)解释变量①“货币贷款额”在模型中用“X”表示;1②“居民消费价格指数”在模型中用“2X ”表示;③把由于各种原因未考虑到和无法度量的因素归入随机误差项,在模型中用“μ”。
计量经济学实验报告
多元线性回归模型的应用研究一、经济学理论概述:柯布道格拉斯生产函数柯布-道格拉斯生产函数最初是由美国数学家柯布(C.W.Cobb)和经济学家保罗·道格拉斯(PaulH.Douglas)共同探讨投入和产出的关系时创造的生产函数,是在生产函数的一般形式上作出的改进,引入了技术资源这一因素。
用来预测国家和地区的工业系统或大企业的生产和分析发展生产的途径的一种经济数学模型,简称生产函数。
是经济学中使用最广泛的一种生产函数形式,它在数理经济学与经济计量学的研究与应用中都具有重要的地位。
他们根据有关历史资料,研究了从1899-1922年美国的资本和劳动对生产的影响,认为在技术经济条件不变的情况下,产出与投入的劳动力及资本的关系可以表示为:Y= AKαLβ(1)其中:Y——产量;A——技术水平;K——投入的资本量;L——投入的劳动量;α,β——K和L的产出弹性。
经济学中著名的柯布-道格拉斯生产函数的一般形式为:Q(K,L)=aKαLβ其中Q,K,L分别表示产值、资金、劳动力,式中a,α,β要由经济统计数据确定。
二、经济学理论的验证方法利用Excel和Eviews软件对选定柯布-道格拉斯生产函数模型进行多元线性回归模型参数估计,并通过调整可决系数、t值检验、F 检验、异方差检验、序列相关性检验、多重共线性检验达到验证理论模型的目的。
三、验证步骤1、建立计量经济学模型过对数变换,(1)式可用如下双对数线性回归模型进行估计:lnQ = a + αln K + βln L+ u,式中,a=lnA2、确定变量(1)被解释变量:lnQ(Q在此取国内生产总值)(2)解释变量:lnK和ln L(K取固定资产投资,L取就业人数)3、数据描述和处理(1)表1:1985~2003中国国内生产总值、就业人员及固定资产投资情况年份GDP(亿元)Q就业人员(万人)L固定资产投资(亿元)K1985 8964.4 49873 2543.2 1986 10202.2 51282 3120.6 1987 11962.5 52783 3791.7 1988 14928.3 54334 4753.8 1989 16909.2 55329 4410.4 1990 18547.9 64749 4517 1991 21617.8 65491 5594.5 1992 26638.1 66152 8080.1 1993 34634.4 66808 13072.3 1994 46759.4 67455 17042.1 1995 58478.1 68065 20019.31996 67884.6 68950 22913.51997 74462.6 69820 24941.11998 78345.2 70637 28406.21999 82067.5 71394 29854.72000 89468.1 72085 32917.72001 97314.8 73025 37213.52002 105172.3 73740 43499.92003 117251.9 74432 55566.6资料来源:《中国统计年鉴(2004)》。
计量经济学Eviews多重共线性实验报告
实验报告课程名称计量经济学实验项目名称多重共线性班级与班级代码专业任课教师学号:姓名:实验日期:2014 年05 月11日广东商学院教务处制姓名实验报告成绩评语:指导教师(签名)年月日说明:指导教师评分后,实验报告交院(系)办公室保存。
计量经济学实验报告一、实验目的:掌握多元线性回归模型的估计方法、掌握多重共线性模型的识别和修正。
二、实验要求:应用教材第127页案例做多元线性回归模型,并识别和修正多重共线性。
三、实验原理:普通最小二乘法、简单相关系数检验法、综合判断法、逐步回归法。
四、预备知识:最小二乘法估计的原理、t检验、F检验、2R值。
五、实验步骤1、选择数据理论上认为影响能源消费需求总量的因素主要有经济发展水平、收入水平、产业发展、人民生活水平提高、能源转换技术等因素。
为此,收集了中国能源消费标准煤总量、国民总收入、国内生产总值GDP、工业增加值、建筑业增加值、交通运输邮电业增加值、人均生活电力消费、能源加工转换效率等1985——2007年的统计数据。
本题旨在通过建立这些经济变量的线性模型来说明影响能源消费需求总量的原因。
主要数据如下:1985~2007年统计数据资料来源:《中国统计年鉴》,中国统计出版社2000、2008年版。
为分析Y与X1、X2、X3、X4、X5、X6、X7之间的关系,做如下折线图:能源消费Y 在1986到1996年间缓慢增长,在96至98年有短暂的下跌,但是98至02年开始缓慢回升,02年到06年开始快速增长。
国民总收入X1和国内生产总值X2以相同的趋势逐年缓慢增长。
工业增加值X3在1985年-1999年期间一直是缓慢增长,但在2000年出现了急剧下降的现象,2001年又急剧增长,达到下降前的水平,2001年以后开始缓慢增长。
建筑业增长值x4、交通运输邮电业增加值x5、人均生活电力消费x6、能源加工转换效率x7数值较低,但都以较平缓的方式增长。
2、设定并估计多元线性回归模型t t t t t t t u X X X X X Y ++++++=66554433221ββββββ (2.1)2.1录入数据,得到图。
计量经济学实验报告完整版范文
评语
教师
评语
成绩
辽宁工程技术大学上机实验报告
实验名称
计量经济学多元线性回归模型
院系
工商管理
专业
金融
班级
09-2
姓名
于佳琦
学号
日期
6.15
实验
目的
简述本次实验目的:熟悉多元线性回归模型中的解释变量的引入
掌握对计算机过的统计分析和经济分析
实验
பைடு நூலகம்准备
你为本次实验做了哪些准备:了解多元线性回归模型参数的OLS估计,统计检验,点预测以及区间估计,非线性回归的参数估计,受约束回归检验
实验
进度
本次共有3个练习,完成3个。
实验
总结
日
本次实验的收获、体会、经验、问题和教训:在简单线性回归的基础上引入了多元线性回归模型,操作也较之前更加复杂,最大的障碍在于多重共线性模型数据更多,输入时容易出错,而且软件非汉化版本,很多时候不了解数据的含义,操作也不是很熟练,一般思路是,先用OLS方法进行估计,建立模型,然后进行对模型的检验,理论相对简单,可是检验过程十分复杂,如果不用例题做实验,单纯找数据进行分析,总会有遗忘的影响因素,而导致结果的偏差,所以在选择分析对象的影响因素时考虑周全尤为重要。
实验
进度
本次共有1个练习,完成1个。
实验
总结
日
本次实验的收获、体会、经验、问题和教训:初步投身于计量经济学,通过利用Eviews软件将所学到的计量知识进行实践,让我加深了对理论的理解和掌握,直观而充分地体会到老师课堂讲授内容的精华之所在。在实验过程中我们提高了手动操作软件、数量化分析与解决问题的能力,还可以培养我在处理实验经济问题的严谨的科学的态度,并且避免了课堂知识与实际应用的脱节。虽然在实验过程中出现了很多错误,但这些经验却锤炼了我们发现问题的眼光,丰富了我们分析问题的思路。通过这次实验让我受益匪浅。
《计量经济学》课程实验报告
2.估计结果,解释参数的数量关系
数量关系: GDP每增加一万亿元,可导致全国财政收入增加0.0041212万亿元,农业总产值每增加一万亿元,可导致全国财政收入增加0.0489586万亿元,税收每增加一万亿元,可导致全国财政收入增加1.183604万亿元。
三、实证分析
1.描述性统计(数据的最大值最小值,平均值,方差等,定性分析,了解数据质量)
X1最大值: 101.6 最小值: 18.6 平均值: 57.375 标准差: 27.22657
X2最大值: 7.2 最小值:2 平均值: 4.45625标准差: 1.648016
X3最大值: 15.8 最小值:2.9 平均值: 9.9125 标准差: 4.480606
图示检验法:
由图可得:模型存在正的相关序列。
3.检验模型是否存在多重共线性
Variable | VIF 1/VIF
-------------+----------------------
x2 | 70.29 0.014226
x1 | 54.81 0.018246
x3 | 52.31 0.019117
x2 | 3.299357 .1326672 24.87 0.000 3.014814 3.5839
_cons | -3.04026 .6279573 -4.84 0.000 -4.387095 -1.693426
------------------------------------------------------------------------------
二、模型和变量解释
1.模型建立,写出方程,阐述设定模型的经济理论
计量经济学实验报告
实验报告一一.实验任务:线性回归二.实验目的:学习如何输入数据,学习如何做线性回归,并会分析结果。
三.操作步骤:1、建立工作文件启动Eviews6.exe ,点击File\New\Workfile ,在弹出的对话框中选择工作文件的结构类型(workfile structure type )2、输入数据在主菜单点击Quick\Empty Group ,录入收入(X )、消费(Y )的数据,在窗口中点击数据,修改数据列的名称。
3、回归分析做散点图在主菜单点击Quick\Graph ,在弹出的对话框中输入 x y ,点击OK 。
在弹出的对话框中,specipi 下选择Scatter 点击确定即可得到X-Y 散点图。
点此图上面的“Name ”为此图命名。
由得出的散点图可以看出,x y 存在近似的线性关系。
OLS 估计在主菜单点击Quick\Estimate Equation ,在弹出的对话框中输入“y c x ” 点击“OK ”既可。
得到各参数估计值。
四.结果分析样本回归方程为:X Y 509091.05455.244ˆ+=(64.138) (0.0357) ←-------各参数估计值对应的标准误(3.813) (14.243) ←-------各参数估计值对应的T 统计量9621.02=R 9573.02=R 868.202=F DW=2.68 n=10经济意义检验:根据经济理论,收入增加会带动消费增加,边际消费倾向的取值范围为0~1,回归方程中X 的系数表示边际消费倾向,回归结果为0.51,与经济理论相符。
常数项表示基础消费,基础消费应该大于零,回归结果与理论相符。
显著性检验:方法一:查表可知:05.0=α时,306.2)8(2=αt 32.5)8,1(=αF因为202.868>5.32 ,所以回归方程显著成立。
因为306.2813.3)ˆ(0>=βT 306.2243.14)ˆ(1>=βT 所以0ˆβ、1ˆβ显著不为零。
计量经济学实验报告 多重共线性检验
计量经济学上机实验报告多重共线性检验实验背景近年来,中国旅游业一直保持高速发展,旅游业作为国民经济新的增长点,在整个社会经济发展中的作用日益显现。
中国的旅游业分为国内旅游和入境旅游两大市场,入境旅游外汇收入年均增长22.6%,与此同时国内旅游也迅速增长。
改革开放20多年来,特别是进入90年代后,中国的国内旅游收入年均增长14.4%,远高于同期GDP 9.76%的增长率。
为了规划中国未来旅游产业的发展,需要定量地分析影响中国旅游市场发展的主要因素。
模型•其中,•Yt——第t年全国旅游收入•X2——国内旅游人数(万人)•X3——城镇居民人均旅游支出(元)•X4——农村居民人均旅游支出(元)•X5——公路里程(万公里)•X6——铁路里程(万公里)Y = 0.0639689468*X2 + 0.2098186372*X3 + 5.283346538*X4 - 3.352906602*X5 - 53.38584085*X6 - 2220.150544数据来源中国统计局网站样本区间1994——2009实验过程及结果(一)实证结果Dependent Variable: YMethod: Least SquaresDate: 04/06/11 Time: 15:49Sample: 1994 2009Included observations: 16Variable Coefficient Std. Error t-Statistic Prob.X2 0.063969 0.007714 8.292875 0.0000X3 0.209819 1.319292 0.159039 0.8768X4 5.283347 1.918838 2.753409 0.0204X5 -3.352907 2.376484 -1.410869 0.1886X6 -53.38584 434.6829 -0.122816 0.9047C -2220.151 2210.044 -1.004573 0.3388R-squared 0.994274 Mean dependent var 4270.119Adjusted R-squared 0.991411 S.D. dependent var 2720.860S.E. of regression 252.1678 Akaike info criterion 14.17806Sum squared resid 635886.0 Schwarz criterion 14.46778Log likelihood -107.4245 F-statistic 347.2644Durbin-Watson stat 1.224560 Prob(F-statistic) 0.000000R2很高,F显著,但x3、x5、x6不显著,X5、X6的符号甚至是负的。
计量经济学分析案例报告
《计量经济学》实验报告实验课题:各章节案列分析姓名:茆汉成班级:会计学12-2班学号: **********指导老师:***报告日期: 2015.06.18目录第二章简单线性回归模型案例 (1)1 问题引入 (1)2 模型设定 (1)3 估计参数 (3)4 模型检验 (3)第三章多元线性回归模型案例 (5)1 问题引入 (5)2 模型设定 (5)3 估计参数 (6)4 模型检验 (6)第四章多重线性案例 (8)1 问题引入 (8)2 模型设定 (8)3 参数估计 (8)4 对多重共线性的处理 (9)第五章异方差性案例 (11)1 问题引入 (11)2 模型设定 (11)3 参数估计 (11)4 异方差检验 (12)5 异方差性的修正 (14)第六章自相关案例 (15)1 问题引入 (15)2 模型设定 (15)3 用OLS估计 (15)4 自相关其他检验 (16)5 消除自相关 (17)第七章分布滞后模型与自回归模型案例 (19)7.2案例1 (19)1 问题引入 (19)2 模型设定 (19)3 参数估计 (19)7.3案例2 (21)1 问题引入 (21)2 模型设定 (21)3、回归分析 (21)4 模型检验 (23)第八章虚拟变量回归案例 (24)1 问题引入 (24)2 模型设定 (24)3 参数估计 (26)4 模型检验 (27)第二章简单线性回归模型案例1、问题引入居民消费在社会经济的持续发展中有着重要的作用。
适度的居民消费规模和合理的消费模型是人民生活水平的具体体现,有利于经济持续健康的增长。
随着社会信息化程度和居民的收入水平的提高,计算机的运用越来越普及,作为居民耐用消费品重要代表的计算机已经为众多的城镇居民家庭所拥有。
研究中国各地区城镇居民计算机拥有量与居民收入水平的数量关系。
影响居民计算机拥有量的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入水平。
从理论上说居民收入水平越高,居民计算机拥有量越多。
计量经济学实验报告
武汉轻工大学经济与管理学院实验报告> ¹éÄ£Ðͺ¯ÊýÐÎʽ°¸Àý£¨ÃÀ¹úÈË¿Ú£©.dta", clear . use "C:\Documents and Settings\Administrator\×ÀÃæ\¼ÆÁ¿¾¼ÃѧÉÏ»ú°¸Àýdta Îļþ\»Ø. clear. g lny=ln(y)clear_cons 1506.244 188.0096 8.01 0.000 1080.937 1931.552income .0589824 .0061174 9.64 0.000 .0451439 .072821sex -228.9868 107.0582 -2.14 0.061 -471.1694 13.19576food Coef. Std. Err. t P>|t| [95% Conf. Interval]Total 4018118.25 11 365283.477 Root MSE = 178.77Adj R-squared = 0.9125Residual 287626.106 9 31958.4562 R-squared = 0.9284Model 3730492.14 2 1865246.07 Prob > F = 0.0000F( 2, 9) = 58.36Source SS df MS Number of obs = 12. reg food sex income . g incomesex=incomereg food sex income sexincome 实验表明:差别截距与差别斜率都不是显著的。
多元线性回归实验报告
实验题目:多元线性回归、异方差、多重共线性实验目的:掌握多元线性回归的最小二乘法,熟练运用Eviews软件的多元线性回归、异方差、多重共线性的操作,并能够对结果进行相应的分析。
实验内容:习题3.2,分析1994-2011年中国的出口货物总额(Y)、工业增加值(X2)、人民币汇率(X3),之间的相关性和差异性,并修正。
实验步骤:1.建立出口货物总额计量经济模型:错误!未找到引用源。
(3.1)1.1建立工作文件并录入数据,得到图1图1在“workfile"中按住”ctrl"键,点击“Y、X2、X3”,在双击菜单中点“open group”,出现数据表。
点”view/graph/line/ok”,形成线性图2。
图21.2对(3.1)采用OLS估计参数在主界面命令框栏中输入ls y c x2 x3,然后回车,即可得到参数的估计结果,如图3所示。
图 3根据图3中的数据,得到模型(3.1)的估计结果为(8638.216)(0.012799)(9.776181)t=(-2.110573) (10.58454) (1.928512)错误!未找到引用源。
错误!未找到引用源。
F=522.0976从上回归结果可以看出,拟合优度很高,整体效果的F检验通过。
但当错误!未找到引用源。
=0.05时,错误!未找到引用源。
=错误!未找到引用源。
2.131.有重要变量X3的t检验不显著,可能存在严重的多重共线性。
2.多重共线性模型的识别2.1计算解释变量x2、x3的简单相关系数矩阵。
点击Eviews主画面的顶部的Quick/Group Statistics/Correlatios弹出对话框在对话框中输入解释变量x2、x3,点击OK,即可得出相关系数矩阵(同图4)。
相关系数矩阵图4由图4相关系数矩阵可以看出,各解释变量相互之间的相关系数较高,证实解释变量之间存在多重共线性。
2.2多重共线性模型的修正将各变量进行对数变换,在对以下模型进行估计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计量经济学实验报告多元线性回归、多重共线性、异方差实验报告一、研究目的和要求:随着经济的发展,人们生活水平的提高,旅游业已经成为中国社会新的经济增长点。
旅游产业是一个关联性很强的综合产业,一次完整的旅游活动包括吃、住、行、游、购、娱六大要素,旅游产业的发展可以直接或者间接推动第三产业、第二产业和第一产业的发展。
尤其是假日旅游,有力刺激了居民消费而拉动内需。
2012年,我国全年国内旅游人数达到30.0亿人次,同比增长13.6%,国内旅游收入2.3万亿元,同比增长19.1%。
旅游业的发展不仅对增加就业和扩大内需起到重要的推动作用,优化产业结构,而且可以增加国家外汇收入,促进国际收支平衡,加强国家、地区间的文化交流。
为了研究影响旅游景区收入增长的主要原因,分析旅游收入增长规律,需要建立计量经济模型。
影响旅游业发展的因素很多,但据分析主要因素可能有国内和国际两个方面,因此在进行旅游景区收入分析模型设定时,引入城镇居民可支配收入和旅游外汇收入为解释变量。
旅游业很大程度上受其产业本身的发展水平和从业人数影响,固定资产和从业人数体现了旅游产业发展规模的内在影响因素,因此引入旅游景区固定资产和旅游业从业人数作为解释变量。
因此选取我国31个省市地区的旅游业相关数据进行定量分析我国旅游业发展的影响因素。
二、模型设定根据以上的分析,建立以下模型Y=β0+β1X1+β2X2+β3X3+β4X4+Ut参数说明:Y ——旅游景区营业收入/万元X1——旅游业从业人员/人X2——旅游景区固定资产/万元X3——旅游外汇收入/万美元X4——城镇居民可支配收入/元收集到的数据如下(见表2.1):表2.1 2011年全国旅游景区营业收入及相关数据(按地区分)2.中国旅游年鉴2012。
三、参数估计利用Eviews6.0做多元线性回归分析步骤如下:1、创建工作文件双击Eviews6.0图标,进入其主页。
在主菜单中依次点击“File\New\Workfile”,出现对话框“WorkfileRange”。
本例中是截面数据,在workfile structure type 中选择“Unstructured/Undated”,在Date range中填入observations 31,点击ok键,完成工作文件的创建。
2、输入数据在命令框中输入data Y X1 X2 X3 X4, 回车出现“Group”窗口数据编辑框,在对应的Y X1 X2 X3 X4下输入相应数据,关闭对话框将其命名为group01,点击ok,保存。
对数据进行存盘,点击“File/Save As”,出现“Save As”对话框,选择存入路径,并将文件命名,再点“ok”。
3、参数估计在Eviews6.0命令框中键入“LS Y C X1 X2 X3 X4”,按回车键,即出现回归结果。
利用Eviews6.0估计模型参数,最小二乘法的回归结果如下:表3.1 回归结果Dependent Variable: YMethod: Least SquaresDate: 11/14/13 Time:21:14Sample: 1 31Included observations: 31Coeffi cient Std.Errort-Statistic Prob.C 32390.8339569.490.818581 0.4205X1 0.6036240.3661121.648741 0.1112X2 0.2342650.0412185.683583 0.0000X3 0.0446320.0607550.734620 0.4691X4 -1.9140342.098257-0.912202 0.3700R-squared 0.879720Meandependent var 114619.2Adjusted R-squared 0.861215S.D.dependent var 112728.1S.E. of regression 41995.55Akaike infocriterion 24.27520Sum squared resid 4.59E+10Schwarzcriterion 24.50649Log likelihood -371.2657Hannan-Quinn criter. 24.35060F-statistic 47.54049Durbin-Watson stat 2.007191Prob(F-statisti c) 0.000 000根据表中的样本数据,模型估计结果为^Y=32390.83+0.603624X1+0.234265X2+0.044632X3-1.914034X 4(39569.49)(0.366112)(0.041218)(0.060755)(2.098257)t = (0.818581) (1.648741) (5.683583) (0.734620) (-0.912202)R 2=0.879720--R2=0.861215 F=47.54049DW=2.007191可以看出,可决系数R 2=0.879720,修正的可决系数--R2=0.861215。
说明模型的拟合程度还可以。
但是当α=0.05时,X 1、 X 2、X 4系数均不能通过检验,且X 4的系数为负,与经济意义不符,表明模型很可能存在严重的多重共线性。
四、模型修正1.多重共线性的检验与修正 (1)检验选中X1 X2 X3 X4数据,点击右键,选择“Open/as Group ”,在出现的对话框中选择“View/Covariance Analysis/correlation ”,点击ok,得到相关系数矩阵。
计算各个解释变量的相关系数,得到相关系数矩阵。
表4.1 相关系数矩阵 变量X1X2X3 X4X1 1.000000 0.809777 0.872093 0.659239 X2 0.809777 1.000000 0.758322 0.641086 X3 0.872093 0.758322 1.000000 0.716374 X4 0.659239 0.641086 0.716374 1.000000 由相关系数矩阵可以看出,解释变量X2、X3之间存在较高的相关系数,证实确实存在严重的多重共线性。
(2)多重共线性修正采用逐步回归的办法,检验和回归多重共线性问题。
分别作Y对X1、X2、X3、X4的一元回归,在命令窗口分别输入LS Y C X1,LS Y C X2,LS Y C X3,LS Y C X4,并保存,整理结果如表4.2所示。
表4.2 一元回归结果参数估计1.978224 0.315120 0.316946 12.54525值t统计量8.635111 12.47495 6.922479 4.005547 R20.719983 0.842924 0.622988 0.3561910.710327 0.837508 0.609988 0.333991-2R其中,X2的方程-2R最大,以X2为基础,顺次加入其它变量逐步回归。
在命令窗口中依次输入:LS Y C X2 X1,LS Y C X2 X3, LS Y C X2 X4,并保存结果,整理结果如表4.3所示。
表4.3 加入新变量的回归结果(一)经比较,新加入X1的方程2R=0.866053,改进最大,而且各个参数的t检验显著,选择保留X1,再加入其它新变量逐步回归,在命令框中依次输入:LS Y C X2 X1 X3,LS Y C X2 X1 X4,保存结果,整理结果如表4.4所示。
加入新变量的回归结果(二)表4.4当取α=0.05时,tα/2(n-k-1)=2.048,X1、X2的系数t检验均显著,这是最后消除多重共线性的结果。
修正多重共线性影响后的模型为^Y= 0.711446 X1+0.230304 X2(0.265507)(0.039088)t = (2.679575) (5.891959)R2=0.874983 2R=0.866053 F=97.98460 DW=1.893654在确定模型以后,进行参数估计表4.5 消除多重共线性后的回归结果Dependent Variable: YMethod: Least SquaresDate: 11/14/13 Time:21:47Sample: 1 31Included observations: 31Coeffi cient Std.Errort-Statistic Prob.C -4316.82412795.42-0.337373 0.7384X1 0.7114460.2655072.679575 0.0122X2 0.2300.039085.891950.0000304 8 9R-squared 0.874983Meandependent var 114619.2Adjusted R-squared 0.866053S.D.dependent var 112728.1S.E. of regression 41257.10Akaike infocriterion 24.18480Sum squared resid 4.77E+10Schwarzcriterion 24.32357Log likelihood -371.8644Hannan-Quinn criter. 24.23004F-statistic 97.98460Durbin-Watson stat 1.893654Prob(F-statisti c) 0.000 000五、异方差检验在实际的经济问题中经常会出现异方差这种现象,因此建立模型时,必须要注意异方差的检验,否则,在实际中会失去意义。
(1)检验异方差由表 4.5的结果,按路径“View/Residual Tests/Heteroskedasticity Tests”,在出现的对话框中选择Specification:White,点击ok.得到White检验结果如下。
表5.1 White检验结果Heteroskedasticity Test: WhiteF-statistic 3.676733 Prob. F(5,25)0.0125Obs*R-squar ed 13.13613Prob.Chi-Square(5)0.0221Scaled explained SS 15.97891Prob.Chi-Square(5)0.0069Test Equation: Dependent Variable: RESID^2Method: Least Squares Date: 11/14/13 Time: 21:48Sample: 1 31Included observations: 31Coeffi cient Std.Errort-StatisticProb.C -1.10E+091.11E+09-0.9927790.3303X1 -12789.3630151.3-0.4241730.6751X1^2 0.4207160.2943321.4293930.1653X1*X2 -0.1018140.083576-1.2182160.2345X2 146045047.702.893300.007.52 1 1 8X2^2 -0.0024890.00803-0.3099720.7592R-squared 0.423746Meandependent var1.54E+09Adjusted R-squared 0.308495S.D.dependent var2.70E+09S.E. of regression 2.24E+09Akaike infocriterion46.07313Sum squared resid 1.26E+20Schwarzcriterion46.35068Log likelihood -708.1335Hannan-Quinn criter.46.16360F-statistic 3.676733Durbin-Watson stat1.542170Prob(F-statisti c) 0.012 464从上表可以看出,nR2=13.13613,由White检验可知,在α=0.05下,查2χ分布表,得临界值χ205.0(5)=11.0705,比较计算的2χ统计量与临界值,因为nR2=13.13613>χ205.0 (5)=11.0705,所以拒绝原假设,表明模型存在异方差。