2016年人教版八年级上册数学《第12章全等三角形》单元测试卷及答案
八年级数学上册《第12章 全等三角形》单元测试卷及答案详解
人教新版八年级上册《第12章全等三角形》单元测试卷(2)一.选择题(共12小题)1.如图,若△ABC≌△DEF,四个点B、E、C、F在同一直线上,BC=7,EC=5,则CF 的长是()A.2B.3C.5D.72.如图所示,已知△ABC≌△ADE,BC的延长线交DE于F,∠B=∠D=25°,∠ACB=∠AED=105°,∠DAC=10°,则∠DFB为()A.40°B.50°C.55°D.60°3.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.∠B=∠E,∠A=∠D D.BC=DC,∠A=∠D4.如图,在AB、AC上各取一点E、D,使AE=AD,连接BD、CE相交于点O,再连接AO、BC,若∠1=∠2,则图中全等三角形共有()A.5对B.6对C.7对D.8对5.如图,在∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,则OP平分∠AOB的依据是()A.SSS B.SAS C.AAS D.HL6.一块三角形玻璃被小红碰碎成四块,如图,小红只带其中的两块去玻璃店,买了一块和以前一样的玻璃,你认为她带哪两块去玻璃店了()A.带其中的任意两块B.带1,4或3,4就可以了C.带1,4或2,4就可以了D.带1,4或2,4或3,4均可7.如图,已知A、B、C、D四点共线,AE∥DF,BE∥CF,AC=BD,则图中全等三角形有()A.4对B.6对C.8对D.10对8.如图,在4×4正方形网格中,与△ABC有一条公共边且全等(不与△ABC重合)的格点三角形(顶点在格点上的三角形)共有()A.3个B.4个C.5个D.6个9.如图,已知△ABC的周长是16,MB和MC分别平分∠ABC和∠ACB,过点M作BC的垂线交BC于点D,且MD=4,则△ABC的面积是()A.64B.48C.32D.4210.如图,O是△ABC内一点,且O到三边AB、BC、CA的距离OF=OD=OE,若∠BAC =70°,则∠BOC的度数为()A.70°B.120°C.125°D.130°11.如图,△ABC中,∠ABC、∠EAC的角平分线BP、AP交于点P,延长BA、BC,则下列结论中正确的个数()①CP平分∠ACF;②∠ABC+2∠APC=180°;③∠ACB=2∠APB;④若PM⊥BE,PN⊥BC,则AM+CN=AC.A.1个B.2个C.3个D.4个12.如图,已知AC平分∠BAD,CE⊥AD于点E,BC=CD.有下列结论:①∠ABC+∠ADC =180°;②∠CBD=∠CAB;③AB+AD=2AE;④AD﹣AB=2DE.其中正确结论的个数是()A.1B.2C.3D.4二.填空题(共5小题)13.如图为6个边长相等的正方形的组合图形,则∠1﹣∠2+∠3=.14.如图,EB交AC于点M,交CF于点D,AB交FC于点N,∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:①∠1=∠2;②CD=DN;③△ACN≌△ABM;④BE =CF.其中正确的结论有.(填序号)15.如图,在△ABC中,P,Q分别是BC,AC上的点,PR⊥AB,PS⊥AC,垂足分别是R,S,若AQ=PQ,PR=PS,那么下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④BR=QS,其中一定正确的是(填写编号).16.如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=36cm2,AB=18cm,BC=12cm,则DE=cm.17.如图,AC,BC分别平分∠BAE,∠ABF,若△ABC的高CD=8,则点C到AE,BF的距离之和为.三.解答题(共10小题)18.如图,已知AB⊥CF于点B,DE⊥CF于点E,BH=EG,AH=DG,∠C=∠F.(1)求证:△ABH≌△DEG;(2)求证:CE=FB.19.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:∠ABE=∠ACE;(2)如图2,若BE的延长线交AC于点F,CE的延长线交AB于点G.求证:EF=EG.20.如图(1),AB=7cm,AC⊥AB,BD⊥AB垂足分别为A、B,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时点Q在射线BD上运动.它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,点Q的运动速度为xcm/s,其它条件不变,当点P、Q运动到何处时有△ACP与△BPQ全等,求出相应的x 的值.21.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.22.如图,△ABC中,AB=AC,∠EAF=∠BAC,BF⊥AE于E交AF于点F,连接CF.(1)如图1所示,当∠EAF在∠BAC内部时,求证:EF=BE+CF.(2)如图2所示,当∠EAF的边AE、AF分别在∠BAC外部、内部时,求证:CF=BF+2BE.23.在∠MAN内有一点D,过点D分别作DB⊥AM,DC⊥AN,垂足分别为B,C.且BD =CD,点E,F分别在边AM和AN上.(1)如图1,若∠BED=∠CFD,请说明DE=DF;(2)如图2,若∠BDC=120°,∠EDF=60°,猜想EF,BE,CF具有的数量关系,并说明你的结论成立的理由.24.已知在四边形ABCD中,∠BAD+∠BCD=180°,AB=BC.(1)如图1,连接BD,若∠ABD=∠CBD,则AB与AD有什么位置关系,请说明理由?(2)如图2,若P,Q两点分别在线段AD,DC上,且满足PQ=AP+CQ,请猜想∠PBQ 与∠ABP+∠QBC是否相等,并说明理由.(3)如图3,若点Q在DC的延长线上,点P在DA的延长线上,且仍然满足PQ=AP+CQ,请写出∠PBQ与∠ADC的数量关系,并加以说明.25.如图,已知AC平分∠BAD,CE⊥AB于E点,∠ADC+∠B=180°.(1)求证:BC=CD;(2)2AE=AB+AD.26.如图,已知AD∥BC,点E为CD上一点,AE,BE分别平分∠DAB,∠ABC.(1)求证:AE⊥BE;(2)求证:DE=CE;(3)若AE=4,BE=6,求四边形ABCD的面积.27.如图,在四边形ABCD中,∠BAD=α,∠BCD=180°﹣α,BD平分∠ABC.(1)如图,若α=90°,根据教材中一个重要性质直接可得DA=CD,这个性质是(2)问题解决:如图,求证AD=CD;(3)问题拓展:如图,在等腰△ABC中,∠BAC=100°,BD平分∠ABC,求证:BD+AD =BC.人教新版八年级上册《第12章全等三角形》单元测试卷(2)参考答案与试题解析一.选择题(共12小题)1.如图,若△ABC≌△DEF,四个点B、E、C、F在同一直线上,BC=7,EC=5,则CF 的长是()A.2B.3C.5D.7【考点】全等三角形的性质.【分析】根据全等三角形的对应边相等得到EF=BC=7,计算即可.【解答】解:∵△ABC≌△DEF,∴BC=EF,又BC=7,∴EF=7,∵EC=5,∵CF=EF﹣EC=7﹣5=2.故选:A.2.如图所示,已知△ABC≌△ADE,BC的延长线交DE于F,∠B=∠D=25°,∠ACB=∠AED=105°,∠DAC=10°,则∠DFB为()A.40°B.50°C.55°D.60°【考点】全等三角形的性质.【分析】设AD与BF交于点M,要求∠DFB的大小,可以在△DFM中利用三角形的内角和定理求解,转化为求∠AMC的大小,再转化为在△ACM中求∠ACM就可以.【解答】解:设AD与BF交于点M,∵∠ACB=105,∴∠ACM=180°﹣105°=75°,∠AMC=180°﹣∠ACM﹣∠DAC=180°﹣75°﹣10°=95°,∴∠FMD=∠AMC=95°,∴∠DFB=180°﹣∠D﹣∠FMD=180°﹣95°﹣25°=60°.故选:D.3.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.∠B=∠E,∠A=∠D D.BC=DC,∠A=∠D【考点】全等三角形的判定.【分析】根据全等三角形的判定方法分别进行判定即可.【解答】解:A、已知AB=DE,再加上条件BC=EC,∠B=∠E可利用SAS证明△ABC ≌△DEC,故此选项不合题意;B、已知AB=DE,再加上条件BC=EC,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;C、已知AB=DE,再加上条件∠B=∠E,∠A=∠D可利用ASA证明△ABC≌△DEC,故此选项不合题意;D、已知AB=DE,再加上条件BC=DC,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;故选:D.4.如图,在AB、AC上各取一点E、D,使AE=AD,连接BD、CE相交于点O,再连接AO、BC,若∠1=∠2,则图中全等三角形共有()A.5对B.6对C.7对D.8对【考点】全等三角形的判定.【分析】认真观察图形,确定已知条件在图形上的位置,结合全等三角形的判定方法,由易到难,仔细寻找.【解答】解:①在△AEO与△ADO中,,∴△AEO≌△ADO(SAS);②∵△AEO≌△ADO,∴OE=OD,∠AEO=∠ADO,∴∠BEO=∠CDO.在△BEO与△CDO中,,∴△BEO≌△CDO(ASA);③∵△BEO≌△CDO,∴BE=CD,BO=CO,OE=OD,∴CE=BD.在△BEC与△CDB中,,∴△BEC≌△CDB(SAS);④在△AEC与△ADB中,,则△AEC≌△ADB(SAS);⑤∵△AEC≌△ADB,∴AB=AC.在△AOB与△AOC中,,∴△AOB≌△AOC.综上所述,图中全等三角形共5对.故选:A.5.如图,在∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,则OP平分∠AOB的依据是()A.SSS B.SAS C.AAS D.HL【考点】全等三角形的判定.【分析】利用判定方法“HL”证明Rt△OMP和Rt△ONP全等,进而得出答案.【解答】解:∵PM⊥OA,PN⊥OB,∴∠OMP=∠ONP=90°,在Rt△OMP和Rt△ONP中,,∴Rt△OMP≌Rt△ONP(HL),∴∠MOP=∠NOP,∴OP是∠AOB的平分线.故选:D.6.一块三角形玻璃被小红碰碎成四块,如图,小红只带其中的两块去玻璃店,买了一块和以前一样的玻璃,你认为她带哪两块去玻璃店了()A.带其中的任意两块B.带1,4或3,4就可以了C.带1,4或2,4就可以了D.带1,4或2,4或3,4均可【考点】全等三角形的判定.【分析】要想买一块和以前一样的玻璃,只要确定一个角及两条边的长度或两角及一边即可,即简单的全等三角形在实际生活中的应用.【解答】解:由图可知,带上1,4相当于有一角及两边的大小,即其形状及两边长确定,所以两块玻璃一样;同理,3,4中有两角夹一边,同样也可得全等三角形;2,4中,4确定了上边的角的大小及两边的方向,又由2确定了底边的方向,进而可得全等.故选:D.7.如图,已知A、B、C、D四点共线,AE∥DF,BE∥CF,AC=BD,则图中全等三角形有()A.4对B.6对C.8对D.10对【考点】全等三角形的判定.【分析】由AC=BD可得AB=CD,由AE∥DF可得∠EAB=∠FDC,由BE∥CF可得∠EBC=∠FCB,根据等角的补角相等得出∠EBA=∠FCD,利用ASA得△ABE≌△DCF,进一步得其它三角形全等.【解答】解:∵AC=BD,∴AB=CD.∵AE∥DF,∴∠EAB=∠FDC.∵BE∥CF,∴∠EBC=∠FCB,∴∠EBA=∠FCD.在△ABE与△DCF中,,∴△ABE≌△DCF(ASA).进一步得△EBC≌△FCB,△ECD≌△FBA,△AEC≌△DFB,△EBD≌△FCA,△AED ≌△DFA,共6对.故选:B.8.如图,在4×4正方形网格中,与△ABC有一条公共边且全等(不与△ABC重合)的格点三角形(顶点在格点上的三角形)共有()A.3个B.4个C.5个D.6个【考点】全等三角形的判定.【分析】可以以AB和BC为公共边分别画出4个,AC不可以,故可求出结果.【解答】解:如图所示,△ABD,△BEC,△BFC,△BGC,共4个,故选:B.9.如图,已知△ABC的周长是16,MB和MC分别平分∠ABC和∠ACB,过点M作BC的垂线交BC于点D,且MD=4,则△ABC的面积是()A.64B.48C.32D.42【考点】角平分线的性质.【分析】连接AM,过M作ME⊥AB于E,MF⊥AC于F,根据角平分线的性质得出ME =MD=MF=4,根据三角形的面积公式求出即可.【解答】解:连接AM,过M作ME⊥AB于E,MF⊥AC于F,∵MB和MC分别平分∠ABC和∠ACB,MD⊥BC,MD=4,∴ME=MD=4,MF=MD=4,∵△ABC的周长是16,∴AB+BC+AC=16,+S△BCM+S△ABM∴△ABC的面积S=S△AMC==×AC×4++=2(AC+BC+AB)=2×16=32,故选:C.10.如图,O是△ABC内一点,且O到三边AB、BC、CA的距离OF=OD=OE,若∠BAC =70°,则∠BOC的度数为()A.70°B.120°C.125°D.130°【考点】角平分线的性质.【分析】根据到角的两边距离相等的点在角的平分线上判断出点O是三角形三条角平分线的交点,再根据三角形的内角和定理求出∠ABC+∠ACB,然后求出∠OBC+∠OCB,再利用三角形的内角和定理列式计算即可得解.【解答】解:∵O到三边AB、BC、CA的距离OF=OD=OE,∴点O是三角形三条角平分线的交点,∵∠BAC=70°,∴∠ABC+∠ACB=180°﹣70°=110°,∴∠OBC+∠OCB=(∠ABC+∠ACB)=×110°=55°,在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣55°=125°.故选:C.11.如图,△ABC中,∠ABC、∠EAC的角平分线BP、AP交于点P,延长BA、BC,则下列结论中正确的个数()①CP平分∠ACF;②∠ABC+2∠APC=180°;③∠ACB=2∠APB;④若PM⊥BE,PN⊥BC,则AM+CN=AC.A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质;角平分线的性质.【分析】①作PD⊥AC于D,PM⊥BE于M,PN⊥BC于N.由角平分线的性质得出PM =PN,PM=PD,得出PM=PN=PD,即可得出①正确;②首先证出∠ABC+∠MPN=180°,证明Rt△PAM≌Rt△PAD(HL),得出∠APM=∠APD,同理:Rt△PCD≌Rt△PCN(HL),得出∠CPD=∠CPN,即可得出②正确;③由角平分线和三角形的外角性质得出∠CAE=∠ABC+∠ACB,∠PAM=∠ABC+∠APB,得出∠ACB=2∠APB,③正确;④由全等三角形的性质得出AD=AM,CD=CN,即可得出④正确;即可得出答案.【解答】解:①作PD⊥AC于D,PM⊥BE于M,PN⊥BC于N,∵PB平分∠ABC,PA平分∠EAC,PM⊥BE,PN⊥BF,∴PM=PN,PM=PD,∴PM=PN=PD,∴点P在∠ACF的角平分线上,故①正确;②∵PM⊥AB,PN⊥BC,∴∠ABC+90°+∠MPN+90°=360°,∴∠ABC+∠MPN=180°,在Rt△PAM和Rt△PAD中,,∴Rt△PAM≌Rt△PAD(HL),∴∠APM=∠APD,同理:Rt△PCD≌Rt△PCN(HL),∴∠CPD=∠CPN,∴∠MPN=2∠APC,∴∠ABC+2∠APC=180°,②正确;③∵PA平分∠CAE,BP平分∠ABC,∴∠CAE=∠ABC+∠ACB,∠PAM=∠ABC+∠APB,∴∠ACB=2∠APB,③正确;④∵Rt△PAM≌Rt△PAD(HL),∴AD=AM,同理:Rt△PCD≌Rt△PCN(HL),∴CD=CN,∴AM+CN=AD+CD=AC,④正确;故选:D.12.如图,已知AC平分∠BAD,CE⊥AD于点E,BC=CD.有下列结论:①∠ABC+∠ADC =180°;②∠CBD=∠CAB;③AB+AD=2AE;④AD﹣AB=2DE.其中正确结论的个数是()A.1B.2C.3D.4【考点】全等三角形的判定与性质;角平分线的性质.【分析】先过C作CF⊥AB,交AB的延长线于F,判定Rt△CDE≌Rt△CBF,即可根据全等三角形的性质以及线段的和差关系,得到正确结论.【解答】解:如图,过C作CF⊥AB,交AB的延长线于F,∵AC平分∠BAD,CE⊥AD,∴CE=CF,又∵BC=CD,∴Rt△CDE≌Rt△CBF,∴∠CDE=∠CBF,又∵∠ABC+∠CBF=180°,∴∠ABC+∠ADC=180°,即①正确;∴四边形ABCD中,∠DAB+∠BCD=180°,∵BC=CD,∴∠CBD=(180°﹣∠BCD)=∠DAB,又∵∠CAB=∠DAB,∴∠CBD=∠CAB,故②正确;∵CE=CF,AC=AC,∴Rt△ACE≌Rt△ACF,∴AE=AF,∴AB+AD=AF﹣BF+AE+DE=AE+AF=2AE,故③正确;AD﹣AB=AE+DE﹣(AF﹣BF)=DE+BF=2DE,故④正确;故选:D.二.填空题(共5小题)13.如图为6个边长相等的正方形的组合图形,则∠1﹣∠2+∠3=45°.【考点】全等图形.【分析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1﹣∠2+∠3=90°﹣45°=45°.故答案为:45°.14.如图,EB交AC于点M,交CF于点D,AB交FC于点N,∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:①∠1=∠2;②CD=DN;③△ACN≌△ABM;④BE =CF.其中正确的结论有①③④.(填序号)【考点】全等三角形的判定与性质.【分析】①根据已知条件可以证明在△ABE和△ACF全等,即可得∠1=∠2;②没有条件可以证明CD=DN,即可判断;③结合①和已知条件即可得△ACN≌△ABM;④根据△ABE≌△ACF,可得BE=CF,【解答】解:①在△ABE和△ACF中,,∴△ABE≌△ACF(AAS),∴∠EAB=∠FAC,∴∠EAB﹣∠BAC=∠FAC﹣∠BAC,∴∠1=∠2.∴①正确;没有条件可以证明CD=DN,∴②错误;∵△ABE≌△ACF,∴AB=AC,在△ACN和△ABM中,,∴△ACN≌△ABM(ASA),∴③正确;∵△ABE≌△ACF,∴BE=CF,∴④正确.∴其中正确的结论有①③④.故答案为:①③④.15.如图,在△ABC中,P,Q分别是BC,AC上的点,PR⊥AB,PS⊥AC,垂足分别是R,S,若AQ=PQ,PR=PS,那么下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④BR=QS,其中一定正确的是(填写编号)①②.【考点】全等三角形的判定与性质.【分析】通过证明△APR≌△APS,可得AS=AR,∠BAP=∠PAS,可证QP∥AR,可求解.【解答】解:如图,连接AP,①∵PR⊥AB,PS⊥AC,PR=PS,∴点P在∠A的平分线上,∠ARP=∠ASP=90°,∴∠SAP=∠RAP,且AP=AP,∠ARP=∠ASP=90°,∴△APR≌△APS(AAS),∴AR=AS,∴①正确;②∵AQ=QP,∴∠QAP=∠QPA,∵∠QAP=∠BAP,∴∠QPA=∠BAP,∴QP∥AR,∴②正确;③④在Rt△BRP和Rt△QSP中,只有PR=PS,不满足三角形全等的条件,故③④错误;故答案为:①②16.如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=36cm2,AB=18cm,BC=12cm,则DE= 2.4cm.【考点】角平分线的性质.【分析】首先过点D作DF⊥BC于点F,由BD是∠ABC的平分线,DE⊥AB,根据角平=S△ABD+S△BCD=AB•DE+BC•DF,求得分线的性质,可得DE=DF,然后由S△ABC答案.【解答】解:过点D作DF⊥BC于点F,∵BD是∠ABC的平分线,DE⊥AB,∴DE=DF,∵AB=18cm,BC=12cm,=S△ABD+S△BCD=AB•DE+BC•DF=DE•(AB+BC)=36cm2,∴S△ABC∴DE=2.4(cm).故答案为:2.4.17.如图,AC,BC分别平分∠BAE,∠ABF,若△ABC的高CD=8,则点C到AE,BF的距离之和为16.【考点】角平分线的性质.【分析】首先过点C作CM⊥AE于点M,过点C作CN⊥BF于点N,由AC,BC分别平分∠BAE,∠ABF,△ABC的高CD=8,根据角平分线的性质,可得CM=CD=8,CN =CD=8,继而求得答案.【解答】解:过点C作CM⊥AE于点M,过点C作CN⊥BF于点N,∵AC,BC分别平分∠BAE,∠ABF,△ABC的高CD=8,∴CM=CD=8,CN=CD=8,∴点C到AE,BF的距离之和为:CM+CN=16.故答案为:16.三.解答题(共10小题)18.如图,已知AB⊥CF于点B,DE⊥CF于点E,BH=EG,AH=DG,∠C=∠F.(1)求证:△ABH≌△DEG;(2)求证:CE=FB.【考点】全等三角形的判定与性质.【分析】(1)由HL可证明△ABH≌△DEG;(2)证明△ABC≌△DEF(AAS).得出BC=EF,则可得出结论.【解答】(1)证明:∵AB⊥CF,DE⊥CF,∴∠DEG=∠ABH=90°,在Rt△ABH和Rt△DEG中,∵,∴Rt△ABH≌Rt△DEG(HL).(2)∵Rt△ABH≌Rt△DEG(HL).∴AB=DE,在△ABC和△DEF中,∵,∴△ABC≌△DEF(AAS).∴BC=EF,∴CE=FB.19.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:∠ABE=∠ACE;(2)如图2,若BE的延长线交AC于点F,CE的延长线交AB于点G.求证:EF=EG.【考点】全等三角形的判定与性质.【分析】(1)根据已知条件可以证明△ABD和△ACD全等,可得∠BAD=∠CAD,再证明△ABE和△ACE全等,即可得结论;(2)结合(1)根据△ABE和△ACE全等可得BE=CE,再证明△BEG≌△CEF,即可得结论.【解答】解:(1)证明:∵点D是BC的中点,∴BD=CD,在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,在△ABE和△ACE中,,∴△ABE≌△ACE(SAS),∴∠ABE=∠ACE;(2)如图,由(1)知,△ABE≌△ACE,∴BE=CE,∠ABE=∠ACE,在△BEG和△CEF中,,∴△BEG≌△CEF(ASA),∴EG=EF.20.如图(1),AB=7cm,AC⊥AB,BD⊥AB垂足分别为A、B,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时点Q在射线BD上运动.它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,点Q的运动速度为xcm/s,其它条件不变,当点P、Q运动到何处时有△ACP与△BPQ全等,求出相应的x 的值.【考点】全等三角形的判定.【分析】(1)利用AP=BQ=2,BP=AC,可根据“SAS”证明△ACP≌△BPQ;则∠C =∠BPQ,然后证明∠APC+∠BPQ=90°,从而得到PC⊥PQ;(2)讨论:若△ACP≌△BPQ,则AC=BP,AP=BQ,即5=7﹣2t,2t=xt;②若△ACP ≌△BQP,则AC=BQ,AP=BP,即5=xt,2t=7﹣2t,然后分别求出x即可.【解答】解:(1)△ACP≌△BPQ,PC⊥PQ.理由如下:∵AC⊥AB,BD⊥AB,∴∠A=∠B=90°,∵AP=BQ=2,∴BP=5,∴BP=AC,在△ACP和△BPQ中,∴△ACP≌△BPQ(SAS);∴∠C=∠BPQ,∵∠C+∠APC=90°,∴∠APC+∠BPQ=90°,∴∠CPQ=90°,∴PC⊥PQ;(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,可得:5=7﹣2t,2t=xt解得:x=2,t=1;②若△ACP≌△BQP,则AC=BQ,AP=BP,可得:5=xt,2t=7﹣2t解得:x=,t=.综上所述,当△ACP与△BPQ全等时x的值为2或.21.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.【考点】全等三角形的判定与性质.【分析】(1)根据题意和题目中的条件可以找出△ABC≌△ADE的条件;(2)根据(1)中的结论和等腰直角三角形的定义可以得到∠FAE的度数;(3)根据题意和三角形全等的知识,作出合适的辅助线即可证明结论成立.【解答】证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,,∴△CGA≌△CDA(AAS),∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.22.如图,△ABC中,AB=AC,∠EAF=∠BAC,BF⊥AE于E交AF于点F,连接CF.(1)如图1所示,当∠EAF在∠BAC内部时,求证:EF=BE+CF.(2)如图2所示,当∠EAF的边AE、AF分别在∠BAC外部、内部时,求证:CF=BF+2BE.【考点】全等三角形的判定与性质.【分析】(1)在EF上截取EH=BE,由“SAS”可证△ACF≌△AHF,可得CF=HF,可得结论;(2)在BE的延长线上截取EN=BE,连接AN,由“SAS”可证△ACF≌△ANF,可得CF=NF,可得结论.【解答】证明:(1)如图,在EF上截取EH=BE,连接AH,∵EB=EH,AE⊥BF,∴AB=AH,∵AB=AH,AE⊥BH,∴∠BAE=∠EAH,∵AB=AC,∴AC=AH,∵∠EAF=∠BAC∴∠BAE+∠CAF=∠EAF,∴∠BAE+∠CAF=∠EAH+∠FAH,∴∠CAF=∠HAF,在△ACF和△AHF中,,∴△ACF≌△AHF(SAS),∴CF=HF,∴EF=EH+HF=BE+CF;(2)如图,在BE的延长线上截取EN=BE,连接AN,∵AE⊥BF,BE=EN,AB=AC,∴AN=AB=AC,∵AN=AB,AE⊥BN,∴∠BAE=∠NAE,∵∠EAF=∠BAC∴∠EAF+∠NAE=(∠BAC+2∠NAE)∴∠FAN=∠CAN,∴∠FAN=∠CAF,在△ACF和△ANF中,,∴△ACF≌△ANF(SAS),∴CF=NF,∴CF=BF+2BE.23.在∠MAN内有一点D,过点D分别作DB⊥AM,DC⊥AN,垂足分别为B,C.且BD=CD,点E,F分别在边AM和AN上.(1)如图1,若∠BED=∠CFD,请说明DE=DF;(2)如图2,若∠BDC=120°,∠EDF=60°,猜想EF,BE,CF具有的数量关系,并说明你的结论成立的理由.【考点】全等三角形的判定与性质.【分析】(1)根据题目中的条件和∠BED=∠CFD,可以证明△BDE≌△CDF,从而可以得到DE=DF;(2)作辅助线,过点D作∠CDG=∠BDE,交AN于点G,从而可以得到△BDE≌△CDG,然后即可得到DE=DG,BE=CG,再根据题目中的条件可以得到△EDF≌△GDF,即可得到EF=GF,然后即可得到EF,BE,CF具有的数量关系.【解答】解:(1)∵DB⊥AM,DC⊥AN,∴∠DBE=∠DCF=90°,在△BDE和△CDF中,∵∴△BDE≌△CDF(AAS).∴DE=DF;(2)EF=FC+BE,理由:过点D作∠CDG=∠BDE,交AN于点G,在△BDE和△CDG中,,∴△BDE≌△CDG(ASA),∴DE=DG,BE=CG.∵∠BDC=120°,∠EDF=60°,∴∠BDE+∠CDF=60°.∴∠FDG=∠CDG+∠CDF=60°,∴∠EDF=∠GDF.在△EDF和△GDF中,,∴△EDF≌△GDF(SAS).∴EF=GF,∴EF=FC+CG=FC+BE.24.已知在四边形ABCD中,∠BAD+∠BCD=180°,AB=BC.(1)如图1,连接BD,若∠ABD=∠CBD,则AB与AD有什么位置关系,请说明理由?(2)如图2,若P,Q两点分别在线段AD,DC上,且满足PQ=AP+CQ,请猜想∠PBQ 与∠ABP+∠QBC是否相等,并说明理由.(3)如图3,若点Q在DC的延长线上,点P在DA的延长线上,且仍然满足PQ=AP+CQ,请写出∠PBQ与∠ADC的数量关系,并加以说明.【考点】全等三角形的判定与性质.【分析】(1)由SAS证得△ABD≌△CBD,得出∠BAD=∠BCD,由∠BAD+∠BCD=180°,则∠BAD=∠BCD=90°,即可得出结果;(2)延长DC至点K,使CK=AP,连接BK,由SAS证得△BAP≌△BCK,得出∠ABP =∠CBK,BP=BK,推出PQ=QK,由SSS证得△PBQ≌△KBQ,得出∠PBQ=∠QBC+∠CBK,即可得出结果;(3)延长CD至点K,使CK=AP,连接BK,由SAS证得△BAP≌△BCK,得出∠ABP =∠CBK,BP=BK,证得∠PBK=∠ABC,由SSS证得△PBQ≌△KBQ,得出∠PBQ=∠KBQ,则2∠PBQ+∠PBK=2∠PBQ+∠ABC=360°,即2∠PBQ+(180°﹣∠ADC)=360°,即可得出结果.【解答】解:(1)AB与AD的位置关系为:AB⊥AD,理由如下:在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠BAD=∠BCD,∵∠BAD+∠BCD=180°,∴∠BAD=∠BCD=×180°=90°,∴AB⊥AD;(2)∠PBQ与∠ABP+∠QBC相等,理由如下:延长DC至点K,使CK=AP,连接BK,如图2所示:∵∠BAD+∠BCD=180°,∠BCD+∠BCK=180°,∴∠BAD=∠BCK,在△BAP和△BCK中,,∴△BAP≌△BCK(SAS),∴∠ABP=∠CBK,BP=BK,∵PQ=AP+CQ,QK=CK+CQ,∴PQ=QK,在△PBQ和△KBQ中,,∴△PBQ≌△KBQ(SSS),∴∠PBQ=∠QBC+∠CBK,∴∠PBQ=∠ABP+∠QBC;(3)∠PBQ与∠ADC的数量关系为:∠PBQ=90°+∠ADC,理由如下:延长CD至点K,使CK=AP,连接BK,如图3所示:∵∠BAD+∠BCD=180°,∠BAD+∠PAB=180°,∴∠PAB=∠BCK,在△BAP和△BCK中,,∴△BAP≌△BCK(SAS),∴∠ABP=∠CBK,BP=BK,∴∠PBK=∠ABC,∵PQ=AP+CQ,∴PQ=QK,在△PBQ和△KBQ中,,∴△PBQ≌△KBQ(SSS),∴∠PBQ=∠KBQ,∴2∠PBQ+∠PBK=2∠PBQ+∠ABC=360°,∴2∠PBQ+(180°﹣∠ADC)=360°,∴∠PBQ=90°+∠ADC.25.如图,已知AC平分∠BAD,CE⊥AB于E点,∠ADC+∠B=180°.(1)求证:BC=CD;(2)2AE=AB+AD.【考点】全等三角形的判定与性质;角平分线的性质.【分析】(1)过C作CF⊥AD于F,根据角平分线的性质得:CF=CE,根据AAS证明△FDC≌△EBC可得结论;(2)由(1)中的全等得:DF=BE,证明Rt△AFC≌Rt△AEC,得AE=AF,根据线段的和与差得出结论.【解答】证明:(1)过C作CF⊥AD于F,∵AC平分∠BAD,CE⊥AB,∴CF=CE,∵∠ADC+∠CBE=180°,∠ADC+∠FDC=180°,∴∠CBE=∠FDC,在△FDC和△EBC中,∵,∴△FDC≌△EBC(AAS),∴CD=BC;(2)∵△FDC≌△EBC,在Rt△AFC和Rt△AEC中,∵,∴Rt△AFC≌Rt△AEC(HL),∴AF=AE,∴AB+AD=AE+BE+AD=AE+DF+AD=AE+AF=2AE.26.如图,已知AD∥BC,点E为CD上一点,AE,BE分别平分∠DAB,∠ABC.(1)求证:AE⊥BE;(2)求证:DE=CE;(3)若AE=4,BE=6,求四边形ABCD的面积.【考点】全等三角形的判定与性质;角平分线的性质;等腰三角形的判定与性质.【分析】(1)由平行线的性质,可得出∠AEB=90°,即可得结论;(2)延长AE,BC交于M,继而证明△ABE≌△MBE,得出AE=ME后,证明△ADE ≌△MCE,即可得出结论.=S△ABM=2S△ABE,即可得出答案.(3)根据S四边形ABCD【解答】解:(1)∵AD∥BC,∴∠DAB+∠ABC=180°,又∵AE、BE分别平分∠BAD、∠ABC,∴∠EAB=∠DAE=∠BAD,∠ABE=∠CBE=∠ABC∴∠EAB+∠ABE=90°,∴AE⊥BE(2)如图,延长AE,BC交于M,∵∠AEB=∠BEM=90°,BE=BE,∠ABE=∠CBE∴△ABE≌△MBE(ASA),∴AE=ME,∵AD∥BC∴∠D=∠ECM,且AE=EM,∠AED=∠CEM∴△ADE≌△MCE(AAS),∴CE=DE.(3)∵AE=4,BE=6,=AE×BE=12,∴S△ABE∵△ADE≌△MCE,=S△MCE,∴S△ADE=S△ABM=2S△ABE=24.∴S四ABCD27.如图,在四边形ABCD中,∠BAD=α,∠BCD=180°﹣α,BD平分∠ABC.(1)如图,若α=90°,根据教材中一个重要性质直接可得DA=CD,这个性质是角平分线上的点到角的两边距离相等(2)问题解决:如图,求证AD=CD;(3)问题拓展:如图,在等腰△ABC中,∠BAC=100°,BD平分∠ABC,求证:BD+AD =BC.【考点】等腰三角形的性质.【分析】(1)根据角平分线的性质定理解答;(2)作DE⊥BA交BA延长线于E,DF⊥BC于F,证明△DEA≌△DFC,根据全等三角形的性质证明;(3)在BC时截取BK=BD,连接DK,根据(2)的结论得到AD=DK,根据等腰三角形的判定定理得到KD=KC,结合图形证明.【解答】解:(1)∵BD平分∠ABC,∠BAD=90°,∠BCD=90°,∴DA=DC(角平分线上的点到角的两边距离相等),故答案为:角平分线上的点到角的两边距离相等;(2)如图2,作DE⊥BA交BA延长线于E,DF⊥BC于F,∵BD平分∠EBF,DE⊥BE,DF⊥BF,∴DE=DF,∵∠BAD+∠C=180°,∠BAD+∠EAD=180°,∴∠EAD=∠C,在△DEA和△DFC中,∴△DEA≌△DFC(AAS),∴DA=DC;(3)如图,在BC时截取BK=BD,连接DK,∵AB=AC,∠A=100°,∴∠ABC=∠C=40°,∵BD平分∠ABC,∴∠DBK=∠ABC=20°,∵BD=BK,∴∠BKD=∠BDK=80°,即∠A+∠BKD=180°,由(2)的结论得AD=DK,∵∠BKD=∠C+∠KDC,∴∠KDC=∠C=40°,∴DK=CK,∴AD=DK=CK,.∴BD+AD=BK+CK=BC第41页(共41页)。
八年级数学上册《第十二章 全等三角形》单元测试卷及答案-人教版
八年级数学上册《第十二章 全等三角形》单元测试卷及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.下列说法正确的是( )A .全等三角形是指形状相同的三角形B .全等三角形是指面积相等的三角形C .全等三角形的周长和面积都相等D .所有的等边三角形都全等2.已知:△ABC ≌△DEF ,AB=DE ,∠A=70°,∠E=30°,则∠F 的度数为( )A .80°B .70°C .30°D .100°3.在测量一个小口圆形容器的壁厚时,小明用“X 型转动钳”按如图方法进行测量,其中OA =OD ,OB =OC ,测得AB =5厘米,EF =6厘米,圆形容器的壁厚是( )A .5厘米B .6厘米C .2厘米D .12厘米 4.如图,在ABC 中90B ∠=︒,AD 平分BAC ∠,10BC =和6CD =,则点D 到AC 的距离为( )A .4B .6C .8D .105.如图,在△ABC 中,∠C=90°,AC=BC ,AD 平分∠CAB ,交BC 于点D ,DE ⊥AB 于点E ,且AB=10,则△EDB 的周长是( )A .4B .6C .8D .106.如图,AB BC ⊥于点B ,AE DE ⊥于点E ,AB AE =与ACB ADE ∠=∠和65ACD ∠=︒75BAD ∠=︒ 则BAE ∠的度数为( )A .95︒B .100︒C .105︒D .110︒7.如图,在ABC 中B C ∠=∠,M ,N ,P 分别是边AB ,AC ,BC 上的点,且BM CP =与CN BP = 若44MPN ∠=︒,则A ∠的度数为( )A .44︒B .88︒C .92︒D .136︒8.如图所示 90,,E F B C AE AF ∠=∠=∠=∠= ,结论:①EM FN = ;②CD =DN ;③FAN EAM ∠=∠ ;④ΔACN ≅ΔABM ,其中正确的是有( )A .1个B .2个C .3个D .4个二、填空题:(本题共5小题,每小题3分,共15分.)9.已知△ABC 的两边长分别为AB=2和AC=6,第三边上的中线AD=x ,则x 的取值范围是 .10.如图,点A ,D ,B ,E 在同一条直线上,AD =BE ,AC =EF ,要使△ABC ≌△EDF ,只需添加一个条件,这个条件可以是 .11.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F ,△ABD 的面积是12cm 2,AB =8cm ,则DF = .12.如图, ABC 的三边 AB BC CA 、、 的长分别为 405060、、 ,其三条角平分线交于点 O ,则 S △ABO :S △BCO :S △CAO = .13.如图, ABC 中 ABC ∠ 、 EAC ∠ 的角平分线 BP 、 AP 交于点P ,延长 BA 和BC 则下列结论中正确的有 .(将所有正确序号填在横线上) ①CP 平分ACF ∠;②2180ABC APC ︒∠+∠=,③2ACB APB ∠=∠;④若PM BE ⊥ PN BC ⊥则AM CN AC +=.三、解答题:(本题共5题,共45分)14.如图,在ABC 中,D 是BC 边上一点DE AC ,CB DE =,ABC E ∠=∠求证:AC BD =.15.如图,在四边形ABCD 中,E 是对角线AC 上一点,连接DE ,AD ∥BC ,AC =AD ,∠CED+∠B =180°.△ADE 与△CAB 全等吗?为什么?16.如图,在五边形ABCDE 中,∠BCD=∠EDC=90°,BC=ED ,AC=AD .(1)求证:△ABC ≌△AED ;(2)当∠B=140°时,求∠BAE 的度数.17.如图,在Rt ABC 中,AC=BC ,∠ACB=90°,BF 平分ABC ∠交AC 于点F ,AE BF ⊥于点E ,AE ,BC 的延长线交于点M .(1)求证:ABE MBE ≌(2)求证:2BF AE =.18.如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D ,E 为AC 边上一点,连接BE 与AD 交于点F ,G 为△ABC 外一点,满足∠ACG =∠ABE ,∠FAG =∠BAC ,连接EG .(1)求证:△ABF ≌△ACG ;(2)求证:BE =CG+EG .参考答案:1.C 2.A 3.D 4.A 5.D 6.B 7.C 8.C9.2<x<410.∠A=∠E11.3cm12.4:5:613.①②③④14.证明:∵DE AC∴C EDB ∠=∠在ABC 和BED 中∴()ASA ABC BED ≅,∴AC BD =15.解:△ADE 与△CAB 全等,理由如下:∵ AD ∥BC∴∠ACB=∠DAE ,∠B+∠DAB=180°∵ ∠CED+∠B =180°∴∠CED=∠DAB∵∠CED=∠EDA+∠DAE ,∠DAB=∠BAC+∠DAE∴∠EDA=∠BAC在△ADE 和△CAB 中{∠ACB =∠DAEAC =AD ∠EDA =∠BAC∴ △ADE ≌△CAB (ASA ).16.(1)证明:∵AC=AD∴∠ACD=∠ADC又∵∠BCD=∠EDC=90°∴∠ACB=∠ADE在△ABC 和△AED 中{BC =ED∠ACB =∠ADE AC =AD∴△ABC ≌△AED (SAS );(2)解:当∠B=140°时,∠E=140°又∵∠BCD=∠EDC=90°∴五边形ABCDE 中,∠BAE=540°﹣140°×2﹣90°×2=80°.17.(1)证明:由题意得AE BF ⊥,即BE AM ⊥∴90AEB MEB ∠=∠=︒∵BF 平分ABC ∠∴ABE MBE ∠=∠在AEB 和MEB 中90AEB MEB BE BEABE MBE ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴()ASA AEB MEB ≌;(2)证明:∵9090FBC BFC CAM AFE ∠+∠=︒∠+∠=︒, 由图可得BFC AFE ∠=∠∴FBC CAM ∠=∠在BCF 和ACM 中90ACB ACM BC ACFBC CAM ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴()ASA BCF ACM ≌∴BF AM =∵AEB MEB ≌∴AE ME =∴2BF AM AE ME AE ==+=.18.(1)证明:∵∠BAC =∠FAG ,∴∠BAC −∠3=∠FAG −∠3 即 12∠∠=.在ABF 和ACG 中,∵{∠1=∠2AB =AC∠ABF =∠ACG∴ABF ≌ACG (ASA ).(2)证明:∵ABF ≌ACG∴AF AG = BF CG =. ∵AB AC = AD BC ⊥于点D ∴∠1=∠3.∵12∠∠=∴∠2=∠3.在AEF 和AEG 中∵{AF =AG∠3=∠2AE =AE∴AEF ≌AEG (SAS ). ∴EF EG =.∴BE =BF +FE =CG +EG。
《第十二章 全等三角形》单元测试卷含答案(共6套)
《第十二章全等三角形》单元测试卷(一)时间:120分钟满分:120分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.若△MNP≌△MNQ,且MN=8,NP=7,PM=6,则MQ的长为( )A.8 B.7 C.6 D.52.下列条件中,能判定△ABC≌△DEF的是( )A.AB=DE,BC=EF,∠A=∠DB.∠A=∠D,∠C=∠F,AC=EFC.∠B=∠E,∠A=∠D,AC=EFD.∠B=∠E,∠A=∠D,AB=DE3.如图,一块三角形玻璃碎成了4块,现在要到玻璃店去配一块与原来的三角形玻璃完全一样的玻璃,则最省事的办法是带( )A.① B.② C.③ D.④第3题图第4题图4.如图,AC=CE,∠ACE=90°,AB⊥BD,ED⊥BD,AB=6cm,DE=2cm,则BD 等于( )A.6cm B.8cm C.10cm D.4cm=15,DE=3,AB=6,5.如图,在△ABC中,AD平分∠BAC,DE⊥AB于E,S△ABC则AC的长是( )A.7 B.6 C.5 D.4第5题图第6题图6.如图,OP平分∠AOB,PA⊥OA,PB⊥OB,C是射线OA上不与点A重合的一点,D是射线OB上不与点B重合的一点,且AC=BD,下列结论:①PA=PB; ②PO平分∠APB;③OC=OD; ④△PAC≌△PBD.其中成立的是( )A.①②③ B.②③④ C.①②④ D.①②③④二、填空题(本大题共6小题,每小题3分,共18分)7.已知图中的两个三角形全等,则∠1的度数是________.8.如图,在△ABC中,AB=AC,BE、CF是△ABC的中线,则由________可得△AFC≌△AEB.第7题图第8题图第9题图9.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D.若CD=4,则点D到斜边AB的距离为________.10.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中共有________对全等三角形.第10题图第11题图11.如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=42°,则∠AEB =________.12.在平面直角坐标系中,点A(1,0),B(3,0),C(4,2),当△ABD和△ABC 全等时,则点D的坐标可以是________________.三、(本大题共5小题,每小题6分,共30分)13.如图所示,在△ABC中,∠A=90°,DE⊥BC,BD平分∠ABC,AD=6cm,BC =15cm,求△BDC的面积.14.如图,点B,D,C,F在一条直线上,BC=FD,AB=EF,且AB∥EF.求证:AC∥ED.15.如图,已知F是DE的中点,∠D=∠E,∠DFN=∠EFM.求证:DM=EN.16.如图,点D在BC上,∠1=∠2,AE=AC,下面三个条件:①AB=AD;②BC =DE;③∠E=∠C,请你从所给条件①②③中选一个条件,使△ABC≌△ADE,并证明.17.如图,在∠AOB的两边OA,OB上分别取OM=ON,OD=OE,请用无刻度的直尺作出∠AOB的平分线.四、(本大题共3小题,每小题8分,共24分)18.如图,已知△ABC,按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连接BD,与AC交于点E,连接AD,CD.(1)求证:△ABC≌△ADC;(2)试猜想AC与BD的位置关系,并说明理由.19.如图,AD是△ABC的中线,BE⊥AD于点E,CF⊥AD交AD的延长线于点F.求证:AE+AF=2AD.20.如图,点E,F分别在OA,OB上,DE=DF,∠OED+∠OFD=180°.(1)请作出点D到OA,OB的距离,标明垂足;(2)求证:OD平分∠AOB.五、(本大题共2小题,每小题9分,共18分)21.如图,在△ABC中,BE,CF分别是边AC,AB上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD,AG,则AG与AD有何关系?请说明理由.22.如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(-2,0),点A 的坐标为(-6,3),求点B的坐标.六、(本大题共12分)23.(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD 绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是____________;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF 交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C 为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.参考答案与解析1.C 2.D 3.D 4.B 5.D6.C 解析:∵OP平分∠AOB,∴∠POA=∠POB.∵PA⊥OA,PB⊥OB,∴∠OAP=∠OBP=90°.在△OPA 和△OPB 中,⎩⎨⎧∠OAP=∠OBP,∠POA=∠POB,OP =OP ,∴△OPA≌△OPB(AAS),∴AO =BO ,PA =PB ,∠OPA=∠OPB,∴PO 平分∠APB,故①②正确;在△PAC 和△PBD 中,⎩⎨⎧PA =PB ,∠A=∠PBD,AC =BD ,∴△PAC≌△PBD(SAS),故④正确,由△PAC≌△PBD 得AC =BD ,∴OC=OA -AC =OB -BD =OD -2BD ,∴OC≠OD,故③错误,故答案为C.7.58° 8.SAS 9.4 10.311.132° 解析:∵∠ACB=∠ECD=90°,∴∠ACB-∠BCE=∠ECD-∠BCE,即∠ACE=∠BCD.在△ACE 和△BCD 中,⎩⎨⎧AC =BC ,∠ACE=∠BCD,EC =DC ,∴△ACE≌△BCD,∴∠CAE=∠CBD,∴∠CAE+∠CBE=∠CBD+∠CBE=∠EBD=42°.在△ABC 中,∠EAB+∠EBA=180°-(∠ACB+∠CAE+∠C BE)=180°-(90°+42°)=48°,在△ABE 中,∠AEB=180°-(∠EAB+∠EBA)=180°-48°=132°.12.(0,2)或(4,-2)或(0,-2)13.解:∵BD 平分∠ABC,∠A=90°,DE⊥BC,∴DE=AD =6cm ,(3分)∴△BDC的面积为12BC·DE=12×15×6=45(cm 2).(6分) 14.证明:∵AB∥EF,∴∠B=∠F.(1分)在△ABC 和△EFD 中,⎩⎨⎧AB =EF ,∠B=∠F,BC =FD ,∴△ABC≌△EFD(SAS),(4分)∴∠ACB=∠EDF,∴AC∥DE.(6分)15.证明:∵点F 是DE 的中点,∴DF=EF.(1分)∵∠DFN=∠EFM,∴∠DFN+∠MFN=∠EFM+∠MFN,即∠DFM=∠EFN.(2分)在△DFM 和△EFN 中,⎩⎨⎧∠D=∠E,DF =EF ,∠DFM=∠EFN,∴△DFM≌△EFN(ASA),(4分)∴DM=EN.(6分)16.解:选②BC=DE.证明如下:如图,∵∠1=∠2,∠3=∠4,∴∠E=∠C.(2分)在△ABC 和△ADE 中,⎩⎨⎧AC =AE ,∠C=∠E,BC =DE ,∴△ABC≌△ADE(SAS).(6分)17.解:如图所示,OC 即为所求.(6分)18.(1)证明:在△ABC 与△ADC 中,⎩⎨⎧AB =AD ,BC =DC ,AC =AC ,∴△ABC≌△ADC(SSS).(4分)(2)解:AC⊥DB.(5分)理由如下:由(1)知△ABC≌△ADC,∴∠BAE=∠DAE.∵AB =AD ,∠BAE=∠DAE,AE =AE ,∴△ABE≌△ADE(SAS),∴∠AEB=∠AED.又∵∠AEB +∠AED=180°,∴∠AEB=∠AED=90°,∴AC⊥BD.(8分)19.证明:∵AD 是△ABC 的中线,∴BD=CD.(2分)∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°.在△BDE 和△CDF 中,⎩⎨⎧∠BED=∠CFD,∠BDE=∠CDF,BD =CD ,∴△BDE≌△CDF(AAS),∴DE=DF.(6分)∵AE=AD -DE ,AF =AD +DF ,∴AE+AF =AD -DE +AD +DF =2AD.(8分)20.(1)解:如图,分别过点D 作DM⊥OA,DN⊥OB,则DM ,DN 分别为点D 到OA ,OB 的距离,垂足分别为M ,N.(3分)(2)证明:∵∠OED+∠OFD=180°,∠OED+∠MED=180°,∴∠MED=∠NFD.∵DM⊥OA,DN⊥OB,∴∠DME=∠DNF=90°.在△DME 和△DNF 中,⎩⎨⎧∠DME=∠DNF,∠MED=∠NFD,DE =DF ,∴△DME≌△DNF(AAS),(6分)∴DM=DN ,∴OD 平分∠AOB.(8分)21.解:AG =AD ,AG⊥AD.(2分)理由如下:设CG 分别交AD ,BE 于O ,P ,如图所示.∵在△ABC 中,BE ,CF 分别是边AC ,AB 上的高,∴∠BFP=∠CEP=∠AFO =90°,∴∠ABD+∠FPB=90°,∠ACG+∠EPC=90°.∵∠FPB=∠EPC,∴∠ABD=∠ACG.在△ABD 和△GCA 中,⎩⎨⎧AB =GC ,∠ABD=∠GCA,BD =CA ,∴△ABD≌△GCA(SAS),∴AG=AD ,∠AGC=∠BAD.(6分)∵∠AFO=90°,∴∠BAD+∠AOF=90°,∴∠AGC+∠AOF=90°,∴∠GAD=180°-90°=90°,∴AG⊥AD.(9分)22.解:如图,过点A 和B 分别作AD⊥x 轴于D ,BE⊥x 轴于E ,(1分)∴∠ADC =∠CEB=90°,∴∠ACD+∠CAD=90°.∵∠ACB=90°,∴∠ACD+∠BCE=90°,∴∠CAD=∠BCE.在△ADC 和△CEB 中,∠ADC=∠CEB,∠CAD=∠BCE,AC =BC ,∴△ADC≌△CEB(AAS),∴CD=BE ,AD =CE.(5分)∵点C 的坐标为(-2,0),点A 的坐标为(-6,3),∴OC=2,CE =AD =3,OD =6,∴CD=OD -OC =4,OE =CE -OC =3-2=1,∴BE=4,∴点B 的坐标是(1,4).(9分)23.(1)解:2<AD <8(3分)(2)证明:延长FD 至点M ,使DM =DF ,连接BM 、EM ,如图②所示.(4分)∵D 是BC 的中点,∴CD=BD.在△BMD 和△CFD 中,BD =CD ,∠BDM=∠CDF,DM =DF ,∴△BMD≌△CFD(SAS),∴BM=CF.(5分)∵DE=DE ,∠EDF=∠EDM=90°,DF =DM ,∴△DEF≌△DEM(SAS),∴EM=EF.在△BME 中,由三角形的三边关系得BE +BM >EM ,∴BE+CF >EF.(7分)(3)解:BE +DF =EF.(8分)理由如下:延长AB 至点N ,使BN =DF ,连接CN ,如图③所示.∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,∴∠NBC=∠D.在△NBC和△FDC 中,⎩⎨⎧BN =DF ,∠NBC=∠D,BC =DC ,∴△NBC≌△FDC(SAS),∴CN=CF ,∠NCB=∠FCD.∵∠BCD=140°,∠ECF=70°,∴∠BCE+∠FCD=70°,∴∠ECN=70°=∠ECF.(10分)在△NCE 和△FCE 中,⎩⎨⎧CN =CF ,∠ECN=∠ECF,CE =CE ,∴△NCE≌△FCE(SAS),∴EN=EF.∵BE+BN =EN ,∴BE+DF =EF.(12分)《第十二章 全等三角形》单元测试卷(二)时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.在下列每组图形中,是全等形的是( )2.如图,△AOC≌△BOD,点A 与点B 是对应点,则下列结论中错误的是( )A .∠A=∠B B.AO =BOC .AB =CD D .AC =BD3.如图,已知AB=AC,BD=CD,则可推出( )A.△ABD≌△BCD B.△ABD≌△ACDC.△ACD≌△BCD D.△ACE≌△BDE4.在△ABC和△A′B′C′中,AB=A′B′,∠A=∠A′,若要证△ABC≌△A′B′C′,则还需从下列条件中补选一个,错误的选法是( ) A.∠B=∠B′ B.∠C=∠C′C.BC=B′C′ D.AC=A′C′5.已知∠AOB的平分线上一点P到OA的距离为5,Q是OB上任意一点,则( ) A.PQ>5 B.PQ≥5 C.PQ<5 D.PQ≤56.如图,点A、D、C、E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE=12,AC=8,则CD的长为( )A.5.5 B.4 C.4.5 D.37.如图,MP⊥NP,MQ为∠PMN的平分线,MT=MP,连接TQ,则下列结论中不正确的是( )A.TQ=PQ B.∠MQT=∠MQPC.∠QTN=90° D.∠NQT=∠MQT8.如图,BE⊥AC于点D,且AD=CD,BD=ED.若∠ABC=54°,则∠E的度数为( ) A.25° B.27° C.30° D.45°9.如图,已知AB∥CD,AD∥BC,AD=BC,AC与BD交于点O,AE⊥BD于点E,CF⊥BD 于点F,则图中的全等三角形有( )A.5对 B.6对 C.7对 D.8对10.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:①PM=PN恒成立;②OM+ON的值不变;③四边形PMON的面积不变;④MN 的长不变.其中正确的个数为( )A.4 B.3 C.2 D.1二、填空题(每小题3分,共24分)11.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是__________.12.如图,在直角△ABC中,∠C=90°,AD平分∠BAC交BC于点D.若CD=4,则点D到斜边AB的距离为________.13.如图,若△AOB≌△A′OB′,∠B=30°,∠AOA′=52°,OB与A′B′交于点C,则∠A′CO的度数是________.14.如图,OP平分∠MON,PE⊥OM于E,P F⊥ON于F,OA=OB,则图中有________对全等三角形.15.如图,已知AB∥CF,E为AC的中点,若FC=6cm,DB=3cm,则AB=________cm.16.如图,已知AD=AE,BE=CD,∠1=∠2=110°,∠BAC=80°,则∠CAE的度数是________.17.我们知道:“两边及其中一边的对角分别相等的两个三角形不一定全等”.但是,小亮发现:当这两个三角形都是锐角三角形时,它们会全等,除小亮的发现之外,当这两个三角形都是__________时,它们也会全等;当这两个三角形中的一个是锐角三角形,另一个是__________时,它们一定不全等.18.如图,在平面直角坐标系中,已知点A(0,3),B(9,0),且∠ACB=90°,CA=CB,则点C的坐标为________.三、解答题(共66分)19.(8分)如图,点C是AE的中点,∠A=∠ECD,AB=CD.求证:∠B=∠D.20.(8分)如图,点D在BC上,∠1=∠2,AE=AC,下面有三个条件:①AB=AD;②BC=DE;③∠E=∠C.请你从所给条件①②③中选一个条件,使△ABC≌△ADE,并证明两三角形全等.21.(8分)如图,在Rt△ABC中,∠ACB=90°,CA=CB,D是AC上一点,E在BC的延长线上,且AE=BD,BD的延长线与AE交于点F.试通过观察、测量、猜想等方法来探索BF与AE有何特殊的位置关系,并证明你的猜想.22.(10分)如图,在△ABC中,点O是∠ABC、∠ACB的平分线的交点,AB+BC +AC=12,过O作OD⊥BC于D点,且OD=2,求△ABC的面积.23.(10分)如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B.(1)求证:BC=DE;(2)若∠A=40°,求∠BCD的度数.24.(10分)如图,在△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)求证:BE=CF;(2)若AB=8,AC=6,求AE,BE的长.25.(12分)在解决线段数量关系的问题时,如果条件中有角平分线,经常采用下面构造全等三角形的解题思路,如:在图①中,若C是∠MON的平分线OP上一点,点A在OM上,此时,在ON上截取OB=OA,连接BC,根据三角形全等判定(SAS),容易构造出全等三角形△OBC和△OAC,参考上面的方法,解答下列问题:如图②,在非等边△ABC 中,∠B=60°,AD ,CE 分别是∠BAC,∠BCA 的平分线,且AD ,CE 交于点F.求证:AC =AE +CD.参考答案与解析1.C 2.C 3.B 4.C 5.B 6.B 7.D 8.B 9.C10.B 解析:如图,作PE⊥OA 于E ,PF⊥OB 于F ,则∠PEO=∠PFO=90°,∴∠EPF +∠AOB=180°.∵∠MPN+∠AOB=180°,∴∠EPF=∠MPN,∴∠EPM=∠FPN.∵OP 平分∠AOB,∴∠POE=∠POF.在△POE 和△POF 中,⎩⎨⎧∠POE=∠POF,∠PEO=∠PFO,PO =PO ,∴△POE≌△POF,∴PE=PF ,OE =OF.在△PEM 和△PFN 中, ⎩⎨⎧∠MPE=∠NPF ,PE =PF ,∠PEM=∠PFN,∴△PEM≌△PFN,∴EM=NF ,PM =PN ,故①正确.∴S △PEM=S △PFN ,∴S 四边形PMON =S 四边形PEOF =定值,故③正确.∵OM+ON =OE +ME +OF -NF =2OE =定值,故②正确.MN 的长度是变化的,故④错误.故选B.11.DC =BC(或∠DAC=∠BAC) 12.4 13.82° 14.3 15.9 16.20°17.钝角三角形或直角三角形 钝角三角形18.(6,6) 解析:如图,过点C 作CE⊥OA,CF⊥OB,垂足分别为E ,F.则∠OEC =∠OFC=90°.∵∠AOB=90°,∴∠ECF=90°.∵∠ACB=90°,∴∠ACE=∠BCF.在△ACE 和△BCF 中,⎩⎨⎧∠AEC=∠BFC,∠ACE=∠BCF,AC =BC ,∴△ACE≌△BCF(AAS),∴AE=BF ,CE =CF ,∴点C 的横、纵坐标相等,∴OE=OF.∵AE=OE -OA =OE -3,BF =OB -OF =9-OF ,∴OE=OF =6,∴点C 的坐标为(6,6).19.证明:∵点C 是AE 的中点,∴AC=CE.(2分)在△ABC 和△CDE 中,⎩⎨⎧AC =CE ,∠A=∠ECD,AB =CD ,∴△ABC≌△CDE(SAS),(7分)∴∠B=∠D.(8分)20.解:选②BC=DE.(1分)如图,∵∠1=∠2,∠3=∠4,∴∠E=∠C.(3分)在△ADE 和△ABC 中,⎩⎨⎧AE =AC ,∠E=∠C,DE =BC ,∴△ADE≌△ABC(SAS).(8分)21.解:猜想BF⊥AE.(2分)理由如下:∵∠ACB=90°,∴∠ACE=∠BCD=90°.又BC =AC ,BD =AE ,∴Rt△BDC≌Rt△AEC(HL).∴∠CBD=∠CAE.(5分)又∵∠CAE +∠E=90°,∴∠EBF+∠E=90°.∴∠BFE=90°,即BF⊥AE.(8分)22.解:如图,过点O 作OE⊥AB 于E ,OF⊥AC 于F ,连接OA.(2分)∵点O 是∠ABC,∠ACB 的平分线的交点,∴OE=OD ,OF =OD ,即OE =OF =OD =2.(5分)∴S △ABC =S △ABO +S △BCO +S △ACO =12AB·OE+12BC·OD+12AC·OF=12×2·(AB+BC +AC)=12×2×12=12.(10分)23.(1)证明:∵AC∥DE,∴∠ACB=∠E,∠ACD=∠D.∵∠ACD=∠B.∴∠D=∠B.(2分)在△ABC 和△CDE 中,⎩⎨⎧∠ACB=∠E,∠B=∠D,AC =CE ,∴△ABC≌△CDE(AAS),∴BC=DE.(5分)(2)解:由(1)知△ABC≌△CDE,∴∠DCE=∠A=40°,∴∠BCD=180°-40°=140°.(10分)24.(1)证明:如图,连接DB ,DC.∵DG⊥BC 且平分BC ,∴∠DGB=∠DGC =90°,BG =CG.又DG =DG ,∴△DGB≌△DGC,∴DB=DC.∵AD 为∠BAC 的平分线,DE⊥AB,DF⊥AC,∴DE=DF ,∠DAE=∠DAF,∠BED=∠AED=∠DFC=90°.(3分)在Rt△DBE 和Rt△DCF 中,⎩⎨⎧DB =DC ,DE =DF ,∴Rt△DBE≌Rt△DCF(HL),∴BE=CF.(5分)(2)解:在△ADE 和△ADF 中,⎩⎨⎧∠DAE=∠DAF,∠AED=∠AFD,AD =AD ,∴△ADE≌△ADF,∴AE=AF.(7分)∵AC+CF =AF ,AE =AB -BE ,∴AC+CF =AB -BE ,即6+BE =8-BE ,∴BE=1,∴AE=8-1=7.(10分)25.证明:如图,在AC 上截取AG =AE ,连接FG.(1分)∵AD 是∠BAC 的平分线,CE 是∠BCA 的平分线,∴∠1=∠2,∠3=∠4.(2分)在△AEF 和△AGF 中,⎩⎨⎧AE =AG ,∠1=∠2,AF =AF ,∴△AEF≌△AGF(SAS),∴∠AFE=∠AFG.(6分)∵∠B=60°,∴∠BAC+∠ACB=120°,∴∠2+∠3=12(∠BAC+∠ACB)=60°.∵∠AFE=∠2+∠3,∴∠AFE=∠CFD=∠AFG=60°,∴∠CFG=180°-∠CFD-∠AFG=60°,∴∠CFD=∠CFG.(9分)在△CFG 和△CFD 中,⎩⎨⎧ ∠CFG=∠CFD,FC =FC ,∠3=∠4,∴△CFG≌△CFD(ASA),∴CG=CD.∴AC=AG +CG =AE +CD.(12分)《第十二章 全等三角形》单元测试卷(三)(考试时间为90分钟,满分100分)一.填空题:(每题3分,共30分)1.如图1,若△ABC ≌△ADE ,∠EAC=35°,则∠BAD=_________度.2.如图2,沿AM 折叠,使D 点落在BC 上的N 点处,如果AD=7cm ,DM=5cm ,∠DAM=300,则AN= cm ,NM= cm ,∠NAM= .3.如图3,△ABC ≌△AED ,∠C=85°,∠B=30°,则∠EAD= .4.已知:如图4,∠ABC =∠DEF ,AB =DE ,要说明△ABC ≌△DEF , (1)若以“SAS ”为依据,还须添加的一个条件为________________. (2)若以“ASA ”为依据,还须添加的一个条件为________________.ABCDE图1ABCDMN 图2AB CEFA BCDFEO图 5(3)若以“AAS”为依据,还须添加的一个条件为________________.5.如图5,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则△______≌△_______..8. 如图8,在中,AB=AC,BE、CF是中线,则由可得.F,若,EO=10,则∠DBC= ,FO= .10. 如图10,△DEF≌△ABC,且AC>BC>AB则在△DEF中,______< ______< _____.图 10︒=∠60ADBACDEF二.选择题(每题3分,共30分)11. 在和中,下列各组条件中,不能保证:的是( )① ② ③ ④ ⑤ ⑥ A. 具备①②③ B. 具备①②④ C. 具备③④⑤ D. 具备②③⑥12. 两个三角形只有以下元素对应相等,不能判定两个三角形全等的是( ) A. 两角和一边 B. 两边及夹角 C. 三个角 D. 三条边13. 如果两个三角形两边对应相等,且其中一边所对的角也相等,那么这两个三角形( )A. 一定全等B. 一定不全等C. 不一定全等D. 面积相等14. 如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的A. 15∠A. 17.A . 三边对应平行的两个三角形是全等三角形B . 有一边相等,其余两边对应平行的两个三角形是全等三角形C . 有一边重合,其余两边对应平行的两个三角形是全等三角形ABC ∆C B A '''∆C B A ABC '''∆≅∆B A AB ''=C B BC ''=C A AC ''=A A '∠=∠B B '∠=∠C C '∠=∠D. 有三个角对应相等的两个三角形是全等三角形 18.下列说法错误的是 ( ) A. 全等三角形对应边上的中线相等 B. 面积相等的两个三角形是全等三角形 C. 全等三角形对应边上的高相等 D. 全等三角形对应角平分线相等19.已知:如图,O 为AB 中点,BD ⊥CD ,AC ⊥CD ,OE ⊥CD ,则下列结论不一定成立的是 ( )A. CE =EDB. OC =ODC. ∠ACO =∠ODBD. OE =CD20.如图,已知在△ABC 中,AB =AC ,D 为BC 上一点,BF =CD ,CE =BD ,那么∠EDF 等于( )A..90°-∠AB. 90°-∠AC. 180°-∠AD. 45°-∠A 三.解答题(共40分)21.(8分)如图,△ABC ≌△ADE ,∠E 和∠C 是对应角,AB 与AD 是对应边,写出另外两组对应边和对应角;22.(8分)如图,A 、E 、F 、C 在一条直线上,△AED ≌△CFB ,你能得出哪些结论?212121FEDCBA23.(7分)如图,已知∠1=∠2,∠3=∠4,AB 与CD 相等吗?请你说明理由.24.(8分)如图,AB ∥CD ,AD ∥BC ,那么AD=BC ,AB=BC ,你能说明其中的道理吗?25.(9分)如图,已知:E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C ,D 是垂足,连接CD ,求证:(1)∠ECD=∠EDC ;(2)OD=OC ;(3)OE 是CD 的中垂线.答案1.35°2.7,5,30°3.504.BC=EF, ∠ACB=∠F, ∠A=∠D5.ACD,AED6.28°7.58.SAS9.60°,10 10.ED,EF,DF11.B 12.C 13.C 14.A 15.D 16.D 17.C 18.B 19.D 20.B.3421DCBACE DB AOB21.AE 和AC,ED 和BC, ∠B 和∠D, ∠BAC 和∠DAE 22.AD=BC,AE=CF,DE=BF,AD ∥BC, △ACD ≌△ACB,AB ∥CD 等 23.相等, △AOB ≌△DOC 24.连AC,证△ADC ≌△ABC25.(1)证DE=EC (2) 设BE 与CD 交于F,通过全等证DF=CF.《第十二章 全等三角形》单元测试卷(四)一、认认真真选,沉着应战! 1.下列命题中正确的是( )A .全等三角形的高相等B .全等三角形的中线相等C .全等三角形的角平分线相等D .全等三角形对应角的平分线相等 2. 下列各条件中,不能作出惟一三角形的是( ) A .已知两边和夹角 B .已知两角和夹边 C .已知两边和其中一边的对角 D .已知三边 4.下列各组条件中,能判定△ABC ≌△DEF 的是( ) A .AB =DE ,BC =EF ,∠A =∠D B .∠A =∠D ,∠C =∠F ,AC =EFC .AB =DE ,BC =EF ,△ABC 的周长= △DEF 的周长D .∠A =∠D ,∠B =∠E ,∠C =∠F5.如图,在△ABC 中,∠A :∠B :∠C =3:5:10,又△MNC ≌△ABC ,则∠BCM :∠BCN 等于( )A .1:2B .1:3C .2:3D .1:46.如图, ∠AOB 和一条定长线段A ,在∠AOB 内找一点P ,使PAC BDFEAMB到OA 、OB 的距离都等于A ,做法如下:(1)作OB 的垂线NH , 使NH =A ,H 为垂足.(2)过N 作NM ∥OB .(3)作∠AOB 的平 分线OP ,与NM 交于P .(4)点P 即为所求. 其中(3)的依据是( ) A .平行线之间的距离处处相等B .到角的两边距离相等的点在角的平分线上C .角的平分线上的点到角的两边的距离相等D .到线段的两个端点距离相等的点在线段的垂直平分线上 7. 如图,△ABC 的三边AB 、BC 、CA 长分别是20、30、40,其三条 角平分线将△ABC 分为三个三角形,则S △ABO ︰S △BCO ︰S △CAO 等于( ) A .1︰1︰1 B .1︰2︰3 C .2︰3︰4 D .3︰4︰5 8.如图,从下列四个条件:①BC =B ′C , ②AC =A ′C , ③∠A ′CB =∠B ′CB ,④AB =A ′B ′中,任取三个为条件, 余下的一个为结论,则最多可以构成正确的结论的个数是( )A .1个B .2个C .3个D .4个9.要测量河两岸相对的两点A ,B 的距离,先在AB 的垂线B F 上 取两点C ,D ,使CD =BC ,再定出B F 的垂线DE ,使A ,C ,E 在同 一条直线上,如图,可以得到,所以ED =AB ,因 此测得ED 的长就是AB 的长,判定的理由是( ) A . B . C . D .10.如图所示,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 边 翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为( )A .80°B .100°C .60°D .45°.二、仔仔细细填,记录自信!EDC ABC ≅EDC ABC ≅SAS ASA SSS HL FCABDACD11.如图,在△ABC 中,AD =DE ,AB =BE ,∠A =80°,则∠CED =_____.12.已知△DE F ≌△ABC ,AB =AC ,且△ABC 的周长为23cm ,BC =4 cm ,则△DE F 的边中必有一条边等于______.13. 在△ABC 中,∠C =90°,BC =4CM ,∠BAC 的平分线交BC 于D ,且BD ︰DC =5︰3,则D 到AB 的距离为_____________.14. 如图,△ABC 是不等边三角形,DE =BC ,以D ,E 为两个顶点作位置不同的三角形,使所作的三角形与△ABC 全等,这样的三角形最多可以画出_____个.15. 如图,分别是锐角三角形和锐角三角形中边上的高,且.若使,请你补充条件___________.(填写一个你认为适当的条件即可)17. 如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是__________.19. 如右图,已知在中,平 分,于,若,则 的周长为 .20.在数学活动课上,小明提出这样一个问题:∠B =∠C=90,D EAD A D '',ABC A B C ''',BC B C ''AB A B AD A D ''''==,ABC A B C '''△≌△ABC 90,,A AB AC CD ∠=︒=ACB ∠DE BC ⊥E 15cm BC =DEB △cm 0EAB CD'A'B'D'CE 是BC 的中点,DE 平分∠ADC ,∠CED =35,如图,则∠EAB 是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是______.三、平心静气做,展示智慧!21.如图,公园有一条“”字形道路,其中∥,在处各有一个小石凳,且,为的中点,请问三个小石凳是否在一条直线上?说出你推断的理由.22.如图,给出五个等量关系:① ② ③ ④⑤.请你以其中两个为条件,另三个中的一个为结论,推出一个正确的结论(只需写出一种情况),并加以证明. 已知: 求证: 证明:23.如图,在∠AOB 的两边OA ,OB 上分别取OM =ON ,OD =OE ,DN 和EM 相交于点C .0Z ABCD AB CD ,,E M F BE CF =M BC AD BC =AC BD =CE DE =D C ∠=∠DAB CBA ∠=∠AB求证:点C 在∠AOB 的平分线上.四、发散思维,游刃有余!24. (1)如图1,以的边、为边分别向外作正方形和正方形,连结,试判断与面积之间的关系,并说明理由. (2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是平方米,内圈的所有三角形的面积之和是平方米,这条小路一共占地多少平方米?参考答案一、1—5:DCDCD 6—10:BCBBA 二、 11.100° 12.4cm 或9.5cm 13.1.5cm 14.4 15.略 16. 17. 互补或相等ABC △AB AC ABDE ACFG EG ABC △AEG △a b 15AD <<ABDC EOMN18. 180 19.15 20.35三、 21.在一条直线上.连结并延长交于 证. 22.情况一:已知:求证:(或或) 证明:在△和△中△△即情况二:已知: 求证:(或或) 证明:在△和△中,△△23.提示:OM =ON ,OE =OD ,∠MOE =∠NOD , ∴△MOE ≌△NOD ,∴∠OME =∠OND , 又DM =EN ,∠DCM =∠ECN ,∴△MDC ≌△NEC ,∴MC =NC ,易得△OMC ≌△ONC (SSS ) ∴∠MOC =∠NOC ,∴点C 在∠AOB 的平分线上. 四、24. (1)解:与面积相等 过点作于,过点作交延长线于, 则0EM CD 'F 'CF CF =AD BC AC BD ==,CE DE =D C ∠=∠DAB CBA ∠=∠ABD BAC AD BC AC BD ==∵,AB BA =∴ABD ≌BAC ∴CAB DBA ∠=∠AE BE =∴∴AC AE BD BE -=-CE ED =D C DAB CBA ∠=∠∠=∠,AD BC =AC BD =CE DE =ABD BAC D C ∠=∠DAB CBA ∠=∠AB AB =∵∴ABD ≌BAC ∴AD BC =ABC △AEG △C CM AB ⊥M G GN EA ⊥EA N AMC ∠=90ANG ∠=四边形和四边形都是正方形(2)解:由(1)知外圈的所有三角形的面积之和等于内圈的所有三角形的面积之和这条小路的面积为平方米.《第十二章 全等三角形》单元测试卷(五)(时间:60分钟 满分:100分)姓名 得分一、选择题(每题3分,共24分)1.下列各条件中,不能做出惟一三角形的是( ) A 、已知两边和夹角 B 、已知两角和夹边 C 、已知两边和其中一边的对角 D 、已知三边2.能使两个直角三角形全等的条件是( ) A 、斜边相等 B 、一锐角对应相等 C 、 两锐角对应相等 D 、两直角边对应相等3.已知△ABC ≌△DEF ,∠A=80°,∠E=50°,则∠F 的度数为( ) A 、 30° B 、 50° C 、 80° D 、 100°4.在△ABC 和△DEF 中,已知AC=DF ,BC=EF ,要使△ABC ≌△DEF ,还需要的条件是( )ABDE ACFG 90180BAE CAG AB AE AC AG BAC EAG ∴∠=∠===∴∠+∠=,,180EAG GAN BAC GAN∠+∠=∴∠=∠ACM AGN ∴△≌△1122ABC AEG CM GN S AB CM S AE GN ∴===△△,ABC AEG S S ∴=△△∴(2)a b +A、∠A=∠DB、∠C=∠FC、∠B=∠ED、∠C=∠D5. 如图,△ABC≌△DEF,AC∥DF,则∠C的对应角为()A、∠FB、∠AGEC、∠AEFD、∠D6. 如图,某同学把一块三角形的玻璃打破成了三块,现要到玻璃店去配一块大小、形状完全相同的玻璃,那么他可以()A、带①去B、带②去C、带③去D、带①和②去(第5题)(第6题)7.如图,从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CB=∠B′CB,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A、1个B、2个C、3个D、4个8.如图,已知AC和BD相交于O点,AD∥BC,AD=BC,过O 任作一条直线分别交AD、BC于点E、F,则下列结论:①OA=OC ②OE=OF ③AE=CF ④OB=OD,其中成立的个数是()A、1B、2C、3D、4(第7题)(第8题)二、填空题(每题4分,共16分)9.如图,已知AB=CD,AC=BD,则图中有对全等三角形,它们分别是:。
八年级数学上册《第十二章 全等三角形》单元检测卷及答案(人教版)
八年级数学上册《第十二章全等三角形》单元检测卷及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列说法正确的是( )A.全等三角形是指形状相同的两个三角形B.全等三角形的周长和面积分别相等C.全等三角形是指面积相等的两个三角形D.所有的等边三角形都是全等三角形2.到△ABC的三条边距离相等的点是△ABC的( )A.三条中线的交点B.三条边的垂直平分线的交点C.三条高的交点D.三条角平分线的交点3.如图,在△ABC中∠A=30∘,∠ABC=50∘若△EDC≌△ABC,且A,C,D在同一条直线上,则∠BCE=( )A.20∘B.30∘C.40∘D.50∘4.如图,在△ABC中∠ACB=45∘,AD⊥BC于点D,点E为AD上一点,连接CE,CE=AB,若∠ACE=20∘则∠B的度数为( )A.60∘B.65∘C.70∘D.75∘5.如图,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AD=3,则点D到BC的距离是()A.3 B.4 C.5 D.66.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=80°,则∠BOM等于()A.40°B.100°C.140°D.144°7.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.DE=5,AD=9,则BE的长是()A.6 B.5 C.4.5 D.48.如图,在△ABC中AB=AC,D、E分别为边AB、AC上的点,BE与CD相交于点F ∠ADC=∠AEB则下列结论:①△ABE≌△ACD;②BF=CF;③连接AF,则AF所在的直线为△ABC的对称轴:④若AD=BD,则四边形ADFE的面积与△BCF的面积相等.其中正确的是()A.①②③B.①②④C.②③④D.①②③④二、填空题9.用尺规作图作已知角∠AOB的平分线OC,其根据是构造两个三角形全等,用到的三角形全等的判定方法是.10.如图,在△ABC中,∠C=90°,AD平分∠CAB,交BC于点D,CD=5cm,AB=12cm,则△ABD的面积是cm2.11.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需加条件12.如图,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠D=25°,∠E=105°∠DAC=16°,则∠DGB= .13.如图,∠1=∠2.(1)当BC=BD时,△ABC≌△ABD的依据是;(2)当∠3=∠4时,△ABC≌△ABD的依据是.三、解答题14.如图所示,要测量河两岸相对的两点A、B的距离,因无法直接量出A、B两点的距离,请你设计一种方案,求出A、B的距离,并说明理由.15.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.16.如图,已知,△ABC中,∠A=60º,BD,CE是△ABC的两条角平分线,BD,CE相交于点O,求证:BC=CD+BE.17.如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.18.如图,AD=CB,AE⊥BD,CF⊥BD,E、F是垂足,AE=CF.求证:(1)AB=CD(2)AB//CD.19.已知:在△AOB和△COD中,OA=OB,OC=OD.(1)如图①,若∠AOB=∠COD=60°,求证:AC=BD.(2)如图②,若∠AOB=∠COD=α,则AC与BD间的等量关系式为,∠APB的大小为(直接写出结果,不证明)参考答案1. B2. D3. A4. B5.A6.C7.D8.B9.SSS10.3011.AB=AC12.66°13.(1)SAS(2)ASA14.解:在AB的垂线BF上取两点C,D,使CD=BC,再作出BF的垂线DE,使A,C,E在一条直线上,这时测得的DE的长就是AB的长.作出的图形如图所示:∵AB⊥BF ED⊥BF∴∠ABC=∠EDC=90°又∵CD=BC ∠ACB=∠ECD∴△ACB≌△ECD,∴AB=DE.15.证明:∵点C是AE的中点∴AC=CE在△ABC和△CDE中{AC=CE∠A=∠ECDAB=CD∴△ABC≌△CDE∴∠B=∠D.16.解:在BC上找到F使得BF=BE∵∠A=60°,BD、CE是△ABC的角平分线∴∠BOC=180°- 12(∠ABC+∠ACB)=180°- 12(180°-∠A)=120°∴∠BOE=∠COD=60°在△BOE和△BOF中∴△BOE≌△BOF,(SAS)∴∠BOF=∠BOE=60°∴∠COF=∠BOC-∠BOF=60°在△OCF和△OCD中∴△OCF≌△OCD(ASA)∴CF=CD∵BC=BF+CF∴BC=BE+CD.17.证明:∵∠1=∠2∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠DAE 在△ABC和△ADE中{AB=AD∠BAC=∠DAEAC=AE∴△ABC≌△ADE∴BC=DE.18.(1)∵AE⊥BD∴∠AEB=∠CFD=∠AED=∠CFB=90°∵AE=CF∴RtΔADE≅ΔCBF(HL)∴DE=BF∴BD−DE=BD−BF∴BE=DF∵∠AEB=∠CFD∴ΔABE≅ΔCDF(SAS)∴AB=CD(2)∵ΔABE≅ΔCDF∴∠ABE=∠CDF∴AB//CD19.(1)证明:∵∠AOB=∠COD=60°∴∠AOB+∠BOC=∠COD+∠BOC∴∠AOC=∠BOD.在△AOC和△BOD中∴△AOC≌△BOD(SAS)∴AC=BD;(2)AC=BD;α。
人教版八年级数学上册《第十二章全等三角形》单元测试卷及答案
人教版八年级数学上册《第十二章全等三角形》单元测试卷及答案学校:___________姓名:___________班级:___________题 号 一 二 三 总分 得 分评卷人 得分一 单选题(共36分) 1.(本题3分)如图,在Rt ABC 中90C ∠=︒.按以下步骤作图:①以点A 为圆心 适当长为半径画弧 分别交边,AB AC 于点,M N ①分别以点M 和点N 为圆心 以大于12MN 的长为半径画弧,两弧在ABC 内交于点P ①作射线AP 交边BC 于点Q .若5,20CQ AB ==,则ABQ 的面积是( )A .100B .50C .25D .202.(本题3分)如图,ABC DEF ≌△△ 2BE = 3CE = 则EF 的长是( )A .5B .4C .3D .23.(本题3分)如图,用尺规按如下步骤作图:①以点O 为圆心 线段m 的长为半径画弧 交OA 于点M 交OB 于点N①分别以点M N 为圆心 线段n 的长为半径画弧 两弧在AOB ∠的内部相交于点C ①画射线OC 连接MC NC 。
下列结论不一定成立的是( )A .OM ON =B .CM CN =C .OM CN =D .MCO NCO ∠=∠4.(本题3分)如图,AB AC = AD AE = BAC DAE ∠=∠ 30BAD ∠=︒ 25ACE ∠=︒ 则ADE ∠的度数为( )A .50︒B .55︒C .60︒D .65︒5.(本题3分)小华在复习用尺规作一个角等于已知角的过程中,回顾了作图的过程 并作了如下的思考:请你说明小华得到两个三角形全等的根据是( ) A .SSSB .SASC .ASAD .AAS6.(本题3分)如图,在ABC 中,AD 为角平分线 12AB = 8AC = DE AC ⊥于E 4CD = 则BD 等于( )A .5B .6C .7D .87.(本题3分)如图,90A D ∠=∠=︒ 添加下列条件中的一个后 能判定ABC 与DCB △全等的有( ) ①ABC DCB ∠=∠ ①ACB DBC ∠=∠ ①AB DC = ①AC DB =。
八年级数学上册《第十二章 全等三角形》单元测试卷及答案(人教版)
八年级数学上册《第十二章全等三角形》单元测试卷及答案(人教版)班级姓名学号一、单选题1.全等图形是指两个图形()A.大小相同B.形状相同C.能够完全重合D.相等2.如图,△ABC≌△ADE,若∠B=80°,∠C=30°,则∠EAD的度数为()A.70°B.75°C.60°D.80°3.如图,三条直线表示相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( ) .A.一处B.两处C.三处D.四处4.长为l的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x的取值范围为()A.16≤x<14B.18≤x<14C.16<x<14D.18<x<145.如图,在△ABC中,点D在边BC上,点E在线段AD上,AB=AC,EB=EC.则依据SSS可以判定()A.△ABD≌△ACD B.△ABE≌△ACEC.△BED≌△CED D.以上都对6.如图,在△ABC中,∠B=∠C,BF=CD,BD=CE,∠FDE=α,则下列结论正确的是()A.2α+∠A=180°B.α+∠A=90°C.2α+∠A=90°D.α+∠A=180°7.如图,点O在△ABC内,且到三边的距离相等,∠A=64°,则∠BOC的度数为()A.58°B.64°C.122°D.124°8.如图,在△ABC中,P是BC上的点,作PQ∥AC交AB于点Q,分别作PR⊥AB,PS⊥AC,垂足分别是R,S,若PR=PS,则下面三个结论:①AS=AR;②AQ=PQ;③△PQR≌△CPS;④AC﹣AQ=2SC,其中正确的是()A.②③④B.①②C.①④D.①②③④二、填空题9.已知△ABC≌△DEF,若∠B=40°,∠D=30°,则∠F=10.如图,已知B、E、F、C在同一直线上,BE=CF,AF=DE,则添加条件,可以判断△ABF≌△DCE.11.如图,△ABD≌△ACE,点B和点C是对应顶点,AB=9cm,BD=7cm,AD=4cm,则DC= cm.12.如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD相互平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面AC•BD.正确的是(填写所有正确结论的序号)积S= 1213.如图,在△ABC中AC=BC,∠ACB=50°,AD⊥BC于点D,MC⊥BC于点C,MC=BC点E,点F分别在线段AD,AC上CF=AE,连接MF,BF,CE.(1)图中与MF相等的线段是;(2)当BF+CE取最小值时∠AFB=°三、解答题14.将Rt△ABC的直角顶点C置于直线l上AC=BC,分别过点A、B作直线l的垂线,垂足分别为点D、E连接AE若BE=3,DE=5求△ACE的面积.15.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.16.如图,已知AC∥BD、EA、EB分别平分∠CAB和△DBA,CD过点E,则线段AB与AC、BD有什么数量关系?请说明理由.17.如图,已知B,C,E三点在同一条直线上AC//DE,AC=CE,∠ACD=∠B .求证:△ABC≌△EDC .18.如图,点D为锐角∠ABC的平分线上一点,点M在边BA上,点N在边BC上,∠BMD+∠BND=180°.试说明:DM=DN.19.已知:AD=BC,AC=BD.(1)如图1,求证:AE=BE;(2)如图2,若AB=AC,∠D=2∠BAC,在不添加任何辅助线的情况下,请直接写出图2中四个度数为36°的角.参考答案 1.C 2.A 3.D 4.A 5.D 6.A 7.C 8.B 9.110° 10.AB=DC 11.5 12.①④ 13.(1)EC (2)9514.解:∵AD ⊥CE ,BE ⊥CE ∴∠ADC =∠CEB =90° ∵∠ACB =90°∴∠ACD =∠CBE =90°−∠ECB 在 △ACD 与 △CBE 中{∠ADC =∠CEB∠ACD =∠CBE AC =BC∴△ACD ≌△CBE (AAS) ∴CD =BE =3 AD =CE ∵CE =CD +DE =3+5=8 ∴AD =8 .S △ACE =12CE ·AD =12×8×8=32 . 15.证明:∵CE ∥DF ∴∠ACE=∠D 在△ACE 和△FDB 中{AC=FD ∠ACE=∠D EC=BD∴△ACE≌△FDB(SAS)∴AE=FB.16.解:AB=AC+BD理由是:在AB上截取AC=AF,连接EF∵AE平分∠CAB∴∠CAE=∠BAE在△CAE和△FAE中{AC=AF∠CAE=∠BAE AE=AE∴△CAE≌△FAE(SAS)∴∠C=∠AFE∵AC∥BD∴∠C+∠D=180°∴∠AFE+∠D=180°∵∠EFB+∠AFE=180°∴∠D=∠EFB∵BE平分∠ABD∴∠DBE=∠FBE在△BEF和△BED中{∠D=∠EFB∠FBE=∠DBEBE=BE∴△BEF≌△BED(AAS)∴BF=BD∵AB=AF+BF,AC=AF,BF=BD ∴AB=AC+BD.17.证明:∵AC//DE∴∠BCA =∠E ∠ACD =∠D . 又∵∠ACD =∠B ∴∠B =∠D .在 △ABC 和 △EDC 中{∠B =∠D∠BCA =∠E AC =EC∴△ABC ≌△EDC .18.解:过点D 作DE ⊥AB 于点E ,DF ⊥BC 于点F . ∴∠DEB =∠DFB =90°. 又∵BD 平分∠ABC ∴DE =DF .∵∠BMD+∠DME =180°,∠BMD+∠BND =180° ∴∠DME =∠BND . 在△EMD 和△FND 中{∠DEM =∠DFN∠EMD =∠FND DE =DF∴△EMD ≌△FND (AAS ). ∴DM =DN .19.(1)证明:在△ABD 和△BAC 中:{AB =BAAD =BC BD =AC∴△ABD ≌△BAC (SSS ) ∴∠ABD=∠BAC ∴AE=BE ;(2)∠BAC ,∠ABD ,∠DAC ,∠DBC。
全等三角形单元测试卷(含答案)
新人教版八年级数学上册《第12章全等三角形》2016年单元测试卷(4)一、选择题(每小题5分,共30分)1.(5分)已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°2.(5分)如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是()SAS C C.ASA D.AASSSS B B.SAS A.SSS 3.(5分)下列说法正确的是()A.全等三角形是指形状相同的两个三角形B.全等三角形的周长和面积分别相等C.全等三角形是指面积相等的两个三角形D.所有的等边三角形都是全等三角形4.(5分)如图,Rt△ABC中,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=10cm,AC=6cm,则BE的长度为()A.10cm B.6cm C.4cm D.2cm5.(5分)如图,AE∥FD,AE=FD,要使△EAC≌△FDB,需要添加下列选项中的()第1页(共12页)A.AB=BC B.EC=BF C.∠A=∠D D.AB=CD6.(5分)点P在∠AOB的平分线上,点P到OA边的距离等于5,点Q是OB 边上的任意一点,下列选项正确的是( )边上的任意一点,下列选项正确的是(A.PQ≥5 B.PQ>5 C.PQ<5 D.PQ≤5二、填空题(每小题5分,共20分)7.(5分)如图,△ABC≌△DCB,∠DBC=40°,则∠AOB=°.8.(5分)如图,锐角△ABC和锐角△AʹBʹCʹ中,AD,AʹDʹ分别是BC,BʹCʹ上的高,,则应补充的条件是 (填写且AB=AʹBʹ,AD=AʹDʹ.要使△ABC≌△AʹBʹCʹ,则应补充的条件是一个即可).9.(5分)如图,点O在△ABC内,且到三边的距离相等,若∠A=60°,则∠BOC=.10.(5分)如图,BE⊥AC,垂足为D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=°.三、解答题(第11题14分,第12,13题18分,共50分)11.(14分)如图,已知∠1=∠2,AB=AC.求证:BD=CD.(要求:写出证明过程中的重要依据)12.(18分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF与DE的位置关系,并说明理由.13.(18分)如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M、N分别是AE、CD的中点,判断BM与BN的关系,并说明理由.新人教版八年级数学上册《第12章 全等三角形》2016年单元测试卷(4)参考答案与试题解析一、选择题(每小题5分,共30分)1.(5分)已知图中的两个三角形全等,则∠α的度数是(的度数是( )A .72°B .60°C .58°D .50°【分析】要根据已知的对应边去找对应角,并运用“全等三角形对应角相等”即可得答案.【解答】解:∵图中的两个三角形全等a 与a ,c 与c 分别是对应边,那么它们的夹角就是对应角∴∠α=50°故选:D .【点评】本题考查全等三角形的知识.本题考查全等三角形的知识.解题时要认准对应关系,解题时要认准对应关系,解题时要认准对应关系,如果把对应角搞如果把对应角搞错了,就会导致错选A 或C .2.(5分)如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是(就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是( )A .SSS SSS B B .SAS SAS C C .ASA D .AAS【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.3.(5分)下列说法正确的是(分)下列说法正确的是( )A.全等三角形是指形状相同的两个三角形B.全等三角形的周长和面积分别相等C.全等三角形是指面积相等的两个三角形D.所有的等边三角形都是全等三角形【分析】依据全等三角形的定义:能够完全重合的两个三角形.即可求解.【解答】解:A、全等三角形的形状相同,但形状相同的两个三角形不一定是全等三角形.故该选项错误;B、全等三角形是指能够完全重合的两个三角形,则全等三角形的周长和面积一定相等,故B正确;C、全等三角形面积相等,但面积相等的两个三角形不一定是全等三角形.故该选项错误;D、两个等边三角形,形状相同,但不一定能完全重合,不一定全等.故错误.故选:B.【点评】本题主要考查全等三角形的定义,全等是指形状相同,大小相同,两个方面必须同时满足.4.(5分)如图,Rt△ABC中,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=10cm,AC=6cm,则BE的长度为(的长度为( )A.10cm B.6cm C.4cm D.2cm【分析】首先根据角平分线的性质可得CD=DE,然后证明Rt△ACD≌Rt△AED(HL),可得AE=AC ,进而得到EB 的长.【解答】解:∵AD 是∠BAC 的平分线,∴CD=DE ,在Rt △ACD 和Rt △AED 中,,∴Rt △ACD ≌Rt △AED (HL ),∴AE=AC=6cm ,∵AB=10cm ,∴EB=4cm .故选:C .【点评】此题主要考查了全等三角形的判定与性质,此题主要考查了全等三角形的判定与性质,以及角平分线的性质,以及角平分线的性质,以及角平分线的性质,关键关键是掌握角平分线的性质:角的平分线上的点到角的两边的距离相等.5.(5分)如图,AE ∥FD ,AE=FD ,要使△EAC ≌△FDB ,需要添加下列选项中的( )A .AB=BC B .EC=BF C .∠A=∠D D .AB=CD【分析】添加条件AB=CD 可证明AC=BD ,然后再根据AE ∥FD ,可得∠A=∠D ,再利用SAS 定理证明△EAC ≌△FDB 即可.【解答】解:∵AE ∥FD ,∴∠A=∠D ,∵AB=CD ,∴AC=BD ,在△AEC 和△DFB 中, ∴△EAC ≌△FDB (SAS ),故选:D .【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.(5分)点P 在∠AOB 的平分线上,点P 到OA 边的距离等于5,点Q 是OB 边上的任意一点,下列选项正确的是(边上的任意一点,下列选项正确的是( )A .PQ ≥5 B .PQ >5 C .PQ <5 D .PQ ≤5【分析】根据角平分线上的点到角的两边距离相等可得点P 到OB 的距离为5,再根据垂线段最短解答.【解答】解:∵点P 在∠AOB 的平分线上,点P 到OA 边的距离等于5, ∴点P 到OB 的距离为5,∵点Q 是OB 边上的任意一点,∴PQ ≥5.故选:A .【点评】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.二、填空题(每小题5分,共20分)7.(5分)如图,△ABC ≌△DCB ,∠DBC=40°,则∠AOB= 80 °.【分析】根据全等三角形对应角相等可得∠ACB=∠DBC ,再利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵△ABC ≌△DCB ,∠DBC=40°,∴∠ACB=∠DBC=40°,∴∠AOB=∠ACB +∠DBC=40°+40°40°=80°=80°.故答案为:80.【点评】本题考查了全等三角形对应角相等的性质,三角形的一个外角等于与它不相邻的两个内角的和,熟记性质是解题的关键.8.(5分)如图,锐角△ABC和锐角△AʹBʹCʹ中,AD,AʹDʹ分别是BC,BʹCʹ上的高,,则应补充的条件是 CD=CʹDʹ(或且AB=AʹBʹ,AD=AʹDʹ.要使△ABC≌△AʹBʹCʹ,则应补充的条件是AC=AʹCʹ,或∠C=∠Cʹ或∠CAD=∠CʹAʹDʹ)答案不唯一)答案不唯一 (填写一个即可).【分析】根据判定方法,结合图形和已知条件,寻找添加条件.【解答】解:我们可以先利用HL判定△ABD≌△AʹBʹDʹ得出对应边相等,对应角相等.CD=C´D´D´,可以利用SAS来判定其全等;此时若添加CD=C´添加∠C=∠C´,可以利用AAS判定其全等;还可添加AC=AʹCʹ,∠CAD=∠CʹAʹDʹ等.故答案为CD=CʹDʹ(或AC=AʹCʹ,或∠C=∠Cʹ或∠CAD=∠CʹAʹDʹ)答案不唯一.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.9.(5分)如图,点O在△ABC内,且到三边的距离相等,若∠A=60°,则∠BOC=且到三边的距离相等,若∠120°.【分析】根据角平分线上的点到角的两边距离相等判断出点O是三个角的平分线的交点,再根据三角形的内角和定理和角平分线的定义求出∠OBC +∠OCB ,然后利用三角形的内角和定理列式计算即可得解.【解答】解:∵点O 在△ABC 内,且到三边的距离相等,∴点O 是三个角的平分线的交点,∴∠OBC +∠OCB=(∠ABC +∠ACB )=(180°﹣∠A )=(180°﹣60°)=60°,在△BCO 中,∠BOC=180°﹣(∠OBC +∠OCB )=180°﹣60°60°=120°=120°. 故答案为:120°.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的内角和定理,角平分线的定义,熟记性质并判断出点O 是三个角的平分线的交点是解题的关键.10.(5分)如图,BE ⊥AC ,垂足为D ,且AD=CD ,BD=ED ,若∠ABC=54°,则∠E= 27 °.【分析】由BE 垂直于AC ,且AD=CD ,利用线段垂直平分线定理得到AB=CB ,即三角形ABC 为等腰三角形,利用三线合一得到BE 为角平分线,求出∠ABE 度数,利用SAS 得到三角形ABD 与三角形CED 全等,利用全等三角形对应角相等即可求出∠E 的度数.【解答】解:∵BE ⊥AC ,AD=CD ,∴AB=CB ,即△ABC 为等腰三角形,∴BD 平分∠ABC ,即∠ABE=∠CBE=∠ABC=27°,在△ABD 和△CED 中,,∴△ABD ≌△CED (SAS ),∴∠E=∠ABE=27°,故答案为:27【点评】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.三、解答题(第11题14分,第12,13题18分,共50分)11.(14分)如图,已知∠1=∠2,AB=AC.求证:BD=CD.(要求:写出证明过程中的重要依据)【分析】利用SAS判定三角形全等,得出对应边相等.【解答】证明:在△ABD和△ACD中,∴△ABD≌△ACD(SAS).∴BD=CD(全等三角形对应边相等).【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.12.(18分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF与DE的位置关系,并说明理由.【分析】根据平行线性质得出∠A=∠B,根据SAS证△ACD≌△BEC,推出DC=CE,根据等腰三角形的三线合一定理推出即可.【解答】解:CF ⊥DE ,CF 平分DE ,理由是:∵AD ∥BE ,∴∠A=∠B ,在△ACD 和△BEC 中,∴△ACD ≌△BEC (SAS ),∴DC=CE ,∵CF 平分∠DCE ,∴CF ⊥DE .【点评】本题考查了全等三角形的性质和判定,本题考查了全等三角形的性质和判定,平行线的性质,平行线的性质,平行线的性质,等腰三角形的性等腰三角形的性质等知识点,关键是求出DC=CE ,主要考查了学生运用定理进行推理的能力.13.(18分)如图,点B 在线段AC 上,点E 在线段BD 上,∠ABD=∠DBC ,AB=DB ,EB=CB ,M 、N 分别是AE 、CD 的中点,判断BM 与BN 的关系,并说明理由.【分析】根据SAS 推出△ABE ≌△DBC ,推出AE=DC ,∠EAB=∠BDC ,∠AEB=∠DCB ,求出∠ABD=∠DBC=90°,BM=AM=EM=AE ,BN=CN=DN=CD ,推出∠ABM=∠DBN ,∠EBM=∠NBC 即可.【解答】解:BM=BN ,BM ⊥BN ,理由是:在△ABE 和△DBC 中,,∴△ABE ≌△DBC (SAS ),∴AE=DC ,∠EAB=∠BDC ,∠AEB=∠DCB ,∵∠ABD=∠DBC ,∠ABD +∠DBC=180°,∴∠ABD=∠DBC=90°,∵M 为AE 的中点,N 为CD 的中点,∴BM=AM=EM=AE ,BN=CN=DN=CD ,∴BM=BN ,∠EAB=∠MBA ,∠CDB=∠DBN ,∠AEB=∠EBM ,∠NCB=∠NBC , ∵∠EAB=∠BDC ,∠AEB=∠DCB ,∴∠ABM=∠DBN ,∠EBM=∠NBC ,∴∠ABC=2∠DBN +2∠EBM=180°,∴∠EBN +∠EBM=90°,∴BM ⊥BN .【点评】本题考查了全等三角形的性质和判定,本题考查了全等三角形的性质和判定,直角三角形斜边上中线性质,直角三角形斜边上中线性质,直角三角形斜边上中线性质,等等腰三角形的性质的应用,主要考查学生的推理能力.。
人教版八年级数学上册《第十二章 全等三角形》单元测试卷-附含答案
人教版八年级数学上册《第十二章 全等三角形》单元测试卷-附含答案时间:100分钟 总分:120分一、选择题(每题3分 共24分)1.图中是全等的三角形是 ( )A .甲和乙B .乙和丁C .甲和丙D .甲和丁【解析】解:比较三角形的三边长度 发现乙和丁的长度完全一样 即为全等三角形故选:B .【点睛】本题考查全等三角形的判定SSS 三边对应相等 两三角形全等.2.如图 在△ABC 和△DEF 中 AB =DE ∠A =∠D 添加一个条件不能判定这两个三角形全等的是 ( )A .AC =DFB .∠B =∠EC .BC =EFD .∠C =∠F【解析】根据全等三角形的判定定理 结合各选项的条件进行判断即可.解:A 、添加AC =DF 满足SAS 可以判定两三角形全等;B 、添加∠B =∠E 满足ASA 可以判定两三角形全等;C 、添加BC =EF 不能判定这两个三角形全等;D 、添加∠C =∠F 满足AAS 可以判定两三角形全等;故选:C .【点睛】本题考查三角形全等的判定方法 判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等 判定两个三角形全等时 必须有边的参与 若有两边一角对应相等时 角必须是两边的夹角.3.BD 、CE 分别是△ABC 中∠ABC 、∠ACB 的平分线 且交于点O 若O 到AB 的距离为1 BC =3 则OCB S △= ( )A .12B .1C .32 D .3【解析】解:∵点O 是△ABC 中∠ABC 、∠ACB 的平分线的交点∴O 到AB 的距离与O 到BC 的距离相等∴O 到BC 的距离为1∴OCB S △ =12×3×1= 32.故选:C .【点睛】本题考查了角平分线的性质 角平分线上的点到角的两边的距离相等 熟练掌握角平分线的性质是解题的关键.4.如图 已知ABN ACM △≌△ 则下列结论不正确...的是 ( )A .BC ∠=∠ B .BAM CAN =∠∠ C .AMN ANM ∠=∠D .AMC BAN ∠=∠【解析】解:∵ABN ACM △≌△∴B C ∠=∠ A 选项正确;BAN CAM ∠=∠ AN AM = AMC ANB ∠=∠∵BAM MAN CAN MAN ∠+∠=∠+∠∴BAM CAN =∠∠ B 选项正确;∵AN AM =∴AMN ANM ∠=∠ C 选项正确;∵AMC ANB ∠=∠∴AMC BAN ∠=∠ 不一定成立 D 选项不正确.故选:D.【点睛】本题考查全等三角形的性质 解答本题的关键是找准对应边和对应角以及熟悉等腰三角形的性质.5.如图 △ABC ≌△A ′B ′C ′ 边 B ′C ′过点 A 且平分∠BAC 交 BC 于点 D ∠B =27° ∠CDB ′=98° 则∠C ′的度数为 ( )A.60°B.45°C.43°D.34°【解析】解∶∵△ABC≌△A′B′C′∴∠C′=∠C∵∠CDB′=98°∴∠ADB=98°∵∠B=27°∴∠BAD=55°∵B′C′过点A 且平分∠BAC 交BC 于点D∴∠BAC=2∠BAD=110°∴∠C=180°-∠BAD-∠B=43°即∠C′=43°.故选:C【点睛】本题主要考查了全等三角形的性质三角形的内角和定理熟练掌握全等三角形的性质三角形的内角和定理是解题的关键.6.如图为了估算河的宽度我们可以在河的对岸选定一个目标点A再在河的这一边选定点B和F使AB⊥BF并在垂线BF上取两点C、D使BC=CD再作出BF的垂线DE使点A、C、E在同一条直线上因此证得△ABC≌△EDC进而可得AB=DE即测得DE的长就是AB的长则△ABC≌△EDC的理论依据是()A.SAS B.HL C.ASA D.AAA【解析】解:∵证明在△ABC≌△EDC用到的条件是:CD=BC∠ABC=∠EDC=90°∠ACB=∠ECD∴用到的是两角及这两角的夹边对应相等即ASA这一方法故C正确.故选:C.【点睛】本题考查了全等三角形的应用判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL 做题时注意选择.注意:AAA、SSA不能判定两个三角形全等判定两个三角形全等时必须有边的参与 若有两边一角对应相等时 角必须是两边的夹角.7.如图33 的正方形网格中 ABC 的顶点都在小正方形的格点上 这样的三角形称为格点三角形 则在此网格中与ABC 全等的格点三角形(不含ABC )共有 ( )A .5个B .6个C .7个D .8个【解析】解:如图所示:与ABC 全等的三角形有DEF 、HIJ 、GMN 、IEM △、HAF △、BDG 、CJN △ 共7个故选:C .【点睛】本题考查了全等三角形的判定定理 能熟记全等三角形的判定定理是解此题的关键 注意:全等三角形的判定定理有SAS ASA AAS SSS 两直角三角形全等还有HL 等.8.如图 BC ⊥CE BC =CE AC ⊥CD AC =CD DE 交AC 的延长线于点M M 是DE 的中点 若AB =8 则CM 的长为 ( )A .3.2B .3.6C .4D .4.8【解析】解:如图 过点E 作EF ⊥AC 交AC 的延长线于点F∵ CD ⊥AC EF ⊥AC∴∠DCM =∠EFM =90°∵M 是DE 的中点∴DM =EM∵∠DMC =∠EMF∴△DCM ≌△EFM (AAS )∴CM =FM CD =FE∵BC ⊥CE EF ⊥AC∴∠BCE =90° ∠CFE =90°∴∠ACB +∠ECF =90° ∠ECF +∠FEC =90°∴∠ACB =∠FEC∵AC =CD∴AC =FE∵BC =CE∴△ABC ≌△FCE (SAS )∴FC =AB =8∵CM =FM∴M 是FC 的中点∴CM =12FC =4故选:C【点睛】本题考查了全等三角形的判定与性质 熟练掌握三角形的判定方法是基础添加辅助线构造全等三角形是关键.二、填空题(每题3分 共24分)9.如图 90B D ∠=∠=︒ AB AD = 130BAD ∠=︒ 则DCA ∠=______°.【解析】解:∵90B D ∠=∠=︒∴△ABC 和△ADC 是直角三角形∵AC =AC AB AD =∴Rt △ABC ≌Rt △ADC (HL )∴∠DAC =∠BAC∵130BAD ∠=︒∴∠DAC =12∠BAD =65°∴DCA ∠=90°-∠DAC =25°.故答案为:25.【点睛】此题考查了全等三角形的判定和性质 熟练掌握直角三角形的判定定理是解题的关键.10.如图 ,AC AD BC BD == 连结CD 交AB 于点E F 是AB 上一点 连结FC FD 则图中的全等三角形共有_________对.【解析】解:解:在△ACB 和ADB 中AC AD AB AB BC BD =⎧⎪=⎨⎪=⎩∴△ACB ≌ADB∴∠CAB =∠DAB ∠CBA =∠DBA∵AC =AD ∠CAB =∠DAB AF =AF∴△CAF ≌△DAF CF =DF∵AC =AD ∠CAB =∠DAB AE =AE∴△ACE ≌△ADE CE =DE∵BC =BD ∠CBA =∠DBA BE =BE∴△CBE ≌△DBE∵BC =BD ∠CBA =∠DBA BF =BF∴△FCB ≌△FDB∵CF =DF CE =DE EF =EF∴△CEF ≌△DEF∴图中全等的三角形有6对图中全等三角形有△ACB ≌△ADB △ACF ≌△ADF △ACE ≌△ADE △BCE ≌△BDE△BCF ≌△BDF △FCE ≌△FDE 共6对故答案为:6 .【点睛】本题考查了对全等三角形的判定定理的应用 注意:全等三角形的判定定理有SAS ASA AAS SSS .11.如图 在△ABC 中 ∠B =∠C =65° BD =CE BE =CF 则∠DEF 的度数是_____.【解析】解:在△DBE 和△ECF 中=C BD CE B BE CF =⎧⎪∠∠⎨⎪=⎩∴△DBE ≌△ECF (SAS )∴∠BDE =∠FEC∵∠DEF +∠FEC =∠B +∠BDE∴∠DEF =∠B =65°故答案为:65°.【点睛】本题考查全等三角形的判定与性质、三角形的外角性质等知识 证明△DBE ≌△ECF 是解题的关键 属于中考常考题型.12.如图 E ABC AD ≅∆∆ BC 的延长线经过点E 交AD 于F 105AED ∠=︒ 10CAD ∠=︒ 50B ∠=︒ 则EAB ∠=__︒.【解析】解:ABC ADE ∆≅∆ 50B ∠=︒ 50D B EAD CAB ∠=∠105AED ∠=︒18025EAD D AED ∴∠=︒-∠-∠=︒25CAB ∴∠=︒10CAD25102560EAB EAD DAC CAB ∴∠=∠+∠+∠=︒+︒+︒=︒.故答案为:60.【点睛】本题考查了全等三角形的性质和三角形内角和定理 能熟记全等三角形的性质的内容是解此题的关键 注意:全等三角形的对应边相等 对角角相等.13.如图 在ABC 中 AD 是它的角平分线 8cm AB = 6cm AC = 则:ABD ACD S S =△△______.【解析】解:如图 过D 作DH AB ⊥于,H 作DG AC ⊥于,G∵AD 是它的角平分线,DH DG 而8cm AB = 6cm AC =1842.1632ABDACD AB DH SAB S AC AC DG 故答案为:4∶3【点睛】本题考查的是角平分线的性质 三角形的面积的计算 证明DH DG =是解本题的关键.14.如图 ∠ACB =90° AC =BC BE ⊥CE AD ⊥CE垂足分别为E D AD =25 DE =17 则BE =_____.【解析】解:∵∠ACB =90°∴∠BCE +∠ACD =90°又∵BE ⊥CE AD ⊥CE∴∠E =∠ADC =90°∴∠BCE +∠CBE =90°∴∠CBE =∠ACD在△CBE 和△ACD 中E ADC CBE ACD BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△CBE ≌△ACD (AAS )∴BE =CD CE =AD =25∵DE =17∴CD =CE ﹣DE =AD ﹣DE =25﹣17=8∴BE =CD =8;故答案为:8.【点睛】本题主要考查全等三角形的判定和性质;证明三角形全等得出对应边相等是解决问题的关键.15.如图 在平面直角坐标系中 点A 的坐标是(4 0) 点P 的坐标是(0 3) 把线段AP 绕点P 逆时针旋转90°后得到线段PQ 则点Q 的坐标是__________.【解析】解:过Q 作QE ⊥y 轴于E 点 如下图所示:∵旋转90°∴∠1+∠2=90°∵EQ ⊥y 轴∴∠3+∠2=90°∴∠1=∠3且∠QEP =∠POA =90° PQ=PA∴△QEP ≌△POA (AAS )∴EQ=PO =3 EP=OA =4∴EO=EP+PO =4+3=7∴点Q 的坐标是(3 7)故答案为:(3 7).【点睛】本题考查三角形全等的判定和性质 坐标与图形 本题的关键过Q 作QE ⊥y 轴于E 点 证明△QEP ≌△POA .16.如图 ∠ABC =∠ACD =90° BC =2 AC =CD 则△BCD 的面积为_________.【解析】解:如图 作DE 垂直于BC 的延长线 垂足为E∵90ACB BAC ∠+∠=︒ 90ACB DCE ∠+∠=︒∴BAC DCE ∠=∠在ABC 和CED 中∵90BAC DCEABC CED AC CD∠=∠⎧⎪∠==︒⎨⎪=⎩∴()ABC CED AAS ≌∴2BC DE == ∴122BCD S BC DE =⨯⨯=故答案为:2.【点睛】本题考查了三角形全等的判定与性质.解题的关键在于证明三角形全等.三、解答题(每题8分 共72分)17.如图 在四边形ABCD 中 点E 为对角线BD 上一点 A BEC ∠=∠ ABD BCE ∠=∠ 且AD BE = 证明:AD BC ∥.【解析】证明:在ABD ∆与ECB ∆中A BEC ABD BCE AD BE ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABD ECB AAS ∴∆≅∆;ADB EBC ∴∠=∠AD BC ∴;【点睛】本题主要考查了平行线的判定及全等三角形的判定及性质 熟练运用全等三角形的判定及性质是解题的关键.18.如图 点A 、D 、C 、F 在同一条直线上 ,,AD CF AB DE BC EF ===.若55A ∠=︒ 求EDF ∠的度数.【解析】∵AC =AD +DC DF =DC +CF 且AD =CF∴AC =DF在△ABC 和△DEF 中AB DE BC EF AC DF ⎧⎪⎨⎪⎩=== ∴△ABC ≌△DEF (SSS )∴∠A =∠EDF =55︒.【点睛】本题考查全等三角形的判定与性质 解答本题的关键是明确题意 利用数形结合的思想解答.19.已知:如图 AB ⊥BD ED ⊥BD C 是BD 上的一点 AC ⊥CE AB =CD 求证:BC =DE .【解析】证明:∵AB ⊥BD ED ⊥BD AC ⊥CE (已知)∴∠ACE =∠B =∠D =90°(垂直的意义)∵∠BCA +∠DCE +∠ACE =180°(平角的意义)∠ACE =90°(已证)∴∠BCA +∠DCE =90°(等式性质)∵∠BCA +∠A +∠B =180°(三角形内角和等于180°)∠B =90°(已证)∴∠BCA +∠A =90°(等式性质)∴∠DCE =∠A (同角的余角相等)在△ABC 和△CDE 中A DCE AB CD B D ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△CDE (ASA )∴BC =DE (全等三角形对应边相等)【点睛】本题考查了全等三角形的判定和性质;熟练掌握三角形全等的判定定理是解题的关键.20.如图 在ABC 中 240AB AC B ==∠=︒, 点D 在线段BC 上运动(D 不与B 、C 重合) 连接AD 作40ADE ∠=︒ DE 交线段AC 于E .(1)点D 从B 向C 运动时 BDA ∠逐渐变__________(填“大”或“小”) 但BDA ∠与EDC ∠的度数和始终是__________度.(2)当DC 的长度是多少时 ABD DCE △△≌ 并说明理由.【解析】(1)在△ABD 中 ∠B +∠BAD +∠ADB =180°设∠BAD =x ° ∠BDA =y °∴40°+x +y =180°∴y =140-x (0<x <100)当点D 从点B 向C 运动时 x 增大∴y 减小BDA ∠+EDC ∠=180°-140ADE ∠=︒故答案为:小 140;(2)当DC =2时 △ABD ≌△DCE理由:∵∠C =40°∴∠DEC +∠EDC =140°又∵∠ADE =40°∴∠ADB +∠EDC =140°∴∠ADB =∠DEC又∵AB =DC =2在△ABD 和△DCE 中===ADB DEC B CAB DC ∠∠⎧⎪∠∠⎨⎪⎩∴△ABD ≌△DCE (AAS );【点睛】此题主要考查学生对等腰三角形的判定与性质 全等三角形的判定与性质 三角形外角的性质等知识点的理解和掌握 三角形的内角和公式 解本题的关键是分类讨论.21.如图 已知ABC 中 ,90AC BC ACB =∠=︒ 点D 与点E 都在射线AP 上 且CD CE = 90DCE ∠=︒.(1)说明AD BE =的理由;(2)说明BE AE ⊥的理由.【解析】(1)解:90ACB DCE ∠=∠=︒ACD DCB BCE DCB ∴∠+∠=∠+∠ACD BCE ∠∠∴=在ACD ∆和BCE ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩()ACD BCE SAS ∴∆≅∆AD BE ∴=;(2)解:如图 设AE 和BC 交于点F∆≅∆ACD BCE∴∠=∠CAD CBEEFB FAB FBA FAB∠=∠+∠=∠+︒45EFB FBE FAB FBE∴∠+∠=∠+︒+∠45=∠+︒+∠FAB CAD45=∠+︒CAB45=︒+︒=︒454590∴∠BEF=90°BE AE∴⊥.【点睛】本题考查了全等三角形的性质和判定、外角的性质解题的关键是能证明出E∆.≅∆ACD BC 22.已知:如图在△ABC△ADE中∠BAC=∠DAE=90°AB=AC AD=AE点C D E 三点在同一直线上连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD CE有何特殊位置关系并证明.【解析】(1)证明:∠BAC=∠DAE=90°∴∠+∠=∠+∠,BAC CAD CAD DAEBAD CAE∴∠=∠,AB=AC AD=AE≌BAD CAE.BD CE BD CE理由如下:(2)解:,,BAD CAE≌,ABD ACE∴∠=∠,∠=︒90,BACABC ACB90,ABD DBC ACB90,ACE DBC ACB DBC BCD90,BDC BD CE90,.【点睛】本题考查的是三角形的内角和定理的应用全等三角形的判定与性质掌握“利用SAS证明两个三角形全等及应用全等三角形的性质”是解本题的关键.23.图已知AE⊥AB AF⊥AC.AE=AB AF=AC BF与CE相交于点M.(1)EC=BF;(2)EC⊥BF;(3)连接AM求证:AM平分∠EMF.【解析】(1)证明:∵AE⊥AB AF⊥AC∴∠BAE=∠CAF=90°∴∠BAE+∠BAC=∠CAF+∠BAC即∠EAC=∠BAF在△ABF和△AEC中∵AE ABEAC BAF AF AC=⎧⎪∠=∠⎨⎪=⎩∴△ABF≌△AEC(SAS)∴EC=BF;(2)根据(1)∵△ABF≌△AEC∴∠AEC=∠ABF∵AE⊥AB∴∠BAE=90°∴∠AEC+∠ADE=90°∵∠ADE=∠BDM(对顶角相等)∴∠ABF+∠BDM=90°在△BDM中∠BMD=180°﹣∠ABF﹣∠BDM=180°﹣90°=90°所以EC⊥BF.(3)作AP⊥CE于P AQ⊥BF于Q.如图:∵△EAC ≌△BAF∴AP =AQ (全等三角形对应边上的高相等).∵AP ⊥CE 于P AQ ⊥BF 于Q∴AM 平分∠EMF .【点睛】本题考查了全等三角形的判定与性质 根据条件找出两组对应边的夹角∠EAC =∠BAF 是证明的关键 也是解答本题的难点.24.在直线m 上依次取互不重合的三个点,,D A E 在直线m 上方有AB AC = 且满足BDA AEC BAC α∠=∠=∠=.(1)如图1 当90α=︒时 猜想线段,,DE BD CE 之间的数量关系是____________;(2)如图2 当0180α<<︒时 问题(1)中结论是否仍然成立?如成立 请你给出证明;若不成立 请说明理由;(3)应用:如图3 在ABC 中 BAC ∠是钝角 AB AC = ,BAD CAE BDA AEC BAC ∠<∠∠=∠=∠ 直线m 与CB 的延长线交于点F 若3BC FB = ABC 的面积是12 求FBD 与ACE 的面积之和.【解析】(1)解:DE =BD +CE 理由如下∵∠BDA =∠BAC =∠AEC =90°∴∠BAD +∠EAC =∠BAD +∠DBA =90°∴∠DBA =∠EAC∵AB =AC∴△DBA ≌△EAC (AAS )∴AD =CE BD =AE∴DE =AD +AE =BD +CE故答案为:DE =BD +CE .(2)DE =BD +CE 仍然成立 理由如下∵∠BDA =∠BAC =∠AEC =α∴∠BAD +∠EAC =∠BAD +∠DBA =180°﹣α∴∠DBA =∠EAC∵AB =AC∴△DBA ≌△EAC (AAS )∴BD =AE AD =CE∴DE =AD +AE =BD +CE ;(3)解:∵∠BAD <∠CAE ∠BDA =∠AEC =∠BAC∴∠CAE =∠ABD在△ABD 和△CAE 中ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CAE (AAS )∴S △ABD =S △CAE设△ABC 的底边BC 上的高为h 则△ABF 的底边BF 上的高为h∴S △ABC =12BC •h =12 S △ABF =12BF •h∵BC =3BF∴S △ABF =4∵S △ABF =S △BDF +S △ABD =S △FBD +S △ACE =4∴△FBD 与△ACE 的面积之和为4.【点睛】本题考查了全等三角形的判定与性质、直角三角形的性质 三角形的面积 解题的关键是熟练掌握全等三角形的判定与性质.25.如图 ∠MAN 是一个钝角 AB 平分∠MAN 点C 在射线AN 上 且AB =BC BD ⊥AC 垂足为D .(1)求证:BAM BCA ∠=∠;(2)动点P Q 同时从A 点出发 其中点Q 以每秒3个单位长度的速度沿射线AN 方向匀速运动;动点P 以每秒1个单位长度的速度匀速运动.已知AC =5 设动点P Q 的运动时间为t 秒. ①如图② 当点P 在射线AM 上运动时 若点Q 在线段AC 上 且52ABP BQC S S =△△ 求此时t 的值;②如图③ 当点P 在直线AM 上运动时 点Q 在射线AN 上运动的过程中 是否存在某个时刻 使得APB 与BQC 全等?若存在 请求出t 的值;若不存在 请说出理由.【解析】(1)证明:∵BD ⊥AC∴90BDA BDC ∠=∠=︒在Rt △BDA 和Rt △BDC 中BD BD AB CB =⎧⎨=⎩, ∴Rt△BDA ≌Rt△BDC (HL )∴∠BAC =∠BCA .∵AB 平分∠MAN∴∠BAM =∠BAC∴∠BAM =∠BCA .(2)解:①如下图所示 作BH ⊥AM 垂足为M .∵BH ⊥AM BD ⊥AC∴∠AHB =∠ADB =90°在△AHB 和△ADB 中AHB ADB BAH BAD AB AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴△AHB ≌△ADB (AAS )∴BH =BD∵S △ABP =52S △BQC ∴151222AP BH CQ BD =⨯∴52AP CQ =∴5(53)2t t =-∴2517t =.②存在 理由如下:当点P 沿射线AM 方向运动 点Q 在线段AC 上时 如下图所示∵AB =BC又由(1)得∠BAM =∠BCA∴当AP =CQ 时 △APB ≌△CQB∴53t t =-∴54t =;当点P沿射线AM 反向延长线方向运动 点Q 在线段AC 延长线上时 如下图所示由(1)得∠BAM=∠BCA∴∠BAP=∠BCQ又∵AB=BC∴当AP=CQ时△APB≌△CQB ∴35t t=-∴52t=.综上所述当54t=或52t=时△APB和△CQB全等.【点睛】本题考查角平分线的定义全等三角形的判定与性质熟练掌握全等三角形的判定方法并注意分类讨论是解题的关键.第21页共21页。
全等三角形单元测试卷(含答案)
新人教版八年级数学上册《第12章全等三角形》2016年单元测试卷(4)一、选择题(每小题5分,共30分)1.(5分)已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°2.(5分)如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是()A.SSS B.SAS C.ASA D.AAS3.(5分)下列说法正确的是()A.全等三角形是指形状相同的两个三角形B.全等三角形的周长和面积分别相等C.全等三角形是指面积相等的两个三角形D.所有的等边三角形都是全等三角形4.(5分)如图,Rt△ABC中,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=10cm,AC=6cm,则BE的长度为()A.10cm B.6cm C.4cm D.2cm5.(5分)如图,AE∥FD,AE=FD,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=BC B.EC=BF C.∠A=∠D D.AB=CD6.(5分)点P在∠AOB的平分线上,点P到OA边的距离等于5,点Q是OB 边上的任意一点,下列选项正确的是()A.PQ≥5 B.PQ>5 C.PQ<5 D.PQ≤5二、填空题(每小题5分,共20分)7.(5分)如图,△ABC≌△DCB,∠DBC=40°,则∠AOB=°.8.(5分)如图,锐角△ABC和锐角△A′B′C′中,AD,A′D′分别是BC,B′C′上的高,且AB=A′B′,AD=A′D′.要使△ABC≌△A′B′C′,则应补充的条件是(填写一个即可).9.(5分)如图,点O在△ABC内,且到三边的距离相等,若∠A=60°,则∠BOC=.10.(5分)如图,BE⊥AC,垂足为D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=°.三、解答题(第11题14分,第12,13题18分,共50分)11.(14分)如图,已知∠1=∠2,AB=AC.求证:BD=CD.(要求:写出证明过程中的重要依据)12.(18分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF与DE的位置关系,并说明理由.13.(18分)如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M、N分别是AE、CD的中点,判断BM与BN的关系,并说明理由.新人教版八年级数学上册《第12章全等三角形》2016年单元测试卷(4)参考答案与试题解析一、选择题(每小题5分,共30分)1.(5分)已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°【分析】要根据已知的对应边去找对应角,并运用“全等三角形对应角相等”即可得答案.【解答】解:∵图中的两个三角形全等a与a,c与c分别是对应边,那么它们的夹角就是对应角∴∠α=50°故选:D.【点评】本题考查全等三角形的知识.解题时要认准对应关系,如果把对应角搞错了,就会导致错选A或C.2.(5分)如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是()A.SSS B.SAS C.ASA D.AAS【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.3.(5分)下列说法正确的是()A.全等三角形是指形状相同的两个三角形B.全等三角形的周长和面积分别相等C.全等三角形是指面积相等的两个三角形D.所有的等边三角形都是全等三角形【分析】依据全等三角形的定义:能够完全重合的两个三角形.即可求解.【解答】解:A、全等三角形的形状相同,但形状相同的两个三角形不一定是全等三角形.故该选项错误;B、全等三角形是指能够完全重合的两个三角形,则全等三角形的周长和面积一定相等,故B正确;C、全等三角形面积相等,但面积相等的两个三角形不一定是全等三角形.故该选项错误;D、两个等边三角形,形状相同,但不一定能完全重合,不一定全等.故错误.故选:B.【点评】本题主要考查全等三角形的定义,全等是指形状相同,大小相同,两个方面必须同时满足.4.(5分)如图,Rt△ABC中,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=10cm,AC=6cm,则BE的长度为()A.10cm B.6cm C.4cm D.2cm【分析】首先根据角平分线的性质可得CD=DE,然后证明Rt△ACD≌Rt△AED (HL),可得AE=AC,进而得到EB的长.【解答】解:∵AD是∠BAC的平分线,∴CD=DE,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AE=AC=6cm,∵AB=10cm,∴EB=4cm.故选:C.【点评】此题主要考查了全等三角形的判定与性质,以及角平分线的性质,关键是掌握角平分线的性质:角的平分线上的点到角的两边的距离相等.5.(5分)如图,AE∥FD,AE=FD,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=BC B.EC=BF C.∠A=∠D D.AB=CD【分析】添加条件AB=CD可证明AC=BD,然后再根据AE∥FD,可得∠A=∠D,再利用SAS定理证明△EAC≌△FDB即可.【解答】解:∵AE∥FD,∴∠A=∠D,∵AB=CD,∴AC=BD,在△AEC和△DFB中,∴△EAC≌△FDB(SAS),故选:D.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.(5分)点P在∠AOB的平分线上,点P到OA边的距离等于5,点Q是OB 边上的任意一点,下列选项正确的是()A.PQ≥5 B.PQ>5 C.PQ<5 D.PQ≤5【分析】根据角平分线上的点到角的两边距离相等可得点P到OB的距离为5,再根据垂线段最短解答.【解答】解:∵点P在∠AOB的平分线上,点P到OA边的距离等于5,∴点P到OB的距离为5,∵点Q是OB边上的任意一点,∴PQ≥5.故选:A.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.二、填空题(每小题5分,共20分)7.(5分)如图,△ABC≌△DCB,∠DBC=40°,则∠AOB=80°.【分析】根据全等三角形对应角相等可得∠ACB=∠DBC,再利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵△ABC≌△DCB,∠DBC=40°,∴∠ACB=∠DBC=40°,∴∠AOB=∠ACB+∠DBC=40°+40°=80°.故答案为:80.【点评】本题考查了全等三角形对应角相等的性质,三角形的一个外角等于与它不相邻的两个内角的和,熟记性质是解题的关键.8.(5分)如图,锐角△ABC和锐角△A′B′C′中,AD,A′D′分别是BC,B′C′上的高,且AB=A′B′,AD=A′D′.要使△ABC≌△A′B′C′,则应补充的条件是CD=C′D′(或AC=A′C′,或∠C=∠C′或∠CAD=∠C′A′D′)答案不唯一(填写一个即可).【分析】根据判定方法,结合图形和已知条件,寻找添加条件.【解答】解:我们可以先利用HL判定△ABD≌△A′B′D′得出对应边相等,对应角相等.此时若添加CD=C´D´,可以利用SAS来判定其全等;添加∠C=∠C´,可以利用AAS判定其全等;还可添加AC=A′C′,∠CAD=∠C′A′D′等.故答案为CD=C′D′(或AC=A′C′,或∠C=∠C′或∠CAD=∠C′A′D′)答案不唯一.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.9.(5分)如图,点O在△ABC内,且到三边的距离相等,若∠A=60°,则∠BOC= 120°.【分析】根据角平分线上的点到角的两边距离相等判断出点O是三个角的平分线的交点,再根据三角形的内角和定理和角平分线的定义求出∠OBC+∠OCB,然后利用三角形的内角和定理列式计算即可得解.【解答】解:∵点O在△ABC内,且到三边的距离相等,∴点O是三个角的平分线的交点,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=(180°﹣60°)=60°,在△BCO中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣60°=120°.故答案为:120°.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的内角和定理,角平分线的定义,熟记性质并判断出点O是三个角的平分线的交点是解题的关键.10.(5分)如图,BE⊥AC,垂足为D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=27°.【分析】由BE垂直于AC,且AD=CD,利用线段垂直平分线定理得到AB=CB,即三角形ABC为等腰三角形,利用三线合一得到BE为角平分线,求出∠ABE度数,利用SAS得到三角形ABD与三角形CED全等,利用全等三角形对应角相等即可求出∠E的度数.【解答】解:∵BE⊥AC,AD=CD,∴AB=CB,即△ABC为等腰三角形,∴BD平分∠ABC,即∠ABE=∠CBE=∠ABC=27°,在△ABD和△CED中,,∴△ABD≌△CED(SAS),∴∠E=∠ABE=27°,故答案为:27【点评】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.三、解答题(第11题14分,第12,13题18分,共50分)11.(14分)如图,已知∠1=∠2,AB=AC.求证:BD=CD.(要求:写出证明过程中的重要依据)【分析】利用SAS判定三角形全等,得出对应边相等.【解答】证明:在△ABD和△ACD中,∴△ABD≌△ACD(SAS).∴BD=CD(全等三角形对应边相等).【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.12.(18分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF与DE的位置关系,并说明理由.【分析】根据平行线性质得出∠A=∠B,根据SAS证△ACD≌△BEC,推出DC=CE,根据等腰三角形的三线合一定理推出即可.【解答】解:CF⊥DE,CF平分DE,理由是:∵AD∥BE,∴∠A=∠B,在△ACD和△BEC中,∴△ACD≌△BEC(SAS),∴DC=CE,∵CF平分∠DCE,∴CF⊥DE.【点评】本题考查了全等三角形的性质和判定,平行线的性质,等腰三角形的性质等知识点,关键是求出DC=CE,主要考查了学生运用定理进行推理的能力.13.(18分)如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M、N分别是AE、CD的中点,判断BM与BN的关系,并说明理由.【分析】根据SAS推出△ABE≌△DBC,推出AE=DC,∠EAB=∠BDC,∠AEB=∠DCB,求出∠ABD=∠DBC=90°,BM=AM=EM=AE,BN=CN=DN=CD,推出∠ABM=∠DBN,∠EBM=∠NBC即可.【解答】解:BM=BN,BM⊥BN,理由是:在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),∴AE=DC,∠EAB=∠BDC,∠AEB=∠DCB,∵∠ABD=∠DBC,∠ABD+∠DBC=180°,∴∠ABD=∠DBC=90°,∵M为AE的中点,N为CD的中点,∴BM=AM=EM=AE,BN=CN=DN=CD,∴BM=BN,∠EAB=∠MBA,∠CDB=∠DBN,∠AEB=∠EBM,∠NCB=∠NBC,∵∠EAB=∠BDC,∠AEB=∠DCB,∴∠ABM=∠DBN,∠EBM=∠NBC,∴∠ABC=2∠DBN+2∠EBM=180°,∴∠EBN+∠EBM=90°,∴BM⊥BN.【点评】本题考查了全等三角形的性质和判定,直角三角形斜边上中线性质,等腰三角形的性质的应用,主要考查学生的推理能力.。
八年级数学上册人教版试题 第12章 全等三角形单元测试卷(含答案)
第12章 全等三角形单元测试卷一.选择题(共12小题,每小题4分,共48分)1.下列各图形中,不是全等形的是( )A .B .C .D .2.下列说法正确的是( )A .所有的等边三角形都是全等三角形B .全等三角形是指面积相等的三角形C .周长相等的三角形是全等三角形D .全等三角形是指形状相同大小相等的三角形3.如图,AB 与CD 交于点O ,已知△AOD ≌△COB ,∠A =40°,∠COB =115°,则∠B 的度数为( )A .25°B .30°C .35°D .40°4.已知△ABC 的六个元素如图所示,则甲、乙、丙三个三角形中与△ABC 全等的是( )A .甲、乙B .乙、丙C .只有乙D .只有丙5.如图,已知MB =ND ,∠MBA =∠NDC ,下列条件中不能判定△ABM ≌△CDN 的是( )A .∠M =∠NB .AB =CDC .AM =CND .AM ∥CN6.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带( )去.A .第1块B .第2块C .第3块D .第4块7.如图是一个平分角的仪器,其中AB =AD ,BC =DC ,将点A 放在角的顶点,AB 和AD 沿着角的两边放下,沿AC 画一条射线,这条射线就是角的平分线,在这个操作过程中,运用了三角形全等的判定方法是( )第3图第5图第6图第7图A .SSSB .SASC .ASAD .AAS8.如图,点A 、D 、C 、E 在同一条直线上,AB ∥EF ,AB =EF ,∠B =∠F ,AE =10,AC =7,则CD 的长为( )A .5.5B .4C .4.5D .39.如图,∠B =∠C =90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC =110°,则∠MAB =( )A .30°B .35°C .45°D .60°10.如图,AB =AD ,AE 平分∠BAD ,点C 在AE 上,则图中全等三角形有( )A .2对B .3对C .4对D .5对11.如图,直线l 1、l 2、l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A .一处B .二处C .三处D .四处12.如图,AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,DE =DG ,△ADG和△AED 的面积分别为60和35,则△EDF 的面积为( )A .25B .5.5C .7.5D .12.5二.填空题(共4小题,每小题4分,共16分)13.已知△ABC ≌△DEF ,∠A =60°,∠F =50°,点B 的对应顶点是点E ,则∠B 的度数是 .14.如图,BD =CF ,FD ⊥BC 于点D ,DE ⊥AB 于点E ,BE =CD ,若∠AFD =145°,则∠EDF = .15.如图,△ABC 中,∠C =90°,AD 平分∠BAC ,AB =5,CD =2,则△ABD 的面积是 .16.如图,四边形ABCD 中,AB =AD ,AC =5,∠DAB =∠DCB =90°,则四边形ABCD 的面积为 .三.解答题(共8小题,共86分)第8图第9图第10图第11图第12图第14图第15图第16图17.如图所示,△ABE≌△ACD,∠B=70°,∠AEB=75°,求∠CAE的度数.18.如图,已知∠1=∠2,∠3=∠4,求证:BC=BD.19.如图,AB=AD,AC=AE,∠CAE=∠BAD.求证:∠B=∠D.20.如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,测得AB=DE,AB∥DE,∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长度.21.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20m有一树C,继续前行20m到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.求:(1)河的宽度是多少米?(2)请你证明他们做法的正确性.22.如图,AD为△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD.求证:(1)△BFD≌△ACD;(2)BE⊥AC.23.如图①,点A,E,F,C在同一条直线上,且AE=CF,过点E,F分别作DE⊥AC,BF⊥AC,垂足分别为E,F,AB=CD.(1)若EF与BD相交于点G,则EG与FG相等吗?请说明理由;(2)若将图①中△DEC沿AC移动到如图②所示的位置,其余条件不变,则(1)中的结论是否仍成立?不必说明理由.24.【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是 A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是 A.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【方法感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,已知:CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证:∠C=∠BAE.答案一.选择题A.D.A.B.C.B.A.B.B.B.D.D.二.填空题13.70°.14.55°.15.5.16.18.三.解答题17.解:∵△ABE≌△ACD,∴∠C=∠B=70°,∴∠CAE=∠AEB﹣∠C=5°.18.证明:∵∠ABD+∠4=180°∠ABC+∠3=180°,且∠3=∠4,∴∠ABD=∠ABC在△ADB和△ACB中,,∴△ADB≌△ACB(ASA),∴BD=BC.19.证明:∵∠CAE=∠BAD,∴∠CAE+∠EAB=∠BAD+∠EAB,∴∠BAC=∠DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠B=∠D.20.(1)证明:∵AB∥DE,∴∠ABC=∠DEF,在△ABC与△DEF中∴△ABC≌△DEF;(2)∵△ABC≌△DEF,∴BC=EF,∴BF+FC=EC+FC,∴BF=EC,∵BE=10m,BF=3m,∴FC=10﹣3﹣3=4m.21.(1)解:河的宽度是5m;(2)证明:由作法知,BC=DC,∠ABC=∠EDC=90°,在Rt△ABC和Rt△EDC中,,∴Rt△ABC≌Rt△EDC(ASA),∴AB=ED,即他们的做法是正确的.22.证明:(1)∵AD为△ABC的边BC上的高,∴△BDF和△ADC为直角三角形.∴∠BDF=∠ADC=90°.在Rt△BFD和Rt△ACD中,,∴Rt△△BFD≌Rt△ACD(HL);(2)∵△BDF≌△ADC,∴∠DBF=∠DAC.∵∠AFE与∠BFD是对顶角,∴∠BDF=∠AEF=90°,∴BE⊥AC.23.解:(1)EG=FG,理由如下:∵AE=CF,∴AE+EF=CF+EF,即AF=CE,∵DE⊥AC,BF⊥AC,∴∠AFB=∠CED=90°,在Rt△ABF和Rt△CDE中,,∴Rt△ABF≌Rt△CDE(HL),∴BF=DE,在△DEG和△BFG中,,∴△DEG≌△BFG(AAS),∴EG=FG;(2)(1)中的结论仍成立,理由如下:同(1)得:Rt△ABF≌Rt△CDE(HL),∴BF=DE,在△DEG和△BFG中,,∴△DEG≌△BFG(AAS),∴EG=FG.24.(1)解:∵在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),故答案为:B;(2)解:∵由(1)知:△ADC≌△EDB,∴BE=AC=6,AE=2AD,∵在△ABE中,AB=8,由三角形三边关系定理得:8﹣6<2AD<8+6,∴1<AD<7,故答案为:C.(3)证明:如图,延长AE到F,使EF=AE,连接DF,∵AE是△ABD的中线∴BE=ED,在△ABE与△FDE中,,∴△ABE≌△FDE(SAS),∴AB=DF,∠BAE=∠EFD,∵∠ADB是△ADC的外角,∴∠DAC+∠ACD=∠ADB=∠BAD,∴∠BAE+∠EAD=∠BAD,∠BAE=∠EFD,∴∠EFD+∠EAD=∠DAC+∠ACD,∴∠ADF=∠ADC,∵AB=DC,∴DF=DC,在△ADF与△ADC中,,∴△ADF≌△ADC(SAS)∴∠C=∠AFD=∠BAE.。
人教版八年级数学上册试题 第12章 全等三角形 单元测试卷 (含解析)
第12章《全等三角形》单元测试卷一、单选题(本大题共10小题,每小题3分,共30分)1.老师布置了一份家庭作业:用三根小木棍首尾相连拼出一个三角形,三根小木棍的长度分别为5、9、10.5,并且只能对10.5的小木棍进行裁切(裁切后,参与拼图的小木棍的长度为整数),则同学们最多能拼出不同的三角形的个数为( )A .4B .5C .6D .72.如图,点B ,F ,C ,E 在同一条直线上,点A ,D 在直线BE 的两侧,AB ∥DE ,BF =CE ,添加一个适当的条件后,仍不能使得△ABC ≌△DEF ( )A .AC =DFB .AC ∥DF C .∠A =∠D D .AB =DE3.如图,的两条中线AD 、BE 交于点F ,若四边形CDFE 的面积为17,则的面积是( )A .54B .51C .42D .414.已知中,是边上的高,平分.若,,,则的度数等于( )A.B .C .D .5.如图,在四边形中,平分,,,,则面积的最大值为( )cm cm cm cm ABC ABC ABC CD AB CE ACB ∠A m ∠=︒B n ∠=︒m n ≠DCE ∠12m ︒12n ︒()12m n ︒-︒12m n ︒-︒ABDC AD BAC ∠AD DC ⊥2AC AB -=8BC =BDCA .B .C .D .6.如图,,,则下列结论错误的是( )A .≌B .≌C .D .7.如图,在正方形中,对角线相交于点O .E 、F 分别为上一点,且,连接.若,则的度数为( )A .B .C .D .8.如图,在△ABC 中,AB=BC ,,点D 是BC 的中点,BF ⊥AD ,垂足为E ,BF 交AC 于点F ,连接DF.下列结论正确的是()A .∠1=∠3B .∠2=∠3C .∠3=∠4D .∠4=∠59.如图,在四边形ABCD 中,AB =AD ,∠B +∠ADC =180°,E 、F 分别是边BC 、CD 延长线上的点,∠EAF=∠BAD ,若DF =1,BE =5,则线段EF 的长为( )6834BE CD =B D ∠=∠∆BEF DCF∆ABC ∆ADE ∆AB AD =DF AC=ABCD AC BD 、AC BD 、OE OF =AF BE EF ,,25AFE ∠=︒CBE ∠55︒65︒45︒70︒90ABC ∠=︒12A .3B .4C .5D .610.如图,∠DAC 与∠ACE 的平分线相交于点P ,且PC =AB +AC ,若,则∠B 的度数是( )A .100°B .105°C .110°D .120°二、填空题(本大题共8小题,每小题4分,共32分)11.已知三角形的两边的长分别为2cm 和8cm ,设第三边中线的长为cm ,则的取值范围是12.如图,在中,的平分线与的外角平分线交于点.(1)当与满足 的关系时,;(2)当时, .13.我们把两个不全等但面积相等的三角形叫做一对偏等积三角形.已知与是一对面积都等于的偏等积三角形,且,,那么的长等于 (结果用含和的代数式表示).14.如图,在中,,以为斜边作,,E 为上一点,连接、,且满足,若,,则 的长为.60PAD ∠=︒x x ABC ABC ∠ACB ∠P A ∠ABC ∠PC AB ∥72A ∠=︒P ∠=ABC DEF S AB AC DE DF ===BC a =EF a S ABC AB AC =AB Rt ADB 90ADB ∠=︒BD AE CE 2BAC DAE ∠=∠17CE =10BE =DE15.如图,和都为等腰直角三角形,,五边形面积为,求 .16.如图,已知等边△ABC ,AB=6,点D 在AB 上,点F 在AC 的延长线上,BD=CF ,DF 交BC 于点P ,作DE ⊥BC 与点E ,则EP 的长是 .17.如图,等腰中,,,为内一点,且,,则 .18.如图,在,中,,,,C ,D ,E 三点在同一直线上,连接,以下四个结论ABC AED △90ABC AED ∠=∠=︒ABCDE S 2BE S =ABC AB AC =70BAC ∠=︒O ABC 5OCB ∠=︒25ABO ∠=︒OAC ∠=ABC ADE V 90BAC DAE ∠=∠=︒AB AC =AD AE =BD BE ,①;②; ③; ④.其中结论正确的是 .(把正确结论的序号填在横线上).三、解答题(本大题共6小题,共58分)19.(8分)已知:,求作一个,使,且.20.(8分)如图,在Rt ∆ABC 中,∠BAC =90°,∠ABC =60°,AD ,CE 分别平分∠BAC ,∠ACB .(1) 求∠AOE 得度数; (2) 求证:AC=AE +CD .BD CE =90ACE DBC ∠+∠=︒BD CE ⊥180BAE DAC ∠+∠=︒ABC BCD △BCD ABC S S =V V AD AB =21.(10分)在四边形中,,,是上一点,是延长线上一点,且.(1)试说明:;(2)在图中,若,,在上且,试猜想、、之间的数量关系并证明所归纳结论;(3)若,,G 在上,满足什么条件时,(2)中结论仍然成立?(只写结果不要证明).22.(10分)已知线段直线于点,点在直线上,分别以,为边作等边和△ADE ,直线交直线于点.(1)当点F 在线段上时,如图1,试说明:(ⅰ).ABDC DC DB =180C ABD ∠+∠=︒E AC F AB CE BF =DE DF =60CAB ∠=︒120CDB ∠=︒G AB 60EDG ∠=︒CE EG BG CAB α∠=180CDB α∠=︒-AB EDG ∠AB ⊥l B D l AB AD ABC CE l F BD BD CE =(ⅱ).(2)当点F 在线段延长线上时,如图2,请写出线段,,之间的关系,并说明理由.23.(10分)在中,,分别过点A 、B 两点作过点C 的直线m 的垂线,垂足分别为点D 、E .(1)如图1,当,点A 、B 在直线m 的同侧时,求证:;(2)如图2,当,点A 、B 在直线m 的异侧时,请问(1)中有关于线段、和三条线段的数量关系的结论还成立吗?若成立,请你给出证明;若不成立,请给出正确结论,并说明理由;(3)如图3,当,,点A 、B 在直线m 的同侧时,一动点M 以每秒的速度从A 点出发沿A →C →B 路径向终点B 运动,同时另一动点N 以每秒的速度从B点出发DF CE CF =-BD DF CE CF ABC 90ACB ∠=︒AC CB =DE AD BE =+AC CB =DE AD BE 16cm AC =30cm CB =2cm 3cm沿B →C →A 路径向终点A 运动,两点都要到达相应的终点时才能停止运动.在运动过程中,分别过点M 和点N 作于P ,于Q .设运动时间为t 秒,当t 为何值时,与全等?24.(12分)在等边的顶点,处各有一只蜗牛,它们同时出发,分别以相同的速度由向和由向爬行,经过分钟后,它们分别爬行到,处,请问:MP m ⊥NQ m ⊥MPC NQC ABC A C A B C A t D E(1)如图1,爬行过程中,和的数量关系是________;(2)如图2,当蜗牛们分别爬行到线段,的延长线上的,处时,若的延长线与交于点,其他条件不变,蜗牛爬行过程中的大小将会保持不变,请你证明:;(3)如图3,如果将原题中“由向爬行”改为“沿着线段的延长线爬行,连接交于”,其他条件不变,求证:.CD BE AB CA D E EB CD Q CQE ∠60CQE ∠=︒C A BC DE AC F DF EF =答案:一、单选题1.C【分析】根据三角形的三边关系列出不等式组求解即可.【详解】解:设从10.5的小木棍上裁剪的线段长度为x ,则,即,∴整数x 的值为5、6 、7 、8、9、10,∴同学们最多能做出6个不同的三角形木架.故选:C .2.A【分析】根据AB ∥DE 证得∠B =∠E ,又已知BF =CE 证得BC =EF ,即已具备两个条件:一边一角,再依次添加选项中的条件即可判断.【详解】∵AB ∥DE ,∴∠B =∠E ,∵BF =CE ,∴BF +FC =CE +FC ,∴BC =EF ,若添加AC =DF ,则不能判定△ABC ≌△DEF ,故选项A 符合题意;若添加AC ∥DF ,则∠ACB =∠DFE ,可以判断△ABC ≌△DEF (ASA ),故选项B 不符合题意;若添加∠A =∠D ,可以判断△ABC ≌△DEF (AAS ),故选项C 不符合题意;若添加AB =DE ,可以判断△ABC ≌△DEF (SAS ),故选项D 不符合题意;故选:A .3.B【分析】连接CF ,依据中线的性质,推理可得 ,进而得出 ,据此可得结论.cm cm 9595x -<<+414x <<cm cm cm cm cm cm BCF BAF ACF S S S == 3ABC BAF S S =【详解】解:如图所示,连接CF ,∵△ABC 的两条中线AD 、BE 交于点F ,∴,∴,∵BE 是△ABC 的中线,FE 是△ACF 的中线,∴,,∴,同理可得,,∴,∴,故选:B .4.D【分析】题目由于在三角形中未确定大小,所以需要进行分类讨论:(1),作出符合题意的相应图形,由图可得:,根据角平分线的性质得:,在中,,故可得;(2)时,由图可得:,,在中,,故可得;综上可得:.【详解】解:(1)如图1所示:时,图1BCE ABD S S = 17ABF CDFE S S == 四边形BCE ABE S S = FCE FAE S S = 17BCF BAF S S == 17ACF BAF S S == 17BCF BAF ACF S S S === 331751ABC BAF S S ==⨯= A B ∠∠、A B ∠<∠DCE BCE BCD ∠=∠-∠()18022m n ACB BCE ︒-︒+︒∠∠==Rt BCD ∆9090BCD B n ∠=︒-∠=︒-︒()12DCE n m ∠=︒-︒A B ∠>∠DCE ACE ACD ∠=∠-∠()18022m n ACB ACE ︒-︒+︒∠∠==Rt ACD ∆9090ACD A m ∠=︒-∠=︒-︒()12DCE m n ∠=︒-︒12DCE m n ∠=︒-︒A B ∠<∠∵CD 是AB 边上的高,∴,,∵,,∴,∵CE 平分,∴,在中,,∴;(2)如图2所示:时,图2∵CD 是AB 边上的高,∴,,∵,,∴,∵CE 平分,∴,在中,,CD AB ⊥90CDB ∠=︒A m ∠=︒B n ∠=︒()180ACB m n ∠=︒-︒+︒ACB ∠()18022m n ACB ACE BCE ︒-︒+︒∠∠=∠==Rt BCD ∆9090BCD B n ∠=︒-∠=︒-︒()()()18019022m n DCE BCE BCD n n m ︒-︒+︒∠=∠-∠=-︒-︒=︒-︒A B ∠>∠CD AB ⊥90CDB ∠=︒A m ∠=︒B n ∠=︒()180ACB m n ∠=︒-︒+︒ACB ∠()18022m n ACB ACE BCE ︒-︒+︒∠∠=∠==Rt ACD ∆9090ACD A m ∠=︒-∠=︒-︒∴;综合(1)(2)两种情况可得:.故选:D .5.D【分析】本题考查了全等三角形的判定和性质,垂线段最短,分别延长与交于点,作交延长线于点,可证明,得到,求面积最大值转化成求线段的最大值即可,解题的关键是作出辅助线,构造出全等三角形.【详解】分别延长与 交于点, 作交 延长线于点 ,∵平分, ,∴,,又∵,∴,∴,,∵,∴,∴,∵,∴当点重合时,最大,最大值为,∴,故选:.6.D【分析】利用全等三角形的判定和性质逐一选项判断即可.【详解】解:在和中,()()()18019022m n DCE ACE ACD m m n ︒-︒+︒∠=∠-∠=-︒-︒=︒-︒12DCE m n ∠=︒-︒CD AB G GH CB ⊥CB H ()ASA ADG ADC ≌2BG =GH CD AB G GH CB ⊥CB H AD BAC ∠AD DC ⊥GAD CAD ∠=∠90ADG ADC ∠==︒AD AD =()ASA ADG ADC ≌AC AG =CD GD =2AC AB -=2BG =111·2222BDC BCG S S BC GH GH ==⨯= GH BC ⊥B H 、GH 224BDC S GH == D ∆BEF DCF ∆,∴≌(),故选项A 正确,不合题意;连接,∵≌(),∴,∴,∵,∴,∴,故选项C 正确,不合题意;∵,证不出,∴选项D 错误,符合题意;在和中,∴≌(),故选项B 正确,不合题意;故选:D7.B【分析】利用正方形的对角线互相垂直平分且相等,等腰直角三角形的性质,三角形的内角和定理和全等三角形的判定与性质解答即可.【详解】解:∵四边形是正方形,∴.∵,B D BFE DFC BE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∆BEF DCF ∆AAS BD ∆BEF DCF ∆AAS BF DF =FBD FDB ∠=∠ABC ADE ∠=∠ABD ADB ∠=∠AB AD =BF DF =DF AC =ABC ∆ADE ∆ABC ADE AB ADA A ∠=∠⎧⎪=⎨⎪∠=∠⎩ABC ∆ADE ∆ASA ABCD 90AOB AOD OA OB OD OC ∠=∠=︒===,OE OF =∴为等腰直角三角形,∴,∵,∴,∴.在和中,∴(SAS ).∴,∵,∴是等腰直角三角形,∴,∴.故选:B .8.A【分析】如图,过点C 作BC 的垂线,交BF 的延长线于点G ,则,先根据直角三角形两锐角互余可得,再根据三角形全等的判定定理与性质推出,又根据三角形全等的判定定理与性质推出,由此即可得出答案.【详解】如图,过点C 作BC 的垂线,交BF 的延长线于点G ,则,即在和中,OEF 45OEF OFE ∠=∠=︒25AFE ∠=︒70AFO AFE OFE ∠=∠+∠=︒20FAO ∠=︒AOF BOE △90OA OB AOF BOE OF OE =⎧⎪∠=∠=︒⎨⎪=⎩AOF BOE ≌△△20FAO EBO ∠=∠=︒OB OC =OBC △45OBC OCB ∠=∠=︒65CBE EBO OBC ∠=∠+∠=︒CG BC ⊥BAD CBG ∠=∠1G ∠=∠3G ∠=∠CG BC ⊥90BCG ∠=︒,90AB BC ABC =∠=︒45BAC ACB ∠∴∠==︒904545GCF BCG ACB ∴∠=∠-∠=︒-︒=︒BF AD⊥ 1190BAD CBG ∴∠+∠=∠+∠=︒BAD CBG∴∠=∠BAD ∆CBG ∆90BAD CBG AB BCABD BCG ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩点D 是BC 的中点在和中,故选:A .9.B【分析】在BE 上截取BG =DF ,先证△ADF ≌△ABG ,再证△AEG ≌△AEF 即可解答.【详解】在BE 上截取BG =DF ,∵∠B +∠ADC =180°,∠ADC +∠ADF =180°,∴∠B =∠ADF ,在△ADF 与△ABG 中,()BAD CBG ASA ∴∆≅∆,1BD CG G∴=∠=∠ CD BD CG∴==CDF ∆CGF ∆45CD CG DCF GCF CF CF =⎧⎪∠=∠=︒⎨⎪=⎩()CDF CGF SAS ∴∆≅∆3G∴∠=∠13∠∠∴=AB AD B ADF BG DF =⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△ABG (SAS ),∴AG =AF ,∠FAD =∠GAB ,∵∠EAF =∠BAD ,∴∠FAE =∠GAE ,在△AEG 与△AEF 中,∴△AEG ≌△AEF (SAS )∴EF =EG =BE ﹣BG =BE ﹣DF =4.故选:B .10.A【分析】在射线AD 上截取,连接PM ,证明,可得,,然后证明,利用相似三角形的性质进行求解可得到结论.【详解】解:如下图,在射线A D 上截取,连接PM ,∵PA 平分,∴ ,在和中,,∴,∴,.∵,∴,∴.∵PC 平分,∴.12AG AF FAE GAE AE AE =⎧⎪∠=∠⎨⎪=⎩AM AC =PAM PAC ≌PM PC =PMA PCA ∠=∠BC PM AM AC =DAC ∠60PAM PAC ∠=∠=︒PAM △PAC △PA PA PAM PAC AM AC =⎧⎪∠=∠⎨⎪=⎩PAM PAC SAS ≌()PM PC =PMA PCA ∠=∠PC AB AC =+PC AB MA MB =+=PC PM BM ==ACE ∠PCA PCE ∠=∠如下图,延长MB ,PC 交于点G ,∵,∴.∵,∴,∴,∴,∴,∴,∴,∴,∴.∵,,,∴,∴,∴,∴,∴,∴,∴,∴.GCB PCE ∠=∠PMA GCB ∠=∠BGC PGM ∠=∠BGC PGM ∽GB GC GP GM=··GB GM GC GP =GB GB BM GC GC CP ⋅+=⋅+()()22GB GB BM GC GC CP +⋅=+⋅220GB GC GB BM GC CP -+⋅-⋅=()()()0GB GC GB GC PC GB GC +-+-=()()0GB GC GB GC PC -++=)0GB >0GC >0PC >0GB GC PC ++>0GB GC -=GB GC =∠=∠GBC GCB GBC BMP ∠=∠BC PM 180BMP B ∠+∠=︒180180ABC BMP PCA ∠=︒-∠=︒-∠∵,∴.∵,∴180°-∠PCA=2∠PCA-60°,∴,∴.故选:A .二、填空题11.3<x <5【分析】延长AD 至M 使DM=AD ,连接CM ,先说明△ABD ≌△CDM ,得到CM=AB=8,再求出2AD 的范围,最后求出AD 的范围.【详解】解:如图:AB=8,AC=2,延长AD 至M 使DM=AD ,连接CM在△ABD 和△CDM 中,∴△ABD ≌△MCD (SAS ),∴CM=AB=8.在△ACM 中:8-2<2x <8+2,解得:3<x <5.故答案为3<x <5.12.60PAM PAC ∠=∠=︒60BAC ∠=︒260ABC ACE BAC PCA ∠=∠-∠=∠-︒80PCA ∠=︒180********ABC PAC ∠=︒-∠=︒-︒=∠︒AD MD ADB MDCBD CD =⎧⎪∠=∠⎨⎪=⎩A ABC ∠=∠36︒【分析】(1)根据角平分线的性质平分,可得,再由两直线平行线同位角相等,内错角相等可得即可解答;(2)利用角平分线的性质和三角形的外角定理即可求解【详解】(1)解:平分,,,当时,,故答案为:;(2)解:平分,平分,,又,当时,,故答案为:13.【分析】本题考查全等三角形的判定和性质、等腰三角形的性质、三角形的面积等知识,由面积相等可得相应等式,作出三角形的高,作出辅助线构造三角形全等,证明三角形全等是是解题的关键.【详解】解:如图:,过作于,过作 交延长线于,延长到使,PC ACM ∠ACP PCM ∠=∠ABC PCM A ACP ∠=∠∠=∠,PC ACM ∠ACP PCM ∴∠=∠ PC AB ∥ABC PCM A ACP∴∠=∠∠=∠,ABC A∠=∠∴∴ABC A ∠=∠PC AB ∥ABC A ∠=∠ BP ABC ∠PC ACM ∠12ABP PBC ABC ∴∠=∠=∠,12ACP PCM ACM ∠=∠=∠ACM ABC A ∠=∠+∠ ,22PCM PBC A∴∠=∠+∠ PCM PBC P ∠=∠+∠222PBC P PBC A∴∠+∠=∠+∠2P A ∴∠=∠72A ∠=︒36P ∴∠=︒36︒4saAB AC DE DF ===C C M A B ⊥M F FN ED ⊥ED N BA K AK AB=12ABC S AB CM S == 12DEF S DE FN S ==,,,.故答案为:.14.【分析】延长至O 点,使得,连接,先证明,再证明CM FN∴=AC DF= Rt Rt (HL)AMC DNF ∴≌ MAC NDF∴∠=∠180CAK MAC ︒∠=-∠ 180EDF NDF︒∠=-∠CAK EDF∴∠=∠AK AC DE DF=== (SAS)ACK DFE ∴≌ EF CK ∴=2KBC S S= AK AC DE DF=== ABC ACB ∴∠=∠K ACK∠=∠1180902ACB ACK ABC K ︒︒∴∠+∠=∠+∠=⨯=90BCK ︒∴∠=122KBC S BC CK S ∴== BC a= 4S CK a ∴=4S EF a∴=4S a72ED OD DE =AO ≌ADO ADE V V,问题随之得解.【详解】延长至O 点,使得,连接,如图,∵,∴,∵,,∴△ADO ≌△ADE ,∴,,∴,∵,∴,∴,∵,,∴,∴,∵,,∴,∴,∵,∴,故答案为:.15.【分析】过点作,且,连接、,交于点,则是等腰直角三角形,证明,则,,则,根据EAC OAB ≌△△ED OD DE =AO 90ADB ∠=︒18090ADO ADB ∠=︒-∠=︒AD AD =OD DE =OAD EAD ∠=∠OA AE =2OAE EAD ∠=∠2BAC DAE ∠=∠BAC OAE ∠=∠EAC OAB ∠=∠OA AE =AB AC =EAC OAB ≌△△OB EC =17CE =10BE =17OB EC ==7OE OB EB =-=OD DE =1722DE OE ==722B BF BE ⊥BF BE =CF EF ,EF CD G BFE △ABE CBF △≌△ABE CBF S S =△△CGF DGE ≌CGF DGE S S =,即可求解.【详解】解:如图所示,过点作,且,连接、,交于点,则是等腰直角三角形,∵和都为等腰直角三角形,,∴∵,∴∴∴∴,则∴,∴,∵∴又∴∴∴五边形面积∴故答案为:2.212BEF S S BE == B BF BE ⊥BF BE =CF EF ,EF CD G BFE △ABC AED △90ABC AED ∠=∠=︒,BA BC AE AD==BF BE ⊥90FBE ∠=︒ABE EBC FBC EBC∠+∠=∠+∠ABE CBF∠=∠ABE CBF △≌△ABE CBFS S =△△AE CF =AEB CFB∠=∠DE CF =45,45AEB GED CFB CFG∠=︒-∠∠=︒-∠CFG DEG∠=∠CGF DGE∠=∠CGF DGE≌CGF DGES S = ABCDE 212BEF S S BE == 2BE S =216.3【详解】如图,过点D 作DH ∥AC 交BC 于H ,∵△ABC 是等边三角形,∴△BDH 也是等边三角形,∴BD=HD ,∵BD=CF ,∴HD=CF ,∵DH ∥AC ,∴∠PCF=∠PHD ,在△PCF 和△PHD 中,∴△PCF ≌△PHD (AAS ),∴PC=PH ,∵△BDH 是等边三角形,DE ⊥BC ,∴BE=EH ,∴EP=EH+HP= BC ,∵等边△ABC ,AB=6,∴EP=╳6=3.故答案是:3.17.【分析】此题考查了全等三角形的判定与性质、等腰三角形的性质,延长交 的角平PCF PHD CPF HPD HD CF ∠∠⎧⎪∠∠⎨⎪⎩===121265︒BO BAC ∠分线于点,连结,根据等腰三角形的性质及角平分线定义求出,,进而得出,利用证明,根据全等三角形的性质求出,,根据角的和差及三角形内角和定理求出,结合平角定义求出,利用证明,根据全等三角形的性质得出,再根据等腰三角形的性质及角的和差求解即可.【详解】如图,延长交 的角平分线于点,连接.平分,,,,,,,,在和中,,,,,,,,,,,在和中,P CP 55ABC ACB ∠=∠=︒35BAP CAP ∠=∠=︒30OBC ∠=︒SAS APB ACP ≌△△25ABP ACP ∠=∠=︒APB APC ∠=∠120BPC ∠=︒120APC BPC ∠=︒=∠ASA APC OPC ≌△△AP OP =BO BAC ∠P CP AP BAC ∠70BAC ∠=︒35BAP CAP ∴∠=∠=︒AB AC = 70BAC ∠=︒55ABC ACB ∴∠=∠=︒25ABO ∠=︒ 30OBC ABC ABO ∴∠=∠-∠=︒APB △ACP △AB AC BAP CAP AP AP =⎧⎪∠=∠⎨⎪=⎩(SAS)APB ACP ∴ ≌25ABP ACP ∴∠=∠=︒APB APC ∠=∠30BCP ACB ACP ∴∠=∠-∠=︒180120BPC PBC BCP ∴∠=︒-∠-∠=︒360120240APB APC ∴∠+∠=︒-︒=︒120APB APC BPC ∴∠=∠=︒=∠5OCB ∠=︒ 25OCP BCP OCB ACP ∴∠=∠-∠=︒=∠APC △OPC,,,,,故答案为:.18.①③④【分析】由 ,利用等式的性质得到夹角相等,从而得出三角形 与三角形全等,由全等三角形的对应边相等得到,本选项正确;由三角形与三角形全等,得到一对角相等,由等腰直角三角形的性质得到,进而得到 ,本选项不正确;再利用等腰直角三角形的性质及等量代换得到,本选项正确;利用周角减去两个直角可得答案;【详解】解: ,即:在 和 中,本选项正确;为等腰直角三角形,,本选项不正确;ACP OCP CP CPAPC OPC ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA)APC OPC ∴ ≌AP OP ∴=1(180)302OAP AOP APO ∴∠=∠=⨯︒-∠=︒65OAC OAP CAP ∴∠=∠+∠=︒65︒①AB AC =AD AE =ABD ACE BD CE =②ABD ACE 45ABD DBC ∠+∠=︒45ACE DBC ∠+∠=︒③BD CE ⊥④90BAC DAE ∠=∠=︒① BAC CAD DAE CAD∴∠+∠=∠+∠BAD CAE∠=∠BAD CAE V AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩()SAS BAD CAE ∴≌ BD CE ∴=ABC ②45ABC ACB ∴∠=∠=︒45ABD DBC ∴∠+∠=︒BAD CAE ≌ ABD ACE ∴∠=∠45ACE DBC ∴∠+∠=︒即,∴,本选项正确;,本此选项正确;故答案为:①③④.三、解答题19.解:如图过点A 作BC 的平行线AE ,再在AE 上截取,交AE 于点D ,连接BD ,CD 即可得到△BCD .20.(1)解:∵,∴,∵平分,平分,∴,,∵是的外角,∴;(2)证明:在上截取,连接,45ABD DBC ∠+∠=︒③ 45ACE DBC ∴∠+∠=︒90DBC DCB DBC ACE ACB ∴∠+∠=∠+∠+∠=︒90BDC ∠=︒BD CE ⊥90BAC DAE ∠=∠=︒④ 3609090180BAE DAC ∴∠+∠=︒-︒-︒=︒AD AB =9060BAC ABC ∠=︒∠=︒,30ACB ∠=︒AD BAC ∠CE BAC ∠CAD ∠=1245BAC ∠=︒ACE ∠=1215ACB ∠=︒AOE ∠AOC 60AOE CAD ACE ∠=∠+∠=︒AC CF CD =OF∵平分,∴,在和中,,∴ ,∴,∵,∴,∴,∴,∵平分,∴,在和中, ∴ ,∴,∵,∴.21.(1),,(2)猜想:CE ACB ∠DCO FCO ∠=∠DCO FCO CD CF DCO FCO OC OC =⎧⎪∠=∠⎨⎪=⎩()DCO FCO SAS ≌COD COF ∠=∠60AOE =︒∠60COD COF ∠=∠=︒18060AOF AOE COF ∠=︒-∠-∠==︒AOE AOF ∠=∠AD BAC ∠EAO FAO ∠=∠EAO FAO EAO FAO AO AOAOE AOF ∠=∠⎧⎪=⎨⎪∠=∠⎩()EAO FAO ASA ≌AE AF =AC AF CF =+=+AC AE CD 180ABD DBF ∠+∠= 180C ABD ∠+∠= C DBF∴∠=∠CE BF = DC DB=CED BFD∴ ≌DE DF∴=CE BG EG+=由(1)可知,,,,得证;(3)当成立由(1)可知,,,,得证.22.(1)(ⅰ)证明:和都是等边三角形,,,,CED BFD≌CDE BDF ∴∠=∠ED FD =CE BF=120CDB ∠= 60EDG ∠=1206060CED BDG CDB EDG ∴∠+∠=∠-∠=-=60BDG BDF ∴∠+∠=60GDF EDG∴∠==∠ DG DG= EDG FDG∴ ≌EG GF∴=GF BG BF=+ EG BG CE∴=+1902EDG α∠=- CED BFD≌CDE BDF ∴∠=∠ED FD =CE BF=180CDB α∠=- 90EDG α∠=-o 11(180)(90)9022CED BDG CDB EDG ααα∴∠+∠=∠-∠=---=- 1902BDG BDF α∴∠+∠=- 1902GDF EDG α∴∠=-=∠ DG DG= EDG FDG∴ ≌EG GF∴=GF BG BF=+ EG BG CE∴=+ABC ADE V AB AC ∴=AD AE =60BAC DAE ACB ABC ∠=∠=∠=∠=︒.在和中,,.(ⅱ),,.直线,,,.点,,在一条线上,,,,.,,即;(2)解:同理证明,,,,,,,即.23.(1)证明:∵,∴,∵于D ,于E ,∴,,∴,在和中,BAD CAE ∴∠=∠ABD △ACE △,,,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩ABD ACE ∴ ≌BD CE ∴=ABD ACE ≌BD CE ∴=ABD ACE ∠=∠AB ⊥Q l 90ABD ∴∠=︒90ACE ∠=︒30CBF ∠=︒ E C F 60ACB ∠=︒30BCF ∴∠=︒CBF BCF ∴∠=∠BF CF ∴=BD DF BF =+ BD DF CF CE ∴=+=DF CE CF=-ABD ACE ≌△△90ABD ACE ∴∠=∠=︒30FBC FCB ∠=∠=︒BD CE =BF CF ∴=BF BD DF ∴=+CF BD DF ∴=+DF CF CE =-90ACB ∠=︒90ACD BCE ∠∠+=︒AD m ⊥BE m ⊥90ADC CEB ∠∠==︒90BCE CBE ∠∠+=︒ACD CBE ∠∠=ADC CEB,∴,∴,,∴;(2)解:结论:;理由:∵,,∴,∵,∴,∴,在和中,,∴,∴,,∴;(3)解:①当时,点M 在上,点N 在上,如图,∵,∴,解得:,不合题意;②当时,点M 在上,点N 也在上,如图,ADC CEB ACD CBE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ADC CEB ≌AD CE =DC BE =DE DC CE BE AD =+=+DE AD BE =-AD m ⊥BE m ⊥90ADC CEB ∠∠==︒90ACB ∠=︒90ACD CAD ACD BCE ∠∠∠∠+=+=︒CAD BCE ∠∠=ACD CBE ADC CEB CAD BCE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ACD CBE ≌AD CE =CD BE =DE CE CD AD BE =-=-08t ≤<AC BC MC NC =162303t t -=-14t =810t ≤<BC BC∵,∴点M 与点N 重合,∴,解得:;③当时,点M 在上,点N 在上,如图,∵,∴,解得:;④当时,点N 停在点A 处,点M 在上,如图,∵,∴,解得:;综上所述:当或14或16秒时,与全等.24.(1)解:,理由如下:为等边三角形,MC NC =216303t t =﹣﹣9.2t =46103t ≤<BC AC MC NC =216330t t -=-14t =46233t ≤<BC MC NC =21616t -=16t =9.2t =MPC NQC CD BE = ABC,,由题意得:,在和中,,,;(2)证明如下:由(1)可知,,,,;(3)证明:过点作交于,,为等边三角形,为等边三角形,,,,在和中,,,.∴60A ACB ∠=∠=︒AC BC =AD CE =ADC △CEB AD CE A ACB AC CB =⎧⎪∠=∠⎨⎪=⎩∴()SAS ADC CEB ≌∴CD BE =()SAS ADC CEB ≌∴ADC E ∠=∠ 60E ABE BAC ∠+∠=∠=︒DBQ ABE ∠=∠∴60CQE ADC DBQ ∠=∠+∠=︒D DH BC ∥AC H ∴HDF CEF ∠=∠ ABC ∴ADH ∴HD AD = AD CE =∴DH CE =DFH EFC HDF CEF DFH EFC DH CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS DFH EFC ≌∴DF EF =。
《第十二章 全等三角形》单元测试卷及答案(共六套)
《第十二章 全等三角形》单元测试卷(一)答题时间:120 满分:150分一、选择题 (每题3分,共30分。
每题只有一个正确答案,请将正确答案的代号填在下面的表格中)题号 1 2 3 4 5 6 7 8 9 10 答案1.下列判断中错误..的是( ) A .有两角和一边对应相等的两个三角形全等 B .有两边和一角对应相等的两个三角形全等C .有两边和其中一边上的中线对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等2.如图,和均是等边三角形,分别与交于点,有如下结论:①;②;③. 其中,正确结论的个数是( ) A .3个B .2个C .1个D .0个3.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是( ) A .带①去 B .带②去 C .带③去 D .带①②③去4.△ABC ≌△DEF ,AB=2,AC =4,若△DEF 的周长为偶数, 则EF 的取值为( )A .3B .4C .5D .3或4或55.如图,已知,△ABC 的三个元素,则甲、乙、丙三个三角形中,和△ABC 全等的图形是( ) A .甲和乙 B .乙和丙DAC △EBC △AE BD ,CD CE ,M N ,ACE DCB △≌△CM CN =AC DN =(第3题)BECD ANM (第2题)(第5题)C .只有乙D .只有丙6.三角形ABC 的三条内角平分线为AE 、BF 、CG 、下面的说法中正确的个数有( ) ①△ABC 的内角平分线上的点到三边距离相等 ②三角形的三条内角平分线交于一点 ③三角形的内角平分线位于三角形的内部④三角形的任一内角平分线将三角形分成面积相等的两部分 A .1个 B .2个 C .3个 D .4个7.如图,长方形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,∠BAF =600,那么∠DAE 等于( ) A .150 B .300 C .450 D .6008.如图所示,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 边翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为( ) A .80° B .100° C .60° D .45°9.在△ABC 和△A B C '''中,已知A A '∠=∠,AB A B ''=,在下面判断中错误的是( )A.若添加条件AC A C ''=,则△ABC ≌△A B C '''B.若添加条件BC B C ''=,则△ABC ≌△A B C '''C.若添加条件B B '∠=∠,则△ABC ≌△A B C '''D.若添加条件C C '∠=∠,则△ABC ≌△A B C '''10.如图,在△ABC 中,∠C =90,AD 平分∠BAC ,DE ⊥AB 于E , 则下列结论:①AD 平分∠CDE ;②∠BAC =∠BDE ; ③DE 平分∠ADB ;④BE +AC =AB .其中正确的有( ) A.1个 B.2个C.3个D.4个二、填空题(每题3分,共30)11.如图,AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△COB .你补充的条件是______________________________.(第7题)(第8题) 第10题12.如图,AC ,BD 相交于点O ,AC =BD ,AB =CD ,写出图中两对相等的角______. 13.如图,△ABC 中,∠C =90°,AD 平分∠BAC ,AB =5,CD =2,则△ABD 的面积是______.14.如图,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则 的面积为______.15.在△ABC 中,∠C =90°,BC =4CM ,∠BAC 的平分线交BC 于D ,且BD :DC =5:3,则D 到AB 的距离为_____________.16.如图,△ABC 是不等边三角形,DE =BC ,以D ,E 为两个顶点作位置不同的三角形,使所作的三角形与△ABC 全等,这样的三角形最多可以画出_____个.17.如图,分别是锐角三角形和锐角三角形中边上的高,且.若使,请你补充条件___________.(填写一个你认为适当的条件即可)18.如图,如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是__________.ACE △AD A D '',ABC A B C ''',BC B C ''AB A B AD A D ''''==,ABC A B C '''△≌△(第11题)AD OC B (第12题)ADOC B(第13题)ADCBAD CBE(第14题)(第16题)BDEABC D'A 'B'D'C (第17、18题) (第19题)19.如图,已知在中,平分,于,若,则的周长为 .20.在数学活动课上,小明提出这样一个问题:∠B =∠C =90,E 是BC 的中点,DE 平分∠ADC ,∠CED =35,如图16,则∠EAB 是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是______.三、解答题(每题9分,共36分)21.如图,O 为码头,A ,B 两个灯塔与码头的距离相等,OA ,OB 为海岸线,一轮船从码头开出,计划沿∠AOB 的平分线航行,航行途中,测得轮船与灯塔A ,B 的距离相等,此时轮船有没有偏离航线?画出图形并说明你的理由.22.如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .23.如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N . 求证:∠OAB =∠OBAABC ∆90,,A AB AC CD ∠=︒=ACB ∠DE BC ⊥E 15cm BC =DEB △cm 00 ABO24.如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .四、解答题(每题10分,共30分)25.如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B26.如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M . (1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.27.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC .PEDCBA DCBA(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):五、(每题12分,共24分)28.如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F . 求证:BD =2CE .29.已知:在△ABC 中,∠BAC =90,AB =AC ,AE 是过点A 的一条直线,且BD ⊥AE 于D ,CE ⊥AE 于E .(1)当直线AE 处于如图①的位置时,有BD =DE +CE ,请说明理由;(2)当直线AE 处于如图②的位置时,则BD 、DE 、CE 的关系如何?请说明理由; (3)归纳(1)、(2),请用简洁的语言表达BD 、DE 、CE 之间的关系.OEDCBAFE D CBA参考答案一、选择题1.B 2.B 3.C 4.B 5.B 6.B 7.A 8.A 9.B 10. C二、填空题11.∠A=∠C或∠ADO=∠CBO等(答案不唯一) 1 2.∠A=∠D或∠ABC=∠DCB 等(答案不唯一) 13.5 14.8 1 5.1.5cm 16.4 17.BD=B’D’或∠B=∠B’等(答案不唯一) 18.互补或相等 19.15 20.35三、解答题21.此时轮船没有偏离航线.画图及说理略22.证明:延长AD至H交BC于H;BD=DC;所以:∠DBC=∠角DCB;∠1=∠2;∠DBC+∠1=∠角DCB+∠2;∠ABC=∠ACB;所以:AB=AC;三角形ABD全等于三角形ACD;∠BAD=∠CAD;AD是等腰三角形的顶角平分线所以:AD垂直BC23.证明:因为AOM与MOB都为直角三角形、共用OM,且∠MOA=∠MOB所以MA=MB所以∠MAB=∠MBA因为∠OAM=∠OBM=90度所以∠OAB=90-∠MAB ∠OBA=90-∠MBA所以∠OAB=∠OBA24.证明:做BE的延长线,与AP相交于F点,∵PA//BC∴∠PAB+∠CBA=180°,又∵,AE,BE均为∠PAB和∠CBA的角平分线∴∠EAB+∠EBA=90°∴∠AEB=90°,EAB为直角三角形在三角形ABF中,AE⊥BF,且AE为∠FAB的角平分线∴三角形FAB为等腰三角形,AB=AF,BE=EF在三角形DEF与三角形BEC中,∠EBC=∠DFE,且BE=EF,∠DEF=∠CEB,∴三角形DEF与三角形BEC为全等三角形,∴DF=BC∴AB=AF=AD+DF=AD+BC四、25.证明:延长AC至E,使CE=CD,连接ED∵AB=AC+CD∴AE=AB∵AD平分∠CAB∴∠EAD=∠BAD∴AE=AB∠EAD=∠BADAD=AD∴△ADE≌△ADB∴∠E=∠B且∠ACD=∠E+∠CDE,CE=CD∴∠ACD=∠E+∠CDE=2∠E=2∠B即∠C=2∠B26.分析:通过证明两个直角三角形全等,即Rt△DEC≌Rt△BFA以及垂线的性质得出四边形BEDF是平行四边形.再根据平行四边形的性质得出结论.解答:解:(1)连接BE,DF.∵DE⊥AC于E,BF⊥AC于F,,∴∠DEC=∠BFA=90°,DE∥BF,在Rt△DEC和Rt△BFA中,∵AF=CE,AB=CD,∴Rt△DEC≌Rt△BFA,∴DE=BF.∴四边形BEDF是平行四边形.∴MB=MD,ME=MF;(2)连接BE,DF.∵DE⊥AC于E,BF⊥AC于F,,∴∠DEC=∠BFA=90°,DE∥BF,在Rt△DEC和Rt△BFA中,∵AF=CE,AB=CD,∴Rt△DEC≌Rt△BFA,∴DE=BF.∴四边形BEDF是平行四边形.∴MB=MD,ME=MF.(2)成立27.(1)证明:∵DC=1/2 AB,E为AB的中点,∴CD=BE=AE.又∵DC∥AB,∴四边形ADCE是平行四边形.∴CE=AD,CE∥AD.∴∠BEC=∠BAD.∴△BEC≌△EAD(2)△AEC,△CDA,△CDE五、 28.证明:因为∠CEB=∠CAB=90°所以:ABCE四点共元又因为:∠AB E=∠CB E所以:AE=CE所以:∠ECA=∠EAC取线段BD的中点G,连接AG,则:AG=BG=DG所以:∠GAB=∠ABG而:∠ECA=∠GBA (同弧上的圆周角相等)所以:∠ECA=∠EAC=∠GBA=∠GAB而:AC=AB所以:△AEC≌△AGB所以:EC=BG=DG所以:BD=2CE29解:(1)在△ABC中,∠BAC=90°,∴∠BAD=90°-∠EAC。
人教版八年级数学上册《第十二章 全等三角形》单元测试卷(附答案)
人教版八年级数学上册《第十二章全等三角形》单元测试卷(附答案)一、选择题1.下列说法正确的是( )A. 两个等边三角形一定全等B. 形状相同的两个三角形全等C. 面积相等的两个三角形全等D. 全等三角形的面积一定相等2.根据下列已知条件,能唯一画出△ABC的是( )A. AB=5,BC=3,AC=8B. AB=4,BC=3C. ∠C=90°,AB=6D. ∠A=60°,∠B=45°3.如图,已知∠C=∠D=90°,AC=AD那么△ABC与△ABD全等的理由是( )A. HLB. SASC. ASAD. AAS4.如图∠CAB=∠DBA,再添加一个条件,不一定能判定△ABC≌△BAD的是( )A. AC=BDB. ∠1=∠2C. AD=BCD. ∠C=∠D5.如图,若△ABC≌△ADE,则下列结论中一定成立的是( )A. AC=DEB. ∠BAD=∠CAEC. AB=AED. ∠ABC=∠AED6.在△ABC中AC=6则BC边上的中线AD的取值范围是( )A. 3<AD<11B. 3<AD<9C. 1<AD<7D. 5<AD<117.如图,AD是△ABC中∠BAC的平分线,DE⊥AB交AB于点E,DF⊥AC交AC于点F,若S△ABC=7,DE= 2,AB=4则AC的长为( )A. 3B. 4C. 5D. 68.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE= 55°,∠BCD=155°,则∠BPD的度数为( )A. 130°B. 155°C. 125°D. 110°9.在△ABC中AC=6则BC边上的中线AD的取值范围是( )A. 6<AD<8B. 2<AD<14C. 1<AD<7D. 无法确定10.如图AC=CE,∠ACE=90°,AB⊥BD,ED⊥BD,AB=5cm,DE=3cm,则BD等于( )A. 6cmB. 8cmC. 10cmD. 4cm二、填空题11.一个三角形的三边为3、5、x,另一个三角形的三边为y、3、6,若这两个三角形全等,则x−y=__________.12.如图为6个边长相等的正方形的组合图形,则∠1+∠3=______ .13.如图△ABC≌△A′B′C′,其中∠C′=24°则∠B=°.14.如图,已知△ABC≌△ADE,若AB=7,AC=3则BE的值为_____.15.如图,已知在△ABC和△DEF中BF=CE点B、F、C、E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是(只填一个即可).16.如图△ABC中AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=_______度.17.如图△ABC≌△DCB,若AC=7,BE=5则DE的长为.18.如图,Rt△ABC中AD为的∠BAC角平分线,与BC相交于点D,若CD=3,AB=10则△ABD的面积是______.19.如图,在△ABC中∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=8cm,则△BED的周长是______.20.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF//AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF给出下列四个结论:①DE=DF②DB=DC③AD⊥BC④AC=3BF其中正确的结论是______ .三、解答题21.如图,在直线MN上求作一点P,使点P到射线OA和OB的距离相等.(要求用尺规作图,保留作图痕迹,不必写作法和证明过程)22.如图AB//CD,AB=CD,CE=BF请写出DF与AE的数量关系,并证明你的结论.23.已知:如图AB//DE,点C、F在AD上AF=DC,AB=DE.求证:△ABC≌△DEF.24.如图,点A,E,F,B在直线l上AE=BF,AC//BD且AC=BD,求证:CF=DE.25.如图,在△ABC中∠C=90∘,AD平分∠BAC,DE⊥AB于点E,点F在AC上,且BD=DF.(1)求证:CF=EB;(2)请你判断AE、AF与BE之间的数量关系,并说明理由.答案和解析1.【答案】D【解析】【分析】本题考查的是全等图形,熟知全等三角形的判定与性质是解答此题的关键,根据全等图形的性质对各选项进行逐一分析即可.【解答】解:A.两个边长不相等的等边三角形不全等,故本选项错误;B.形状相同,边长不对应相等的两个三角形不全等,故本选项错误;C.面积相等的两个三角形不一定全等,故本选项错误;D.全等三角形的面积一定相等,故本选项正确.故选D.2.【答案】D【解析】【分析】本题考查了三角形的三边关系定理和全等三角形的判定定理,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,HL.根据三角形的三边关系定理,先看看能否组成三角形,再根据全等三角形的判定定理判断即可.【解答】解:A∵3+5=8∴根据三角形三边关系AB=5BC=3AC=8不能画出三角形故本选项错误;B已知AB BC和BC的对角AB=4BC=3∠A=30°不能画出唯一三角形故本选项错误;C根据∠C=90°AB=6已知一个角和一条边不能画出唯一三角形故本选项错误;D根据∠A=60°∠B=45°AB=4已知两角和夹边符合全等三角形的判定定理ASA即能画出唯一三角形故本选项正确;故选D.3.【答案】A【解析】【分析】本题考查全等三角形的判定解题的关键是注意AB是两个三角形的公共边本题属于基础题型.已知∠C=∠D=90°AC=AD且公共边AB=AB故△ABC与△ABD全等.【解答】解:在Rt△ABC与Rt△ABD中{AB=ABAC=AD∴Rt△ABC≌Rt△ABD(HL)故选A.4.【答案】C【解析】【分析】本题主要考查全等三角形的判定.熟记5种判定并灵活运用是解决本题的关键.【解答】解:A.添加AC=BD则可以通过(SAS)判定△ABC≌△BAD故本选项不符合题意;B.添加∠1=∠2则可以通过(ASA)判定△ABC≌△BAD故本选项不符合题意;C.添加AD=BC不能判定△ABC≌△BAD故本选项符合题意;D.添加∠C=∠D则可以通过(AAS)判定△ABC≌△BAD故本选项不符合题意;故选C.5.【答案】B【解析】【分析】本题考查了全等三角形的性质熟练掌握全等三角形的性质是解题的关键.根据全等三角形的性质即可得到结论.【解答】解:∵△ABC≌△ADE∴AC=AE AB=AD∠ABC=∠ADE∠BAC=∠DAE∴∠BAC−∠DAC=∠DAE−∠DAC即∠BAD=∠CAE.故A C D选项错误B选项正确故选:B.6.【答案】C【解析】【分析】这是一道考查全等三角形的判定和三角形的三边关系的题目解题关键在于构造三角形延长AD至E使DE=AD连接CE证明△ABD≌△ECD再利用三边关系即可得到答案.【解答】解:延长AD至E使DE=AD连接CE在△ABD和△ECD中{AD=ED∠ADB=∠EDC DB=DC,∴△ABD≌△ECD∴CE=AB=8在△ACE中CE−AC<AE<CE+AC即2<2AD<14故1<AD<7故选C.7.【答案】A【解析】【分析】本题主要考查了角平分线的性质;利用三角形的面积求线段的大小是一种很好的方法要注意掌握应用.先由角平分线的性质可知DF=DE=2然后由S△ABC=S△ABD+S△ACD及三角形的面积公式得出结果.【解答】解:∵AD是△ABC中∠BAC的平分线DE⊥AB于点E DF⊥AC交AC于点F∴DF=DE=2又∵S△ABC=S△ABD+S△ACD AB=4∴7=12×4×2+12·AC·2∴AC=3.故选A.8.【答案】A【解析】【分析】本题考查了全等三角形的判定和性质三角形的内角和定理以及四边形的内角和定理易证△ACD≌△BCE由全等三角形的性质可知:∠A=∠B再根据已知条件和四边形的内角和为360°即可求出∠BPD的度数.【解答】解:在△ACD 和△BCE 中{AC =BC CD =CE AD =BE∴△ACD≌△BCE(SSS)∴∠A =∠B ∠BCE =∠ACD∴∠BCA =∠ECD∵∠ACE =55° ∠BCD =155°∴∠BCA +∠ECD =100°∴∠BCA =∠ECD =50°∵∠ACE =55°∴∠ACD =105°∴∠A +∠D =75°∴∠B +∠D =75°∵∠BCD =155°∴∠BPD =360°−75°−155°=130°.故选A .9.【答案】C【解析】【分析】此题主要考查了全等三角形的判定和性质 三角形的三边关系.注意:倍长中线是常见的辅助线之一. 延长AD 至E 使DE =AD 连接CE.根据SAS 证明△ABD≌△ECD 得CE =AB 再根据三角形的三边关系即可求解.【解答】解:延长AD 至E 使DE =AD 连接CE .在△ABD和△ECD中{DE=AD∠ADB=∠CDE DB=DC∴△ABD≌△ECD(SAS)∴CE=AB.在△ACE中CE−AC<AE<CE+AC即2<2AD<141<AD<7.故选:C.10.【答案】B【解析】【分析】由题意可证△ABC≌△CDE即可得CD=AB=5cm DE=BC=3cm进而可求BD的长。
八年级数学上册《第十二章 全等三角形》单元测试卷含答案(人教版)
八年级数学上册《第十二章 全等三角形》单元测试卷含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.角平分线的性质:角平分线上的点到这个角的两边距离相等,其理论依据是全等三角形判定定理( )A .SASB .HLC .AASD .ASA2.如图,Rt ABC 沿直角边BC 所在的直线向右平移得到DEF ,下列结论中错误的是( )A .ΔABC ≌ΔDEFB .90DEF ∠=︒C .AC DF =D .EC CF =3.如图:EA ∥DF ,AE=DF ,要使△AEC ≌△DBF ,则只要( )A .AB=CDB .EC=BFC .∠A=∠D D .AB=BC4.如图,ABC A B C '''≌,其中3624A C ∠=︒∠='︒,,则B ∠的度数为( )A .150︒B .120︒C .100︒D .60︒5.如图,在△ABC 中,CD 、BE 分别是AB 、AC 边上的高,F 是CD 与BE 的交点.若AD =FD ,∠ABE =26°,则∠ACB 的度数为( )A .76°B .71°C .81°D .86°6.如图,在ABC 中,108AB AC O ==,,为ABC 角平分线的交点,若ABO 的面积为30,则ACO 的面积为( )A .18B .20C .22D .247.如图,△ABC 中,AB =4,BC =6,BD 是△ABC 的角平分线,DE ⊥AB 于点E ,AF ⊥BC 于点F ,若DE =2,则AF 的长为( )A .3B .103C .72D .1548.如图,AD 是△ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE=DF ,连结BF ,CE.下列说法:①△ABD 和△ACD 面积相等;②∠BAD=∠CAD ;③△BDF ≌△CDE ;④BF ∥CE ;⑤CE=AE.其中正确的有( )A .1个B .2个C .3个D .4个二、填空题9.如图,已知 ABC 中,点D ,E 分别在边AC ,AB 上,连接BD ,DE 和 180C AED ∠+∠=︒ 请你添加一个条件,使 BDE BDC ≌ ,你所添加的条件是 .(只填一个条件即可)10.如图,在△ABC 中,已知∠1=∠2,BE=CD ,AB=7,AE=3,则CE= .11.如图所示,点O 在一块直角三角板ABC 上(其中30ABC ∠=︒),OM AB ⊥于点M ,ON BC∠=度.=,则ABO⊥于点N,若OM ON--路径运动,终12.如图,ABC中,∠ACB=90°,AC=6cm,BC=8cm,点P从A点出发沿A C B--路径运动,终点为A点.点P和点Q分别以1cm/s和点为B点;点Q从B点出发沿B C A⊥3cm/s的速度同时开始运动,两点到达相应的终点时分别停止运动.若分别过点P和Q作PE l ⊥于F.当PEC与QFC全等时,点P的运动时间t为.于E,QF l13.如图,AD是ABC的角平分线,DF⊥AB,垂足为F,DE=DG,ADG和AED的面积分别为27和14,则EDF的面积为.三、解答题14.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,求AC长.∠,交AC边于点E,连接DE.求15.如图,在ABC中,D是BC边上的一点,AB=DB,BE平分ABC≌;证:ABE DBE16.如图,AD,BC相交于点O,且AB CD,OA=OD.=;(1)求证:OB OC=,求证:BE CF.(2)若在直线AD上截取AE DF17.已知:如图,△ABC中,∠ACB=45°,AD⊥BC于D,CF交AD于点F,连接BF并延长交AC于点E,∠BAD=∠FCD.求证:(1)△ABD≌△CFD;(2)BE⊥AC.cm的18.如图,在ABC中,∠BAD=∠DAC,DF⊥AB,DM⊥AC,AF=10cm,AC=14cm,动点E以2/scm的速度从C点向A点运动,当一个点到达终点时,另一个速度从A点向F点运动,动点G以1/s点随之停止运动,设运动时间为t.=;(1)求证:AF AM(2)当t取何值时,DFE与DMG全等参考答案:1.C 2.D 3.A 4.B 5.B 6.D 7.B 8.C9.答案不唯一,如∠CBD=∠EBD 等10.411.1512.1或72或12 13.6514.解:过D 作DF ⊥AC 于F∵AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB 于点E ,DE=2∴DE=DF=2∵S △ABC =7∴S △ADB +S △ADC =7 ∴1122AB DE AC DF ⨯⨯+⨯⨯ =7 ∴1142222AC ⨯⨯+⨯⨯ =7解得:AC=3.15.证明:∵BE 平分 ABC ∠ ∴ABE DBE ∠=∠在 ABE 和 DBE 中∵AB DB ABE DBE BE BE =⎧⎪∠=∠⎨⎪=⎩∴()ABE DBE SAS ≌ ;16.(1)证明:∵AB CD∴OAB ODC ∠=∠∵OA OD = AOB DOC ∠=∠∴()ASA OAB ODC ≌.∴OB OC =;(2)证明:∵OA OD = AE DF =∴OA AE OD DF +=+即OE OF =.∵EOB FOC ∠=∠,且在(1)中,有OB OC =∴()SAS BOE COF ≌∴E F ∠=∠.∴BE CF .17.(1)证明:∵AD ⊥BC,∴∠ADC=∠ADB=90°又∵∠ACB=45°∴∠DAC=45°,∴∠ACB=∠DAC∴AD=CD在△ABD 和△CFD 中,∠BAD=∠FCD, AD=CD ∠ADB=∠FDC∴△ABD ≌△CFD;(2)证明:∵△ABD ≌△CFD,∴BD=FD∴∠1=∠2又∵∠FDB=90°,∴∠1=∠2=45°又∵∠ACD=45°∴△BEC 中,∠BEC=90°,∴BE ⊥AC.18.(1)证明:∵BAD DAC DF AB DM AC ∠=∠⊥⊥,,,∴DF DM =,在Rt AFD ∆和Rt ΔAMD 中DF DM AD AD =⎧⎨=⎩∴()Rt ΔRt ΔHL AFD AMD ≌;∴AF AM =;(2)解:若DFE 与DMG 全等,且90DF DM EFD GMD =∠=∠=︒, ∴EF MG =∵10AM AF ==∴14104CM AC AM =-=-=①当04t <<时,点G 在线段CM 上,点E 在线段AF 上∴1024EF t MG CM CG t =-=-=-,∴1024t t -=-∴6t =(不合题意,舍去);②当45t ≤<时,点G 在线段AM 上,点E 在线段AF 上1024EF t MG CG CM t =-=-=-,∴1024t t -=- ∴143t =综上所述,当14s 3t 时,DFE 与DMG 全等。
【人教版】2016年八年级数学上:第12章《全等三角形》单元测试(含答案)
第12章全等三角形一、选择题1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)3.在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.55.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF ⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣29.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB有怎样的数量关系,并直接写出结论(不需要证明)12.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt △DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若______,则△ABC≌△DEF.25.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF ≌△AGF,可得出结论,他的结论应是______;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.第12章全等三角形参考答案一、选择题(共9小题)1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm【解答】解:∵F是高AD和BE的交点,∴∠ADC=∠ADB=∠AEF=90°,∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,∵∠AFE=∠BFD,∴∠CAD=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,在△DBF和△DAC中∴△DBF≌△DAC(ASA),∴BF=AC=8cm,故选C.2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)【解答】解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.3.(2014•湖州)在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A .B .C .D .【解答】解:A 、延长AC 、BE 交于S ,∵∠CAB=∠EDB=45°,∴AS ∥ED ,则SC ∥DE .同理SE ∥CD ,∴四边形SCDE 是平行四边形,∴SE=CD ,DE=CS ,即走的路线长是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS ;B 、延长AF 、BH 交于S 1,作FK ∥GH 与BH 的延长线交于点K ,∵∠SAB=∠S 1AB=45°,∠SBA=∠S 1BA=70°,AB=AB ,∴△SAB ≌△S 1AB ,∴AS=AS 1,BS=BS 1,∵∠FGH=180°﹣70°﹣43°=67°=∠GHB ,∴FG ∥KH ,∵FK ∥GH ,∴四边形FGHK 是平行四边形,∴FK=GH ,FG=KH ,∴AF+FG+GH+HB=AF+FK+KH+HB ,∵FS1+S1K>FK,∴AS+BS>AF+FK+KH+HB,即AC+CD+DE+EB>AF+FG+GH+HB,C、D、同理可证得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB.综上所述,D选项的所走的线路最长.故选:D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.5【解答】解:如图,作AH、CK、FP分别垂直BC、AB、DE于H、K、P.∴∠DPF=∠AKC=∠CHA=90°.∵AB=BC,∴∠BAC=∠BCA.在△AKC和△CHA中,∴KC=HA.∵B、C两点在方程式y=﹣3的图形上,且A点的坐标为(﹣3,1),∴AH=4.∴KC=4.∵△ABC≌△DEF,∴∠BAC=∠EDF,AC=DF.在△AKC和△DPF中,,∴△AKC≌△DPF(AAS),∴KC=PF=4.故选:C.5.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°【解答】解:在△ACD和△BCE中,,∴∠A=∠B,∠BCE=∠ACD,∴∠BCA=∠ECD,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°﹣75°﹣155°=130°,故选:C.6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF【解答】解:在△ABC和△DEB中,,∴△ABC≌△DEB (SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=∠AFB,故选:C.7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF ⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣【解答】解:作FG⊥BC于G,∵∠DEB+∠FEC=90°,∠DEB+∠BDE=90°;∴∠BDE=∠FEG,在△DBE与△EGF中∴△DBE≌△EGF,∴EG=DB,FG=BE=x,∴EG=DB=2BE=2x,∴GC=y﹣3x,∵FG⊥BC,AB⊥BC,∴FG∥AB,CG:BC=FG:AB,即=,∴y=﹣.故选:A.8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣2【解答】解:∵AB=AD=6,AM:MB=AN:ND=1:2,∴AM=AN=2,BM=DN=4,连接MN,连接AC,∵AB⊥BC,AD⊥CD,∠BAD=60°在Rt△ABC与Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL)∴∠BAC=∠DAC=∠BAD=30°,MC=NC,∴BC=AC,∴AC2=BC2+AB2,即(2BC)2=BC2+AB2,3BC2=AB2,∴BC=2,在Rt△BMC中,CM===2.∵AN=AM,∠MAN=60°,∴△MAN是等边三角形,∴MN=AM=AN=2,过M点作ME⊥CN于E,设NE=x,则CE=2﹣x,∴MN2﹣NE2=MC2﹣EC2,即4﹣x2=(2)2﹣(2﹣x)2,解得:x=,∴EC=2﹣=,∴ME==,∴tan∠MCN==故选:A.9.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2【解答】解:过E作EP⊥BC于点P,EQ⊥CD于点Q,∵四边形ABCD是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG 是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ ,∵AC 是∠BCD 的角平分线,∠EPC=∠EQC=90°, ∴EP=EQ ,四边形PCQE 是正方形,在△EPM 和△EQN 中,,∴△EPM ≌△EQN (ASA )∴S △EQN =S △EPM ,∴四边形EMCN 的面积等于正方形PCQE 的面积, ∵正方形ABCD 的边长为a ,∴AC=a ,∵EC=2AE ,∴EC=a ,∴EP=PC=a ,∴正方形PCQE 的面积=a ×a=a 2,∴四边形EMCN 的面积=a 2,故选:D .二、解答题(共21小题)10.如图,已知AB ∥DE ,AB=DE ,AF=CD ,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE 的长;(2)求证:△ABF ≌△DEC ;(3)求证:四边形BCEF 是矩形.【解答】(1)解:∵∠CEF=90°.∴cos∠ECF=.∵∠ECF=30°,CF=8.∴CF=CF•cos30°=8×=4;(2)证明:∵AB∥DE,∴∠A=∠D,∵在△ABF和△DEC中∴△ABF≌△DEC (SAS);(3)证明:由(2)可知:△ABF≌△DEC,∴BF=CE,∠AFB=∠DCE,∵∠AFB+∠BFC=180°,∠DCE+∠ECF=180°,∴∠BFC=∠ECF,∴BF∥EC,∴四边形BCEF是平行四边形,∵∠CEF=90°,∴四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB有怎样的数量关系,并直接写出结论(不需要证明)【解答】解:(1)AE+BF=AB,如图1,∵△ABC和△DCF是等边三角形,∴CA=CB,CD=CF,∠ACB=∠DCF=60°.∴∠ACD=∠BCF,在△ACD和△BCF中∴△ACD≌△BCF(SAS)∴AD=BF同理:△CBD≌△CAE(SAS)∴BD=AE∴AE+BF=BD+AD=AB;(2)BF﹣AE=AB,如图2,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB;(3)AE﹣BF=AB,如图3,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB.12.(2013•舟山)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?【解答】(1)证明:∵在△ABE和△DCE中∴△ABE≌△DCE(AAS);(2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°.13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.【解答】(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.【解答】证明:∵AB=AC,∴∠B=∠C,在△ABD与△ACE中,∵,∴△ABD≌△ACE(SAS),∴AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.【解答】证明:∵AB∥CD,∴∠B=∠C,∠A=∠D,∵在△AOB和△DOC中,,∴△AOB≌△DOC(AAS),∴AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.【解答】(1)证明:∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),∴CF=DG;(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,又∵∠CFB=∠DFH,又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,△DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,∴∠DHF=∠CBF=60°,∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.【解答】证明:∵△ABC和△ADE都是等腰直角三角形∴AD=AE,AB=AC,又∵∠EAC=90°+∠CAD,∠DAB=90°+∠CAD,∴∠DAB=∠EAC,∵在△ADB和△AEC中∴△ADB≌△AEC(SAS),∴BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.【解答】证明:∵BE=CF,∴BC=EF.∵AB∥DE,∴∠B=∠DEF.在△ABC与△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.【解答】(1)证明:∵△ABC为等腰直角三角形,∴CA=CB,∠A=∠ABC=45°,由旋转可知:CP=CE,BP=BD,∴CA﹣CE=CB﹣CP,即AE=BP,∴AE=BD.又∵∠CBD=90°,∴∠OBD=45°,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB;(2)成立,理由如下:连接AE,则△AEC≌△BCP,∴AE=BP,∠CAE=∠BPC,∵BP=BD,∴BD=AE,∵∠OAE=45°+∠CAE,∠OBD=90°﹣∠OBP=90°﹣(45°﹣∠BPC)=45°+∠PBC,∴∠OAE=∠OBD,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB,②当∠BPC=135°时,AB=DE.理由如下:解法一:当AB=DE时,由①知OA=OB,∴OA=OB=OE=OD.设∠PCB=α,由旋转可知,∠ACE=α.连接OC,则OC=OA=OB,∴OC=OE,∴∠DEC=∠OCE=45°+α.设∠PBC=β,则∠ABP=45°﹣β,∠OBD=90°﹣∠ABP=45°+β.∵OB=OD,∴∠D=∠OBD=45°+β.在四边形BCED中,∠DEC+∠D+∠DBC+∠BCE=360°,即:(45°+α)+(45°+β)+(90°+β)+(90°+α)=360°,解得:α+β=45°,∴∠BPC=180°﹣(α+β)=135°.解法二(本溪赵老师提供,更为简洁):当AB=DE时,四边形AEBD为矩形则∠DBE=90°=∠DBP,∴点P落在线段BE上.∵△ECP为等腰直角三角形,∴∠EPC=45°,∴∠BPC=180°﹣∠EPC=135°.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.【解答】(1)证明:∵AB∥DC,∴∠B=∠DCE,在△ABC和△DCE中,∴△ABC≌△DCE(SAS),∴∠A=∠D;(2)解:∵四边形ABCD是矩形,∴AO=BO=CO=DO,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AO=AB=4,∴AC=2AO=8.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?【解答】(1)证明:∵AB平分∠CAD,∴∠CAB=∠DAB,在△ABC和△ABD中∴△ABC≌△ABD(SAS),∴BC=BD.(2)解:设这个班有x名学生,根据题意得:3x+20=4x﹣25,解得:x=45,答:这个班有45名学生.23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.【解答】证明:∵DE∥AB,∴∠CAB=∠ADE,∵在△ABC和△DAE中,,∴△ABC≌△DAE(ASA),∴BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL ,可以知道Rt△ABC≌Rt △DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A ,则△ABC≌△DEF.【解答】(1)解:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,∵∠ABC=∠DEF,且∠ABC、∠DEF都是钝角,∴180°﹣∠ABC=180°﹣∠DEF,即∠CBG=∠FEH,在△CBG和△FEH中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(3)解:如图,△DEF和△ABC不全等;(4)解:若∠B≥∠A,则△ABC≌△DEF.故答案为:(1)HL;(4)∠B≥∠A.25.(2014•德州)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF ≌△AGF,可得出结论,他的结论应是EF=BE+DF ;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.【解答】解:问题背景:EF=BE+DF;探索延伸:EF=BE+DF仍然成立.证明如下:如图,延长FD到G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;实际应用:如图,连接EF,延长AE、BF相交于点C,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=1.5×(60+80)=210海里.答:此时两舰艇之间的距离是210海里.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.【解答】(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,在△CBF和△CDF中,,∴△CBF≌△CDF(SAS),(2)解:∵△ABC≌△ADC,∴△ABC和△ADC是轴对称图形,∴OB=OD,BD⊥AC,∵OA=OC,∴四边形ABCD是菱形,∴AB=BC=CD=DA,∵AC=2,BD=2,∴OA=,OB=1,∴AB===2,∴四边形ABCD的周长=4AB=4×2=8.(3)当EB⊥CD时,即E为过B且和CD垂直时垂线的垂足,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,∠BCD=∠BAD,∵△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD+∠CBF=90°,∠EFD+∠CDF=90°,∴∠EFD=∠BAD.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,∴180°﹣∠ABD=180°﹣∠CDB,即∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.【解答】(1)证明:在正方形ABCD中,∠ABE=∠ADG,AD=AB,在△ABE和△ADG中,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∴∠EAG=90°,在△FAE和△GAF中,,∴△FAE≌△GAF(SAS),∴EF=FG;(2)解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=1,CN=3,∴MN2=12+32,∴MN=29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.【解答】证明:(1)∵∠ACB=90°,CG平分∠ACB,∴∠ACG=∠BCG=45°,又∵∠ACB=90°,AC=BC,∴∠CAF=∠CBF=45°,∴∠CAF=∠BCG,在△AFC与△CGB中,,∴△AFC≌△CBG(ASA),∴AF=CG;(2)延长CG交AB于H,∵CG平分∠ACB,AC=BC,∴CH⊥AB,CH平分AB,∵AD⊥AB,∴AD∥CG,∴∠D=∠EGC,在△ADE与△CGE中,,∴△ADE≌△CGE(AAS),∴DE=GE,即DG=2DE,∵AD∥CG,CH平分AB,∴DG=BG,∵△AFC≌△CBG,∴CF=BG,∴CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.【解答】(1)证明:如图①,∵∠BAC+∠EAD=180°,∠BAE=90°,∴∠DAC=90°,在△ABE与△ACD中∴△ABE≌△ACD(SAS),∴CD=BE,∵在Rt△ABE中,F为BE的中点,∴BE=2AF,∴CD=2AF.(2)成立,证明:如图②,延长EA交BC于G,在AG上截取AH=AD,∵∠BAC+∠EAD=180°,∴∠EAB+∠DAC=180°,∵∠EAB+∠BAH=180°,∴∠DAC=∠BAH,在△ABH与△ACD中,∴△ABH≌△ACD(SAS)∴BH=DC,∵AD=AE,AH=AD,∴AE=AH,∵EF=FB,∴BH=2AF,∴CD=2AF.。
人教版八年级数学上册《第十二章全等三角形》单元测试卷(含答案)
人教版八年级数学上册《第十二章全等三角形》单元测试卷(含答案)一、选择题1.如图ABC ADE ≌,若80B ∠=︒,70DAE ∠=︒则E ∠的度数为( )A .30︒B .35︒C .70︒D .80︒2.关于全等图形的描述,下列说法正确的是( )A .形状相同的图形B .面积相等的图形C .能够完全重合的图形D .周长相等的图形3.如图是某纸伞截面示意图,伞柄AP 平分两条伞骨所成的角∠BAC .若支杆DF 需要更换,则所换长度应与哪一段长度相等( )A .BEB .AEC .DED .DP4.如图,是尺规作图中“画一个角等于已知角”的示意图,该作法运用了“全等三角形的对应角相等”这一性质,则判定图中两三角形全等的条件是( )A .SASB .ASAC .AASD .SSS5.如图,OP 平分∠AOB ,点E 为OA 上一点,OE =4,点P 到OB 的距离是2,则∠POE 的面积为( )A .4B .5C .6D .76.已知ABC 的三边长为357,,,DEF 的三边长为33221x x --,,,若ABC 与DEF 全等,则x 等于( )A .73B .4C .3D .3或737.如图,∠ABC∠∠A'B'C ,其中∠A=36°,∠C=24°,则∠B'=( )A .60°B .100C .120D .135°8.如图,已知12∠=∠,要说明ABD ACD ≌,需从下列条件中选一个,错误的是( )A .ADB ADC ∠=∠ B .B C ∠=∠ C .DB DC =D .AB AC =9.如图,在ABC 中D ,E 是BC 边上的两点,1211060AD AE BE CD BAE ==∠=∠=︒∠=︒,,,,则BAC ∠的度数为( )A .90°B .80°C .70°D .60°10.如图,在ΔABC 中90C ∠=︒,AD 平分CAB ∠,若10AB =,CD=3,则ABD 的面积是( )A .9B .12C .15D .24二、填空题11.如图,射线OC 是AOB ∠的角平分线,D 是射线OC 上一点,DP OA ⊥于点P ,DP=5,若点Q 是射线OB 上一点,OQ=4,则ODQ 的面积是 .12.在平面直角坐标系中点()10A ,,()02B ,作BOC ,使BOC 与ABO 全等(点C 与点A 不重合),则点C 坐标为 .13.如图,四边形ABCD 中AB=BC ,90ABC ∠=︒对角线BD CD ⊥,若14BD =,则ABD 的面积为 .14.如图,BO 平分ABC ∠,OD BC ⊥于点D ,点E 为射线BA 上一动点,若6OD =则OE 的最小值为 .三、解答题15.如图,已知ABC BAE ≌,=60ABE ∠︒和=92E ∠︒,求ABC ∠的度数.16.如图,AD∠AB ,CB∠AB ,垂足分别为A ,B ,AC =BD ,AC 与BD 相交于点E ,求证:DE=CE.17.如图是一个工业开发区局部的设计图,河的同一侧有两个工厂A 和B ,AD BC 、的长表示两个工厂到河岸的距离,其中E 是进水口,D 、C 为污水净化后的出口.已知90150AE BE AEB AD ∠︒=,=,=米,350BC =米,求两个排污口之间的水平距离DC .18.如图,在ABC 中D 是BC 的中点DE AB ⊥,DF AC ⊥垂足分别是E ,F .(∠)若BE CF =,求证:AD 是ABC 的角平分线;(∠)若AD 是ABC 的角平分线,求证:BE CF =.四、综合题19.如图,A ,D ,E 三点在同一直线上,且∠BAD∠∠ACE ,试说明:(1)BD=DE+CE ;(2)∠ABD 满足什么条件时,BD∠CE .20.王强同学用10块高度都是 2cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板( 90AC BC ACB =∠=︒, ),点 C 在 DE 上,点 A 和 B 分别与木墙的顶端重合.(1)求证: ADC CEB ∆≅∆ ;(2)求两堵木墙之间的距离.21.如图,在四边形ABCD 中P 为CD 边上的一点BC AD AP 、BP 分别是BAD ∠、ABC ∠的角平分线.(1)若70BAD ∠=︒,则ABP ∠的度数为 ,APB ∠的度数为 ;(2)求证:AB BC AD =+;(3)设3BP a =,4AP a =过点P 作一条直线,分别与AD ,BC 所在直线交于点E 、F ,若AB EF =,直接写出AE 的长(用含a 的代数式表示)答案解析部分1.【答案】A【解析】【解答】解:∵ABC ADE ≌∴∠D=∠B=80°∵70DAE ∠=︒∴∠E=180°-∠D-∠DAE=30°故答案为:A【分析】根据全等三角形的性质及三角形内角和定理即可求出答案。
人教版初中数学八年级上册第十二章《全等三角形》单元测试卷(含答案解析)
第十二章《全等三角形》单元测试卷一、选择题(每小题只有一个正确答案)1.如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是()A.SSSB.SASC.ASAD.以上全不对2.如图,在ABC和△DCB中,AB=DC,AC与BD相交于点E,若不再添加任何字母与辅助线,要使△△ABC≌△DCB,则还需增加的一个条件是()A.AC=BD B.AC=BC C.BE=CE D.AE=DE3.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是()A.M点B.N点C.P点D.Q点4.如图,在ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与△∠ACE的平分线CD相交于点D,连接AD,则下列结论中,正确的是()A.∠BAC=60°B.∠DOC=85°C.BC=CD D.AC=AB5.如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,两个滑梯的倾斜角∠ABC和∠DFE的大小间的关系是()A.∠ABC=∠DFE B.∠ABC>∠DFEC.∠ABC<∠DFE D.∠ABC+∠DFE=90°6.如图,已知∠BAD=∠CAD,则下列条件中用AAS使△ABD≌△ACD的是()A.∠B=∠C B.∠BDA=∠CDA C.AB=AC D.BD=CD7.如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别为点E,F,连接EF,EF与AD交与点G,下列说法不一定正确的是()A.DE=DF B.△AED≌△AFD C.AD⊥EF D.EG=AG8.在△ABC和△DEF中,已知∠C=∠D,∠B=∠E,要用ASA判定这两个三角形全等,还需要条件()A.BC=ED B.AB=FD C.AC=FD D.∠A=∠F9.如图所示,D,E分别是△ABC的边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°10.如图,△ABC的两个外角平分线相交于点P,则下列结论正确的是()A.AB=AC B.BP平分∠ABC C.BP平分∠APC D.PA=PC11.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10B.7C.5D.412.如图所示,点D在∠BAC的角平线上,DE⊥AB于点E,DF⊥AC于点F,连结EF,BC⊥AD于点D,则下列结论中①DE=DF;②AE=AF;③∠ABD=∠ACD;④∠EDB=∠FDC,其中正确的序号是()A.②B.①②C.①②③D.①②③④二、填空题13.如图,在△ABD和△CDB中,AD=CB,AB、CD相交于点O,请你补充一个条件,使得△ABD≌△CDB.你补充的条件是________________.14.△ABC中,∠BAC:∠ACB:∠ABC=4:3:△2,且ABC≌△DEF,则∠D EF=_____________度.15.如图,已知△ABC≌△ADE,D是∠BAC的平分线上一点,且∠BAC=60°,则∠CAE=____________.16.如图,AB=CD,BF=DE,E、F是AC上两点,且AE=CF.欲证∠B=∠D,可先用等式的性质证明AF=________,再用“SSS”证明______≌_______得到结论.17.在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BD:DC=3:2,且点D到边AB的距离6,则BC的长是.三、解答题18.如图,将两根等长钢条AA′、BB′的中点O连在一起,使AA′、BB′可以绕着点O自由转动,O A′B′的理由是什就做成了一个测量工件,则AB的长等于容器内径A′△B′,那么判定OAB≌△么?请说明理由.19.把两个同样大小的含30度的三角尺像如图所示那样放置,其中M是AD与BC的交点.证明:(1)MC的长度等于点M到AB的距离;(2)求∠AMB的度数.20.如图,AD∥BC,∠ABC的平分线BP与∠BAD的平分线AP相交于点P,作PE⊥AB于点E,若PE=3,求两平行线AD与BC间的距离.21.如图,已知BE,CF是△ABC的高,P为BE延长线上的-点,Q为CF上一点,△PAB≌△AQC,且AB与QC是对应边,求证:AP⊥AQ.22.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.(1)求证:AD平分∠BAC;(2)AB、AC、AE之间有什么关系?证明你的结论.答案解析1.【答案】C【解析】根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选C.2.【答案】A【解析】由AB=DC,BC是公共边,即可得要证△ABC≌△DCB,可利用SSS,即再增加AC=DB即可.3.【答案】A【解析】从图上可以看出点M在∠AOB的平分线上,其它三点不在∠AOB的平分线上.所以点M到∠AOB两边的距离相等.故选A.4.【答案】B【解析】∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°-∠ABC-∠ACB=180°-50°-60°=70°,故A 选项错误,∵BD平分∠ABC,∴∠A BO=∠ABC=×50°=25°,在ABO中,∠AOB=180°-∠BAC-∠ABO=180°-70°-25°=85°,∴∠DOC=∠AOB=85°,故B选项正确;∵CD平分∠ACE,∴∠CBD=∠ABC=×50°=25°,∵CD平分∠ACE,∴∠ACD=(180°-60°)=60°,∴∠BDC=180°-85°-60°=35°,∴BC≠CD,故C选项错误;∵∠ABC=50°,∠ACB=60°,∴AC≠AB,故D选项错误.故选B.5.【答案】D【解析】∵BC=EF,AC=DF,∠CAB=∠FDE=90°,∴△A BC≌△DEF(HL),∴∠BCA=∠DFE.又∵在Rt△ABC中∠ABC+∠BCA=90°,∴∠ABC+∠DFE=90°.故选D.6.【答案】A【解析】因为∠BAD=∠CAD,AD为公共边,若∠B=∠△C,则ABD≌△ACD(AAS).7.【答案】D【解析】A.∵AD是△ABC的角平分线,DE⊥AB,D F⊥AC,∴DE=DF,正确;B.∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴D E=DF,∠AED=∠AFD=90°,在Rt△AED和Rt△AFD中∴Rt△AED≌Rt△AFD(H L),正确;C.∵Rt△AED≌Rt△AFD,∴AE=AF,∵AD是△ABC的角平分线,∴∠BAD=∠CAD,∴Rt△AEG≌Rt△AFG(SAS)=∴∠AGE =∠AGF∵∠AGE +∠AGF =180°∴∠AGE =∠AGF =90°∴AD ⊥EF ,正确;D.根据已知不能推出 EG =AG ,错误;故选 D .8.【答案】A【解析】根据两角及其夹边对应相等的两个三角形全等,可知应该添加的条件是 BC =DE .9.【答案】D【 解 析 】 ∵ ADB ≌△EDB ≌△EDC , ∴∠A =∠BED =∠CED , ∠ABD =∠EBD =∠C ,∵∠BED +∠CED =180° , ∴∠A =∠BED =∠CED =90° , 在 △ABC 中 , ∠C +2∠C +90°=180° ,∴∠C =30°.故选 D .10.【答案】B【解析】如图,过点 P 作 PD ⊥AB 于 D ,作 PE ⊥BC 于 E ,作 PF ⊥AC 于 △F ,∵ ABC 的两个外角平分线相交于点 P ,∴PD =PE =PF ,∴BP 平分∠ABC .故选 B .11.【答案】C【解析】作 EF ⊥BC 于 F ,∵BE 平分∠ABC ,ED ⊥AB ,EF ⊥BC ,∴EF =DE =2,∴△S BCEBC •EF =×5×2=5,故选 C .12.【答案】D【解析】∵点 D 在∠BAC 的角平分线上,DE ⊥AB , DF ⊥AC , ∴DE =DF , 故 ① 正 确 ; 在 Rt△ADE 和 Rt△ADF 中 ,,∴Rt△ADE ≌Rt△ADF (HL ),∴AE =AF ,∠ADE =∠ADF ,故②正确;∵ BC ⊥AD ,∴∠ADB =∠ADC =90°,∴∠ADB -∠ADE =∠ADC -∠ADF , 即 ∠EDB =∠FDC , 故 ④ 正 确 ; ∵∠ABD +∠EDB =90° ,∠ACD +∠FDC =90°,∴∠ABD =∠ACD ,故③正确;综上所述,正确的是①②③④.故选 D .13.【答案】∠ADB =∠CBD【解析】∠ADB=∠CBD,理由是:∵在△AOD和△C OB中,∴△A BD≌△CDB(SAS),故答案为∠ADB=∠CBD.14.【答案】40【解析】设∠BAC为4x,则∠ACB为3x,∠ABC为2x∵∠BAC+∠ACB+∠ABC=180°,∴4x+3x+2x=180,解得x=20,∴∠ABC=2△x=40°,∵ABC≌△DEF,∴∠DEF=∠ABC=40°.故填40.15.【答案】30°【解析】∵△ABC≌△ADE,∴∠BAC=∠DAE=60°,∵D是∠BAC的平分线上一点,∴∠BAD=∠DAC=∠BAC=30°,∴∠CAE=∠DAE-∠DAC=60°-30°=30°.故答案填30°.16.【答案】△C E;ABF;△CDEC E,再用“SSS”证明ABF≌△CDE得到结论.【解析】先运用等式的性质证明AF=△C E,ABF,△CDE.故答案为△17.【答案】15【解析】∵AD平分∠BAC,∴D到边AB的距离=CD=6.∵CD=6,BD:DC=3:2,∴BD=9,∴BC=15,故答案为15.18.【答案】解:是边角边法判定三角形全等.理由如下:∵AA′、BB′的中点O连在一起,∴OA=OA′,OB=OB′,又∵∠AOB=∠A′OB′,∴△OAB≌△O A′B′的理由是“边角边”.【解析】因为是用两钢条中点连在一起做成一个测量工件,可求出两边分别对应相等,再加上对顶角相等,可判断出两个三角形全等,且用的是SAS.19.【答案】(1)证明:过点M做MN⊥AB,由题意可得:∠CAD=∠DAB=30°,∵∠C=90°,MN⊥AB,∴MC=MN(角平分线上的点到角的两边距离相等),则MC的长度就等于点M到AB的距离.(2)解:由题意知:∠MAB=∠MBA=30°,∴∠AMB=180°-30°-30°=120°.【解析】(1)利用角平分线的性质以及全等三角形的性质得出答案;(2)由三角形内角和定理直接得出.20.【答案】解:如图,过点P作PF⊥AD于F,作PG⊥BC于G,∵AP是∠BAD的平分线,PE⊥AB,∴PF=PE,同理可得PG=PE,∵AD∥BC,∴点F、P、G三点共线,∴FG的长即为AD、BC间的距离,∴平行线AD与BC间的距离为3+3=6.【解析】过点P作PF⊥AD于F,作PG⊥BC于G,根据角平分线上的点到角的两边距离相等可得PF=PE,PG=PE,再根据平行线之间的距离的定义判断出EG的长即为AD、BC间的距离.21.【答案】证明:∵△PAB≌△AQC,∴AP=AQ,∠P=∠QAC,∵BE⊥AC,∴∠AEP=90°,∴∠P+∠PAE=90°,∴∠QAC+∠PAE=90°,即∠PAQ=90°,∴AP⊥AQ.【解析】由全等三角形的性质得出对应边相等AP=AQ,对应角相等∠P=∠QAC,再由BE⊥AC,根据互余两角的关系得出∠QAC+∠PAE=90°,即可得出结论.22.【答案】(1)证明:∵DE⊥AB于E,DF⊥AC于F,∴∠E=∠DFC=90°,∴△BDE与△CDE均为直角三角形,∵∴△BDE≌△CDF,∴DE=DF,即AD平分∠BAC;(2)解:AB+AC=2AE.证明:∵BE=CF,AD平分∠BAC,∴∠EAD=∠CAD,∵∠E=∠AFD=90°,∴∠ADE=∠ADF,在△AED与△AFD中,∵,∴△AED≌△AFD,∴AE=AF,∴AB+AC=AE-BE+AF+CF=AE+AE=2AE.【解析】(△1)根据相“HL”定理得出BDE≌△CDF,故可得出DE=DF,所以AD平分∠BAC;(2)由(△1)中BDE≌△CDE可知BE=CF,AD平分∠BAC,故可得出△AED≌△AFD,所以AE=AF,故AB+AC=AE-BE+AF+CF=AE+AE=2AE.。
【人教版】八年级上册数学:第12章全等三角形单元测试(含答案)
第十二章全等三角形单元测试一、单选题(共10题;共30分)1、如图,将两根钢条AA AA′、′、′、BB BB BB′的中点′的中点O 连在一起,使AA AA′、′、′、BB BB BB′可以绕着点′可以绕着点O 自由转动,就做成了一个测量工件,由三角形全等得出A ′B ′的长等于内槽宽AB AB;那么判定△;那么判定△;那么判定△OAB OAB OAB≌△≌△≌△OA OA OA′′B ′的理由是(′的理由是( )A 、边角边、边角边B B 、角边角、角边角C C 、边边边、边边边D D 、角角边、角角边2、如图所示,八年级某同学书上的图形(三角形)不小心被墨迹污染了一部分,但他很快就根据所学知识,画出一个与书上完全一样的三角形,画出一个与书上完全一样的三角形,那么这两个三角形全等的依据是那么这两个三角形全等的依据是那么这两个三角形全等的依据是(( )A 、SSS SSSB 、SASC 、AAS AASD 、ASA ASA 3、如图所示,,,,有下列结论①;②;③;④;其中正确的有(;其中正确的有( )A 、1个B 、2个C 、3个D 、4个4、△ABC 是一个任意三角形,用直尺和圆规作出∠A 、∠B 的平分线,如果两条平分线交于点O ,那么下列选项中不正确的是(列选项中不正确的是( )A 、点O 一定在△ABC 的内部的内部B 、∠C 的平分线一定经过点O C 、点O 到△ABC 的三边距离一定相等的三边距离一定相等D 、点O 到△ABC 三顶点的距离一定相等三顶点的距离一定相等 5、下列说法不正确的是(、下列说法不正确的是( )A 、如果两个图形全等,那么它们的形状和大小一定相同、如果两个图形全等,那么它们的形状和大小一定相同B 、图形全等,只与形状、大小有关,而与它们的位置无关、图形全等,只与形状、大小有关,而与它们的位置无关C 、全等图形的面积相等,面积相等的两个图形是全等图形、全等图形的面积相等,面积相等的两个图形是全等图形D 、全等三角形的对应边相等,对应角相等、全等三角形的对应边相等,对应角相等6、如图,、如图,AC AC 平分∠平分∠DAB DAB DAB,,AD=AC=AB AD=AC=AB,如下四个结论:①,如下四个结论:①,如下四个结论:①AC AC AC⊥⊥BD BD;②;②;②BC=DE BC=DE BC=DE;③∠;③∠;③∠DBC=DBC=∠DAC DAC;④△;④△;④△ABC ABC 是正三角形,正确的结论有(正三角形,正确的结论有( )A 、1个B 、2个C 、3个D 、4个7、如图,如图,在等腰△在等腰△在等腰△ABC ABC 中,中,AB=AC AB=AC AB=AC,,∠A=20A=20°,°,°,AB AB 上一点D 使AD=BC AD=BC,,过点D 作DE DE∥∥BC 且DE=AB DE=AB,,连接EC EC,,则∠则∠DCE DCE 的度数为(的度数为( )A 、8080°°B 、7070°°C 、6060°°D 、4545°°8、在下列条件下,不能判定△、在下列条件下,不能判定△ABC ABC ABC≌△≌△≌△AB AB AB′′C ′(′( )A 、∠、∠A=A=A=∠∠A ′,′,AB=A AB=A AB=A′′B ′,′,BC=B BC=B BC=B′′C ′ B 、∠、∠A=A=A=∠∠A ′,∠′,∠C=C=C=∠∠C ′,′,AC=A AC=A AC=A′′C ′ C 、∠、∠B=B=B=∠∠B ′,∠′,∠C=C=C=∠∠C ′,′,AC=A AC=A AC=A′′C ′D 、BA=B BA=B′′A ′,′,BC=B BC=B BC=B′′C ′,′,AC=A AC=A AC=A′′C ′9、如图:△、如图:△ABC ABC 中,中,AC=BC AC=BC AC=BC,∠,∠,∠C=90C=90C=90°,°,°,AD AD 平分∠平分∠CAB CAB 交BC 于D ,DE DE⊥⊥AB 于E ,且AC=6cm AC=6cm,则,则DE+BD 等于( )A 、5cmB 、4cmC 、6cmD 、7cm 7cm1010、如图,△、如图,△、如图,△ABC ABC ABC≌△≌△≌△CDA CDA CDA,若,若AB=3AB=3,,BC=4BC=4,则四边形,则四边形ABCD 的周长是( )A 、14B 、11C 、16D 、1212二、填空题(共8题;共24分)11、如图,已知BD=AC ,那么添加一个,那么添加一个 ________ 条件后,能得到△ABC ≌△BAD (只填一个即可).(只填一个即可).1212、如图,在、如图,在Rt Rt△△ABC 中,∠中,∠A=90A=90A=90°,∠°,∠°,∠ABC ABC 的平分线BD 交AC 于点D ,AD=2AD=2,,BC=9BC=9,则△,则△,则△BDC BDC 的面积是________1313、如图,在四边形、如图,在四边形ABCD 中,∠中,∠ADC=ADC=ADC=∠∠ABC=90ABC=90°,°,°,AD=CD AD=CD AD=CD,,DP DP⊥⊥AB 于点P ,若四边形ABCD 的面积是9,则DP 的长是的长是________________________..1414、如图,、如图,、如图,AB=AD AB=AD AB=AD,只需添加一个条件,只需添加一个条件,只需添加一个条件________________________,就可以判定△,就可以判定△,就可以判定△ABC ABC ABC≌△≌△≌△ADE ADE ADE..1515、如图,、如图,、如图,AE AE AE∥∥DF DF,,AB=DC AB=DC,不再添加辅助线和字母,要使△,不再添加辅助线和字母,要使△,不再添加辅助线和字母,要使△EAC EAC EAC≌△≌△≌△FDB FDB FDB,需添加的一个条件是,需添加的一个条件是,需添加的一个条件是________________(只写一个条件即可)16、如图,点B 在AE 上,∠CAB=∠DAB ,要使△ABC ≌△ABD ,可补充的一个条件是:________.(答案不唯一,写一个即可)不唯一,写一个即可)1717、、如图,如图,在在Rt Rt△△ABC 中,∠BAC=90BAC=90°,°,AB=AC AB=AC,,分别过点B ,C 作过点A 的直线的垂线BD BD,,CE CE,,若BD=4cm BD=4cm,,CE=3cm CE=3cm,则,则DE=________cm DE=________cm..18、如图,在△ABC 中,∠C=90°,AB=12,AD 是△ABC 的一条角平分线.若CD=4,则△ABD 的面积为________.三、解答题(共5题;共35分)1919、、(2015•重庆)如图,在△在△ABD ABD 和△和△FEC FEC 中,点B ,C ,D ,E 在同一直线上,且AB=FE AB=FE,,BC=DE BC=DE,,∠B=B=∠∠E .求证:∠证:∠ADB=ADB=ADB=∠∠FCE FCE..20、尺规作图:画出线段AB 的垂直平分线(不写作法,保留作图痕迹)的垂直平分线(不写作法,保留作图痕迹)21、如图,△ABC 中,∠ABC=∠BAC=45°,点P 在AB 上,AD ⊥CP ,BE ⊥CP ,垂足分别为D ,E ,已知DC=2,求BE 的长.的长.2222、如图,△、如图,△、如图,△ABC ABC 中,∠中,∠C=90C=90C=90°,°,°,AD AD 是∠是∠BAC BAC 的平分线,的平分线,DE DE DE⊥⊥AB 于E ,点F 在AC 上,上,BD=DF BD=DF BD=DF,求证:,求证:CF=BE CF=BE..23、如图,BE=AD ,AB=BC ,BP 为一条射线,AD ⊥BP ,CE ⊥PB ,若EC=5.求DB 的长.四、综合题(共1题;共10分)2424、如图,在△、如图,在△、如图,在△ABC ABC 中,∠中,∠ABC=90ABC=90ABC=90°,°,°,AB=CB AB=CB AB=CB,点,点E 在边BC 上,点F 在边AB 的延长线上,BE=BF BE=BF..(1)(1)求证:△求证:△求证:△ABE ABE ABE≌△≌△≌△CBF CBF CBF;;(2)(2)若∠若∠若∠CAE=30CAE=30CAE=30°,求∠°,求∠°,求∠ACF ACF 的度数.的度数.答案解析一、单选题一、单选题1、【答案】 A【考点】全等三角形的判定全等三角形的判定【解析】【解答】△【解答】△OAB OAB 与△与△OA OA OA′′B ′中,′中, ∵AO=A AO=A′′O ,∠,∠AOB=AOB=AOB=∠∠A ′OB OB′,′,′,BO=B BO=B BO=B′′O , ∴△∴△OAB OAB OAB≌△≌△≌△OA OA OA′′B ′(′(SAS)SAS)SAS)..故选A .【分析】由于已知O 是AA AA′、′、′、BB BB BB′的中点′的中点O ,再加对顶角相等即可证明△,再加对顶角相等即可证明△OAB OAB OAB≌△≌△≌△OA OA OA′′B ′,所以全等理由就可以知道了.就可以知道了. 2、【答案】 D【考点】全等三角形的应用全等三角形的应用【解析】【分析】根据全等三角形的判定方法解答即可.根据全等三角形的判定方法解答即可. 【解答】可以利用“角边角”画出一个与书上完全一样的三角形.【解答】可以利用“角边角”画出一个与书上完全一样的三角形. 故选D .【点评】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.3、【答案】 C【考点】全等三角形的判定与性质全等三角形的判定与性质 【解析】【分析】由,,可证得,再根据全等三角形的判定和性质依次分析各小题即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《第12章全等三角形》一、选择题1.下列说法正确的是()A.形状相同的两个三角形全等 B.面积相等的两个三角形全等C.完全重合的两个三角形全等 D.所有的等边三角形全等2.如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A.B.C.D.3.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE4.如图,在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后仍不一定能保证△ABC≌△A′B′C′,则补充的这个条件是()A.BC=B′C′B.∠A=∠A′C.AC=A′C′D.∠C=∠C′5.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA6.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角7.已知:如图,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CED D.∠1=∠28.在△ABC和△FED中,已知∠C=∠D,∠B=∠E,要判定这两个三角形全等,还需要条件()A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F9.如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB 于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE ≌△COD;⑤△ACE≌△BCE;上述结论一定正确的是()A.①②③B.②③④C.①③⑤D.①③④10.下列命题中:(1)形状相同的两个三角形是全等形;(2)在两个全等三角形中,相等的角是对应角,相等的边是对应边;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有()A.3个B.2个C.1个D.0个二、填空题11.如图,AC=AD,BC=BD,则△ABC≌△;应用的判定方法是(简写).12.如图,△ABD≌△BAC,若AD=BC,则∠BAD的对应角是.13.已知AD是△ABC的角平分线,DE⊥AB于E,且DE=3cm,则点D到AC的距离为.14.如图,AB与CD交于点O,OA=OC,OD=OB,∠AOD= ,根据可得到△AOD≌△COB,从而可以得到AD= .15.如图,∠A=∠D=90゜,AC=DB,欲证OB=OC,可以先利用“HL”说明得到AB=DC,再利用证明△AOB≌得到OB=OC.16.如图,如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是.17.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带去配,这样做的数学依据是.三、解答题(共29分)18.如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.∵AD平分∠BAC∴∠=∠(角平分线的定义)在△ABD和△ACD中∴△ABD≌△ACD .19.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出相等的线段与角.(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.20.如图,A、B两建筑物位于河的两岸,要测得它们之间的距离,可以从B点出发沿河岸画一条射线BF,在BF上截取BC=CD,过D作DE∥AB,使E、C、A在同一直线上,则DE的长就是A、B之间的距离,请你说明道理.21.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.四、解答题(共20分)22.已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DEA;②DF⊥BC.23.已知:如图,在四边形ABCD中,E是AC上一点,∠1=∠2,∠3=∠4.求证:∠5=∠6.《第12章全等三角形参考答案与试题解析一、选择题1.下列说法正确的是()A.形状相同的两个三角形全等 B.面积相等的两个三角形全等C.完全重合的两个三角形全等 D.所有的等边三角形全等【考点】全等图形.【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案.【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.【点评】此题主要考查了全等图形,关键是掌握全等形的概念.2.如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A.B.C.D.【考点】全等三角形的判定.【分析】根据全等三角形的判定方法进行逐个验证,做题时要找准对应边,对应角.【解答】解:A、与三角形ABC有两边相等,而夹角不一定相等,二者不一定全等;B、选项B与三角形ABC有两边及其夹边相等,二者全等;C、与三角形ABC有两边相等,但角不是夹角,二者不全等;D、与三角形ABC有两角相等,但边不对应相等,二者不全等.故选B.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.3.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE【考点】全等三角形的性质.【分析】根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.【点评】本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.4.如图,在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后仍不一定能保证△ABC≌△A′B′C′,则补充的这个条件是()A.BC=B′C′B.∠A=∠A′C.AC=A′C′D.∠C=∠C′【考点】全等三角形的判定.【分析】全等三角形的判定可用两边夹一角,两角夹一边,三边相等等进行判定,做题时要按判定全等的方法逐个验证.【解答】解:A、若添加BC=BˊCˊ,可利用SAS进行全等的判定,故本选项错误;B、若添加∠A=∠A',可利用ASA进行全等的判定,故本选项错误;C、若添加AC=A'C',不能进行全等的判定,故本选项正确;D、若添加∠C=∠Cˊ,可利用AAS进行全等的判定,故本选项错误;故选C.【点评】本题考查了全等三角形的判定,熟练掌握全等三角形的判定,要认真确定各对应关系.5.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA【考点】全等三角形的判定;等边三角形的性质.【专题】压轴题.【分析】首先根据角间的位置及大小关系证明∠BCD=∠ACE,再根据边角边定理,证明△BCE≌△ACD;由△BCE≌△ACD可得到∠DBC=∠CAE,再加上条件AC=BC,∠ACB=∠ACD=60°,可证出△BGC≌△AFC,再根据△BCD≌△ACE,可得∠CDB=∠CEA,再加上条件CE=CD,∠ACD=∠DCE=60°,又可证出△DCG≌△ECF,利用排除法可得到答案.【解答】解:∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=60°,∴∠BCA+∠ACD=∠ECD+∠ACD,即∠BCD=∠ACE,∴在△BCD和△ACE中,∴△BCD≌△ACE(SAS),故A成立,∴∠DBC=∠CAE,∵∠BCA=∠ECD=60°,∴∠ACD=60°,在△BGC和△AFC中,∴△BGC≌△AFC,故B成立,∵△BCD≌△ACE,∴∠CDB=∠CEA,在△DCG和△ECF中,∴△DCG≌△ECF,故C成立,故选:D.【点评】此题主要考查了三角形全等的判定以及等边三角形的性质,解决问题的关键是根据已知条件找到可证三角形全等的条件.6.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角【考点】全等三角形的应用.【分析】由已知可以得到∠ABC=∠BDE,又CD=BC,∠ACB=∠DCE,由此根据角边角即可判定△EDC≌△ABC.【解答】解:∵BF⊥AB,DE⊥BD∴∠ABC=∠BDE又∵CD=BC,∠ACB=∠DCE∴△EDC≌△ABC(ASA)故选B.【点评】本题考查了全等三角形的判定方法;需注意根据垂直定义得到的条件,以及隐含的对顶角相等,观察图形,找着隐含条件是十分重要的.7.已知:如图,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CED D.∠1=∠2【考点】全等三角形的判定与性质.【分析】先根据角角边证明△ABC与△CED全等,再根据全等三角形对应边相等,全等三角形的对应角相等的性质对各选项判断后,利用排除法求解.【解答】解:∵AC⊥CD,∴∠1+∠2=90°,∵∠B=90°,∴∠1+∠A=90°,∴∠A=∠2,在△ABC和△CED中,,∴△ABC≌△CED(AAS),故B、C选项正确;∵∠2+∠D=90°,∴∠A+∠D=90°,故A选项正确;∵AC⊥CD,∴∠ACD=90°,∠1+∠2=90°,故D选项错误.故选D.【点评】本题主要考查全等三角形的性质,先证明三角形全等是解决本题的突破口,也是难点所在.做题时,要结合已知条件与全等的判定方法对选项逐一验证.8.在△ABC和△FED中,已知∠C=∠D,∠B=∠E,要判定这两个三角形全等,还需要条件()A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F【考点】全等三角形的判定.【分析】考查三角形全等的判定定理,有AAS,SSS,SAS,ASA四种.根据题目给出的两个已知条件,要证明△ABC≌△FED,需要已知一对对应边相等即可.【解答】解:∵∠C=∠D,∠B=∠E,说明:点C与D,B与E,A与F是对应顶点,AC的对应边应是FD,根据三角形全等的判定,当AC=FD时,有△ABC≌△FED.故选C.【点评】本题考查了全等三角形的判断方法;一般三角形全等判定的条件必须是三个元素,并且一定有一组对应边相等,要找准对应边是解决本题的关键.9.如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB 于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE ≌△COD;⑤△ACE≌△BCE;上述结论一定正确的是()A.①②③B.②③④C.①③⑤D.①③④【考点】全等三角形的判定;等腰三角形的性质.【分析】根据等腰三角形的性质及角平分线定义可得有关角之间的相等关系.运用三角形全等的判定方法AAS或ASA判定全等的三角形.【解答】解:∵AB=AC,∴∠ABC=∠ACB.∵BD平分∠ABC,CE平分∠ACB,∴∠ABD=∠CBD=∠ACE=∠BCE.∴①△BCD≌△CBE (ASA);③△BDA≌△CEA (ASA);④△BOE≌△COD (AAS或ASA).故选D.【点评】此题考查等腰三角形的性质和全等三角形的判定,难度不大.10.下列命题中:(1)形状相同的两个三角形是全等形;(2)在两个全等三角形中,相等的角是对应角,相等的边是对应边;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有()A.3个B.2个C.1个D.0个【考点】全等图形.【专题】常规题型.【分析】根据全等三角形的概念:能够完全重合的图形是全等图形,及全等图形性质:全等图形的对应边、对应角分别相等,分别对每一项进行分析即可得出正确的命题个数.【解答】解:(1)形状相同、大小相等的两个三角形是全等形,而原说法没有指出大小相等这一点,故(1)错误;(2)在两个全等三角形中,对应角相等,对应边相等,而非相等的角是对应角,相等的边是对应边,故(2)错误;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,故(3)正确.综上可得只有(3)正确.故选:C.【点评】本题考查了全等三角形的概念和全等三角形的性质,在解题时要注意灵活应用全等三角形的性质和定义是本题的关键.二、填空题11.如图,AC=AD,BC=BD,则△ABC≌△;应用的判定方法是(简写).【考点】全等三角形的判定.【分析】此题不难,关键是找对对应点,即A对应A,B对应B,C对应D,即可.【解答】解:∵AC=AD,BC=BD,AB=AB(公共边),∴△ABC≌△ABD(SSS).【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,本题要用SSS.12.如图,△ABD≌△BAC,若AD=BC,则∠BAD的对应角是.【考点】全等三角形的性质.【分析】已知中AD=BC,说明二者为对应边,而AB是公共边,即AB的对应边是BA,所以B的BD对应边只能是AC,根据对应边所对的角是对应角可得答案为∠ABC.【解答】解:∵△ABD≌△BAC,AD=BC,∴∠BAD的对应角是∠ABC.【点评】本题考查了全等三角形性质的应用,确认两条线段或两个角相等,往往利用全等三角形的性质求解.13.已知AD是△ABC的角平分线,DE⊥AB于E,且DE=3cm,则点D到AC的距离为.【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边的距离相等的性质可得点D到AC的距离等于点D到AB的距离DE 的长度.【解答】解:如图,∵AD是△ABC的角平分线,DE⊥AB于E,DF⊥AC,∴DE=DF,∵DE=3cm,∴DF=3cm,即点D到AC的距离为3cm.故答案为:3cm.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.14.如图,AB与CD交于点O,OA=OC,OD=OB,∠AOD= ,根据可得到△AOD≌△COB,从而可以得到AD= .【考点】全等三角形的判定与性质.【专题】计算题.【分析】判定三角形全等,由题中条件,即要利用两边夹一角进行求解,所以找出对应角即可判定其全等,再有全等三角形的性质得出对应边相等.【解答】解:要判定△AOD≌△COB,有OA=OC,OD=OB,所以再加一夹角∠AOD=∠COB,根据两边夹一角,即可判定其全等,又有全等三角形的性质可得AD=CB.故答案为∠COB,SAS,CB.【点评】本题主要考查了全等三角形的判定及性质问题,应熟练掌握.15.如图,∠A=∠D=90゜,AC=DB,欲证OB=OC,可以先利用“HL”说明得到AB=DC,再利用证明△AOB≌得到OB=OC.【考点】全等三角形的判定与性质.【分析】根据HL证Rt△BAC≌Rt△CDB,推出AB=DC,根据AAS证△AOB≌△DOC.【解答】解:∵在Rt△BAC和Rt△CDB中∴Rt△BAC≌Rt△CDB(HL),∴AB=DC,在△AOB和△DOC中∴△AOB≌△DOC(AAS),故答案为:△ABC≌△DCB,AAS,△DOC.【点评】本题考查了全等三角形的性质和判定的应用,主要考查学生的推理能力.16.如图,如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是.【考点】全等三角形的性质.【分析】第三边所对的角即为前两边的夹角.分两种情况,一种是两个锐角或两个钝角三角形,另一种是一个钝角三角形和一个锐角三角形.【解答】解:当两个三角形同为锐角或同为钝角三角形时,易得两三角形全等,则第三边所对的角是相等关系;当一个钝角三角形和一个锐角三角形时(如图),则第三边所对的一个角与另一个角的邻补角相等,即这两个角是互补关系.故填“相等或互补”.【点评】本题考查全等三角形的性质,应注意的是,两边相等不一定角相等,解题时要多方面考虑.17.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带去配,这样做的数学依据是.【考点】全等三角形的应用.【分析】已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故答案为:③;两个角及它们的夹边对应相等的两个三角形全等.【点评】此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.三、解答题(共29分)18.如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.∵AD平分∠BAC∴∠=∠(角平分线的定义)在△ABD和△ACD中∴△ABD≌△ACD .【考点】全等三角形的判定;等腰三角形的性质.【专题】推理填空题.【分析】根据角平分线的定义及全等三角形的判定定理,填空即可.【解答】解:∵AD平分∠BAC∴∠BAD=∠CAD(角平分线的定义),在△ABD和△ACD中,,∴△ABD≌△ACD(SAS).【点评】本题考查了全等三角形的判定,解答本题的关键是掌握全等三角形的判定定理及角平分线的定义.19.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出相等的线段与角.(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.【考点】全等三角形的性质.【专题】证明题.【分析】(1)根据△EFG≌△NMH,∠F与∠M是对应角可得到两个三角形中对应相等的三边和三角;(2)根据(1)中的对等关系即可得MN和HG的长度.【解答】解:(1)∵△EFG≌△NMH,∠F与∠M是对应角,∴EF=NM,EG=NH,FG=MH,∠F=∠M,∠E=∠N,∠EGF=∠NHM,∴FH=GM,∠EGM=∠NHF;(2)∵EF=NM,EF=2.1cm,∴MN=2.1cm;∵FG=MH,FH+HG=FG,FH=1.1cm,HM=3.3cm,∴HG=FG﹣FH=HM﹣FH=3.3﹣1.1=2.2cm.【点评】本题考查了全等三角形全等的性质及比较线段的长短,熟练找出两个全等三角形的对应角、对应边是解此题的关键.20.如图,A、B两建筑物位于河的两岸,要测得它们之间的距离,可以从B点出发沿河岸画一条射线BF,在BF上截取BC=CD,过D作DE∥AB,使E、C、A在同一直线上,则DE的长就是A、B之间的距离,请你说明道理.【考点】全等三角形的应用.【专题】计算题;作图题.【分析】根据BC=CD,∠CED=∠CAB,∠ACB=∠ECD,即可求证△ABC≌△EDC,根据全等三角形对应边相等的性质可以求得AB=DE.【解答】解:∵DE∥AB,∴∠CED=∠CAB,∴△ABC≌△EDC(AAS),∴AB=ED,答:DE的长就是A、B之间的距离.【点评】本题考查了全等三角形在实际生活中的应用,考查了全等三角形的证明和对应边相等的性质,本题中正确的求证△ABC≌△EDC是解题的关键.21.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.【考点】全等三角形的判定.【专题】证明题.【分析】根据AB∥DE,BC∥EF,可证∠A=∠EDF,∠F=∠BCA;根据AD=CF,可证AC=DF.然后利用ASA即可证明△ABC≌△DEF.【解答】证明:∵AB∥DE,BC∥EF∴∠A=∠EDF,∠F=∠BCA又∵AD=CF∴AC=DF∴△ABC≌△DEF.(ASA)【点评】此题主要考查学生对全等三角形的判定的理解和掌握,此题难度不大,属于基础题.四、解答题(共20分)22.已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DEA;②DF⊥BC.【考点】全等三角形的判定与性质.第21页(共22页)【专题】证明题.【分析】(1)根据已知利用HL 即可判定△BEC ≌△DEA ;(2)根据第一问的结论,利用全等三角形的对应角相等可得到∠B=∠D ,从而不难求得DF ⊥BC .【解答】证明:(1)∵BE ⊥CD ,BE=DE ,BC=DA ,∴△BEC ≌△DEA (HL );(2)∵△BEC ≌△DEA ,∴∠B=∠D .∵∠D+∠DAE=90°,∠DAE=∠BAF ,∴∠BAF+∠B=90°.即DF ⊥BC .【点评】此题主要考查学生对全等三角形的判定及性质的理解及运用,做题时要注意思考,认真寻找全等三角形全等的条件是解决本题的关键.23.已知:如图,在四边形ABCD 中,E 是AC 上一点,∠1=∠2,∠3=∠4.求证:∠5=∠6.【考点】全等三角形的判定与性质.【专题】证明题.【分析】因为∠1=∠2,∠3=∠4,AC=CA ,根据ASA 易证△ADC ≌△ABC ,所以有DC=BC ,又因为∠3=∠4,EC=CE ,则可根据SAS 判定△CED ≌△CEB ,故∠5=∠6.【解答】证明:∵,∴△ADC ≌△ABC (ASA ).∴DC=BC .又∵,∴△CED≌△CEB(SAS).∴∠5=∠6.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.第22页(共22页)。