人教版第八章二元一次方程组单元测试题含答案解析
七年级数学下册《第八章 二元一次方程组》单元测试题含答案(人教版)
七年级数学下册《第八章 二元一次方程组》单元测试题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列各式是二元一次方程的是( )A .xy +y =1B .1x +1=yC .x −12y =2D .2x −y2.已知方程2mx −y =10的一组解为{x =1y =2,则m 的值是( ) A .6 B .16 C .4 D .14 3.《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本书.若每人出9元,则多了4元;若每人出8元,则少了3元,设学生有x 人和该书单价为y 元,下列方程组正确的是( )A .{9x −y =4y −8x =3B .{x −9y =48y −x =3C .{9x −y =3y −8x =4D .{9x +y =4y +8x =34.在解二元一次方程组{x −2y =2①4x −2y =5②时,下列方法中无法消元的是( ) A .①−②B .由①变形得x =2+2y ③,将③代入②C .①×4+②D .由②变形得2y =4x −5③,将③代入①5.已知x 、y 满足方程组{2x +y =6x +2y =3,则x −y =( ) A .-3 B .3 C .2 D .06.已知{x =4y =−2与{x =−2y =−5都是方程y =kx +b 的解,则k 与b 的值为( ) A .k =12,b =−4B .k =−12C .k =12,b =4D .k =−127.某种商品价格为33元/件,某人只带有2元和5元的两种面值的购物券各若干张,买了一件这种商品;若无需找零钱,则他的付款方式共有( )A .1种B .2种C .3种D .4种8.若{x =2y =1是方程组{ax +by =712bx +2cy =5的解,则a −c 的值是( ) A .1B .32C .2D .52 二、填空题 9.若x m−2+3y 3n−m =9是关于x ,y 的二元一次方程,则m +n = .10.关于x ,y 的方程组{x +6y =42x −3y =2k −1的解也是二元一次方程x +y =3的解,则k 的值为 . 11.已知a 、b 满足方程组{2a −b =2a +2b =6,则3a+b 的值为 . 12.把一根长20m 的钢管截成2m 长和3m 长两种规格均有的短钢管,且没有余料,不同的截法有 种.13.已知方程组{3x +2y =m +12x +y =m −1当m = 时,x 比y 大2. 三、解答题14.解方程组:(1){2y −x =−4x +y =−5(2){5(x +y)−3(x −y)=163(x +y)−5(x −y)=015.若{x =1,y =2是关于x 、y 的二元一次方程ax −by =1的一个解,且a +b =−5,求a −b 的值. 16.为引导广大青少年树立正确的世界观、人生观、价值观,传承红色基因,某校组织480名师生去红色革命圣地-延安开展研学旅行,学校向租车公司租赁A 、B 两种车型接送师生往返,已知每辆A 型车有45个座位,每辆B 型车有60个座位.若租车公司最多能提供7辆B 型车,且学校两种车型都要租用,没有剩余座位,请问有几种租车方案?并写出符合题意的所有租车方案.17.某公司计划印制一批宣传册.该宣传册每本共10页,由A 、B 两种彩页构成.已知A 种彩页制版费300元/页,B 种彩页制版费200元/页,共计2400元.(注:彩页制版费与印数无关)(1)求每本宣传册中A 、B 两种彩页各有多少页.(2)据了解,A 种彩页印刷费2.5元/页,B 种彩页印刷费1.5元/页,公司准备印制这批宣传册1500本,求印制这批宣传册制版费与印刷费的总和是多少元.18.为了防治“新型冠状病毒”,某小区准备用3500元购买医用口罩和消毒液发放给本小区住户,若医用口罩买800个,消毒液买120瓶,则钱还缺100元;若医用口罩买1000个,消毒液买100瓶,则钱恰好用完.(1)求医用口罩和消毒液的单价;(2)由于实际需要,除购买医用口罩和消毒液外,还需购买单价为6元的N95口罩m个.若需购买医用口罩和N95口罩共1000个,剩余的钱正好买了n瓶消毒液,求m与n的关系式.(用含m的代数式表示n)(3)在(2)的基础上,若100<m<200,求出N95口罩的个数.参考答案1.C2.A3.A4.C5.B6.A7.C8.A9.13310.311.812.313.514.(1)解:{2y −x =−4①x +y =−5② ①+②得:3y =−9解得:y =−3把y =−3代入②得:∴x =−2∴方程组的解为:{x =−2y =−3. (2)解:{5(x +y)−3(x −y)=16①3(x +y)−5(x −y)=0②①+②得:8x +8y −8x +8y =16解得:y =1把y =1代入①得:5x +5−3x +3=16解得:x =4∴方程组的解为:{x =4y =1.15.解:∵{x =1,y =2是关于x 、y 的二元一次方程ax −by =1的一个解 ∴a −2b =1∵a +b =−5∴联立方程组{a −2b =1,a +b =−5, 解得:{a =−3,b =−2,∴a −b =−3−(−2)=−1.16.解:设租m 输A 型车,n 辆B 型车依题意,得:45m +60n =480解得:n =8−34m .∵m ,n 为整数.∴{m =8,n =2,或{m =4,n =5,或{m =0,n =8,(不合题意,舍去) ∴有两种租车方案方案1:租4辆A 型车、5辆B 型车;方案2;租8辆A 型车、2辆B 型车.17.(1)解:设每本宣传册中A 种彩页有x 页,B 种彩页有y 页依题意得:{x +y =10300x +200y =2400解得:{x =4y =6. 答:每本宣传册中A 种彩页有4页,B 种彩页有6页;(2)解:2400+(2.5×4+1.5×6)×1500=2400+(10+9)×1500=2400+19×1500=2400+28500=30900(元).答:印制这批宣传册制版费与印刷费的总和是30900元.18.(1)解:设医用口罩的单价为x 元,消毒液的单价为y 元由题意得:{800x +120y =3500+1001000x +100y =3500解得:{x =1.5y =20答:医用口罩的单价为1.5元,消毒液的单价为20元(2)解:∵需购买单价为6元的N95口罩m 个,需购买医用口罩和N95口罩共1000个 ∴购买医用口罩(1000−m)个由题意得:1.5(1000−m)+6m +20n =3500化简得:n =100−940m(3)解:∵均为正整数,且100<m <200∴m 为40得倍数∴m =120或160。
第八章 二元一次方程组 (单元测试)【解析版】
第八章二元一次方程组章节测试一、单选题:1.下列方程组中是二元一次方程组的是()A .141y xx v ⎧+=⎪⎨⎪-=⎩B .43624x y y z +=⎧⎨+=⎩C .41x y x y +=⎧⎨-=⎩D .22513x y x y +=⎧⎨+=⎩2.已知方程237x y =+,用含y 的代数式表示x 的是()A .237x y =+B .237x y =-+C .372x y =+D .3722=+x y 3.将13x y -=-代入21x y -=的可得()A .1213x x --⨯=B .()2113x x --=C .2213x x ++=D .2213x x -+=4.将三元一次方程组5x 4y z 03x y 4z 11x y z 2++=⎧⎪+-=⎨⎪++=-⎩①②③,经过①-③和③×4+②消去未知数z 后,得到的二元一次方程组是()A .4x 3y 27x 5y 3+=⎧⎨+=⎩B .4x 3y 223x 17y 11+=⎧⎨+=⎩C .3x 4y 223x 17y 11+=⎧⎨+=⎩D .3x 4y 27x 5y 3+=⎧⎨+=⎩【答案】A【分析】根据题意先得出①-③后的方程,再得到③×4+②的方程,从而得出二元一次方程组.【详解】解:根据题意得:①-③得:4x+3y=2,③×4+②得:7x+5y=3,则三元一次方程组54034112x y z x y z x y z ++=⎧⎪+-=⎨⎪++=-⎩①②③,经过①-③和③×4+②消去未知数z 后,得到的二元一次方程组是432753x y x y +=⎧⎨+=⎩;故选:A .【点睛】本题主要考查了三元一次方程组的解,解题的关键是掌握加减消元法消去未知数项,从而得到二元一次方程组.5.若324432a b a b x y ++--=是关于x ,y 的二元一次方程,则23a b +的值为()A .0B .3-C .3D .6【答案】A【分析】根据二元一次方程的定义,得=1a b +,324=1+-a b ,即可得到关于a 、b 的方程组,从而解出a ,b .【详解】解:∵324432a b a b x y ++--=是一个关于x ,y 的二元一次方程,∴=1324=1a b a b +⎧⎨+-⎩,解得:=3=2a b ⎧⎨-⎩,∴23=660+-=a b ,故选:A .【点睛】本题考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:方程中只含有2个未知数;含未知数项的最高次数为一次;方程是整式方程.6.已知x ,y 满足方程组45x m y m +=⎧⎨-=⎩,则无论m 取何值,x ,y 恒有关系式().A .1x y +=B .1x y +=-C .9x y +=D .9x y -=【答案】C【分析】方程组中的两个方程相加得出x +y +m -5=4+m ,整理后即可得出答案.【详解】解:45x m y m +⎧⎨-⎩=①=②,①+②得:x +y +m -5=4+m ,即x +y =9,故选:C .【点睛】本题考查了二元一次方程组的解和解二元一次方程组,能理解二元一次方程组的解的定义是解此题的关键.7.对于非零的两个实数a ,b ,规定a b am bn ⊗=-,若3⊗(-5)=-15,4⊗(-7)=-28,则(-1)⊗2的值为()A .-13B .13C .2D .-2【答案】B【分析】根据已知规定及两式,确定出m 、n 的值,再利用新规定化简原式即可得到结果.【详解】根据题意得:3⊗(-5)3515m n =+=-,4⊗(-7)4728m n =+=-,∴35154728m n m n +=-⎧⎨+=-⎩,解得:3524m n =⎧⎨=-⎩,∴(-1)⊗22354813m n =--=-+=,故选:B .【点睛】本题考查了新定义运算,涉及了解二元一次方程组等知识,要求学生能理解题目规则,正确列出等式.解决本题时,求出m 、n 是关键.8.如图,宽为50cm 的长方形图案由10个形状大小完全相同的小长方形拼成,其中一个小长方形的面积为()A .2400cmB .2500cmC .2600cmD .24000cm 【答案】A【分析】设小长方形的宽为x cm ,长为y cm ,根据题意列方程组求解即可.【详解】设小长方形的宽为x cm ,长为y cm ,根据题意得504x y y x +=⎧⎨=⎩,解得1040x y =⎧⎨=⎩,∴一个小长方形的面积为21040400cm ⨯=,故选:A .【点睛】本题考查了二元一次方程组的实际应用,能够根据题意列出方程组并准确求解是解题的关键.9.已知关于,x y 的方程组212ax y x by +=⎧⎨-=⎩,甲看错a 得到的解为12x y =⎧⎨=-⎩,乙看错了b 得到的解为11x y =⎧⎨=⎩,他们分别把a b 、错看成的值为()A .5,1a b ==-B .15,2a b ==C .11,2a b =-=D .1,1a b =-=【答案】A【分析】把甲的结果代入第一个方程求出a 的值,把乙的结果代入第二个方程求出b 的值,求解即可.【详解】解:把12x y =⎧⎨=-⎩代入21ax y +=得:41a -=,把11x y =⎧⎨=⎩代入2x by -=得:12b -=,解得:a=5,b=-1,故选A .【点睛】此题主要考查了二元一次方程组的解和解二元一次方程的知识点,解题关键点是看清题意再得出a 、b 的值.10.关于x ,y 的二元一次方程组59x y kx y k+=⎧⎨-=⎩的解也是二元一次方程2x +3y =﹣6的解,则k 的值是()A .﹣34B .34C .43D .﹣43二、填空题:11.请写出一个以21x y =⎧⎨=-⎩为解的二元一次方程:______.【答案】1x y +=(答案不唯一)【分析】根据二元一次方程定义:ax by c +=,令,,a b c 为常数,把21x y =⎧⎨=-⎩代入,解出c 即可.【详解】∵本题答案不唯一,只要写出的二元一次方程的解为21x y =⎧⎨=-⎩即可∴令1a =,1b =,得x y c +=∴把21x y =⎧⎨=-⎩代入方程x y c+=解出1c =∴1x y +=故答案是:1x y +=.【点睛】本题考查解二元一次方程的逆过程、不定方程的定义,灵活掌握二元一次方程定义是解题的关键.12.若11x y =⎧⎨=-⎩是方程组2421ax y bx by a +=⎧⎨-=-⎩的解,则a =_______,b =_______.【答案】3, 1.【分析】所谓方程组的解,指的是该数值满足方程组中的每一方程.把x 、y 的值代入原方程组可转化成关于a 、b 的二元一次方程组,解方程组即可求出a 、b 的值.【详解】把x ,y 的值代入方程组,得2421a b b a -=⎧⎨+=-⎩解得a=3,b=1,故答案为3, 1.【点睛】一要注意方程组的解的定义;二要熟练解方程组的基本方法:代入消元法和加减消元法.13.若()235230x y x y ,-++-+=则x y +的值为______.【答案】-3【分析】根据已知等式,利用非负数的性质列出方程组,求出方程组的解得到x 与y 的值,即可确定出x+y 的值.【详解】∵(3x-y+5)2+|2x-y+3|=0,∴3x-y+5=0,2x-y+3=0,∴x=-2,y=-1.∴x+y=-3.【点睛】本题考查的知识点是:某个数的平方与另一数的绝对值的和等于0,那么平方数的底数为0,绝对值里面的代数式的值为0.14.在y=ax 2+bx+c 中,当x=1时,y=0;当x=2时,y=4;当x=3时,y=10,则当x=4时,y=___.【答案】18【分析】先把x=1时,y=0;x=2时,y=4;x=3时,y=10分别代入y=ax 2+bx+c ,求出a ,b ,c 的值,从而得出等式y=x 2+x-2,再把x=4代入,即可求出y 的值.【详解】把x=1时,y=0;x=2时,y=4;x=3时,y=10分别代入y=ax 2+bx+c 得:04249310a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩,解得:112a b c =⎧⎪=⎨⎪=-⎩,则等式y=x 2+x-2,把x=4代入上式得:y=18.【点睛】本题考查了三元一次方程组的解法,掌握解三元一次方程组的步骤是本题的关键15.已知点()36,415A x y -+,点()5,B y x 关于x 轴对称,则x y +的值是____.【答案】-6【分析】让两点的横坐标相等,纵坐标相加得0,即可得关于x ,y 的二元一次方程组,解值即可.【详解】解:∵点()36,415A x y -+,点()5,B y x 关于x 轴对称,∴3654150x y y x -=⎧⎨++=⎩;解得:33x y =-⎧⎨=-⎩,∴=-6+x y ,故答案为-6.【点睛】本题考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系:关于横轴的对称点,横坐标不变,纵坐标变成相反数.16.若二元一次方程组23151x y ax by -=⎧⎨+=⎩和51cx dy x y -=⎧⎨+=⎩同解,则可通过解方程组_____求得这个解.【答案】23151x y x y -=⎧⎨+=⎩【分析】联立两方程组中不含a 与b 的方程重新组成新的方程组即可.【详解】解:∵二元一次方程组23151x y ax by -=⎧⎨+=⎩和51cx dy x y -=⎧⎨+=⎩同解,∴可通过解方程组23151x y x y -=⎧⎨+=⎩求得这个解,故答案为:23151x y x y -=⎧⎨+=⎩.【点睛】本题主要考查了二元一次方程组同解的问题,解题的关键在于能够熟练掌握相关知识进行求解.17.已知关于x ,y 的二元一次方程组224x y mx y +=⎧⎨+=⎩的解满足x ﹣y =3,则m 的值为_____【答案】1【分析】②−①得到x−y =4−m ,代入x−y =3中计算即可求出m 的值.【详解】解:224x y m x y +=⎧⎨+=⎩①②,②−①得:x−y =4−m ,∵x−y =3,∴4−m =3,解得:m =1,故答案为1【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.若关于x ,y 的方程组322x y x y a +=⎧⎨-=-⎩的解是正整数,则整数a 的值是_____.19.《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系其中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两.2头牛、5只羊共值金8两.每头牛、每只羊各值金多少两?设1头牛值金x 两,1只羊值金y 两,则可列方程组为_________.【答案】5210258x y x y +=⎧⎨+=⎩【分析】设1头牛值金x 两,1只羊值金y 两,根据等量关系“①5头牛,2只羊共值10两金;②2头牛,5只羊共价值8两金”,分别列出方程即可求解.【详解】设1头牛值金x 两,1只羊值金y 两,由题意可得,5210258x y x y +=⎧⎨+=⎩.故答案为:5210258x y x y +=⎧⎨+=⎩.【点睛】本题主要考查了二元一次方程组的应用,根据题意得出正确的等量关系是解题关键.20.为鼓励居民节约用气,某省决定对天然气收费实行阶梯气价,阶梯气价划分为两个档级:(1)第一档气量为每户每月30立方米(含30立方米)以内,执行基准价格;(2)第二档气量为每户每月超出30立方米以上部分,执行市场调节价格.小明家5月份用气35立方米,交费112.5元;6月份用气41立方米,交费139.5元,若小明7月份用气29立方米,则他家应交费________元.【答案】87【分析】根据5月份用气35立方米,交费112.5元;6月份用气41立方米,交费139.5元,列出方程组求得气价,再进一步根据7月份用气29立方米选择气价计算即可.【详解】设基准价格为x 元,市场调节价格为y 元,由题意得305112.5,3011139.5,x y x y +=⎧⎨+=⎩解得3,4.5.x y =⎧⎨=⎩7月份用气29立方米,则他家应交费29×3=87元.故答案为87.【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据题意列出方程组.三、解答题:21.解方程:(1)32339x y x y +=⎧⎨-=⎩(用代入消元法)(2)734831x y x y -=⎧⎨-=-⎩(用加减消元法)(3)12343314312x y x y ++⎧=⎪⎪⎨--⎪-=⎪⎩(4)281223x y z x y x z y ++=⎧⎪-=-⎨⎪+=+⎩【答案】(1)56x y =⎧⎨=⎩;(2)513x y =-⎧⎨=-⎩;(3)22x y =⎧⎨=⎩;(4)123x y z =⎧⎪=⎨⎪=⎩【分析】(1)由方程②变形得39y x =-,并代入方程①,解方程即可求得x 的值,再将求得的x 值代入39y x =-中,可求得y 的值,从而得方程组的解;(2)考虑两方程中y 的系数相同,两式相减即可消去未知数y ,求得x ,再将x 的值代入第一个方程即可求得y 的值,从而得方程组的解;(3)先化简方程组中的每一个方程,再用加减法解方程组即可;(4)先消去未知数z ,转化为二元一次方程组,解二元一次方程组求得x 与y 的值,最后求得z 的值即可.【详解】(1)32339x y x y +=⎧⎨-=⎩①②,方程②变形得:39y x =-③,把③代入①,得:()33923x x +-=,解得:5x =,把5x =代入③得:6y =,所以方程组的解为:56x y =⎧⎨=⎩;(2)734831x y x y -=⎧⎨-=-⎩①②,②-①得:5x =-,把5x =-代入①得:3534y --=解得:13y =-所以方程组的解为:513x y =-⎧⎨=-⎩;(3)方程组化简得:432342x y x y -=⎧⎨-=-⎩①②①+②得:770x y -=,即y x =,把y x =代入①得:2x =,∴2y x ==,所以原方程组的解为:22x y ==⎧⎨⎩;(4)原方程组化为:281223x y z x y x y z ++=⎧⎪-=-⎨⎪-+=⎩①②③①×2-③得:613x y +=④,④-②得:714y =,解得:2y =,把2y =代入②得:1x =,把2y =,1x =代入①得:3z =,所以原方程组的解为:123x y z =⎧⎪=⎨⎪=⎩.【点睛】题目主要考查解二元一次方程组和三元一次方程组,解法有代入消元法和加减消元法两种,能够根据方程组的特点,灵活选取适当的方法,熟练而准确地掌握解方程组方法是本题的关键.22.一个两位数,个位数字与十位数字的和为8,个位数字与十位数字互换位置后,所得的两位数比原两位数小18,则原两位数是多少?【答案】原两位数是53.【分析】设原两位数的个位数字为x ,十位数字为y ,根据“个位数字与十位数字的和为8,个位数字与十位数字互换位置后,所得的两位数比原两位数小18”,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,再将其代入10y +x 即可得出结论.【详解】解:设原两位数的个位数字为x ,十位数字为y ,根据题意得:()8101018x y y x x y +=⎧⎨+-+=⎩解得:35x y =⎧⎨=⎩∴10y+x =53.答:原两位数是53.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.23.初一级学生去某处旅游,如果每辆汽车坐45人,那么有15个学生没有座位;如果每辆汽车坐60人,那么空出1辆汽车.问一共多少名学生、多少辆汽车.【答案】240名学生,5辆车.【分析】设车数是x ,学生是y 人,依据题意列方程组:()4515601x y x y ⎧⎨-⎩+==即可解.【详解】设车数是x ,学生是y 人,依据题意列方程组:()4515601x y x y ⎧⎨-⎩+==,解方程组可得:5240x y ⎧⎨⎩==.所以一共有学生240人,车5辆.故答案为一共有学生240人,车5辆.【点睛】本题考查的知识点是二元一次方程组的应用,解题关键是弄清题意,找出合适的等量关系,列出方程组.24.已知方程组3247x y mx ny -=⎧⎨+=⎩与231953mx ny y x -=⎧⎨-=⎩有相同的解,求m ,n 的值.【答案】41m n =⎧⎨=-⎩【分析】先解不含m 、n 的方程组,解得x 、y 的值,再代入含有m 、n 的方程组求解即可.【详解】解:∵3247x y mx ny -=⎧⎨+=⎩与231953mx ny y x -=⎧⎨-=⎩有相同的解,∴32453x y y x -=⎧⎨-=⎩和23197-=⎧⎨+=⎩mx ny mx ny 也有相同的解,∴解方程组324{53x y y x -=-=,得21x y =⎧⎨=⎩,代入23197-=⎧⎨+=⎩mx ny mx ny 中得431927m n m n -=⎧⎨+=⎩,∴解方程组得41m n =⎧⎨=-⎩.故答案为41m n =⎧⎨=-⎩.【点睛】本题主要考查了与二元一次方程组的解有关的知识点,解题的关键是准确理解方程组有相同解的情况,组成新的二元一次方程组求解.25.材料:解方程组()1045x y x y y --=⎧⎨--=⎩时,可由①得1x y -=③,然后再将③代入②得415y ⨯-=,求得1y =-,从而进一步求得01x y =⎧⎨=-⎩这种方法被称为“整体代入法”请用这样的方法解方程组()()423324x y x y x y -=⎧⎨--=⎩26.抗洪指挥部的一位驾驶员接到一个防洪的紧急任务,要在限定的时间内把一批抗洪物质从物资局运到水库,这辆车如果按每小时30千米的速度行驶在限定的时间内赶到水库,还差3千米,他决定以每小时40千米的速度前进,结果比限定时间早到18分钟,问限定时间是几小时?物资局仓库离水库有多远?27.为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)请你设计一种方案,不仅每小时支付的租金最少,又恰好能完成每小时的挖掘量?当m=5,n=3时,支付租金:100×5+120×3=860元当m=1,n=6时,支付租金:100×1+120×6=820元.答:有一种租车方案,即租用1辆甲型挖掘机和6辆乙型挖掘机,不仅每小时支付的租金最少,又恰好能完成每小时的挖掘量.点睛:本题考查了二元一次方程组的应用.解决问题的关键是读懂题意,依题意列出等式(或不等式)进行求解.。
人教版七年级下《第八章二元一次方程组》单元练习含答案试卷分析详解
七年级数学下册第八章二元一次方程组单元练习一、选择题(本大题共10小题,共30.0分)1.已知二元一次方程2x-y=1,则用x的代数式表示y为()A. y=1-2xB. y=2x-1C. x=D. x=2.下列方程组中,二元一次方程组的个数是()(1)(2)(3)(4)(5)A. 1个B. 2个C. 3个D. 4个3.若3x m-n-2y m+n-2=4是关于x,y的二元一次方程,则m,n的值分别为()A. m=1,n=0B. m=0,n=-1C. m=2,n=1D. m=2,n=-34.若购买甲商品3件,乙商品2件,丙商品1件,共需140元;购买甲商品1件,乙商品2件,丙商品3件,共需100元;那么购买甲商品1件,乙商品1件,丙商品1件,共需()元.A. 50B. 60C. 70D. 805.在中央电视台2套“开心辞典”节目中,有一期的某道题目是:如图所示,天平中放有苹果、香蕉、砝码,且两个天平都平衡,则一个苹果的重量是一个香蕉的重量的()A. 倍B. 倍C. 2倍D. 3倍6.根据等式的性质,下列各式的变形中,一定正确的是()A. 若a=b,则a+c=b-cB. 若a=b+2,则3a=3b+6C. 若6a=2b,则a=3bD. 若ac=bc,则a=b7.小明解方程组x+y=■的解为x=5,由于不小心滴下了两滴墨水,刚好把两个数■和★遮住了,则这个数■和★的值为()A. B. C. D.8.二元一次方程组的解是()A. B. C. D.9.王老师的数学课采用小组合作学习方式,把班上40名学生分成若干小组,如果要求每小组只能是5人或6人,则有几种分组方案()A. 4B. 3C. 2D. 110.已知关于x,y的二元一次方程组的解为,则a-2b的值是()A. -2B. 2C. 3D. -3二、填空题(本大题共10小题,共30.0分)11.若方程x4m-1+5y-3n-5=4是二元一次方程,则m=______,n=______.12.已知方程2x+y-5=0,用含x的代数式表示y= ______ .13.三元一次方程组的解是______ .14.请你写出一个有一解为的二元一次方程:______ .15.已知5b-2a-2=7a-4b,则a,b的大小关系是______ .16.若关于x、y的二元一次方程组的解满足x+y>0,则m的取值范围是______ .17.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”译文:“假设有甲乙二人,不知其钱包里有多少钱.若乙把自己一半的钱给甲,则甲的钱数为50;而甲把自己的钱给乙,则乙的钱数也能为50.问甲、乙各有多少钱?”设甲持钱为x,乙持钱为y,可列方程组为______.18.已知关于x、y的二元一次方程组给出下列结论:①当k=5时,此方程组无解;②若此方程组的解也是方程6x+15y=16的解,则k=10;③无论整数k取何值,此方程组一定无整数解(x、y均为整数),其中正确的是______(填序号).19.已知是二元一次方程ax+y=7的一个解,则a= ______ .20.如图是由10个相同的小长方形拼成的长方形图案,则每块小长方形的面积为______ cm2.三、计算题(本大题共4小题,共24.0分)21.解方程组(1)(2).22.解方程组:.23.解方程组:(1)(2).24.解方程组.四、解答题(本大题共2小题,共16.0分)25.某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元,大樱桃售价为每千克40元,小樱桃售价为每千克16元.(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?26.已知用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案(即A、B两种型号的车各租几辆,有几种租车方案).答案和解析【答案】1. B2. B3. C4. B5. B6. B7. A8. D9. C10. B11. ;-212. -2x+513.14. x+y=-115. a<b16. m>-217.18. ①②③19. 220. 40021. 解:(1),由②得:x=2y③,把③代入①得:4y+y=5,即y=1,把y=1代入③得:x=2,则方程组的解为;(2)方程组整理得:,①×2+②得:11x=22,即x=2,把x=2代入①得:y=3,则方程组的解为.22. 解:,①×2+②得:9x=18,解得:x=2,把x=2代入②得:y=1,则方程组的解为.23. 解:(1),①+②得:6x=24,解得:x=4,把x=4代入②得:y=-3,则方程组的解为;(2),①+②×3得:11x=22,解得:x=2,把x=2代入①得:y=1,则方程组的解为.24. 解:x:y=1:5=2:10,y:z=2:3=10:15,设x=2k,y=10k,z=15k,∵x+y+z=27,∴2k+10k+15k=27,k=1,∴x=2,y=10,z=15,故方程组的解是.25. 解:(1)设小樱桃的进价为每千克x元,大樱桃的进价为每千克y元,根据题意可得:,解得:,小樱桃的进价为每千克10元,大樱桃的进价为每千克30元,200×[(40-30)+(16-10)]=3200(元),∴销售完后,该水果商共赚了3200元;(2)设大樱桃的售价为a元/千克,(1-20%)×200×16+200a-8000≥3200×90%,解得:a≥41.6,答:大樱桃的售价最少应为41.6元/千克.26. 解:(1)设1辆A型车和1辆B型车都装满货物一次可分别运货x吨,y吨,根据题意得:,解得:.答:1辆A型车和1辆B型车都装满货物一次可分别运货3吨,4吨.(2)由题意可得:3a+4b=31,∴b=.∵a,b均为整数,∴有、和三种情况.故共有三种租车方案,分别为:①A型车1辆,B型车7辆;②A型车5辆,B型车4辆;③A型车9辆,B型车1辆.【解析】1. 解:移项,得y=2x-1.故选B.把方程2x-y=1写成用含x的代数式表示y,需要进行移项.本题考查的是方程的基本运算技能:移项、合并同类项、系数化为1等.2. 解:(1)里面含有x2和y2,不符合二元一次方程组的定义;(2)符合二元一次方程组的定义;(3)里面含有xy,是二次,不符合二元一次方程组的定义;(4)符合二元一次方程组的定义;(5)其中①式的y是-1次,不符合二元一次方程组的定义.综上可知,(2)和(4)是二元一次方程组.故选B.分析各个方程组,观察是否符合二元一次方程组的定义“1、只有两个未知数;2、未知数的项最高次数都应是一次;3、都是整式方程”.本题考查了学生对二元一次方程组的认识,紧扣二元一次方程组的定义的三要点.3. 解:由题意,得,解得,故选:C.根据二元一次方程的定义,可得x和y的指数分别都为1,列关于m、n的方程组,再求出m和n的值.本题考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.5. 解:设一个苹果的重量为x、一个香蕉的重量为y、一个砝码的重量为z,由题意得,解得x=2z,y=z,故==.故选B.设一个苹果的重量为x、一个香蕉的重量为y、一个砝码的重量为z,先用含z的代数式表示x,y,即解关于x,y的方程组,再求即可.本题先通过解三元一次方程组,求得用z表示的x,y的值后而求解.6. 解:A、两边加不同的整式,故A错误;B、两边都除以3,故B正确;C、两边除以不同的数,故C错误;D、c=0时,两边都除以c无意义,故D错误;故选:B.根据等式的性质,可得答案.本题考查了等式的性质,熟记等式的性质是解题关键.7. 解:把x=5代入方程组得:,解得:y=★=3,把x=5,y=3代入得:■=3+5=8,故选A把x=5代入已知方程组求出■的值,进而求出★的值即可.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.8. 解:,①+②得,2x=6,解得,x=3,把x=3代入①得,y=-1,则方程组的解为:,故选:D.利用加减法解出二元一次方程组即可.本题考查的是二元一次方程组的解法,掌握用加减法解二元一次方程组的一般步骤是解题的关键.9. 解:设5人一组的有x个,6人一组的有y个,根据题意可得:5x+6y=40,当x=1,则y=(不合题意);当x=2,则y=5;当x=3,则y=(不合题意);当x=4,则y=(不合题意);当x=5,则y=(不合题意);当x=6,则y=(不合题意);当x=7,则y=(不合题意);当x=8,则y=0;故有2种分组方案.故选:C.根据题意设5人一组的有x个,6人一组的有y个,利用把班级里40名学生分成若干小组,进而得出等式求出即可.此题主要考查了二元一次方程的应用,根据题意分情况讨论得出是解题关键.10. 解:把代入方程组得:,解得:,所以a-2b=-2×(-)=2,故选:B.把代入方程组,得出关于a、b的方程组,求出方程组的解即可.本题考查了解二元一次方程组和二元一次方程组的解,能得出关于a、b的方程组是解此题的关键.11. 解:根据二元一次方程的定义得,4m-1=1,-3n-5=1,解得m=,n=-2.故答案为:;-2.根据二元一次方程的定义,可得x和y的指数分别都为1,列关于m、n的方程,然后求解即可.本题考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.12. 解:方程2x+y-5=0,解得:y=-2x+5,故答案为:-2x+5把x看做已知数求出y即可.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.13. 解:组,由(1)+(3),得4x+2z=10,(4)由(1)×3+(2),得11x+2z=24,(5)由(5)-(4),解得x=2.将其代入(5),解得z=1,把x=2,z=1代入(1),解得y=3.所以原方程组的解为:.故答案是:.可用减法化去y,达到消元的目的,然后解关于x、z的方程组.本题考查三元一次方程组的解法,解决本题关键是寻找式子间的关系,寻找方法降元.14. 解:根据题意,得x+y=1-2=-1,即x+y=-1;x-y=-1+2=3,即x-y=3;所以,所有符合x+y=-1,x-y=3的二元一次方程均可.故答案为:x+y=-1.根据方程组知x与y的数量关系:x+y=-1,x-y=3;所以所有符合此要求的二元一次方程均可.考查二元一次方程的解的定义,要求理解什么是二元一次方程的解,并会把x,y的值代入原方程验证二元一次方程的解.15. 解:移项得,5b+4b=7a+2a+2,合并同类项得,9b=9a+2,所以,a<b.故答案为:a<b.根据等式的性质,移项、合并同类项即可得解.本题考查了等式的性质,整理后等式两边a、b的系数相同是解题的关键.16. 解:,①+②得2x+2y=2m+4,则x+y=m+2,根据题意得m+2>0,解得m>-2.故答案是:m>-2.首先解关于x和y的方程组,利用m表示出x和y,代入x+y>0即可得到关于m的不等式,求得m的范围.本题考查的是解二元一次方程组和不等式,解答此题的关键是把m当作已知数表示出x、y的值,再得到关于m的不等式.17. 解:设甲持钱为x,乙持钱为y,根据题意,可列方程组:,故答案为:.设甲持钱为x,乙持钱为y,根据题意可得,甲的钱+乙的钱的一半=50元,乙的钱+甲所有钱的=50元,据此可列方程组.本题考查了由实际问题列方程组的能力,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.18. 解:∵当k=5时,方程组为,此时方程组无解;∴①正确;∵解方程组得,把代入6x+15y=16,方程左右两边相等,∴②正确;∵解方程组得,又∵k为整数,∴x、y不能均为整数,∴③正确.故答案为:①②③.①将k=5代入,得到方程组得,求解即可作出判断;②解方程组得,把代入6x+15y=16,即可做出判断;③解方程组得,根据k为整数即可作出判断.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.19. 解:把代入二元一次方程ax+y=7得:a+5=7,解得:a=2.故答案为:2.知道了方程的解,可以把这对数值代入方程,得到一个含有未知数a的一元一次方程,从而可以求出a 的值.此题考查的是二元一次方程的解,解题关键是把方程的解代入原方程,使原方程转化为以系数a为未知数的方程,一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.20. 解:设一个小长方形的长为xcm,宽为ycm,则可列方程组,解得,则一个小长方形的面积=40×10=400(cm2).故答案为:400.由题意可知本题存在两个等量关系,即小长方形的长+小长方形的宽=50cm,小长方形的长+小长方形宽的4倍=小长方形长的2倍,根据这两个等量关系可列出方程组,进而求出小长方形的长与宽,最后求得小长方形的面积.本题考查了二元一次方程组的应用.解答本题关键是弄清题意,看懂图示,找出合适的等量关系,列出方程组.并弄清小长方形的长与宽的关系.21. (1)方程组利用代入消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22. 方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23. (1)方程组利用加减消元法求出解即可;(2)方程组变形后,利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.24. 先变形得出x:y:z=2:10:15,设x=2k,y=10k,z=15k,代入x+y+z=27得出方程2k+10k+15k=27,求出k即可.本题考查了解三元一次方程组的应用,解此题的关键是得出关于k的方程.25. (1)根据用8000元购进了大樱桃和小樱桃各200千克,以及大樱桃的进价比小樱桃的进价每千克多20元,分别得出等式求出答案;(2)根据要想让第二次赚的钱不少于第一次所赚钱的90%,得出不等式求出答案.此题主要考查了二元一次方程组的应用以及一元一次不等式的应用,正确表示出总费用是解题关键.26. (1)设1辆A型车和1辆B型车都装满货物一次可分别运货x吨,y吨,根据“用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)由(1)的结论结合某物流公司现有31吨货物,即可得出3a+4b=31,即b=,由a、b均为正数即可得出各租车方案.本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)根据等量关系,列出关于x、y的二元一次方程组;(2)由(1)的结论结合共运货31吨,找出3a+4b=31.。
人教版数学七年级下册第八章二元一次方程组单元测试卷(含答案)
人教版数学七年级下册第八章二元一次方程组一、单选题1.下列方程中是二元一次方程的是( )A .x +y =aB .3x −y =0C .x +xy =10D .4x =3y2.用代入法解方程组{y =1−x ①x−2y =4②时,把①代入②正确的是( )A .x -2−x =4B .x−2−2x =4C .x -2+2x =4D .x−2+x =43.方程x−y =−1与下面方程中的一个组成的二元一次方程组的解为{x =3y =4,那么这个方程可以是( )A .3x−4y =16B .13x +14y =0C .4(x +y)=7yD .3x +2y =154.已知关于x ,y 的方程组{3x +2y =42x−7y =4m−9的解也满足方程x−y =3,则m 的值为( )A .3B .4C .5D .65.如果(x+y-5)2与│3y-2x+10│互为相反数,那么x 、y 的值为( )A .x=3,y=2B .x=2,y=3C .x=0,y=5D .x=5,y=06.若点P (x,y )满足方程组{2x−y =5x +y =1,则点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限7.甲乙两人练习跑步,若乙先跑10m ,则甲5s 就可以追上乙;若乙先跑2s ,则甲4s 就可以追上乙,若设甲的速度x m/s ,乙的速度y m/s ,则( )A .x =4,y =6B .x =6,y =4C .x =3,y =5D .x =5,y =38.我国古代数学名著《算法统宗》中记载:“今有里长值月议云每里科出银五钱依帐买物以辨酒席多银三两五钱每里科出四钱亦多五钱问合用银并里数若干”.意为:里长们(“里”是指古代的一种基层行政单位)在月度会上商议出银子购买物资办酒席之事.若每里出5钱,则多出35钱;若每里出4钱,则多出5钱.问办酒席需多少银子,里的数量有多少个?若设里的数量有x 个,办酒席需要用y 钱银子,则可列方程组为( )A .{5y =x +354y =x−5B .{5y =x +354y =x +5C .{5x =y +354x =y−5D .{5x =y +354x =y +59.一家宾馆有二人间、三人间、四人间3种客房,一个由20人组成的旅行团准备同时租住这3种客房共7间,如果每个房间都住满,可供选择的方案有( )A .1种B .2种C .3种D .4种10.图1是我国古代传说中的洛书,图2是洛书的数字表示.相传,大禹时,洛阳西洛宁县洛河中浮出神龟,背驮“洛书”,献给大禹.大禹依此治水成功,遂划天下为九州.又依此定九章大法,治理社会,流传下来收入《尚书》中,名《洪范》.《易·系辞上》说:“河出图,洛出书,圣人则之”.洛书是一个三阶幻方,就是将已知的9个数填入3×3的方格中,使每一横行、每一竖列以及两条斜对角线上的数字之和都相等.图3是一个不完整的幻方,根据幻方的规则,由已知数求出 x 的值应为( ).A .-4B .-3C .3D .4二、填空题11.将方程4x−3y =12变形为用关于x 的代数式表示y ,则y = 12.请你写出一个解为 {x =1y =−1的二元一次方程组:.13.若关于x ,y 的二元一次方程3x +ay =1有一个解是{x =2y =1,则a = .14.已知m 、n 满足{23m +24n =3124m +23n =16,则m 2−n 2的值是.15.已知方程组{2x +3y =13x +2y =2的解满足x−y =m ,则m 的值为 .16.已知{x−3y +2z =03x−3y−4z =0,则x:y:z =.17.已知方程组{5x +y =3mx +5y =4 与{x−2y =55x +ny =1有相同的解,则m−n = .18.实数m 取何值,方程x−2my +mx−6=0总有一个固定的解,请直接写出这个解 .三、解答题19.解方程组:(1){x +2y =9y−3x =1(2){x +4y =14x−33−y−33=11220.小明和小亮分别从相距20千米的甲、乙两地相向而行,经过2小时,两人相遇,相遇后小明立即返回甲地,小亮继续向甲地前进,小明返回到甲地时,小亮离甲地还有2千米,请求出两人的速度分别是多少?21.甲乙两人同时解方程组{ax+by=8cx−3y=−2,甲正确解得{x=1y=−1;乙因为抄错c的值,解得{x=2y=−6.求a,b,c的值.22.2024年五一假期期间,太原市某中学开展以“红色经典”为主题的研学活动,组织七年级师生参观红色文化传承实践教育基地.原计划租用45座甲型客车若干辆,但有15人没有座位;若租用同样数量的60座乙型客车,则多出三辆车,且其余客车恰好坐满.(1)参加此次研学活动的师生人数是多少?原计划租用多少辆甲型客车?(2)若同时租用甲、乙两种型号的客车,要使每位师生都有座位且无空位,有哪几种租车方案?23.某校组织“大手拉小手,义卖献爱心”活动,计划购买黑白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花4800元购买了黑白两种颜色的文化衫200件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫2545白色文化衫2035(1)学校购进黑.白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.24.阅读下述材料,再按要求解答.如果一个关于x、y的一次方程可化为形如:ax+by+1=0(a,b都是不为0的常数)的形式,并且满足a+b=1,那么我们就把这个一次方程叫做具有“1性质”的方程.(1)若关于x,y的方程ax+76y+1=0是具有“1性质”的方程,则a的值为______.(2)若关于x,y的方程m−n2x−(m+n)y=1是具有“1性质”的方程,且{x=1y=2是该方程的一个解,试求m,n的值.参考答案1.D2.C3.C4.C5.D6.D7.B8.D9.B10.A11.4x−12312.{x+y=0x−y=2(答案不唯一)13.-514.−1515.116.9:5:317.1218.{x=6y=319.(1){x=1y=4;(2){x=3y=11420.小明速度为5.5千米/时.小亮速度为4.5千米/时21.{a=10b=2c=−522.(1)参加此次研学活动的师生人数是600,原计划租用13辆甲型客车(2)有三种租车方案,分别是租用甲型客车4辆,乙型客车7辆;租用甲型客车8辆,乙型客车4辆;租用甲型客车12辆,乙型客车1辆23.(1)学校购进黑文化衫160件,白文化衫40件;(2)该校这次义卖活动共获得3800元利润.24.(1)−16 (2){m=−4n=2。
人教版七年级数学下册第八章《二元一次方程组》单元检测卷 (附答案)
型号
A
B
单个盒子容量(升)
2
3
单价(元)
5
6
三、解答题(共60分)
2.若 ,则ab=()
A.-10B.-40C.10D.40
【答案】A
【解析】
【分析】联立已知两方程求出a与b的值,即可求出ab的值.
【详解】解:联立得:
解得
∴ab=-10.
故选A.
3.若-2amb4与5an+2b2m+n可以合并成一项,则mn的值是( )
A.0B. C.1D.2
【答案】C
【解析】
【分析】根据-2amb4与5an+2b2m+n可以合并成一项,可得同类项,根据同类项的定义,可得m、n的值,根据乘方,可得答案.
18.阅读下列材料:
问题:某饭店工作人员第一次买了13只鸡、5只鸭、9只鹅共用了925元.第二次买了2只鸡、4只鸭、3只鹅共用了320元,试问第三次买了鸡、鸭、鹅各一只共需多少元?(假定三次购买鸡、鸭、鹅的单价不变)
解:设鸡、鸭、鹅的单价分别为x,y,z元.依题意,得
,
上述方程组可变形为 ,
设x+y+z=a,2x+z=b,上述方程组可化 : ,
13.解方程组:
(1)
(2)
14.已知 是关于x,y的二元一次方程3x=y+a的解,求a(a-1)的值.
15.已知关于x,y 方程组 与 有相同的解,求a,b的值.
新人教版初中数学七年级下册第8章《二元一次方程组》单元测试卷(含答案解析)
人教版数学七年级下册同步单元复习卷: 第8章 二元一次方程组一、填空题(本大题共8小题,共32分)1.写出一个解为12x y =-⎧⎨=⎩的二元一次方程组__________.2.方程mx -2y=x+5是二元一次方程时,则m________.3.若2x 2a-5b +y a -3b =0是二元一次方程,则a=______,b=______. 4.若12a b =⎧⎨=-⎩是关于a ,b 的二元一次方程ax+ay -b=7的一个解,则代数式(x+y )2-1•的值是_________5.若2x 5a y b+4与-x 1-2b y 2a 是同类项,则b=________. 6.已知都是ax+by=7的解,则a=_______,b=______.7.甲队有x 人,乙队有y 人,若从甲队调出10人到乙队,则甲队人数是乙队人数的一半,可列方程为______________.8.在等式y =kx +b 中,当x =1时,y =1;当x =2时,y =4,则k =__________,b =__________.二、选择题(本大题共8小题,每小题4分,共32分。
)9.表示二元一次方程组的是( )A 、⎩⎨⎧=+=+;5,3x z y xB 、⎩⎨⎧==+;4,52y y xC 、⎩⎨⎧==+;2,3xy y xD 、⎩⎨⎧+=-+=222,11xy x x y x 10.已知2 x b +5y 3a 与-4 x 2a y 2-4b 是同类项,则b a 的值为( )A .2B .-2C .1D .-1 11.若关于x 、y 的方程组⎩⎨⎧=-=+k y x k y x 73的解满足方程2x +3y =6,那么k 的值为( ) A .-23 B .23 C .-32 D .-23 12.如图所示,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( ).A .400 cm 2B .500 cm 2C .600 cm 2D .4 000 cm 213.方程82=+y x 的正整数解的个数是( )A 、4B 、3C 、2D 、114.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =m ,x -y =4m 的解为3x +2y =14的一个解,那么m 的值为( ). A .1 B .-1 C .2 D .-215.六年前,A 的年龄是B 的年龄的3倍,现在A 的年龄是B 的年龄的2倍,A 现在的年龄是( ).A .12岁B .18岁C .24岁D .30岁16.已知下列方程组:(1)⎩⎨⎧-==23y y x ,(2)⎩⎨⎧=-=+423z y y x ,(3)⎪⎪⎩⎪⎪⎨⎧=-=+0131y x y x ,(4)⎪⎪⎩⎪⎪⎨⎧=-=+0131y x y x ,其中属于二元一次方程组的个数为( )A .1B .2C .3D .4三、解答题(本大题共6小题,共36分)17.(1)⎩⎨⎧=+=-5253y x y x (2) ⎩⎨⎧=--=523x y x y(3)⎩⎨⎧=+=-152y x y x (4)⎩⎨⎧+==-1302y x y x(5)⎩⎨⎧-=+=-14329m n n m (6)⎩⎨⎧=+-=-q p q p 45133218.若12x y =⎧⎨=⎩是关于x ,y 的二元一次方程3x -y +a=0的一个解,求a 的值.19.小华不小心将墨水溅在同桌小丽的作业本上,结果二元一次方程组31122x yx y+=⎧⎨+=-⎩中第一个方程y的系数和第二个方程x的系数看不到了,现在已知小丽的结果是12xy=⎧⎨=⎩,你能由此求出原来的方程组吗?20.某纸品加工厂为了制作甲、乙两种无盖的长方体小盒,利用边角余料裁出正方形和长方形两种硬纸片,长方形的宽和正方形的边长相等,现将150张正方形硬纸片和300张长方形硬纸片全部用来制作这两种小盒,可以制作甲、乙两种小盒各多少个人教版七年级下册第8章二元一次方程组综合素质检测卷(解析版)人教版七年级下册第八章二元一次方程组单元检测题综合素质检测卷姓名:__________班级:__________考号:__________一、选择题(本大题共10小题,每小题3分,共30分。
人教版初中数学第八章二元一次方程组习题及解析
一、概念易一、选择题(题型注释)1.下列方程中,属于二元一次方程的是( )A .23x y z -=B .1213a y-=+ C .225x x -= D .2x y = 【答案】D .【解析】试题分析:如果一个方程含有两个未知数,并且所含未知项的次数都为1次,那么这个整式方程就叫做二元一次方程,根据二元一次方程的定义可得四个选项中只有选项D 符合要求,故答案选D .考点:二元一次方程的定义.2)A.3x-2y=9B.2x+y=6z D.x-3=4y 2 【答案】A【解析】试题分析:二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.A.是二元一次方程;B.是三元一次方程;C.是分式方程;D.2y 是二次,故应选A.考点:二元一次方程的定义3.下列方程组中,属于二元一次方程组的是( )A .53x y x z +=⎧⎨=⎩C.434x y xy x y -+=⎧⎨-=⎩ 【答案】D .【解析】试题分析:A 、有三个未知数,所以A选项不正确;B 、第一个方程不是整式方程,故不是二元一次方程组;C 、未知项xy 的次数为2,故不是二元一次方程组;D 、符合二元一次方程组的定义,是二元一次方程组.故选D .考点:二元一次方程组的定义.4.方程35kx y +=有一组解21x y =⎧⎨=⎩,则k 的值为( ) A B C .1-D .1 【答案】D【解析】试题分析:根据题意把方程的这一组解代入方程可得:2k+3=5,解方程可得k=1.故选D考点:二元一次方程的解5.把方程3x+2y=4,化为用含字母y 的代数式表示x 的形式正确的是( )。
A B C D 【答案】D【解析】试题分析:因为3x+2y=4,所以3x=4-2y ,D . 考点:列代数式.二、填空题(题型注释)6.已知57x y =⎧⎨=⎩是方程kx ﹣2y ﹣1=0的解,则k 的值为 . 【答案】3【解析】试题分析:把57x y =⎧⎨=⎩代入方程kx ﹣2y ﹣1=0,得5k ﹣14﹣1=0,解得k=3. 考点:二元一次方程的解.7.2元的人民币x 张,5元的人民币y 张,共120元,这个关系用方程可以表示为 .【答案】2x+5y=120.【解析】 试题分析:根据等量关系“2元人民币的数量+5元人民币的数量=120”即可得方程2x+5y=120.考点:列二元一次方程.8.请你写出二元一次方程1=-y x 的一个解是 .【答案】见解析.【解析】试题分析:假设x=1,则1-y=1,解得y=0.故答案为:x=1,y=0.(答案不唯一)考点:二元一次方程的解.9.已知2x+y=2,用关于x 的代数式表示y ,则y= .【答案】2-2x.【解析】试题分析:由2x+y=2移项得y=2-2x.考点:等式的性质.难一、选择题1.下列各组数值是二元一次方程x-3y=4的解的是( )A.11x y =⎧⎨=-⎩B.21x y =⎧⎨=⎩C.12x y =-⎧⎨=-⎩D.41x y =⎧⎨=-⎩ 【答案】A【解析】试题分析:A 、将x=1,y=-1代入方程左边得:x-3y=1+3=4,右边为4,本选项正确;B 、将x=2,y=1代入方程左边得:x-3y=2-3=-1,右边为4,本选项错误;C 、将x=-1,y=-2代入方程左边得:x-3y=-1+6=5,右边为4,本选项错误;D 、将x=4,y=-1代入方程左边得:x-3y=4+3=7,右边为4,本选项错误.故选A考点:二元一次方程的解.2.已知xy≠0,下列各式:①x-3=y-32x+2y=0,其中一定正确的有()A.1个B.2个C.3个D.4个【答案】B.【解析】试题分析:①两边都减3,故①正确;②x=y≠±5时,故②错误;③两边都除以同一个不为零的数,故③正确;④x=y≠-xy≠0,故④错误,故选B.考点:等式的性质.3mn+m=7;⑤x+y=6.A.1个B.2个C.3个D.4个【答案】B【解析】①中分母含有未知数,所以不是二元一次方程;②是二元一次方程;③中分母含有未知数,所以不是二元一次方程;④中mn项的次数是2,所以不是二元一次方程;⑤是二元一次方程.所以二元一次方程有2个.4.已知∠A、∠B互余,∠A比∠B大30°,设∠A,∠B的度数分别为x°,y°,下列方程组中符合题意的是()A.180,30x yx y+=⎧⎨=-⎩B.180,30x yx y+=⎧⎨=+⎩C.90,30x yx y+=⎧⎨=+⎩D.90,30x yx y+=⎧⎨=-⎩【答案】C【解析】∠A,∠B互余,所以x+y=90.∠A比∠B大30°,所以x-y=30°即x=y+30.故选C.二、填空题5.已知4x2m﹣n﹣4﹣5y n﹣1=8是关于x,y的二元一次方程,则m= ,n= .【答案】3.5;2.【解析】试题分析:因为4x2m﹣n﹣4﹣5y n﹣1=8是关于x,y的二元一次方程,所以可得:n﹣1=1,2m﹣n﹣4=1,解得:n=2,m=3.5.故答案为:3.5;2.考点:二元一次方程的定义.6x的代数式表示y为________.【解析】将二元一次方程1432x y+=两边同时乘12,得3x+4y=6,再将其变形,得634xy-=.7.在方程3x-4y=10中,如果2y=4【答案】3【解析】由2y=4,得4y=8.把4y=8代入3x-4y=10,得3x-8=10,x=6三、解答题8.已知12x y =-⎧⎨=⎩是某个二元一次方程的一组解,则这个方程可以是. 【答案】2x+y=0【解析】试题分析: 由﹣1和2列出一个算式,即可确定出所求方程.答案不唯一,如2x+y=0等,故答案为:2x+y=0考点:二元一次方程的解.9.(本题4+6分)某校运动会需购买A 、B 两种奖品.若购买A 种奖品3件和B 种奖品2件,共需60元;若购买A 种奖品5件和B 种奖品3件,共需95元.(1)求A 、B 两种奖品单价各是多少元?(2)学校计划购买A 、B 两种奖品共100件,购买费用不超过1150元,且A 种奖品的数量不大于B 种奖品数量的3倍.设购买A 种奖品m 件,购买费用为W 元,写出W (元)与m (件)之间的函数关系式,求出自变量m 的取值范围,并确定最少费用W 的值.【答案】(1)A 、B 两种奖品单价分别为10元、15元(2)m W 51500-=,7570≤≤m ,1125元.【解析】试题分析:(1)设A 、B 两种奖品单价分别为x 元、y 元,然后根据等量关系列二元一次方程组解答即可;(2)根据条件可写出w 与x 的函数关系式,然后根据:购买费用不超过1150元,且A 种奖品的数量不大于B 种奖品数量的3倍,列出不等式组,解不等式组可得到x 的取值范围,利用一次函数的增减性可确定w 的最小值. 试题解析:解:(1)设A 、B 两种奖品单价分别为x 元、y 元,由题意,得32605395x y x y +=⎧⎨+=⎩, 解得:1015x y =⎧⎨=⎩. 答:A 、B 两种奖品单价分别为10元、15元.由题意,得1015(100)W m m =+-10150015m m =+-15005m =-由1500511503(100)m m m -≤⎧⎨≤-⎩,解得:7075m ≤≤.因为m 为整数,所以m 的值为70、71、72、73、74、75 由一次函数15005W m =-可知,W 随m 增大而减小∴当75m =时,W 最小,最小为150********W =-⨯=(元)考点:1.二元一次方程组;2.一元一次不等式组;3.一次函数的性质与应用.二、代入法、加减法解方程组易一、选择题1.方程组23x y a x y +=⎧⎨-=⎩的解为5x y b =⎧⎨=⎩,则a 、b 分别为( )A .a=8,b=﹣2B .a=8,b=2C .a=12,b=2D .a=18,b=8【答案】C.【解析】试题分析:计算题.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.将x 与y 的值代入方程组即可求出a 与b 的值.解:将x=5,y=b 代入方程组得:1053b a b +=⎧⎨-=⎩, 解得:a=12,b=2,故选C.考点:二元一次方程组的解.2.解以下两个方程组:①21758y x x y =-⎧⎨+=⎩,862517648s t s t +=⎧⎨-=⎩,较为简便方法的是() A.①②均用代入法 B.①②均用加减法C.①用代入法,②用加减法D.①用加减法,②用代入法【答案】C .【解析】试题分析:①是用x 表示y 的形式,用代入法解答合适;②中的方程中的t 项互为相反数,用加减法比较合适;故选C .考点: 解二元一次方程组.3.对于方程组⎩⎨⎧⋯-=⋯=-②①12352x y y x 把②代入①,得( ) A .2x -10x+5=3 B .2x -10x -1=3C .2(2x -1)一5y=3D .2x -10x -5=3【答案】A .【解析】试题分析:用2x-1代替方程①中的y 可得2x-5(2x-1)=3,去括号得,2x -10x+5=3,故答案选A .考点:代入消元.4.若二元一次方程2x+y=3,3x -y=2和2x -my=-1有公共解,则m 取值为( )A .-2B .-1C .3D .4【答案】C【解析】试题分析:解方程组可得:x=1,y=1,将x 和y 的值代入2x -my=-1可得:2-m=-1,解得:m=3. 考点:二元一次方程组.5.解方程组35123156x y x y +=⎧⎨-=-⎩比较简便的方法为( ) A .代入法 B .加减法 C .换元法 D .三种方法都一样【答案】B【解析】试题分析:这两个方程中,x 的系数相同,则利于加减消元法比较简单.考点:解二元一次方程组.6.m 为正整数,已知二元一次方程组⎩⎨⎧=-=+023102y x y mx 有整数解,则m 2的值为( )A 、4B 、49C 、4或49D 、1或49【答案】A【解析】 试题分析:解:, ①+②得:(3+m )x=10,即x=③,把③代入②得:y=④,∵方程的解x 、y 均为整数,∴3+m 既能被10整除也能被15整除,所以31,m +=±或35m +=±,解得m=-4,-2,2,-8,因为m 为正整数,所以m=2.所以m 2=22=4.故选:A .考点:二元一次方程组的整数解.7.若x 、y 满足方程组3735x y x y +=⎧⎨+=⎩,则x ﹣y 的值等于( ) A .﹣1 B .1 C .2 D .3【答案】A.【解析】试题分析:3735x y x y +=⎧⎨+=⎩①②, ②﹣①得:2x ﹣2y=﹣2,则x ﹣y=﹣1,故选A【考点】解二元一次方程组.二、填空题8.若2x y 2|4x 3y 7|0+++=(﹣)﹣,则8x ﹣3y 的值为 . 【答案】5.【解析】试题分析:已知2x y 2|4x 3y 7|0+++=(﹣)﹣,可得x+y=2,4x+3y=7,把这两个方程联立可得方程组2437x y x y +=⎧⎨+=⎩,解得x=1,y=1,所以8x ﹣3y=5.考点:a 和2a 的非负性;二元一次方程组的解法.9.方程组120x y x y +=⎧⎨+=⎩的解是 . 【答案】21x y =⎧⎨=-⎩ 【解析】试题分析:方程1-方程2得:-y=1,所以y=-1,代入方程2得x=2,所以方程组的解是21 xy=⎧⎨=-⎩.考点:二元一次方程组的解.10.方程组23328y xx y=-⎧⎨+=⎩的解是【答案】21 xy【解析】试题分析:将①代入②得:3x+2(2x-3)=8,解得:x=2,将x=2代入①得:y=4-3=1.考点:二元一次方程组的解法.11.方程组52239x yx y-=⎧⎨+=-⎩的解为.【答案】31 xy=-⎧⎨=-⎩【解析】试题分析:52239x yx y-=⎧⎨+=-⎩①②,①×2-②得:-13y=13,所以y=-1,把y=-1代入①得x+5=2,所以x=-3,所以方程组的解是31 xy=-⎧⎨=-⎩.考点:二元一次方程组.三、解答题12.解方程组:230 311x yx y+=⎧⎨-=⎩.【答案】32 xy=⎧⎨=-⎩.【解析】试题分析:利用加减消元法求出解即可.试题解析:230 311x yx y+=⎧⎨-=⎩①②由②得:y=3x-11③,将③代入①:2x+9x-33=0,解得:x=3,把x=3代入③得:y=-2,则原方程组的解是32 xy=⎧⎨=-⎩.考点:解二元一次方程组.13.(7分)解方程组231 328x yx y+=⎧⎨-=⎩.【答案】21 xy=⎧⎨=-⎩【解析】试题分析:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.方程组利用加减消元法求出解即可.试题解析:解:231328x yx y+=⎧⎨-=⎩①②,①×2+②×3得:13x=26,即x=2,把x=2代入①得:y=﹣1,则方程组的解为21xy=⎧⎨=-⎩.考点:解二元一次方程组.14.解方程组:(1)3215x yx y-=⎧⎨+=⎩(2)43524x yx y+=⎧⎨-=⎩.【答案】(1)63xy=⎧⎨=⎩;(2)21xy=⎧⎨=-⎩.【解析】试题分析:两方程组利用加减消元法求出解即可.试题解析:(1)3215x yx y-=⎧⎨+=⎩①②,①+②得:3x=18,即x=6,把x=6代入①得:y=3,则方程组的解为63 xy=⎧⎨=⎩;(2)43524x yx y+=⎧⎨-=⎩①②,①×2+②×3得:11x=22,即x=2,把x=2代入②得:y=-1,则方程组的解为21 xy=⎧⎨=-⎩.考点:解二元一次方程组.15.解方程组33814x yx y-=⎧⎨-=⎩①②.【答案】21x y =⎧⎨=-⎩【解析】试题分析:通过观察,采用代入法比较简单.试题解析:由①得:x=3+y ③,把③代入②得:3(3+y )﹣8y=14,所以y=﹣1.把y=﹣1代入③得:x=2,∴原方程组的解为21x y =⎧⎨=-⎩. 考点: 解二元一次方程组.难一、选择题1.方程组23x y k x y k-=+⎧⎨+=⎩的解适合方程x+y=2,则k 值为( )A .2B .-2C .1D .【答案】C .【解析】 试题解析:解:23x y k x y k -=+⎧⎨+=⎩①②,①+②得,x+y=k+1,由题意得,k+1=2,解答,k=1,故选C .考点:二元一次方程组的解.2.二元一次方程组2521x y x y -=⎧⎨-=⎩的解为( ) A .13x y =⎧⎨=-⎩ B .21x y =⎧⎨=-⎩ C .31x y =⎧⎨=-⎩ D .31x y =⎧⎨=⎩ 【答案】D【解析】试题分析:本题利用加减消元法或代入消元法进行求解.考点:解二元一次方程组3.甲、乙两人同求方程ax -by=7的整数解,甲正确地求出一个解为⎩⎨⎧-==11y x ,乙把ax -by=7看成ax -by=1,求得一个解为⎩⎨⎧==21y x ,则a,b 的值分别为( ) A 、⎩⎨⎧==52b a B 、⎩⎨⎧==25b a C 、⎩⎨⎧==53b a D 、⎩⎨⎧==35b a 【答案】B【解析】试题分析:把甲的解代入ax-by=7可得a+b=7,把乙的解代入可得a-2y=1,由它们构成方程组可得721a b a b +=⎧⎨-=⎩,解方程组得52a b =⎧⎨=⎩. 故选B考点:二元一次方程组的解4.已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+18my nx ny mx 的解,则2n m -的平方根为( ) A .4 B .2 CD .±2【答案】D【解析】 试题分析:根据二元一次方程组的解的意义,把⎩⎨⎧==12y x 代入方程组⎩⎨⎧=-=+18my nx ny mx ,可得2821m n n m +=⎧⎨-=⎩,解这个方程组可得32m n =⎧⎨=⎩,因此2m-n=4,所以可求得4的平方根为±2.故选D考点:解二元一次方程组,平方根5.已知 2 1x y ⎧⎨⎩==是二元一次方程组81mx ny nx my ⎩-⎨+⎧==的解,则 ) A 、±3 B 、3 CD 、【答案】C.【解析】试题分析:将x和y 的值代入方程组求出m 和n. 试题解析:将x=2,y=1代入方程组得:2821m n n m +-⎧⎨⎩=①=②①+②×2得:5n=10,即n=2,将n=2代入②得:4-m=1,即m=3,∴m+3n=3+6=9故选C.考点:1.二元一次方程组的解;2.算术平方根.6.方程组的解x 、y 满足x >y ,则m 的取值范围是( )AB C D 【答案】D 43283y x m x m +=⎧⎨-=⎩【解析】试题分析:解方程组43283yx mx m+=⎧⎨-=⎩得因为x>y,故选:D.考点:1.二元一次方程组;2.不等式的解集.7.已知2,1xy=⎧⎨=⎩是二元一次方程组8,1mx nynx my+=⎧⎨-=⎩的解,则2m-n的算术平方根是()A.4 B.2CD.±2【答案】B【解析】将2,1xy=⎧⎨=⎩代入二元一次方程组8,1mx nynx my+=⎧⎨-=⎩中,得28,21,m nn m+=⎧⎨-=⎩解这个方程组得3,2,mn=⎧⎨=⎩则2m-n=2×3-2=4,4的算术平方根是2.二、填空题8.已知(3x+2y-5)2与│5x+3y-8│互为相反数,则x=______,y=________.【答案】1;1【解析】试题分析:两个非负数之和为零,则说明这两个数为零.根据题意可得:325538x yx y+=⎧⎨+=⎩,解得:x=y=1.考点:非负数的性质.9.若-3x a-2b y7与2x8y5a+b是同类项,则a=________,b=________.【答案】2-3【解析】由题意可知28,57,a ba b-=⎧⎨+=⎩解得2,3.ab=⎧⎨=-⎩10.若方程组4,2ax byax by-=⎧⎨+=⎩与方程组234,456x yx y+=⎧⎨-=⎩的解相同,则a=________,b=________.【解析】解方程组234, 456, x yx y+=⎧⎨-=⎩得11.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中,未被小正方形覆盖部分的面积是(用a,b的代数式表示)【答案】ab【解析】试题分析:设大正方形的边长为x 1,小正方形的边长为x 2,由图①和②列出方程组得,⎩⎨⎧=-=+bx x a x x 212122 大正方形中未被小正方形覆盖部分的面积=22=ab . 故答案为:ab .考点:1、方程组 2、正方形面积 3、整式的运算三、简答题12.解下列方程组(1)41216x y x y -=-+=⎧⎨⎩ (2)()()()3155135x y y x -=⎧+-=+⎪⎨⎪⎩. 【答案】(1)72x y ==⎧⎨⎩;(2)57x y ==⎧⎨⎩.【解析】试题分析:(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.试题解析:(1)41216x y x y -=+=⎨-⎧⎩①②, ①+②×4得:9x=63,即x=7,把x=7代入①得:y=2,则方程组的解为72x y ==⎧⎨⎩; (2)方程组整理得:383520x y x y -=-=-⎧⎨⎩①②,①-②得:4y=28,即y=7,把y=7代入①得:x=5,则方程组的解为57x y ==⎧⎨⎩. 考点:解二元一次方程组.13.解方程组:2()3()34()3153x y x y x y x y+--=⎧⎨++=+⎩. 【答案】方程组的解是21x y =⎧⎨=⎩. 【解析】试题分析:方程组整理后,利用加减消元法求出解即可.试题解析:方程组整理得:2()3()34()3()15x y x y x y x y +--=⎧⎨++-=⎩①② ①+②得x+y=3③,把③代入①,得x-y=1④,③+④得:x=2,③-④得:y=1,则原方程组的解是21x y =⎧⎨=⎩.考点:解二元一次方程组.14.求满足方程组24014320x y m x y --=⎧⎨-=⎩中的y 值是x 值的3倍的m 的值,并求的值。
(完整版)人教版第八章二元一次方程组单元测试题(含答案解析)
第八章二元一次方程组单元测试题题号一二三总分得分一、选择题(本大题共9小题,共27分)1.方程2x-=0,3x+y=0,2x+xy=1,3x+y-2x=0,x2-x+1=0中,二元一次方程的个数是()A. 5个B. 4个C. 3个D. 2个2.如果3x m+n+5y m-n-2=0是一个关于x、y的二元一次方程,那么()A. B. C. D.3.下列各方程的变形,正确的是()A. 由3+x=5,得x=5+3B. 由7x=,得x=49C. 由y=0,得y=2D. 由3=x-2,得x=2+34.如果x=y,那么下列等式不一定成立的是()A. x+a=y+aB. x-a=y-aC. ax=ayD. =5.已知甲、乙两种商品的进价和为100元,为了促销而打折销售,若甲商品打八折,乙商品打六折,则可赚50元,若甲商品打六折,乙商品打八折,则可赚30元,甲、乙两种商品的定价分别为()A. 50元、150元B. 50元、100元C. 100元、50元D. 150元、50元6.把方程x=1变形为x=2,其依据是()A. 分数的基本性质B. 等式的性质1C. 等式的性质2D. 解方程中的移项7.用“加减法”将方程组中的x消去后得到的方程是()A. 3y=2B. 7y=8C. -7y=2D. -7y=88.已知2x-3y=1,用含x的代数式表示y正确的是()A. y=x-1B. x=C. y=D. y=--x9.在一次野炊活动中,小明所在的班级有x人,分成y组,若每组7人,则余下3人;若每组8人,则缺5人,求全班人数的正确的方程组是()A. B. C. D.二、填空题(本大题共6小题,共24分)10.关于x、y方程(k2-1)x2+(k+1)x+2ky=k+3,当k= ______ 时,它为一元一次方程,当k= ______ 时,它为二元一次方程.11.若(2x-y)2与|x+2y-5|互为相反数,则(x-y)2005= ______ .12.二元一次方程组的解是______ .13.一个两位数的十位数字与个位数字之和等于5,十位数字与个位数字之差为1,设十位数字为x,个位数字为y,则用方程组表示上述语言为______ .14.方程x(x+3)=0的解是______ .15.由方程组,可以得到x+y+z的值是______ .三、计算题(本大题共8小题,共49分)16.解方程组:17.解方程组:18.解方程组.19.五一期间,春华旅行社组织一个由成人和学生共20人组成的旅行团到凤凰古城旅游,景区门票售票标准是:成人门票148元/张,学生门票20元/张,该旅行团购买门票共花费1936元,问该团购买成人门票和学生门票各多少张?20.为迎接6月5日“世界环境日”,某校团委开展“光盘行动”,倡议学生遏制餐桌上的浪费.该校七年级(1)、(2)、(3)三个班共128人参加了活动,其中七(3)班有38人参加,七(1)班参加的人数比七(2)班多10人,请问七(1)班和七(2)班各有多少人参加“光盘行动”?21.广安某水果店计划购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(1)若该水果店预计进货款为1000元,则这两种水果各购进多少千克?(2)若该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?22.某旅行社组织一批游客外出旅游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元,问:(1)这批游客的人数是多少?原计划租用多少辆45座客车?(2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?23.为了更好治理岳阳河水质,安岳县污水处理公司计划购买10台污水处理设备,现有A、B经调查:买一台型比购型多万元,买台型比购买3台B型少5万元.(1)求m,n的值;(2)经预算,购买设备自己不超过117万元,你认为有哪几种购买方案?(3)在(2)的条件下,若每月要求处理无水不低于2050吨,为节约资金,请你为公司设计一种最省钱的方案.答案和解析【答案】1. D2. B3. D4. D5. D6. C7. D8. C9. A10. -1;111. -112.13.14. 0或-315. 316. 解:,①×3+②得:16x=48,解得:x=3,把x=3代入①得:y=2.所以原方程组的解为.17. 解:,①×2+②得:9x=18,解得:x=2,把x=2代入②得:y=1,则方程组的解为.18. 解:方程组整理得:,①-②×2得:x=-1,把x=-1代入②得:y=5,则方程组的解为.19. 解:设购买成人门票x张,学生门票y张,由题意得解得答:购买成人门票12张,学生门票8张.20. 解:设七(1)班有x人参加“光盘行动”,七(2)班有y人参加“光盘行动”,,解得,,即七(1)班有50人参加“光盘行动”,七(2)班有40人参加“光盘行动”.21. 解:(1)设购进甲种水果x千克,则购进乙种水果(140-x)千克,根据题意可得:5x+9(140-x)=1000,解得:x=65,∴140-x=75(千克),答:购进甲种水果65千克,乙种水果75千克;(2)由图表可得:甲种水果每千克利润为:3元,乙种水果每千克利润为:4元,设总利润为W,由题意可得出:W=3x+4(140-x)=-x+560,故W随x的增大而减小,则x越小W越大,因为该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,∴140-x≤3x,解得:x≥35,∴当x=35时,W最大=-35+560=525(元),故140-35=105(kg).答:当甲购进35千克,乙种水果105千克时,此时利润最大为525元.22. 解:(1)设这批游客的人数是x人,原计划租用45座客车y辆.根据题意,得,解这个方程组,得.答:这批游客的人数240人,原计划租45座客车5辆;(2)租45座客车:240÷45≈5.3(辆),所以需租6辆,租金为220×6=1320(元),租60座客车:240÷60=4(辆),所以需租4辆,租金为300×4=1200(元).答:租用4辆60座客车更合算.23. 解:(1)由题意得,解得;(2)设购买污水处理设备A型设备x台,B型设备(10-x)台,根据题意得14x+11(10-x)≤117,解得x≤∵x取非负整数,∴x=0,1,2,∴有三种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台;(3)由题意:250x+200(10-x)≥2050,解x≥1,又∵x≤,∴1≤x≤,而x取非负整数,∴x为1,2,当x=1时,购买资金为:14×1+11×9=113(万元),当x=2时,购买资金为:14×2+11×8=116(万元),∴为了节约资金,应选购A型设备1台,B型设备9台.【解析】1. 解:2x-=0是分式方程,不是二元一次方程;3x+y=0是二元次方程;2x+xy=1不是二元一次方程;3x+y-2x=0是二元一次方程;x2-x+1=0不是二元一次方程.故选:D.含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.本题主要考查的是二元一次方程的定义,掌握二元一次方程的定义是解题的关键.2. 解:依题意得:,解得.故选:B.根据二元一次方程的定义进行判断即可.本题考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.3. 解:A、两边加的数不同,故A不符合题意;B、两边乘的数不同,故B不符合题意;C、左边乘2,右边加2,故C不符合题意;D、两边都加2,故D符合题意;故选:D.根据等式的性质,可得答案.本题考查了等式的性质,熟记等式的性质是解题关键.4. 解:A、等式x=y的两边同时加上a,该等式仍然成立;故本选项正确;B、等式x=y的两边同时减去a,该等式仍然成立;故本选项正确;C、等式x=y的两边同时乘以a,该等式仍然成立;故本选项正确;D、当a=0时,、无意义;故本选项错误;故选:D.利用等式的性质对每个式子进行变形即可找出答案.本题主要考查等式的性质.运用等式性质2时,必须注意等式两边所乘的(或除以的)数或式子不为0,才能保证所得的结果仍是等式.5. 解:设甲种商品的定价分别为x元,则乙种商品的定价分别为y元,根据题意得:,解得:.故选D.设甲种商品的定价分别为x元,则乙种商品的定价分别为y元,根据“若甲商品打八折,乙商品打六折,则可赚50元,若甲商品打六折,乙商品打八折,则可赚30元”可得出关于x、y的二元一次方程组,解方程组即可得出结论.本题考查了解二元一次方程组,根据数量关系列出二元一次方程组是解题的关键.6. 解:把方程x=1变形为x=2,其依据是等式的性质2,故选C利用等式的基本性质判断即可.此题考查了解一元一次方程,以及等式的性质,熟练掌握等式的性质是解本题的关键.7. 解:,①-②得:-7y=8,故选D.方程组中两方程相减消去x得到结果,即可做出判断.此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.8. 解:方程2x-3y=1,解得:y=.故选C.将x看做已知数求出y即可.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.9. 解:根据每组7人,则余下3人,得方程7y+3=x,即7y=x-3;根据每组8人,则缺5人,即最后一组差5人不到8人,得方程8y-5=x,即8y=x+5.可列方程组为:.故选:A.此题中不变的是全班的人数x人.等量关系有:①每组7人,则余下3人;②每组8人,则缺5人,即最后一组差5人不到8人.由此列出方程组即可.此题考查二元一次方程组的实际运用,理解题目中不变的是全班的人数,用不同的代数式表示全班的人数是本题的关键.10. 解:因为方程为关于x、y的一元一次方程,所以:①,解得k=-1;②,无解,所以k=-1时,方程为一元一次方程.根据二元一次方程的定义可知,解得k=1,所以k=1时,方程为二元一次方程.故答案为:-1;1.(1)若方程为关于x、y的一元一次方程,则二次项系数应为0,然后x或y的系数中有一个为0,另一个不为0即可.(2)若方程为关于x、y的二元一次方程,则二次项系数应为0且x或y的系数不为0.考查了一元一次方程与二元一次方程的定义,此题比较简单,解答此题的关键是熟知一元一次方程与二元一次方程的定义.11. 解:∵(2x-y)2与|x+2y-5|互为相反数,∴(2x-y)2+|x+2y-5|=0,∴,解得,,∴(x-y)2005=(1-2)2005=-1,故答案为-1.根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.12. 解:,把①代入②得:x+2x=3,即x=1,把x=1代入①得:y=2,则方程组的解为,故答案为:方程组利用代入消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13. 解:由题意,有.题中有两个等量关系:十位数字+个位数字=5;十位数字-个位数字=1.根据这两个等量关系即可列出方程组.读懂题意,找出等量关系是列方程解应用题的关键.本题比较简单.注意十位数字与个位数字之差即为十位数字-个位数字,而不是个位数字-十位数字.14. 解:x(x+3)=0,∴x=0,x+3=0,∴方程的解是x1=0,x2=-3.故答案为:0或-3.推出方程x=0,x+3=0,求出方程的解即可.本题主要考查对解一元一次方程,解一元二次方程,等式的性质等知识点的理解和掌握,能把一元二次方程转化成一元一次方程是解此题的关键.15. 解:∵①+②+③,得2x+2y+2z=6,∴x+y+z=3,故答案为:3.根据方程组,三个方程相加,即可得到x+y+z的值.本题考查三元一次方程组的解,解得关键是明确解三元一次方程组的解答方法.16. 用加减法,先把y的系数转化成相同的或相反的数,然后两方程相加减消元,从而求出x的值,然后把x的值代入一方程求y的值.解二元一次方程组的基本思想是消元.消元的方法有代入法和加减法,本题主要考查了加减消元法.17. 方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18. 方程组整理后,利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19. 设购买成人门票x张,学生门票y张,则由“成人和学生共20人”和“购买门票共花费1936元”列出方程组解决问题.此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.20. 根据题意可以列出相应的二元一次方程组,从而可以解答本题.本题考查二元一次方程组的应用,解题的关键是明确题意,列出相应的二元一次方程组.21. (1)根据计划购进甲、乙两种新出产的水果共140千克,进而利用该水果店预计进货款为1000元,得出等式求出即可;(2)利用两种水果每千克的利润表示出总利润,再利用一次函数增减性得出最大值即可.主要考查了一次函数的应用以及一元一次不等式的应用和一元一次方程的应用等知识,利用一次函数增减性得出函数最值是解题关键.22. (1)本题中的等量关系为:45×45座客车辆数+15=游客总数,60×(45座客车辆数-1)=游客总数,据此可列方程组求出第一小题的解;(2)需要分别计算45座客车和60座客车各自的租金,比较后再取舍.此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.23. (1)利用买一台A型比购B型多3万元,买2台A型比购买3台B型少5万元可列二元一次方程组,然后解方程组可得到m、n的值;(2)设购买污水处理设备A型设备x台,B型设备(10-x)台,利用购买设备自己不超过117万元列不等式14x+11(10-x)≤117,解得x≤,然后x取非负整数可得到购买方案;(3)利用每月要求处理无水不低于2050吨列不等式250x+200(10-x)≥2050,解x≥1,加上x≤,则1≤x≤,再x取非负整数得到x为1,2,然后比较x=1和x=2的购买资金可得到最省钱的方案.本题考查了一元一次不等式的应用:由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.。
第八章 二元一次方程组单元知识检测(含答案)
第八章二元一次方程组单元知识检测(时间:90分钟满分:100分)一、选择题(每小题3分,共24分)1.方程2x-1y=0,3x+y=0,2x+xy=1,3x+y-2x=0,x2-x+1=0中,二元一次方程的个数是()A.1个B.2个C.3个D.4个2.二元一次方程组32325x yx y-=⎧⎨+=⎩的解是()A.3217...230122xx xxB C Dy yyy=⎧⎧===⎧⎧⎪⎪⎨⎨⎨⎨==-=⎩⎩⎪⎪=⎩⎩3.关于x,y的二元一次方程组59x y kx y k+=⎧⎨-=⎩的解也是二元一次方程2x+3y=6的解,则k的值是(•)A.k=-34B.k=34C.k=43D.k=-434.如果方程组1x yax by c+=⎧⎨+=⎩有唯一的一组解,那么a,b,c的值应当满足()A.a=1,c=1 B.a≠b C.a=b=1,c≠1 D.a=1,c≠1 5.方程3x+y=7的正整数解的个数是()A.1个B.2个C.3个D.4个6.已知x,y满足方程组45x my m+=⎧⎨-=⎩,则无论m取何值,x,y恒有关系式是()A.x+y=1 B.x+y=-1 C.x+y=9 D.x+y=97.如果│x+y-1│和2(2x+y-3)2互为相反数,那么x,y的值为()A.1122 ...2211 x x x xB C Dy y y y==-==-⎧⎧⎧⎧⎨⎨⎨⎨==-=-=-⎩⎩⎩⎩8.若2,117x ax byy bx by=-+=⎧⎧⎨⎨=+=⎩⎩是方程组的解,则(a+b)·(a-b)的值为()A.-353B.353C.-16 D.16二、填空题(每小题3分,共24分)9.若2x2a-5b+y a-3b=0是二元一次方程,则a=______,b=______.10.若12ab=⎧⎨=-⎩是关于a,b的二元一次方程ax+ay-b=7的一个解,则代数式x2+2xy+y2-1•的值是_________.11.写出一个解为12xy=-⎧⎨=⎩的二元一次方程组__________.12.a-b=2,a-c=12,则(b-c)3-3(b-c)+94=________.13.已知32111x xy y==-⎧⎧⎨⎨==⎩⎩和都是ax+by=7的解,则a=_______,b=______.14.若2x5a y b+4与-x1-2b y2a是同类项,则b=________.15.方程mx-2y=x+5是二元一次方程时,则m________.16.方程组2332s t s t+-==4的解为________.三、解答题17.解方程组(每小题4分,共8分)(1)257320x yx y-=⎧⎨-=⎩33(2)255(2)4x yx y+⎧=⎪⎨⎪-=-⎩18.已知y=3xy+x,求代数式2322x xy yx xy y+---的值.(本小题5分)19.已知方程组256351648x y x y ax by bx ay +=--=⎧⎧⎨⎨-=-+=-⎩⎩与方程组的解相同.求(2a+b )2004的值.(本小题5分)20.已知x=1是关于x 的一元一次方程ax -1=2(x -b )的解,y=1是关于y •的一元一次方程b (y -3)=2(1-a )的解.在y=ax 2+bx -3中,求当x=-3时y 值.(本小题5分)21.甲、乙两人同解方程组54ax y x by +=⎧⎨=-⎩时,甲看错了方程①中的a ,解得31x y =-⎧⎨=-⎩,乙看错了②中的b ,200620075()410x b a y =⎧+-⎨=⎩试求的值.(本小题5分)22.某商场按定价销售某种电器时,每台可获利48元,•按定价的九折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等.求该电器每台的进价、•定价各是多少元?(本小题6分)23.一张方桌由1个桌面,4条桌腿组成,如果1m3木料可以做方桌的桌面50•个或做桌腿300条,现有10m3木料,那么用多少立方米的木料做桌面,•多少立方米的木料做桌腿,做出的桌面与桌腿,恰好能配成方桌?能配成多少张方桌.(本小题6分)24.甲、乙二人在上午8时,自A、B两地同时相向而行,上午10时相距36km,•二人继续前行,到12时又相距36km,已知甲每小时比乙多走2km,求A,B两地的距离.(•本小题6分)25.某中学组织学生春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满,已知45•座客车每日每辆租金为220元,60座客车每日每辆租金为300元.试问:(1)春游学生共多少人?原计划租45座客车多少辆?(2)若租用同一种车,要使每位同学都有座位,怎样租车更合算?(本小题6分)答案:一、选择题1.B 解析:②④是2.C 解析:用加减法,直接相加即可消去y,求得x的值.3.B 解析:解方程组可得x=7k,y=-2k,然后把x,y代入二元一次方程2x+3y=6,即2×7k+3×(-2k)=6,解得k=34,故选B.4.B5.B 解析:正整数解为:1241 x xy y==⎧⎧⎨⎨==⎩⎩6.C 解析:由方程组消去m,得到一个关于x,y的方程,化简这个方程即可.7.C 解析:根据两个非负数互为相反数,判断两个非负数必定都是0,所以有122 2301 x y xx y y+-==⎧⎧⎨⎨+-==-⎩⎩解得8.C 解析:把x=-2,y=1代入原方程组得213 275a b ab a b-+==-⎧⎧⎨⎨-+==-⎩⎩解得,∴(a+b)(a-b)=-16.二、填空题9.-2,-1 解析:根据二元一次方程的定义可得x,y的指数都是1,•由二元一次方程定义,得2512311 a b aa b b-==-⎧⎧⎨⎨-==-⎩⎩解得.10.24 解析:把a=1,b=-2代入原方程可得x+y的值,把a=1,b=-2代入ax+ay-b=•7得x+y=5,因为x2+2xy+y2-1=(x+y)2-1,所以原式=24.11.2024x yx y+=⎧⎨-=-⎩(答案不唯一).12.278解析:由a-b=2,a-c=12可得b-c=-32,再代入(b-c)3-3(b-c)+94=278.13.2 1 解析:本题既考查了二元一次方程的解的概念又考查了二元一次方程组的解法.分别将两组解法代入二元一次方程,可得372 21171a b aa b b+==⎧⎧⎨⎨-+==⎩⎩解这个方程组得.14.-2 解析:本题涉及同类项的概念:所含字母相同,相同字母的指数也相同,•由此可得5a=1-2b;b+4=2a,将两式联立组成方程组,解出a,b的值,分别为a=1,b=-2,•故b a=-2.15.≠116. 24434342s t s t s t +⎧=⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩解析:解方程组即可. 三、解答题17.解:(1)257320x y x y -=⎧⎨-=⎩ ①×3得,6x -3y=15 ③ ②-③,得x=5.将x=5代入①,得y=5,所以原方程组的解为55x y =⎧⎨=⎩. (2)原方程组变为51565104x y x y +=⎧⎨-=-⎩①-②,得y=25.将y=25代入①,得5x+15×25=6,x=0, 所以原方程组的解为025x y =⎧⎪⎨=⎪⎩. 18.解:因为y=3xy+x ,所以x -y=-3xy . 当x -y=-3xy 时,2322()32(3)332()2325x xy y x y xy xy xy x xy y x y xy xy xy +--+-+===------. 解析:首先根据已知条件得到x -y=-3xy ,再把要求的代数式化简成含有x -y 的式子,然后整体代入,使代数式中只含有xy ,约分后得解.19.解:因为两个方程组的解相同,所以解方程组25623562x y x x y y +=-=⎧⎧⎨⎨-==-⎩⎩解得 代入另两个方程得2143a b a a b b +=-=⎧⎧⎨⎨-+=-=-⎩⎩解得,∴原式=(2×1-3)2004=1. 20.解:将x=1,y=1分别代入方程得512(1)3(13)2(1)23a a b b a b ⎧=⎪-=-⎧⎪⎨⎨-=-⎩⎪=⎪⎩解方程组得所以原式=53x 2+23x -3.当x=-3时,• 原式=53×(-3)2+23×(-3)-3=15-2-3=10.21.解:把31x y =-⎧⎨=-⎩代入方程②,得4×(-3)=b ·(-1)-2,解得b=10.把54x y =⎧⎨=⎩代入方程①,得5a+5×4=15,解得a=-1, 所以a 2006+20072006200710()(1)()1010b -=-+-=1+(-1)=0. 22.解:设该电器每台的进价为x 元,定价为y 元.由题意得48,162,6(0.9)9(30)210.y x x y x y x y -==⎧⎧⎨⎨-=--=⎩⎩解得. 答:•该电器每台的进价是162元,定价是210元.解析:打九折是按定价的90%销售,利润=售价-进价.23.解:设用xm 3木料做桌面,ym 3木料做桌腿.由题意,得106,450300 4.x y x x y y +==⎧⎧⎨⎨⨯==⎩⎩解得 (2)6×50=300(张).答:用6m 3木料做桌面,4m 3木料做桌腿恰好能配成方桌,能配成300张方桌.解析:问题中有两个条件:①做桌面用的木料+做桌腿用的木料=10;②4×桌面个数=桌腿个数.24.解:设A 、B 两地相距xkm ,乙每小时走ykm ,则甲每小时走(y+2)km . 根据题意,•得2(2)361084(2)3617y y x x y y x y ++=-=⎧⎧⎨⎨++=+=⎩⎩解这个方程组得.答:略. 25.解:(1)设参加春游的学生共x 人,原计划租用45座客车y 辆.根据题意,得451524060(1)5y x x y x y +==⎧⎧⎨⎨-==⎩⎩解这个方程组,得 . 答:春游学生共240人,原计划租45座客车5辆.(2)租45座客车:240÷45≈5.3,所以需租6辆,租金为220×6=1320(元);租60•座客车:240÷60=4,所以需租4辆,租金为300×4=1200(元).所以租用4辆60座客车更合算.解析:租车时最后一辆不管几个人都要用一辆,所以在计算车的辆数时用“收尾法”,而不是“四舍五入”.。
人教版七年级下册数学 第八章 二元一次方程组 单元测试 (含解析)
第八章二元一次方程组单元测试一.选择题1.下列是二元一次方程的是()A.3x﹣6=x B.2x﹣3y=x2C.D.3x=2y2.若关于x、y的方程ax+y=2的一组解是,则a的值为()A.﹣1B.C.1D.23.已知方程组,则x﹣y的值是()A.1B.2C.4D.54.用代入法解方程组时,使用代入法化简比较容易的变形是()A.由①,得x=B.由①,得y=2x﹣1C.由②,得y=D.由②,得x=5.一个长方形周长是16cm,长与宽的差是1cm,那么长与宽分别为()A.5cm,3cm B.4.5cm,3.5cmC.6cm,4cm D.10cm,6cm6.已知关于x,y的方程组和的解相同,则(a+b)2021的值为()A.0B.﹣1C.1D.20217.已知关于x,y的二元一次方程组的解为,则k的值是()A.3B.2C.1D.08.某中学组织全区优秀九年级毕业生参加学校冬令营,一共有x名学生,分成y个学习小组.若每组10人,则还差5人;若每组9人,还余下3人.若求冬令营学生的人数,所列的方程组为()A.B.C.D.9.《九章算术》中记载:“今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”大意是:甲、乙二人带着钱,不知是多少,若甲得到乙的钱数的,则甲的钱数为50;若乙得到甲的钱数的,则乙的钱数也能为50,问甲、乙各有多少钱?设甲持钱为x,乙持钱为y,可列方程组为()A.B.C.D.10.已知关于x,y的方程组,给出下列结论:①是方程组的解;②当a=﹣2时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x+y=4﹣a的解;其中正确的个数是()A.0个B.1个C.2个D.3个二.填空题11.把方程5x﹣2y=3改写成用含x的式子表示y的形式是:.12.若关于x、y的二元一次方程2x+ay=7有一个解是,则a=.13.若关于x,y的方程2x|n|+3y m﹣2=0是二元一次方程,则m+n=.14.已知x,y互为相反数且满足二元一次方程组,则k的值是.15.若方程组与方程组的解相同,则a+b的值为.16.小新出生时父亲28岁,现在父亲的年龄是小新的3倍还多2岁,则现在小新的年龄是岁.17.如果方程组的解为,那么“*”表示的数是.18.已知关于x,y的二元一次方程组的解互为相反数,则k的值是.19.在《九章算术》中,二元一次方程组是通过“算筹”摆放的.若图中各行从左到右列出的三组算筹分别表示未知数x,y的系数与相应的常数项,如图1表示方程组是,则如图2表示的方程组是.20.某校七年级的数学竞赛中共有30道题,答对一题得5分,不答得0分,答错扣4分,学生小王有5题未答,最后得71分,那么他答对了题.21.若方程组的解是,则方程组的解是x=,y =.三.解答题22.解方程组:(1)(代入法);(2)(加减法).23.解方程组:(1);(2).24.已知,都是关于x,y的二元一次方程y=x+b的解,且m﹣n=b2+b﹣,求b的值.25.我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,绳长、井深各几何?这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,绳长、井深各几尺?26.在抗击新冠肺炎疫情期间,某社区购买酒精和消毒液两种消毒物资,供居民使用.第一次购买酒精和消毒液若干,酒精每瓶10元,消毒液每瓶5元,共花费了350元;第二次又购买了与第一次相同数量的酒精和消毒液,由于酒精和消毒液每瓶价格分别下降了30%和20%,只花费了260元.求每次购买的酒精和消毒液分别是多少瓶?参考答案一.选择题1.解:A.是一元一次方程,不是二元一次方程,故本选项不符合题意;B.是二元二次方程,故本选项不符合题意;C.分式方程,不是二元一次方程,故本选项不符合题意;D.是二元一次方程,故本选项符合题意;故选:D.2.解:将代入方程ax+y=2,得4a﹣6=2,解得a=2.故选:D.3.解:∵2x+3y﹣(x+4y)=x﹣y=14﹣12=2,∴x﹣y=2,故选:B.4.解:A、B、C、D四个答案都是正确的,但“化简比较容易的”只有B.故选:B.5.解:设这个长方形的长为xcm,宽为ycm,依题意得:,解得:.故选:B.6.解:联立得:,①×5+②×3得:29x=58,解得:x=2,把x=2代入①得:y=1,代入得:,解得:,则原式=(﹣2+2)2021=0.故选:A.7.解:把x=3,y=﹣3代入方程3x+2y=k+1,得9﹣6=k+1,解得k=2.故选:B.8.解:每组10人时,实际人数可表示为10y﹣5;每组9人时,实际人数可表示为9y+3;可列方程组为:,故选:C.9.解:由题意可得,,故选:B.10.解:①(1)×3+(2)得:4x+8y=12∴x+2y=3 (3)将x=5,y=﹣1代入(3),左边=5+2×(﹣1)=3=右边故①正确;②将a=﹣2代入方程组得:解得:x,y的值互为相反数,故②正确;③将a=1代入方程组得:解得:当a=1时,方程x+y=4﹣a化为:x+y=3∴x=3,y=0是方程x+y=3的解,故③正确.故选:D.二.填空题11.解:5x﹣2y=3,移项得:﹣2y=3﹣5x,系数化1得:=.故答案为:y=.12.解:把代入方程2x+ay=7,得6+a=7,解得a=1.故答案为:1.13.解:根据题意得:|n|=1,m﹣2=1,解得:n=±1,m=3,∴m+n=3+1=4,m+n=3﹣1=2,∴m+n的值是2或4,故答案为:2或4.14.解:解方程组:,得:,∵x和y互为相反数,则有2k+3+(﹣k﹣2)=0,解得k=﹣1.故答案为:﹣1.15.解:把代入,得:,①+②得:7(a+b)=14,则a+b=2,故答案为:2.16.解:设小新现在的年龄为x岁,父亲现在的年龄是y岁,由题意得:,解得:,即现在小新的年龄是13岁,故答案为:13.17.解:将x=6代入2x﹣y=16,得12﹣y=16,解得y=﹣4,∴x+y=6﹣4=2.故答案为:2.18.解:∵x,y的二元一次方程组的解互为相反数,∴x+y=0.解方程组,得.把x=3,y=﹣3代入方程3x+2y=k+1,得9﹣6=k+1,解得k=2.故答案为2.19.解:依题意得:.故答案为:.20.解:设小王答对了x道题,答错了y道题,依题意得:,解得:.故答案为:19道.21.解:把代入方程组得,,所以c1﹣c2=2(a1﹣a2),c1﹣2a1=3,方程组,①﹣②得,(a1﹣a2)x=a1﹣a2﹣(c1﹣c2),所以(a1﹣a2)x=﹣(a1﹣a2),因此x=﹣1,把x=﹣1代入方程组中的方程①得,﹣a1+y=a1﹣c1,所以y=2a1﹣c=﹣(c﹣2a)=﹣3,故答案为:﹣1,﹣3.三.解答题22.解:(1),由①得:y=4﹣x③,将③代入②得,3x﹣2(4﹣x)=2,5x﹣8=2,5x=10,x=2,将x=2代入①得,y=2,∴方程组的解为:,(2),将①×2+②得,5x=10,x=2,将x=2代入①得,y=3,∴方程组的解为:.23.解:,①×5+②,14x=﹣14,解得x=﹣1,把x=﹣1代入①,﹣2+y=﹣5,解得y=﹣3,∴原方程组的解是;(2)方程组整理得,①+②×4,﹣37y=74,解得y=﹣2,把y=﹣2代入①,8x+18=6,解得x=﹣,∴原方程组的解是.24.解:∵,都是关于x,y的二元一次方程y=x+b的解,∴①+②,得2m+3=2n+2b+2,整理,得2m﹣2n=2b﹣1∴m﹣n=b﹣∴b﹣=b2+b﹣即b2=5,∴b=±.25.解:设绳长是x尺,井深是y尺,依题意有:,解得:,答:绳长是36尺,井深是8尺.26.解:设每次购买酒精x瓶,消毒液y瓶,依题意得:,解得:.答:每次购买酒精20瓶,消毒液30瓶.。
新人教版八年级下第八章二元一次方程组单元练习题及答案
第八章 二元一次方程组§8.1二元一次方程组一、填空题1、二元一次方程4x-3y=12,当x=0,1,2,3时,y=____ __。
2、在x+3y=3中,若用x 表示y ,则y=__ ___,用y 表示x ,则x=_ _____。
3、已知方程(k 2-1)x 2+(k+1)x+(k-7)y=k+2,当k=______时,方程为一元一次方程;当k=______时,方程为二元一次方程。
4、对二元一次方程2(5-x)-3(y-2)=10,当x=0时,则y=___ ___;当y=0时,则x=__ ____。
5、方程2x+y=5的正整数解是___ ___。
6、若(4x-3)2+|2y+1|=0,则x+2=_____ _。
7、方程组⎩⎨⎧==+b xy ay x 的一个解为⎩⎨⎧==32y x ,那么这个方程组的另一个解是 。
8、若21=x 时,关于y x 、的二元一次方程组⎩⎨⎧=-=-212by x y ax 的解互为倒数,则=-b a 2 。
二、选择题1、方程2x-3y=5,xy=3,33=+yx ,3x-y+2z=0,62=+y x 中是二元一次方程的有( )个。
A、1 B、2 C、3 D、4 2、方程2x+y=9在正整数范围内的解有( )A 、1个B 、2个C 、3个D 、4个3、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是( )A 、10x+2y=4B 、4x-y=7C 、20x-4y=3D 、15x-3y=6 4、若是my x 25与2214-++n m n y x同类项,则n m -2的值为 ( )A 、1B 、-1C 、-3D 、以上答案都不对 5、在方程(k 2-4)x 2+(2-3k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k值为( )A 、2B 、-2C 、2或-2D 、以上答案都不对. 6、若⎩⎨⎧-==12y x 是二元一次方程组的解,则这个方程组是( )A 、⎩⎨⎧=+=-5253y x y x B 、⎩⎨⎧=--=523x y x y C 、⎩⎨⎧=+=-152y x y x D 、⎩⎨⎧+==132y x yx 7、在方程3)(3)(2=--+x y y x 中,用含x 的代数式表示y ,则 ( )A 、35-=x yB 、3--=x yC 、35+=x yD 、35--=x y 8、已知x=3-k,y=k+2,则y与x的关系是( )A、x+y=5 B、x+y=1 C、x-y=1 D、y=x-1 9、下列说法正确的是( )A、二元一次方程只有一个解 B、二元一次方程组有无数个解C、二元一次方程组的解必是它所含的二元一次方程的解 D、三元一次方程组一定由三个三元一次方程组成10、若方程组⎩⎨⎧=+=+16156653y x y x 的解也是方程3x+ky=10的解,则k的值是( )A、k=6 B、k=10 C、k=9 D、k=101三、解答题1、解关于x 的方程)1(2)4)(1(+-=--x a x a a2、已知方程组⎩⎨⎧=+=+cy ax y x 27,试确定c a 、的值,使方程组:(1)有一个解;(2)有无数解;(3)没有解3、关于y x 、的方程3623-=+k y kx ,对于任何k 的值都有相同的解,试求它的解。
第八章二元一次方程组单元练习题(含答案解析)
2.某商店出售某种商品每件可获利m元,利润为20%(利润= ),若这种商品的进价提高25%,而商店将这种商品的售价提高到每件仍可获利m元,则提价后的12.5%
3.甲、乙两人骑自行车同时从相距65 km的两地相向而行,2 h相遇,若甲比乙每小时多骑2.5 km,则乙的速度是每小时()
A.12.5 kmB.15 kmC.17.5 kmD.20 km
4.方程(m-2 016)x|m|-2 015+(n+4)y|n|-3=2 018是关于x、y的二元一次方程,则()
A.m=±2 016;n=±4B.m=2 016,n=4
C.m=-2 016,n=-4D.m=-2 016,n=4
5.用加减法解二元一次方程组 下列步骤可以消去未知数x的是()
第八章二元一次方程组单元练习题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.某部队第一天行军5 h,第二天行军6 h,两天共行军120 km,且第二天比第一天多走2 km,设第一天和第二天行军的速度分别为xkm/h和ykm/h,则符合题意的二元一次方程是()
三、解答题
21.某旅馆的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天35元,一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天花去住宿费1 510元,两种客房各租住多少间?
22.阅读材料:喜欢看书的刘翔在看一本数学课外读物,发现一种解二元一次方程组的方法叫“整体代换”法:例:解方程组
7.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现有36张白铁皮,设用x张制盒身,y张制盒底,恰好配套制成罐头盒.则下列方程组中符合题意的是()
七年级数学下册《第八章 二元一次方程组》单元测试卷及答案解析-人教版
七年级数学下册《第八章 二元一次方程组》单元测试卷及答案解析-人教版一、单选题1.如果21x y =⎧⎨=-⎩是关于x 、y 的二元一次方程ax+y=1的解,那么a 的值为( )A .-2B .-1C .0D .I2.已知二元一次方程组 522048x y x y +=⎧⎨-=⎩①②,若用加减法消去y ,则正确的是( )A .①×1+②×1B .①×1+②×2C .①×1-②×1D .①×1-②×23.七年级学生在会议室开会,每排座位坐12人,则有11人没有座位;每排座位坐14人,则余1人独坐一排,则这间会议室的座位排数是( ) A .14B .13C .12D .154.方程组24x y x y -=⎧⎨-=⎩的解为2x y =-⎧⎨=⎩▽则被△和△遮盖的两个数分别为(,)A .-10,6B .2,-6C .2,6D .10,-65.已知13x y =⎧⎨=⎩是关于x ,y 的二元一次方程2x y m -=的一个解,则m 的值是( )A .5B .2C .-5D .-26.关于x ,y 的二元一次方程组538y x x y =-⎧⎨-=⎩,用代入法消去y ,得到的方程是( )A .3583x x --=B .358x x +-=C .358x x ++=D .358x x -+=7.已知24328a b a b +=⎧⎨+=⎩,则2a+2b 的值为()A .3B .4C .6D .78.小明计划用100元钱在京东商城购买价格分别为6元和8元的两种商品,则在钱全部用完的前提下,可供小明选择的方案有( ) A .3种B .4种C .5种D .6种9.举办“书香文化节”的活动中,将x 本图书分给了y 名学生,若每人分6本,则剩余40本;若每人分8本,则还缺50本,下列方程组正确的是( )A .640850y x y x -=⎧⎨+=⎩B .640850y xy x +=⎧⎨-=⎩C .640850x y x y +=⎧⎨-=⎩D .640850y xy x -=⎧⎨-=⎩10.若方程组41233x by z x by z -+=⎧⎨-+=⎩ 的解是1x ay z c=⎧⎪=⎨⎪=⎩,则6a b c ++的值是( )A .-3B .0C .3D .6二、填空题11.已知二元一次方程x -2y =10,用含x 的代数式表示y ,则y = . 12.已知x 、y 满足方程组3202132022x y x y +=⎧⎨+=⎩,则x y -= .13.若273330x y y z z x +=⎧⎪+=⎨⎪+=⎩,则代数式x+y+z 的值为 .14.小明家准备装修一套新房,若甲、乙两家装修公司合作需6周完成,装修费用为5.2万元;若甲公司单独做4周,剩下的由乙公司做,还需9周完成,此时装修费用为4.8万元.若小明只选甲公司单独完成,则他需要付给甲公司装修费用 万元.三、计算题15.解方程组:(1){y =2x3x +2y =7 (2){4x −y =112x +y =1316.解方程组: 4223327x y z x y z x y z +-=⎧⎪-+=-⎨⎪+-=⎩四、解答题17.解方程组 64ax by x cy +=⎧⎨+=⎩ 时甲同学因看错 a 符号,从而求得解为32x y =⎧⎨=⎩ ,乙因看漏 c ,从而求得解为 62x y =⎧⎨=-⎩ ,试求 a , b , c 的值.18.已知方程组31313x y mx y m +=-+⎧⎨-=+⎩的解满足x 为非正数,y 为负数,求m 的取值范围.19. 2021年下半年,新冠疫情在全球新一波蔓延,接种新冠疫苗是当前抗击疫情最有效的手段.某县注射的疫苗有两种,一种是2针剂的灭活疫苗,另种是3针剂的重组蛋白疫苗.某校120名教职工全部完成其中一种疫苗的注射,共注射了325针,注射2针剂和3针剂疫苗的教职工各有多少人?五、综合题20.已知二元一次方程20ax y b +-=(a ,b 均为常数,且a≠0).(1)当a =3,b =﹣4时用x 的代数式表示y ;(2)若()2212x a by b b =-⎧⎪⎨=+⎪⎩是该二元一次方程的一个解 ①探索a 与b 关系,并说明理由;②无论a 、b 取何值,该方程有一组固定解,请求出这组解.21.下面是马小虎同学解二元一次方程组的过程,请认真阅读并完成相应的任务.解方程组:{3x −y =4 ①6x −3y =10 ②解:①×2,得628x y -=……③ 第一步 ②-③,得2y -= 第二步=2y -. 第三步将=2y -代入①,得2x =.第四步所以,原方程组的解为22x y =⎧⎨=-⎩第五步(1)这种求解二元一次方程组的方法叫做 法,以上求解步骤中,马小虎同学第 步开始出现错误.(2)请写出此题正确的解答过程.22.目前,新型冠状病毒在我国虽可控可防,但不可松懈.建兰中学欲购置规格分别为200mL 和500mL 的甲、乙两种免洗手消毒液若干瓶,已知购买3瓶甲和2瓶乙免洗手消毒液需要80元,购买1瓶甲和4瓶乙免洗手消毒液需要110元. (1)求甲、乙两种免洗手消毒液的单价.(2)该校在校师生共1000人,平均每人每天都需使用10mL 的免洗手消毒液,若校方采购甲、乙两种免洗手消毒液共花费2500元,则这批消毒液可使用多少天?(3)为节约成本,该校购买散装免洗手消毒液进行分装,现需将8.4L 的免洗手消毒液全部装入最大容量分别为200mL 和500mL 的两种空瓶中(每瓶均装满),若分装时平均每瓶需损耗10mL ,请问如何分装能使总损耗最小,求出此时需要的两种空瓶的数量.参考答案与解析1.【答案】D【解析】【解答】解:将 21x y =⎧⎨=-⎩ 代入ax+y=1得2a-1=1 解得a=1. 故答案为:D.【分析】根据方程根的概念,将x=2与y=-1代入ax+y=1可得关于字母a 的方程,求解即可得出a 的值.2.【答案】B【解析】【解答】解: ACD 、既不能消去x ,也不能消去y ,错误;B 、能消去y ,正确; 故答案为:B.【分析】观察两方程中y 的系数,找出两系数的最小公倍数,结合系数的符号,即可判断.3.【答案】C【解析】【解答】解:设这间会议室的座位排数是x 排,人数是y 人.根据题意,得()12111411x y x y+=⎧⎨-+=⎩解得12155x y =⎧⎨=⎩. 故答案为:C .【分析】本题中有两个等量关系:1、每排坐12人,则有11人没有座位;2、每排坐14 人,则余1人独坐一排. 这样设每排的座位数为x ,总人数为y ,列出二元一次方程组即可.4.【答案】B【解析】【解答】解:∵方程组24x y x y -=⎧⎨-=⎩①②的解为2x y =-⎧⎨=⎩▽ 424y y --=⎧⎨--=⎩①②解之:y=-6, △=2【分析】将x=-2代入第二个方程,可求出△的值,再将x ,y 的值代入第一个方程,可求出△的值.5.【答案】C【解析】【解答】解:13x y =⎧⎨=⎩是关于x ,y 的二元一次方程2x y m -=的一个解123m ∴-⨯=5m ∴=-故答案为:C.【分析】将x=1、y=3代入方程中进行计算可得m 的值.6.【答案】D【解析】【解答】解:方程:{y =x −5①3x −y =8②把①式代入②式,可得:()358x x --=整理,可得:358x x -+= 故答案为:D.【分析】将第一个方程代入第二个方程中可得3x-(x-5)=8,然后化简即可.7.【答案】C【解析】【解答】解:24328a b a b +=⎧⎨+=⎩①② ①+②,可得: 4a +4b =12 ∴2a +2b =12÷2=6. 故答案为:C .【分析】两方程组中两方程相加即可求解.8.【答案】B【解析】【解答】设购买价格为6元的商品x 件,价格为8元的商品y 件依题意得:68100x y +=5034xy -∴=又x ,y 均为正整数解得211x y =⎧⎨=⎩或68x y =⎧⎨=⎩或105x y =⎧⎨=⎩或142x y =⎧⎨=⎩因此可供小明选择的方案有4种.【分析】设购买价格为6元的商品x 件,价格为8元的商品y 件, 根据购买价格分别为6元和8元的两种商品共花费100元,列出二元一次方程,再求出其正整数解即可.9.【答案】B【解析】【解答】解:由题意得: 640850y xy x +=⎧⎨-=⎩故答案为:B.【分析】根据“ 每人分6本,则剩余40本”得方程6y-40=x ;根据“每人分8本,则还缺50本”得方程8y-50=x ,依此列出二元一次方程组,即可解答.10.【答案】A【解析】【解答】解:∵方程组41233x by z x by z -+=⎧⎨-+=⎩ 的解是1x a y z c=⎧⎪=⎨⎪=⎩∴41233a b c a b c -+=⎧⎨-+=⎩①② 由①-②得:2b c +=- ∴2b c =--把2b c =--代入①,得:()241a c c ---+=∴51a c +=-∴65123a b c a c b c ++=+++=--=-. 故答案为:A.【分析】由题意把x 、y 、z 的值代入方程组可得关于a 、b 、c 的方程组,将c 作为常数,用含c 的式子表示出a 、b ,整体代换计算即可求解.11.【答案】x 102- 【解析】【解答】解:x -2y =102y=x-10 解之:y=x 102-. 故答案为x 102-【分析】先移项,再将y的系数化为1,可求出y.12.【答案】1 2 -【解析】【解答】解:3202132022 x yx y+=⎧⎨+=⎩①②①-②得,2x-2y=﹣1两边同除以2得,x-y=1 2 -故答案为1 2 -.【分析】将①式和②式整体相减得出2x-2y=﹣1,然后根据等式的性质两边同除以2,即可解答. 13.【答案】45【解析】【解答】解:273330x yy zz x+=⎧⎪+=⎨⎪+=⎩①②③①+②+③得:2x+2y+2z=90整理得:x+y+z=45.故答案为:45.【分析】将方程组中的三个方程相加并化简可得x+y+z的值. 14.【答案】6【解析】【解答】解:设甲公司的工作效率为x,乙公司的工作效率为y.依题意列方程组,得661 491 x yx y+=⎧⎨+=⎩解这个方程组,得110115 xy⎧=⎪⎪⎨⎪=⎪⎩所以,甲公司单独做需10周,乙公司单独做需15周;设甲一周的装修费是m万元,乙一周的装修费是n万元.依题意列方程组,得66 5.2 49 4.8 m nm n+=⎧⎨+=⎩解这个方程组,得35415 mn⎧=⎪⎪⎨⎪=⎪⎩甲单独做的装修费:35×10=6(万元)故答案为:6.【分析】设甲公司的工作效率为x,乙公司的工作效率为y,根据相等关系“ 甲装修公司6周完成的工作量+乙装修公司6周完成的工作量=1,甲装修公司4周完成的工作量+乙装修公司9周完成的工作量=1”可得关于x、y的方程组,解之求出x、y的值;设甲一周的装修费是m万元,乙一周的装修费是n万元,根据相等关系“ 甲装修公司6周所需费用+乙装修公司6周完成所需费用=1,甲装修公司4周所需费用+乙装修公司9周所需费用=1”可得关于m、n的方程组,解之可求解.15.【答案】(1)解:{y=2x①3x+2y=7②将①代入②得3x+4x=7解得x=1将x=1代入①得y=2∴12 xy=⎧⎨=⎩(2)解:{4x−y=11①2x+y=13②①+②得6x=24解得x=4将x=4代入②得8+y=13解得y=5∴45 xy=⎧⎨=⎩【解析】【分析】(1)将①方程直接代入②方程可求出x的值,再将x的值代入①方程可求出y的值,从而即可得出方程组的解;(2)将方程组中的两个方程相加可求出x的值,再将x的值代入②方程可求出y的值,从而即可得出方程组的解.16.【答案】解:4 223 327x y zx y zx y z+-=⎧⎪-+=-⎨⎪+-=⎩①②③解:①+②得, 31x y -=④ ②×2+③得, 731x y -=⑤④与⑤组成方程组得 31731x y x y -=⎧⎨-=⎩解方程组得, 12x y =⎧⎨=⎩把 12x y =⎧⎨=⎩ 代入①得, 124z +-=解得, 1z =-∴原方程组的解为: 121x y z =⎧⎪=⎨⎪=-⎩【解析】【分析】利用第一个方程加上第二个方程可得3x-y=1,利用第二个方程的2倍加上第三个方程可得7x-3y=1,联立求解可得x 、y 的值,然后将x 、y 的值代入第一个方程中求出z 的值,据此可得方程组的解.17.【答案】解:甲同学因看错 a 符号∴ 把 3x = , 2y = 代入 4x cy +=解得 12c =326a b -+= .乙因看漏 c∴ 把 6x = , 2y =- 代入 6ax by +=得 626a b -= 得 326626a b a b -+=⎧⎨-=⎩解得, a=4 , b=9【解析】【分析】甲同学看错a 的负号,把x=3,y=2代入x+cy=4,求出c 值,因看错a 的符号,得-3a+2b=6,再由乙看漏c ,把x=6,y=-2代入ax+by=6,得6a-2b=6,联立方程组解方程组得a 、b 的值,即可解决问题.18.【答案】解:解方程组31313x y m x y m +=-+⎧⎨-=+⎩,得324x m y m =-⎧⎨=--⎩ ∵x 为非正数,y 为负数∴30240m m -≤⎧⎨--<⎩解得-2<m≤3【解析】【分析】先求出方程组的解324x m y m =-⎧⎨=--⎩,再根据题意列出不等式组30240m m -≤⎧⎨--<⎩,最后求出m 的取值范围即可。
七年级数学下册《第八章 二元一次方程组》单元测试卷附答案解析-人教版
七年级数学下册《第八章 二元一次方程组》单元测试卷附答案解析-人教版一、单选题1.已知x 2y 1=⎧⎨=-⎩是二元一次方程2x 3ky 1-=的一组解,则k 的值为( )A .1B .-1C .53D .53-2.方程组: 5210x y x y +=⎧⎨+=⎩①② ,由②-①得到的方程是( )A .3x =10B .x =-5C .3 x =-5D .x =53.七年级学生在会议室开会,每排座位坐12人,则有11人没有座位;每排座位坐14人,则余1人独坐一排,则这间会议室的座位排数是( ) A .14B .13C .12D .154.将方程3x+y=9写成用含y 的式子表示x 的形式,正确的是( )A .y=3x-9B .y=9-3xC .x=3y-3 D .x=3-3y 5.已知{x =2ky =−3k 是二元一次方程x-y=10的解,则k 的值是( )A .-10B .-2C .2D .106.若4326x y x y +=⎧⎨-=⎩,则x y +的值为( )A .3B .4C .5D .67.已知方程组272a b a b +=⎧⎨-=⎩①②下列消元过程错误的是( )A .代人法消去a ,由②得2a b =+代入①B .代入法消去b ,由①得72b a =-代入②C .加减法消去b ,①-②D .加减法消去a ,①-②×28.三元一次方程组32522x y x y z z -=⎧⎪++=⎨⎪=⎩,,的解是( )A .112x y z =⎧⎪=⎨⎪=⎩B .112x y z =⎧⎪=-⎨⎪=⎩C .112x y z =-⎧⎪=⎨⎪=⎩D .112x y z =-⎧⎪=-⎨⎪=⎩9.把一根长17m 的钢管截成2m 和3m 长两种不同规格的钢管,且不造成浪费,你有几种不同的截法( ) A .1种B .2 种C .3种D .4种10.在学习完“垃圾分类”的相关知识后,小明和小丽一起收集了一些废电池,小明说:“我比你多收集了7节废电池啊!”小丽说:“如果你给我8节废电池,我的废电池数量就是你的2倍”.如果他们说的都是真的,设小明收集了x 节废电池,小丽收集了y 节废电池,则可列方程组为( ).A .()7828x y x y -=⎧⎨-=+⎩B .()7828y x x y -=⎧⎨+=-⎩C .()728x y x y -=⎧⎨-=⎩D .()7288x y x y -=⎧⎨-=+⎩二、填空题11.已知方程2x ﹣y =8,用含x 的代数式表示y ,则y = . 12.若二元一次方程组ax by 3bx ay 2+=⎧⎨+=⎩的解为x 3y 2=⎧⎨=⎩,则a b +的值 .13.已知关于x ,y 的二元一次方程()()a 1x a 2y 52a 0-+++-=,当a 每取一个值时就有一方程,而这些方程有一个公共解,则这个公共解是 .14.某中学为积极开展校园足球运动,计划购买A 和B 两种品牌的足球,已知一个A 品牌足球价格为120元,一个B 品牌足球价格为150元.学校准备用3000元购买这两种足球(两种足球都买),并且3000元全部用完,请写出一种购买方案:买 个A 品牌足球,买 个B 品牌足球.三、计算题15.解方程 212311x y x y -=-⎧⎨+=⎩16.解方程组: 3472395978x z x y z x y z +=⎧⎪++=⎨⎪-+=⎩①②③四、解答题17.已知关于x ,y 的二元一次方程组2632x y x y k -=⎧⎨-=⎩的解满足x ﹣y =2,求k 的值.18.下面是王斌同学解方程组1022x y x y +=⎧⎨-=-⎩的过程,请认真阅读并完成相应任务.解:1022x y x y +=⎧⎨-=-⎩①②由①得10y x =-③,……第一步把③代入②,得2(10)2x x --=-,……第二步 整理得2022x x --=-,……第三步 解得18x -=,即18x =-.……第四步 把18x =-代入③,得28y =则方程组的解为1828x y =-⎧⎨=⎩.……第五步(1)任务一:填空:①以上求解过程中,王斌用了 消元法;(填“代入”或“加减”)②第 步开始出现错误,这一步错误的原因是 ;(2)任务二:直接写出该方程组求解后的正确结果.19.为了鼓励市民节约用电,某市对居民用电实行阶梯收费(总电费=第一阶梯电费+第二阶梯电费),规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.以下是张磊家2014年3月和4月所交电费的收据,问该市规定的第一阶梯电价和第二阶梯电价分别为每度多少元? 代收电费收据 电表号 1205 电表号 1205 户名 张磊 户名 张磊 月份 3月 月份 4月 用电量 220度 用电量 265度 金额112元金额139元20.已知31x y =⎧⎨=⎩是方程2x-ay=9的一个解,解决下列问题:(1)求a 的值;(2)化简并求值:()()()()211213a a a a a -+--+-21.阅读下列方程组的解法,然后解答相关问题:解方程组272625252423x y x y +=⎧⎨+=⎩①②时若直接利用消元法解,那么运算比较繁杂,采用下列解法则轻而易举解:①-②,得222x y +=,即1x y +=.③ ②-③×24,得1x =-.把1x =-代入③,解得2y =.故原方程组的解是12x y =-⎧⎨=⎩.(1)请利用上述方法解方程组192123111315x y x y +=⎧⎨+=⎩.(2)猜想并写出关于x ,y 的方程组()2()2ax a m y a mbx b m y b m +-=-⎧⎨+-=-⎩的解,并加以检验.22.一批机器零件共558个,甲先做3天后,乙再加入,两人共同再做6天刚好完成.设甲每天做x个,乙每天做y 个.(1)列出关于x ,y 的二元一次方程.(2)用含x 的代数式表示y ,并求当32x =时y 的值是多少? (3)若乙每天做48个,则甲每天做多少个?参考答案与解析1.【答案】B【解析】【解答】解:∵x 2y 1=⎧⎨=-⎩是二元一次方程2x-3ky=1的一组解∴4+3k=1 解得k=-1. 故答案为:B.【分析】根据二元一次方程根的概念,将x=2、y=-1代入原方程,可得关于字母k 的一元一次方程,解该方程可求出k 的值.2.【答案】D【解析】【解答】解:由②-①得:x=5.故答案为:D.【分析】由方程②-方程①,即左边减左边,右边减右边,可得x=5,即可得出正确答案.3.【答案】C【解析】【解答】解:设这间会议室的座位排数是x 排,人数是y 人.根据题意,得()12111411x y x y+=⎧⎨-+=⎩解得12155x y =⎧⎨=⎩. 故答案为:C .【分析】本题中有两个等量关系:1、每排坐12人,则有11人没有座位;2、每排坐14 人,则余1人独坐一排. 这样设每排的座位数为x ,总人数为y ,列出二元一次方程组即可.4.【答案】D【解析】【解答】解:3x+y=93x=9-y 解之:33yx =-. 故答案为:D【分析】先移项,将含y 的项移到方程的右边,再在方程的两边同时除以3,可求出x.5.【答案】C【解析】【解答】解:∵{x=2ky=−3k是二元一次方程x-y=10的解∴2k+3k=10解之:k=2.故答案为:C【分析】将x,y的值代入方程,可得到关于k的方程,解方程求出k的值. 6.【答案】A【解析】【解答】解:43 26 x yx y+=⎧⎨-=⎩①②①+②得3x+3y=9两边同时除以3得x+y=3.故答案为:A.【分析】直接将方程组中的两个方程相加后再在两边同时除以3即可得出答案. 7.【答案】C【解析】【解答】解:方程组272a ba b+=⎧⎨-=⎩①②A、代入法消去a,由②得a=b+2代入①可消去a,不符合题意;B、代入法消去b.由①得b=7−2a代入②可消去b,不符合题意;C、加减法消去b,①+②,符合题意;D、加减法消去a,①−②×2,不符合题意.故答案为:C.【分析】利用加减消元法和代入消元的方法求解二元一次方程组即可。
人教新版七年级数学下学期 第8章 二元一次方程组 单元练习题 含解析
第8章二元一次方程组一.选择题(共8小题)1.下列各式,属于二元一次方程的个数有()①xy+2x﹣y=7;②4x+1=x﹣y;③+y=5;④x=y;⑤x2﹣y2=2⑥6x﹣2y⑦x+y+z=1 ⑧y(y﹣1)=2y2﹣y2+x.A.1 B.2 C.3 D.42.若x4﹣3|m|+y3|n|=2009是关于x,y的二元一次方程,且mn<0,0<m+n≤3,则m﹣n的值是()A.B.2 C.4 D.﹣23.关于x,y的二元一次方程(a﹣1)x+(a+2)y+5﹣2a=0,当a取一个确定的值时就得到一个方程,所有这些方程有一个公共解,则这个公共解是()A.B.C.D.4.二元一次方程5a﹣11b=21()A.有且只有一解B.有无数解C.无解D.有且只有两解5.已知是二元一次方程组的解,则2m﹣n的算术平方根为()A.±2 B.C.2 D.46.已知x,y满足方程组,则无论m取何值,x,y恒有关系式是()A.x+y=1 B.x+y=﹣1 C.x+y=9 D.x+y=﹣97.已知方程组和有相同的解,则a,b的值为()A.B.C.D.8.王芳同学到文具店购买中性笔和笔记本,中性笔每支0.8元,笔记本每本1.2元,王芳同学花了10元钱,则可供她选择的购买方案的个数为(两样都买,余下的钱少于0.8元)()A.6 B.7 C.8 D.9二.填空题(共9小题)9.若方程组是关于x,y的二元一次方程组,则代数式a+b+c的值是.10.小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回★这个数,★=.11.已知方程x﹣8=2y,用含y的代数式表示x,那么x=.12.如图,长方形ABCD中有6个形状、大小相同的小长方形,根据图中所标尺寸,则图中阴影部分的面积之和为.13.我国古代有一种回文诗,倒念顺念都有意思,例如“上海自来水”,倒读起来便是“水来自海上”.“回文数“是一种数字.如:98789,这个数字正读是98789,倒读也是98789,正读倒读一样.下面的乘法算式中每个汉字代表一个数字,不同的汉字代表不同的数字,则绿水青山代表的四位数是.14.某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,一个螺栓配两个螺母,应分配人生产螺栓,人生产螺母,才能使生产的螺栓和螺母正好配套.15.轮船顺流航行时m千米/小时,逆流航行时(m﹣6)千米/小时,则水流速度是.16.为确保信息安全,信息需加密传输,发送者将明文加密为密文传输给接收方,接收方收到密文后解密为明文,已知某种加密规则为:明文a,b对应密文为a﹣2b,2a+b,例如,明文1,2对应的密文是﹣3,4.当接收方收到的密文是2,9时,解密得到的明文是.17.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图所示,请你根据图中的信息,若小明把100个纸杯整齐叠放在一起时,它的高度约是cm.三.解答题(共4小题)18.已知等式(2A﹣7B)x+(3A﹣8B)=8x+10对一切实数x都成立,求A、B的值.19.小华从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60m,下坡路每分钟走80m,上坡路每分钟走40m,则他从家里到学校需10min,从学校到家里需15min.问:从小华家到学校的平路和下坡路各有多远?20.(应用题)某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?21.一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?(3)若装修完后,商店每天可赢利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)参考答案与试题解析一.选择题(共8小题)1.下列各式,属于二元一次方程的个数有()①xy+2x﹣y=7;②4x+1=x﹣y;③+y=5;④x=y;⑤x2﹣y2=2⑥6x﹣2y⑦x+y+z=1 ⑧y(y﹣1)=2y2﹣y2+x.A.1 B.2 C.3 D.4【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面辨别.【解答】解:①xy+2x﹣y=7,不是二元一次方程,因为其未知数的最高次数为2;②4x+1=x﹣y,是二元一次方程;③+y=5,不是二元一次方程,因为不是整式方程;④x=y是二元一次方程;⑤x2﹣y2=2不是二元一次方程,因为其未知数的最高次数为2;⑥6x﹣2y,不是二元一次方程,因为不是等式;⑦x+y+z=1,不是二元一次方程,因为含有3个未知数;⑧y(y﹣1)=2y2﹣y2+x,是二元一次方程,因为变形后为﹣y=x.故选:C.2.若x4﹣3|m|+y3|n|=2009是关于x,y的二元一次方程,且mn<0,0<m+n≤3,则m﹣n的值是()A.B.2 C.4 D.﹣2【分析】根据二元一次方程的定义,从二元一次方程的未知数次数为1这一方面考虑,先求出常数m、n的值,再进一步计算.【解答】解:根据二元一次方程的定义,x和y的次数必须都为1,所以4﹣3|m|=1,且3|n|=1,解得m=±1,n=±.又∵mn<0,0<m+n≤3,∴m=1,n=﹣.∴m﹣n=.故选:A.3.关于x,y的二元一次方程(a﹣1)x+(a+2)y+5﹣2a=0,当a取一个确定的值时就得到一个方程,所有这些方程有一个公共解,则这个公共解是()A.B.C.D.【分析】如果当a取一个确定的值时就得到一个方程,这些方程有一个公共解,说明无论a取何值,都不影响方程,即含a的项的系数相加为0.【解答】解:方程整理为ax﹣x+ay+2y+5﹣2a=0,a(x+y﹣2)﹣x+2y+5=0.根据题意,即可得,用加减法解得.故选:A.4.二元一次方程5a﹣11b=21()A.有且只有一解B.有无数解C.无解D.有且只有两解【分析】对于二元一次方程,可以用其中一个未知数表示另一个未知数,给定其中一个未知数的值,即可求得其对应值.【解答】解:二元一次方程5a﹣11b=21,变形为a=,给定b一个值,则对应得到a的值,即该方程有无数个解.故选:B.5.已知是二元一次方程组的解,则2m﹣n的算术平方根为()A.±2 B.C.2 D.4【分析】由是二元一次方程组的解,根据二元一次方程根的定义,可得,即可求得m与n的值,继而求得2m﹣n的算术平方根.【解答】解:∵是二元一次方程组的解,∴,解得:,∴2m﹣n=4,∴2m﹣n的算术平方根为2.故选:C.6.已知x,y满足方程组,则无论m取何值,x,y恒有关系式是()A.x+y=1 B.x+y=﹣1 C.x+y=9 D.x+y=﹣9【分析】由方程组消去m,得到一个关于x,y的方程,化简这个方程即可.【解答】解:由方程组,有y﹣5=m∴将上式代入x+m=4,得到x+(y﹣5)=4,∴x+y=9.故选:C.7.已知方程组和有相同的解,则a,b的值为()A.B.C.D.【分析】因为方程组和有相同的解,所以把5x+y=3和x﹣2y=5联立解之求出x、y,再代入其他两个方程即可得到关于a、b的方程组,解方程组即可求解.【解答】解:∵方程组和有相同的解,∴方程组的解也它们的解,解得:,代入其他两个方程得,解得:,故选:D.8.王芳同学到文具店购买中性笔和笔记本,中性笔每支0.8元,笔记本每本1.2元,王芳同学花了10元钱,则可供她选择的购买方案的个数为(两样都买,余下的钱少于0.8元)()A.6 B.7 C.8 D.9【分析】设购买x支中性笔,y本笔记本,根据题意得出:9.2<0.8x+1.2y≤10,进而求出即可.【解答】解;设购买x支中性笔,y本笔记本,根据题意得出:9.2<0.8x+1.2y≤10,当x=2时,y=7,当x=3时,y=6,当x=5时,y=5,当x=6时,y=4,当x=8时,y=3,当x=9时,y=2,当x=11时,y=1,故一共有7种方案.故选:B.二.填空题(共9小题)9.若方程组是关于x,y的二元一次方程组,则代数式a+b+c的值是﹣2或﹣3 .【分析】根据二元一次方程组的定义:(1)含有两个未知数;(2)含有未知数的项的次数都是1.【解答】解:若方程组是关于x,y的二元一次方程组,则c+3=0,a﹣2=1,b+3=1,解得c=﹣3,a=3,b=﹣2.所以代数式a+b+c的值是﹣2.或c+3=0,a﹣2=0,b+3=1,解得c=﹣3,a=2,b=﹣2.所以代数式a+b+c的值是﹣3.故答案为:﹣2或﹣3.10.小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回★这个数,★=﹣2 .【分析】根据二元一次方程组的解的定义得到x=5满足方程2x﹣y=12,于是把x=5代入2x﹣y=12得到2×5﹣y=12,可解出y的值.【解答】解:把x=5代入2x﹣y=12得2×5﹣y=12,解得y=﹣2.∴★为﹣2.故答案为:﹣2.11.已知方程x﹣8=2y,用含y的代数式表示x,那么x=10y+40 .【分析】要用含y的代数式表示x,就要把方程中含有x的项移到方程的左边,其它的项移到方程的右边,再进一步合并同类型、系数化为1即可.【解答】解:移项,得x=2y+8,系数化1,得x=10y+40.故答案为:10y+40.12.如图,长方形ABCD中有6个形状、大小相同的小长方形,根据图中所标尺寸,则图中阴影部分的面积之和为72cm2.【分析】(方法一)设小长方形的长为xcm,宽为ycm,根据图形中给定的长度,可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再利用阴影部分的面积和=大长方形的面积﹣6个小长方形的面积,即可求出结论;(方法二)设小长方形的宽为xcm,则长为(16﹣3x)cm,根据AB的长度,可得出关于x的一元一次方程,解之即可求出小长方形的长和宽,再利用阴影部分的面积和=大长方形的面积﹣6个小长方形的面积,即可求出结论.【解答】解:(解法一)设小长方形的长为xcm,宽为ycm,依题意,得:,解得:,∴图中阴影部分的面积之和为16×(8+2×2)﹣6×10×2=72(cm2).(解法二)设小长方形的宽为xcm,则长为(16﹣3x)cm,依题意,得:x+(16﹣3x)﹣2x=8,解得:x=2,∴16﹣3x=10,∴图中阴影部分的面积之和为16×(8+2×2)﹣6×10×2=72(cm2).故答案为:72cm2.13.我国古代有一种回文诗,倒念顺念都有意思,例如“上海自来水”,倒读起来便是“水来自海上”.“回文数“是一种数字.如:98789,这个数字正读是98789,倒读也是98789,正读倒读一样.下面的乘法算式中每个汉字代表一个数字,不同的汉字代表不同的数字,则绿水青山代表的四位数是1089 .【分析】根据“回文数”的定义进而分析得出“绿”=1,“山”=9或“绿”=0,“山”=0,即可得出符合题意的答案.【解答】解:四位数×9还是四位数,说明有两种情况:“绿”=1,“山”=9或“绿”=0,“山”=0①“绿”=0,且“山”=0;不符合题意,②“绿”=1,且“山”=9三位数×9还是三位数,则说明“水”=0或1,代入可得1089为四位数.故答案为:1089.14.某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,一个螺栓配两个螺母,应分配12 人生产螺栓,16 人生产螺母,才能使生产的螺栓和螺母正好配套.【分析】先设分配x人生产螺栓,则有(28﹣x)人生产螺母,根据x人生产的螺栓数×2=(28﹣x)人生产螺母数,由等量关系列出方程,求出方程的解即可.【解答】解:设分配x人生产螺栓,则有(28﹣x)人生产螺母,根据题意得:12x×2=(28﹣x)×18,解得:x=12,生产螺母的人数是:28﹣12=16(人);答:应分配12人生产螺栓,16人生产螺母,才能使每天生产量刚好配套.故答案为:12,16.15.轮船顺流航行时m千米/小时,逆流航行时(m﹣6)千米/小时,则水流速度是3千米/时.【分析】设轮船在静水中航行的速度为x千米/小时,水流速度为y千米/小时,根据“顺流航行速度=轮船速度+水流速度”与“逆流航行速度=轮船速度﹣水流速度”列出关于x、y的二元一次方程组,解方程组求出y值即可.【解答】解:设轮船在静水中航行的速度为x千米/小时,水流速度为y千米/小时,依题意得,解得:y=3.故答案为:3千米/时.16.为确保信息安全,信息需加密传输,发送者将明文加密为密文传输给接收方,接收方收到密文后解密为明文,已知某种加密规则为:明文a,b对应密文为a﹣2b,2a+b,例如,明文1,2对应的密文是﹣3,4.当接收方收到的密文是2,9时,解密得到的明文是4,1 .【分析】根据题意可知,本题中的相等关系是“a﹣2b=2”和“2a+b=9”,列方程组求解即可.【解答】解:根据题意列方程组,得,解得.答:解密得到的明文是4,1.故答案为:4,1.17.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图所示,请你根据图中的信息,若小明把100个纸杯整齐叠放在一起时,它的高度约是106 cm.【分析】通过理解题意可知本题存在两个等量关系,即单独一个纸杯的高度+3个纸杯叠放在一起比单独的一个纸杯增高的高度=9,单独一个纸杯的高度+8个纸杯叠放在一起比单独的一个纸杯增高的高度=14.根据这两个等量关系可列出方程组.【解答】解:设每两个纸杯叠放在一起比单独的一个纸杯增高xcm,单独一个纸杯的高度为ycm,则,解得,则99x+y=99×1+7=106.答:把100个纸杯整齐地叠放在一起时的高度约是106cm.三.解答题(共4小题)18.已知等式(2A﹣7B)x+(3A﹣8B)=8x+10对一切实数x都成立,求A、B的值.【分析】本题根据关键语“等式(2A﹣7B)x+(3A﹣8B)=8x+10对一切实数x都成立”,只要让等式两边x的系数和常数分别相等即可列出方程组求解.【解答】解:由题意有,解得,答:A、B的值分别为、.19.小华从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60m,下坡路每分钟走80m,上坡路每分钟走40m,则他从家里到学校需10min,从学校到家里需15min.问:从小华家到学校的平路和下坡路各有多远?【分析】设出平路和坡路的路程,从家里到学校走平路和下坡路一共用10分钟,从学校到家里走上坡路和平路一共用15分钟,利用这两个关系式列出方程组解答即可.【解答】解:设平路有xm,下坡路有ym,根据题意得,解得:,答:小华家到学校的平路和下坡路各为300m,400m.20.(应用题)某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?【分析】(1)因为要购进两种不同型号电视机,可供选择的有3种,那么将有三种情况:甲乙组合,甲丙组合,乙丙组合.等量关系为:台数相加=50,钱数相加=90000;(2)算出各方案的利润加以比较.【解答】解:(1)解分三种情况计算:①设购甲种电视机x台,乙种电视机y台.解得.②设购甲种电视机x台,丙种电视机z台.则,解得:.③设购乙种电视机y台,丙种电视机z台.则解得:(不合题意,舍去);(2)方案一:25×150+25×200=8750.方案二:35×150+15×250=9000元.答:购甲种电视机25台,乙种电视机25台;或购甲种电视机35台,丙种电视机15台.购买甲种电视机35台,丙种电视机15台获利最多.21.一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?(3)若装修完后,商店每天可赢利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)【分析】(1)本题的等量关系是:甲做8天需要的费用+乙作8天需要的费用=3520元.甲组6天需付的费用+乙做12天需付的费用=3480元,由此可得出方程组求出解.(2)根据(1)得出的甲乙每工作一天,商店需付的费用,然后分别计算出甲单独做12天需要的费用,乙单独做24天需要的费用,让两者进行比较即可.(3)本题可将每种施工方法的施工费加上施工期间商店损失的费用,然后将不同方案计算出的结果进行比较,损失最少的方案就是最有利商店的方案.【解答】解:(1)设:甲组工作一天商店应付x元,乙组工作一天商店付y元.由题意得解得答:甲、乙两组工作一天,商店各应付300元和140元.(2)单独请甲组需要的费用:300×12=3600元.单独请乙组需要的费用:24×140=3360元.答:单独请乙组需要的费用少.(3)请两组同时装修,理由:甲单独做,需费用3600元,少赢利200×12=2400元,相当于损失6000元;乙单独做,需费用3360元,少赢利200×24=4800元,相当于损失8160元;甲乙合作,需费用3520元,少赢利200×8=1600元,相当于损失5120元;因为5120<6000<8160,所以甲乙合作损失费用最少.答:甲乙合作施工更有利于商店.。
人教版七年级下第八章 二元一次方程组 单元测试题(含答案)
人教版七年级下第八章 二元一次方程组 单元测试题(含答案)一、选择题(每题4分,共32分)1. 下列方程中,是二元一次方程的是( ) A . x xy 212=+ B . 222=-y x C . 31=+yx D . y y x =+23 2. 以⎩⎨⎧-==11y x 为解的二元一次方程组是( )A .⎩⎨⎧=-=+10y x y x B .⎩⎨⎧-=-=+10y x y x C .⎩⎨⎧=-=+20y x y x D .⎩⎨⎧-=-=+2y x y x3.程1523=+y x 在自然数范围内的解共有( )A .1对B .2对C .3对D .无数对 4.已知单项式b a n m +3与单项式n m b a -32是同类项,那么m 、n 的值分别是( ) A .⎩⎨⎧-==12n m B .⎩⎨⎧-=-=12n m C .⎩⎨⎧==12n m D .⎩⎨⎧=-=12n m5.关于x 、y 的二元一次方程⎩⎨⎧=-=+ky x ky x 95的解也是二元一次方程632=+y x 的解,则k 的值是( )A .43-B .43C .34D .34-6.若二元一次方程73=-y x ,132=+y x ,9-=kx y 有公共解,则k 的取值范围为( )A .3B .—3C .—4D .47.若⎩⎨⎧==21y x 与⎩⎨⎧==32y x 都是3=-ay bx 的解,则下列各组数值中也是3=-ay bx 的解的是( )A .⎩⎨⎧-==43y x B .⎩⎨⎧==34y x C .⎩⎨⎧-=-=43y x D .⎩⎨⎧==43y x8.为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x ,不吸烟者患肺癌的人数为y ,根据题意,下面列出的方程组正确的是( )A .⎩⎨⎧=⨯+⨯=-10000%5.0%5.222y x y xB .⎪⎩⎪⎨⎧=+=-10000%5.0%5.222yx y xC .⎩⎨⎧=⨯-⨯=+22%5.0%5.210000y x y xD .⎪⎩⎪⎨⎧=-=+22%5.0%5.210000yx y x 二、填空题(每题4分,共32分)9. 在方程5413=-y x 中,用含x 的代数式表示为:y = ,当3=x 时,y = . 10.已知方程组⎩⎨⎧=+=-②①.123,432y x y x 用加减法消去x 的方法是 ,用加减法消去y 的方法是 .11.以方程组⎩⎨⎧=-=+2233y x y x 的解为坐标的点(x ,y )在平面直角坐标系中的第 象限.12.已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+18my nx ny mx 的解,则n m -2的算术平方根是 .13. 若方程组⎩⎨⎧=-+=-3)1(334y k kx y x 的解x 和y 的值相等,则k = .14.已知方程组⎩⎨⎧=+=-241121254y x y x ,则2)(y x +的值为 .15. “今有共买犬,人出五,不足九十;人出五十,适足.问人数、犬价各几何?”题目大意是:现在大家共一条狗,若每人出五元,还差九十元;若每人出五十元,刚好够.可知一共有 人,狗价为 元.16.甲、乙两人去商店买东西,他们所带的钱数之比为7:6,甲用掉50元,乙用掉60元,两人余下的钱数之比是3:2,则甲余下的钱数为 元,乙余下的钱数为 元.三、解答题(共56分)17.(每题5分,共10分)解下列方程组:(1)⎩⎨⎧=+=+64302y x y x ;(2)⎩⎨⎧=+=-3241123b a b a .18.(8分)在b y ax =+2中,已知x 当1-=x 时,2=y ;当2=x 时,21=y .求代数式))((22b ab a b a +-+的值.19.(9分)如图,在东北大秧歌的踩高跷表演中,已知演员身高是高跷长度的2倍,高跷与腿重合部分的长度为28cm ,演员踩在高跷上时,头顶距离地面的高度为224cm .设演员的高度为x cm ,高跷的长度为y cm ,求x ,y 的值.20.(9分)已知方程组⎩⎨⎧-=--=+4652by ax y x 与方程组⎩⎨⎧-=+=-81653ay bx y x 的解相同,求2015)2(b a +的值.21.(10分)已知:用2辆A 型车和1辆B 型车装满货物一次可运货10吨;用1辆A 型车和2辆B 型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A 型车a人教版七年级下册数学单元检测卷:第八章 二元一次方程组一、填空题(本大题共6小题,共24分)1.已知方程2x 2n-1-3y 3m-1+1=0是二元一次方程,则m=,n= .2.已知( x-y+1 )2+=0,则x+y 的值为 .3.若方程组则3( x+y )-( 3x-5y )的值是 .4.如果a 3x b y 与-a 2y b x+1是同类项,则x= ,y= .5.若x+2y+3z=10,4x+3y+2z=15,那么x+y+z= .xcmcm28ycmcm224第19题图6.我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x ,y 人,则可以列方程组_____________________ 二、选择题(本大题共10小题,共30分)7.下列各方程组中,属于二元一次方程组的是( )A. B. C. D. 8.方程3x+y=7的正整数解的个数是( ) A .1个 B .2个 C .3个 D .4个9.方程组⎩⎨⎧=-=+.134,723y x y x 的解是( )A.⎩⎨⎧=-=;3,1y x B.⎩⎨⎧-==;1,3y x C.⎩⎨⎧-=-=;1,3y x D.⎩⎨⎧-=-=.3,1y x10.设方程组()⎩⎨⎧=--=-.433,1by x a by ax 的解是⎩⎨⎧-==.1,1y x 那么b a ,的值分别为( )A.;3,2-B.;2,3-C.;3,2-D..2,3- 11.已知x ,y 满足方程组,则无论m 取何值,x ,y 恒有关系式是( )A .x+y=1B .x+y=-1C .x+y=9D .x+y=9 12.关于x ,y 的方程组的解互为相反数,则k 的值是( )A. 8B. 9C. 10D. 1113.小明解方程组x+y=■的解为x=5,由于不小心滴下了两滴墨水,刚好把两个数■和★遮住了,则这个数■和★的值为( )A.B.C.D.14.以二元一次方程组⎩⎨⎧=-=+173x y y x 的解为坐标的点(x ,y )在平面直角坐标系的( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限15.今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有( ) A .2种B .3种C .4种D .5 种⎩⎨⎧==+5723xy y x ⎩⎨⎧=+=+212z x y x ⎪⎩⎪⎨⎧=+=-243123y x yx ⎪⎩⎪⎨⎧=+=+322135y x y x 45x m y m+=⎧⎨-=⎩16.小明的妈妈用280元买了甲、乙两种药材.甲种药材每斤20元,乙种药材每斤60斤,且甲种药材比乙种药材多买了2斤.设买了甲种药材x斤,乙种药材y斤,你认为小明应该列出哪一个方程组求两种药材各买了多少斤?()A. B.C. D.三、解答题(本大题共6小题,,共66分)17.按要求用适当的方法解下列方程:(每小题6分,共24分).(1)257320x yx y-=⎧⎨-=⎩(带入消元法)(2)329237x yx y-=⎧⎨+=-⎩(加减消元法)(3)()3155(1)3(5)x yy x-=+⎧⎪⎨-=+⎪⎩(4)0.40.30.711101x yx y+=⎧⎨-=⎩18.(6分)若y kx b=+,当x=4时,y=-2,当x=5时,y=1,求k和b的值。
(完整版)新人教版第八章二元一次方程组单元测试题及详细答案
第八章《二元一次方程组》测试卷班级: 学籍号: 座位号: 姓名: 得分:(考试时间:120分钟,试卷满分120分,72分及格,96分良好,108分优秀。
)一、选择题(每题3分,共30分。
)1.二元一次方程27x y +=的正整数解有( )(A )1组 (B )2组 (C )3组 (D )4组2.已知下列方程组:①⎩⎨⎧-==-.12,223z y y x ②⎩⎨⎧=-=.12,2x y x ③⎩⎨⎧=+=-.5,132y x y x ④⎩⎨⎧=+=.22,3y x xy 其中属于二元一次方程组的是( )(A )③ (B )①③ (C )②③ (D )①③④3.方程组1325x y x y +=⎧⎨+=⎩,的解是( )(A )12x y =⎧⎨=-⎩ (B )14x y =-⎧⎨=⎩(C )10x y =⎧⎨=⎩ (D )32x y =⎧⎨=-⎩ 4.在代数式2x mx n ++中,当1x =-时,它的值是5-;当3x =时,它的值是3,则m n ,的值为( )(A )1m =-,3n =-(B )5m =-,1n = (C )0m =,6n =- (D )9m =,15n =-5.已知2,1x y =⎧⎨=⎩是二元一次方程组7,1ax by ax by +=⎧⎨-=⎩的解,则a b -的值为( ). (A )1- (B )1 (C )2 (D )36.方程组1,0,1.x y x z y z +=-⎧⎪+=⎨⎪+=⎩的解是( )(A )1,1,0;x y z =-⎧⎪=⎨⎪=⎩ (B )1,0,1.x y z =⎧⎪=⎨⎪=-⎩ (C )0,1,1.x y z =⎧⎪=⎨⎪=-⎩ (D )1,0,1.x y z =-⎧⎪=⎨⎪=⎩7.今有鸡兔若干,它们共有24个头和74只脚,则鸡兔各有( )(A )鸡10兔14 (B )鸡11兔13(C )鸡12兔12 (D )鸡13兔118.某校学生乘船游览青云湖时,若每船坐12人,将有11人无船可坐;若每船坐14人,会有1人独乘1只船,则他们这次租用的船只数为( ).(A )5; (B )8; (C )12; (D )149.设“●、▲、■”分别表示三种不同的物体,如下图所示,前面两架天平保持平衡,如果要使第三架也平衡,那么“?”处应放“■”的个数为( ).(A )5 (B )4 (C )3 (D )210.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所驮货物的袋数是( )(A )5 (B )6 (C )7 (D )8二、填空题(每空3分,共36分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章二元一次方程组单元测试题题号一二三总分得分279小题,共分)一、选择题(本大题共x3x+y-2x=02x-=03x+y=02x+xy=1,,,1.方程,2+1=0-x中,二元一次方程的个数是()D. A. B. C. 2534个个个个x3nnmm如果2.-2+-y=0+5yx )的二元一次方程,那么(是一个关于、A.B.C.D.下列各方程的变形,正确的是() 3.A. B. 7x=x=493+x=5x=5+3由,得,得由D. C. 3=y=0y=2x-2x=2+3由,得由,得x=y,那么下列等式不一定成立的是(如果) 4.A. B. C. D. =ayaxy-a+a=ya=x-a=x+100元,为了促销而打折销售,若甲商品打八折,5.已知甲、乙两种商品的进价和为5030元,则可赚乙商品打八折,则可赚甲、元,若甲商品打六折,乙商品打六折,乙两种商品的定价分别为()A. B. C. D. 15050501005050150100元元元元、元、元、元元、x=1x=2,其依据是(6.把方程)变形为A. B. 1等式的性质分数的基本性质D. C. 2解方程中的移项等式的性质x消去后得到的方程是()7. 用“加减法”将方程组中的A. B. C. D. -7y=2=87y=8-7y3y=2 2x-3y=1xy正确的是(8.已知,用含的代数式表示)D. A. B. C. xyx===--y-1y=xxy73人;人,组,9.若每组在一次野炊活动中,小明所在的班级有则余下人,分成85人,求全班人数的正确的方程组是(人,则缺)若每组A.B.C.D.624分)二、填空题(本大题共小题,共xyk(、10.关于方程22+k+1x+2ky=k-1x+3k= ______ 时,它为一元一次方程,,(当))k= ______ 时,它为二元一次方程.当2x-y)11.若(22005= ______ -yyx+2-5|x|.)与互为相反数,则(______ .二元一次方程组的解是12.51,设13.一个两位数的十位数字与个位数字之和等于,十位数字与个位数字之差为xy______ .,则用方程组表示上述语言为,个位数字为十位数字为xx+3=0______ .( 14.的解是方程)x+y+z______ .的值是由方程组,可以得到15.849分)小题,共三、计算题(本大题共解方程组: 17. 16. 解方程组:解方程组18..20人组成的旅行团到凤凰古城旅19.五一期间,春华旅行社组织一个由成人和学生共148/20/张,该旅行团购买门票元元张,学生门票游,景区门票售票标准是:成人门票1936元,问该团购买成人门票和学生门票各多少张?共花费65日“世界环境日”,某校团委开展“光盘行动”,倡议学生遏制餐桌为迎接月20.1231283))、(人参加了活动,其中七()三个班共上的浪费.该校七年级()、(38121012))班参加的人数比七()班多)班和七(人,请问七(班有人参加,七(班各有多少人参加“光盘行动”?140千克,这两种水果的进价、广安某水果店计划购进甲、乙两种新出产的水果共21.售价如表所示:千克进价(售价(千克甲1乙种1000元,则这两种水果各购进多少千克? 1)若该水果店预计进货款为(23倍,应怎样()若该水果店决定乙种水果的进货量不超过甲种水果的进货量的安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?4515人没有座座客车若干辆,但有22.某旅行社组织一批游客外出旅游,原计划租用6045座客座客车,则多出一辆车,且其余客车恰好坐满.已知位;若租用同样数量的22060300元,问:座客车租金为每辆元,车租金为每辆145座客车?)这批游客的人数是多少?原计划租用多少辆(2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?(10台污水处理设备,现有23.为了更好治理岳阳河水质,安岳县污水处理公司计划购买BA、两种型号的设备,其中每台的价格、月处理污水量如表:BA型型/nm台)价格(万元/200250月)处理污水量(吨AB32A3B5万元.台型少型比购买经调查:买一台型比购型多万元,买台1mn的值;)求,(2117万元,你认为有哪几种购买方案?)经预算,购买设备自己不超过(322050吨,为节约资金,请你()在()的条件下,若每月要求处理无水不低于为公司设计一种最省钱的方案.答案和解析【答案】1. 2. 3. 4. 5. 6. 7. DDDBDCD9. 8. AC10. 1-1;11. -112.13.14. -30或15. 316. 解:,3+16x=48×①②得:,x=3,解得:x=3y=2.把代入①得:.所以原方程组的解为17. 解:,2+9x=18×①,②得:x=2,解得:x=2y=1,代入②得:把则方程组的解为.18. 解:方程组整理得:,2x=-1-×②,得:①x=-1y=5,把代入②得:.则方程组的解为19. xy张,由题意得张,学生门票解:设购买成人门票解得812答:购买成人门票张.张,学生门票20. 1x2y人参加“光盘行动”,人参加“光盘行动”,七(解:设七()班有)班有,解得,,405021人参加“光盘行动”,七()班有即七()班有人参加“光盘行动”.21. 1x140-x)千克,根据题意可得:解:()设购进甲种水果千克,则购进乙种水果(5x+9140-x=1000,)(.x=65,解得:140-x=75(千克),∴6575千克;千克,乙种水果答:购进甲种水果234元,(元,乙种水果每千克利润为:)由图表可得:甲种水果每千克利润为:WW=3x+4140-x=-x+560,,由题意可得出:(设总利润为)WxxW越大,随越小的增大而减小,则故3倍,因为该水果店决定乙种水果的进货量不超过甲种水果的进货量的140-x≤3x,∴x≥35,解得:x=35W时,当∴=-35+560=525(元),最大140-35=105kg).(故52535105千克,乙种水果元.千克时,此时利润最大为答:当甲购进22. 1x45y辆.)设这批游客的人数是座客车人,原计划租用解:(根据题意,得,.解这个方程组,得240455辆;座客车人,原计划租答:这批游客的人数6=1320245240÷45≈5.36220×辆,租金为座客车:(元),((辆),所以需租)租60=44300×4=120060240÷座客车:(辆),所以需租(元).辆,租金为租604辆座客车更合算.答:租用23. 1,解得;)由题意得解:(2AxB10-x)台,)设购买污水处理设备型设备型设备(台,(≤xx+1110-x≤11714,解得)(根据题意得x取非负整数,∵x=012,∴,,∴有三种购买方案:A0B10台;型设备型设备台,①A1B9台;型设备台,②型设备A2B8台;台,③型设备型设备3250x+20010-x≥2050x≥1,(,解()由题意:)≤x,又∵≤x1≤,∴x取非负整数,而x12,,为∴1+11×9=113x=114×时,购买资金为:当(万元),2+11×8=116x=214×时,购买资金为:当(万元),91BA型设备为了节约资金,应选购∴台.型设备台,【解析】1. -=0x2是分式方程,不是二元一次方程;解:3x+y=0是二元次方程;2x+xy=1不是二元一次方程;3x+y-2x=0是二元一次方程;2-x+1=0x不是二元一次方程.D.故选:1,像这样的方程叫做二元一次方程.并且含有未知数的项的次数都是含有两个未知数,本题主要考查的是二元一次方程的定义,掌握二元一次方程的定义是解题的关键.2. 解:依题意得:,解得.B.故选:根据二元一次方程的定义进行判断即可.1)方程中本题考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:(223)方程是整式方程.个未知数;(只含有)含未知数项的最高次数为一次;(3. AA不符合题意;、两边加的数不同,故解:BB不符合题意;、两边乘的数不同,故C22C不符合题意;、左边乘,故,右边加D2D符合题意;,故、两边都加D.故选:根据等式的性质,可得答案.本题考查了等式的性质,熟记等式的性质是解题关键.4. Ax=ya,该等式仍然成立;故本选项正确;的两边同时加上、等式解:Bx=ya,该等式仍然成立;故本选项正确;的两边同时减去、等式Cx=ya,该等式仍然成立;故本选项正确;的两边同时乘以、等式=0Da、无意义;故本选项错误;、当时,D.故选:利用等式的性质对每个式子进行变形即可找出答案.2时,必须注意等式两边所乘的(或除以的)本题主要考查等式的性质.运用等式性质0,才能保证所得的结果仍是等式.数或式子不为5. xy元,元,则乙种商品的定价分别为解:设甲种商品的定价分别为根据题意得:,解得:.D.故选xy元,则乙种商品的定价分别为设甲种商品的定价分别为根据“若甲商品打八折,元,5030元”可得出乙商品打六折,则可赚元,若甲商品打六折,乙商品打八折,则可赚xy的二元一次方程组,解方程组即可得出结论.、关于本题考查了解二元一次方程组,根据数量关系列出二元一次方程组是解题的关键.6. x=1x=22,变形为解:把方程,其依据是等式的性质C故选利用等式的基本性质判断即可.此题考查了解一元一次方程,以及等式的性质,熟练掌握等式的性质是解本题的关键.7. 解:,=8-7-y,②得:①.D.故选x得到结果,即可做出判断.方程组中两方程相减消去此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.8. 2x-3y=1,解:方程=y.解得:C.故选xy即可.看做已知数求出将xy.看做已知数求出此题考查了解二元一次方程,解题的关键是将9. 737y+3=x7y=x-3;人,得方程解:根据每组,即人,则余下85588y-5=x8y=x+5.人,则缺人,即最后一组差,即人不到根据每组人,得方程可列方程组为:.A.故选:x738人,②每组人;人.等量关系有:①每组人,此题中不变的是全班的人数则余下558人.由此列出方程组即可.则缺人不到人,即最后一组差此题考查二元一次方程组的实际运用,理解题目中不变的是全班的人数,用不同的代数式表示全班的人数是本题的关键.10. xy的一元一次方程,所以:、解:因为方程为关于k=-1;,解得①②,无解,k=-1时,方程为一元一次方程.所以k=1,根据二元一次方程的定义可知,解得k=1时,方程为二元一次方程.所以-11.;故答案为:1xy0xy的系数中(,然后)若方程为关于、或的一元一次方程,则二次项系数应为00即可.有一个为,另一个不为2xy0xy0.的二元一次方程,则二次项系数应为(且)若方程为关于的系数不为、或考查了一元一次方程与二元一次方程的定义,此题比较简单,解答此题的关键是熟知一元一次方程与二元一次方程的定义.11. 2|x+2yy-5|2x-互为相反数,)与(解:∵2x-y)(∴2+|x+2y-5|=0,∴,,解得,x-y)(∴20052005=-11-2=,()-1.故答案为xy的值,代入所求代数式计算即可.、根据非负数的性质列出方程求出00.本题考查了非负数的性质:几个非负数的和为时,这几个非负数都为12. 解:,x+2x=3x=1,,即把①代入②得:x=1y=2,代入①得:把则方程组的解为,故答案为:方程组利用代入消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13. 解:由题意,有.+=5-=1.个位数字个位数字;十位数字题中有两个等量关系:十位数字根据这两个等量关系即可列出方程组.读懂题意,找出等量关系是列方程解应用题的关键.-个位数字,而不是个位数本题比较简单.注意十位数字与个位数字之差即为十位数字-十位数字.字14. xx+3=0,()解:x=0x+3=0,,∴x方程的解是∴=0x=-3.,210-3.故答案为:或x=0x+3=0,求出方程的解即可.,推出方程本题主要考查对解一元一次方程,解一元二次方程,等式的性质等知识点的理解和掌握,能把一元二次方程转化成一元一次方程是解此题的关键.15. ∵解:++①③,得②=6zx+2y+22,=3z+y+x,∴3故答案为:.x+y+z的值.根据方程组,三个方程相加,即可得到本题考查三元一次方程组的解,解得关键是明确解三元一次方程组的解答方法.16. y的系数转化成相同的或相反的数,然后两方程相加减消元,从而用加减法,先把xxy的值.的值,然后把求出的值代入一方程求解二元一次方程组的基本思想是消元.消元的方法有代入法和加减法,本题主要考查了加减消元法.17. 方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18. 方程组整理后,利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19. x20y张,人”和“购买门票共学生门票设购买成人门票张,则由“成人和学生共1936元”列出方程组解决问题.花费此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.20. 根据题意可以列出相应的二元一次方程组,从而可以解答本题.本题考查二元一次方程组的应用,解题的关键是明确题意,列出相应的二元一次方程组.21. 1140千克,进而利用该水果店预计()根据计划购进甲、乙两种新出产的水果共1000元,得出等式求出即可;进货款为2)利用两种水果每千克的利润表示出总利润,再利用一次函数增减性得出最大值即(可.主要考查了一次函数的应用以及一元一次不等式的应用和一元一次方程的应用等知识,利用一次函数增减性得出函数最值是解题关键.22. 145×45+15=4560×游客总数,座客车辆数((座客车辆数)本题中的等量关系为:-1=游客总数,据此可列方程组求出第一小题的解;)24560座客车各自的租金,比较后再取舍.(座客车和)需要分别计算此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.23. 1AB32A3B5万元可型多万元,买台(台)利用买一台型少型比购型比购买mn的值;列二元一次方程组,然后解方程组可得到、2AxB10-x)台,利用购买设备自己不超型设备)设购买污水处理设备型设备((台,≤xx+1110-x≤11714117x取非负整数可得到购买方(,解得万元列不等式,然后)过案;32050250x+20010-x≥2050x≥1,,解(()利用每月要求处理无水不低于吨列不等式)≤xx12xx≤1≤x=1x=2的购买资金,则,然后比较和,再取非负整数得到为加上,可得到最省钱的方案.本题考查了一元一次不等式的应用:由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.。