高一数学必修1综合测试题(3)

合集下载

高一数学必修一综合测试题(含答案)

高一数学必修一综合测试题(含答案)

高一数学必修一综合测试题(含答案)一、选择题(每题5分,共50分)1、已知集合M={0,1,2},N={xx=2a,a∈M},则集合MN=A、{ }B、{0,1}C、{1,2}D、{0,2}答案:B解析:将M中的元素代入N中得到:N={2,4,8},与M 的交集为{0,1},故MN={0,1}。

2、若f(lgx)=x,则f(3)=()A、lg3B、3C、10D、310答案:C解析:将x=3代入f(lgx)=x中得到f(lg3)=3,又因为lg3=0.477,所以f(0.477)=3,即f(3)=10^0.477=3.03.3、函数f(x)=x−1x−2的定义域为()A、[1,2)∪(2,+∞)B、(1,+∞)C、[1,2)D、[1,+∞)答案:A解析:由于分母不能为0,所以x-2≠0,即x≠2.又因为对于x<1,分母小于分子,所以x-1<0,即x<1.所以定义域为[1,2)∪(2,+∞)。

4、设a=log13,b=23,则().A、a<b<cB、c<b<aC、c<a<bD、b<a<c答案:A解析:a=log13=log33-log32=1/2-log32,b=23=8,c=2^3=8,所以a<b=c。

5、若102x=25,则10−x等于()A、−15B、51C、150D、0.2答案:B解析:由102x=25可得x=log10(25)/log10(102)=1.3979,所以10^-x=1/10^1.3979=0.1995≈0.2.6、要使g(x)=3x+1+t的图象不经过第二象限,则t的取值范围为A.t≤−1B.t<−1C.t≤−3D.t≥−3答案:B解析:当x=0时,y=1+t,要使图像不经过第二象限,则1+t>0,即t>-1.又因为g(x)的斜率为正数,所以对于任意的x,g(x)的值都大于1+t,所以t< -1.7、函数y=2x,x≥1x,x<1的图像为()答案:见下图。

人教A版高一数学必修第一册全册复习测试题卷含答案解析(56)

人教A版高一数学必修第一册全册复习测试题卷含答案解析(56)

人教A 版高一数学必修第一册全册复习测试题卷3(共30题)一、选择题(共10题)1. 下列命题中真命题的个数是 ( ) ①函数 y =sinx ,其导函数是偶函数;②“若 x =y ,则 x 2=y 2”的逆否命题为真命题; ③“x ≥2”是“x 2−x −2≥0”成立的充要条件;④命题 p:“存在 x 0∈R ,x 02−x 0+1<0”,则命题 p 的否定为:“对任意的 x ∈R ,x 2−x +1≥0”. A . 0 B . 1 C . 2 D . 32. 已知定义在实数集 R 上的偶函数 f (x ) 满足 f (x +1)=f (x −1),且当 x ∈[0,1] 时,f (x )=x 2,则关于 x 的方程 f (x )=12∣x ∣ 在 [−1,2] 上根的个数是 ( ) A . 2 B . 4 C . 6 D . 83. 设函数 f (x ) 的定义城为 A ,如果对于任意的 x 1∈A ,都存在 x 2∈A ,使得 f (x 1)+f (x 2)=2m (其中 m 为常数)成立,则称函数 f (x ) 在 A 上“与常数 m 相关联”.给定函数:① y =1x ;② y =x 3;③ y =(12)x;④ y =lnx ;⑤ y =cosx +1,则在其定义域上与常数 1 相关联的所有函数是 ( ) A .①②⑤ B .①③ C .②④⑤ D .②④4. 若不等式x 2+mx +1>0的解集为R ,则m 的取值范围是( ) A .RB .(−2,2)C .(−∞,−2)∪(2,+∞)D .[−2,2]5. 已知 0<a <1,则方程 a ∣x∣=∣log a x ∣ 的实根个数为 ( ) A . 2 B . 3 C . 4 D .与 a 的值有关6. 集合 {x ∈N ∗∣ x −2<3} 的另一种表示形式是 ( ) A . {0,1,2,3,4} B . {1,2,3,4} C . {0,1,2,3,4,5} D . {1,2,3,4,5}7. 要得到函数 y =cos2x 的图象,只需将函数 y =cos (2x −π) 的图象 ( )A .向左平移 π3个单位长度B .向右平移 π3个单位长度C .向左平移 π6 个单位长度D .向右平移 π6 个单位长度8. 给出下列命题:①如 a >b ,则 ac 2>bc 2; ② sinx +1sinx ≥2; ③ x 2+2+1x 2+2≥2;④若 a >b >0,则 a −1a >b −1b ; ⑤若 x ≥0,则 t =2x x 2+1的最大值为 1.以上命题正确命题的个数为 ( ) A . 4 B . 3 C . 2 D . 19. 已知函数 f (x )={∣2x −1∣,x ≤1log 2(x −1),x >1,若 f (x 1)=f (x 2)=f (x 3)(x 1,x 2,x 3 互不相等)则x 1+x 2+x 3 的取值范围是 ( ) A . (0,8) B . (1,3) C . (3,4] D . (1,8]10. k 为整数,化简 sin [(k+1)π+θ]⋅cos [(k+1)π−θ]sin (kπ−θ)⋅cos (kπ+θ)的结果是 ( )A . ±1B . −1C . 1D . tanθ二、填空题(共10题)11. 方程 ∣∣cos (x +π2)∣∣=∣log 18x ∣ 的解的个数为 (用数字作答).12. 已知 k 为常数,函数 f (x )={x+2x+1,x ≤0∣lnx ∣,x >0,若关于 x 的方程 f (x )=kx +2 有且只有四个不同解,则实数 k 的取值构成的集合为 .13. 已知函数 f (x )={∣log 2x ∣,0<x <2sin (π4x),2≤x ≤10,若存在实数 x 1,x 2,x 3,x 4 满足 x 1<x 2<x 3<x 4,且 f (x 1)=f (x 2)=f (x 3)=f (x 4),则 x 1x 2+x 3+x 4= .14. 已知函数 f (x )=∣∣∣sinx1x 131∣∣∣,若 f (a )=2021,则 f (−a )= .15. 已知 tanα,tanβ 是一元二次方程 x 2+3√3x +4=0 的两根,α,β∈(−π2,0),则 cos (α+β)= .16. 已知函数 f (x )={∣x 2+5x +4∣,x ≤0,2∣x −2∣,x >0,若函数 y =f (x )−a∣x∣ 恰有 4 个零点,则实数 a的取值范围为 .17. 如图,是我国古代数学家赵爽的弦图,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如果小正方形的面积为 4,大正方形的面积为 100,直角三角形中较小的锐角为 α,则 tanα= .18. 若函数 f (x )={−x +6,x ≤23+log a x,x >2(a >0 且 a ≠1)的值域为 [4,+∞),则 f (1)= ;实数a 的取值范围为 .19. 已知命题 p :∃x ∈R ,ax 2+2ax +1≤0,若命题 p 为假命题,则实数 a 的取值范围是 .20. 已知函数 f (x )={log 2(−x ),x <0x −2,x ≥0,若函数 g (x )=a −∣f (x )∣ 有四个零点 x 1,x 2,x 3,x 4,且x 1<x 2<x 3<x 4,则 ax 1x 2+x 3+x 4a的取值范围是 .三、解答题(共10题)21. 已知命题 p :集合 M ={x∣ x <−3或x >5},q :集合 N ={x∣ −a ≤x ≤8}.(1) 若 M ∩N ={x∣ 5<x ≤8},求实数 a 的取值范围; (2) 若 p 是 q 的充分不必要条件,求实数 a 的取值范围.22. 已知函数 f (x )=ln (x −1+a ).(1) 设 f −1(x ) 是 f (x ) 的反函数.当 a =1 时,解不等式 f −1(x )>0;(2) 若关于 x 的方程 f (x )+ln (x 2)=0 的解集中恰好有一个元素,求实数 a 的值;(3) 设 a >0,若对任意 t ∈[12,1],函数 f (x ) 在区间 [t,t +1] 上的最大值与最小值的差不超过 ln2,求 a 的取值范围.23. 已知函数 f (x ) 的定义域为 D ,值域为 f (D ),即 f (D )={y∣ y =f (x ),x ∈D }.若 f (D )⊆D ,则称 f (x ) 在 D 上封闭.(1) 试分别判断函数 f (x )=2017x +log 2017x ,g (x )=x 2x+1 在 (0,1) 上是否封闭,并说明理由. (2) 函数 f (x )=√x +1+k 的定义域为 D =[a,b ],且存在反函数 y =f −1(x ).若函数 f (x )在 D 上封闭,且函数 f −1(x ) 在 f (D ) 上也封闭,求实数 k 的取值范围.(3) 已知函数 f (x ) 的定义域是 D ,对任意 x ,y ∈D ,若 x ≠y ,有 f (x )≠f (y ) 恒成立,则称 f (x ) 在 D 上是单射.已知函数 f (x ) 在 D 上封闭且单射,并且满足 f n (D )⫋D ,其中 f n+1(x )=f(f n (x )),(n ∈N ∗),f 1(x )=f (x ).证明:存在 D 的真子集 D n ⫋D n−1⫋⋯⫋D 3⫋D 2⫋D 1⫋D ,使得 f (x ) 在所有 D i (i =1,2,3,⋯n ) 上封闭.24. 设函数 f (x ) 的定义域为 D ,若存在正实数 a ,使得对于任意 x ∈D ,有 x +a ∈D ,且f (x +a )>f (x ),则称 f (x ) 是 D 上的“a 距增函数”.(1) 判断函数 f (x )=2x −x 是否为 (0,+∞) 上的“1 距增函数”?说明理由;(2) 写出一个 a 的值,使得 f (x )={x +2,x <0√x x ≥0 是区间 (−∞,+∞) 上的“a 距增函数”;(3) 已知函数 f (x ) 是定义在 R 上的奇函数,且当 x >0 时,f (x )=∣x −a ∣−a .若 f (x ) 为R 上的“2021 距增函数”,求 a 的取值范围.25. 已知关于 x 的方程 x 2−2x +a =0.当实数 a 为何值时,(1) 方程的一个根大于 1,另一个根小于 1?(2) 方程的一个根在区间 (−1,1) 内,另一个根在区间 (2,3) 内? (3) 方程的两个根都大于零?26. 解答:(1) 函数 y =log 2(x −1) 的图象是由 y =log 2x 的图象如何变化得到的? (2) 在下边的坐标系中作出 y =∣log 2(x −1)∣ 的图象.(3) 设函数 y =(12)x与函数 y =∣log 2(x −1)∣ 的图象的两个交点的横坐标分别为 x 1,x 2,设M =x 1x 2−2(x 1+x 2)+4,请判断 M 的符号.27. 已知 −π<x <0,且 cos (π2+x)−cosx =−15.(1) 求 sinx −cosx 的值; (2) 求 tanx 的值.28. 已知函数 f (x )=sin (π2−x)sinx −√3cos 2x .(1) 求 f (x ) 的最小正周期和最大值; (2) 讨论 f (x ) 在 [π6,2π3] 上的单调性.29. 已知二次函数 y =x 2−(a +1a)x +1.(1) 当 a =12 时,求关于 x 的不等式 y ≤0 的解集; (2) 若 a >0,求关于 x 的不等式 y ≤0 的解集.30. 设 x >y >0,求证:x 2x y 2y >(xy )x+y .答案一、选择题(共10题) 1. 【答案】D【解析】①正确;因为函数 y =sinx ,所以 yʹ=cosx 是偶函数;②正确;因为命题“若 x =y ,则 x 2=y 2”是真命题,所以其逆否命题也是真命题;③错误;当 x ≥2 时,x 2−x −2=(x +1)(x −2)≥0 成立;当 x 2−x −2=(x +1)(x −2)≥0 时,有 x ≥2 或 x ≤−1.④正确;依据特称命题的否定的格式可知正确.【知识点】命题的概念与真假判断、全(特)称命题的概念与真假判断、全(特)称命题的否定2. 【答案】B【知识点】函数的奇偶性、函数的零点分布、函数的周期性3. 【答案】D【解析】若在其定义域上与常数 1 相关联,则满足 f (x 1)+f (x 2)=2. ① y =1x 的定义域为 {x∣ x ≠0},由 f (x 1)+f (x 2)=2 得 1x 1+1x 2=2,即1x 2=2−1x 1,当 x 1=12时,2−1x 1=2−2=0,此时1x 2=0 无解,不满足条件;② y =x 3 的定义域为 R ,由 f (x 1)+f (x 2)=2 得 (x 1)3+(x 2)3=2,即 x 2=√2−x 133唯一,满足条件;③ y =(12)x 定义域为 R ,由 f (x 1)+f (x 2)=2 得 (12)x 1+(12)x 2=2,即 (12)x 2=2−(12)x 1,当 x 1=−2 时,(12)x 2=2−(12)x 1=2−4=−2,无解,不满足条件;④ y =lnx 定义域为 {x∣ x >0},由 f (x 1)+f (x 2)=2 得 lnx 1+lnx 2=2,得 lnx 1x 2=2, 即 x 1x 2=e 2,x 2=e 2x 1,满足唯一性,满足条件;⑤ y =cosx +1 的定义域为 R ,由 f (x 1)+f (x 2)=2 得 cosx 1+cosx 2=2,得 cosx 2=2−cosx 1,当 x 1=π3 时,cosx 2=2−cosx 1=2−0=2,无解,不满足条件.故满足条件的函数是②④.【知识点】余弦函数的性质、对数函数及其性质、幂函数及其性质、指数函数及其性质4. 【答案】B【解析】【分析】利用一元二次不等式的解法即可得出.【解析】解:∵不等式x 2+mx +1>0的解集为R ,∴△=m 2−4<0,解得−2<m <2. ∴m 的取值范围是(−2,2). 故选:B .【点评】熟练掌握一元二次不等式的解法是解题的关键.5. 【答案】A【解析】设y1=a∣x∣,y2=∣log a x∣,分别作出它们的图象如图所示.由图可知,有两个交点,故方程a∣x∣=∣log a x∣有两个根.【知识点】函数零点的概念与意义6. 【答案】B【解析】由x−2<3,得x<5,又x∈N∗,所以x=1,2,3,4,即集合的另一种表示形式是{1,2,3,4},故选B.【知识点】集合的表示方法7. 【答案】C【解析】y=cos(2x−π3)=cos2(x−π6)的图象,向左平移π6个单位长度可得函数y=cos2x的图象.【知识点】三角函数的图象变换8. 【答案】C【知识点】均值不等式的应用9. 【答案】C【解析】设f(x1)=f(x2)=f(x3)=a,作出函数f(x)的图象与直线y=a,如图.由图可知0<a≤1,不妨设x1<x2<x3,则x1+x2=1,log2(x3−1)=a,因此x3=2a+1,故x1+x2+x3=2+2a,又0<a≤1,所以1<2a≤2,因此3<x1+x2+x3≤4.【知识点】函数的零点分布10. 【答案】B【解析】当k为偶数时,设k=2n,n∈Z,则原式=sin[(2n+1)π+θ]⋅cos[(2n+1)π−θ]sin(2nπ−θ)⋅cos(2nπ+θ)=sin(π+θ)⋅cos(π−θ)−sinθ⋅cosθ=−sinθ⋅(−cosθ)−sinθ⋅cosθ=−1.当k为奇数时,设k=2n+1,n∈Z,则原式=sin[(2n+2)π+θ]⋅cos[(2n+2)π−θ]sin[(2n+1)π−θ]⋅cos[(2n+1)π+θ]=sin[2(n+1)π+θ]⋅cos[(2n+1)π−θ]sin(π−θ)⋅cos(π+θ)=sinθ⋅cosθsinθ⋅(−cosθ)=−1.综上,原式的值为−1.【知识点】诱导公式二、填空题(共10题)11. 【答案】12【知识点】对数函数及其性质、函数的零点分布、Asin(ωx+ψ)形式函数的性质12. 【答案】{1e3}∪(−e,−1)【解析】作函数y=f(x)和y=kx+2的图象,如图所示,两图象除了(0,2)还应有3个公共点,当k≥0时,直线应与曲线y=f(x)(x>1)相切,设切点(x0,lnx0),则切线斜率为k=1x0,又 k =lnx 0−2x 0,则 1x 0=lnx 0−2x 0,解得 x 0=e 3,此时 k =1e 3,当 k <0 时,当 y =kx +2 与曲线 y =x+2x+1相切于点 (0,2) 时,函数 y =f (x ) 和 y =kx +2的图象只有三个公共点,不符合题意,此时 k =−1,当 −1<k <0 时,函数 y =f (x ) 和 y =kx +2 的图象只有三个公共点,不符合题意, 当直线 y =kx +2 与 y =f (x )(0<x <1)相切时,两图象只有三个公共点, 设切点 (x 0,−lnx 0),则切线的斜率 k =−1x 0,又 k =−lnx 0−2x 0,则 −1x 0=−lnx 0−2x 0,解得 x 0=e −1,此时 k =−e 不符合题意, 当 k <−e 时,两图象只有两个公共点,不合题意, 而当 −e <k <−1 时,两图象有 4 个公共点,符合题意, 所以实数 k 的取值范围是 {1e 3}∪(−e,−1).【知识点】函数的零点分布、利用导数求函数的切线方程13. 【答案】 13【解析】作出函数 y =f (x ) 的图象如图所示:由于 f (x 1)=f (x 2)=f (x 3)=f (x 4),则 x 1,x 2,x 3,x 4 可视为直线 y =k 与曲线 y =f (x ) 有四个交点时,四个交点的横坐标.由图象可知,∣log 2x 1∣=∣log 2x 2∣,由于 0<x 1<1<x 2<2,则 log 2x 1<0,log 2x 2>0, 所以,−log 2x 1=log 2x 2,即 log 2x 1+log 2x 2=log 2(x 1x 2)=0,得 x 1x 2=1, 由图象知,曲线 y =sin πx 4(2≤x ≤10) 的图象关于直线 x =6 对称,所以,x 3+x 4=12, 因此,x 1x 2+x 3+x 4=13, 故答案为 13.【知识点】函数的零点分布14. 【答案】 −2021【解析】 f (x )=sinx −x 13,为奇函数, 所以 f (−a )=−f (a )=−2021. 【知识点】函数的奇偶性15. 【答案】 −12【知识点】两角和与差的正切、两角和与差的余弦16. 【答案】(1,2)【解析】考查函数 y =f (x ) 图象与 y =a ∣x ∣ 图象的交点的情况,根据图象,得 a >0. 当 a =2 时,函数 y =f (x ) 与 y =a ∣x ∣ 图象有 3 个交点; 当 y =a ∣x ∣(x ≤0) 图象与 y =∣x 2+5x +4∣ 图象相切时,在整个定义域内,函数 y =f (x ) 图象与 y =a ∣x ∣ 图象有 5 个交点,此时,由 {y =−ax,y =−x 2−5x −4, 得 x 2+(5−a )x +4=0.由 Δ=0,解得 a =1 或 a =9(舍去).故当 1<a <2 时,函数 y =f (x ) 与 y =a ∣x ∣ 图象有 4 个交点.【知识点】函数零点的概念与意义、函数图象17. 【答案】 34【解析】由题意得大正方形的边长为 10,小正方形的边长为 2, 所以 2=10cosα−10sinα, 即 cosα−sinα=15 ⋯⋯ ①, 两边同时平方得 (cosα−sinα)2=125,即 cos 2α+sin 2α−2sinαcosα=125,又因为 cos 2α+sin 2α=1, 所以 2sinαcosα=2425, 所以(cosα+sinα)2=cos 2α+sin 2α+2sinαcosα=1+2425=4925,已知 α 为锐角,所以 cosα+sinα=75 ⋯⋯ ②, 由①②得 cosα=45,sinα=35,所以 tanα=34.【知识点】同角三角函数的基本关系18. 【答案】 5 ; (1,2]【知识点】函数的值域的概念与求法19. 【答案】 [0,1)【解析】因为“∃x ∈R ,ax 2+2ax +1≤0”为假命题, 所以其否定“∀x ∈R ,ax 2+2ax +1>0”为真命题. 当 a =0 时,显然成立;当 a ≠0 时,ax 2+2ax +1>0 恒成立可化为:{a >0,4a 2−4a <0,解得 0<a <1.综上实数 a 的取值范围是 [0,1).【知识点】全(特)称命题的概念与真假判断20. 【答案】 [4,+∞)【知识点】函数的零点分布三、解答题(共10题)21. 【答案】(1) −5≤a≤3.(2) a≥3.【知识点】交、并、补集运算、充分条件与必要条件22. 【答案】(1) 当a=1时,f(x)=ln(x−1+1),由y=ln(x−1+1)得x−1+1−=e y,所以x=1e y−1,因为f−1(x)是f(x)=ln(x−1+a)的反函数,所以f−1(x)=1e x−1,x≠0,由f−1(x)>0得1e x−1>0,所以:e x−1>0,解得:x>0,即不等式f−1(x)>0的解集为{x∣ x>0};(2) 方程f(x)+ln(x2)=0即ln(x−1+a)+ln(x2)=0,所以x+ax2=1,① a=0,则x=1,经过验证,满足关于x的方程f(x)+ln(x2)=0的解集中恰好有一个元素;② a≠0时,(i)若Δ=1+4a=0,解得a=−14,代入x+ax2=1,解得x=2,经过验证,满足关于x的方程f(x)+ln(x2)=0的解集中恰好有一个元素;(ii)若Δ=1+4a>0,则a>−14;当a>0时由1x +a>0解x>0或x<−1a,即方程f(x)+ln(x2)=0的解要在(−∞,−1a)∪(0,+∞)范围内,解方程x+ax2=1得x=−1±√1+4a2a,因为x=−1+√1+4a2a >2√a2a>0,所以为使关于x的方程f(x)+ln(x2)=0的解集中恰好有一个元素,只需−1−√1+4a2a ≥−1a,即1+√1+4a≤1,显然不成立;当−14<a<0时,由1x+a>0解得:0<x<−1a,即方程f(x)+ln(x2)=0的解要在(0,−1a)范围内,解方程x+ax2=1得x=−1±√1+4a2a,因为a<0,所以−1−√1+4a2a >0,−1+√1+4a2a>0,且−1+√1+4a2a >−1−√1+4a2a,因此只需−1+√1+4a2a <−1a<−1−√1+4a2a,即1−√1+4a2<1<1+√1+4a2,即{−√1+4a<1,√1+4a>1,解得:a>0,与−14<a<0矛盾,也不满足题意;综上,实数a的值为0或−14;(3) 由对数函数的单调性可得y=lnx单调递增,根据幂函数单调性可得y=x−1+a在(0,+∞)上单调递减,因为a>0,t∈[12,1],所以,根据复合函数单调性,可得f(x)=ln(x−1+a)在区间[t,t+1]上单调递减,因此f(x)max=ln(t−1+a),f(x)min=ln(1t+1+a),又函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过ln2,所以ln(t−1+a)−ln(1t+1+a)≤ln2,即(at+1)(t+1)t(at+a+1)≤2,整理得a≥1−tt2+t即a≥1−tt2+t对任意的t∈[12,1]恒成立,令g(t)=1−tt2+t ,t∈[12,1],任取12≤t1<t2≤1,则g (t 1)−g (t 2)=1−t 1t 12+t 1−1−t2t 22+t 2=(1−t 1)(t 22+t 2)−(1−t 2)(t 12+t 1)(t 12+t 1)(t 22+t 2)=(t 22+t 2−t 1t 22−t 1t 2)−(t 12+t 1−t 12t 2−t 1t 2)(t 12+t 1)(t 22+t 2)=(t 2−t 1)(t 2+t 1+1−t 1t 2)(t 12+t 1)(t 22+t 2),因为 12≤t 1<t 2≤1,所以 t 2−t 1>0,t 2+t 1+1−t 1t 2>0,(t 12+t 1)(t 22+t 2)>0,因此 g (t 1)−g (t 2)=(t 2−t 1)(t 2+t 1+1−t 1t 2)(t 12+t 1)(t 22+t 2)>0,即 g (t 1)>g (t 2);所以 g (t )=1−t t 2+t 在 t ∈[12,1] 上单调递减, 所以 g (t )max =g (12)=23,因此,只需 a ≥g (t )max =23,故 a 的取值范围为 [23,+∞).【知识点】对数函数及其性质、函数的最大(小)值、反函数23. 【答案】(1) 因为函数 f (x ) 的定义域为 (0,+∞),值域为 (−∞,+∞),(取一个具体例子也可),所以f (x ) 在 (0,1) 上不封闭. t =x +1∈(1,2),g (x )=ℎ(t )=(t−1)2t=t +1t −2∈(0,12)⊆(0,1),g (x ) 在 (0,1) 上封闭.(2) 函数 f (x ) 在 D 上封闭,则 f (D )⊆D . 函数 f −1(x ) 在 f (D ) 上封闭,则 D ⊆f (D ), 得到:D =f (D ).f (x )=√x +1+k 在 D =[a,b ] 单调递增.则 f (a )=a ,f (b )=b ⇔f (x )=√x +1+k =x 在 [−1,+∞) 两不等实根. g (x )=x 2−(2k +1)x +k 2−1=0({x ≥−1,x ≥k,)故 {(2k +1)2−4(k 2−1)>0,g (−1)≥0,g (k )≥0,2k+12>k,2k+12>−1,解得k∈(−54,−1].另解:⇔f(x)=√x+1+k=x在[−1,+∞)两不等实根.令t=√x+1(t≥0),k+1=t2−t在t∈[0,+∞)有两个不等根,画图,由数形结合可知,k+1∈(−14,0],解得k∈(−54,−1].(3) 如果f(D)=D,则f n(D)=D,与题干f n(D)⫋D矛盾.因此f(D)⫋D,取D1=f(D),则D1⫋D.接下来证明f(D1)⫋D1.因为f(x)是单射,因此取一个p∈D∖D1,则p是唯一的使得f(x)=f(p)的根,换句话说f(p)∉f(D1).考虑到P∈D∖D1,即D1∉D∖{p}.因为f(x)是单射,则f(D1)⫋f(D∖{p})=f(D)∖{f(p)}=D1∖{f(p)}⫋D1.这样就有了f(D1)⫋D1.接着令D n+1=f(D n),并重复上述论证证明D n+1⫋D n.【知识点】函数的值域的概念与求法、指数函数及其性质、反函数24. 【答案】(1) 函数f(x)=2x−x是(0,+∞)上的“1距增函数”,任意x∈(0,+∞),有x+1∈(0,+∞),且2x>1,所以f(x+1)−f(x)=2x+1−(x+1)−(2x−x)=2x−1>0,因此f(x)=2x−x是(0,+∞)上的“1距增函数”.(2) a=10(答案不唯一,不小于4即可)(3) f(x)={∣x−a∣−a,x>0 0,x=0−∣x+a∣+a,x≤0因为f(x)为R上的“2021距增函数”,∪)当x>0时,由定义∣x+2021−a∣−a>∣x−a∣−a恒成立,即∣x+2021−a∣>∣x−a∣恒成立,由绝对值几何意义可得a+a−2021<0,a<20212;∪)当x<0时,分两种情况:当x<−2021时,由定义−∣x+2021+a∣+a>−∣x+a∣+a恒成立,即∣x+2021+a∣<∣x+a∣恒成立,由绝对值几何意义可得−a−a−2021>0,a<−20212;当−2021≤x<0时,由定义−∣x+a∣+a<∣x+2021−a∣−a恒成立,即 ∣x +2021−a ∣+∣x +a ∣≥∣2021−2a ∣>2a 恒成立, 当 a ≤0 时,显然成立, 当 a >0 时,可得 0<a <20214; 综上,a 的取值范围为 (−∞,20214).【知识点】函数的单调性25. 【答案】(1) 已知方程的一个根大于 1,另一个根小于 1,结合二次函数 y =x 2−2x +a 的图象知(图略),当 x =1 时的函数值小于 0,即 12−2+a <0,所以 a <1. 因此 a 的取值范围是 {a∣ a <1}.(2) 由方程的一个根在区间 (−1,1) 内,另一个根在区间 (2,3) 内,结合二次函数 y =x 2−2x +a 的图象知(图略),x 取 −1,3 时函数值为正,x 取 1,2 时函数值为负.即 {1+2+a >0,1−2+a <0,4−4+a <0,9−6+a >0,解得 −3<a <0.因此 a 的取值范围是 {a∣ −3<a <0}.(3) 由方程的两个根都大于零,结合二次函数 y =x 2−2x +a 的图象知(图略),判别式不小于 0,图象的对称轴在 y 轴右侧,且当 x =0 时,函数值为正,即 {Δ=4−4a ≥0,−−22>0,a >0,解得 0<a ≤1.因此 a 的取值范围是 {a∣ 0<a ≤1}. 【知识点】函数的零点分布26. 【答案】(1) 函数 y =log 2(x −1) 的图象是由 y =log 2x 的图象向右平移 1 个单位得到的.(2) 在下边的坐标系中作出 y =∣log 2(x −1)∣ 的图象,如图所示;(3) 设函数 y =(12)x与函数 y =∣log 2(x −1)∣ 的图象的两个交点的横坐标分别为 x 1,x 2, 所以 M =x 1x 2−2(x 1+x 2)+4=(x 1−2)(x 2−2)<0.【知识点】对数函数及其性质、指数函数及其性质、函数的图象变换27. 【答案】(1) 由已知,得 sinx +cosx =15,两边平方得 sin 2x +2sinxcosx +cos 2x =125, 整理得 2sinxcosx =−2425.因为 (sinx −cosx )2=1−2sinxcosx =4925,由 −π<x <0 知,sinx <0,又 sinxcosx =−1225<0, 所以 cosx >0,所以 sinx −cosx <0, 故 sinx −cosx =−75.(2) 故此 sinx =−35,cosx =45, 所以 tanx =−34.【知识点】同角三角函数的基本关系28. 【答案】(1)f (x )=sin (π2−x)sinx −√3cos 2x=cosxsinx −√32(1+cos2x )=12sin2x −√32cos2x −√32=sin (2x −π3)−√32,所以 f (x ) 的最小正周期为 π,最大值为 2−√32.(2) 当 x ∈[π6,2π3] 时,0≤2x −3≤π,所以当 0≤2x −π3≤π2,即 π6≤x ≤5π12时,f (x ) 单调递增,当π2≤2x −π3≤π,即5π12≤x ≤2π3时,f (x ) 单调递减.综上,可知 f (x ) 在 [π6,5π12] 上单调递增,在 [5π12,2π3] 单调递减.【知识点】Asin(ωx+ψ)形式函数的性质29. 【答案】(1) 当 a =12 时,有 x 2−52x +1≤0,即 2x 2−5x +2≤0,解得 12≤x ≤2,故不等式y≤0的解集为{x∣ 12≤x≤2}.(2) y≤0⇔x2−(a+1a )x+1≤0⇔(x−1a)(x−a)≤0,①当0<a<1时,a<1a ,不等式的解集为{x∣ a≤x≤1a};②当a=1时,a=1a=1,不等式的解集为{1};③当a>1时,a>1a ,不等式的解集为{x∣ 1a≤x≤a}.综上,当0<a<1时,不等式的解集为{x∣ a≤x≤1a};当a=1时,不等式的解集为{1};当a>1时,不等式的解集为{x∣ 1a≤x≤a}.【知识点】二次不等式的解法30. 【答案】由x>y>0,x2x y2y>(xy)x+y可等价变形为x2x y2y(xy)x+y >1,即要证(xy)x−y>1.因为xy >1,x−y>0,由幂的基本不等式,可知(xy)x−y>1.【知识点】幂的概念与运算。

人教版A版(2019)高中数学必修第一册:第三章 函数的概念与性质 综合测试(附答案与解析)

人教版A版(2019)高中数学必修第一册:第三章 函数的概念与性质 综合测试(附答案与解析)

第三章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数20()(31)f x x =+-的定义域是( ) A .1,3⎛⎫-∞ ⎪⎝⎭B .1,13⎛⎫⎪⎝⎭C .11,33⎛⎫- ⎪⎝⎭D .11,,133⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭2.已知函数1(2),()(3)(2),x f x f x x =+⎪⎩≥<则(1)(9)f f +等于( )A .2-B .7-C .27D .73.函数111y x -=+-的图像是下列图像中的( )ABCD4.若函数y ax =与by x=-在(0,)+∞上都是减函数,则2()f x ax bx =+在(0,)+∞上是( ) A .增函数B .减函数C .先增后减D .先减后增5.函数2()(2)1f x ax a x =+++是偶函数,则函数的单调递增区间为( ) A .[0,)+∞B .(,0]-∞C .(,)-∞+∞D .[1,)+∞6.函数2()(1)1f x mx m x =+-+在区间(,1]-∞上为减函数,则m 的取值范围是( )A .10,3⎛⎤ ⎥⎝⎦B .10,3⎡⎫⎪⎢⎣⎭C .10,3⎡⎤⎢⎥⎣⎦D .10,3⎛⎫ ⎪⎝⎭7.定义在R 上的偶函数()f x ,对任意()1212,[0,)x x x x ∈+∞≠,有()()21210f x f x x x --<,则( )A .(3)(2)(1)f f f -<<B .(1)(2)(3)f f f -<<C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f -<<8.若函数,1,()(23)1,1ax f x x a x x ⎧⎪=⎨⎪-+⎩>≤是R 上的减函数,则实数a 的取值范围是( )A .2,13⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎛⎤ ⎥⎝⎦D .2,3⎛⎫+∞ ⎪⎝⎭9.设函数()f x 满足对任意的,m n (,m n 为正数)都有()()()f m n f m f n +=⋅且(1)2f =,则(2)(3)(2020)(1)(2)(2019)f f f f f f +++等于( )A .2 020B .2 019C .4 038D .4 04010.在函数([1,1])y x x =∈-的图像上有一点(,)P t t ,此函数图象与x 轴、直线1x =-及x t =围成图形的面积为S (如图的阴影部分所示),则S 与t 的函数关系的图象可表示为( )ABCD11.设奇函数()f x 在(0,)+∞上是增函数,且(2)0f =,则不等式()()0f x f x x --<的解集为( )A .(2,0)(2,)-+∞B .(2,0)(0,2)-C .(,2)(2,)-∞-+∞D .(,2)(0,2)-∞-12.已知定义在R 上的函数()f x ,若函数(1)y f x =+为偶函数,且()f x 对任意()1212,[1,)x x x x ∈+∞≠都有()()21210f x f x x x -->,若(1)(2)f a f a -≥,则实数a 的取值范围是( )A .[1,1]-B .(,1]-∞-C .[1,)+∞D .(,1][1,)-∞-+∞二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.设函数0()1,02x x f x x =⎨⎛⎫⎪ ⎪⎝⎭⎩≥<则((4))f f -=________.14.若函数2(1)2()1a x a f x x a -+-=+-为奇函数,则实数a =________. 15.设函数2()24f x x x =-+在区间[,]m n 上的值域是[6,2]-,则m n +的取值范围是________.16.已知函数29,3,()6,3,x f x x x x ⎧⎪=⎨-+⎪⎩≥<则不等式()22(34)f x x f x --<的解集是________. 三、解答题(本大题共6小题,共70分.解答时写出必要的文字说明,证明过程或演算步骤)17.[10分]已知函数22(),[1,)x x af x x x++=∈+∞. (1)当12a =时,求函数()f x 的最小值; (2)若对任意[1,),()0x f x ∈+∞>恒成立,试求实数a 的取值范围; (3)讨论函数的单调性.(只写出结论即可)18.[12分]设函数2()23,f x x x a x =--+∈R .(1)小鹏同学认为,无论a 取何值,()f x 都不可能是奇函数,你同意他的观点吗?请说明你的理由. (2)若()f x 是偶函数,求a 的值.(3)在(2)的情况下,画出()y f x =的图象并指出其单调递增区间。

2021_2022学年新教材高中数学第三章函数的概念与性质综合测试含解析新人教A版必修第一册

2021_2022学年新教材高中数学第三章函数的概念与性质综合测试含解析新人教A版必修第一册

第三章综合测试考试时间120分钟,满分150分.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f (x )=1+x +1x 的定义域是( C )A .[-1,+∞)B .(-∞,0)∪(0,+∞)C .[-1,0)∪(0,+∞)D .R[解析]要使函数有定义,则⎩⎨⎧1+x ≥0x ≠0,解得x ≥-1且x ≠0,故选C .2.下列函数中,与函数y =x (x ≥0)有相同图象的一个是( B ) A .y =x 2 B .y =(x )2 C .y =3x 3D .y =x 2x[解析]A 、C 、D 选项中函数的定义域与题目中的定义域不同,故不是同一个函数. 3.(2021·某某某某高一期中测试)已知函数y =f (x )的部分x 与y 的对应关系如下表:则f [f (4)]A .-1 B .-2 C .-3D .3[解析]由图表可知,f (4)=-3,∴f [f (4)]=f (-3)=3.4.已知幂函数f (x )=x α的图象过点(2,12),则函数g (x )=(x -2)f (x )在区间[12,1]上的最小值是( C )A .-1B .-2C .-3D .-4[解析]由已知得2α=12,解得α=-1,∴g (x )=x -2x =1-2x 在区间[12,1]上单调递增,则g (x )min =g (12)=-3,故选C .5.已知函数f (x )为偶函数,且在区间(-∞,0]上单调递增,若f (-3)=-2,则不等式f (x )≥-2的解集为( B )A .[-3,0]B .[-3,3]C .[-3,+∞)D .(-∞,-3]∪[3,+∞)[解析]f (x )为偶函数,且在(-∞,0]上单调递增,则f (x )在(0,+∞)上单调递减,且f (3)=-2,所以f (x )≥-2的解集为[-3,3].6.(2021·全国高考甲卷文科)设f (x )是定义域为R 的奇函数,且f (1+x )=f (-x ).若f (-13)=13,则f (53)=( C ) A .-53B .-13C .13D .53[解析]由题意可得:f (53)=f (1+23)=f (-23)=-f (23),而f (23)=f (1-13)=f (13)=-f (-13),故f (53)=13.故选C .7.已知函数f (x )是定义域为R 的偶函数,且对任意x 1,x 2∈(-∞,0],当x 1≠x 2时总有f (x 1)-f (x 2)x 1-x 2>0,则满足f (1-2x )-f (-13)>0的x 的X 围是( A )A .(13,23)B .[13,23)C .(12,23)D .[12,23)[解析]由题意可知,f (x )在(-∞,0]上为增函数,又f (x )为偶函数,故f (x )在(0,+∞)上为减函数,由f (1-2x )>f (-13)可得-13<1-2x <13,解得13<x <23.故选A .8.函数f (x )的定义域为[-1,1],图象如图(1)所示,函数g (x )的定义域为[-2,2],图象如图(2)所示,方程f [g (x )]=0有m 个实数根,方程g [f (x )]=0有n 个实数根,则m +n =( C )A .6B .8C .10D .12[解析]f [g (x )]=0,令t =g (x ),则t 1=-1,t 2=0,t 3=1,令g (x )=-1,x 有2个根;令g (x )=0,x 有3个根,令g (x )=1,x 有2个根,∴f [g (x )]=0共有7个根.g [f (x )]=0,令f (x )=t ,g (t )=0,则t =0,即f (x )=0,x 有3个值,所以m +n =10.故选C .二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分)9.关于函数f (x )=-x 2+2x +3的结论正确的是( CD ) A .定义域、值域分别是[-1,3],[0,+∞) B .单调增区间是(-∞,1]C .定义域、值域分别是[-1,3],[0,2]D .单调增区间是[-1,1][解析]要使函数有定义,则-x 2+2x +3≥0,即(x -3)(x +1)≤0,-1≤x ≤3.所以函数的定义域为[-1,3],值域为[0,2],在[-1,1]上单调增,故选CD .10.函数f (x )是定义在R 上的奇函数,下列命题中是正确命题的是( ABD ) A .f (0)=0B .若f (x )在[0,+∞)上有最小值-1,则f (x )在(-∞,0]上有最大值1C .若f (x )在[1,+∞)上为增函数,则f (x )在(-∞,-1]上为减函数D .若x >0时,f (x )=x 2-2x ,则x <0时,f (x )=-x 2-2x[解析]奇函数在对称的区间上单调性相反,故C 错误,其余都正确.11.已知f (x )=3-2|x |,g (x )=x 2-2x ,F (x )=⎩⎪⎨⎪⎧g (x )(若f (x )≥g (x ))f (x )(若f (x )<g (x )),则F (x )( BC )A .最小值-1B .最大值为7-27C .无最小值D .无最大值[解析]作出F (x )的图象,如图实线部分,知有最大值而无最小值,且最大值不是3,故选BC .12.已知函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,对任意x 1,x 2∈(0,+∞),且x 1≠x 2,满足f (x 1)-f (x 2)x 1-x 2>0.若a ,b ∈R ,且f (a )+f (b )的值为负值,则下列结论可能成立的有( BC )A .a +b >0,ab <0B .a +b <0,ab >0C .a +b <0,ab <0D .以上都可能[解析]由函数f (x )为幂函数可知m 2-m -1=1,解得m =-1或mm =-1时,f (x )=1x 3;当m =2时,f (x )=x 3.由题意知函数f (x )在(0,+∞)上为增函数,因此f (x )=x 3,在R 上单调递增,且满足f (-x )=-f (x ).结合f (-x )=-f (x )以及f (a )+f (b )<0可知f (a )<-f (b )=f (-b ),所以a <-b ,即b <-a ,所以a +ba =0时,b <0,ab =0;当a >0时,b <0,ab <0;当a <0时,ab >0(b <0)或ab <0(0<b <-a ),故BC 都有可能成立.故选BC .三、填空题(本大题共4小题,每小题5分,共20分.)13.(2021·某某黄陵中学高一期末测试)函数f (x )=4-2x +1x +1的定义域是{x |x ≤2且x ≠-1}.[解析]由题意得⎩⎪⎨⎪⎧4-2x ≥0x +1≠0,解得x ≤2且x ≠-1,∴函数f (x )的定义域为{x |x ≤2且x ≠-1}.14.已知f (x )=⎩⎪⎨⎪⎧2x ,x >0,f (x +1),x ≤0,则f (-43)+f (43)等于4.[解析]∵f (x )=⎩⎪⎨⎪⎧2x ,x >0,f (x +1),x ≤0,∴f (-43)=f (-43+1)=f (-13)=f (-13+1)=f (23)=23×2=43,f (43)=2×43=83,∴f (-43)+f (43)=43+83=4.15.已知幂函数f (x )=x α的图象经过点(9,3),则f (12)2f (1x -1)的定义域为(0,1].[解析]幂函数f (x )的图象经过点(9,3),所以3=9α,所以α=12,所以幂函数f (x )=x ,故f (12)=22,故1x-1≥0,解得0<x ≤1. 16.符号[x ]表示不超过x 的最大整数,如[3.14]=3,[-1.6]=-2,定义函数:f (x )=x -[x ],则下列说法正确的是①②③.①f (-0.8)=0.2;②当1≤x <2时,f (x )=x -1;③函数f (x )的定义域为R ,值域为[0,1); ④函数f (x )是增函数,奇函数.[解析]①f (-0.8)=-0.8-[-0.8]=-0.8+1=0.2,正确. ②当1≤x <2时,f (x )=x -[x ]=x B 正确.③函数f (x )的定义域为R ,f (x )=x -[x ]表示x 的小数部分,所以值域为[0,1),正确. ④x =0.5时,f (0.5)=0.5,x =1.5时,f (1.5)=0.5,所以f (x )不是增函数;且f (-1.5)=f (1.5),所以f (x )也不是奇函数.故填①②③.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知函数f (x )=ax +b ,且f (1)=2,f (2)=-1. (1)求f (m +1)的值;(2)判断函数f (x )的单调性,并用定义证明.[解析](1)由f (1)=2,f (2)=-1,得a +b =2,2a +b =-1,即a =-3,b =5, 故f (x )=-3x +5,f (m +1)=-3(m +1)+5=-3m +2.(2)f (x )在R 上是减函数.证明:任取x 1<x 2(x 1,x 2∈R ),则f (x 2)-f (x 1)=(-3x 2+5)-(-3x 1+5)=3x 1-3x 2=3(x 1-x 2),因为x 1<x 2,所以f (x 2)-f (x 1)<0,即函数f (x )在R 上单调递减.18.(本小题满分12分)已知f (x )在R 上是单调递减的一次函数,且f [f (x )]=9x -2. (1)求f (x );(2)求函数y =f (x )+x 2-x 在x ∈[-1,a ]上的最大值.[解析](1)由题意可设f (x )=kx +b (k <0),由于f [f (x )]=9x -2,则k 2x +kb +b =9x -2,故⎩⎪⎨⎪⎧k 2=9,kb +b =-2,解得⎩⎪⎨⎪⎧k =-3,b =1,故f (x )=-3x +1. (2)由(1)知,函数y =-3x +1+x 2-x =x 2-4x +1=(x -2)2-3, 故函数y =x 2-4x +1的图象开口向上,对称轴为x =2, 当-1<a ≤5时,y 的最大值是f (-1)=6, 当a >5时,y 的最大值是f (a )=a 2-4a +1,综上,y max =⎩⎪⎨⎪⎧6(-1<a ≤5),a 2-4a +1(a >5).19.(本小题满分12分)某商品在近30天内每件的销售价格P (元)和时间t (天)的函数关系为P =⎩⎪⎨⎪⎧t +20,0<t <25,-t +100,25≤t ≤30(t ∈N *).设商品的日销售量Q (件)与时间t (天)的函数关系为Q =40-t (0<t ≤30,t ∈N *),求这种商品的日销售金额的最大值,并指出日销售金额最大时是第几天.[解析]设日销售金额为y 元,则y =PQ ,所以y =⎩⎪⎨⎪⎧-t 2+20t +800(0<t <25,t ∈N *),t 2-140t +4 000(25≤t ≤30,t ∈N *).当0<t <25且t ∈N *时,y =-(t -10)2+900, 所以当t =10时,y max =900.①当25≤t ≤30且t ∈N *时,y =(t -70)2-900, 所以当t =25时,y max =1 125.②结合①②得y max =1 125.因此这种商品日销售金额的最大值为1 125元,且在第25天日销售金额最大.20.(本小题满分12分)函数f (x )=x +a x 2+bx +1是定义在[-1,1]上的奇函数.(1)确定函数f (x )的解析式; (2)用定义证明f (x )的单调性; (3)解不等式f (t -1)+f (t )<0.[解析](1)因为f (x )是定义在[-1,1]上的奇函数,所以f (0)=0,f (x )=-f (-x ),即x +a x 2+bx +1=--x +ax 2-bx +1,所以a =0,b =0,所以f (x )=xx 2+1.(2)取-1≤x 1<x 2≤1,则x 1x 2<1,f (x 1)-f (x 2)=x 1x 21+1-x 2x 22+1=(x 1-x 2)(1-x 1x 2)(x 21+1)(x 22+1)<0,所以f (x )在[-1,1]上单调递增.(3)因为f (t -1)+f (t )<0,所以f (t -1)<f (-t ). 因为f (x )在[-1,1]上单调递增, 所以-1≤t -1<-t ≤1,解得0≤t <12.所以不等式的解集为{t |0≤t <12}.21.(本小题满分12分)如果函数y =f (x )(x ∈D )满足: ①f (x )在D 上是单调函数;②存在闭区间[a ,b ]⊆D ,使f (x )在区间[a ,b ]上的值域也是[a ,b ]. 那么就称函数y =f (x )为闭函数.试判断函数y =x 2+2x 在[-1,+∞)内是否为闭函数.如果是闭函数,那么求出符合条件的区间[a ,b ];如果不是闭函数,请说明理由.[解析]设x 1,x 2是[-1,+∞)内的任意两个不相等的实数,且-1≤x 1<x 2,则有f (x 2)-f (x 1)=(x 22+2x 2)-(x 21+2x 1)=(x 22-x 21)+2(x 2-x 1)=(x 2-x 1)(x 1+x 2+2). ∵-1≤x 1<x 2,∴x 2-x 1>0,x 1+x 2+2>0. ∴(x 2-x 1)(x 1+x 2+2)>0. ∴f (x 2)>f (x 1).∴函数y =x 2+2x 在[-1,+∞)内是增函数. 假设存在符合条件的区间[a ,b ],则有⎩⎪⎨⎪⎧f (a )=a f (b )=b ,即⎩⎪⎨⎪⎧a 2+2a =ab 2+2b =b.解得⎩⎪⎨⎪⎧a =0b =0或⎩⎪⎨⎪⎧a =0b =-1或⎩⎪⎨⎪⎧a =-1b =0或⎩⎪⎨⎪⎧a =-1b =-1.又∵-1≤a <b ,∴⎩⎪⎨⎪⎧a =-1b =0.∴函数y =x 2+2x 在[-1,+∞)内是闭函数,符合条件的区间是[-1,0].22.(本小题满分12分)已知函数y =x +tx 有如下性质:如果常数t >0,那么该函数在(0,t )上是减函数,在[t ,+∞)上是增函数.(1)已知f (x )=4x 2-12x -32x +1,x ∈[0,1],利用上述性质,求函数f (x )的单调区间和值域;(2)对于(1)中的函数f (x )和函数g (x )=-x -2a ,若对任意x 1∈[0,1],总存在x 2∈[0,1],使得g (x 2)=f (x 1)成立,某某数a 的值.[解析](1)y =f (x )=4x 2-12x -32x +1=2x +1+42x +1-8,设u =2x +1,x ∈[0,1],∴1≤u ≤3,则y =u +4u -8,u ∈[1,3].由已知性质得,当1≤u ≤2,即0≤x ≤12时,f (x )单调递减,所以单调减区间为[0,12];当2≤u ≤3,即12≤x ≤1时,f (x )单调递增,所以单调增区间为[12,1];由f (0)=-3,f (12)=-4,f (1)=-113,得f (x )的值域为[-4,-3].(2)g (x )=-x -2a 为减函数,故g (x )∈[-1-2a ,-2a ],x ∈[0,1].由题意知,f (x )的值域是g (x )的值域的子集,∴⎩⎪⎨⎪⎧-1-2a ≤-4,-2a ≥-3,∴a =32.。

高一数学必修1第三章《指数函数、对数函数和幂函数》测练题及解析

高一数学必修1第三章《指数函数、对数函数和幂函数》测练题及解析

高一数学必修1第三章《指数函数、对数函数和幂函数》测练题(满分:150分;考试时间:100分钟)一、选择题(本大题共10小题. 每小题5分,共50分.在每小题给出的四个选项中,只有一个项是符合题目要求的) 1.指数函数y=a x 的图像经过点(2,16)则a 的值是 ( )A .41 B .21C .2D .4 2.化简)31()3)((656131212132b a b a b a ÷-的结果 ( )A .a 6B .a -C .a 9-D .29a3.在区间),0(+∞上不是增函数的是 ( )A.2x y =B.x y log 2=C.xy 2= D.122++=x x y 4.式子82log 9log 3的值为 ( ) A .23 B .32C .2D .3 5.已知0ab >,下面四个等式中:①lg()lg lg ab a b =+; ②lg lg lg a a b b=-;③b ab a lg )lg(212= ;④1lg()log 10ab ab =.其中正确命题的个数为 ( )A .0B .1C .2D .36.已知2log 0.3a =,0.32b =,0.20.3c =,则c b a ,,三者的大小关系是( ) A .a c b >> B .c a b >> C .c b a >> D .a b c >> 7.已知函数)(x f y =的反函数)21(log )(211-=-x x f,则方程1)(=x f 的解集是( )A .{1}B .{2}C .{3}D .{4} 8.图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =, l g d y o x =的图象,,,,a b c d 的关系是( )A. 0<a <b <1<d<cB. 0<b<a <1<c<dC. 0<d<c<1<a<bD. 0<c<d <1<a<bx9.函数y= | lg (x-1)| 的图象是 ( )10.给出幂函数①f (x )=x ;②f (x )=x 2;③f (x )=x 3;④f (x )=x ;⑤f (x )=1x .其中满足条件f 12()2x x + >12()()2f x f x + (x 1>x 2>0)的函数的个数是 ( )A .1个B .2个C .3个D .4个二、填空题(.每小题5分,共20分) 11.函数21()log (2)f x x =-的定义域是 .12.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 .13.函数)x 2x (log y 221-=的单调递减区间是_________________.14.关于函数21()lg (0,R)||x f x x x x +=≠∈有下列命题:①函数()y f x =的图象关于y 轴对称;②在区 间(,0)-∞上,函数()y f x =是减函数;③函数()y f x =的最小值为lg 2;④在区间(1,)+∞上,函 数()y f x =是增函数.其中正确命题序号为_______________. 三、解答题(6小题,共80分)15.(本小题满分12分)4160.2503432162322428200549-⨯+--⨯--()()()()16. (本小题满分12分)设函数421()log 1x x f x x x -⎧<=⎨>⎩,求满足()f x =41的x 的值.C17.(本小题满分14分)已知()2xf x =,()g x 是一次函数,并且点(2,2)在函数[()]f g x 的图象上,点(2,5)在函数[()]g f x 的图象上,求()g x 的解析式.18.(本小题满分14分)若0≤x ≤2,求函数y=523421+⨯--x x 的最大值和最小值.19.(本小题满分14分)光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为x 块玻璃后强度为y .(1)写出y 关于x 的函数关系式;(2)通过多少块玻璃后,光线强度减弱到原来的13以下? ( lg30.4771)≈20.(本小题满分14分)已知定义域为R 的函数12()22x x b f x +-+=+是奇函数.(1)求b 的值;(2)判断函数()f x 的单调性;(3)若对任意的R t ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.高一数学必修1第三章《指数函数、对数函数和幂函数》测练题参考答案及解析一、选择题1.D 解析:由a 2=16且a >0得a =42.C 解析:原式a ab ba9990653121612132-=-=-=-+-+3.C 解析:根据反比例函数的性质4.A 解析:因log 89=22232log 32log 3log 23=,故原式=23 5.B 解析:ab >0,故a 、b 同号;当a 、b 同小于0时,①②不成立;当ab =1时,④不成立,故只有③对。

高一数学必修一 第二章一元二次函数、方程和不等式单元测试试卷 (3)

高一数学必修一 第二章一元二次函数、方程和不等式单元测试试卷 (3)

高一数学必修一第二章一元二次函数、方程和不等式单元测试试卷 (3)数学第二章测试卷A卷本试卷满分100分,考试时间80分钟。

一、单项选择题(本大题共5小题,每小题5分,共计25分。

在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案填涂在答题卡相应位置上)1.若$a+b+c=0$,且$a<b<c$,则下列不等式一定成立的是A。

$ab<bc$B。

$ab<ac$XXX<bc$D。

$ab<bc$2.已知正数$a$、$b$满足$\frac{22}{1194}+\frac{a}{b}=1$,则$\frac{a}{b}+\frac{b}{a}$的最小值是A。

6B。

12C。

24D。

363.已知二次函数$f(x)=x^2+bx+c$的两个零点分别在区间$(-2,-1)$和$(-1,0)$内,则$f(3)$的取值范围是A。

$(12,20)$B。

$(12,18)$C。

$(18,20)$D。

$(8,18)$4.若$x>0$,$y>0$,且$\frac{2}{x+1}+\frac{1}{x+2y}=1$,则$2x+y$的最小值为A。

2B。

$\frac{2}{3}$C。

$2+\frac{2}{3}$D。

$3$5.关于$x$的不等式$(ax-1)<x$恰有2个整数解,则实数$a$的取值范围是A。

$-\frac{34}{43}<a\leq-\frac{3}{4}$或$\frac{4}{3}<a\leq\frac{43}{34}$B。

$-\frac{3}{4}<a\leq-\frac{2}{3}$或$\frac{2}{3}<a\leq\frac{3}{4}$C。

$-\frac{34}{43}\leq a<-\frac{3}{4}$或$\frac{4}{3}\leq a<\frac{43}{34}$D。

$-\frac{3}{4}\leq a<-\frac{2}{3}$或$\frac{2}{3}\leq a\leq\frac{3}{4}$二、多项选择题(本大题共2小题,每小题5分,共计10分。

新版高一数学必修第一册第三章全部配套练习题(含答案和解析)

新版高一数学必修第一册第三章全部配套练习题(含答案和解析)

新版高一数学必修第一册第三章全部配套练习题(含答案和解析)3.1.1 函数的概念基 础 练巩固新知 夯实基础1.下列说法正确的是( )A .函数值域中每一个数在定义域中一定只有一个数与之对应B .函数的定义域和值域可以是空集C .函数的定义域和值域一定是数集D .函数的定义域和值域确定后,函数的对应关系也就确定了2.若函数y =f (x )的定义域M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )3.函数f (x )=x -1x -2的定义域为( ) A .[1,2)∪(2,+∞) B .(1,+∞) C .[1,2)D .[1,+∞)4.已知函数f (x )的定义域为[-1,2),则函数f (x -1)的定义域为( )A .[-1,2)B .[0,2)C .[0,3)D .[-2,1)5.函数y =5x +4x -1的值域是( )A .(-∞,5)B .(5,+∞)C .(-∞,5)∪(5,+∞)D .(-∞,1)∪(1,+∞) 6.函数y =x +1的值域为( )A .[-1,+∞)B .[0,+∞)C .(-∞,0]D .(-∞,-1]7.已知函数f (x )=x +1x,则f (2)+f (-2)的值是( )A .-1B .0C .1D .2 8.下列函数完全相同的是( )A .f (x )=|x |,g (x )=(x )2B .f (x )=|x |,g (x )=x 2C .f (x )=|x |,g (x )=x 2x D .f (x )=x 2-9x -3,g (x )=x +39.求下列函数的定义域:(1)f (x )=1x +1; (2)y =x 2-1+1-x 2; (3)y =2x +3; (4)y =x +1x 2-1.10.求下列函数的值域:(1)y =2x +1,x ∪{1,2,3,4,5}; (2)y =x 2-4x +6,x ∪[1,5); (3)y =3-5x x -2; (4)y =x -x +1.能 力 练综合应用 核心素养11.已知等腰∪ABC 的周长为10,则底边长y 关于腰长x 的函数关系为y =10-2x ,此函数的定义域为( )A .RB .{x |x >0}C .{x |0<x <5}D.⎩⎨⎧x ⎪⎪⎭⎬⎫52<x <5 12.函数f (x )=1x 2+1(x ∪R )的值域是( )A .(0,1)B .(0,1]C .[0,1)D .[0,1]13.函数y =f (x )的图象与直线x =a 的交点个数有( )A .必有一个B .一个或两个C .至多一个D .可能两个以上 14.函数y =3-2x -x 2+14-x 2的定义域为____________________(用区间表示).15.函数y =1x -2的定义域是A ,函数y =x 2+2x -3的值域是B ,则A ∩B =________________(用区间表示).16.若函数f (2x -1)的定义域为[0,1),则函数f (1-3x )的定义域为________. 17.若函数y =ax 2+2ax +3的值域为[0,+∞),则a 的取值范围是________. 18.已知函数f (x )=x 21+x 2.(1)求f (2)+f ⎝⎛⎭⎫12,f (3)+f ⎝⎛⎭⎫13的值. (2)求证:f (x )+f ⎝⎛⎭⎫1x 是定值.(3)求f (2)+f ⎝⎛⎭⎫12+f (3)+f ⎝⎛⎭⎫13+…+f (2019)+f ⎝⎛⎭⎫12019的值.19.已知函数y =mx 2-6mx +m +8的定义域是R ,求实数m 的取值范围.20.已知函数f (x )=3-x +1x +2的定义域为集合A ,B ={x |x <a }. (1)求集合A ;(2)若A ∪B ,求a 的取值范围;(3)若全集U ={x |x ≤4},a =-1,求∪U A 及A ∩(∪U B ).【参考答案】1. C 解析 根据从集合A 到集合B 函数的定义可知,强调A 中元素的任意性和B 中对应元素的唯一性,所以A 中的多个元素可以对应B 中的同一个元素,从而选项A 错误;同样由函数定义可知,A 、B 集合都是非空数集,故选项B 错误;选项C 正确;对于选项D ,可以举例说明,如定义域、值域均为A ={0,1}的函数,对应关系可以是x →x ,x ∪A ,可以是x →x ,x ∪A ,还可以是x →x 2,x ∪A .2. B 解析 A 中定义域是{x |-2≤x ≤0},不是M ={x |-2≤x ≤2},C 中图象不表示函数关系,D 中值域不是N ={y |0≤y ≤2}.3. A 解析 由题意知,要使函数有意义,需满足⎩⎪⎨⎪⎧x -1≥0,x -2≠0即x ≥1且x ≠2.4. C 解析 ∪f (x )的定义域为[-1,2),∪-1≤x -1<2,得0≤x <3,∪f (x -1)的定义域为[0,3).5. C 解析 ∪y =5x +4x -1=5(x -1)+9x -1=5+9x -1,且9x -1≠0,∪y ≠5,即函数的值域为(-∞,5)∪(5,+∞).6. B 解析 由于x +1≥0,所以函数y =x +1的值域为[0,+∞).7. B 解析 f (2)+f (-2)=2+12-2-12=0.8. B 解析 A 、C 、D 的定义域均不同.9. 解 (1)要使函数有意义,即分式有意义,则x +1≠0,x ≠-1.故函数的定义域为{x |x ≠-1}.(2)要使函数有意义,则⎩⎪⎨⎪⎧ x 2-1≥0,1-x 2≥0,即⎩⎪⎨⎪⎧x 2≥1,x 2≤1.所以x 2=1,从而函数的定义域为{x |x =±1}={1,-1}. (3)函数y =2x +3的定义域为{x |x ∪R }.(4)因为当x 2-1≠0,即x ≠±1时,x +1x 2-1有意义,所以原函数的定义域是{x |x ≠±1,x ∪R }.10. 解 (1)∪x ∪{1,2,3,4,5},∪(2x +1)∪{3,5,7,9,11},即所求函数的值域为{3,5,7,9,11}.(2)y =x 2-4x +6=(x -2)2+2. ∪x ∪[1,5),∪其图象如图所示, 当x =2时,y =2;当x =5时,y =11. ∪所求函数的值域为[2,11).(3)函数的定义域为{x |x ≠1},y =3-5x x -2=-5(x -2)+7x -2=-5-7x -2,所以函数的值域为{y |y ≠-5}.(4)要使函数式有意义,需x +1≥0,即x ≥-1,故函数的定义域为{x |x ≥-1}.设t =x +1,则x =t 2-1(t ≥0),于是y =t 2-1-t =⎝⎛⎭⎫t -122-54,又t ≥0,故y ≥-54,所以函数的值域为{y |y ≥-54}. 11. D 解析 ∪ABC 的底边长显然大于0,即y =10-2x >0,∪x <5,又两边之和大于第三边,∪2x >10-2x ,x >52,∪此函数的定义域为⎩⎨⎧x ⎪⎪⎭⎬⎫52<x <5.12. B 解析 由于x ∪R ,所以x 2+1≥1,0<1x 2+1≤1,即0<y ≤1.13. C 解析 当a 在f (x )定义域内时,有一个交点,否则无交点.14. [-1,2)∪(2,3] 解析 使根式3-2x -x 2有意义的实数x 的集合是{x |3-2x -x 2≥0}即{x |(3-x )(x +1)≥0}={x |-1≤x ≤3},使分式14-x 2有意义的实数x 的集合是{x |x ≠±2},所以函数y =3-2x -x 2+14-x 2的定义域是{x |-1≤x ≤3}∩{x |x ≠±2}={x |-1≤x ≤3,且x ≠2}.15. [0,2)∪(2,+∞) 解析 要使函数式y =1x -2有意义,只需x ≠2,即A ={x |x ≠2};函数y =x 2+2x -3=(x +1)2-4≥0,即B ={y |y ≥0},则A ∩B ={x |0≤x <2或x >2}.16. ⎝⎛⎦⎤0,23 解 因为f (2x -1)的定义域为[0,1),即0≤x <1,所以-1≤2x -1<1.所以f (x )的定义域为[-1,1).所以-1≤1-3x <1,解得0<x ≤23.所以f (1-3x )的定义域为⎝⎛⎦⎤0,23. 17. [3,+∞) 解析 函数y =ax 2+2ax +3的值域为[0,+∞),则函数f (x )=ax 2+2ax +3的值域要包括0,即最小值要小于等于0.则{ a >0,Δ=4a 2-12a ≥0,解得a ≥3.所以a 的取值范围是[3,+∞).18. 解 (1)因为f (x )=x 21+x 2,所以f (2)+f ⎝⎛⎭⎫12=221+22+⎝⎛⎭⎫1221+⎝⎛⎭⎫122=1,f (3)+f ⎝⎛⎭⎫13=321+32+⎝⎛⎭⎫1321+⎝⎛⎭⎫132=1. (2)证明:f (x )+f ⎝⎛⎭⎫1x =x 21+x 2+⎝⎛⎭⎫1x 21+⎝⎛⎭⎫1x 2=x 21+x 2+1x 2+1=x 2+1x 2+1=1. (3)由(2)知f (x )+f ⎝⎛⎭⎫1x =1,所以f (2)+f ⎝⎛⎭⎫12=1,f (3)+f ⎝⎛⎭⎫13=1,f (4)+f ⎝⎛⎭⎫14=1,…,f (2019)+f ⎝⎛⎭⎫12019=1. 所以f (2)+f ⎝⎛⎭⎫12+f (3)+f ⎝⎛⎭⎫13+…+f (2019)+f ⎝⎛⎭⎫12019=2018. 19. 解 ∪当m =0时,y =8,其定义域是R .∪当m ≠0时,由定义域为R 可知,mx 2-6mx +m +8≥0对一切实数x 均成立,于是有⎩⎪⎨⎪⎧m >0,Δ=(-6m )2-4m (m +8)≤0,解得0<m ≤1.由∪∪可知,m ∪[0,1]. 20. 解 (1)使3-x 有意义的实数x 的集合是{x |x ≤3},使1x +2有意义的实数x 的集合是{x |x >-2}. 所以,这个函数的定义域是{x |x ≤3}∩{x |x >-2}={x |-2<x ≤3}.即A ={x |-2<x ≤3}. (2)因为A ={x |-2<x ≤3},B ={x |x <a }且A ∪B ,所以a >3.(3)因为U ={x |x ≤4},A ={x |-2<x ≤3},所以∪U A =(-∞,-2]∪(3,4]. 因为a =-1,所以B ={x |x <-1},所以∪U B =[-1,4],所以A ∩∪U B =[-1,3].3.1.2 函数的表示法基 础 练巩固新知 夯实基础1.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速行驶.与以上事件吻合得最好的图象是( )2.已知f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )=( )A .3x +2B .3x -2C .2x +3D .2x -33.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ∪[-1,0],x 2+1,x ∪0,1],则函数f (x )的图象是( )4.已知函数y =f (x )的对应关系如下表,函数y =g (x )的图象是如图的曲线ABC ,其中A (1,3),B (2,1),C (3,2),则f [g (2)]的值为( )A .3B .2C .1D .0 5.函数f (x )=⎩⎪⎨⎪⎧2x 2,0≤x ≤1,2,1<x <2,3,x ≥2的值域是( )A.RB.[0,+∞)C.[0,3]D.{x |0≤x ≤2或x =3} 6.设f (x )=⎩⎪⎨⎪⎧x +1,x >0,1,x =0,-1,x <0,则f (f (0))等于( )A.1B.0C.2D.-17.已知f (2x +1)=3x -2且f (a )=4,则a 的值为________.8.已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x )的解析式.9.已知二次函数f (x )满足f (0)=0,且对任意x ∪R 总有f (x +1)=f (x )+x +1,求f (x ).10 (1)已知f (x +1x )=x 2+1x2,求f (x )的解析式.(2)已知f (x )满足2f (x )+f (1x )=3x ,求f (x )的解析式.(3)已知f (x )+2f (-x )=x 2+2x ,求f (x )的解析式.能 力 练综合应用 核心素养11.如果f ⎝⎛⎭⎫1x =x1-x ,则当x ≠0,1时,f (x )等于( )A.1xB.1x -1C.11-xD.1x-1 12.已知x ≠0时,函数f (x )满足f (x -1x )=x 2+1x 2,则f (x )的表达式为( )A .f (x )=x +1x (x ≠0) B .f (x )=x 2+2(x ≠0)C .f (x )=x 2(x ≠0)D .f (x )=(x -1x)2(x ≠0)13.已知函数y =⎩⎪⎨⎪⎧x 2+1,x ≤0,-2x ,x >0,则使函数值为5的x 的值是( )A.-2或2B.2或-52C.-2D.2或-2或-5214.若f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )=( )A .3x +2B .3x -2C .2x +3D .2x -3 15.已知f (x -1)=x 2,则f (x )的解析式为( )A .f (x )=x 2+2x +1B .f (x )=x 2-2x +1C .f (x )=x 2+2x -1D .f (x )=x 2-2x -116.已知f (n )=⎩⎪⎨⎪⎧n -3,n ≥10,f f n +5,n <10,则f (8)=________.17.已知函数y =f (x )满足f (x )=2f (1x )+x ,则f (x )的解析式为____________.18. 已知函数f (x )=1+|x |-x2(-2<x ≤2).(1)用分段函数的形式表示该函数; (2)画出该函数的图象; (3)写出该函数的值域.19.设f (x )是R 上的函数,且满足f (0)=1,并且对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1),求f (x )的解析式.【参考答案】1. C 解析 先分析小明的运动规律,再结合图象作出判断.距学校的距离应逐渐减小,由于小明先是匀速运动,故前段是直线段,途中停留时距离不变,后段加速,直线段比前段下降的快,故应选C.2. B 解析 设f (x )=kx +b (k ≠0),∪2f (2)-3f (1)=5,2f (0)-f (-1)=1,∪⎩⎪⎨⎪⎧ k -b =5k +b =1,∪⎩⎪⎨⎪⎧k =3b =-2,∪f (x )=3x -2. 3. A 解析 当x =-1时,y =0,排除D ;当x =0时,y =1,排除C ;当x =1时,y =2,排除B. 4. B 解析 由函数g (x )的图象知,g (2)=1,则f [g (2)]=f (1)=2.5. D 解析 当0≤x ≤1时,f (x )∪[0,2],当1<x <2时,f (x )=2,当x ≥2时,f (x )=3, ∪值域是{x |0≤x ≤2或x =3}.6. C7. 5 解析 ∪f (2x +1)=3x -2=32(2x +1)-72,∪f (x )=32x -72,∪f (a )=4,即32a -72=4,∪a =5.8. 解 设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b ,即ax +5a +b =2x +17不论x 为何值都成立,∪⎩⎪⎨⎪⎧ a =2,b +5a =17,解得⎩⎪⎨⎪⎧a =2,b =7,∪f (x )=2x +7. 9. 解 设f (x )=ax 2+bx +c (a ≠0),∪f (0)=c =0,∪f (x +1)=a (x +1)2+b (x +1)+c =ax 2+(2a +b )x +a +b , f (x )+x +1=ax 2+bx +x +1=ax 2+(b +1)x +1.∪⎩⎪⎨⎪⎧2a +b =b +1,a +b =1. ∪⎩⎨⎧a =12,b =12.∪f (x )=12x 2+12x .10. 解 (1)∪f (x +1x )=x 2+1x 2=(x +1x )2-2,且x +1x ≥2或x +1x ≤-2,∪f (x )=x 2-2(x ≥2或x ≤-2).(2)∪2f (x )+f (1x )=3x ,∪把∪中的x 换成1x ,得2f (1x )+f (x )=3x .∪, ∪×2-∪得3f (x )=6x -3x ,∪f (x )=2x -1x (x ≠0).(3)以-x 代x 得:f (-x )+2f (x )=x 2-2x .与f (x )+2f (-x )=x 2+2x 联立得:f (x )=13x 2-2x .11. B 解析 令1x =t ,则x =1t ,代入f ⎝⎛⎭⎫1x =x 1-x ,则有f (t )=1t1-1t =1t -1,故选B. 12. B 解析 ∪f (x -1x )=x 2+1x 2=(x -1x)2+2,∪f (x )=x 2+2(x ≠0).13. C14. B 解析 设f (x )=ax +b ,由题设有⎩⎪⎨⎪⎧ 2(2a +b )-3(a +b )=5,2(0·a +b )-(-a +b )=1.解得⎩⎪⎨⎪⎧a =3,b =-2.所以选B.15. A 解析 令x -1=t ,则x =t +1,∪f (t )=f (x -1)=(t +1)2=t 2+2t +1,∪f (x )=x 2+2x +1.16. 7 解析 因为8<10,所以代入f (n )=f (f (n +5)),即f (8)=f (f (13));因为13>10,所以代入f (n )=n -3,得f (13)=10,故得f (8)=f (10)=10-3=7.17. f (x )=-x 2+23x (x ≠0) 解析 ∪f (x )=2f (1x )+x ,∪∪将x 换成1x ,得f (1x )=2f (x )+1x .∪由∪∪消去f (1x ),得f (x )=-23x -x3,即f (x )=-x 2+23x(x ≠0).18.解 (1)∪当0≤x ≤2时,f (x )=1+x -x 2=1;∪当-2<x <0时,f (x )=1+-x -x2=1-x .所以f (x )=⎩⎪⎨⎪⎧1,0≤x ≤2,1-x ,-2<x <0.(2)函数f (x )的图象如图所示.(3)由函数f (x )的图象知,f (x )在(-2,2]上的值域为[1,3).19 .解 因为对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1),所以令y =x ,有f (0)=f (x )-x (2x -x +1),即f (0)=f (x )-x (x +1). 又f (0)=1,∪f (x )=x (x +1)+1=x 2+x +1.3.2.1 第1课时 函数的单调性基 础 练巩固新知 夯实基础1.函数f (x )的定义域为(a ,b ),且对其内任意实数x 1,x 2均有(x 1-x 2)(f (x 1)-f (x 2))<0,则f (x )在(a ,b )上( ) A .增函数B .减函数C .不增不减函数D .既增又减函数2.若函数f (x )在区间(a ,b )上是增函数,在区间(b ,c )上也是增函数,则函数f (x )在区间(a ,b )∪(b ,c )上( )A .必是增函数B .必是减函数C .是增函数或减函数D .无法确定单调性3.如果函数f (x )在[a ,b ]上是增函数,那么对于任意的x 1,x 2∪[a ,b ](x 1≠x 2),下列结论中不正确的是( ) A.f x 1-f x 2x 1-x 2>0B .(x 1-x 2)[f (x 1)-f (x 2)]>0C .若x 1<x 2,则f (a )<f (x 1)<f (x 2)<f (b ) D.x 1-x 2f x 1-f x 2>0 4.对于函数y =f (x ),在给定区间上有两个数x 1,x 2,且x 1<x 2,使f (x 1)<f (x 2)成立,则y =f (x )( )A .一定是增函数B .一定是减函数C .可能是常数函数D .单调性不能确定5.下列函数中,在(-∞,0]内为增函数的是( ) A .y =x 2-2 B .y =3xC .y =1+2xD .y =-(x +2)26.已知函数f (x )=x 2+bx +c 的图象的对称轴为直线x =1,则( )A .f (-1)<f (1)<f (2)B .f (1)<f (2)<f (-1)C .f (2)<f (-1)<f (1)D .f (1)<f (-1)<f (2)7.若函数f (x )=2x 2-mx +3,当x ∪[-2,+∞)时是增函数,当x ∪(-∞,-2)时是减函数,则f (1)=________.8.已知函数f (x )=⎩⎪⎨⎪⎧(a -3)x +5,x ≤1,2a x ,x >1是R 上的减函数,则实数a 的取值范围是 。

(人教版A版2017课标)高中数学必修第一册 全册综合测试卷三(附答案)

(人教版A版2017课标)高中数学必修第一册 全册综合测试卷三(附答案)

(人教版A 版2017课标)高中数学必修第一册 全册综合测试卷三(附答案)第一章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}21,0,1,2A =--,,{}|1B y y x x A ==-∈,,则下列关系正确的是( )A .AB =B .A B ⊆C .B A ⊆D .A B =∅∩2.已知集合{}2|320A x ax x =-+=中有且只有一个元素,那么实数a 的取值集合是( )A .98⎧⎫⎨⎬⎩⎭B .908⎧⎫⎨⎬⎩⎭,C .{}0D .203⎧⎫⎨⎬⎩⎭, 3.已知函数()()12232x x x f x f x x +⎧⎪-=⎨⎪+⎩,>,,≤,则()2f 的值等于( )A .4B .3C .2D .无意义4.已知函数()f x 的定义域为R ,则实数k 的取值范围是( )A .()()00-∞+∞,∪,B .[]04,C .[)04,D .()04,5.已知两个函数()f x 和()g x 的定义域和值域都是集合{}123,,,其定义如表所示,则()()f g x 对应的三个值依次为( )A .2,1,3B .1,2,3C .3,2,1D .1,3,26.已知函数()221x f x x =+,则()()()()1111234234f f f f f f f ⎛⎫⎛⎫⎛⎫++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .3B .4C .72D .927.设全集为R ,函数()01x f x +=定义域为M ,则M =R ð( )A .{}|2x x ≥B .{}|21x x x -<且≠C .{}|21x x x -≥或=D .{}|21x x x ->或=8.若函数()()221341x x x f x a x a x ⎧-+⎪=⎨-+⎪⎩,<,,≥满足对任意实数12x x ≠,都有()()12120f x f x x x -->成立,则实数a 的取值范围是( )A .()1+∞,B .[)13,C .233⎡⎫-⎪⎢⎣⎭, D .()3-∞,9.已知()f x 是奇函数,()g x 是偶函数,且()()112f g -+=,()()114f g +-=,则()1g 等于( ) A .4B .3C .2D .110.已知()22f x x ax =-+与()ag x x=在区间[]12,上都是减函数,则a 的取值范围为( )A .()01,B .(]01,C .()()1001-,∪, D .[)(]1001-,∪, 11.已知(){}2min 26f x x x x x =--,,,则()f x 的值域是( )A .(]2-∞,B .(]3-∞,C .[]02,D .[)2+∞,12.已知定义域为R 的函数()f x 在区间()4+∞,上为减函数,且函数()4y f x =+为偶函数,则( ) A .()()23f f >B .()()25f f >C .()()35f f >D .()()36f f >二、填空题:本大题共4小题,每小题5分,共20分.13.设集合{}24A t =-,,集合{}591B t t =--,,,若9A B ∈∩,则实数t =________.14.)13fx =+,则()f x =________.15.若函数y =的定义域为R ,则a 的取值范围为________. 16.已知函数()y f x =在()()00-∞+∞,∪,上为奇函数,且在()0+∞,上为增函数,()20f -=,则不等式()x f x ⋅<0的解集为________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知函数()mf x x x=+,且()13f =. (1)求m ;(2)判断函数()f x 的奇偶性.18.(本小题满分12分)设全集U =R ,{}|13A x x =≤≤,{}|23B x a x a =+<<. (1)当1a =时,求()U A B ∩ð;(2)若()U A B B =∩ð,求实数a 的取值范围.19.(本小题满分12分)设函数()()21f x ax bx a b =++,为实数,()()()00.f x x F x f x x ⎧⎪=⎨-⎪⎩,>,,<(1)若()10f -=,且对任意实数x 均有()0f x ≥成立,求()F x 的表达式;(2)在(1)的条件下,当[]22x ∈-,时,()()g x f x kx =-是单调函数,求实数k 的取值范围.20.(本小题满分12分)“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v (单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当04x <≤时,v 的值为2千克/年;当420x <≤时,v 是x 的一次函数;当20x >时,因缺氧等原因,v 的值为0千克/年. (1)当020x <≤时,求v 关于x 的函数表达式.(2)当养殖密度x 为多少时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.21.(本小题满分12分)定义在()11-,上的函数()f x 满足()()f x f x -=-,且()()1120f a f a -+-<.若()f x 是()11-,上的减函数,求实数a 的取值范围.22.(本小题满分12分)已知()f x 是二次函数,()()050f f ==,且()112f -=. (1)求()f x 的解析式;(2)求()f x 在[]0m ,上的最小值()g m ;(3)对(2)中的()g m ,求不等式()()21g t g t -<的解集.第一章综合测试答案解析一、 1.【答案】C【解析】由集合{}21,0,1,2A =--,,{}|1B y y x x A ==-∈,,得{}101B =-,,.又因为集合{}21,0,1,2A =--,,所以B A ⊆,故选C .2.【答案】B【解析】Q 集合{}2|320A x ax x =-+=中有且只有一个元素,0a ∴=或0980a a ⎧⎨∆=-=⎩≠,,解得0a =或98a =,∴实数a 的取值集合是908⎧⎫⎨⎬⎩⎭,. 3.【答案】C【解析】()()12232x x x f x f x x +⎧⎪-=⎨⎪+⎩Q ,>,,≤,()()5125252f f +∴===-.故选C .4.【答案】B【解析】()f x Q 的定义域为R ,∴不等式210kx kx ++≥的解集为R .①当0k =时,10≥恒成立,满足题意;②当0k ≠时,2040k k k ⎧⎨∆=-⎩>,≤,解得04k <≤.综上,04k ≤≤.故选B . 5.【答案】A【解析】当1x =时,()11g =,()()()112f g f ==;当2x =时,()23g =,()()()231f g f ==;当3x =时,()32g =,()()()323f g f ==,故选A . 6.【答案】C【解析】因为()221x f x x =+,所以222111111x f x x x ⎛⎫⎪⎛⎫⎝⎭== ⎪+⎝⎭⎛⎫+ ⎪⎝⎭,所以()11f x f x ⎛⎫+= ⎪⎝⎭, 故()()()()1111712343234112f f f f f f f ⎛⎫⎛⎫⎛⎫++++++=+= ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭.故选C . 7.【答案】C【解析】要使函数有意义,则120x x +⎧⎨-⎩≠0,>,得2x <且1x -≠,所以{}|21M x x x =<且≠-,所以{}|2M x x x ==R ≥或-1ð.故选C . 8.【答案】C【解析】Q 对任意实数12x x ≠,都有()()12120f x f x x x -->成立,()f x ∴在R 上是增函数,()230314121a a a -⎧⎪∴⎨-⨯+-+⨯⎪⎩>,≥,解得233a -≤<.故选C . 9.【答案】B【解析】()f x Q 是奇函数,()()11f f -=-. 又()g x Q 是偶函数,()()11g g ∴-=.()()()()112112f g g f -+=∴-=Q ,.① ()()()()114114f g f g +-=∴+=Q ,.②由①②,得()13g =. 10.【答案】B【解析】()()2222f x x ax x a a =-+=--+,其单调递减区间为()a ∞,+,()f x 在区间[]12,上是减函数,则1a ≤.又()ag x x=在区间[]12,上是减函数,则0a >.01a ∴<≤.11.【答案】B【解析】(){}2min 26f x x x x x =--Q ,,,的同一平面直角坐标系中分别作出22y x x =-,6y x =-,y x =的图像,并取其函数值较小的部分,如图所示.则由图像可知函数(){}2min 26f x x x x x =--,,的值域为(]3-∞,,故选B . 12.【答案】D【解析】()4y f x =+Q 为偶函数,()()44f x f x ∴-+=+.令2x =,得()()()()224246f f f f =-+=+=,同理,()()35f f =.又知()f x 在()4+∞,上为减函数,56Q <,()()56f f ∴>.()()23f f ∴<,()()()265f f f =<,()()()356f f f =>.故选D . 二、13.【答案】3-【解析】{}24A t =-Q ,,{}591B t t =--,,,且9A B ∈∩,29t ∴=,解得3t =或3t =-,当3t =时,根据集合元素互异性知不符合题意,舍去;当3t =-时,符合题意.14.【答案】()()2131x x -+≥【解析】由题设1t =,()21x t ∴=-,1t ≥,()()213f t t ∴=-+,()()()2131f x x x ∴=-+≥. 15.【答案】[]19,【解析】Q函数y =的定义域为R ,()()2221101a x a x a ∴-+-++≥恒成立. 当210a -=时,1a =±,当1a =时,不等式恒成立,当1a =-时,无意义;当210a -≠时,()()22210214101a a a a ⎧-⎪⎨∆=---⋅⎪+⎩>,≤,解得19a <≤.综上所述,a 的取值范围为[]19,. 16.【答案】()()2002-,∪, 【解析】根据题意画出()f x 的大致图像,如图所示.由图像可知当20x -<<或02x <<时,()0x f x ⋅<. 三、17.【答案】解(1)()13f =Q ,13m ∴+=,2m ∴=. (2)由(1)知,()2f x x x=+,其定义域是{}|0x x x ∈R ≠,,关于原点对称. 又()()22f x x x f x x x ⎛⎫-=--=-+=- ⎪⎝⎭Q ,∴函数()f x 是奇函数. 18.【答案】解(1)当1a =时,{}|24B x x =<<.{}|13A x x =Q ≤≤,{}|13U A xx x ∴=<或>ð,(){}|34U A B x x ∴=∩<<ð.(2)若()U A B B =∩ð,则U B A ⊆ð. ①B =∅时,23a a +≥,则3a ≥;②B ∅≠时,2331a a a +⎧⎨+⎩<,≤或2323a a a +⎧⎨⎩<,≥,则2a -≤或332a ≤<.综上,实数a 的取值范围是(]322⎡⎫-∞-+∞⎪⎢⎣⎭,∪,. 19.【答案】解(1)()10f -=Q ,1b a ∴=+,由()0f x ≥恒成立,知0a >且()()22241410b a a a a ∆=-=+-=-≤,1a ∴=,从而()221f x x x =++,()()()221010.x x F x x x ⎧+⎪∴=⎨-+⎪⎩,>,,< (2)由(1)可知()221f x x x =++,()()()221g x f x kx x k x ∴=-=+-+. ()g x Q 在[]22-,上是单调函数, 222k -∴--≤或222k--≥,解得2k -≤或6k ≥. 即实数k 的取值范围是(][)26-∞-+∞,∪,. 20.【答案】解(1)由题意得当04x <≤时,2v =. 设当420x <≤时,v ax b =+,由已知得20042a b a b +=⎧⎨+=⎩,,解得1852a b ⎧=-⎪⎪⎨⎪=⎪⎩,,所以1582v x =-+.故函数20415420.82x v x x ⎧⎪=⎨-+⎪⎩,<≤,,<≤ (2)设鱼的年生长量为()f x 千克/立方米,依题意,由(1)可得()220415420.82x x f x x x x ⎧⎪=⎨-+⎪⎩,<≤,,<≤当04x <≤时,()f x 为增函数,故()()max 4428f x f ==⨯=;当420x <≤时,()()2215125108282f x x x x =-+=--+,()()max 1012.5f x f ==.所以当020x <≤时,()f x 的最大值为12.5,即当养殖密度x 为10尾/立方米时,鱼的年生长量可以达到最大,最大值为12.5千克/立方米. 21.【答案】解:由()()1120f a f a -+-<, 得()()112f a f a ---<.()()f x f x -=-Q ,()11x ∈-,, ()()121f a f a ∴--<. 又()f x Q 是()11-,上的减函数, 1111211121,a a a a --⎧⎪∴--⎨⎪--⎩<<,<<,>解得203a <<. 故实数a 的取值范围是203⎛⎫⎪⎝⎭,.22.【答案】解(1)因为()f x 是二次函数,且()()050f f ==, 所以设()()()50f x ax x a =-≠. 又因为()1612f a -==,所以2a =,所以()()225210f x x x x x =-=-.(2)由(1)知()f x 的对称轴为52x =, 当502m <≤时,()f x 在区间[]0m ,上单调递减,所以()f x 的最小值为()2210f m m m =-;当52m >时,()f x 在区间502⎡⎤⎢⎥⎣⎦,上单调递减,在区间52m ⎡⎤⎢⎥⎣⎦,上单调递增,所以()f x 的最小值为52522f ⎛⎫=- ⎪⎝⎭.综上所述,()()2min521002255.22m m m f x g m m ⎧-⎪⎪==⎨⎪-⎪⎩,<≤,,>(3)因为()()21g t g t -<,所以210215212t t t t ⎧⎪-⎪-⎨⎪⎪-⎩>,<,<,解得112t <<,即不等式()()21g t g t -<的解集为1|12t t ⎧⎫⎨⎬⎩⎭<<.第二章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列等式一定正确的是( ) A .()lg lg lg xy x y =+B .222m n m n ++=C .222m n m n +⋅=D .2ln 2ln x x =2.若函数()12122m y m m x -=+-是幂函数,则m =( )A .1B .3-C .3-或1D .23.下列函数既是增函数,图像又关于原点对称的是( ) A .y x x =B .x y e =C .1y x=-D .2log y x =4.函数()ln 3y x =- )A .[)23,B .[)2+∞,C .()3-∞,D .()23,5.下列各函数中,值域为()0∞,+的是( ) A .22xy -= B.y C .21y x x =++D .113x y +=6.已知()x f x a =,()()log 01a g x x a a =>,且≠,若()()330f g <,那么()f x 与()g x 在同一坐标系内的图像可能是( )ABCD7.已知0.2log 2.1a =, 2.10.2b =,0.22.1c =则( ) A .c b a <<B .c a b <<C .a b c <<D .a c b <<8.已知()()221122x a x x f x x ⎧-⎪=⎨⎛⎫-⎪ ⎪⎝⎭⎩,≥,,<是R 上的减函数,则实数a 的取值范围是( )A .()2-∞,B .138⎛⎤-∞ ⎥⎝⎦,C .()02,D .1328⎡⎫⎪⎢⎣⎭, 9.已知函数()y f x =是定义在R 上的偶函数,当0x ≥时,()2x f x e x =+,则()ln 2f -=( ) A .12ln 22- B .12ln 22+ C .22ln2-D .22ln2+10.已知函数()()()x xf x x e ae x -=+∈R ,若()f x 是偶函数,记a m =;若()f x 是奇函数,记a n =.则2m n +的值为( ) A .0B .1C .2D .1-11.已知实数a ,b 满足等式20172018a b =,则下列关系式不可能成立的是( ) A .0a b << B .0a b << C .0b a <<D .a b =12.已知函数()221222log x mx m x m f x x x m ⎧-++⎪=⎨⎪⎩,≤,,>,其中01m <<,若存在实数a ,使得关于x 的方程()f x a =恰有三个互异的实数解,则实数m 的取值范围是( )A .104⎛⎫ ⎪⎝⎭,B .102⎛⎫ ⎪⎝⎭,C .114⎛⎫ ⎪⎝⎭,D .112⎛⎫ ⎪⎝⎭, 二、填空题:本大题共4小题,每小题5分,共20分.13.满足31164x -⎛⎫⎪⎝⎭>的x 的取值范围是________.14.若函数()212log 35y x ax =-+在[)1-+∞,上是减函数,则实数a 的取值范围是________.15.如图,矩形ABCD 的三个顶点A ,B ,C分别在函数y x =,12y x =,xy =⎝⎭的图像上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为________.16.定义新运算⊗:当m n ≥时,m n m ⊗=;当m n <时,m n n ⊗=.设函数()()()2221log 2xx f x x ⎡⎤⊗-⊗⋅⎣⎦,则函数()f x 在()02,上的值域为________. 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)计算下列各式的值: (1)7015log 243210.06470.250.58--⎛⎫--++⨯ ⎪⎝⎭;(2)()2235lg5lg2lg5lg20log 25log 4log 9+⨯++⨯⨯.18.(本小题满分12分)已知定义域为R 的单调函数()f x 是奇函数,当0x >时,()23x xf x =-. (1)求()f x 的解析式;(2)若对任意的t ∈R ,不等式()()22220f t t f t k -+-<恒成立,求实数k 的取值范围.19.(本小题满分12分)已知实数x 满足9123270x x -⋅+≤,函数()2log 2xf x =⋅. (1)求实数x 的取值范围;(2)求函数()f x 的最值,并求此时x 的值.20.(本小题满分12分)已知函数()x f x a =,()2x g x a m =+,其中0m >,0a >且1a ≠.当[]11x ∈-,时,()y f x =的最大值与最小值之和为52. (1)求a 的值;(2)若1a >,记函数()()()2h x g x mf x =-,求当[]0x ∈,1时,()h x 的最小值()H m .21.(本小题满分12分)以德国数学家狄利克雷(l805-1859)命名的狄利克雷函数定义如下:对任意的x ∈R ,()10.x D x x ⎧=⎨⎩,为有理数,,为无理数研究这个函数,并回答如下问题:(1)写出函数()D x 的值域;(2)讨论函数()D x 的奇偶性;(3)若()()()212xx D x x f x D x x ⎧-⎪=⎨⎪⎩+,为有理数,+,为无理数,,求()f x 的值域.22.(本小题满分12分)若函数()f x 满足()()21log 011a a f x x a a a x ⎛⎫=⋅- ⎪-⎝⎭>,且≠. (1)求函数()f x 的解析式,并判断其奇偶性和单调性;(2)当()2x ∈-∞,时,()4f x -的值恒为负数,求a 的取值范围.第二章综合测试答案解析一、 1.【答案】C【解析】对于A ,D ,若x ,y 为非正数,则不正确;对于B ,C ,根据指数幂的运算性质知C 正确,B 错误.故选C . 2.【答案】B【解析】因为函数()12122m y m n x -=+-是幂函数,所以22211m m m +-=且≠,解得3m =-. 3.【答案】A【解析】2200x x y x x x x ⎧⎪==⎨-⎪⎩,≥,,<为奇函数且是R 上的增函数,图像关于原点对称;x y e =是R上的增函数,无奇偶性;1y x=-为奇函数且在()0-∞,和()0+∞,上单调递增,图像关于原点对称,但是函数在整个定义域上不是增函数;2log y x =在()0+∞,上为增函数,无奇偶性.故选A . 4.【答案】A【解析】函数()ln 3y x =-x 满足条件30240x x -⎧⎨-⎩>,≥,解得32x x ⎧⎨⎩<,≥,即23x ≤<,所以函数的定义域为[)23,,故选A . 5.【答案】A【解析】对于A,222xxy -⎛== ⎝⎭的值域为()0+∞,;对于B ,因为120x -≥,所以21x ≤,0x ≤,y (]0-∞,,所以021x <≤,所以0121x -≤<,所以y 的值域是[)01,;对于C ,2213124y x x x ⎛⎫=++=++ ⎪⎝⎭的值域是34⎡⎫+∞⎪⎢⎣⎭,;对于D ,因为()()1001x ∈-∞+∞+,∪,,所以113x y +=的值域是()()011+∞,∪,. 6.【答案】C【解析】由指数函数和对数函数的单调性知,函数()x f x a =与()()log 01a g x x a a =>,且≠在()0+∞,上的单调性相同,可排除B ,D .再由关系式()()330f g ⋅<可排除A ,故选C . 7.【答案】C【解析】 2.100.200.20.2log 2.1log 1000.20.21 2.1 2.1 1.a b c a b c ======∴Q <,<<,><<.故选C . 8.【答案】B【解析】由题意得,函数()()221122x a x x f x x ⎧-⎪=⎨⎛⎫-⎪ ⎪⎝⎭⎩,≥,,<是R 上的减函数,则()2201122,2a a -⎧⎪⎨⎛⎫--⨯⎪⎪⎝⎭⎩<,≥解得138a ≤,故选B .9.【答案】D【解析】Q 函数()y f x =是定义在R 上的偶函数,且当0x ≥时,()2x f x e x =+,()()ln 2ln 2ln 22ln 222ln 2f f e ∴-==+=+.故选D .10.【答案】B【解析】当()f x 是偶函数时,()()f x f x =-,即()()x x x x x e ae x e ae --+=-⋅+,即()()10x x a e e x -++=.因为上式对任意实数x 都成立,所以1a =-,即1m =-.当()f x 是奇函数时,()()f x f x =--,即()()x x x xx e ae x e ae --+=+,即()()10x x a e e x ---=.因为上式对任意实数x 都成立,所以1a =,即1n =.所以21m n +=.11.【答案】A【解析】分别画出2017x y =,2018x y =的图像如图所示,实数a ,b 满足等式20172018a b =,由图可得0a b >>或0a b <<或0a b ==,而0a b <<不成立.故选A .12.【答案】A【解析】当01m <<时,函数()221222log x mx m x m f x x x m ⎧-++⎪=≤⎨⎪⎩,≤,,>,的大致图像如图所示.Q 当x m ≤时,()()2222222f x x mx m x m =-++=-+≥,∴要使得关于x 的方程()f x a =有三个不同的根,则12log 2m >.又01m <<,解得104m <<.故选A .二、13.【答案】()1-∞,【解析】由题可得,321144x --⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭>,则32x --<,解得1x <.14.【答案】(]86--,【解析】令()235g x x ax =-+,其图像的对称轴为直线6a x =.依题意,有()1610ag ⎧-⎪⎨⎪-⎩≤,>,即68.a a -⎧⎨-⎩≤,>故(]86a ∈--,. 15.【答案】1124⎛⎫ ⎪⎝⎭,【解析】由图像可知,点()2A A x ,在函数y x =的图像上,所以2A x =,2122A x ⎛== ⎝⎭.点()2B B x ,在函数12y x =的图像上,所以122B x =,4B x =.点()4,C C y在函数2x y ⎛= ⎝⎭的图像上,所以4124C y ==⎝⎭.又因为12D A x x ==,14D C y y ==,所以点D 的坐标为1124⎛⎫ ⎪⎝⎭,. 16.【答案】()112,【解析】根据题意,当22x ≥,即1x ≥时,222x x ⊗=;当22x <,即1x <时,222x ⊗=.当2log 1x ≤,即02x <≤时,21log 1x ⊗=;当21log x <,即2x >时,221log log x x ⊗=. ()()2220122122log 2 2.x x x x xx f x x x x ⎧⎪⎪∴=-⎨⎪-⋅⎪⎩,<<,,≤≤,,> ∴①当01x <<时,()2x f x =是增函数,()12f x ∴<<; ②当12x ≤<,()221122224xxx f x ⎛⎫=-=-- ⎪⎝⎭,1222 4.x x ∴Q ≤<,≤<()221111242424f x ⎛⎫⎛⎫∴---- ⎪ ⎪⎝⎭⎝⎭≤<,即()212f x ≤<.综上,()f x 在()02,上的值域为()112,. 三、17.【答案】解(1)70515log 244321510.06470.250.51224822--⎛⎫⎛⎫--++⨯=-++⨯= ⎪ ⎪⎝⎭⎝⎭.(2)()()22352lg52lg 22lg3lg5lg 2lg5lg 20log 25log 4log 9lg5lg5lg 2lg 21lg 2lg3lg5+⨯++⨯⨯=++++⨯⨯11810=++=.18.【答案】解(1)Q 定义域为R 的函数()f x 是奇函数,()00f ∴=.Q 当0x <时,0x ->,()23x xf x --∴-=-. 又Q 函数()f x 是奇函数,()()f x f x ∴-=-,()23x xf x -∴=+. 综上所述,()2030020.3xx x x f x x xx -⎧-⎪⎪==⎨⎪⎪+⎩,>,,,,<(2)()()51003f f -==Q >,且()f x 为R 上的单调函数,()f x ∴在R 上单调递减.由()()22220f t t f t k -+-<得()()2222f t t f t k ---<. ()f x Q 是奇函数,()()2222f t t f k t ∴--<.又()f x Q 是减函数,2222t t k t ∴-->, 即2320t t k -->对任意t ∈R 恒成立,4120k ∴∆=+<,解得13k -<,即实数k 的取值范围为13⎛⎫-∞- ⎪⎝⎭,. 19.【答案】解(1)由9123270x x -⋅+≤,得()23123270xx -⋅+≤,即()()33390x x --≤,所以339x ≤≤,所以12x ≤≤,满足02x>0.所以实数x 的取值范围为[]12,.(2)()()()()2222222231log log 1log 2log 3log 2log 224x f x x x x x x ⎛⎫=⋅=--=-+=-- ⎪⎝⎭.因为12x ≤≤,所以20log 1x ≤≤.所以2log 1x =,即2x =时,()min 0f x =; 当2log 0x =,即1x =时,()max 2f x =.故函数()f x 的最小值为0,此时2x =,最大值为2,此时1x =.20.【答案】解(1)()f x Q 在[]11-,上为单调函数,()f x ∴的最大值与最小值之和为152a a -+=,2a ∴=或12a =. (2)1a Q >,2a ∴=.()2222x x h x m m =+-⋅,即()()2222xx h x m m =-⋅+.令2x t =,则()h x 可转化为()22k t t mt m =-+,其图像对称轴为直线t m =. []01x ∈Q ,,[]12t ∴∈,,∴当01m <<时,()()11H m k m ==-+;当12m ≤≤时,()()2H m k m m m ==-+; 当2m >时,()()234H m k m ==-+.综上所述,()21011234 2.m m H m m m m m m -+⎧⎪=-+⎨⎪-+⎩,<<,,≤≤,,>21.【答案】解(1)函数()D x 的值域为{}01,.(2)当x 为有理数时,则x -为无理数,则()()1D x D x -==; 当x 为无理数时,则为x -为无理数,则()()0D x D x -==. 故当x ∈R 时,()()D x D x -=,所以函数()D x 为偶函数.(3)由()D x 的定义知,()22xx x f x x ⎧⎪=⎨⎪⎩,为有理数,,为无理数.即当x ∈R 时,()2x f x =.故()f x 的值域为()0+∞,.22.【答案】解(1)令log a x t =,则t x a =,()()21t t af t a a a -∴=--. ()()()21x x af x a a x a -∴=-∈-R .()()()()2211x x x x a af x a a a a f x a a ---=-=--=---Q ,()f x ∴为奇函数.当1a >时,xy a =为增函数,xy a -=-为增函数,且2201a a ->,()f x ∴为增函数.当01a <<时,x y a =为减函数,xy a -=-为减函数,且2201a a -<,()f x ∴为增函数.()f x ∴在R 上为增函数.(2)()f x Q 是R 上的增函数,()4y f x ∴=-也是R 上的增函数.由2x <,得()()2f x f <,要使()4f x -在()2-∞,上恒为负数,只需()240f -≤,即()22241a a a a ---≤. 422141a a a a-∴⋅-≤,214a a ∴+≤,2410a a ∴-+≤,22a ∴≤.又1a Q ≠,a ∴的取值范围为)(21,2⎡⎣.第三章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某同学用二分法求方程338=0x x +-在()12x ∈,内近似解的过程中,设()=338x f x x +-,且计算()10f <,()20f >,()1.50f >,则该同学在第二次应计算的函数值为( ) A .()0.5fB .()1.125fC .()1.25fD .()1.75f2.函数()22=log f x x x +的零点所在的区间为( )A .1142⎛⎫ ⎪⎝⎭,B .112⎛⎫ ⎪⎝⎭,C .(D .)3.有一组实验数据如表所示:下列所给函数模型较适合的是( ) A .()=log 1a y x a >B .()=1y ax b a +>C .()2=0y ax b a +>D .()=log 1a y x b a +>4.根据表中的数据,可以判定方程x 的一个根所在的区间为( )A .()10-,B .()01,C .()12,D .()23,5.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是( ) A .108元B .105元C .106元D .118元6.有一个盛水的容器,由悬在它上空的一根水管匀速向容器内注水,直至把容器注满.在注水过程中,时刻t 与水面高度y 的函数关系如图所示,图中PQ 为一线段,则与之对应的容器的形状是图中的( )AB CD7.已知()()()=2f x x a x b ---,并且α,β是函数()f x 的两个零点,则实数a ,b ,α,β的大小关系可能是( )A .a b αβ<<<B .a b αβ<<<C .a b αβ<<<D .a b αβ<<<8.函数()2230=2ln 0x x x f x x x ⎧+-⎨-+⎩,≤,,>的零点个数为( )A .0B .1C .2D .39.已知函数()231=24log f x x x x-+++,若()113x ∈,,()23x ∈+∞,,则( ) A.()10f x >,()20f x < B.()10f x <,()20f x > C.()10f x <,()20f x <D.()10f x >,()20f x >10.如图所示,ABC △为等腰直角三角形,直线l 与AB 相交且l AB ⊥,直线l 截这个三角形所得的位于直线右方的图形面积为y ,点A 到直线l 的距离为x ,则()=y f x 的图像大致为四个选项中的( )AB CD11.设某公司原有员工100人从事产品A 的生产,平均每人每年创造产值t 万元(t 为正常数).公司决定从原有员工中分流()0100x x <<人去进行新开发的产品B 的生产.分流后,继续从事产品A 生产的员工平均每人每年创造产值在原有的基础上增长了1.2x %.若要保证产品A 的年产值不减少,则最多能分流的人数是( )A .15 B .16 C .17 D .18 12.已知函数()2=e x xf x --(e 为自然对数的底数),则方程()21=0f x -的实数根的个数为( ) A .1B .2C .3D .4二、填空题:本大题共4小题,每小题5分,共20分.13.用二分法求图像连续不断的函数()f x 在区间[]15,上的近似解,验证()()150f f ⋅<,给定精确度=0.01ε,取区间()15,的中点115==32x +,计算得()()110f f x ⋅<,()()150f x f ⋅>,则此时零点0x ∈________.(填区间)14.已知函数()2=log 2x f x x m +-有唯一的零点,若它的零点在区间()12,内,则实数m 的取值范围是________.15.已知关于x 的方程210=x a -有两个不同的实根1x ,2x ,且21=2x x ,则实数=a ________. 16.某市出租车收费标准如下:起步价为8元,起步里程为3km (不超过3km 按起步价付费);超过3km 但不超过8km 时,超过部分按每千米2.15元收费;超过8km 时,超过部分按每千米2.85元收费.另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶的路程为________km .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)某公司制定了一个激励销售人员的奖励方案:当销售利润不超过10万元时,按销售利润的16%进行奖励;当销售利润超过10万元时,若超出A 万元,则超出部分按()52log 1A +万元进行奖励.记奖金为y (单位:万元),销售利润为x (单位:万元).(1)写出该公司激励销售人员的奖励方案的函数模型.(2)如果业务员老张获得5.6万元的奖金,那么他的销售利润是多少万元?18.(本小题满分12分)已知函数()=211f x x x --+. (1)请在所给的平面直角坐标系中画出函数()f x 的图像.(2)根据函数()f x 的图像回答下列问题:(回答下述3个小题都只需直接写出结果,不需给出演算步骤)①求函数()f x 的单调区间;②求函数()f x 的值域;③求关于x 的方程()=2f x 在区间[]02,上解的个数.19.(本小题满分12分)已知函数()=e 1x f x -,()3=1exg x +.(1)求函数()g x 的值域;(2)求满足方程()()=0f x g x -的x 的值.20.(本小题满分12分)《污水综合排放标准》规定:污水排放企业进排污口的污水pH 值正常范围为[)69,.某化工企业对本单位污水出水口的pH 值进行全天24小时检测,根据统计资料发现pH 值的大小y 与检测时间点x 之间的函数图像如图所示,AB ,CD 为两条直线段,曲线BC 为函数y b 图像的一部分,其中()08A ,,()46B ,,()2010C ,,()248D ,.(1)请写出pH 值的大小y 与检测时间点x 之间的函数解析式;(2)试求该化工企业在一天内排放pH 值超标污水的时长.21.(本小题满分12分)已知函数()2=283f x x x m -++为R 上的连续函数.(1)若=4m -,试判断()=0f x 在()11-,上是否有根存在.若没有,请说明理由;若有,请在精确度为0.2(即根所在区间长度小于0.2)的条件下,用二分法求出使这个根0x 存在的区间.(2)若函数()f x 在区间[]11-,上存在零点,求实数m 的取值范围.22.(本小题满分12分)已知函数()()2=log 421x x f x a a +⋅++,x ∈R . (1)若=1a ,求方程()=3f x 的解集;(2)若方程()=f x x 有两个不同的实数根,求实数a 的取值范围.第三章综合测试答案解析一、 1.【答案】C【解析】()10f Q <,()20f >,()1.50f >,∴在区间()11.5,内函数()=338x f x x +-存在一个零点,因此在第二次应计算的函数值所对应的x 值为1 1.5=1.252+,故选C . 2.【答案】B【解析】Q 函数()22=log f x x x +在0x >时是连续单调递增函数,且()21=1log 1=10f +>,21113=log =02424f ⎛⎫+- ⎪⎝⎭<,()1102ff ⎛⎫∴⋅ ⎪⎝⎭<.∴函数()22=log f x x x +的零点所的在区间是112⎛⎫ ⎪⎝⎭,. 3.【答案】C【解析】由所给数据可知y 随x 的增大而增大,且增长速度越来越快,而A ,D 中的函数增长速度越来越慢,B 中的函数增长速度保持不变,故选C . 4.【答案】C【解析】设()()=2xf x e x -+,则由题设知()1=0.280f -<,()2=3.390f >,故方程2=0x e x --的一个根在区间()12,内.故选C . 5.【答案】A【解析】由题意,132元打9折,售价为()1320.9=118.8⨯元.因为这个价格相对进货价,获利10%,也就是说它是进货价的110%,所以进货价为()110118.8=108÷%元,故选A . 6.【答案】B【解析】由题中函数图像知,水面高度y 上升的速度先是由慢到快,后来速度保持不变,结合容器形状知选B . 7.【答案】C【解析】αQ ,β是函数()f x 的两个零点,()()==0f f αβ∴.又()()==20f a f b -Q <,结合二次函数的图像(如图所示)可知a ,b 必在α,β之间.故选C .8.【答案】C【解析】当0x ≤时,令223=0x x +-,得=3x -;当0x >时,令2ln =0x -+,得2=e x .所以函数有2个零点.故选C . 9.【答案】A【解析】()()23=15log f x x x --+-Q 在()1+∞,上单调递减,且()3=0f ,()10f x ∴>,()20f x <,故选A .10.【答案】C【解析】设=AB a ,则22221111==2222y a x x a --+,其图像为抛物线的一段,开口向下,顶点在y 轴上方.故选C . 11.【答案】B【解析】由题意,分流前产品A 的年产值为100t 万元,分流x 人后,产品A 的年产值为()()1001 1.2x x t -+%万元.由题意,得()()01001001 1.2100x x x x t t ∈⎧⎪⎨-+⎪⎩N <<,≥,,%解得5003x <≤,x ∈N ,所以x 的最大值为16.故选B . 12.【答案】B【解析】由函数()2=ex xf x --,可知方程()21=0f x -,即()1=2f x ,即21e =2x x --,整理可得2=ln2x x ---,即2ln 2=0x x -+或2ln 2=0x x --.在方程2ln 2=0x x -+中,1=14ln 20∆-<,方程无实数解;在方程2ln 2=0x x --中,2=14ln 20∆+>,方程有2个不等的实数解.综上可得,方程()21=0f x -的实数根的个数为2.故选B .二、13.【答案】()13,【解析】由()()150f f ⋅<,()()110f f x ⋅<及()()150f x f ⋅>可知()1f 与()1f x 异号,()1f x 与()5f 同号,则()011x x ∈,即()013x ∈,. 14.【答案】()25,【解析】由题意得()f x 在()0+∞,上单调递增,且()()120f f ⋅<,即()()250m m --<,解得25m <<. 15.【答案】6【解析】由210=x a -得2=10x a ±,由题设知12=10x a -,22=10x a +.因为21=2x x ,所以()211222=2=2x x x ,所以()210=10a a -+,解得=15a 或=6a .因为100a ->,所以=15a 不合题意,舍去,所以=6a . 16.【答案】9【解析】设乘客每次乘坐出租车需付费用为()f x 元,则由题意得()(]()(]()()8103=93 2.153895 2.158 2.858.x f x x x x x ⎧+∈⎪+-∈⎨⎪++-∈+∞⎩⨯⨯⨯,,,,,,,,令()=22.6f x ,显然()()95 2.158 2.85=22.68x x ⨯⨯++->,解得=9x . 三、17.【答案】(1)由题意得()50.16010=1.62log 910.x x y x x ⎧⎪⎨+-⎪⎩,<≤,,>(2)由(]010x ∈,,0.16 1.6x ≤,而=5.6y 可知,10x >. ()51.62log 9=5.6x ∴+-,解得=34x .∴老张的销售利润是34万元.18.【答案】(1)当10x -≥,即1x ≥时,()()=211=1f x x x x --+-; 当10x -<,即1x <时,()()=211=33f x x x x --+-.()f x 的图像如图所示.(2)①函数()f x 的单调递增区间为[)1+∞,; 函数()f x 的单调递减区间为(]1-∞,. ②函数()f x 的值域为[)0+∞,. ③方程()=2f x 在区间[]02,上解的个数为1. 19.【答案】(1)()31=1=31e e x x g x ⎛⎫++ ⎪⎝⎭,因为0x ≥,e 1x≥,所以101e x⎛⎫ ⎪⎝⎭<≤,1033e x⎛⎫⎪⎝⎭<≤,即()14g x <≤,故()g x 的值域是(]14,. (2)由()()=0f x g x -,得3e 2=0ex x--.当0x ≤时,方程无解; 当0x >时,3e 2=0ex x--,整理得()2e 2e 3=0x x --, 即()()e 1e 3=0x x+-.因为e 0x >,所以e =3x ,即=ln3x . 故满足方程()()=0f x g x -的x 的值为ln3.20.【答案】(1)()08A Q ,,()46B ,,∴线段AB 的方程是()1=8042y x x -+≤≤.将()46B ,,()2010C ,的坐标代入y b ,得b b ⎧⎪⎨⎪⎩,,解得=4=6.a b -⎧⎨⎩,故()6420y x +≤≤.()2010C Q ,,()248D ,,∴线段CD 的方程是()1=2020242y x x -+≤≤.综上,y 与x之间的函数解析式为18042=642012020242.x x y x x x ⎧-+⎪⎪-+⎪⎩,≤≤,,≤≤,,≤≤(2)由()08A ,,()46B ,知在AB 段排放污水的pH 值不超标; 在BC6=9,解得=13x ,故[)1320x ∈,时排放污水的pH 值超标, 时长是()2013=7-小时;在CD 段,令120=92x -+,解得=22x ,故[]2022x ∈,时排放污水的pH 值超标,时长是()2220=2-小时.因此该化工企业在一天内排放pH 值超标污水9小时.21.【答案】(1)当=4m -时,()=0f x ,即()2=281=0f x x x --. 可以求出()1=9f -,()1=7f -,则()()110f f -⋅<.又()f x 为R 上的连续函数,()=0f x ∴在()11-,上必有根存在.取中点0,计算得()0=10f -<,()()100f f -⋅<,∴根()010x ∈-,,取其中点12-,计算得17=022f ⎛⎫- ⎪⎝⎭>,∴根0102x ⎛⎫∈- ⎪⎝⎭,,取其中点14-,计算得19=048f ⎛⎫- ⎪⎝⎭>, ∴根0104x ⎛⎫∈- ⎪⎝⎭,,取其中点18-,计算得11=0832f ⎛⎫- ⎪⎝⎭>, ∴根0108x ⎛⎫∈- ⎪⎝⎭,,区间长度11=0.285<,符合要求.故符合要求的根0x 存在的区间为108⎛⎫- ⎪⎝⎭,.(2)()2=283f x x x m -++为开口向上的抛物线,对称轴为8==222x ⨯--, ∴在区间[]11-,上,函数()f x 单调递减.又()f x 在区间[]11-,上存在零点,只可能()()1010f f ⎧-⎪⎨⎪⎩≥,≤,即 28302830m m +++⎧⎨-++⎩≥,≤,解得133m -≤≤. 故所求实数m 的取值范围是133m -≤≤.22.【答案】(1)当=1a 时,()()2=log 422x xf x ++.由()=3f x ,得3422=2x x ++,所以426=0x x +-,因此()()2322=0x x +-,解得=1x .所以方程()=3f x 的解集为{}1.(2)方程()2log 421=x xa a x +⋅++有两个不同的实数根,即421=2x x x a a +⋅++有两个不同的实数根.设=2x t ,则()211=0t a t a +-++在()0+∞,上有两个不同的解.令()()2=11g t t a t a +-++,由已知可得()()()200102=1410g a a a ⎧⎪-⎪-⎨⎪⎪∆--+⎩>,>,>,解得13a --<<故实数a 的取值范围为(13--,.第四章综合测试一、单项选择题1.式子 )ABC .D .2.函数()lg 3f x x x =+-的零点所在区间为( ) A .(2,3)B .(3,4)C .(1,2)D .(0,1)3.设lg 2a =,lg3b =,则12log 5=( ) A .12aa b -+ B .12aa b-+ C .12aa b++ D .12aa b++ 4. 已知2log 0.1a =,0.12b =,110.2c =,则a ,b ,c 的大小关系是( ) A .a b c <<B .b c a <<C .c a b <<D .a cb <<5.函数1()(0,1)x f x a a a a=-≠>的图象可能是( )A .B .C .D .6.已知函数2,0()21,0x a x f x x x ⎧-≤=⎨->⎩,a R ∈,若函数()f x 在R 上有两个零点,则a 的取值范围是( ) A .(,1)-∞-B .(,1]-∞-C .[1,0)-D .(0,1]7.若()2()lg 21f x x ax a =-++在区间(,1]-∞上单调递减,则a 的取值范围为( )A .[1,2)B .[1,2]C .[1,)+∞D .[2,)+∞8.已知函数()|lg |f x x =。

高一数学必修1综合测试题3套(附答案)

高一数学必修1综合测试题3套(附答案)

高一数学综合检测题〔1〕一、选择题:〔每题5分,共60分,请将所选答案填在括号内〕 1.已知集合M ⊂≠{4,7,8},且M 中至多有一个偶数,则这样的集合共有 ( )(A)3个 (B) 4个 (C) 5个 (D) 6个2.已知S={x|x=2n,n ∈Z}, T={x|x=4k ±1,k ∈Z},则 〔 〕 (A)S ⊂≠T (B) T ⊂≠S (C)S ≠T (D)S=T 3.已知集合P={}2|2,y y x x R =-+∈, Q={}|2,y y x x R =-+∈,那么PQ 等〔 〕(A)〔0,2〕,〔1,1〕 (B){〔0,2 〕,〔1,1〕} (C){1,2} (D){}|2y y ≤4.不等式042<-+ax ax 的解集为R ,则a 的取值范围是 〔 〕 (A)016<≤-a (B)16->a (C)016≤<-a (D)0<a 5. 已知()f x =5(6)(4)(6)x x f x x -≥⎧⎨+<⎩,则(3)f 的值为 〔 〕(A)2 (B)5 (C)4 ( D)3243,[0,3]y x x x =-+∈的值域为 〔 〕(A)[0,3] (B)[-1,0] (C)[-1,3] (D)[0,2] 7.函数y=(2k+1)x+b 在(-∞,+∞)上是减函数,则 〔 〕(A)k>12 (B)k<12 (C)k>12- (D).k<12- 8.假设函数f(x)=2x +2(a-1)x+2在区间(,4]-∞内递减,那么实数a 的取值范围为〔 〕(A)a ≤-3 (B)a ≥-3 (C)a ≤5 (D)a ≥39.函数2(232)xy a a a =-+是指数函数,则a 的取值范围是 〔 〕(A) 0,1a a >≠ (B) 1a = (C) 12a =( D)121a a ==或10.已知函数f(x)14x a -=+的图象恒过定点p ,则点p 的坐标是 〔 〕〔A 〕〔 1,5 〕 〔B 〕〔 1, 4〕 〔C 〕〔 0,4〕 〔D 〕〔 4,0〕11.函数y =的定义域是 〔 〕〔A 〕[1,+∞] (B) (23,)+∞ (C) [23,1] (D) (23,1]12.设a,b,c都是正数,且346a b c==,则以下正确的选项是〔 〕(A) 111c ab =+ (B) 221C a b =+ (C) 122C a b =+ (D) 212c a b =+二、填空题:〔每题4分,共16分,答案填在横线上〕13.已知〔x,y 〕在映射 f 下的象是(x-y,x+y),则(3,5)在f 下的象是 ,原象是 。

高中数学新教材必修第一册综合测试数学试题(含参考答案)

高中数学新教材必修第一册综合测试数学试题(含参考答案)

新教材必修第一册综合测试数学试题(含答案)高一数学本试卷共4页,22小题,全卷满分150分,考试时间120分钟。一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把正确选项在答题卡中的相应位置涂黑.(1)集合2{|20}A x x x =--,{|10}B x x =-<,则()A B ⋂=A.{|1}x xB.{|11}x x -<C.{|1}x x <-D.{|21}x x -<(2)函数为()f x =的定义域( ) A.1,2⎛⎫-+∞ ⎪⎝⎭ B.1,2⎡⎫-+∞⎪⎢⎣⎭C.()1,00,2⎛⎫-⋃+∞ ⎪⎝⎭ D.()1,00,2⎡⎫-⋃+∞⎪⎢⎣⎭(3)“0lgx <”是“2x <”的 ( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(4)已已知知512x log =,1012y ⎛⎫= ⎪⎝⎭,132z =,则( )A.x y z <<B.x z y <<C.y x z <<D.z x y <<(5)下列函数中,既是偶函数又在区间()0,+∞上单调递增的函数是( ) A. 1||y lnx = B.||2x y =C.y cosx =D.3y x =(6)已知定义在R 上的函数()f x 的图象是连续不断的且有如下对应值表:那么函数()()2g x f x x =-一定存在零点的区间是( ) A.((),1-∞B.()1,2C.()2,3D.()3,4(7)将函数23y sin x π⎛⎫=-⎪⎝⎭的图象向右平移6π个的单位长度,再将所得到的函数图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),则所得到的图象的函数解析式为( ) A. 23y sin x π⎛⎫=-⎪⎝⎭ B.243y sin x π⎛⎫=-⎪⎝⎭C.2y sin x π⎛⎫=- ⎪⎝⎭D.42y sin x π⎛⎫=-⎪⎝⎭ (8)中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式: 21S C Wlog N ⎛⎫=+⎪⎝⎭它表示:在受噪声干扰的信道中,最大信息传递速度C 取决于信道带宽W 、信道内信号的平均功率S 、信道内部的高斯噪声功率N 的大小。其中SN叫做信噪比,当信噪比较大时,公式中真数中的1可以忽略不计。按照香农公式,若不改变带宽W,而将信噪比SN从1000提升至8000,则C 大约增加了(20.3010lg ≈,30.4771lg ≈)( ) A.10%B.30%C.60%D.90%二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,选对但不全的得3分,有选错的得0分.请把正确选项在答题卡中的相应位置涂黑. (9)在下列四组函数中,()f x 与()g x 表示同一函数的是( )A.()1f x x =-,()2g x =B.()|3|,|f x x g =-(),g x =C.()f x x =,()10xg x lg =D.()f x =()g x =(10)幂函数223a a y x --=是奇函数,且在()0,+∞是减函数,则整数a 的值是( )A.0B.1C.2D.3(11)下列结论正确的是( )A.当1x 时,2B.当54x <时, 14245x x -+-的最小值是5C.当0x ≠时, 1x x+的最小值是2D.设0x >,0y >,且2x y +=,则14x y+的最小值是92(12)已知函数()()f x Asin x ωϕ=+,0,0,||2A πωϕ⎛⎫>><⎪⎝⎭部分图象如图所示,下列说法不正确是( )A.()f x 的图象关于直线23x π=对称B.()f x 的图象关于点5,012π⎛⎫-⎪⎝⎭对称 C.将函数22y x cos x =-的图象向左平移2π个单位得到函数()f x 的图象 D.若方程()f x m =在,02π⎡⎤-⎢⎥⎣⎦上有两个不相等的实数根,则m的取值范围是(2,- 三、填空题:本大题共4小题,每小题5分,共20分.请把答案填在答题卡的相应位置上. (13)18427242cos cos cos sin ︒︒︒︒⋅-⋅=____. (14)已知3cos sin cos sin αααα+=-,则4tan πα⎛⎫+= ⎪⎝⎭____.(15)已知函数32,1()log (1),1x x f x x x ⎧≤=⎨->⎩,且()01f x =,则0x =____.(16)已知关于x 的不等式20ax bx c -+的解集为{|12}x x ,则20cx bx a ++的解集为____.四、解答题:本大题共6小题,第17题10分,18、19、20、21、22题各12分,共70分.解答应写出文字说明、证明过程或演算步骤.必须把解答过程写在答题卡相应题号指定的区域内,超出指定区域的答案无效. (17)(本小题满分10分) 已知02πα<<,且513sin α=.(I)求tan α的值;(II)求2sin 22sin()sin 2cos ()sin 22απααπαα--++的值.已知函数()11xf x lnx-=+. (I)判断并证明函数()f x 的奇偶性; (Ⅱ)若()()2f m f m --=,求实数m 的值.(19)(本小题满分12分)已知函数()()2f x Asin x ϕ=+(A,ϕ是常数,0A >,0,x R ϕπ<<∈)在8x π=时取得最大值3.(1)求()f x 的最小正周期; (Ⅱ)求()f x 的解析式; (Ⅲ)若18f πα⎛⎫+=- ⎪⎝⎭,求sin α.(20)(本小题满分12分)某种商品在30天内每件的销售价格P(元)与时间t(天)的函数关系**20025,1002530,t t t N P t t t N⎧+<<∈=⎨-+≤≤∈⎩,该商品在30天内日销售量Q(件)与时间t(天)之间满足一次函数关系,具体数据如下表:(I)根据表中提供的数据,求出日销售量关于时间t 的函数表达式; (Ⅱ)求该商品在这30天中的第几天的日销售金额最大,最大值是多少?设函数()2f x cos x a =++ (I)写出函数()f x 的最小正周期及单调递减区间; (Ⅱ)当,63x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()f x 的最大值与最小值的和32,求不等式()1f x >的解集.(22)(本小题满分12分)已知函数()313xxa f x +=+是R 上的奇函数(I)求a;(Ⅱ)用定义法讨论()f x 在R 上的单调性; (III)若21121042xx f k k f -⎛⎫⎛⎫-⋅++> ⎪ ⎪⎝⎭⎝⎭在x ∈R 上恒成立,求k 的取值范围.新教材必修第一册综合测试数学试题答案高一数学一、单项选择题:本大题共8小题,每小题5分,共40分.(1)B (2)D (3)A (4)A (5)B (6)B(7)A(8)B二、多项选择题:本大题共4小题,每小题5分,共20分.(9)BC (10)AC (11)AD (12)ABC三、填空题:本大题共4小题,每小题5分,共20分.(13)21(14)3(15)0或4(16)1{|1,}2x x x ≤-≥-或四、解答题:本大题共6小题,第17题10分,18、19、20、21、22题各12分,共70分.(17)解:(Ⅰ)因为135sin =α,20πα<<,所以12cos 13α===,……………………………………4分故125cos sin tan ==ααα.……………………………………5分(Ⅱ)222sin 22sin()sin 2sin cos 2sin 2sin 2sin cos 2cos ()sin 22απαααααπααααα---=+++…………………7分cos sin 1tan sin cos 1tan αααααα--==++…………………9分51712517112-==+.…………………10分(18)(Ⅰ)解:()1ln 1xf x x-=+是奇函数.证明:要10,1xx->+等价于()()110,x x +->即11,x -<<故()1ln1xf x x-=+的定义域为()1,1,-关于原点对称又因为()()1111ln ln ln .111x x x f x f x x x x -+--⎛⎫-===-=- ⎪-++⎝⎭所以()1ln1xf x x-=+是奇函数.…………6分(Ⅱ)由(1)知,()f x 是奇函数,则()()0f m f m +-=,联立()()()()02f m f m f m f m +-=--=⎧⎪⎨⎪⎩得()=1f m ,即1ln 1,1m m -=+解得1.1em e-=+…………12分(19)(Ⅰ))(x f 的最小正周期ππ==22T ………………2分(列式1分,计算1分)(Ⅱ)依题意3=A ………………………………………4分3)82sin(3=+⨯ϕπ…………………………………5分因为4544πϕππ<+<且1)4sin(=+ϕπ…………………6分所以24πϕπ=+,4πϕ=…………………………………7分)42sin(3)(π+=x x f ……………………………………8分(Ⅲ)由18(-=+παf 得122sin(3-=+πα…………………9分即312cos -=α……………………………………………10分所以31sin 212-=-α……………………………………11分36sin ±=α………………………………………………12分.(20)(Ⅰ)设日销售量Q 关于时间t 的函数表达式为Q kt b =+,依题意得:3551030k b k b =+⎧⎨=+⎩,解之得:140k b =-⎧⎨=⎩,所以日销售量Q 关于时间t 的函数表达式为40Q t =-+((0,30]t ∈,t N *∈,).(Ⅱ)设商品的日销售金额为y (元),依题意:y PQ =,所以(20)(40)025,,(100)(40)2530,.t t t t N y t t t t N **⎧+-+<<∈=⎨-+-+≤≤∈⎩,即:2220800025,,14040002530,.t t t t N y t t t t N **⎧-++<<∈=⎨-+≤≤∈⎩.当(0,25)t ∈,t N *∈时,2(10)900y t =--+,当10t =时,max 900y =;当[25,30]t ∈,t N *∈时,2(70)900y t =--,当25t =时,max 1125y =;所以该商品在这30天中的第25天的日销售金额最大,为1125元.(21)解:(Ⅰ)31cos 2()sin 222xf x x a +=++……1分1sin(262x a π=+++,……3分T π∴=,……4分令3222262k x k πππππ+≤+≤+,Z k ∈,∴263k x k ππππ+≤≤+,Z k ∈,∴函数)(x f 的递减区间为:2[,],63k k k Z ππππ++∈.……6分(Ⅱ)由[,63x ππ∈-得:52666x πππ-≤+≤,max min 3(),()2f x a f x a ∴=+=,……8分33022a a a ∴++=⇒=,……9分∴1()1sin(2)62f x x π>⇒+>,52226663k x k k x k ππππππππ∴+<+<+⇒<<+,Z k ∈,……11分又⎦⎤⎢⎣⎡-∈3,6ππx ,∴不等式1)(>x f 的解集为{|0}3x x π<<.……12分(22)(Ⅰ) 函数()313xxa f x +=+是R 上的奇函数()()331313x xx x a a f x f x --++∴-==-=-++即3133113x xx xa a +--=++即()()3131xxa +=-+解得1a =-;(Ⅱ)由(1)知()3131-=+x xf x ()()12121231313131x x x x f x f x ---=-++()()()()()()122112313131313131x x x x x x -+--+=++()()()12122333131x x x x -=++设12x x <,则12033x x <<故12330x x -<,1310x +>,2310x +>故()()120f x f x -<即()()12f x f x <()f x ∴是R 上的增函数.(Ⅲ)()f x 是R 上的奇函数,()f x 是R 上的增函数21121042x x f k k f -⎛⎫⎛⎫∴-⋅++> ⎪ ⎪⎝⎭⎝⎭在x ∈R 上恒成立等价于2111122244x x xf f k k f k k -⎛⎫⎛⎫⎛⎫+>--⋅=⋅-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴等价于2112142x x k k -⋅-<+在x ∈R 上恒成立即()2212420xx k k +⋅+⋅->在x ∈R 上恒成立“*”令20x t =>则“*”式等价于()22140k t t k ++->对0t >时恒成立“**”①当210k +=,即12k =-时“**”为1402t +>对0t >时恒成立②当210k +≠,即12k ≠时,“**”对0t >时恒成立须()210164210k k k +>⎧⎨∆=++<⎩或2102021k k k +>⎧⎪⎪-≤⎨+⎪-≥⎪⎩解得102k -<≤综上,k 的取值范围是1,02⎡⎤-⎢⎥⎣⎦.。

高一数学必修1综合测试题(3)

高一数学必修1综合测试题(3)

高一数学必修1综合测试题(三)一、 选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.方程062=+-px x 的解集为M ,方程062=-+q x x 的解集为N ,且{},2=N M 那么=+q p ( )A .21B .8C .6D .72.已知函数21,0(),0x x f x x x +≥⎧=⎨<⎩,则[(2)]f f -的值为( ).A .1B .2C .4D .53.、函数x x x f 3log 3)(+-= 的零点所在的区间是( ) A .(0,1) B .(1,3) C .(3,4) D .(4,+∞)4.设A={|02x x ≤≤}, B={|02y y ≤≤}, 下列各图中能表示集合A 到集合B 的映射的是5.下列函数在其定义域内既是奇函数又是增函数的是( ) ∈(0,+∞)) B.y = 3x (x ∈R)∈R) D.y = lg|x| (x ≠0)6.函数12-=xy 的值域是( )A 、(),1-∞B 、()(),00,-∞+∞ C 、()1,-+∞ D 、()(,1)0,-∞-+∞7.已知二次函数),0()(2R x a c bx ax x f ∈≠++=的部分对应值如下表.则不等式0)(<x f 的解集为 ( ).A )0,(-∞ .B ),3()1,(+∞--∞ .C )1,(--∞ .D ),3(+∞8.若奇函数...()x f 在[]3,1上为增函数...,且有最小值7,则它在[]1,3--上( ) A.是减函数,有最小值-7 B.是增函数,有最小值-7 C.是减函数,有最大值-7 D.是增函数,有最大值-7二、填空题:本大题共6小题,每小题5分,共30分,9.已知幂函数αx x f =)(的图象经过点(9,3)10.设240.3log 3,log 4,0.3a b c -===, 则a ,b ,c 的大小关系是 (按从小到大的顺序).11.若函数2()2(1)2f x x a x =+-+在[4,)+∞上是增函数,则实数a 的取值范围是 . 12.已知定义在R 上的函数()y f x =是偶函数,且0x ≥时,()()2ln 22f x x x =-+,当0x <时,()f x 解析式是 .13.已知集合A ={x ∈R |ax 2-3x +2=0, a ∈R },若A 中元素至多有1个,则a 的取值范围是 .14.深圳市的一家报刊摊点,从报社买进《深圳特区报》的价格是每份0.60元,卖出的价格是每份1元,卖不掉的报纸可以以每份0.1元的价格退回报社。

高一数学必修一第三章测试题及答案:函数的应用

高一数学必修一第三章测试题及答案:函数的应用

高一数学必修一第三章测试题及答案:函数的应用数学在科学发展和现代生活生产中的应用非常广泛,小编准备了高一数学必修一第三章测试题及答案,具体请看以下内容。

一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设U=r,A={x|x0},b={x|x1},则AUb=()A{x|01} b.{x|0c.{x|x0}D.{x|x1}【解析】 Ub={x|x1},AUb={x|0【答案】 b2.若函数y=f(x)是函数y=ax(a0,且a1)的反函数,且f(2)=1,则f(x)=()A.log2xb.12xc.log12xD.2x-2【解析】 f(x)=logax,∵f(2)=1,loga2=1,a=2.f(x)=log2x,故选A.【答案】 A3.下列函数中,与函数y=1x有相同定义域的是()A.f(x)=lnxb.f(x)=1xc.f(x)=|x|D.f(x)=ex【解析】∵y=1x的定义域为(0,+).故选A.【答案】 A4.已知函数f(x)满足:当x4时,f(x)=12x;当x4时,f(x)=f(x+1).则f(3)=()A.18b.8c.116D.16【解析】 f(3)=f(4)=(12)4=116.【答案】 c5.函数y=-x2+8x-16在区间[3,5]上()A.没有零点b.有一个零点c.有两个零点D.有无数个零点【解析】∵y=-x2+8x-16=-(x-4)2,函数在[3,5]上只有一个零点4.【答案】 b6.函数y=log12(x2+6x+13)的值域是()A.rb.[8,+)c.(-,-2]D.[-3,+)【解析】设u=x2+6x+13=(x+3)2+44y=log12u在[4,+)上是减函数,ylog124=-2,函数值域为(-,-2],故选c.7.定义在r上的偶函数f(x)的部分图象如图所示,则在(-2,0)上,下列函数中与f(x)的单调性不同的是()A.y=x2+1b.y=|x|+1c.y=2x+1,x0x3+1,x0D.y=ex,x0e-x,x0【解析】∵f(x)为偶函数,由图象知f(x)在(-2,0)上为减函数,而y=x3+1在(-,0)上为增函数.故选c.【答案】 c8.设函数y=x3与y=12x-2的图象的交点为(x0,y0),则x0所在的区间是()A.(0,1)b.(1,2)c(2,3)D.(3,4)【解析】由函数图象知,故选b.【答案】 b9.函数f(x)=x2+(3a+1)x+2a在(-,4)上为减函数,则实数a 的取值范围是()A.a-3b.a3c.a5D.a=-3【解析】函数f(x)的对称轴为x=-3a+12,要使函数在(-,4)上为减函数,只须使(-,4)(-,-3a+12)即-3a+124,a-3,故选A.10.某新品牌电视投放市场后第1个月销售100台,第2个月销售200台,第3个月销售400台,第4个月销售790台,则下列函数模型中能较好反映销量y与投放市场的月数x之间的关系的是()A.y=100xb.y=50x2-50x+100c.y=502xD.y=100log2x+100【解析】对c,当x=1时,y=100;当x=2时,y=200;当x=3时,y=400;当x=4时,y=800,与第4个月销售790台比较接近.故选c. 【答案】 c11.设log32=a,则log38-2log36可表示为()A.a-2b.3a-(1+a)2c.5a-2D.1+3a-a2【解析】 log38-2log36=log323-2log3(23)=3log32-2(log32+log33)=3a-2(a+1)=a-2.故选A.【答案】 A12.已知f(x)是偶函数,它在[0,+)上是减函数.若f(lgx)f(1),则x的取值范围是()A.110,1b.0,110(1,+)c.110,10D.(0,1)(10,+)【解析】由已知偶函数f(x)在[0,+)上递减,则f(x)在(-,0)上递增,f(lgx)f(1)01,或lgx0-lgx1110,或0或110x的取值范围是110,10.故选c.【答案】 c二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)13.已知全集U={2,3,a2-a-1},A={2,3},若UA={1},则实数a的值是________.【答案】 -1或214.已知集合A={x|log2x2},b=(-,a),若Ab,则实数a的取值范围是(c,+),其中c=________.【解析】 A={x|0【答案】 415.函数f(x)=23x2-2x的单调递减区间是________.【解析】该函数是复合函数,可利用判断复合函数单调性的方法来求解,因为函数y=23u是关于u的减函数,所以内函数u=x2-2x的递增区间就是函数f(x)的递减区间.令u=x2-2x,其递增区间为[1,+),根据函数y=23u是定义域上的减函数知,函数f(x)的减区间就是[1,+).【答案】 [1,+)16.有下列四个命题:①函数f(x)=|x||x-2|为偶函数;②函数y=x-1的值域为{y|y③已知集合A={-1,3},b={x|ax-1=0,ar},若Ab=A,则a的取值集合为{-1,13};④集合A={非负实数},b={实数},对应法则f:求平方根,则f是A到b的映射.你认为正确命题的序号为:________. 【解析】函数f(x)=|x||x-2|的定义域为(-,2)(2,+),它关于坐标原点不对称,所以函数f(x)=|x||x-2|既不是奇函数也不是偶函数,即命题①不正确;函数y=x-1的定义域为{x|x1},当x1时,y0,即命题②正确;因为Ab=A,所以bA,若b=,满足bA,这时a=0;若b,由bA,得a=-1或a=13.因此,满足题设的实数a的取值集合为{-1,0,13},即命题③不正确;依据映射的定义知,命题④正确.【答案】②④三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)已知函数f(x)=x2-3x-10的两个零点为x1,x2(x1【解析】 A={x|x-2,或x5}.要使Ab=,必有2m-1-2,3m+25,3m+22m-1,或3m+22m-1,解得m-12,m1,m-3,或m-3,即-121,或m-3.18.(本小题满分12分)已知函数f(x)=x2+2ax+2,x[-5,5].(1)当a=-1时,求f(x)的最大值和最小值;(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.【解析】 (1)当a=-1时,f(x)=x2-2x+2=(x-1)2+1,x[-5,5].由于f(x)的对称轴为x=1,结合图象知,当x=1时,f(x)的最小值为1,当x=-5时,f(x)的最大值为37.(2)函数f(x)=(x+a)2+2-a2的图象的对称轴为x=-a,∵f(x)在区间[-5,5]上是单调函数,-a-5或-a5.故a的取值范围是a-5或a5.19.(本小题满分12分)(1)计算:27912+(lg5)0+(2764)-13;(2)解方程:log3(6x-9)=3.【解析】 (1)原式=25912+(lg5)0+343-13=53+1+43=4.(2)由方程log3(6x-9)=3得6x-9=33=27,6x=36=62,x=2.经检验,x=2是原方程的解.20.(本小题满分12分)有一批影碟机(VcD)原销售价为每台800元,在甲、乙两家商场均有销售,甲商场用下面的方法促销:买一台单价为780元,买两台单价为760元,依次类推,每多买一台单价均减少20元,但每台最低不低于440元;乙商场一律按原价的75%销售,某单位需购买一批此类影碟机,问去哪家商场购买花费较少?【解析】设购买x台,甲、乙两商场的差价为y,则去甲商场购买共花费(800-20x)x,由题意800-20x440.118(xN).去乙商场花费80075%x(xN*).当118(xN*)时y=(800-20x)x-600x=200x-20x2,当x18(xN*)时,y=440x-600x=-160x,则当y0时,1当y=0时,x=10;当y0时,x10(xN).综上可知,若买少于10台,去乙商场花费较少;若买10台,甲、乙商场花费相同;若买超过10台,则去甲商场花费较少.21.(本小题满分12分)已知函数f(x)=lg(1+x)-lg(1-x).(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性;【解析】 (1)由1+x0,1-x0,得-1函数f(x)的定义域为(-1,1).(2)定义域关于原点对称,对于任意的x(-1,1),有-x(-1,1),f(-x)=lg(1-x)-lg(1+x)=-f(x)f(x)为奇函数.22.(本小题满分14分)设a0,f(x)=exa+aex是r上的偶函数.(1)求a的值;(2)证明:f(x)在(0,+)上是增函数.【解析】 (1)解:∵f(x)=exa+aex是r上的偶函数,f(x)-f(-x)=0.exa+aex-e-xa-ae-x=0,即1a-aex+a-1ae-x=01a-a(ex-e-x)=0.由于ex-e-x不可能恒为0,当1a-a=0时,式子恒成立.又a0,a=1.(2)证明:∵由(1)知f(x)=ex+1ex,在(0,+)上任取x1f(x1)-f(x2)=ex1+1ex1-ex2-1ex2=(ex1-ex2)+(ex2-ex1)1ex1+x2.∵e1,0ex1+x21,(ex1-ex2)1-1ex1+x20,f(x1)-f(x2)0,即f(x1)f(x)在(0,+)上是增函数.高中是人生中的关键阶段,大家一定要好好把握高中,小编为大家整理的高一数学必修一第三章测试题及答案,希望大家喜欢。

高一数学必修一必修二综合测试卷(有答案)

高一数学必修一必修二综合测试卷(有答案)

高一数学试题四(考试时间:120分钟 试卷满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列说法正确的是( )A . 经过三点确定一个平面B . 经过一条直线和一个点确定一个平面C . 四边形确定一个平面D . 两两相交且不共点的三条直线确定一个平面2. 下列哪个函数的定义域与函数()15xf x ⎛⎫= ⎪⎝⎭的值域相同( )A . 2y x x =+B . ln 2y x x =-C . 1y x =D . 1y x x=+3. 已知集合12|log 1A x x ⎧⎫=>-⎨⎬⎩⎭,{}|22xB x =>,则A B =( )A . 1,22⎛⎫ ⎪⎝⎭B . 1,2⎛⎫+∞⎪⎝⎭C . ()0,+∞D . ()0,24. 已知圆锥的侧面展开图是一个半圆,则其母线与底面半径之比为( ) A . 1B .2C .3D . 25. 已知函数()2f x x x a =++在区间()0,1上有零点,则实数a 的取值范围是( ) A . 1,4⎛⎤-∞ ⎥⎝⎦B . 1,4⎛⎫-∞ ⎪⎝⎭C . ()2,0-D . []2,0-6. 函数()()10,1x f x a a a -=>≠的图象恒过点A ,则下列函数中图象不经过点A 的是( )A . 1y x =-B . 2y x =-C . 21xy =-D . ()2log 2y x =7. 正四面体ABCD 中,E ,F 分别为棱AD ,BC 的中点,则异面直线EF 与CD 所成的角为( ) A .6π B .4π C . 3π D . 2π8. 已知函数()212log 3y x ax a =-+在[)2,+∞上为减函数,则实数a 的取值范围是( )A . 4a ≤B . 4a ≥C . 4a <-或4a ≥D . 44a -<≤9. 某几何体的三视图如图所示,该几何体表面上的点P 与点Q 在正视图与侧视图上的对应点分别为A ,B ,则在该几何体表面上,从点P 到点Q 的路径中,最短路径的长度为( ) A .5B .6 C . 22D .1010. 已知函数()ln 1f x x =-,()223g x x x =-++,用{}min ,m n 表示m ,n 中最小值,设()()(){}min ,h x f x g x =,则函数()h x 的零点个数为( )A . 1B . 2C . 3D . 411. 已知()g x 为偶函数,()h x 为奇函数,且满足()()2x g x h x -=.若存在[]1,1x ∈-,使得不等式()()0m g x h x ⋅+≤有解,则实数m 的最大值为( )A .315-B . 35-C . 1D . -1 12. 无论x ,y ,z 同为三条不同的直线还是同为三个不同的平面,给出下列说法:①若//x y ,//x z ,则//y z ;②若x y ⊥,x z ⊥,则y z ⊥;③若x y ⊥,//y z ,则x z ⊥;④若x 与y 无公共点,y 与z 无公共点,则x 与z 无公共点; ⑤若x ,y ,z 两两相交,则交点可以有一个,三个或无数个.其中说法正确的序号为( ) A . ①③B . ①③⑤C . ①③④⑤D . ①④⑤二、填空题(本大题共4小题,每小题5分,共20分) 13. 设函数()()xxf x e aea R -=+∈,若()f x 为奇函数,则a =______.14. 一个正四棱锥的侧棱长与底面边长相等,体积为423,则它的侧面积为______. 15. 已知函数()f x 为定义在[]2,3a -上的偶函数,在[]0,3上单调递减,并且()22522a f m m f m ⎛⎫-- ⎪⎝⎭>-+-,则m 的取值范围是______.16. 正四面体ABCD 的棱长为4,E 为棱BC 的中点,过E 作其外接球的截面,则截面面积的最小值为______.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17. 如图所示,在正方体1111ABCD A B C D -中,E 、F 分别是AB 和1AA 的中点.求证:CE ,1D F ,DA 交于一点.18. 已知函数()21x ax b f x x +=++是定义域为R 的奇函数. (1)求实数a 和b 的值,判断并证明函数()f x 在()1,+∞上的单调性;(2)已知0k <,且不等式()()22310f t t f k -++-<对任意的t R ∈恒成立,求实数k 的取值范围.19. 食品安全问题越来越引起人们的重视,农药、化肥的滥用对人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收入P 、种黄瓜的年收入Q 与投入a (单位:万元)满足8042P a =+,11204Q a =+.设甲大棚的投入为x (单位:万元),每年两个大棚的总收益为()f x (单位:万元). (1)求()50f 的值;(2)试问如何安排甲、乙两个大棚的投入,才能使总收益()f x 最大?20. 已知幂函数()()3*p N x x f p -=∈的图象关于y 轴对称,且在()0,+∞上为增函数. (1)求不等式()()22132pp x x +<-的解集;(2)设()()()log 0,1a f x ax g x a a =->≠⎡⎤⎣⎦,是否存在实数a ,使()g x 在区间[]2,3上的最大值为2,若存在,求出a 的值,若不存在,请说明理由.21. 已知函数()11439x xm f x ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭.(1)当2m =-时,求函数()f x 在(),0-∞上的值域;(2)若对任意[)0,x ∈+∞,总有()6f x ≤成立,求实数m 的取值范围.22. 在菱形ABCD 中,2AB =且60ABC ∠=︒,点M ,N 分别是棱CD ,AD 的中点,将四边形ANMC 沿着AC 转动,使得EF 与MN 重合,形成如图所示多面体,分别取BF ,DE 的中点P ,Q .(1)求证://PQ 平面ABCD ;(2)若平面AFEC ⊥平面ABCD ,求多面体ABCDFE 的体积.参考答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1-5:DBCDC6-10:ABDCC11-12:AB1.【解析】A 选项考查公理2,即三点必须不在同一条直线上,才能确定一个平面;B 选项如果点在直线上,则该直线和这个点不能确定一个平面;C 选项中的四边形有可能是空间四边形,故选D .2.【解析】函数()15xf x ⎛⎫= ⎪⎝⎭的值域为()0,+∞,函数2y x x =+的定义域为R ,函数ln 2y x x =-的定义域为()0,+∞;函数1y x x=+的定义域为()(),00,-∞+∞,函数1y x=的定义域为()(),00,-∞+∞,故选B .3.【解析】由{}12|log 1|02A x x x x ⎧⎫=>-=<<⎨⎬⎩⎭,{}1|22|2xx x x B =⎧⎫>=>⎨⎬⎩⎭,则()0,A B =+∞,故选C .4.【解析】由已知可得2r l ππ=,所以2l r =,故2lr=.故选D . 5.【解析】函数()2f x x x a =++的图象的对称轴为12x =-,故函数在区间()0,1上单调递增,再根据函数()f x 在()0,1上有零点,可得()()00120f a f a =<⎧⎪⎨=+>⎪⎩,解20a -<<,故选C .6.【解析】函数()()10,1x f y ax a a -=>≠=的图象恒过点A ,即10x -=,可得1x =,那么1y =.∴恒过点()1,1A .把1x =,1y =带入各选项,只有A 没有经过A 点.故选A . 7.【解析】略8.【解析】()23g x x ax a =-+,则()230x a a g x x =-+>在[)2,+∞恒成立,且()23g x x ax a =-+在[)2,+∞上为增函数,所以22a≤且()240g a =+>,所以44a -<≤.故选D .9.【解析】由题,几何体如图所示(1)前面和右面组成一面此时222222PQ =+=.(2)前面和上面在一个平面此时223110PQ =+=,2210<,故选C . 10.【解析】作出函数()f x 和()g x 的图象如图,两个图象的下面部分图象,由()2230g x x x =-++=,得1x =-,或3x =,由()ln 10f x x =-=,得x e =或1x e=,∵()0g e >,∴当0x >时,函数()h x 的零点个数为3个,故选C .11.【解析】由()()2xg x h x -=,及()g x 为偶函数,()h x 为奇函数,得()222x xg x -+=,()222x x h x --=.由()()0m g x h x ⋅+≤得224121224141x x x x x x x m ----≤==-+++,∵2141x y =-+为增函数,∴max 231415x ⎛⎫+= ⎪+⎝⎭,故选A . 12.【解析】由平行于同一直线的两直线平行,平行于同一平面的两平面平行,可得①正确;由垂直于同一直线的两直线平行、相交或异面;垂直于同一平面的两平面相交或平行,可得②错误;由垂直于两平行直线中的一条,也垂直于另一条;垂直于两平行平面中的一个,也垂直于另一个,可得③正确;若一条直线与另两条直线无公共点,可得另两条直线可以相交;若一个平面与另两个平面无公共点,可得另两个平面无公共点;可得④错误.若三条直线两两相交,则交点可以有一个或三个,若三个平面两两相交,则交点有无数个.故选B . 二、填空题(本大题共4小题,每小题5分,共20分)13. -1 14. 43 15. 1122m -≤< 16. 4π13.【解析】若函数()x x f x e ae -=+为奇函数,则()()f x f x -=-,即()x x x x ae ae e e --+=-+,即()()10x x e a e -++=对任意的x 恒成立,则10a +=,得1a =-. 14.【解析】设正四棱锥的侧棱长与底面边长相等为2a ,则24ABCD S a =,2222422h PB BO a a a =-=-=,则31442233V a =⨯=,则1a =,则 22142242BC PF a a a S ⎛⎫=⨯⨯⨯=⨯⨯- ⎪⎝⎭侧24343a ==.15.【解析】由题设可得230a -+=,即5a =,故()()22122f m f m m -->-+-可化()()22122f m f m m +>-+,又2113m ≤+≤,21223m m ≤-+≤,故2211222m m m m +<-+⇒<,且12m ≥-.故应填答案1122m -≤<.16.【解析】将四面体ABCD 放置于正方体中,如图所示可得正方体的外接球就是四面体ABCD 的外接球,∵正四面体ABCD 的棱长为4,∴正方体的棱长为22, 可得外接球半径R 满足()22322R =⨯,解得6R =.E 为棱BC 的中点,过E 作其外接球的截面,当截面到球心O 的距离最大时,截面圆的面积达最小值,此时球心O 到截面的距离等于正方体棱长的一半,可得截面圆的半径为222r R =-=,得到截面圆的面积最小值为24S r ππ==.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.【解析】证明:如图所示,连接1CD 、EF 、1A B ,因为E 、F 分别是AB 和1AA 的中点, 所以1//EF A B 且112EF A B =.即:1//EF CD ,且112EF CD =, 所以四边形1CD FE 是梯形,所以CE 与1D F 必相交,设交点为P ,则P CE ∈,且1P D F ∈,又CE ⊂平面ABCD , 且1D F ⊂平面11A ADD ,所以P ∈平面ABCD ,且P ∈平面11A ADD , 又平面ABCD平面11A ADD AD =,所以P AD ∈,所以CE 、1D F 、DA 三线交于一点.18.【解析】(1)因为()()f x f x -=-,所以2211x a x ax bx x bx -+--=-+++, ∴0a b ==,()21xf x x =+, 任取()12,1,x x ∈+∞,且12x x <,()()1212221211x xf x f x x x -=-++()()()()21122212111x x x x x x --=++, ∵210x x ->,1210x x ->,()()2212110x x ++>,∴()f x 在()1,+∞单调递减.(2)()()2231f t t f k -+<--,()()2231f t t f k -+<-, ∵2232t t -+≥,11k ->,∴2231t t k -+>-, 即()211k t >---, ∵t R ∈≤,∴()1,0k ∈-. 19.【解析】(1)由题可知:甲大棚投入50万元,则乙大棚投入150万元, 所以()1804250150120277.5450f =+⨯+⨯+=. (2)依题意得202018020020x x x ≥⎧⇒≤≤⎨-≥⎩.故()()142250201804x x f x x =-++≤≤. 令25,65t x ⎡⎤=∈⎣⎦,则()()2211422508228244f x t t t =-++=--+,当82t =,即128x =时,()max 282f x =,所以投入甲大棚128万元,乙大棚72万元时,总收益最大, 且最大收益为282万元. 20.【解析】(1)由已知得30p ->且*p N ∈,所以1p =或2p =, 当2p =时,()3p f x x -=为奇函数,不合题意, 当1p =时,()2f x x =.所以不等式()()22132pp x x +<-变为()()1122132x x +<-, 则0132x x ≤+<-,解得213x -≤<. 所以不等式()()22132p p x x +<-的解集为21,3⎡⎫-⎪⎢⎣⎭.(2)()()2log a a g x x x =-,令()2h x x ax =-,由()0h x >得()(),0,x a ∈-∞+∞,因为()g x 在[]2,3上有定义,所以02a <<且1a ≠, 所以()2h x x ax =-在[]2,3上为增函数,当12a <<时,()()()max 3log 932a g x g a ==-=, 即2390a a +-=,∴3352a -±=,又12a <<, ∴3352a -+=. 当01a <<时,()()()max 2log 422a g x g a ==-=,即2240a a +-=,∴15a =-±,此时解不成立.综上:3352a -+=. 21.【解析】(1)当2m =-时,设13xt ⎛⎫= ⎪⎝⎭,∵(),0x ∈-∞,∴()1,t ∈+∞,∴()()222413t t t y g t -+=-=+=,对称轴1t =,图像开口向上,∴()g t 在()1,t ∈+∞为增函数, ∴()3g t >,∴()f x 的值域为()3,+∞.(2)由题意知,()6f x ≤在[)0,+∞上恒成立,即11239xxm ⎛⎫⎛⎫⋅≤- ⎪ ⎪⎝⎭⎝⎭,∴1233xx m ≤⋅-在[)0,x ∈+∞恒成立,则只需当[)0,x ∈+∞时,min 1233x x m ⎛⎫≤⋅- ⎪⎝⎭,设3xt =,()12h t t t=-,由[)0,x ∈+∞得1t ≥,设121t t ≤<,则()()()()12121212210t t t t h t h t t t -+-=<,所以()h t 在[)1,+∞上递增,()h t 在[)1,+∞上的最小值为()11h =,所以实数m 的取值范围为(],1-∞. 22.【解析】(1)取BE 中点R ,连接PR ,QR ,BD ,由P ,Q 分别是BF ,DE 的中点, ∴//PR EF ,//QR BD ,又∵//EF AC ,∴//PR 平面ABCD ,//QR 平面ABCD ,又∵PR QR R =,∴平面//PQR 平面ABCD ,又∵PQ ⊂平面PQR , ∴//PQ 平面ABCD .(2)连接AC ,设AC ,BD 交于点O , ∴BD AC ⊥,又∵平面AFEC ⊥平面ABCD , 平面AFEC平面ABCD AC =,∴BD ⊥平面AFEC .∴多面体ABCDFE 可以分解为四棱锥B ACEF -和四棱锥D ACEF -, 菱形ABCD 中,2AB =且60ABC ∠=︒知:2AC =,23BD =,12ACEF ==, 设梯形EFAC 的面积为()133244EFAC BD EF AC S =+⋅=, 1332ABCDFE EFAC V S BD =⋅⋅=.。

2023-2024学年高一上数学必修一第3章综合测试卷(附答案解析)

2023-2024学年高一上数学必修一第3章综合测试卷(附答案解析)

解析:由题意,得 f(-x)=f(x),g(-x)=-g(x).令 F(x)=f(x)g(x),
则 F(-x)=f(-x)g(-x)=-f(x)g(x)=-F(x),所以函数 F(x)=f(x)g(x)
为奇函数,其图象关于原点对称,排除 A,B.又由函数 f(x),g(x)的图
象可知,当 x>0 时,f(x)>0,g(x)>0,所以 F(x)>0,可排除 D,故选
B.[-k-1,1+k]
C.[k-1,1+k]
D.[-k-1,1-k]
第 1 页 共 14 页
解析:因为 x∈[-2,0],则 x+1∈[-1,1],所以函数 f(x)的定义
-1≤x-k≤1,
域 为 [ - 1,1] . 要 使 F(x) 有 意 义 , 则
解得
-1≤x+k≤1,
k-1≤x≤k+1, 又 k∈(0,1),所以 k-1≤x≤1-k.于是函数 F(x)
x1+x2,0
x1+x2
2
,|AB|=f(x1),|CD|=f(x2),|EF|=f 2 .
∵|EF|>1(|AB|+|CD|), 2
∴f
x1+x2 2
>fx1+fx2.故选
BCD.
2
10.下列说法正确的是( CDE ) A.空集是任何集合的真子集 B.函数 f(x)的值域是[-2,2],则函数 f(x+1)的值域为[-3,1] C.既是奇函数又是偶函数的函数有无数个 D.若 A∪B=B,则 A∩B=A E.函数 f(x)的定义域是[-2,2],则函数 f(x+1)的定义域为[-3,1]
C. 7.设函数 f(x)为二次函数,且满足下列条件:
1-2a ①f(x)≤f 2 (a∈R);

高一数学必修一必修二综合测试题(有答案)

高一数学必修一必修二综合测试题(有答案)

高一数学《必修1》《必修2》综合测试题一、选择题(共12小题;每小题5分,共60分)1. 已知全集R U =,集合}32{≤≤-=x x A ,}41{>-<=x x x B 或,则()B C A U ⋃( )A.{}42≤≤-x xB.}43{≥≤x x x 或C.}12{-<≤-x xD.}31{≤≤-x x2. 过点(1,0)且与直线x -2y -2=0垂直的直线方程是( )A .x -2y -1=0B .x -2y +1=0C .2x +y -2=0D .x +2y -1=03. 圆台的一个底面圆周长是另一个底面圆周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面圆的半径为( )A .3B .5C .6D .74. 已知圆C :x 2:y 2:4y :0,直线l 过点P (0,1),则 ( )A. l 与C 相交B. l 与C 相切C. l 与C 相离D. 以上三个选项均有可能5. 一个几何体的三视图如图所示(单位:m ),则该几何体的体积为( )3mA.π2B.38πC.π3D. 310π6. 已知,则函数的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 若直线2x y -=被圆22()4x a y -+=所截得的弦长为22,则实数a 的值为( ) A. 0或4 B. 1或3 C. 2-或6 D. 1-或3 8. 在三棱柱ABC­A 1B 1C 1中,各棱长相等,侧棱垂直于底面,点D 是侧面BB 1C 1C 的中心,则AD 与平面BB 1C 1C 所成角的大小是( ) A .30° B .45° C .60° D .90° 9. 若幂函数)(x f y =是经过点)33,3(,则此函数在定义域上是 ( ) A .偶函数 B .奇函数 C .增函数 D .减函数 10. 一个多面体的三视图如图所示,则该多面体的表面积为 A.321+ B.318+ C.18 D.21 11.若定义在R 上的偶函数()x f 满足)()2(x f x f =+,且当[]1,0∈x 时,x x f y x x f 3log )(,)(-==则函数的零点个数是( ) A .6个 B .4个 C .3个 D .2个 12. 已知A(3,1),B(-1,2),若:ACB 的平分线方程为y =x +1,则AC 所在的直线方程为( ) A .y =2x +4 B .y =12x -3 C .x -2y -1=0 D .3x +y +1=001,1a b <<<-x y a b =+二、填空题(共4小题,每小题5分,共20分)13. 若直线1x y +=与圆222(0)x y r r +=>相切,则实数r 的值等于________.14. 在平面直角坐标系中,正三角形ABC 的边BC 所在直线的斜率是0,则AC ,AB 所在直线的斜率之和为________.15. 函数ax x y 22--=()10≤≤x 的最大值是2a ,则实数a 的取值范围是________ .16.若圆C :x 2+y 2−2ax +b =0上存在两个不同的点A ,B 关于直线x −3y −2=0对称,其中b ∈N ,则圆C 的面积最大时,b = .三、解答题(共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17. (10分)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=2x -1.(1)求f (3)+f (-1);(2)求f (x )的解析式.18. (12分)如图,在三棱锥P ­ABC 中,PC ⊥底面ABC ,AB ⊥BC ,D ,E 分别是AB ,PB 的中点.(1)求证:DE ∥平面PAC ;(2)求证:AB ⊥PB .19.(12分)直线l 1过点A (0,1),l 2过点B (5,0),如果l 1∥l 2且l 1与l 2的距离为5,求l 1,l 2的方程. 20.(12分)已知圆22:2240C x y mx ny ++++=,直线:10l x my -+=相交于A :B 两点. :1)若交点为(1,2)A ,求m 及n 的值. :2)若直线l 过点(2,3):60ACB ∠=︒,求22m n +的值. 21.(12分)已知直线:(1)(23)60m a x a y a -++-+=,:230n x y -+=. (1)当0a =时,直线l 过m 与n 的交点,且它在两坐标轴上的截距相反,求直线l 的方程; (2)若坐标原点O 到直线m 的距离为5,判断m 与n 的位置关系. 22.(12分)(1)圆C 与直线2x +y -5=0切于点(2,1),且与直线2x +y +15=0也相切,求圆C 的方程. (2)已知圆C 和y 轴相切,圆心C 在直线x -3y =0上,且被直线y =x 截得的弦长为27,求圆C 的方程.高一数学答案一、选择题(共12小题;每小题5分,共60分). 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A C D A B A A C D A B C二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上13.22 14.0 15.[-1,0] 16.0三、解答题(本大题共6小题,共70分)17.解:(1)∵f (x )是奇函数,∴f (3)+f (-1)=f (3)-f (1)=23-1-2+1=6. .................4分(2)设x <0,则-x >0,∴f (-x )=2-x -1,∵f (x )为奇函数,∴f (x )=-f (-x )=-2-x +1,.................8分∴f (x )=⎩⎪⎨⎪⎧ 2x -1,x ≥0,-2-x +1,x <0. ........................10分18. 解 (1)证明:因为D ,E 分别是AB ,PB 的中点,所以DE ∥PA.又因为PA ⊂平面PAC ,DE ⊄平面PAC ,所以DE ∥平面PAC. .................6分(2)证明:因为PC ⊥底面ABC ,AB ⊂底面ABC ,所以PC ⊥AB.又因为AB ⊥BC ,PC ∩BC =C ,所以AB ⊥平面PBC ,又因为PB ⊂平面PBC ,所以AB ⊥PB. .................6分19.解: 若直线l 1,l 2的斜率都不存在,则l 1的方程为x =0,l 2的方程为x =5,此时l 1,l 2之间距离为5,符合题意;.................3分若l 1,l 2的斜率均存在,设直线的斜率为k ,由斜截式方程得直线l 1的方程为y =kx +1,即kx -y +1=0,.................6分由点斜式可得直线l 2的方程为y =k (x -5),即kx -y -5k =0,在直线l 1上取点A (0,1),则点A 到直线l 2的距离d =|1+5k |1+k2=5,∴25k 2+10k +1=25k 2+25,∴k =125. ∴l 1的方程为12x -5y +5=0,l 2的方程为12x -5y -60=0. .................10分 综上知,满足条件的直线方程为l 1:x =0,l 2:x =5或l 1:12x -5y +5=0,l 2:12x -5y -60=0. .......12分20.【解析】试题分析:(1)将点()1,2A 代入直线和圆方程,可解得1m =,114n =-. (2)将点()2,3代入直线方程得1m =.又由已知可判断ACB V 是等边三角形.所以有圆心到直线10x y -+=的距离233322d r n ==-,代入解得29n =,从而2210m n +=. 试题解析::1)将点()1,2A 代入直线10x my -+=:∴1210m -+=,解出1m =:再将()1,2A 代入圆2221240x y x ny ++⨯++=: ∴22122440n ++++=,解得114n =-: ∴1m =:114n =-: :2)将点()2,3代入直线10x my -+=:∴2310m -+=,解出1m =:又∵在ACB V 中,CA CB =且60ACB ∠=︒:∴ACB V 是等边三角形.∵圆()()222221230x x y ny nn ++++++-=: 即()()22213x y n n +++=-:圆心()1,n --,半径23r n =-:其中圆心到直线10x y -+=的距离222113332211n d r n -++===-+: 代入解出29n =:∴2210m n +=:21.(12分)【详解】试题分析:(1)联立360230.x y x y -++=⎧⎨-+=⎩,解得m 与n 的交点为(-21,-9),当直线l 过原点时,直线l 的方程为370x y -=;当直线l 不过原点时,设l 的方程为1x y b b+=-,将(-21,-9)代入得12b =-,解得所求直线方程(2)设原点O 到直线m 的距离为d ,则()()2265123a d a a -+==-++,解得:14a =-或73a =-,分情况根据斜率关系判断两直线的位置关系;试题解析:解:(1)联立360230.x y x y -++=⎧⎨-+=⎩,解得21,9,x y =-⎧⎨=-⎩即m 与n 的交点为(-21,-9). 当直线l 过原点时,直线l 的方程为370x y -=;当直线l 不过原点时,设l 的方程为1x y b b+=-,将(-21,-9)代入得12b =-, 所以直线l 的方程为120x y -+=,故满足条件的直线l 方程为370x y -=或120x y -+=.(2)设原点O 到直线m 的距离为d ,则()()2265123a d a a -+==-++,解得:14a =-或73a =-, 当14a =-时,直线m 的方程为250x y --=,此时//m n ; 当73a =-时,直线m 的方程为250x y +-=,此时m n ⊥.22.解: (1)设圆C 的方程为(x -a )2+(y -b )2=r 2.∵两切线2x +y -5=0与2x +y +15=0平行,∴2r =|15-(-5)|22+12=45,∴r =25, ∴|2a +b +15|22+1=r =25,即|2a +b +15|=10①|2a +b -5|22+1=r =25,即|2a +b -5|=10② 又∵过圆心和切点的直线与过切点的切线垂直,∴b -1a -2=12③ 由①②③解得⎩⎨⎧ a =-2,b =-1.∴所求圆C 的方程为(x +2)2+(y +1)2=20.(2)设圆心坐标为(3m ,m ).∵圆C 和y 轴相切,得圆的半径为3|m |,∴圆心到直线y =x 的距离为|2m |2=2|m |.由半径、弦心距、半弦长的关系得9m 2=7+2m 2,∴m =±1,∴所求圆C 的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9.。

最新北师大版高一数学必修一测试题全套及答案

最新北师大版高一数学必修一测试题全套及答案

最新北师大版高一数学必修一测试题全套及答案第一章测试题一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|-1≤x<3},B={x|2<x≤5},则A∪B等于()A.{x|2<x<3}B.{x|-1≤x≤5}C.{x|-1<x<5} D.{x|-1<x≤5}解析:结合数轴分析可知,A∪B={x|-1≤x≤5}.答案:B2.符合条件{a}P⊆{a,b,c}的集合P的个数是()A.2 B.3C.4 D.5解析:集合P内除了含有元素a外,还必须含b,c中至少一个,故P={a,b},{a,c},{a,b,c}共3个.答案:B3.已知集合A,B均为集合U={1,3,5,7,9}的子集,若A∩B={1,3},(∁U A)∩B={5},则集合B等于()A.{1,3} B.{3,5}C.{1,5} D.{1,3,5}解析:画出满足题意的Venn图,由图可知B={1,3,5}.答案:D4.设M={x|x=a2+1,a∈N*},P={y|y=b2-4b+5,b∈N*},则下列关系正确的是() A.M=P B.M PC.P M D.M与P没有公共元素解析:∵a∈N*,∴x=a2+1=2,5,10,….∵b∈N*,∴y=b2-4b+5=(b-2)2+1=1,2,5,10,….∴M P.答案:B5.若全集U={1,2,3,4,5,6},M={2,3},N={1,4},则集合{5,6}等于()A.M∪N B.M∩NC.(∁U M)∪(∁U N) D.(∁U M)∩(∁U N)解析:∵∁U M={1,4,5,6},∁U N={2,3,5,6},∴(∁U M)∩(∁U N)={5,6}.答案:D6.如图,I为全集,M,P,S是I的三个子集,则阴影部分所表示的集合是() A.(M∩P)∩S B.(M∩P)∪SC.(M∩P)∩(∁I S)D.(M∩P)∪(∁I S)解析:阴影部分在M中,也在P中但不在S中,故表示的集合为(M∩P)∩(∁I S).答案:C7.已知集合A={x|x<3,或x≥7},B={x|x<a}.若(∁U A)∩B≠∅,则a的取值范围为() A.a>3 B.a≥3C.a≥7 D.a>7解析:因为A={x|x<3,或x≥7},所以∁U A={x|3≤x<7},又(∁U A)∩B≠∅,则a>3.答案:A8.已知集合A={x|x>a},B={x|1<x<2},且A∪(∁R B)=R,则实数a的取值范围是() A.{a|a≤1} B.{a|a<1}C.{a|a≥2} D.{a|a>2}解析:∁R B={x|x≤1或x≥2},∵A∪(∁R B)=R,∴a≤1.答案:A9.若集合A={x||x|=1},B={x|ax=1},若A∪B=A,则实数a的值为()A.1 B.-1C.1或-1 D.1或0或-1解析:∵A={-1,1}且A∪B=A,∴B⊆A,∴B={-1}或{1}或∅.当B={1}时a=1;当B={-1}时a=-1;当B=∅时a=0.∴a的值为0或1或-1.答案:D10.定义集合M与N的新运算:M⊕N={x|x∈M或x∈N且x∉M∩N},则(M⊕N)⊕N =()A.M∩N B.M∪NC.M D.N解析:按定义,M⊕N表示右上图的阴影部分,两圆内部的公共部分表示M∩N.(M⊕N)⊕N应表示x∈M⊕N或x∈N且x∉(M⊕N)∩N的所有x的集合,(M⊕N)∩N表示右下图右边的阴影部分,因此(M⊕N)⊕N=M.答案:C二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)11.已知集合A={x|x≤2},B={x|x>a},如果A∪B=R,那么a的取值范围是________.解析:如图中数轴所示,要使A∪B=R,需满足a≤2.答案:a≤212.集合A={1,2,3,5},当x∈A时,若x-1∉A,x+1∉A,则称x为A的一个“孤立元素”,则A中孤立元素的个数为________.解析:当x=1时,x-1=0∉A,x+1=2∈A;当x=2时,x-1=1∈A,x+1=3∈A;当x=3时,x-1=2∈A,x+1=4∉A;当x=5时,x-1=4∉A,x+1=6∉A;综上可知,A中只有一个孤立元素5.答案:513.设U=R,A={x|x>0},B={x|x>1},则A∩(∁U B)=________________________________________________________________________.解析:∵∁U B={x|x≤1},借助数轴可以求出∁U B与A的交集为图中阴影部分,即{x|0<x≤1}.答案:{x|0<x≤1}14.已知集合A{2,3,7},且A中至多有1个奇数,则这样的集合共有________个.解析:(1)若A中有且只有1个奇数,则A={2,3}或{2,7}或{3}或{7};(2)若A中没有奇数,则A={2}或∅.答案:6三、解答题(本大题共4个小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(12分)已知M ={1,t },N ={t 2-t +1},若M ∪N =M ,求t 的取值集合. 解析: ∵M ∪N =M , ∴N ⊆M ,即t 2-t +1∈M ,(1)若t 2-t +1=1,即t 2-t =0,解得t =0或t =1,当t =1时,M 中的两元素相同,不符合集合中元素的互异性,舍去.∴t =0. (2)若t 2-t +1=t ,即t 2-2t +1=0,解得t =1, 由(1)知不符合题意,舍去. 综上所述,t 的取值集合为{0}.16.(12分)已知集合A ={x |-1≤x <3},B ={x |2x -4≥x -2}. (1)求A ∩B ;(2)若集合C ={x |2x +a >0},满足B ∪C =C ,求实数a 的取值范围. 解析: (1)∵B ={x |x ≥2}, ∴A ∩B ={x |2≤x <3}(2)∵C =⎩⎨⎧⎭⎬⎫x ⎪⎪x >-a 2,B ∪C =C ⇔B ⊆C ,∴-a2<2, ∴a >-4.∴a 的取值范围是{a |a >-4}.17.(13分)若集合A ={x |-3≤x ≤4}和B ={x |2m -1≤x ≤m +1}. (1)当m =-3时,求集合A ∩B . (2)当B ⊆A 时,求实数m 的取值范围.解析: (1)当m =-3时,B ={x |-7≤x ≤-2}, A ∩B ={x |-3≤x ≤-2}. (2)∵B ⊆A ,∴B =∅或B ≠∅. 当B =∅时,2m -1>m +1,即m >2. 当B ≠∅时,有 ⎩⎪⎨⎪⎧2m -1≤m +12m -1≥-3m +1≤4,即-1≤m ≤2.综上所述,所求m 的范围是m ≥-1.18.(13分)已知全集U =R ,集合A ={a |a ≥2或a ≤-2},B ={a |关于x 的方程ax 2-x+1=0有实根}.求A ∪B ,A ∩B ,A ∩(∁U B ).解析: A ={a |a ≥2或a ≤-2}, 对于方程ax 2-x +1=0有实根, 当a =0时,x =1;当a ≠0时,Δ=1-4a ≥0,a ≤14. 所以B =⎩⎨⎧⎭⎬⎫a | a ≤14 .所以A ∪B =⎩⎨⎧⎭⎬⎫a | a ≤14或a ≥2,A ∩B ={a |a ≤-2}, A ∩(∁U B )={a |a ≥2}.第二章 测试题一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =x 2-2x 的定义域为{0,1,2,3},那么其值域为( ) A .{-1,0,3} B .{0,1,2,3} C .{y |-1≤y ≤3}D .{y |0≤y ≤3}解析: 当x =0时y =0,当x =1时y =-1, 当x =2时y =0,当x =3时y =3,值域为{-1,0,3}. 答案: A2.幂函数y =xm 2-2m -3(m ∈Z )的图像如图所示,则m 的值为( )A .-1<m <3B .0C .1D .2解析: 从图像上看,由于图像不过原点,且在第一象限下降,故m 2-2m -3<0,即-1<m <3;又从图像看,函数是偶函数,故m 2-2m -3为负偶数, 将m =0,1,2分别代入,可知当m =1时,m 2-2m -3=-4,满足要求.答案: C3.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )解析: 汽车经过启动、加速行驶、匀速行驶、减速行驶直至停车,在行进过程中s 随时间t 的增大而增大,故排除D.另外汽车在行进过程中有匀速行驶的状态,故排除C.又因为在开始时汽车启动后加速行驶的过程中行驶路程s 随时间t 的变化越来越快,在减速行驶直至停车的过程中行驶路程s 随时间t 的变化越来越慢,排除B.答案: A4.函数y =f (x )的图像与直线x =a (a ∈R )的交点有( ) A .至多有一个 B .至少有一个 C .有且仅有一个D .有一个或两个以上解析: 由函数的定义对于定义域内的任意一个x 值,都有唯一一个y 值与它对应,所以函数y =f (x )的图像与直线x =a (a ∈R )至多有一个交点(当a 的值不在定义域时,也可能没有交点).答案: A5.对于定义域为R 的奇函数f (x ),下列结论成立的是( ) A .f (x )-f (-x )>0 B .f (x )-f (-x )≤0 C .f (x )·f (-x )≤0D .f (x )·f (-x )>0解析: f (-x )=-f (x ),则f (x )·f (-x )=-f 2(x )≤0. 答案: C6.函数y =x 2+bx +c (x ∈[0,+∞))是单调函数,则有( ) A .b ≥0 B .b ≤0 C .c ≥0D .c ≤0解析: 作出函数y =x 2+bx +c 的简图,对称轴为x =-b2.因该函数在[0,+∞)上是单调函数,故对称轴只要在y 轴及y 轴左侧即可,故-b2≤0,所以b ≥0.答案: A7.幂函数y =f (x )图像如图,那么此函数为( )A .y =x -2B .y =x 32 C .y =x 12D .y =x 23解析: 可设函数为y =x α,将(2,2)代入得α=12. 答案: C8.某工厂的大门是一抛物线形水泥建筑物,大门的地面宽度为8 m ,两侧距离地面3 m 高处各有一个壁灯,两壁灯之间的水平距离为6 m ,如图所示.则厂门的高约为(水泥建筑物厚度忽略不计,精确到0.1 m)( )A .6.9 mB .7.0 mC .7.1 mD .6.6 m解析: 建立如图所示的坐标系,于是由题设条件知抛物线的方程为y =ax 2(a <0),设点A 的坐标为(4,-h ),则C (3,3-h ),将这两点的坐标代入y =ax 2,可得⎩⎪⎨⎪⎧-h =a ·42,3-h =a ·32,解得⎩⎨⎧a =-37,h =487≈6.9,所以厂门的高约为6.9 m.答案: A9.设f (x )=⎩⎪⎨⎪⎧x +3,(x >10),f (f (x +5)),(x ≤10),则f (5)的值是( ) A .24 B .21 C .18D .16解析: f (5)=f (f (10)),f (10)=f (f (15))=f (18)=21,f (5)=f (21)=24. 答案: A10.下列函数中,满足“对任意x 1,x 2∈(0,+∞),都有f (x 1)-f (x 2)x 1-x 2>0”的是( ) A .f (x )=2xB .f (x )=-3x +1C .f (x )=x 2+4x +3D .f (x )=x +1x解析: f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在(0,+∞)上为增函数,而f (x )=2x 及f (x )=-3x +1在(0,+∞)上均为减函数,故排除A ,B.f (x )=x +1x 在(0,1)上递减,在[1,+∞)上递增,故排除D.答案: C二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)11.若函数f (x )=⎩⎪⎨⎪⎧x -12,x >0,-2,x =0,(x +3)12,x <0,则f (f (f (0)))=________.解析: f (0)=-2,f (f (0))=f (-2)=(-2+3)12=1,f (f (f (0)))=f (1)=1-12=1. 答案: 112.设函数f (x )是R 上的减函数,若f (m -1)>f (2m -1),则实数m 的取值范围是________. 解析: 由题意得m -1<2m -1,故m >0. 答案: (0,+∞)13.设函数f (x )=(x +1)(x +a )x为奇函数,则a =________. 解析: f (-x )=(1-x )(a -x )-x ,又f (x )为奇函数,故f (x )=-f (-x ), 即(x +1)(x +a )x =(1-x )(a -x )x ,所以x 2+(a +1)x +a x =x 2-(a +1)x +a x , 从而有a +1=-(a +1),即a =-1. 答案: -114.已知函数f (x ),g (x )分别由下表给出:当g [f (x )]=2时,x =解析: ∵g [f (x )]=2,∴f (x )=2,∴x =1. 答案: 1三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(12分)已知二次函数y =f (x )的最大值为13,且f (3)=f (-1)=5,求f (x )的解析式,并求其单调区间.解析: ∵f (3)=f (-1)=5, ∴对称轴为x =1,又∵最大值为13,∴开口向下,设为f (x )=a (x -1)2+13(a <0),代入x =-1, ∴4a +13=5,∴a =-2, ∴f (x )=-2(x -1)2+13.函数在(-∞,1]上单调递增,在[1,+∞)上单调递减. 16.(12分)已知函数f (x )=x 2+ax ,且f (1)=2, (1)证明函数f (x )是奇函数;(2)证明f (x )在(1,+∞)上是增函数; (3)求函数f (x )在[2,5]上的最大值与最小值.解析: (1)证明:f (x )的定义域为{x |x ≠0},关于原点对称,因为f (1)=2所以1+a =2,即a =1f (x )=x 2+1x =x +1x f (-x )=-x -1x =-f (x ) 所以f (x )是奇函数.(2)证明:任取x 1,x 2∈(1,+∞)且x 1<x 2 f (x 1)-f (x 2)=x 1+1x 1-(x 2+1x 2) =(x 1-x 2)·x 1x 2-1x 1x 2∵x 1<x 2,且x 1x 2∈(1,+∞) ∴x 1-x 2<0,x 1x 2>1,∴f (x 1)-f (x 2)<0 所以f (x )在(1,+∞)上为增函数.(3)由(2)知,f (x )在[2,5]最小值为f (2)=52.17.(13分)已知函数f (x )=1x 2+1,令g (x )=f ⎝⎛⎭⎫1x .(1)如图,已知f (x )在区间[0,+∞)的图像,请据此在该坐标系中补全函数f (x )在定义域内的图像,并说明你的作图依据;(2)求证:f (x )+g (x )=1(x ≠0).解析: (1)∵f (x )=1x 2+1,所以f (x )的定义域为R . 又任意x ∈R ,都有f (-x )=1(-x )2+1=1x 2+1=f (x ), 所以f (x )为偶函数,故f (x )的图像关于y 轴对称,补全图像如图所示.(2)证明:∵g (x )=f ⎝⎛⎭⎫1x =1⎝⎛⎭⎫1x 2+1=x 21+x 2(x ≠0), ∴f (x )+g (x )=11+x 2+x 21+x 2=1+x 21+x 2=1, 即f (x )+g (x )=1(x ≠0).18.(13分)已知函数f (x )=ax 2+(2a -1)x -3在区间⎣⎡⎦⎤-32,2上的最大值为1,求实数a的值.解析: 当a =0时,f (x )=-x -3,f (x )在⎣⎡⎦⎤-32,2上不能取得1,故a ≠0.∴f (x )=ax 2+(2a -1)x -3(a ≠0)的对称轴方程为 x 0=1-2a 2a .(1)令f ⎝⎛⎭⎫-32=1,解得a =-103, 此时x 0=-2320∈⎣⎡⎦⎤-32,2, 因为a <0,f (x 0)最大,所以f ⎝⎛⎭⎫-32=1不合适;(2)令f (2)=1,解得a =34, 此时x 0=-13∈⎣⎡⎦⎤-32,2,因为a =34>0,x 0=-13∈⎣⎡⎦⎤-32,2,且距右端点2较远, 所以f (2)最大,合适;(3)令f (x 0)=1,得a =12(-3±22), 验证后知只有a =12(-3-22)才合适. 综上所述,a =34或a =-12(3+22).第三章 测试题一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.化简[3(-5)2]34的结果为( ) A .5 B .5 C .- 5D .-5解析: [3(-5)2]34=(352)34=523×34=512= 5.答案: B2.若log 513·log 36·log 6x =2,则x =( )A .9B .19C .25D .125解析: 由换底公式,得lg 1 3lg 5·lg 6lg 3·lg xlg 6=2,∴-lg xlg 5=2.∴lg x=-2lg 5=lg 125.∴x=125.答案:D3.已知函数f(x)=4+a x+1的图像恒过定点P,则点P的坐标是()A.(-1,5) B.(-1,4)C.(0,4) D.(4,0)解析:∵y=a x恒过定点(0,1),∴y=4+a x+1恒过定点(-1,5).答案:A4.函数y=(a2-1)x在(-∞,+∞)上是减函数,则a的取值范围是()A.|a|>1 B.|a|>2C.a> 2 D.1<|a|<2解析:由0<a2-1<1得1<a2<2,∴1<|a|< 2.答案:D5.函数y=a x-1的定义域是(-∞,0],则a的取值范围是()A.a>0 B.a>1C.0<a<1 D.a≠1解析:由a x-1≥0得a x≥1,又知此函数的定义域为(-∞,0],即当x≤0时,a x≥1恒成立,∴0<a<1.答案:C6.函数y=f(x)=a x-b的图像如图所示,其中a,b为常数,则下列结论正确的是() A.a>1,b<0B.a>1,b>0C.0<a<1,b>0D.0<a<1,b<0解析:由图像得函数是减函数,∴0<a<1.又分析得,图像是由y =a x 的图像向左平移所得, ∴-b >0,即b <0.从而D 正确. 答案: D7.函数y =⎩⎪⎨⎪⎧3x -1-2,x ≤1,⎝⎛⎭⎫13x -1-2,x >1的值域是( )A .(-2,-1)B .(-2,+∞)C .(-∞,-1]D .(-2,-1]解析: 当x ≤1时,0<3x -1≤31-1=1, ∴-2<3x -1-2≤-1. 当x >1时,⎝⎛⎭⎫13x<⎝⎛⎭⎫131, ∴0<⎝⎛⎭⎫13x -1<⎝⎛⎭⎫130=1, 则-2<⎝⎛⎭⎫13x -1-2<1-2=-1.答案: D8.某工厂6年来生产甲种产品的情况是:前3年年产量的增大速度越来越快,后3年年产量保持不变,则该厂6年来生产甲种产品的总产量C 与时间t (年)的函数关系图像为( )解析: 由题意知前3年年产量增大速度越来越快,可知在单位时间内,C 的值增大的很快,从而可判定结果.答案: A9.设函数f (x )=⎩⎪⎨⎪⎧log 2(x -1),x ≥2,⎝⎛⎭⎫12x -1,x <2,若f (x 0)>1,则x 0的取值范围是( )A .(-∞,0)∪(2,+∞)B .(0,2)C .(-∞,-1)∪(3,+∞)D .(-1,3)解析: 当x 0≥2时,∵f (x 0)>1, ∴log 2(x 0-1)>1,即x 0>3;当x 0<2时,由f (x 0)>1得⎝⎛⎭⎫12x 0-1>1,⎝⎛⎭⎫12x 0>⎝⎛⎭⎫12-1,∴x 0<-1. ∴x 0∈(-∞,-1)∪(3,+∞). 答案: C10.函数f (x )=log a (bx )的图像如图,其中a ,b 为常数.下列结论正确的是( ) A .0<a <1,b >1 B .a >1,0<b <1 C .a >1,b >1D .0<a <1,0<b <1解析: 由于函数单调递增,∴a >1,又f (1)>0, 即log a b >0=log a 1,∴b >1. 答案: C二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 11.若函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫13x,x ∈[-1,0],3x ,x ∈(0,1],则f ⎝⎛⎭⎫log 312=________. 解析: ∵-1=log 313<log 312<log 31=0,∴f ⎝⎛⎭⎫log 312=⎝⎛⎭⎫13log 312=3-log 312=3log 32=2.答案: 212.将甲桶中的a 升水缓慢注入空桶乙中,t 分钟后甲桶中剩余的水量符合指数衰减曲线y =a e nt .假设过5分钟后甲桶和乙桶的水量相等,若再过m 分钟甲桶中的水只有a8升,则m=________.解析: 根据题意12=e 5n ,令18a =a e nt ,即18=e nt ,因为12=e 5n ,所以⎝⎛⎭⎫123=e 5n ×3.故18=e 15n ,解得t =15, 故m =15-5=10. 答案: 1013.若函数y =2x +1,y =b ,y =-2x -1三图像无公共点,结合图像则b 的取值范围为________.解析: 如图.当-1≤b ≤1时,此三函数图像无公共点. 答案: [-1,1]14.函数f (x )=-a 2x -1+2恒过定点的坐标是________. 解析: 令2x -1=0,解得x =12,又f ⎝⎛⎭⎫12=-a 0+2=1, ∴f (x )过定点⎝⎛⎭⎫12,1. 答案: ⎝⎛⎭⎫12,1三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(12分)计算下列各式的值: (1)(32×3)6+(2×2)43-(-2 008)0; (2)lg 5lg 20+(lg 2)2;(3)(log 32+log 92)·(log 43+log 83)+(log 3312)2+ln e -lg 1. 解析: (1)原式=(213×312)6+(2×212)12×43-1=213×6×312×6+232×12×43-1 =22×33+21-1 =4×27+2-1 =109.(2)原式=lg 5lg(5×4)+(lg 2)2 =lg 5(lg 5+lg 4)+(lg 2)2 =(lg 5)2+lg 5lg 4+(lg 2)2 =(lg 5)2+2lg 5lg 2+(lg 2)2=(lg 5+lg 2)2=1.(3)原式=⎝⎛⎭⎫lg 2lg 3+lg 22lg 3·⎝⎛⎭⎫lg 32lg 2+lg 33lg 2+14+12-0 =3lg 22lg 3·5lg 36lg 2+34=54+34=2. 16.(12分)已知函数f (x )=log a (1-x )+log a (x +3)(a >0,且a ≠1). (1)求函数f (x )的定义域和值域;(2)若函数f (x )有最小值为-2,求a 的值.解析: (1)由⎩⎪⎨⎪⎧1-x >0x +3>0得-3<x <1,所以函数的定义域{x |-3<x <1}, f (x )=log a (1-x )(x +3), 设t =(1-x )(x +3)=4-(x +1)2, 所以t ≤4,又t >0,则0<t ≤4.当a >1时,y ≤log a 4,值域为{y |y ≤log a 4}. 当0<a <1时,y ≥log a 4,值域为{y |y ≥log a 4}. (2)由题意及(1)知:当0<a <1时,函数有最小值, 所以log a 4=-2,解得:a =12.17.(13分)已知函数f (x )=3x ,且f (a +2)=18,g (x )=3a -4x 的定义域为[0,1]. (1)求函数g (x )的解析式; (2)判断函数g (x )的单调性.解析: (1)∵f (x )=3x ,∴f (a +2)=3a +2=18,∴3a =2. ∴g (x )=2-4x (x ∈[0,1]).(2)设x 1,x 2为区间[0,1]上任意两个值,且x 1<x 2, 则g (x 2)-g (x 1)=2-4x 2-2+4x 1=(2x 1-2x 2)(2x 1+2x 2), ∵0≤x 1<x 2≤1,∴2x 2>2x 1>1, ∴g (x 2)<g (x 1).所以,函数g (x )在[0,1]上是减函数.18.(13分)已知f (x )=-x +log 21-x1+x ,(1)求f (x )的定义域; (2)求f ⎝⎛⎭⎫-12 012+f ⎝⎛⎭⎫12 012;(3)当x ∈(-a ,a ](其中a ∈(-1,1),且a 为常数)时,f (x )是否存在最小值?如果存在,求出最小值;如果不存在,请说明理由.解析: (1)由1-x 1+x >0得x -1x +1<0∴⎩⎪⎨⎪⎧x -1>0x +1<0或⎩⎪⎨⎪⎧x -1<0x +1>0, ∴-1<x <1,即f (x )的定义域为(-1,1). (2)对x ∈(-1,1)有f (-x )=-(-x )+log 21+x 1-x=-⎝ ⎛⎭⎪⎫-x +log 21-x 1+x =-f (x ) ∴f (x )为奇函数∴f ⎝⎛⎭⎫-12 012=-f ⎝⎛⎭⎫12 012. ∴f ⎝⎛⎭⎫-12 012+f ⎝⎛⎭⎫12 012=0. (3)设-1<x 1<x 2<1, 则1-x 11+x 1-1-x 21+x 2=2(x 2-x 1)(1+x 1)(1+x 2). ∵-1<x 1<x 2<1,∴x 2-x 1>0,(1+x 1)(1+x 2)>0, ∴1-x 11+x 1>1-x 21+x 2. ∴函数y =1-x1+x在(-1,1)上是减函数.从而得f (x )=-x +log 21-x1+x在(-1,1)上也是减函数.又a ∈(-1,1),∴当x ∈(-a ,a ]时,f (x )有最小值,且最小值为f (a )=-a +log 21-a1+a.第四章 测试题一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =(x -1)(x 2-2x -3)的零点为( ) A .1,2,3 B .1,-1,3 C .1,-1,-3D .无零点解析: 令y =(x -1)(x 2-2x -3)=0,解得x =1,-1,3,故选B. 答案: B2.下列函数中没有零点的是( ) A .f (x )=log 2x -3 B .f (x )=x -4 C .f (x )=1x -1D .f (x )=x 2+2x解析: 由于函数f (x )=1x -1中,对任意自变量x 的值,均有1x -1≠0,故该函数不存在零点.答案: C3.如图所示的函数图像与x 轴均有交点,其中不能用二分法求图中交点横坐标的是( )A .①③B .②④C .①②D .③④解析: 对于①③在函数零点两侧函数值的符号相同,故不能用二分法求. 答案: A4.已知函数f (x )=e x -x 2+8x ,则在下列区间中f (x )必有零点的是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)解析: f (-1)=1e -9<0,f (0)=e 0=1>0,f (x )是连续函数,故f (x )在(-1,0)上有一零点.答案: B5.若函数f (x )的图像是连续不断的,且f (0)>0, f (1)·f (2)·f (4)<0,则下列说法中正确的是( )A .函数f (x )在区间(0,1)内有零点B .函数f (x )在区间(1,2)内有零点C .函数f (x )在区间(0,2)内有零点D .函数f (x )在区间(0,4)内有零点解析: 因为f (0)>0,f (1)·f (2)·f (4)<0,则f (1),f (2),f (4)恰有一负两正或三个都是负的,函数的图像与x 轴相交有多种可能.例如,所以函数f (x )必在区间(0,4)内有零点. 答案: D6.二次函数y =x 2+px +q 的零点为1和m ,且-1<m <0,那么p 、q 应满足的条件是( ) A .p >0且q <0 B .p >0且q >0 C .p <0且q >0D .p <0且q <0解析: 由已知得f (0)<0,-p2>0,解得q <0,p <0.答案: D7.若x 0是方程ln x +x =4的解,则x 0属于区间( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)解析: 构造函数f (x )=ln x +x -4,则函数f (x )的图像是连续不断的一条曲线,又f (2)=ln 2+2-4<0,f (3)=ln 3+3-4>0,所以f (2)·f (3)<0,故函数的零点所在区间为(2,3),即方程ln x +x =4的解x 0属于区间(2,3),故选C.答案: C8.若函数f (x )=ax +b 只有一个零点2,那么函数g (x )=bx 2-ax 的零点是( ) A .0,2 B .0,-12C .0,12D .2,12解析: 函数f (x )=ax +b 只有一个零点2,则2a +b =0,所以b =-2a (a ≠0),所以g (x )=-2ax 2-ax =-ax (2x +1),故函数g (x )有两个零点0,-12,故选B.答案: B9.当x ∈(4,+∞)时,f (x )=x 2,g (x )=2x ,h (x )=log 2x 的大小关系是( ) A .f (x )>g (x )>h (x ) B .g (x )>f (x )>h (x ) C .g (x )>h (x )>f (x )D .f (x )>h (x )>g (x )解析: 在同一坐标系中,画出三个函数的图像,如右图所示. 当x =2时,f (x )=g (x )=4,当x =4时,f (x )=g (x )=16,当x >4时,g (x )图像在最上方,h (x )图像在最下方,故g (x )>f (x )>h (x ). 答案: B10.为了改善某地的生态环境,政府决心绿化荒山,计划第一年先植树0.5万亩,以后每年比上年增加1万亩,结果第x 年植树亩数y (万亩)是时间x (年)的一次函数,这个函数的图像是( )解析: 函数解析式为y =x +0.5,故选A. 答案: A二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 11.用二分法求方程x 3+4=6x 2的一个近似解时,已经将一根锁定在区间(0,1)内,则下一步可断定该根所在的区间为________.解析: 设f (x )=x 3-6x 2+4, 显然f (0)>0,f (1)<0, 又f ⎝⎛⎭⎫12=⎝⎛⎭⎫123-6×⎝⎛⎭⎫122+4>0, ∴下一步可断定方程的根所在的区间为⎝⎛⎭⎫12,1. 答案: ⎝⎛⎭⎫12,112.函数f (x )=x 3-x 2-x +1在[0,2]上的零点有________个. 解析: x 3-x 2-x +1=(x -1)2(x +1), 由f (x )=0得x =1或x =-1. ∴f (x )在[0,2]上有1个零点. 答案: 113.已知函数f (x )=⎩⎨⎧2x ,(x ≥2)(x -1)3,(x <2)若函数y =f (x )-k 有两个零点,则实数k 的取值范围是________.解析: 画出分段函数f (x )的图像如图所示.结合图像可以看出,函数y =f (x )-k 有两个零点,即y =f (x )与y =k 有两个不同的交点,k 的取值范围为(0,1).答案: (0,1)14.已知函数t =-144lg ⎝⎛⎭⎫1-N100的图像可表示打字任务的“学习曲线”,其中t (小时)表示达到打字水平N (字/分钟)所需的学习时间,N (字/分钟)表示每分钟打出的字数,则按此曲线要达到90字/分钟的水平,所需的学习时间是________小时.解析: 当N =90时,t =-144lg ⎝⎛⎭⎫1-90100=144. 答案: 144三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(12分)若函数y =ax 2-x -1只有一个零点,求实数a 的取值范围. 解析: (1)若a =0,则f (x )=-x -1为一次函数,函数必有一个零点-1.(2)若a ≠0,函数是二次函数,因为二次方程ax 2-x -1=0只有一个实数根,所以Δ=1+4a =0,得a =-14.综上,当a =0和-14时函数只有一个零点.16.(12分)以下是用二分法求方程x 3+3x -5=0的一个近似解(精确度0.1)的不完整的过程,请补充完整,并写出结论.设函数f (x )=x 3+3x -5,其图像在(-∞,+∞)上是连续不断的一条曲线. 先求值:f (0)=________,f (1)=________,f (2)=________,f (3)=________. 所以f (x )在区间________内存在零点x 0,填表:结论:________________________________________________________________________. 解析: -5 -1 9 31 (1,2)∵∴原方程的近似解可取为1.187 5.17.(13分)某商品在近100天内,商品的单位f (t )(元)与时间t (天)的函数关系式如下:f (t )=⎩⎨⎧t4+22,0≤t ≤40,t ∈Z ,-t2+52,40<t ≤100,t ∈Z .销售量g (t )与时间t (天)的函数关系式是( ) g (t )=-t 3+1123(0≤t ≤100,t ∈Z ).这种商品在这100天内哪一天的销售额最高?解析: 依题意,该商品在近100天内日销售额F (t )与时间t (天)的函数关系式为F (t )=f (t )·g (t )=⎩⎨⎧⎝⎛⎭⎫t 4+22⎝⎛⎭⎫-t 3+1123,0≤t ≤40,t ∈Z ,⎝⎛⎭⎫-t 2+52⎝⎛⎭⎫-t 3+1123,40<t ≤100,t ∈Z .(1)若0≤t ≤40,t ∈Z ,则F (t )=⎝⎛⎭⎫t 4+22⎝⎛⎭⎫-t 3+1123 =-112(t -12)2+2 5003,当t =12时,F (t )max =2 5003(元).(2)若40<t ≤100,t ∈Z ,则 F (t )=⎝⎛⎭⎫-t 2+52⎝⎛⎭⎫-t 3+1123 =16(t -108)2-83,∵t =108>100, ∴F (t )在(40,100]上递减,∴当t =41时,F (t )max =745.5.∵2 5003>745.5,∴第12天的日销售额最高.18.(13分)据气象中心观察和预测:发生于M 地的沙尘暴一直向正南方向移动,其移动速度v (km/h)与时间t (h)的函数图像如图所示,过线段OC 上一点T (t ,0)作横轴的垂线l ,梯形OABC 在直线l 左侧部分的面积即为t (h)内沙尘暴所经过的路程s (km).(1)当t =4时,求s 的值;(2)将s 随t 变化的规律用数学关系式表示出来;(3)若N 城位于M 地正南方向,且距M 地650 km ,试判断这场沙尘暴是否会侵袭到N 城,如果会,在沙尘暴发生后多长时间它将侵袭到N 城?如果不会,请说明理由.解析: (1)由图像可知:当0≤t ≤10时,v =3t ,则 当t =4,v =3×4=12, 故s =12×4×12=24.(2)当0≤t ≤10时, s =12·t ·3t =32t 2, 当10<t ≤20时,s =12×10×30+30(t -10)=30t -150; 当20<t ≤35时,s =12×10×30+10×30+(t -20)×30-12×(t -20)×2(t -20)=-t 2+70t -550. 综上,可知s =⎩⎪⎨⎪⎧32t 2,t ∈[0,10]30t -150,t ∈(10,20]-t 2+70t -550,t ∈(20,35].(3)∵t ∈[0,10]时,s max =32×102=150<650,t ∈(10,20]时,s max =30×20-150=450<650, ∴当t ∈(20,35]时,令-t 2+70t -550=650. 解得t 1=30,t 2=40. ∵20<t ≤35, ∴t =30.即沙尘暴发生30 h 后将侵袭到N 城.模块质量评估(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列表示错误的是( ) A .{a }∈{a ,b } B .{a ,b }⊆{b ,a } C .{-1,1}⊆{-1,0,1}D .∅⊆{-1,1}解析: A 中两个集合之间不能用“∈”表示,B ,C ,D 都正确. 答案: A2.若集合A ={y |y =2x ,x ∈R },B ={y |y =x 2,x ∈R },则( ) A .A ⊆B B .A ⊇B C .A =BD .A ∩B =∅解析: A ={y |y >0},B ={y |y ≥0},∴A ⊆B . 答案: A3.设a =log 32,b =log 52,c =log 23,则( ) A .a >c >b B .b >c >a C .c >b >aD .c >a >b解析: 易知log 23>1,log 32,log 52∈(0,1).在同一平面直角坐标系中画出函数y =log 3x 与y =log 5x 的图像,观察可知log 32>log 52.所以c >a >b .比较a ,b 的其他解法:log 32>log 33=12,log 52<log 55=12,得a >b ;0<log 23<log 25,所以1log 23>1log 25,结合换底公式即得log 32>log 52. 答案: D4.函数y =ax 2+bx +3在(-∞,-1]上是增函数,在[-1,+∞)上是减函数,则( ) A .b >0且a <0 B .b =2a <0 C .b =2a >0D .a ,b 的符号不定解析: 由题知a <0,-b2a =-1,∴b =2a <0.答案: B5.要得到y =3×⎝⎛⎭⎫13x的图像,只需将函数y =⎝⎛⎭⎫13x的图像( ) A .向左平移3个单位长度 B .向右平移3个单位长度 C .向左平移1个单位长度D .向右平移1个单位长度解析: 由y =3×⎝⎛⎭⎫13x=⎝⎛⎭⎫13-1×⎝⎛⎭⎫13xx -1正确.答案: D6.在同一坐标系内,函数y =x a (a <0)和y =ax +1a的图像可能是如图中的( )解析: ∵a <0,∴y =ax +1a 的图像不过第一象限.还可知函数y =x a (a <0)和y =ax +1a 在各自定义域内均为减函数.答案: B7.设a =log 54,b =(log 53)2,c =log 45,则( ) A .a <c <b B .b <c <a C .a <b <cD .b <a <c解析: ∵0<log 53<log 54<1,log 45>1,∴b <a <c . 答案: D8.若函数f (x )=ax 2+2x +1至多有一个零点,则a 的取值范围是( ) A .1B .[1,+∞)C .(-∞,-1]D .以上都不对解析: 当f (x )有一个零点时,若a =0,符合题意, 若a ≠0,则Δ=4-4a =0得a =1, 当f (x )无零点时,Δ=4-4a <0,∴a >1. 综上所述,a ≥1或a =0. 答案: D9.已知函数f (x )=log a |x |在(0,+∞)上单调递增,则( ) A .f (3)<f (-2)<f (1) B .f (1)<f (-2)<f (3) C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2)解析: 因为f (x )=log a |x |在(0,+∞)上单调递增,所以a >1,f (1)<f (2)<f (3).又函数为f (x )=log a |x |为偶函数,所以f (2)=f (-2),所以f (1)<f (-2)<f (3).答案: B10.设f (x )是奇函数,且在(0,+∞)内是增加的,又f (-3)=0,则x ·f (x )<0的解集是( ) A .{x |x <-3,或0<x <3} B .{x |-3<x <0,或x >3} C .{x |x <-3,或x >3}D .{x |-3<x <0,或0<x <3}解析: ∵f (x )是奇函数, ∴f (3)=-f (-3)=0. ∵f (x )在(0,+∞)是增加的, ∴f (x )在(-∞,0)上是增加的.结合函数图像x ·f (x )<0的解为0<x <3或-3<x <0. 答案: D11.一个商人有一批货,如果月初售出可获利1 000元,再将收益都存入银行,已知银行月息为2.4%;如果月末售出可获利1 200元,但要付50元货物保管费.这个商人若要获得最大收益,则这批货( )A .月初售出好B .月末售出好C .月初或月末一样D .由成本费的大小确定出售时机解析: 设这批货成本为a 元,月初售出可收益y 1=(a +1 000)×(1+2.4%)(元),月末售出可收益y 2=a +1 200-50=a +1 150(元).则y 1-y 2=(a +1 000)×1.024-a -1 150 =0.024a -126.当a >1260.024>5 250时,月初售出好;当a <5 250时,月末售出好;当a =5 250时,月初、月末收益相等,但月末售出还要保管一个月,应选择月初售出. 答案: D12.若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内解析: 计算出函数在区间端点处的函数值并判断符号,再利用零点的存在条件说明零点的位置.∵f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a ), ∴f (a )=(a -b )(a -c ),f (b )=(b -c )(b -a ), f (c )=(c -a )(c -b ),∵a <b <c ,∴f (a )>0,f (b )<0,f (c )>0,∴f (x )的两个零点分别位于区间(a ,b )和(b ,c )内. 答案: A二、填空题(本大题共4分.请把正确答案填在题中横线上)13.设g (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,则g ⎝⎛g .解析: ∵g ⎝⎛⎭⎫12=ln 12<0,∴g ⎝⎛⎭⎫g ⎝⎛⎭⎫12=eln 12=12. 答案: 1214.已知集合A ={x |log 2x ≤2},B =(-∞,a ),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =________.解析: A ={x |0<x ≤4},B =(-∞,a ).若A ⊆B ,则a >4,即a 的取值范围为(4,+∞),∴c =4. 答案: 415.函数y =22-2x -3x 2的递减区间是________. 解析: 令u =2-2x -3x 2,y =2u ,由u =-3x 2-2x +2知,u 在⎝⎛⎭⎫-13,+∞上为减函数,而y =2u 为增函数,所以函数的递减区间为⎝⎛⎭⎫-13,+∞. 答案: ⎝⎛⎭⎫-13,+∞ 16.函数f (x )=⎩⎪⎨⎪⎧4x -4,x ≤1,x 2-4x +3,x >1的图像和函数g (x )=log 2x 的图像有________个交点.解析: 作出函数y =f (x )与y =g (x )的图像如图,由图可知,两个函数的图像有3个交点.答案: 3三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)已知集合A ={x |3≤x <7},B ={x |2<x <10},C ={x |x <a }. (1)求A ∪B ; (2)求(∁R A )∩B ;(3)若A ⊆C ,求a 的取值范围.解析: (1)因为A ={x |3≤x <7},B ={x |2<x <10}, 所以A ∪B ={x |2<x <10}.(2)因为A ={x |3≤x <7},所以∁R A ={x |x <3或x ≥7}. 因为B ={x |2<x <10},所以(∁R A )∩B ={x |2<x <3或7≤x <10}.(3)因为A ={x |3≤x <7},C ={x |x <a },A ⊆C , 所以a 需满足a ≥7.18.(本小题满分12分)已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],x -3,x ∈(2,5].(1)在直角坐标系内画出f (x )的图像; (2)写出f (x )的单调递增区间.解析: (1)函数f (x )的图像如下图所示:(2)函数f (x )的单调递增区间为[-1,0]和[2,5]. 19.(本小题满分12分)计算下列各式的值: (1)⎝⎛⎭⎫21412-(-9.6)0-⎝⎛⎭⎫82723+⎝⎛⎭⎫32-2. (2)log 34273+lg 25+lg 4+7log 72. 解析: (1)原式=⎝⎛⎭⎫9412-1-⎝⎛⎭⎫233×23+⎝⎛⎭⎫32-2 =⎝⎛⎭⎫322×12-1-⎝⎛⎭⎫232+⎝⎛⎭⎫232=32-1=12. (2)原式=log 33343+lg(25×4)+2=log 33-14+lg 102+2=-14+2+2=154.20.(本小题满分12分)若二次函数f (x )=ax 2+bx +c (a ≠0)满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式;(2)若在区间[-1,1]上,不等式f (x )>2x +m 恒成立,求实数m 的取值范围. 解析: (1)由f (0)=1得,c =1.∴f (x )=ax 2+bx +1, 又∵f (x +1)-f (x )=2x ,∴a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x ,即2ax +a +b =2x ,∴⎩⎪⎨⎪⎧2a =2,a +b =0,∴⎩⎪⎨⎪⎧a =1,b =-1. 因此,f (x )=x 2-x +1.(2)f (x )>2x +m 等价于x 2-x +1>2x +m ,即x 2-3x +1-m >0,要使此不等式在[-1,1]上恒成立,只需使函数g (x )=x 2-3x +1-m 在[-1,1]上的最小值大于0即可.∵g (x )=x 2-3x +1-m 在[-1,1]上单调递减, ∴g (x )min =g (1)=-m -1, 由-m -1>0,得m <-1.因此满足条件的实数m 的取值范围是(-∞,-1).21.(本小题满分13分)定义在[-1,1]上的偶函数f (x ),已知当x ∈[0,1]时的解析式为f (x )=-22x +a 2x (a ∈R ).(1)求f (x )在[-1,0]上的解析式. (2)求f (x )在[0,1]上的最大值h (a ). 解析: (1)设x ∈[-1,0], 则-x ∈[0,1],f (-x )=-2-2x+a 2-x ,又∵函数f (x )为偶函数, ∴f (x )=f (-x ), ∴f (x )=-2-2x+a 2-x ,x ∈[-1,0].(2)∵f (x )=-22x +a 2x ,x ∈[0,1], 令t =2x ,t ∈[1,2]. ∴g (t )=at -t 2=-⎝⎛⎭⎫t -a 22+a 24. 当a2≤1,即a ≤2时,h (a )=g (1)=a -1; 当1<a2<2,即2<a <4时,h (a )=g ⎝⎛⎭⎫a 2=a24;当a2≥2,即a ≥4时,h (a )=g (2)=2a -4. 综上所述,h (a )=⎩⎪⎨⎪⎧a -1, a ≤2,a24, 2<a <4,2a -4, a ≥4.22.(本小题满分13分)通过研究学生的学习行为,心理学家发现,学生接受能力依赖于老师引入概念和描述问题所用的时间,讲座开始时,学生的兴趣激增,中间有一段不太长的时间,学生的兴趣保持理想的状态,随后学生的注意力开始分散.分析结果和实验表明,用f (x )表示学生掌握和接受概念的能力(f (x )的值越大,表示接受能力越强),x 表示提出和讲授概念的时间(单位:分),可以有以下公式:f (x )=⎩⎪⎨⎪⎧-0.1x 2+2.6x +43, (0<x ≤10)59, (10<x ≤16)-3x +107, (16<x ≤30)(1)开讲多少分钟后,学生的接受能力最强?能维持多少分钟? (2)开讲5分钟与开讲20分钟比较,学生的接受能力何时强一些?(3)一个数学难题,需要55的接受能力以及13分钟的时间,老师能否及时在学生一直达到所需接受能力的状态下讲授完这个难题?解析: (1)当0<x ≤10时, f (x )=-0.1x 2+2.6x +43 =-0.1(x -13)2+59.9,故f (x )在0<x ≤10时递增,最大值为f (10)=-0.1×(10-13)2+59.9=59. 当10<x ≤16时,f (x )=59.当x >16时,f (x )为减函数,且f (x )<59.因此,开讲10分钟后,学生达到最强接受能力(为59),能维持6分钟时间. (2)f (5)=-0.1×(5-13)2+59.9=53.5, f (20)=-3×20+107=47<53.5,故开讲5分钟时学生的接受能力比开讲20分钟时要强一些. (3)当0<x ≤10时,令f (x )=55, 解得x =6或x =20(舍), 当x >16时,令f (x )=55, 解得x =1713.因此学生达到(含超过)55的接受能力的时间为1713-6=1113<13,所以老师来不及在学生一直达到所需接受能力的状态下讲授完这个难题.。

人教版高一数学必修1测试题(含答案)

人教版高一数学必修1测试题(含答案)

人教版高一数学必修1测试题(含答案)人教版数学必修I测试题(含答案)一、选择题1、设集合U 1,2,3,4,5 ,A 1,2,3 ,B 2,5 ,则A CUB ()A、2B、2,3C、3D、1,32、已知集合M 0,1,2 ,N xx 2a,a M ,则集合M N (A、0 B、0,1C、1,23、函数y 1 log2x, x 4 的值域是()A、2,B、3,C、3, ,4、关于A到B的一一映射,下列叙述正确的是()① 一一映射又叫一一对应② A中不同元素的像不同③ B中每个元素都有原像④ 像的集合就是集合BA、①②B、①②③C、②③④ ①②③④ 5、在y1x2,y 2x,y x2x,y (A、1个B、2个C、3个4个)D、0,2D、D、)D、6、已知函数f x 1 x2 x 3,那么f x 1 的表达式是()A、x2 5x 9B、x2 x 3C、x2 5x 9D、x2 x 17、若方程ax x a 0有两个解,则a的取值范围是()A、0,B、1,C、0,1D、8、若102x 25,则10 x等于()A、1B1 C1 D、55501 6259、若loga a2 1 loga2a 0,则a的取值范围是()11A、0 a 1 B a 1 C、a 1 0 a D、2210、设a 40.9,b 80.481,c21.5,则a,b,c的大小顺序为()A、a b cB、a c bC、b a cD、c a b11、已知f x x2 2 a 1 x 2在,4 上单调递减,则a的取值范围是()A、a 3B、a 3C、a 3D、以上答案都不对12、若f lgx x,则f 3 ()A、lg3B、3 C、103D、310二、填空题13、设A x x 2 ,B xx a 0 ,若AB,则a的取值范围是;14、函数y 的定义域为;15、若x2,则x4的3x 值是;16lg20 log*****、。

三、解答题17、(本小题满分10分)设A 4,2a 1,a2 ,B a 5,1 a,9 ,已知A B 9 ,求a的值。

新教材高一数学必修第一册第一二章综合卷(含答案)

新教材高一数学必修第一册第一二章综合卷(含答案)

高一数学第一次月考模拟试卷一、选择题(本大题共13 小题,每小题 4 分,共 52 分)1、已知集合M x x 2x 0 , N x x1,则M N ()A、 x x 1 B 、 x x 1 C 、 D 、 x x1或 x 0 2.下列元素与集合的关系表示正确的是( )①N*;②?Z;③∈Q;④π∈QA.①②B.②③C.①③D.③④3.命题“n N * , f (n) N *且f (n)n ”的否定形式是()A.n N * , f (n) N *且 f (n) n B.n N * , f (n) N *或 f (n)n C.n0N * , f ( n0 ) N *且 f (n0 ) n0 D n0N * , f ( n0 ) N *或 f (n0 )n04.若a, b为实数,则“0<ab<1m”是a<1或b>1的b aA.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.若a,b, c R 且a b ,则下列不等式成立的是( ) A.a2b2B.11a bC.a c b c D.a b22c 1 c 16.已知实数0 a1,则()A.a21a a B.aC.1a a2a D.aa a21aa1a2a aa7.已知集合 A= { x| y,x∈ Z},则集合A的真子集个数为()A.32 B.4C.5D.318. 已知正数x, y满足x y 114的最小值为(),则x 1 yA.5B.14C.9D.2 32.已知命题11q :x R ,2,则p成立是q成立的p :,命题ax ax 109a4()A .充分不必要条件B.必要不充分条件C .充要条件D.既不充分也不必要条件10.已知二次函数f x的二次项系数为 a ,且不等式f x 2 x 的解集为1,3,若方程 f x6a0 ,有两个相等的根,则实数a( )A.-1B.1C.1或-1D. 1或-1 55511.下列各式中,正确的选项是:A.;B;C;D;12.有下列命题,其中正确命题的是()A“若,则”;B“矩形的对角线相等”;C“若,则的解集是”;D“若是无理数,则是无理数”.13.若关于 x 的一元二次方程x 2 x 3 m 有实数根x1, x2,且x1x2,则下列结论中正确的是.当 m0 时, x12, x231B.mA4C.当m0 时, 2 x1x23D.二次函数 y x x1x x2m 的图象与x轴交点的坐标为( 2, 0)和( 3,0)二、填空题(总分16 分,每题 4 分 )14.已知集合,则 A 中元素的个数为_____. 15.已知实数 a 、b,满足0 a b 2 ,则ab的取值范围是 _____________. 16.不等式 ax 2ax 2 0 对一切实数x 都成立,则实数 a 的取值范围是_________.17.不等式ax25x c 0的解集为11{ x |x}32,则 a_______,c_______.三、解答题(总分82 分, 18 题 12 分,其余每题14 分.)18.已知集合,.(1)当时,求,;( 2)若,求实数 a 的取值范围.19.(12分)已知p:1x 1 2 ,q:x22x 1 m 20 m 0 ,若q3是 p 的必要不充分条件,求实数m的取值范围。

人教版高一数学必修1测试题(含答案)

人教版高一数学必修1测试题(含答案)

精心整理人教版数学必修I 测试题一、选择题(共10题,每题5分,共50分)1、设集合{}{}1,2,3,4,5,1,2,3,U A B ==A 、{}2 B 、{}2,3 C 2、已知集合{}{0,1,2,2,M N x x a a ===N ( A 、{}0 B 、{}0,1 C 、{}0,23、函数()21log ,4y x x =+≥的值域是 A 、[)2,+∞ B 、()3,+∞ C4、在221,2,,y y x y x x y x===+=A 、1个 B 、2个 C 5、如果1,1-<>b a ,那么函数()ax x f = A 第一、二、三象限 C 第二、三、四象限 6、设集合2{650}M x x x =-+=,N =N 等于(A.{0}B.{0,5}C.{0,1,5}D.{0,-1,-5}7、若21025x =,x 10则等于 ( )A 、15-B 、5C 、150D 、16258、函数2(01)x y a a a =+>≠且图象一定过点 ( ) A (0,1) B (0,3) C (1,0) D (3,0) 9、“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,…用S 1、S 2分别表示乌龟和兔( ))94 D 、3 16分)的定义域为 。

10,则=x 。

[-2,2]上的值域是______。

15、(本小题满分10分)设{}{}24,21,,5,1,9A a a B a a =--=--, 已知{}9A B =,求a 的值。

16、(本小题满分12分)判断并证明()21xf x x =+在()0,+∞的单调性。

精心整理17、(16分)已知函数⎪⎩⎪⎨⎧≥<<--≤+=)2(2)21()1(2)(2x x x x x x x f 。

(1)求)4(-f 、)3(f 、[(2)]f f -的值; (2)若10)(=a f ,求a 的值. 18、(本小题满分12分)研究函数y。

高一数学必修一 第一章《集合与函数概念》综合测试题(含答案)

高一数学必修一 第一章《集合与函数概念》综合测试题(含答案)

第一章 集合与函数概念综合测试题一、选择题 1.函数y =)1111. (,) . [,) . (,) . (,]2222A B C D +∞+∞-∞-∞2.已知集合A 到B 的映射f :x→y=2x+1,那么集合A 中元素2在B 中对应的元素是( )A .2B .6C .5D .8 3.设集合{|12},{|}.A x x B x x a =<<=<若,A B ⊆则a 的范围是( )A .2a ≥B .1a ≤C .1a ≥D .2a ≤ 4.函数1)2(++=x k y 在实数集上是减函数,则k 的范围是( )A .2-≥kB .2-≤kC .2->kD .2-<k5.全集U ={0,1,3,5,6,8},集合A ={ 1,5, 8 }, B ={2},则U (C )A B =( )A .∅B .{ 0,3,6}C . {2,1,5,8}D .{0,2,3,6} 6.下列各组函数中,表示同一函数的是( )A .,xy x y x ==B .1,112-=+⨯-=x y x x yC.,y x y ==D .2)(|,|x y x y ==7.下列函数是奇函数的是( )A .21x y = B .322+=x y C .x y = D .)1,1(,2-∈=x x y 8.若奇函数()x f 在[]3,1上为增函数,且有最小值0,则它在[]1,3--上( )A .是减函数,有最小值0B .是增函数,有最小值0C .是减函数,有最大值0D .是增函数,有最大值09.设集合{}22≤≤-=x x M ,{}20≤≤=y y N ,给出下列四个图形,其中能表示以集合M 为定义域,N 为值域的函数关系的是( )10.已知f (x )=20x π⎧⎪⎨⎪⎩000x x x >=<,则f [ f (-3)]等于 ( )A .0B .πC .π2D .9二.填空题11. 已知2(1)f x x-=,则()f x = .14. 已知25(1)()21(1)x x f x x x +>⎧=⎨+≤⎩,则[(1)]f f = .12. 函数26y x x =-的减区间是 .13.设偶函数f (x )的定义域为R ,当[0,)x ∈+∞时f (x )是增函数,则(2),(),(3)f f f π-的大小关系是三、解答题14.设{}{}(),1,05,U U R A x x B x x C A B ==≥=<<求和()U AC B .15.求下列函数的定义域 (1)21)(--=x x x f (2)221)(-++=x x x f16.{}(){}a B B A a x a x x B x x x A 求若集合==-+++==+= 0112,04222的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学必修1综合测试题(三)
一、 选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个
选项中,只有一项是符合题目要求的。

1.方程062=+-px x 的解集为M ,方程062=-+q x x 的解集为N ,且{},2=N M 那么=+q p ( )
A .21
B .8
C .6
D .7
2.已知函数2
1,0
(),0x x f x x x +≥⎧=⎨<⎩,则[(2)]f f -的值为( ).
A .1
B .2
C .4
D .5
3.、函数x x x f 3log 3)(+-= 的零点所在的区间是( ) A .(0,1) B .(1,3) C .(3,4) D .(4,+∞)
4.设A={|02x x ≤≤}, B={|02y y ≤≤}, 下列各图中能表示集合A 到集合B 的映射的是
5.下列函数在其定义域内既是奇函数又是增函数的是( ) ∈(0,+∞)) B.y = 3x (x ∈R)
∈R) D.y = lg|x| (x ≠0)
6.函数12-=x
y 的值域是( )
A 、(),1-∞
B 、()
(),00,-∞+∞ C 、()1,-+∞ D 、
()(,1)
0,-∞-+∞
7.已知二次函数),0()(2R x a c bx ax x f ∈≠++=的部分对应值如下表.
则不等式0)(<x f 的解集为 ( )
.A )0,(-∞ .B ),3()1,(+∞--∞ .C )1,(--∞ .D ),3(+∞
8.若奇函数...()x f 在[]3,1上为增函数...,且有最小值7,则它在[]1,3--上( ) A.是减函数,有最小值-7 B.是增函数,有最小值-7 C.是减函数,有最大值-7 D.是增函数,有最大值-7
二、填空题:本大题共6小题,每小题5分,共30分,
9.已知幂函数αx x f =)(的图象经过点(9,3)
10.设240.3log 3,log 4,0.3a b c -===, 则a ,b ,c 的大小关系是 (按从小到大
的顺序).
11.若函数2()2(1)2f x x a x =+-+在[4,)+∞上是增函数,则实数a 的取值范围
是 . 12.已知定义在R 上的函数
()
y f x =是偶函数,且0x ≥时,
()(
)2ln 22
f x x x =-+,
当0x <时,
()
f x 解析式是 .
13.已知集合A ={x ∈R |ax 2-3x +2=0, a ∈R },若A 中元素至多有1个,则a 的取
值范围是 .
14.深圳市的一家报刊摊点,从报社买进《深圳特区报》的价格是每份0.60元,
卖出的价格是每份1元,卖不掉的报纸可以以每份0.1元的价格退回报社。

在一个月(以30天计算)里,有20天每天可卖出400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,这个摊主每天从报社
买进 份,才能使每月所获的利润最大?并计算他一个月最多可赚得 元?
三、解答题:本大题共6小题,共80分,解答应写出文字说明、证明过程或演算步骤。

15.(本题满分12分)已知:全集R U =,
⑴若1=a ,求B A ,B A ;
⑵若B A C U ⊆,求:实数a 的取值范围。

16.(本小题满分14分)计算下列各式的值

17. (本小题满分14分) (I
(2) (3) 证明函数并求)(x f 在]8,4[上的值域。

18.(本小题满分14是定义在(,)-∞+∞上的奇函数,且
(1)求实数,a b ,并确定函数()f x 的解析式; (2)用定义证明()f x 在(1,1)-上是增函数;
(3)写出()f x 的单调减区间,并判断()f x 有无最大值或最小值?如有,写出最大值 或最小值.(本小问不需说明理由) 19.(本题满分12分)某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比。

已知投资1万元时,两类产品的收益分别为0.125万元和0.5万元(如图)
(1)分别写出两种产品的收益与投资的函数关系。

(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?
20.(本小题满分14分)已知二次函数()f x 满足条件(0)1f =,及
(1)()2f x f x x +-=.
(1)求函数()f x 的解析式;
0.
(2)在区间[-1,1]上,()y f x =的图像恒在2y x m =+的图像上方,试确定实数m 的取值范围;
参考答案 一、选择题:
1.A 2.D 3.B 4.D 5.C 6.C 7.B 8.D 二、填空题:
9.10 10.b<a<c 11.a ≥-3 12.()(
)2ln 22
f x x x =++
13.a =0或a . 400, 3315。

【解析】解:x 份报纸,每月所获的利润为y 元,则由题意可知
400250≤≤x ,且1201250100.1(250)100.630y x x x =⨯⨯+⨯⨯+⨯-⨯-⨯⨯
=2.12475x +
∵ 函数)(x f 在[250,400]上单调递增,∴当x=400时,y 最大=3315,即摊主每天从报社买进400份报纸可获得最大利润,最大利润为3315元。

三、解答题:
15
………………………3分
⑴若1=a 时,
5分
}7分

2≥a ……………………………12分
16.(
1(2)原式
【解析】解(1
分 (2

17.(1){ x ∣-1<x ≤
3
} -----3分
(2)判断并证明的奇偶性---------4分 (3)证明:⑴、设
2分
6分
18.解:(1)∵f(x)是奇函数
∴f(-x)=f(x),∴b=0 ……2分
a=1
……5分
(2)任取()2121,1,1,x x x x 且-∈ ……7分
∵1121 x x - ∴01,02121 x x x x --
∴()0)(2 x f x f x -,()2)(x f x f x
∴f(x)在(-1,1)上是增函数 ……10分
(3)单调减区间]1.-∞-,[)+∞,1,……12分
当x=-1
当x=1……14分
(2)当2=t ,即16=x 万元时,收益最大,3max =y 万元 【解析】解(1)设()x k x f 1=,……2分
(万元
……10分
所以当2=t ,即16=x 万元时,收益最大,3max =y 万元 ……14分
20.(1
2)min ()(1)1,1g x g m ==-∴<-
【解析】解:(1)令,1)0()1(0)0()1(0==∴=-=f f f f x ,,则 ……1分
……8分
另解:⑴ 设
2
()(0)f x ax bx c a =++≠,则 22(1)()[(1)(1)]()2f x f x a x b x c ax bx c ax a b
+-=+++-++=++
与已知条件比较得:22,0a a b =⎧⎨+=⎩解之得,1,
1a b =⎧⎨=-⎩又(0)1f c ==,
2()1f x x x ∴=-+…………8分
(2)212x x x m -+>+在]1,1⎡-⎣上恒成立 2
31x x m ∴-+>在]1,1⎡-⎣上恒
成立

…10分
令2()31g x x x =-+,则()g x 在]1,1⎡-⎣上单调递减 ……12分
∴min ()(1)1,1g x g m ==-∴<-. ……14分。

相关文档
最新文档