实验七 脉冲幅度调制与解调实验

合集下载

幅度调制与解调

幅度调制与解调

幅度调制与解调实验一、实现目的1、通过本次实验,起到理论联系实际的作用,将理论课中学到的调幅、检波电路的分析方法用到实验电路的分析和实验结果的分析中,使理论真正地用在实际电路中,落到实处。

要求学生必须从时域、频域对调制和解调过程中信号的变换分析清楚。

2、本次采用的实验电路既能实现普通调幅,又能实现双边带调幅,通过实验更进一步理解普通调幅(AM)和双边常调幅(DSB)在理论上、电路中的联系和区别。

3、实验中所测量的各种数据、曲线、波形是代表电路性能的主要参数,要求理解参数的意义和测量方法,能从一组数据中得出不同的参数并衡量电路的性能。

二、实验仪器1、数字示波器 TDS210 0~60MHz 1台2、频谱分析仪 GSP-827 0~2.7GHz 1台3、直流稳压电源 SS3323 0~30V 1台4、实验电路板自制 1块三、实验电路及原理1、实验电路介绍实验所采用的电路为开关调幅电路,如图所示。

既能实现AM调制,又能实现DSB调制,是一种稳定可靠,性能优良的实验电路,其基本工作原理是:调制信号经耦合电容C1输入与电位器输出的直流电压叠加,分别送到同相跟随器U1A 和反相跟随器U1B,这样在两个跟随器的输出端就得到两个幅度相等,但相位相反的调制信号(U+和U-)。

再分别送到高速模拟开关的两个输入端S1和S2,由开关在两个信号之间高频交替切换输出(由载波控制),在输出端就得到调幅波,通过调整电位器可以改变直流电压达到改变调制度m,当电位器调到中心位置时就得到了双边带的调幅信号。

放大器为高精度运放AD8552,开关为二选一高速CMOS模拟开关ADG779。

另外,为防止实验过程中由于调制信号幅度过大而损坏电路,特加了保护二极管D1、D2;由于运算放大器和模拟开关是单电源轨至轨型,只能单5V供电,在使用时所有信号是叠加在2.5V直流电平上的,电路中R7、R8就是提供该直流偏置电平的,R12、R13、T1是用来抵销直流电平的,以免对检波电路产生影响;R8、C5、C7、L1和R9、C6、C8、L2起到导通直流和低频信号、阻止高频信号的作用,防止开关泄露的高频载波信号对运算放大器产生影响;高频载波信号(1MHz,方波)由有源晶体振荡器X1产生。

脉冲幅度调制(PAM)及系统实验

脉冲幅度调制(PAM)及系统实验
脉冲幅度调制实验系统图见下图所示,主要由输入电路、调制电 路、脉冲发生电路、解调滤波电路、功放输出电路等五部分组成
CUST 通信工程专业实验室
实验一 脉冲幅度调制(PAM)及系统实验
六、实验内容
1、脉冲幅度调制实验
a 观察被调制信号正弦波形、取样脉冲波形和已调信号波形的相 互之间的关系及特点,特别是音频带内各频率点的情况。(测1个 测量点)
波形的正确画法:
CUST 通信工程专业实验室
实验一 脉冲幅度调制(PAM)及系统实验
八、讨论思考题
1、结合实验简述取样定理 2、记录所看到的TP601的陷幅 波形,并说明其产生原因 3、结合实验计算本组实验箱的 输入信号最高频率
CUST 通信工程专业实验室
实验一 脉冲幅度调制(PAM)及系统实验
CUST 通信工程专业实验室
实验一 脉冲幅度调制(PAM)及系统实验
M() m(t)
t
-H O H
(a)
s(t)
|S()|
A
T
t
(b)
ms(t)
t
(c)
CUST
£ -
2
-2H O2H2源自|Ms()|£ -
2
-2H O
2H
2
通信工程专业实验室
实验一 脉冲幅度调制(PAM)及系统实验
五、实验原理电路图
实验一 脉冲幅度调制(PAM)及系统实验
四、实验原理知识点3: PAM
• PAM是脉冲载波的幅度随基带信号变化的一种调制方式。若脉 冲载波是冲激脉冲序列,则前面讨论的抽样定理就是脉冲振幅调制 的原理。也就是说,按抽样定理进行抽样得到的信号就是一个PAM 信号。
• 但是,用冲激脉冲序列进行抽样是一种理想抽样的情况,是不

幅度调制及解调实验心得

幅度调制及解调实验心得

幅度调制及解调实验心得一、实验目的幅度调制及解调实验是电子学中的基础实验之一,旨在通过实践操作与理论结合的方式,加深对幅度调制及解调原理的理解,掌握幅度调制与解调电路的设计和调试方法。

二、实验原理1. 幅度调制原理幅度调制是指用模拟信号(也称为基带信号)去控制高频信号(也称为载波信号)的振幅变化,从而将模拟信号转化为高频信号。

具体而言,假设模拟信号为m(t),高频载波信号为c(t),则幅度调制后得到的带载波信号s(t)可表示为:$$s(t)=(A_c+m(t))\cos(2\pi f_c t)$$其中,$A_c$为载波振幅,$f_c$为载波频率。

可以看出,当模拟信号m(t)变化时,带载波信号s(t)的振幅也会随之变化。

2. 幅度解调原理幅度解调是指将已经被幅度调制过的带载波信号还原成原始模拟信号。

常见的幅度解调电路有包络检测器和同步检测器两种。

包络检测器的原理是利用二极管的非线性特性,将带载波信号的正半周期和负半周期分别整流,然后通过一个低通滤波器得到原始模拟信号的包络。

具体而言,假设带载波信号为s(t),则包络检测器输出的电压e(t)可表示为:$$e(t)=R_c\cdot C\cdot \frac{d}{dt}|s(t)|$$其中,$R_c$为电路中的电阻,$C$为电容。

同步检测器的原理是利用一个参考信号(也称为本振信号)与已经被幅度调制过的带载波信号相乘得到一个混频信号,然后通过低通滤波器得到原始模拟信号。

具体而言,假设参考信号为$f_r(t)$,带载波信号为$s(t)$,则同步检测器输出的电压e(t)可表示为:$$e(t)=K_d\cdot m(t)$$其中,$K_d$为检波灵敏度。

三、实验步骤1. 实验材料准备:示波器、函数发生器、二极管、电容、变阻器等。

2. 搭建幅度调制电路:将函数发生器输出接入变阻器中,并将变阻器输出接入二极管的正极,将二极管的负极接地。

将载波信号从函数发生器输出,并通过一个电容与变阻器输出相乘,得到幅度调制后的带载波信号。

幅度调制与解调电路实验报告

幅度调制与解调电路实验报告

一、实验标题:幅度调制与解调电路实验二、实验目的1、加深理解调幅调制与检波的原理2、掌握用集成模拟乘法器构成调幅与检波电路的方法3、掌握集成模拟乘法器的使用方法4、了解二极管包络检波的主要指标、检波效率及波形失真三、实验仪器与设备5、高频电子线路试验箱(TKGP);6、双踪示波器;7、频率计;8、交流毫伏表。

四、实验原理实验原理图图一:电路原理图MC1496 是双平衡四象限模拟乘法器。

引脚8 与10 接输入电压UX,1 与4 接另一输入电压Uy,输出电压U0 从引脚6 与12 输出。

引脚2 与3 外接电阻RE,对差分放大器VT5、VT6 产生串联电流负反馈,以扩展输入电压Uy的线性动态范围。

引脚14 为负电源端(双电源供电时)或接地端(单电源供电使),引脚5 外接电阻R5。

用来调节偏置电流I5 及镜像电流I0 的值。

五、 实验内容及步骤1、 乘法器失调调零2、 观察调幅波形调幅波形一-60-40-20020406001234567tU /m v图二:K502 1-2短接波形图调幅波形二-40-30-20-1001020304001234567tU /m v图三:K502 2-3短接波形图3、 观测解调输出解调波形-500-400-300-200-100010020030040050000.511.522.533.544.55tU /m v图四:解调输出波形图六、实验分析用低频调制电压去控制高频载波信号的幅度的过程称为幅度调制(或调幅)。

既然高频载波的幅度随低频调制波而变,所以已调波同样随时间而变。

即有式中m是调幅波的调制系数(调幅度)。

同时当m<1时,实现了不失真的调制,而当m>1时,调制后的波形包络线,将与调制波不同,即产生了失真,或称超调。

七、实验体会通过本次实验,我了解了集成模拟乘法器的基本工作原理、分类、特性等,在了解信号的调制和解调知识的。

温故而知新,本次试验使我熟悉了对实验仪器是使用,并且初步学会了集成模拟乘法器设计幅度调制的方法。

幅度调制与解调实验报告

幅度调制与解调实验报告

信号幅度调制与解调实验一. 实验目的1. 通过本实验熟悉信号的幅值调制与解调原理。

2. 了解信号调制与解调过程中波形和频谱的变化,加深对调制与解调的理解。

二. 实验原理在测试技术中,信号调制与解调是工程测试信号在传输过程中常用的一种调理方法,主要是为了解决微弱缓变信号的放大以及信号的传输问题。

设测量信号为)(t x ,高频载波信号为)2cos()(φπ+=ft t z 。

信号调制过程就是将两者相乘,调幅波信号为:(1)信号解调就是将调幅波信号再与高频载波信号相乘,有:)4cos()()(2cos )()(212t f t x t x t f t x t y z z m ππ+== (2) 信号由x(t)和2倍载波频率的高频信号两部分组成,用低通滤波器滤除信号中的高频部分就可以得到测量信号x(t),这种方法称为同步解调。

图1 信号的幅度调制与同步解调过程实际中调制与解调在不同的设备上实现,载波频率可以严格一致,但相位很难同步,式(2)变为:)2cos()2cos()()(φππ+=t f t f t x t y z z m (3) 解调过程与同步解调类似,但必须保证x(t)为正信号;对双极性的测量信号x(t),则用一个偏置电平将信号抬高为单极性的正信号,然后再进行调制与解调处理,故称为偏置调制。

图2 测量信号的偏置处理三. 实验内容1.信号的同步调制与解调观察。

2.信号的偏置调制和过调失真现象观察。

3.信号调制中的重迭失真现象观察。

四. 实验仪器和设备1. 计算机1台2. DRVI快速可重组虚拟仪器平台1套3. 打印机1台五. 实验步骤1.运行DRVI主程序,点击DRVI快捷工具条上的"联机注册"图标,选择其中的“DRVI采集仪主卡检测”或“网络在线注册”进行软件注册。

2.在DRVI地址信息栏中输入WEB版实验指导书的地址,在实验目录中选择“信号的同步调制与解调实验”,建立实验环境,观察信号与调制与解调过程中的信号波形变化。

实验七 振幅键控(ASK)调制与解调实验

实验七   振幅键控(ASK)调制与解调实验

实验七振幅键控(ASK)调制与解调实验一、实验目的1、掌握用键控法产生ASK 信号的方法。

2、掌握ASK 非相干解调的原理。

二、实验内容1、观察ASK 调制信号波形2、观察ASK 解调信号波形。

三、实验器材1、信号源模块一块2、③号模块一块3、④号模块一块4、⑦号模块一块5、20M 双踪示波器一台6、连接线若干四、基本原理调制信号为二进制序列时的数字频带调制称为二进制数字调制。

由于被调载波有幅度、频率、相位三个独立的可控参量,当用二进制信号分别调制这三种参量时,就形成了二进制振幅键控(2ASK)、二进制移频键控(2FSK)、二进制移相键控(2PSK)三种最基本的数字频带调制信号,而每种调制信号的受控参量只有两种离散变换状态。

1、2ASK 调制原理。

在振幅键控中载波幅度是随着基带信号的变化而变化的。

使载波在二进制基带信号1 或0 的控制下通或断,即用载波幅度的有或无来代表信号中的“1”或“0”,这样就可以得到2ASK 信号,这种二进制振幅键控方式称为通—断键控(OOK)。

2ASK 信号典型的时域波形如图9-1 所示,其时域数学表达式为:S2 ASK (t) = a n ⋅ A cosωc t(9-1)式中,A 为未调载波幅度, c 为载波角频率,a n 为符合下列关系的二进制序列的第n 个码元。

图9-1 2ASK 信号的典型时域波形2ASK 信号的产生方法比较简单。

首先,因2ASK 信号的特征是对载波的“通-断键控”,用一个模拟开关作为调制载波的输出通/断控制门,由二进制序列S(t) 控制门的通断,S (t) =1 时开关导通;S(t) =0 时开关截止,这种调制方式称为通-断键控法。

其次,2ASK 信号可视为S(t)与载波的乘积,故用模拟乘法器实现2ASK 调制也是很容易想到的另一种方式,称其为乘积法。

2、2ASK 解调原理。

2ASK 解调有非相干解调(包络检波法)和相干解调(同步检测法)两种方法。

脉冲编码调制与解调实验

脉冲编码调制与解调实验

实验五脉冲编码调制解调实验一、实验目的1.掌握脉冲编码调制与解调的原理。

2.掌握脉冲编码调制与解调系统的动态范围和频率特性的定义及测量方法。

3.了解脉冲编码调制信号的频谱特性。

4.了解大规模集成电路W681512的使用方法。

二、实验内容1.观察脉冲编码调制与解调的结果,观察调制信号与基带信号之间的关系。

2.改变基带信号的幅度,观察脉冲编码调制与解调信号的信噪比的变化情况。

3.改变基带信号的频率,观察脉冲编码调制与解调信号幅度的变化情况。

4.改变位同步时钟,观测脉冲编码调制波形。

三、实验器材1.信号源模块2.模拟信号数字化模块3.终端模块(可选)4.频谱分析模块5.20M双踪示波器一台6.音频信号发生器(可选)一台7.立体声单放机(可选)一台8.立体声耳机一副9.连接线若干四、实验原理模拟信号进行抽样后,其抽样值还是随信号幅度连续变化的,当这些连续变化的抽样值通过有噪声的信道传输时,接收端就不能对所发送的抽样准确地估值。

如果发送端用预先规定的有限个电平来表示抽样值,且电平间隔比干扰噪声大,则接收端将有可能对所发送的抽样准确地估值,从而有可能消除随机噪声的影响。

编码调制(PCM)简称为脉码调制,它是一种将模拟语音信号变换成数字信号的编码方式。

脉码调制的过程如图8-1所示。

PCM主要包括抽样、量化与编码三个过程。

抽样是把时间连续的模拟信号转换成时间离散、幅度连续的抽样信号;量化是把时间离散、幅度连续的抽样信号转换成时间离散幅度离散的数字信号;编码是将量化后的信号编码形成一个二进制码组输出。

国际标准化的PCM 码组(电话语音)是八位码组代表一个抽样值。

编码后的PCM码组,经数字信道传输,在接收端,用二进制码组重建模拟信号,在解调过程中,一般采用抽样保持电路。

预滤波是为了把原始语音信号的频带限制在300-3400Hz 左右,所以预滤波会引入一定的频带失真。

图8-1 PCM 调制原理框图在整个PCM系统中,重建信号的失真主要来源于量化以及信道传输误码,通常,用信号与量化噪声的功率比,即信噪比S/N来表示,国际电报电话咨询委员会(ITU-T)详细规定了它的指标,还规定比特率为64kb/s,使用A律或 律编码律。

脉冲幅度调制与解调实验

脉冲幅度调制与解调实验

实验二脉冲幅度调制与解调实验一、实验要求1、掌握抽样定理的概念。

2、理解脉冲幅度调制的原理和特点。

3、了解脉冲幅度调制与解调电路的实现。

二、实验内容1、观察音频信号、抽样脉冲及PAM调制信号的波形,并注意它们之间的相互关系。

2、改变抽样时钟的占空比,观察PAM调制信号及其解调信号波形的变化情况。

三、实验仪器1、信号源模块2、PAM/AM模块3、20M双踪示波器一台4、连接线若干四、实验原理1、PAM调制电路从PAM音频输入端口输入2KHz左右的正弦波信号,通过隔直电容去掉模拟信号中的直流分量,然后通过电压跟随器电路(U01)提高其带负载的能力,然后信号被送入模拟开关MC14066(U02)。

由于实际上理想的冲激脉冲串物理实现困难,这里采用方波脉冲信号代替。

具体实现方法是通过改变信号源“24位NRZ码型设置”及“BCD码分频值设置”,使得“NRZ”端输出不同占空比的近似8KHz的方波信号。

该方波信号从PAM 时钟输入端口输入,当方波为高电平时,模拟开关导通,正弦波通过并从调制端口输出;当方波为低电平时,模拟开关截止,输出零电平。

2、PAM解调电路若要还原出原始的音频信号,则将该PAM信号通过截止频率略大于2KHz的低通滤波器,滤除掉其中的高频成分即可。

这里使用了两级二阶RC有源低通滤波器来增强滤波的效果。

五、实验步骤及注意事项1、将信号源模块、PAM&AM模块小心地固定在主机箱中,确保电源接触良好。

2、插上电源线,打开主机箱右侧的交流开关,再分别按下两个模块中的开关POWER1、POWER2,对应的发光二极管LED01、LED02发光,按一下信号源模块的复位键,两个模块均开始工作。

(注意,此处只是验证通电是否成功,在实验中均是先连线,后打开电源做实验,不要带电连线)3、PAM调制实验2)调整模拟输出:频率在2KHz左右,峰-峰值在2V左右。

3)设置信号源模块拨码开关SW01、SW02、SW03输出为10101010 10101010 10101010,用示波器观测PAM模块调制输出波形。

信号幅度调制与解调实验心得

信号幅度调制与解调实验心得

信号幅度调制与解调实验心得
信号幅度调制(Amplitude Modulation,AM)和解调(Demodulation)是通信中常用的一种调制方式。

通过调制信号的幅度,将信息传递到载波上,再通过解调将信息从载波上还原出来。

在本次实验中,我们学习了信号幅度调制与解调的基本原理,并通过实验进一步加深了对其的理解。

在实验中,我们首先使用信号发生器产生了一个低频信号,该信号经过调制器进行幅度调制后,与高频载波混合,形成一个调制信号。

我们通过示波器观察到了调制信号的幅度随时间变化的波形,并对其进行了分析。

通过调整调制信号的幅度和频率,我们发现可以改变调制信号的谐波分量,从而影响到解调后得到的信息信号的质量。

在解调实验中,我们使用了整流器对调制信号进行解调。

整流器可以将调制信号的负半周波形变为正半周波形,利用滤波器将高频信号滤除后,就可以得到原来的低频信号。

我们通过改变整流器的电路参数,观察了解调后得到的信息信号的波形变化。

我们发现,当整流器的电路参数选择不当时,就会出现失真、杂音等问题,影响信息信号的还原质量。

通过实验,我们更深入地了解了信号幅度调制与解调的原理和实现方式,并掌握了一些调制器和解调器的基本电路参数的选择方法。

同时,
我们也意识到实验中硬件电路参数的选取和实验环境的稳定性等因素对实验结果的影响,这也为我们今后在实际工作中进行调制和解调操作提供了一定的参考。

通信原理脉冲编码调制解调实验实验报告

通信原理脉冲编码调制解调实验实验报告

实验二脉冲编码调制解调实验一、实验目的1、掌握脉冲编码调制与解调的原理。

2、掌握脉冲编码调制与解调系统的动态范围和频率特性的定义及测量方法。

3、了解脉冲编码调制信号的频谱特性。

4、了解大规模集成电路W681512的使用方法。

二、实验内容1、观察脉冲编码调制与解调的结果,分析调制信号与基带信号之间的关系。

2、改变基带信号的幅度,观察脉冲编码调制与解调信号的信噪比的变化情况。

3、改变基带信号的频率,观察脉冲编码调制与解调信号幅度的变化情况。

4、改变位同步时钟,观测脉冲编码调制波形。

三、实验器材1、信号源模块一块2、②号模块一块3、20M双踪示波器一台4、立体声耳机一副5、连接线若干四、实验结果(给出各观测波形和观测点频率幅度等信息)观测PCM编、译码波形。

1)用示波器观测各测试点以及PCM编码输出点“PCMOUT-A”和解调信号输出点“SIN OUT-A”输出的波形。

2)改变位时钟为2.048M(将S4设为“0100”),观测PCM调制和解调波形。

3)改变K1、K2开关,观测PCM调制和解调波形。

4)从信号源引入非同步正弦波,调节W4改变输入正弦信号的频率,使其频率分别大于3400Hz或小于300Hz,观察点“PCMOUT-A”、“SIN OUT-A”的输出波形,记录下来(应可观察到,当输入正弦波的频率大于3400Hz或小于300Hz时,PCM解码信号的幅度急剧减小)。

五、实验思考题1、W681512PCM编码器输出的PCM数据的速率是多少?在本次实验系统中,为什么要给W681512提供2.048MHz的时钟?答:输出速率为2.08Kb/s。

PCM编码器在同步工作时,对于发送和接收两个方向应当用相同的时钟。

2、为什么实验时观察到的PCM编码信号总是随时变化的?答:因为采样频率和输入信号的频率不是有规律的整数倍的关系,所以抽样的信号点时刻不是一样的,编码输出的信号也即不一样,实时观察的信号就是随时变化的。

实验七脉冲编码调制与解调实验

实验七脉冲编码调制与解调实验

实验七脉冲编码调制与解调实验、实验目地1.掌握脉冲编码调制与解调地原理.2.掌握脉冲编码调制与解调系统地动态范围和频率特性地定义及测量方法3.了解脉冲编码调制信号地频谱特性.4.了解大规模集成电路TP3067 地使用方法.、实验内容1.观察脉冲编码调制与解调地结果,观察调制信号与基带信号之间地关系2.改变基带信号地幅度,观察脉冲编码调制与解调信号地信噪比地变化情况3.改变基带信号地频率,观察脉冲编码调制与解调信号幅度地变化情况4.观察脉冲编码调制信号地频谱.、实验器材1 . 信号源模块2 . 模拟信号数字化模块3 . 终端模块<可选)4 . 频谱分析模块5. 20M 双踪示波器一台b5E2RGbCAP6. 音频信号发生器<可选)一台p1EanqFDPw7. 立体声单放机<可选)一台DXDiTa9E3d8. 立体声耳机一副RTCrpUDGiT9. 连接线若干5PCzVD7HxA四、实验原理模拟信号进行抽样后,其抽样值还是随信号幅度连续变化地,当这些连续变化地抽样值通过有噪声地信道传输时,接收端就不能对所发送地抽样准确地估值.如果发送端用预先规定地有限个电平来表示抽样值,且电平间隔比干扰噪声大,则接收端将有可能对所发送地抽样准确地估值,从而有可能消除随机噪声地影响.jLBHrnAILg脉冲编码调制<PCM )简称为脉码调制,它是一种将模拟语音信号变换成数字信号地编码方式.脉码调制地过程如图7-1 所示.xHAQX74J0XPCM 主要包括抽样、量化与编码三个过程.抽样是把时间连续地模拟信号转换成时间离散、幅度连续地抽样信号;量化是把时间离散、幅度连续地抽样信号转换成时间离散幅度离散地数字信号;编码是将量化后地信号编码形成一个二进制码组输出.国际标准化地PCM 码组<电话语音)是八位码组代表一个抽样值.编码后地PCM 码组,经数字信道传输,在接收端,用二进制码组重建模拟信号,在解调过程中,一般采用抽样保持电路.预滤波是为了把原始语音信号地频带限制在300-3400Hz 左右,所以预滤波会引入一定地频带失真丄DAYtRyKfE在整个PCM 系统中,重建信号地失真主要来源于量化以及信道传输误码 ,通常,用信号与量化噪声地功率比,即信噪比S/N 来表示,国际电报电话咨询委员会 VTU-T )详细规定了 它地指标,还规定比特率为64kb/S,使用A 律或"律编码律.dvzfvkwMIl本实验采用大规模集成电路 TP3067对语音信号进行 PCM 编、解码.TP3067在一个芯片内部集成了编码电路和译码电路,是一个单路编译码器.其编码速率为 2.048MHz,每一 帧数据为8位,帧同步信号为 8KHz.模拟信号在编码电路中,经过抽样、量化、编码,最后得到PCM 编码信号.在单路编译码器中,经变换后地 PCM 码是在一个时隙中被发送出去 地,在其他地时隙中编译码器是没有输出地,即对一个单路编译码器来说 ,它在一个PCM 帧<32个时隙)里,只在一个特定地时隙中发送编码信号.同样,译码电路也只是在一个特定地时隙 <此时隙应与发送时隙相同,否则接收不到 PCM 编码信号)里才从外部接收PCM 编码信号,然后进行译码,经过带通滤波器、放大器后输出 .具体电路图如图7-2所示.rqyn14ZNXI模拟 信源模拟 终端重建滤波器 抽样保持、低通波形 解码器E309 10uF/25VS-INS316 BNO2048K-IN20VCCR339VCC47KPCMB-OUT TP314S314 BN广」FRAMEB-IN S317 BNVSS VPO+ VFXI+ GNDA VFXI- VPO- GSx VPI ANLB VFROTSx VCC FSx FSr Dx DrBCLKx BLKDR/CLKSESLMCLKxMCLKR/PDNR341 10KR342 47K1 C313104 2048K-IN CLKB-INE311——100uF/25V”、、¥片山 发送端 信道数字 接收端图7-1 PCM 调制原理框图Zzz6ZB2LtkS315 BNPCM2-INS318 BN19-5R338 47KR340 5.1K15 CLKB-IN1 18 3 174 1656 147 13 8PCM2-IN 12 9 1110U307TP3067 2 OUTTP318 TP0uF/25VVCC图7-2 PCM编译码电路原理图下面对PCM编译码专用集成电路TP3067芯片做一些简单地介绍. 图7-3为TP3067地内部结构方框图,图7-4是TP3067地管脚排列图TRVPO+1“ 20GND A21944VPO-318VPI417VFRO516VCC615FSR714DR813 BCCLKR/CLKSEL912 MCLKR/PDN1011图7-4 TP3067管脚排列图VBB VFXI+GSX ANLB TSX FSX DX BCLKX MCLKX1. TP3067管脚地功能<1 ) VPO+ :接收功率放大器地非倒相输出<2) GNDA :模拟地,所有信号均以该引脚为参考点<3) VPO-:接收功率放大器地倒相输出<4) VPI :接收功率放大器地倒相输入<5) VFRO :接收滤波器地模拟输出<6) Vcc :正电源引脚,Vcc=+5V+5%<7)FSR:接收帧同步脉冲,它启动BCLKR,于是PCM数据移入DR,FSR为8KHz脉冲序列•<8)DR :接收数据帧输入.PCM数据随着FSR前沿移入DR.<9)BCLKR/CLKSESL :在FSR地前沿把输入移入DR时位时钟,其频率可以从64KHz 至2.048MHz•另一方面它也可能是一个逻辑输入,以此为在同步模式中地主时钟选择频率1.536MHz、1.544MHz 或2.048MHz,BCLKR用在发送和接收两个方向.EmxvxOtOco<10)MCLKR/PDN :接收主时钟,其频率可以为1.536MHz、1.544MHz 或2.048MHz.它允许与MCLKx 异步,但为了取得最佳性能应当与MCLKx同步,当MCLKR连续连在低电位时,CLKx被选用为所有内部定时,当MCLKR连续工作在高电位时,器件就处于掉电模式.SixEZyXPq5<11)MCLKx :发送主时钟,其频率可以是1.536MHz、1.544MHz或2.048MHz,它允许与MCLKR异步,同步工作能实现最佳性能.6ewMyirQFL<12)BCLKx :把PCM数据从Dx上移出地位时钟,其频率可以从64KHz至2.048MHz,但必须与MCLKx同步.kavU42VRUs<13)Dx :由FSx启动地三态PCM数据输出.<14)FSx:发送帧同步脉冲输入,它启动BCLKx并使Dx上PCM数据移出到Dx 上.<15)TSX :开漏输出.在编码器时隙内为低脉冲.<16)ANLB :模拟环路控制输入,在正常工作时必须置为逻辑“0”,当拉到逻辑“ 1 ”时,发送滤波器和发送前置放大器输出地连接线被断开,而改为和接收功率放大器地VPO+输出连接.y6v3ALoS89<17)GSx:发送输入放大器地模拟输出,用来在外部调节增益.<18)VFxI -:发送输入放大器地倒相输入.<19)VFxI +:发送输入放大器地非倒相输入.<20)V BB :负电源引脚,VBB=-5V+5%.2.功能说明①上电当开始上电瞬间,加压复位电路启动COMBO并使它处于掉电状态,所有非主要电路都失效,而Dx、VFRO、VPO-、VPO+均处于高阻抗状态.为了使器件上电,一个逻辑低电平或时钟脉冲必须作用在MCLKR/PDN引脚上拼且FSx和FSR脉冲必须存在.于是有两种掉电控制模式可以利用.在第一种中MCLKR/PDN引脚电位被拉高.在另一种模式中使FSx和FSr二者地输入均连续保持低电平,在最后一个FSx或FSr脉冲之后相隔2ms左右,器件将进入掉电状态,一旦第一个FSx和FSr脉冲出现,上电就会发生.三态数据输出将停留在高阻抗状态中,一直到第二个FSx脉冲出现.M2ub6vSTnP②同步工作在同步工作中,对于发送和接收两个方向应当用相同地主时钟和位时钟,在这一模式中,MCLKx上必须有时钟信号在起作用,而MCLKR/PDN 引脚则起了掉电控制作用.MCLKR/PDN 上地低电平使器件上电,而高电平则使器件掉电.这两种情况中,不论发送或接收方向,MCLKx都用作为主时钟输入,位时钟也必须作用在MCLKx上,对于频率为1.536MHz、1.544MHz或2.048MHz地主时钟,BCLKR/CLKEL 可用来选择合适地内部分频器,在1.544MHz工作状态下,本器件可自动补偿每帧内地第193个时钟脉冲•当BCLKR/CLKSEL 引脚上地电平固定时,BCLKx将被选为发送和接收方向兼用地位时钟•表7-1说明可选用地工作频率,其值视BCLKx/CLKSEL 地状态而定•在同步模式中,位时钟BCLKx可以从64KHz变至2.048MHz,但必须与MCLKx同步海一个FSx脉冲标志着编码周期地开始,而在BCLKx地正沿上,从前一个编码周期来地PCM数据从已启动地Dx输出中移出•在8个时钟周期后,三态Dx输出恢复到高阻抗状态.随着FSR脉冲来临,依赖BCLKx<或在运行中地BCLKR )负沿上地DR输入,PCM数据被锁定,FSx和FSR必须与MCLKx 或MCLKR 同步.OYujCfmUCw表7-1主时钟频率地选择③异步工作在异步工作状态中,发送和接收时钟必须独立设置,MCLK和MCLR必须为2.048MHz,只要把静态逻辑电平加到MCLKx/PDN引脚上,就能实现这一点.FSx启动每个编码周期而且必须与MCLKx和BCLKx保持同步.FSR启动每一个译码周期而且必须与BCLKR 同步.BCLKR 必须为时钟信号.BCLKx 和BCLKR 工作频率可从64KHz 变到2.048MHz. eUts8ZQVRd④短帧同步工作COMBO既可以用短帧,也可以用长帧同步脉冲,在加电开始时,器件采用短帧模式.在这种模式中,FSx和FSr这两个帧同步脉冲地长度均为一个位时钟周期•在BCLKx地下降边沿当FSx为高时,BCLKx地下一个上升边沿可启动输出符号位地三态输出Dx地缓冲器,紧随其后地7个上升边沿以时钟送出剩余地7个位,而下一个下降边沿则阻止Dx输出.在BCLKR地下降边沿当FSr为高时<BCLKx在同步模式),其下一个地下降边沿将锁住符号位,跟随其后地7个下降边沿锁住剩余地7个保留位.sQsAEJkW5T⑤长帧同步工作为了应用长帧模式,FSx和FSr这两个帧同步脉冲地长度等于或大于位时钟周期地三倍.在64KHZ工作状态中,帧同步脉冲至少要在160ns内保持低电位.随着FSx或BCLKx地上升沿<无论哪一个先到)来到,Dx三态输出缓冲器启动,于是被时钟移出地第一比特为符号位,以后到来地BCLKx地7个上升沿以时钟移出剩余地7位码.随着第8个上升沿或FSx 变低<无论哪一个后发生),Dx输出由BCLKx地下降沿来阻塞,在以后8个BCLKR地下降沿<BCLKR ),接收帧同步脉冲FSR地上升沿将锁住DR地PCM数据.GMslasNXkA⑥发送部件发送部件地输入端为一个运算放大器,并配有两个调整增益地外接电阻.在低噪声和宽频带条件下,整个音频通带内地增益可达20dB以上.该运算放大器驱动一个增益为1地滤波器<由RC有源前置滤波器组成),后面跟随一个时钟频率为256KHz地8阶开关电容带通滤波器.该滤波器地输出直接驱动编码器地抽样保持电路.在制造中配入一个精密电压基准,以便提供额定峰值为2.5V地输入过载<tmax).FSx帧同步脉冲控制滤波器输出地抽样,然后逐次逼近地编码周期就开始.8位码装入缓冲器内,并在下一个FSx脉冲下通过Dx移出,整个编码时延近似地等于165ns加上125ns<由于编码时延),其和为290ns.TirRGchYzg⑦接收部件接收部件包括一个扩展DAC<数模转换器),而它又驱动一个时钟频率为256KHz 地5 阶开关电容低通滤波器•译码器时依照A律<TP3067)设计地,而5阶低通滤波器矫正8KHz 抽样——保持电路所引起地sinx/x 衰减.在滤波器后跟随一个其输出在VFRO 上地2 阶RC 低通后置滤波器.接收部件地增益为1,但利用功率放大器可加大增益.当FSr 出现时在后续地8 个BCLKR<BCLKx )地下降边沿,DR 输入端上地数据将被时钟控制.在译码器地终端,译码循环就开始了.7EqZcWLZNX⑧接收功率放大器两个倒相模式地功率放大器用来直接驱动一个匹配地线路接口电路.本编译码器地功能比较强,它既可以进行A 律变换,也可以进行u 律变换,它地数据既可以固定速率传送,也可以变速率传送,它既可以传输信令帧也可以选择它传送无信令帧,并且还可以控制它处于低功耗备用状态,到底使用它地什么功能可由用户通过一些控制来选择.lzq7IGf02E在实验中我们选择它进行A 律变换,以2.048Mbit 来传送信息,信令帧为无信令帧,它地发送时序与接收时序直接受FSx和FSR控制.zvpgeqJIhk还有一点,编译码器一般都有一个PDN 降功耗控制端,PDN=1 时,编译码能正常工作,PDN=0,编译码器处于低功耗状态,这时编译码器其它功能都不起作用,我们在设计时,可以实现对编译码器地降功耗控制,这时,用户摘机,编译码器工作,用户挂机,编译码器低功耗.NrpoJac3v1五、实验步骤1.将信号源模块、模拟信号数字化模块、终端模块、频谱分析模块小心地固定在主机箱中,确保电源接触良好.2.插上电源线,打开主机箱右侧地交流开关,再分别按下四个模块中地开关POWER1 、POWER2、S2、S3,对应地发光二极管LED001、LED002、D200、D201、LED600 、LED300 、LED301 发光,按一下信号源模块地复位键,四个模块均开始工作.1nowfTG4KI 3.将信号源模块地拨码开关SW101、SW102 设置为0000000 0000001.4.将信号源模块产生地正弦波信号<频率2.5KHz,峰-峰值为3V)从点“ S-IN ”输入模拟信号数字化模块,将信号源模块地信号输出点“64K ”、“ 8K ”“ BS”分别与模拟信号数字化模块地信号输入点“ CLKB-IN ”、“ FRAMB-IN ”、“ 2048K-IN ”连接,观察信号输出点“ PCMB-OUT ”地波形.将该点地信号送入频谱分析模块,观察该点信号地频谱,记录下来.fjnFLDa5Zo5.连接“ CLKB-IN ”和“ CLK2-IN ” ,“ FRAMB-IN ”和“ FRAM2-IN ” ,连接信号输出点“ PCMB-OUT ”和信号输入点“ PCM2-IN ”,观察信号输出点“ OUT ”地波形.将该点地信号送入频谱分析模块,观察该点信号地频谱,记录下来.tfnNhnE6e56.改变输入正弦信号地幅度,使其峰-峰值分别等于和大于5V<若幅度无法达到5V,可将输入正弦信号先通过信号源模块地模拟信号放大通道,再送入模拟信号数字化模块),将示波器探头分别接在信号输出点“OUT”、“ PCMB-OUT ”上,观察满载和过载时地脉冲幅度调制和解调波形,记录下来<应可观察到,当输入正弦波信号幅度大于5V 时,PCM 解码信号中带有明显地噪声). HbmVN 777sL7.改变输入正弦信号地频率,使其频率分别大于3400Hz或小于300Hz,观察点“ OUT ”、“ PCMB-OUT ” ,记录下来<应可观察到,当输入正弦波地频率大于3400Hz 或小于300Hz 时,PCM 解码信号幅度急剧减小).V7l4jRB8Hs8.用单放机或音频信号发生器地输出信号代替信号源模块地正弦波,从点“ S-IN ”输入模拟信号数字化模块,重复上述操作和观察并记录下来.<可选)83lcPA59W9 9.将信号输出点“ OUT ”输出地信号引入终端模块,用耳机听还原出来地声音,与单放机直接输出地声音比较,判断该通信系统性能地优劣.<可选)mZkklkzaaP六、输入、输出点参考说明1.输入点参考说明2048K-IN :PCM 所需时钟输入点.S-IN :模拟信号输入点<基带信号).CLKB-IN :PCM 编码所需时钟输入点.FRAMB-IN :PCM 编码帧同步信号输入点.PCM2-IN :PCM 解调信号输入点.<因为是对随机信号进行编码,所以用模拟示波器无法同步该点信号,必须用数字存储示波器才能清楚观察到该点波形)AVktR43bpwCLK2-IN :PCM 解码所需时钟输入点.FRAM2-IN :PCM 解码帧同步信号输入点.2.输出点参考说明PCMB-OUT :脉冲编码调制信号输出点.<因为是对随机信号进行编码,所以用模拟示波器无法同步该点信号,必须用数字存储示波器才能清楚观察到该点波形)ORjBnOwcEdOUT :PCM 解调信号输出点.七、实验思考题1 .TP3067PCM 编码器输出地PCM 数据地速率是多少?在本次实验系统中,为什么要给TP3067 提供2.048MHz 地时钟?2MiJTy0dTT2.认真分析TP3067 主时钟与8KHz 帧收、发同步时钟地相位关系.3.为什么实验时观察到地PCM 编码信号总是随时变化地?4.分析满载和过载时地脉冲编码调制和解调波形.5.当输入正弦信号地幅度大于3400Hz 或小于300Hz 时,分析脉冲编码调制和解调波形八、实验报告要求1.画出实验电路方框图,并叙述其工作过程.2.在坐标纸上画出实验过程中各测量点地波形图,注意对应相位关系.3 .设PCM 通信系统传输两路话音,每帧三个时隙,每路话音各占一个时隙,另一个时隙为帧同步时隙,使用TP3067 编译码器.请回答:gIiSpiue7A①编码器地抽样信号频率及时钟信号频率,以及两个抽样信号之间地相位关系.②时分复用信号码速率、帧结构.③采用PCM 基带传输,线路码为HDB 3 码,设计此通信系统地详细方框图以及PCM编译码电路.4.写出本次实验地心得体会,以及对本次实验有何改进意见.。

7.信号调制与解调实验

7.信号调制与解调实验

实验七信号调制与解调实验一. 实验目的1. 通过本实验熟悉信号的幅值调制与解调原理。

2. 了解信号调制与解调过程中波形和频谱的变化,加深对调制与解调的理解。

二. 实验原理在测试技术中,调制是工程测试信号在传输过程中常用的一种调理方法,主要是为了解决微弱缓变信号的放大以及信号的传输问题。

例如,被测物理量,如温度、位移、力等参数,经过传感器交换以后,多为低频缓变的微弱信号,对这样一类信号,直接送入直流放大器或交流放大器放大会遇到困难,因为,采用级间直接耦合式的直流放大器放大,将会受到零点漂移的影响。

当漂移信号大小接近或超过被测信号时,经过逐级放大后,被测信号会被零点漂移淹没;为了很好地解决缓变信号的放大问题,信息技术中采用了一种对信号进行调制的方法,即先将微弱的缓变信号加载到高频交流信号中去,然后利用交流放大器进行放大,最后再从放大器的输出信号中取出放大了的缓变信号。

上述信号传输中的变换过程称为调制与解调。

图7.1 信号的调制和解调过程在信号分析中,信号的截断、窗函数加权等,亦是一种振幅凋制;对于混响信号,所谓由于回声效应引起的信号的叠加、乘积、卷积等,其中乘积即为调幅现象。

信号调制的类型,一般正(余)弦调制可分为幅度调制、频率调制、相位调制三种,简称为调幅(am)、调频(fm)、调相(pm)。

调幅是将一个高频正弦信号(或称仅波)与测试信号相乘,使载波信号幅值随测试信号的变化而变化。

例如,低频被调制波为x(t)=asin(2π50t) ,高频载波为y(t)=sin(2π500t)则信号调制过程为:z(t)=x(t)y(t)对应的,其解调过程为:v(t)=z(t)y(t),x'(t)=低通滤波{v(t)}三. 实验仪器和设备1. 计算机 n台2. drvi快速可重组虚拟仪器平台 1套3. 打印机 1台四. 实验步骤及内容1. 启动服务器,运行drvi主程序,开启drvi数据采集仪电源,然后点击drvi快捷工具条上的"联机注册"图标,选择其中的"drvi采集仪主卡检测"进行服务器和数据采集仪之间的注册。

脉冲幅度调制与解调实验

脉冲幅度调制与解调实验

实验七 脉冲幅度调制与解调实验一. 实验目的1.理解脉冲幅度的原理特点2.了解脉冲幅度调制波形的频谱特点二.实验内容1.观察基带信号,脉冲幅度调制信号,抽样时钟的波形,并注意观察他们的关系及特点2.改变基带信号或抽样信号的频率,重复观察波形3.观察脉冲幅度调制波形的频谱三.实验器材信号源模块 PAN AM 模块 终端模块 频谱分析模块 20M 双踪示波器 频率计 音频信号发生器 立体声单放机 立体声耳机 连接线四.实验原理抽样定理表明:一个频带限制在),0(fH内的时间联系信号)(t m ,如果以fH21秒的时间对它进行等间隔抽样,则)(t m 将被所得到的抽样值完全确定。

假设将信号)(t m 和周期为T 的冲激函数)(t Tδ相乘,如图7-1所示。

乘积便是均匀间隔为T 秒的的冲激序列,这些冲激序列的强度等于相应瞬时上)(t m 的值,他表示对函数)(t m 的抽样。

若用)(t m s 表示此抽样函数,则用:())()(t t t Tsm m δ=假设)(t m 、)(t Tδ、和)(t m s 的频谱分别为)(ωM 、)(ωδT 和)(ωM s 。

按照频率卷积定理,)()(t t T m δ的傅里叶变换是)(ωM 和)(ωδT的卷积:()()[]ωωπωδTs M M *=21)(因为()∑∞-∞=-=n sTTn Tωωδδπ2 , Tsπω2= 所以()()()⎥⎦⎤⎢⎣⎡-=∑∞-∞=n sTSn M MT ωωδωω*1则()()⎥⎦⎤⎢⎣⎡-=∑∞-∞=n sSn M MT ωωω1该式表明,已抽样信号)(t m s 的频谱)(ωM s 是无穷多个间隔为ωs的)(ωM 相迭加而成。

这就意味着)(ωM s 中包含)(ωM 的全部信息。

需要注意,若抽样间隔T 变得大于fT H21=,则)(ωM 和)(t Tδ的卷积在相邻的周期内存在重叠,因此不能由)(ωM s 恢复)(ωM 。

可见,fH21是抽样的最大间隔,它被称为奈奎斯特间隔。

幅度调制实验报告结论

幅度调制实验报告结论

一、实验背景幅度调制(AM)是无线通信中常用的一种调制方式,它通过改变载波的幅度来传递信息。

本实验旨在通过搭建调幅和解调电路,加深对幅度调制原理的理解,掌握幅度调制和解调的基本方法,并分析实验过程中出现的现象。

二、实验目的1. 理解幅度调制的原理,掌握调幅和解调电路的搭建方法。

2. 观察和分析调幅和解调过程中信号的波形变化。

3. 掌握使用示波器等仪器测量信号参数的方法。

4. 分析实验过程中出现的问题,提高实验技能。

三、实验原理幅度调制是指将信息信号(基带信号)叠加到高频载波上,使载波的幅度随信息信号的变化而变化。

调幅方式分为全调幅(AM)和单边带调制(SSB)等。

解调是指从已调信号中恢复出原始信息信号的过程。

本实验采用全调幅方式,使用集成模拟乘法器MC1496作为调制和解调电路的核心元件。

调制电路将基带信号与高频载波相乘,实现调幅。

解调电路则通过检测调幅信号的包络,恢复出原始信息信号。

四、实验内容1. 搭建调幅电路,观察调制信号波形。

2. 搭建解调电路,观察解调信号波形。

3. 使用示波器测量调制和解调信号的参数,如幅度、频率等。

4. 分析实验过程中出现的问题,并提出改进措施。

五、实验结果与分析1. 调制信号波形实验中,我们使用示波器观察了调制信号的波形。

调制信号波形由基带信号和高频载波两部分组成。

基带信号为正弦波,高频载波为等幅正弦波。

调制后的信号波形为调幅信号,其包络线随基带信号的变化而变化。

2. 解调信号波形实验中,我们使用解调电路从调幅信号中恢复出原始信息信号。

解调后的信号波形与基带信号相似,但幅度有所减小。

这表明解调电路能够有效地从调幅信号中恢复出原始信息信号。

3. 信号参数测量实验中,我们使用示波器测量了调制和解调信号的参数,如幅度、频率等。

测量结果表明,调制信号和基带信号的幅度、频率等参数基本一致,表明调制和解调电路工作正常。

4. 实验问题分析在实验过程中,我们发现以下问题:(1)调制信号和基带信号的幅度存在差异,这可能是因为调制电路中的放大器增益设置不当。

脉冲编码调制与解调实验报告

脉冲编码调制与解调实验报告
(5)改变输入模拟信号“S-IN”,重复上述实验步骤。
4、PCM译码
(1)以上模块设置和连线均不变,增加连线如下:
模拟信号数字化模块内连线(模块左下方PCM编解码)
2048K-IN—————— J2048K-IN
PCM-OUT——————JPCM-IN
CLK-IN —————— JCLK-IN
FRAM-IN——————JFRAM-IN
六、实验过程部分波形图如下:
四、实验结果(反思)
这次实验,通过动手体验脉冲编码调制的过程,我对PCM编译码的工作原理有了深入的认识,学会了对PCM编译码系统的性能进行测试,如动态范围、信噪比特性。实验过程中,我们也遇到过一些麻烦,一开始我和组员观察测试点(2)的时候,示波器总是不能完整地显示(2)的波形,我们把示波器调来调去就是不行,然后我们换了一台仪器,还是同样的情况,我们总觉得是PCM板有问题,因为电路连线很简单,而且我们用万用表检查了几遍都没问题,最后我们只好请教老师,老师动了动示波器的几个旋钮测试点(2)波形就出来了。这让我们很惭愧,做了这么多的实验,连示波器的简单调节都没学会。通过这个小插曲,我发现我在试验中解决问题的能力有待提高,对仪器的熟练度也有待练习。实验中出现的其他问题也不少,我们都一一地解决,完成了实验。总之,这次实验使我明白,实验不能只是按照实验指导一步步地死磕,遇到问题不能依赖老师,要动脑子,想办法,这样才能是自己提高。
(2)示波器观测“JPCM-OUT”测试点波形,为还原的正弦波,且幅度相当。
5、模拟语音信号PCM编译码
用信号源模块模拟语音信源输出的“T-OUT”话音信号代替2K正弦信号输入模拟信号数字化模块中,还原的“解调输出”信号送回信号源模拟语音信源“R-IN”测试点,耳机接收话筒语音信号,完成模拟语音信号PCM编译码的整个过程。

实验七调频与解调实验PPT课件

实验七调频与解调实验PPT课件

要点二
解调(Demodulation)
利用调制信号控制载波的频率变化,使信号的频率随调制 信号的幅度变化而变化。
将已调频信号还原成原始调制信号的过程,通过解调电路 实现。
实验步骤
调制信号源
使用信号发生器产生调制信号, 如正弦波、方波等。
解调操作
将已调频信号输入解调电路, 观察解调后输出信号的波形和 幅度。
实验七调频与解调实 验ppt课件
目 录
• 实验简介 • 调频技术 • 解调技术 • 实验操作 • 实验总结
01
实验简介
实验目的
掌握调频与解调的基 本原理。
学会使用调频和解调 实验设备进行实验操 作。
熟悉调频和解调电路 的实现方法。
实验原理
要点一
调频(Frequency Modulation)
步骤三
启动实验,观察示波 器上的信号波形,记 录频谱分析仪的测量 结果。
步骤四
调整信号发生器的频 率和幅度,观察示波 器和频谱分析仪的变 化,记录实验数据。
步骤五
将调频收音机置于接 收状态,观察解调后 的音频信号,记录实 验结果。
实验结果分析
分析实验数据,比较不同波形、 频率和幅度下的信号特性。
观察解调后的音频信号,分析 调频解调的效果和性能。
调频实现方法
直接调频法
直接调频法是将调制信号直接作用于载波的振荡器,使载波的频率随调制信号的 变化而变化。这种方法实现简单,但稳定性较差。
间接调频法
间接调频法是将调制信号先对一个辅助振荡器进行调制,得到调相波,然后再将 调相波对载波进行调相,得到调频波。这种方法稳定性较好,但实现较为复杂。
03
解调技术
调频信号的优点

实验七 振幅键控ASK调制与解调

实验七 振幅键控ASK调制与解调

实验七振幅键控(ASK)调制与解调一、概述为使数字信号在带通信道中传输,必须对数字信号进行调制。

在幅移键控中,载波幅度是随着调制信号而变化的。

最简单的形式是载波在二进制调制信号1或0控制下通或断,这种二进制幅度键控方式称为通-断键控(OOK)。

本实验采用这种方式。

二、实验原理1.调制部分:二进制幅度键控的调制器可用一个相乘器来实现。

对于OOK信号,相乘器则可以用一个开关电路来代替。

调制信号为1时,开关电路导通,为0时切断。

OOK信号表达式:s OOK(t) = a(n)A cos(c t)式中:A -载波幅度,c-载波频率,a(n)-二进制数字信号原理框图基带信号a(n) 已调信号s OOK(t)c2.解调部分:解调有相干和非相干两种。

非相干系统设备简单,但在信噪比较小时,相干系统的性能优于非相干系统。

这里采用相干解调。

原理框图低通滤波(t) 解调信号â(n)OOK载波Acos(ωc t)三、实验步骤1.根据ASK调制与解调原理,用Systemview软件建立一个仿真电路,如下图所示:2.元件参数配制Token 0,5:基带信号-PN码序列(频率=10Hz,电平=2,幅度=1V,偏移=1V)Token 1,22:乘法器Token 2, 7,23:载波-正弦波发生器(频率=50Hz,幅度=1V,相位=0deg)Token 14,26:模拟低通滤波器(截止频率=10Hz,阶数=3)Token 15,27:抽样保持器Token 16,28:脉冲(频率=10Hz,幅度=1V,脉宽=0.05s)Token 12,24:比较器(真值=1V,假值=-1V)Token 17,29:门限值(幅度=0.1V)其它为观察点-分析窗3.运行时间设置:采样点数=2048,采样频率=1000Hz4.运行系统:运行该系统后,转到分析窗观察的波形。

5.功率谱:在分析窗绘出该系统调制后的功率谱。

四、实验报告1.观察并记录实验波形:Token 4-基带信号波形,Token 33-调制波形,Token 18-解调波形,并与理论参考波形相比较。

实验七 幅度调制及解调实验

实验七   幅度调制及解调实验

实验五幅度调制及解调实验一、实验目的1.理解幅度调制与检波的原理。

2.掌握用集成乘法器构成调幅与检波电路的方法。

二、实验原理实验电路图如图6-2所示。

调幅就是用低频调制信号去控制高频载波信号的幅度,使高频载波信号的振幅按调制信号变化。

而检波则是从调幅波中取出低频信号。

振幅调制信号按其不同频谱结构分为普通调幅(AM)信号,抑制载波的双边带调制(DSB)信号,单边带调制(SSB)信号。

此实验主要涉及普通调幅(AM)及检波原理。

三、实验设备1、THZK-1型测控电路综合实验平台2.测控电路(一)挂箱(ZK-7)说明:本实验中实验平台上所用到的资源:真有效值交流毫伏表、低频函数信号发生器或TH-SG01P;挂箱上所用到的资源:U1、U2四、实验内容及步骤1、接通ZK-7挂箱上的电源,即把挂箱上的七芯航空插头插在平台上的七芯航空插座上,并用智能直流电压表观测平台上的直流电压输出是否正常,挂箱的指示灯是否正常,如果不正常,则需要检测,一般是航空插头没有插好。

只有电压正常以后,方可进行下一步实验。

2.调幅波的观察(1)调节实验屏上低频函数信号发生器,使之输出频率为1.3KHz、幅值为1Vp-p的正弦波信号,接入“U1调幅单元”的调制波输入端。

(2)调节实验屏上TH—SG01P函数信号发生器,使之输出频率为100KHz、幅值为4.0Vp-p的正弦波信号,接入“U1调幅单元”的载波输入端。

图6-1 普通调幅(AM)波波形(3)“U1调幅单元”的输出端接入示波器CH1,调节“U1调幅单元”的电位器W,在示波器上观测到如图6-1所示的普通调幅(AM)波。

3.解调波的观察(1)在保持调幅波的基础上,将“U1调幅单元”的输出端接入“U2解调单元”的调幅波输入端,把输入“U1调幅单元”的载波信号接入“U2解调单元”载波输入端。

(2)“U2解调单元”的输出端接入虚拟示波器的CH2,调节“U2解调单元”的电位器W1,观测到解调信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验七 脉冲幅度调制与解调实验
一、实验目的
1. 理解脉冲幅度调制的原理和特点。

2. 了解脉冲幅度调制波形的频谱特性。

二、实验内容
1. 观察基带信号、脉冲幅度调制信号、抽样时钟的波形,并注意观察它们之间的相互关系及特
点。

2. 改变基带信号或抽样时钟的频率,重复观察波形。

3. 观察脉冲幅度调制波形的频谱。

三、实验器材
信号源模、块PAM 、AM 模块、频谱分析模块、20M 双踪示波器、连接线
四、实验原理
抽样定理表明:一个频带限制在(0, )内的时间连续信号()m t ,如果以 秒的间隔对它进
行等间隔抽样,则()m t 将被所得到的抽样值完全确定。

假定将信号()m t 和周期为T 的冲激函数()t T δ相乘,如图7-1所示。

乘积便是均匀间隔为T 秒的冲激序列,这些冲激序列的强度等于相应瞬时上()m t 的值,它表示对函数()m t 的抽样。

若用()m t s 表示此抽样函数,则有:
()()()s T m t m t t δ=
图7-1 抽样与恢复
假设()m t 、()T t δ和()s m t 的频谱分别为()M ω、()T δω和()s M ω。

按照频率卷积定理,
()m t ()T t δ的傅立叶变换是()M ω和()T δω的卷积:
[]1
()()()2s T M M ωωδωπ
=
* 因为 2()T T s n n T
π
δδωω∞
=-∞
=
-∑ T
s πω2=
1
2H
f H f
所以 1()()()s T s n M M n T ωωδωω∞
=-∞⎡⎤
=*-⎢⎥⎣⎦

由卷积关系,上式可写成 1()()s s n M M n T ωωω∞
=-∞
=-∑ 该式表明,已抽样信号()m t s 的频谱()M s ω是无穷多个间隔为ωs 的()M ω相迭加而成。

这就意味着
()M s ω中包含()M ω的全部信息。

需要注意,若抽样间隔T 变得大于 ,则()M ω和()T
δω的卷积在相邻的周期内存在重叠(亦
称混叠),因此不能由()M s ω恢复()M ω。

可见, 是抽样的最大间隔,它被称为奈奎斯特间隔。

图7-2画出当抽样频率s f ≥2B 时(不混叠)及当抽样频率s f <2B 时(混叠)两种情况下冲激抽样信号的频谱。

(a) 连续信号的频谱
(b ) 高抽样频率时的抽样信号及频谱(不混叠)
(c ) 低抽样频率时的抽样信号及频谱(混叠) 图7-2 采用不同抽样频率时抽样信号的频谱
1
2H
f 1
2H
T f
=
所谓脉冲振幅调制,即是脉冲载波的幅度随基带信号变化的一种调制方式。

如果脉冲载波是由冲激脉冲组成的,则上述所介绍的抽样定理,就是脉冲幅度调制的原理。

但是,实际上理想的冲激脉冲串物理实现困难,通常采用窄脉冲串来代替。

本实验模块采用32K 或64K或1MHz的窄矩形脉冲来代替理想的窄脉冲串,当然,也可以采用外接抽样脉冲对输入信号进行脉冲幅度调制,本实验采用图7-3所示的原理方框图。

具体的电路原理图如图7-4所示。

相关文档
最新文档