南昌大学数字信号处理实验报告6

合集下载

《数字信号处理》实验报告

《数字信号处理》实验报告

数字信号处理》实验报告年级:2011 级班级:信通 4班姓名:朱明贵学号:111100443 老师:李娟福州大学2013 年11 月实验一快速傅里叶变换(FFT)及其应用一、实验目的1. 在理论学习的基础上,通过本实验,加深对FFT的理解,熟悉MATLAB^的有关函数。

2. 熟悉应用FFT对典型信号进行频谱分析的方法。

3. 了解应用FFT进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用FFT。

4. 熟悉应用FFT实现两个序列的线性卷积和相关的方法。

二、实验类型演示型三、实验仪器装有MATLA爵言的计算机四、实验原理在各种信号序列中,有限长序列信号处理占有很重要地位,对有限长序列,我们可以使用离散Fouier变换(DFT)。

这一变换不但可以很好的反映序列的频谱特性,而且易于用快速算法在计算机上实现,当序列x(n)的长度为N时,它的DFT定义为:JV-1 $生反变换为:如-器冃吋科—有限长序列的DFT是其Z变换在单位圆上的等距采样,或者说是序列Fourier变换的等距采样,因此可以用于序列的谱分析。

FFT并不是与DFT不同的另一种变换,而是为了减少DFT运算次数的一种快速算法。

它是对变换式进行一次次分解,使其成为若干小点数的组合,从而减少运算量。

常用的FFT 是以2为基数的,其长度A - o它的效率高,程序简单,使用非常方便,当要变换的序列长度不等于2的整数次方时,为了使用以2为基数的FFT,可以用末位补零的方法,使其长度延长至2的整数次方。

(一)在运用DFT进行频谱分析的过程中可能的产生三种误差1 .混叠序列的频谱是被采样信号频谱的周期延拓,当采样速率不满足Nyquist定理时,就会发生频谱混叠,使得采样后的信号序列频谱不能真实的反映原信号的频谱。

避免混叠现象的唯一方法是保证采样速率足够高,使频谱混叠现象不致出现,即在确定采样频率之前,必须对频谱的性质有所了解,在一般情况下,为了保证高于折叠频率的分量不会出现,在采样前,先用低通模拟滤波器对信号进行滤波。

数字信号处理实验报告

数字信号处理实验报告

实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。

2、熟悉离散信号和系统的时域特性。

3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。

4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。

二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。

2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。

信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。

根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。

三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。

(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。

数字信号处理实验六报告

数字信号处理实验六报告

实验六 频域抽样定理和音频信号的处理实验报告 (一)频域抽样定理给定信号1, 013()27, 14260, n n x n n n +≤≤⎧⎪=-≤≤⎨⎪⎩其它 1.利用DTFT 计算信号的频谱()j X e ω,一个周期内角频率离散为M=1024点,画出频谱图,标明坐标轴。

n=0:100; %设定n 及其取值范围for n1=0:13 %对于n 处于不同的取值范围将n 代入不同的表达式xn(n1+1)=n1+1;endfor n2=14:26xn(n2+1)=27-n2;endfor n3=27:100xn(n3+1)=0;endM=1024; %设定抽样离散点的个数k=0:M-1; %设定k 的取值范围w=2*pi*k/M; %定义数字角频率[X,w] = dtft2( xn,n, M ) %调用dtft2子程序求频谱plot(w,abs(X)); %画出幅度值的连续图像xlabel('w/rad');ylabel('|X(exp(jw))|');title(' M=1024时的信号频谱图像'); %标明图像的横纵坐标和图像标题function [X,w] = dtft2(xn, n, M ) %定义x(n)的DTFT 函数w=0:2*pi/M:2*pi-2*pi/M; %将数字角频率w 离散化L=length(n); %设定L 为序列n 的长度 for (k=1:M) %外层循环,w 循环M 次sum=0; %每确定一个w 值,将sum 赋初值为零for (m=1:L) %内层循环,对n 求和,循环次数为n 的长度sum=sum+xn(m)*exp(-j*w(k)*n(m)); %求和X(k)=sum; %把每一次各x(n)的和的总值赋给X ,然后开始对下一个w 的求和过程end %内层循环结束end%外层循环结束M=1024时的信号频谱图像如图1-1所示:图1-1 M=1024时的信号频谱图像2.分别对信号的频谱()jX eω在区间π[0,2]上等间隔抽样16点和32点,得到32()X k和16()X k。

《数字信号处理》实验报告

《数字信号处理》实验报告

《数字信号处理》上机实验指导书一、引言“数字信号处理”是一门理论和实验密切结合的课程,为了深入地掌握课程内容,应当在学习理论的同时,做习题和上机实验。

上机实验不仅可以帮助学生深入地理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。

所以,根据本课程的重点要求编写了四个实验。

第一章、二章是全书的基础内容,抽样定理、时域离散系统的时域和频域分析以及系统对输入信号的响应是重要的基本内容。

由于第一、二章大部分内容已经在前期《信号与系统》课程中学习完,所以可通过实验一帮助学生温习以上重要内容,加深学生对“数字信号处理是通过对输入信号的一种运算达到处理目的” 这一重要概念的理解。

这样便可以使学生从《信号与系统》课程顺利的过渡到本课程的学习上来。

第三章、四章DFT、FFT是数字信号处理的重要数学工具,它有广泛的使用内容。

限于实验课时,仅采用实验二“用FFT对信号进行谱分析”这一实验。

通过该实验加深理解DFT的基本概念、基本性质。

FFT是它的快速算法,必须学会使用。

所以,学习完第三、四章后,可安排进行实验二。

数字滤波器的基本理论和设计方法是数字信号处理技术的重要内容。

学习这一部分时,应重点掌握IIR和FIR两种不同的数字滤波器的基本设计方法。

IIR滤波器的单位冲激响应是无限长的,设计方法是先设计模拟滤波器,然后再通过S~Z平面转换,求出相应的数字滤波器的系统函数。

这里的平面转换有两种方法,即冲激响应不变法和双线性变换法,后者没有频率混叠的缺点,且转换简单,是一种普遍应用的方法。

学习完第六章以后可以进行实验三。

FIR滤波器的单位冲激响应是有限长的,设计滤波器的目的即是求出符合要求的单位冲激响应。

窗函数法是一种基本的,也是一种重要的设计方法。

学习完第七章后可以进行实验四。

以上所提到的四个实验,可根据实验课时的多少恰当安排。

例如:实验一可根据学生在学习《信号与系统》课程后,掌握的程度来确定是否做此实验。

若时间紧,可以在实验三、四之中任做一个实验。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告黎美琪通信一、实验名称:(快速傅里叶变换)的探究二、实验目的.学习理解的基本实现原理(注:算法主要有基时间抽取法和基频域抽取法,此实验讨论的是基频率抽取算法,课本上主要讲解的是基时间抽取算法).编写代码实现基频率抽取算法三、实验条件机四、实验过程(一)基础知识储备.基频率抽取( )算法基本原理:输入[]前后分解,输出[]奇偶分解。

设序列的点数为^,为整数(公式中的、定义不一样,打印后统一改正)将输入的[]按照的顺序分成前后两段:对输出的[]进行奇偶分解()、()和()之间可以用下图所示的蝶形运算符表示:的一次分解流图:的二次分解流图:最后完整的分解流图(^一共分解了三次):的运算过程规律。

)^点的共进行级运算,每级由个蝶形运算组成。

同一级中,每个蝶形的两个输入数据只对计算本蝶形有用,而且每个蝶形的输入、输出数据结点又同在一条水平线上,也就是说计算完一个蝶形后,所得输出数据可立即存入原输入数据所占用的存储单元。

这样,经过级运算后,原来存放输入序列数据的个存储单元中便依次存放()的个值。

(注:这种利用同一存储单元存储蝶形计算输入、输出数据的方法称为原位计算。

原位计算可节省大量内存,从而使设备成本降低。

))旋转因子的变化规律 :以点的为例,第一级蝶形,,,,;第二级蝶形,;第三级的蝶形,。

依次类推,对于级蝶形,旋转因子的指数为∙^(−),,,,,……,^()这样就可以算出每一级的旋转因子。

)蝶形运算两节点之间的“距离” :第一级蝶形每个蝶形运算量节点的“距离”为,第二级每个蝶形运算另节点的“距离”为,第三级蝶形每个蝶形运算量节点的“距离”为。

依次类推:对于等于的次方的,可以得到第级蝶形每个蝶形运算量节点的“距离”为的次方。

.旋转因子 的性质1) 周期性 2) 对称性mk N N mk N W W -=+2 )可约性为整数/,//n N W W n mk n N mk N =.频率抽取()基算法和时间抽取()基算法比较:两种算法是等价的,其相同之处:()与两种算法均为原位运算。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告引言数字信号处理(Digital Signal Processing,DSP)是一门研究数字信号的获取、分析、处理和控制的学科。

在现代科技发展中,数字信号处理在通信、图像处理、音频处理等领域起着重要的作用。

本次实验旨在通过实际操作,深入了解数字信号处理的基本原理和实践技巧。

实验一:离散时间信号的生成与显示在实验开始之前,我们首先需要了解信号的生成与显示方法。

通过数字信号处理器(Digital Signal Processor,DSP)可以轻松生成和显示各种类型的离散时间信号。

实验设置如下:1. 设置采样频率为8kHz。

2. 生成一个正弦信号:频率为1kHz,振幅为1。

3. 生成一个方波信号:频率为1kHz,振幅为1。

4. 将生成的信号通过DAC(Digital-to-Analog Converter)输出到示波器上进行显示。

实验结果如下图所示:(插入示波器显示的正弦信号和方波信号的图片)实验分析:通过示波器的显示结果可以看出,正弦信号在时域上呈现周期性的波形,而方波信号则具有稳定的上下跳变。

这体现了正弦信号和方波信号在时域上的不同特征。

实验二:信号的采样和重构在数字信号处理中,信号的采样是将连续时间信号转化为离散时间信号的过程,信号的重构则是将离散时间信号还原为连续时间信号的过程。

在实际应用中,信号的采样和重构对信号处理的准确性至关重要。

实验设置如下:1. 生成一个正弦信号:频率为1kHz,振幅为1。

2. 设置采样频率为8kHz。

3. 对正弦信号进行采样,得到离散时间信号。

4. 对离散时间信号进行重构,得到连续时间信号。

5. 将重构的信号通过DAC输出到示波器上进行显示。

实验结果如下图所示:(插入示波器显示的连续时间信号和重构信号的图片)实验分析:通过示波器的显示结果可以看出,重构的信号与原信号非常接近,并且能够还原出原信号的形状和特征。

这说明信号的采样和重构方法对于信号处理的准确性有着重要影响。

最新数字信号处理实验报告

最新数字信号处理实验报告

最新数字信号处理实验报告一、实验目的本次实验旨在加深对数字信号处理(DSP)理论的理解,并通过实践操作掌握数字信号处理的基本方法和技术。

通过实验,学习如何使用相关软件工具进行信号的采集、分析、处理和重构,提高解决实际问题的能力。

二、实验内容1. 信号采集与分析- 使用数字示波器采集模拟信号,并将其转换为数字信号。

- 利用傅里叶变换(FFT)分析信号的频谱特性。

- 观察并记录信号的时域和频域特性。

2. 滤波器设计与实现- 设计低通、高通、带通和带阻滤波器。

- 通过编程实现上述滤波器,并测试其性能。

- 分析滤波器对信号的影响,并调整参数以优化性能。

3. 信号重构实验- 应用所学滤波器对采集的信号进行去噪处理。

- 使用逆傅里叶变换(IFFT)重构经过滤波处理的信号。

- 比较重构信号与原始信号的差异,评估处理效果。

三、实验设备与材料- 计算机及DSP相关软件(如MATLAB、LabVIEW等)- 数字示波器- 模拟信号发生器- 数据采集卡四、实验步骤1. 信号采集- 连接并设置好数字示波器和模拟信号发生器。

- 生成一系列不同频率和幅度的模拟信号。

- 通过数据采集卡将模拟信号转换为数字信号。

2. 滤波器设计- 在DSP软件中设计所需的滤波器,并编写相应的程序代码。

- 调整滤波器参数,如截止频率、增益等,以达到预期的滤波效果。

3. 信号处理与重构- 应用设计的滤波器对采集的数字信号进行处理。

- 利用IFFT对处理后的信号进行重构。

- 通过对比原始信号和重构信号,评估滤波器的性能。

五、实验结果与分析- 展示信号在时域和频域的分析结果。

- 描述滤波器设计参数及其对信号处理的影响。

- 分析重构信号的质量,包括信噪比、失真度等指标。

六、实验结论- 总结实验中所学习到的数字信号处理的基本概念和方法。

- 讨论实验中遇到的问题及其解决方案。

- 提出对实验方法和过程的改进建议。

七、参考文献- 列出实验过程中参考的书籍、文章和其他资源。

数字信号处理实验报告

数字信号处理实验报告

一、实验目的1. 理解数字信号处理的基本概念和原理。

2. 掌握离散时间信号的基本运算和变换方法。

3. 熟悉数字滤波器的设计和实现。

4. 培养实验操作能力和数据分析能力。

二、实验原理数字信号处理(Digital Signal Processing,DSP)是利用计算机对信号进行采样、量化、处理和分析的一种技术。

本实验主要涉及以下内容:1. 离散时间信号:离散时间信号是指时间上离散的信号,通常用序列表示。

2. 离散时间系统的时域分析:分析离散时间系统的时域特性,如稳定性、因果性、线性等。

3. 离散时间信号的变换:包括离散时间傅里叶变换(DTFT)、离散傅里叶变换(DFT)和快速傅里叶变换(FFT)等。

4. 数字滤波器:设计、实现和分析数字滤波器,如低通、高通、带通、带阻滤波器等。

三、实验内容1. 离散时间信号的时域运算(1)实验目的:掌握离散时间信号的时域运算方法。

(2)实验步骤:a. 使用MATLAB生成两个离散时间信号;b. 进行时域运算,如加、减、乘、除等;c. 绘制运算结果的时域波形图。

2. 离散时间信号的变换(1)实验目的:掌握离散时间信号的变换方法。

(2)实验步骤:a. 使用MATLAB生成一个离散时间信号;b. 进行DTFT、DFT和FFT变换;c. 绘制变换结果的频域波形图。

3. 数字滤波器的设计和实现(1)实验目的:掌握数字滤波器的设计和实现方法。

(2)实验步骤:a. 设计一个低通滤波器,如巴特沃斯滤波器、切比雪夫滤波器等;b. 使用MATLAB实现滤波器;c. 使用MATLAB对滤波器进行时域和频域分析。

4. 数字滤波器的应用(1)实验目的:掌握数字滤波器的应用。

(2)实验步骤:a. 采集一段语音信号;b. 使用数字滤波器对语音信号进行降噪处理;c. 比较降噪前后的语音信号,分析滤波器的效果。

四、实验结果与分析1. 离散时间信号的时域运算实验结果显示,通过MATLAB可以方便地进行离散时间信号的时域运算,并绘制出运算结果的时域波形图。

南昌大学 信号系统 实验报告

南昌大学 信号系统 实验报告

专业班级: 学号: 姓名:实验一 周期信号的频谱测试一、实验目的:1、掌握周期信号频谱的测试方法;2、了解典型信号频谱的特点,建立典型信号的波形与频谱之间的关系。

二、实验原理及方法:1、信号的频谱可分为幅度谱、相位谱和功率谱,分别是 将信号的基波和各次谐波的振幅、相位和功率按频率的高低依次排列而成的图形。

2、连续时间信号的频谱具有离散性、谐波性、收敛性。

例如正弦波、周期矩形脉冲、三角波的幅度谱分别如图1-1,1-2,1-3所示: 01234567-1-0.8-0.6-0.4-0.20.20.40.60.81t s i n (t ) n C 1ωω图1-1(a) 正弦波信号 图1-1(b) 相应的幅度谱f(t)T A 0τ/2nC 14ω15ω13ω12ω1ωω图1-2(a) 周期矩形脉冲 图1-2(b) 相应的幅度谱因此,信号的频谱测试方法可用频谱分析仪直接测量亦可用逐点选频测量法进行测量。

本实验使用GDS-806C 型号的数字存储示波器直接测试幅度谱。

用示波器直接测试,就是将其与EE1460C 函数信号发生器连好。

分别输入相应频率和幅度的正弦波,三角波和矩形波,此时示波器将显示按频率由低到高的各输入信号的谐波分量。

GDS-806C 数字存储示波器测频谱的方法,就是将MATH 键按下,F1键选择FFT(快速傅立叶转换)功能可以将一个时域信号转换成频率构成,显示器出现一条红颜色的频谱扫描线。

当示波器输入了不同信号的波形时就显示它们相应的频谱, 参数的测量由调试水平(即频率)与垂直(即增益)游标获取,从而得到输入信号的频谱图。

三、实验原理图:图1-4 实验原理图四、实验设备:GDS-806C 数字存储示波器和EE1640函数信号发生器/计数器五、实验内容及步骤:1、测试正弦波的幅度频谱将信号源、示波器、按图1-4连接好;信号源CH1的输出波形调为正弦波,输出频率自选,输出信号幅度自选 ,并记录幅度与频率的参数.2、测试三角波的幅度频谱在实验步骤1的基础上将信号源CH1的输出波形调为三角波(T) ,频率自选,幅度自选.并记录幅度和周期的参数.六、实验结果: tf(t)T1AT1/2 n C 14ω15ω13ω12ω1ωω16ω17ω图1-3(a) 三角波 1-3(b) 相应的幅度谱七、实验总结:(1)由测量数据分别画出频谱图.(2)说明理论分析计算与实测数据的误差及产生的原因.读取测量值时波形变化、仪器本身局限等各种原因都可能导致这样的误差出现(3)实验心得体会:通过本次实验掌握了周期信号频谱的测试方法,了解了典型信号频谱的特点,建立典型信号的波形与频谱之间的关系,对信号与系统这门课程有了更深刻更系统的了解。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告一、实验目的本次数字信号处理实验的主要目的是通过实际操作和观察,深入理解数字信号处理的基本概念和方法,掌握数字信号的采集、处理和分析技术,并能够运用所学知识解决实际问题。

二、实验设备与环境1、计算机一台,安装有 MATLAB 软件。

2、数据采集卡。

三、实验原理1、数字信号的表示与采样数字信号是在时间和幅度上都离散的信号,可以用数字序列来表示。

在采样过程中,根据奈奎斯特采样定理,为了能够准确地恢复原始信号,采样频率必须大于信号最高频率的两倍。

2、离散傅里叶变换(DFT)DFT 是将时域离散信号变换到频域的一种方法。

通过 DFT,可以得到信号的频谱特性,从而分析信号的频率成分。

3、数字滤波器数字滤波器是对数字信号进行滤波处理的系统,分为有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器。

FIR 滤波器具有线性相位特性,而 IIR 滤波器则在性能和实现复杂度上有一定的优势。

四、实验内容与步骤1、信号的采集与生成使用数据采集卡采集一段音频信号,或者在 MATLAB 中生成一个模拟信号,如正弦波、方波等。

2、信号的采样与重构对采集或生成的信号进行采样,然后通过插值算法重构原始信号,观察采样频率对重构信号质量的影响。

3、离散傅里叶变换对采样后的信号进行DFT 变换,得到其频谱,并分析频谱的特点。

4、数字滤波器的设计与实现(1)设计一个低通 FIR 滤波器,截止频率为给定值,观察滤波前后信号的频谱变化。

(2)设计一个高通 IIR 滤波器,截止频率为给定值,比较滤波前后信号的时域和频域特性。

五、实验结果与分析1、信号的采集与生成成功采集到一段音频信号,并在MATLAB 中生成了各种模拟信号,如正弦波、方波等。

通过观察这些信号的时域波形,对不同类型信号的特点有了直观的认识。

2、信号的采样与重构当采样频率足够高时,重构的信号能够较好地恢复原始信号的形状;当采样频率低于奈奎斯特频率时,重构信号出现了失真和混叠现象。

数字信号处理实验报告完整版[5篇模版]

数字信号处理实验报告完整版[5篇模版]

数字信号处理实验报告完整版[5篇模版]第一篇:数字信号处理实验报告完整版实验 1利用 T DFT 分析信号频谱一、实验目的1.加深对 DFT 原理的理解。

2.应用 DFT 分析信号的频谱。

3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。

二、实验设备与环境计算机、MATLAB 软件环境三、实验基础理论T 1.DFT 与与 T DTFT 的关系有限长序列的离散时间傅里叶变换在频率区间的N 个等间隔分布的点上的 N 个取样值可以由下式表示:212 /0()|()()0 1Nj knjNk NkX e x n e X k k Nπωωπ--====≤≤-∑由上式可知,序列的 N 点 DFT ,实际上就是序列的 DTFT 在 N 个等间隔频率点上样本。

2.利用 T DFT 求求 DTFT方法 1 1:由恢复出的方法如下:由图 2.1 所示流程可知:101()()()Nj j n kn j nNn n kX e x n e X k W eNωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑由上式可以得到:IDFT DTFT第二篇:数字信号处理实验报告JIANGSUUNIVERSITY OF TECHNOLOGY数字信号处理实验报告学院名称:电气信息工程学院专业:班级:姓名:学号:指导老师:张维玺(教授)2013年12月20日实验一离散时间信号的产生一、实验目的数字信号处理系统中的信号都是以离散时间形态存在的,所以对离散时间信号的研究是数字信号的基本所在。

而要研究离散时间信号,首先需要产生出各种离散时间信号。

使用MATLAB软件可以很方便地产生各种常见的离散时间信号,而且它还具有强大绘图功能,便于用户直观地处理输出结果。

通过本实验,学生将学习如何用MATLAB产生一些常见的离散时间信号,实现信号的卷积运算,并通过MATLAB中的绘图工具对产生的信号进行观察,加深对常用离散信号和信号卷积和运算的理解。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告
数字信号处理是指利用数字技术对模拟信号进行采样、量化、编码等处理后,再通过数字信号处理器进行数字化处理的技术。

在数字信号处理实验中,我们通过对数字信号进行滤波、变换、解调等处理,来实现信号的处理和分析。

在实验中,我们首先进行了数字信号采集和处理的基础实验,采集了包括正弦信号、方波信号、三角波信号等在内的多种信号,并进行了采样、量化、编码等处理。

通过这些处理,我们可以将模拟信号转换为数字信号,并对其进行后续处理。

接着,我们进行了数字信号滤波的实验。

滤波是指通过滤波器对数字信号进行处理,去除其中的噪声、干扰信号等不需要的部分,使其更加纯净、准确。

在实验中,我们使用了低通滤波器、高通滤波器、带通滤波器等多种滤波器进行数字信号滤波处理,得到了更加干净、准确的信号。

除了滤波,我们还进行了数字信号变换的实验。

数字信号变换是指将数字信号转换为另一种表示形式的技术,可以将信号从时域转换到频域,或者从离散域转换到连续域。

在实验中,我们使用了傅里叶变换、离散傅里叶变换等多种变换方式,对数字信号进行了变换处理,得到了信号的频谱信息和其他相关参数。

我们进行了数字信号解调的实验。

数字信号解调是指将数字信号转换为模拟信号的技术,可以将数字信号还原为原始信号,并进行后续处理。

在实验中,我们使用了频率解调、相干解调等多种解调方式,将数字信号转换为模拟信号,并对其进行了分析和处理。

总的来说,数字信号处理实验是一项非常重要的实验,可以帮助我们更好地理解数字信号处理的原理和方法,为我们今后从事相关领域的研究和工作打下坚实的基础。

《数字信号处理》实验报告

《数字信号处理》实验报告

《数字信号处理》实验报告年级:2011级班级:信通4班姓名:朱明贵学号:111100443老师:李娟福州大学2013 年11 月实验一快速傅里叶变换(FFT)及其应用一、实验目的1.在理论学习的基础上,通过本实验,加深对FFT的理解,熟悉MATLAB中的有关函数。

2.熟悉应用FFT对典型信号进行频谱分析的方法。

3.了解应用FFT进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用FFT。

4.熟悉应用FFT实现两个序列的线性卷积和相关的方法。

二、实验类型演示型三、实验仪器装有MATLAB语言的计算机四、实验原理在各种信号序列中,有限长序列信号处理占有很重要地位,对有限长序列,我们可以使用离散Fouier变换(DFT)。

这一变换不但可以很好的反映序列的频谱特性,而且易于用快速算法在计算机上实现,当序列x(n)的长度为N时,它的DFT定义为:反变换为:有限长序列的DFT是其Z变换在单位圆上的等距采样,或者说是序列Fourier变换的等距采样,因此可以用于序列的谱分析。

FFT并不是与DFT不同的另一种变换,而是为了减少DFT运算次数的一种快速算法。

它是对变换式进行一次次分解,使其成为若干小点数的组合,从而减少运算量。

常用的FFT 是以2为基数的,其长度。

它的效率高,程序简单,使用非常方便,当要变换的序列长度不等于2的整数次方时,为了使用以2为基数的FFT,可以用末位补零的方法,使其长度延长至2的整数次方。

(一)在运用DFT进行频谱分析的过程中可能的产生三种误差1.混叠序列的频谱是被采样信号频谱的周期延拓,当采样速率不满足Nyquist定理时,就会发生频谱混叠,使得采样后的信号序列频谱不能真实的反映原信号的频谱。

避免混叠现象的唯一方法是保证采样速率足够高,使频谱混叠现象不致出现,即在确定采样频率之前,必须对频谱的性质有所了解,在一般情况下,为了保证高于折叠频率的分量不会出现,在采样前,先用低通模拟滤波器对信号进行滤波。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告数字信号处理实验报告实验一信号(模拟、数字)的输入输出实验(常见离散信号产生和实现)一、实验目的1.加深对常用离散信号的理解;2.掌握matlab 中一些基本函数的建立方法。

二、实验原理 1. 单位抽样序列δ(n ) =⎨⎧1⎩0n =0n ≠0在MATLAB 中可以利用zeros()函数实现。

x =zeros (1, N );x (1) =1;如果δ(n ) 在时间轴上延迟了k 个单位,得到δ(n -k ) 即:δ(n -k ) =⎨2.单位阶跃序列⎧1⎩0n =k n ≠0n ≥0⎧1u (n ) =⎨n在MATLAB 中可以利用ones()函数实现。

x=ones(1,N)3.正弦序列x (n ) =A sin(2πfn /Fs +ϕ)在MATLAB 中,n=0:N-1;x=A*sin(2*pi*f*n/Fs+fai)4.复指数序列x (n ) =r ⋅e j ϖn在MATLAB 中,n=0:N-1;x=r*exp(j*w*n) 5.指数序列x (n ) =a n在MATLAB 中,n=0:N-1;x=a.^n三、实验内容实现和图形生成 1.五种基本函数的生成程序如下: (1)单位抽样序列% 单位抽样序列和延时的单位抽样序列 n=0:10;x1=[1 zeros(1,10)];x2=[zeros(1,5) 1 zeros(1,5)]; subplot(1,2,1);stem(n,x1);xlabel ('时间序列n');ylabel('振幅');title('单位抽样序列x1');subplot(1,2,2);stem(n,x2); xlabel('时间序列n');ylabel('振幅');title('延时了5的单位抽样序列');单位抽样序列x122延时了5的单位抽样序列1.51.511振幅0.5振幅5时间序列n100.500-0.5-0.5-1-15时间序列n10(2)单位阶跃序列 n=0:10;u=[ones(1,11)];stem(n,u);xlabel ('时间序列n');ylabel('振幅');title('单位阶跃序列'); 所得的图形如下所示:振幅123456时间序列n78910(3)正弦函数 n=1:30;x=2*sin(pi*n/6+pi/3);stem(n,x); xlabel ('时间序列n');ylabel('振幅');title('正弦函数序列x=2*sin(pi*n/6+pi/3)');21.510.5振幅0-0.5-1-1.5-2时间序列n(4)复指数序列 n=1:30; x=2*exp(j*3*n);stem(n,x); xlabel ('时间序列n');ylabel('振幅');title('复指数序列x=2*exp(j*3*n)'); 图形如下:复指数序列x=2*exp(j*3*n)21.510.5振幅0-0.5-1-1.5-2时间序列n(5)指数序列 n=1:30;x=1.2.^n;stem(n,x); xlabel ('时间序列n');ylabel('振幅');title('指数序列x=1.2.^n');指数序列x=1.2.n250200150振幅100500时间序列n2.绘出信号x (n ) =1. 5sin(2π*0. 1n ) 的频率是多少?周期是多少?产生一个数字频率为0.9的正弦序列,并显示该信号,说明其周期? 程序如下: n=0:40;x1=1.5*sin(2*pi*0.1*n);x2=sin(0.9*n); subplot(1,2,1);stem(n,x1); xlabel ('时间序列n');ylabel('振幅');title('正弦序列x1=1.5*sin(2*pi*0.1*n)'); subplot(1,2,2);stem(n,x2); xlabel ('时间序列n');ylabel('振幅');title('正弦序列x2=sin(0.9*n)'); 运行结果如下:正弦序列x1=1.5*sin(2*pi*0.1*n)正弦序列x2=sin(0.9*n)振幅振幅102030时间序列n40时间序列n由上图看出:x1=1.5*sin(2*pi*0.1*n)的周期是10,而x2=sin(0.9*n)是非周期的。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告数字信号处理实验报告一、实验目的本实验旨在通过数字信号处理的方法,对给定的信号进行滤波、频域分析和采样率转换等操作,深入理解数字信号处理的基本原理和技术。

二、实验原理数字信号处理(DSP)是一种利用计算机、数字电路或其他数字设备对信号进行各种处理的技术。

其主要内容包括采样、量化、滤波、变换分析、重建等。

其中,滤波器是数字信号处理中最重要的元件之一,它可以用来提取信号的特征,抑制噪声,增强信号的清晰度。

频域分析是指将时域信号转化为频域信号,从而更好地理解信号的频率特性。

采样率转换则是在不同采样率之间对信号进行转换,以满足不同应用的需求。

三、实验步骤1.信号采集:首先,我们使用实验室的信号采集设备对给定的信号进行采集。

采集的信号包括噪声信号、含有正弦波和方波的混合信号等。

2.数据量化:采集到的信号需要进行量化处理,即将连续的模拟信号转化为离散的数字信号。

这一步通常通过ADC(模数转换器)实现。

3.滤波处理:将量化后的数字信号输入到数字滤波器中。

我们使用不同的滤波器,如低通、高通、带通等,对信号进行滤波处理,以观察不同滤波器对信号的影响。

4.频域分析:将经过滤波处理的信号进行FFT(快速傅里叶变换)处理,将时域信号转化为频域信号,从而可以对其频率特性进行分析。

5.采样率转换:在进行上述处理后,我们还需要对信号进行采样率转换。

我们使用了不同的采样率对信号进行转换,并观察采样率对信号处理结果的影响。

四、实验结果及分析1.滤波处理:经过不同类型滤波器处理后,我们发现低通滤波器可以有效抑制噪声,高通滤波器可以突出高频信号的特征,带通滤波器则可以提取特定频率范围的信号。

这表明不同类型的滤波器在处理不同类型的信号时具有不同的效果。

2.频域分析:通过FFT处理,我们将时域信号转化为频域信号。

在频域分析中,我们可以更清楚地看到信号的频率特性。

例如,对于噪声信号,我们可以看到其频率分布较为均匀;对于含有正弦波和方波的混合信号,我们可以看到其包含了不同频率的分量。

南昌大学-数字图像处理实验报告1-8(全)

南昌大学-数字图像处理实验报告1-8(全)

NANCHANG UNIVERSITY数字图象处理实验报告专业:通信工程班级:121班学号:6100212024学生姓名:徐万然2015年4月20日目录实验1:图像信号的数字化实验2:图像灰度级修正实验3:图像的平滑滤波实验4:图像的锐化处理实验5:图像的伪彩色处理实验6:图像的几何变化实验7:图像的复原处理实验8:图像的正交变换实验一:图像信号的数字化一、实验目的通过本实验了解图像的数字化参数取样频率(象素个数)、量化层数与图像质量的关系。

二、实验内容编写并调试图像数字化程序,要求参数k,n 可调。

其中k为亚抽样比例;n 为量化比特数;选择任意图像进行处理,在显示器上观察各种数字化参数组合下的图像效果。

三、实验程序f=imread('Water lilies.jpg');%读入一张图片f1=rgb2gray(f);%将rgb值转换为灰度图subplot(3,3,1),imshow(f),title('灰度图');%显示这幅图像f2=im2bw(f1);%将图像转换为二值图subplot(3,3,2),imshow(f2),title('二值图');%显示这幅图像f3=~f2;%对图像进行取反操作subplot(3,3,3),imshow(f3),title('取反图');%显示这幅图像f4=imnoise(f,'gaussian');%subplot(3,3,4),imshow(f4),title('加高斯噪声图');%对象进行预操作,加入高斯噪声h=ones(5,5)/25;%设计一个5*5的均值滤波器f5=imfilter(f4,h);%对图像进行均值滤波subplot(3,3,5),imshow(f5),title('平滑滤波图');%显示这幅图像f6=imadjust(f,[0,1],[0,1]);%对图像灰度值进行归一化处理subplot(3,3,6),imshow(f6),title('灰度级修正图1');%显示这幅图像f7=imadjust(f,[0,0.8],[0,1]);%降低输入的灰度值subplot(3,3,7),imshow(f7),title('灰度级修正图2');%显示这幅图像四、实验结果五、实验分析及心得通过本次的实验,我学会了使用MA TLAB来进行简单图像处理的步骤。

南昌大学数字信号处理实验报告6

南昌大学数字信号处理实验报告6

实验六数字滤波器结构一:实验目的1.掌握IIR滤波器的三种结果(直接形式、级联形式、并联形式)及其互相形式。

2.掌握线性相位FIR滤波器的四种结构(横截形、级联形、线性相位形、频率抽样形)及其互相转换。

6.1 级联的实现程序P6.1如下:% 程序 P6_1% 将一个有理数传输函数% 转化为因式形式num = input('分子系数向量 = ');den = input('分母系数向量 = ');[z,p,k] = tf2zp(num,den);sos = zp2sos(z,p,k)习题:1.使用程序P6.1,生成如下有限冲激响应传输函数的一个级联实现:H1(z)=2+10z^(-1)+23z^(-2)+34z^(-3)+31z^(-4)+16z^(-5)+4z^(-6)画出级联实现的框图。

H1(z)是一个线性相位传输函数吗?答:级联框图:H1(z)不是一个线性相位传输函数,因为系数不对称。

2.使用程序P6.1,生成如下有限冲激响应传输函数的一个级联实现:H2(z)=6+31z^(-1)+74z^(-2)+102z^(-3)+74z^(-4)+31z^(-5)+6z^(-6)画出级联实现的框图。

H2(z)是一个线性相位传输函数吗?只用4个乘法器生成H2(z)的一个级联实现。

显示新的级联结构的框图。

答:级联框图:H2(z)是一个线性相位传输函数。

只用四个乘法器生成级联框图:6.2级联和并联实现习题:3.使用程序P6.1生成如下因果无限冲激响应传输函数的级联实现:画出级联实现的框图。

答:级联实现框图:4.使用程序P6.1生成如下因果无限冲激响应传输函数的级联实现:画出级联实现的框图。

答:级联实现框图:程序P6.2生成两种类型的并联实现,程序如下:% 程序 P6_2% 一个无限冲激响应传输函数的并联形式实现num = input('分子系数向量 = ');den = input('分母系数分量 = ');[r1,p1,k1] = residuez(num,den);[r2,p2,k2] = residue(num,den);disp('并联I型')disp('留数是');disp(r1);disp('极点在');disp(p1);disp('常数');disp(k1);disp('并联II型')disp('留数是');disp(r2);disp('极点在');disp(p2);disp('常数');disp(k2);习题:5.使用程序P6.2生成式(6.27)所示因果无限冲激响应传输函数的两种不同并联形式实现。

《数字信号处理》实验报告汇总

《数字信号处理》实验报告汇总

物理与电子电气工程学院实验报告
课程名称:数字信号处理
院系:物电学院
专业:电子信息科学与技术班级:
学号:
姓名:
实验报告(1)
实验名称常见离散信号产生与实现
实验日期2016年9月13日指导教师曹凤莲
实验报告(2)
实验名称离散时间系统的时域分析
实验日期2016年9月20日指导教师曹凤莲
实验报告(3)
实验名称离散时间LTI系统的z域分析
实验日期2016年9月27日指导教师曹凤莲
实验报告(4)
实验名称用FFT进行谱分析
实验日期2016年10月10日指导教师曹凤莲
实验报告(5)
实验名称实验五数字滤波器结构的实现
实验日期2016年10月17日指导教师曹凤莲
实验报告(6)
实验名称实验六IIR数字滤波器的设计
实验日期2016年10月25日指导教师曹凤莲。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验六数字滤波器结构一:实验目的1.掌握IIR滤波器的三种结果(直接形式、级联形式、并联形式)及其互相形式。

2.掌握线性相位FIR滤波器的四种结构(横截形、级联形、线性相位形、频率抽样形)及其互相转换。

6.1 级联的实现程序P6.1如下:% 程序 P6_1% 将一个有理数传输函数% 转化为因式形式num = input('分子系数向量 = ');den = input('分母系数向量 = ');[z,p,k] = tf2zp(num,den);sos = zp2sos(z,p,k)习题:1.使用程序P6.1,生成如下有限冲激响应传输函数的一个级联实现:H1(z)=2+10z^(-1)+23z^(-2)+34z^(-3)+31z^(-4)+16z^(-5)+4z^(-6)画出级联实现的框图。

H1(z)是一个线性相位传输函数吗?答:级联框图:H1(z)不是一个线性相位传输函数,因为系数不对称。

2.使用程序P6.1,生成如下有限冲激响应传输函数的一个级联实现:H2(z)=6+31z^(-1)+74z^(-2)+102z^(-3)+74z^(-4)+31z^(-5)+6z^(-6)画出级联实现的框图。

H2(z)是一个线性相位传输函数吗?只用4个乘法器生成H2(z)的一个级联实现。

显示新的级联结构的框图。

答:级联框图:H2(z)是一个线性相位传输函数。

只用四个乘法器生成级联框图:6.2级联和并联实现习题:3.使用程序P6.1生成如下因果无限冲激响应传输函数的级联实现:画出级联实现的框图。

答:级联实现框图:4.使用程序P6.1生成如下因果无限冲激响应传输函数的级联实现:画出级联实现的框图。

答:级联实现框图:程序P6.2生成两种类型的并联实现,程序如下:% 程序 P6_2% 一个无限冲激响应传输函数的并联形式实现num = input('分子系数向量 = ');den = input('分母系数分量 = ');[r1,p1,k1] = residuez(num,den);[r2,p2,k2] = residue(num,den);disp('并联I型')disp('留数是');disp(r1);disp('极点在');disp(p1);disp('常数');disp(k1);disp('并联II型')disp('留数是');disp(r2);disp('极点在');disp(p2);disp('常数');disp(k2);习题:5.使用程序P6.2生成式(6.27)所示因果无限冲激响应传输函数的两种不同并联形式实现。

画出两种实现的框图。

答:并联I型框图:并联II型框图:6.使用程序P6.2生成式(6.28)所示因果无限冲激响应传输函数的两种不同并联形式实现。

画出两种实现的框图。

答:并联I型框图:并联II型框图:项目6.4 全通函数的实现回答:Q6.7 使用程序P4_4我们可以得到A5(z)的{k i} :k(5) = 0.0625 k(4) = 0.2196 k(3) = 0.4811 k(2) = 0.6837 k(1) = 0.6246A5(z)的级联格型实现的结构框图显示如下:从{k i}的值我们可以得到传输函数A5(z)是–稳定的,因为对所有1<i<5有k i2<1Q6.8 使用程序P4_4我们可以得到A6(z)的{k i}值如下:k(6) = 0.0278 k(5) = 0.1344 k(4) = 0.3717 k(3) = 0.5922 k(2) = 0.7711k(1) = 0.8109A6 (z)的级联格型实现的结构框图如下:从{k i}的值我们可以得到传输函数A6(z)是–稳定的反馈系数的平均幅值小于整体Q6.9 使用zp2sos我们可以得到A5(z)的因子:sos =0.0625 0.1250 0 1.0000 0.5000 01.00002.0000 4.0000 1.0000 0.5000 0.25001.0000 1.00002.0000 1.0000 0.5000 0.5000从上面的因子我们可以分解A5(z)到低次的全通因子如下:使用1型和2型全通项生成所示全通函数的典范级联实现,实现的结构框图如下:整体结构中乘法器的总数是_____5______.Q6.10 使用zp2sos我们可以得到A6(z)的因子:sos =0.0278 0.0556 0.1111 1.0000 0.5000 0.25001.00002.00003.0000 1.0000 0.6667 0.33331.0000 3.0000 3.0000 1.0000 1.0000 0.3333从上面因子我们可以分解A6(z)为低阶的全通因子:使用2型的全通项生成A6(z)的典范级联实现框图如下:整体结构中总共有乘法器___6________个.项目6.5 无限冲激响应传输函数的Gray_Markel实现程序P6_3如下:% Program P6_3% Gray-Markel Cascaded Lattice Structure% k is the lattice parameter vector% alpha is the vector of feedforward multipliersformat long% Read in the transfer function coefficientsnum = input('Numerator coefficient vector = ');den = input('Denominator coefficient vector = ');N = length(den)-1; % Order of denominator polynomialk = ones(1,N);a1 = den/den(1);alpha = num(N+1:-1:1)/den(1);forii = N:-1:1,alpha(N+2-ii:N+1) = alpha(N+2-ii:N+1)-alpha(N-ii+1)*a1(2:ii+1);k(ii) = a1(ii+1);a1(1:ii+1) = (a1(1:ii+1)-k(ii)*a1(ii+1:-1:1))/(1-k(ii)*k(ii));enddisp('Lattice parameters are');disp(k)disp('Feedforward multipliers are');disp(alpha)回答:Q6.11 使用程序P6_3我们通过IIR将Q6.3给的正向传输函数H1(z) 的Gray-Markel级联格型实现参数:从这些参数我们可以知道对应Gray-Markel的结构框图如下:使用程序P6_3,从这些格型参数可以得到传输函数H1(z)是–稳定的,因为所有格型参数的平方值比整体的小。

Q6.1 使用程序P6.3生成式(6.28)所示因果无限冲激响应传输函数的Gray-Market实现。

运行结果如下:Numerator coefficient vector = [2 10 23 34 31 16 4]Denominator coefficient vector = [36 78 87 59 26 7 1]Lattice parameters areColumns 1 through 40.810935846413523 0.771127725064015 0.5921518776998420.371690524785502Columns 5 through 60.134362934362934 0.027777777777778Feedforward multipliers areColumns 1 through 40.111111********* 0.203703703703704 0.151994851994852-0.047392657732535Columns 5 through 7-0.014564520383792 0.023453136625124 -0.011120370334857 框图如下:该传输函数是稳定的。

Q6.2 使用函数tf2latc编写出一个MATLAB程序,以生成一个因果无限冲激响应传输函数的GrayMarkel实现。

用该程序实现式(6.27)所示的传输函数。

你的结果与习题6.11中得到的结果相符吗?使用函数1atc2tf由向量k和alpha确定传输函数。

所得到的传输函数和式(6.27)给出的传输函数相同吗?程序如下:% Program P6_4% Gray-Markel Cascaded Lattice Structure using tf2latc.% k is the lattice parameter vector% alpha is the vector of feedforward multipliers% Program also computes the inversion of the lattice/ladder vectors.format long% Read in the transfer function coefficientsnum = input('Numerator coefficient vector = ' );den = input('Denominator coefficient vector = ' );num = num/den(1); % normalize upstairs and down by d0.den = den/den(1);% here is the lattice/ladder realization from the transfer fcn:[k,alpha] = tf2latc(num,den)% now check inversiondisp('Check of Lattice/Ladder Inversion:' );[num2,den2] = latc2tf(k,alpha)运行结果如下:k =0.624596860890130.683737827429190.481119423483980.219607843137250.06250000000000alpha =-0.01982100623522-0.090851695086770.184300471408490.160539215686270.31250000000000-0.12500000000000结果与习题6.11中得到的结果相符。

相关文档
最新文档