0-Linux驱动开发环境配置(内核源码树构造)

合集下载

linux驱动开发(一)

linux驱动开发(一)

linux驱动开发(⼀)1:驱动开发环境要进⾏linux驱动开发我们⾸先要有linux内核的源码树,并且这个linux内核的源码树要和开发板中的内核源码树要⼀直;⽐如说我们开发板中⽤的是linux kernel内核版本为2.6.35.7,在我们ubuntu虚拟机上必须要有同样版本的源码树,我们再编译好驱动的的时候,使⽤modinfo XXX命令会打印出⼀个版本号,这个版本号是与使⽤的源码树版本有关,如果开发板中源码树中版本与modinfo的版本信息不⼀致使⽆法安装驱动的;我们开发板必须设置好nfs挂载;这些在根⽂件系统⼀章有详细的介绍;2:开发驱动常⽤的⼏个命令lsmod :list moduel 把我们机器上所有的驱动打印出来,insmod:安装驱动rmmod:删除驱动modinfo:打印驱动信息3:写linux驱动⽂件和裸机程序有很⼤的不同,虽然都是操作硬件设备,但是由于写裸机程序的时候是我们直接写代码操作硬件设备,这只有⼀个层次;⽽我们写驱动程序⾸先要让linux内核通过⼀定的接⼝对接,并且要在linux内核注册,应⽤程序还要通过内核跟应⽤程序的接⼝相关api来对接;4:驱动的编译模式是固定的,以后编译驱动的就是就按照这个模式来套即可,下⾯我们来分下⼀下驱动的编译规则:#ubuntu的内核源码树,如果要编译在ubuntu中安装的模块就打开这2个#KERN_VER = $(shell uname -r)#KERN_DIR = /lib/modules/$(KERN_VER)/build# 开发板的linux内核的源码树⽬录KERN_DIR = /root/driver/kernelobj-m += module_test.oall:make -C $(KERN_DIR) M=`pwd` modulescp:cp *.ko /root/porting_x210/rootfs/rootfs/driver_test.PHONY: cleanclean:make -C $(KERN_DIR) M=`pwd` modules cleanmake -C $(KERN_DIR) M=`PWD` modules这句话代码的作⽤就是到 KERN_DIR这个⽂件夹中 make modules把当前⽬录赋值给M,M作为参数传到主⽬录的Makefile中,实际上是主⽬录的makefile中有⽬标modules,下⾯有⼀定的规则来编译驱动;#KERN_VER = $(shell uname -r)#KERN_DIR = /lib/modules/$(KERN_VER)/build我们在ubuntu中编译内核的时候⽤这两句代码,因为在ubuntu中为我们保留了⼀份linux内核的源码树,我们编译的时候直接调⽤那个源码树的主Makefile以及⼀些头⽂件、内核函数等;了解规则以后,我们设置好KERN_DIR、obj-m这两个变量以后直接make就可以了;经过编译会得到下⾯⼀些⽂件:下⾯我们可以使⽤lsmod命令来看⼀下我们ubuntu机器现有的⼀些驱动可以看到有很多的驱动,下⾯我们使⽤insmod XXX命令来安装驱动,在使⽤lsmod命令看⼀下实验现象可以看到我们刚才安装的驱动放在了第⼀个位置;使⽤modinfo来打印⼀下驱动信息modinfo xxx.ko这⾥注意vermagic 这个的1.8.0-41是你⽤的linux内核源码树的版本号,只有这个编译的版本号与运⾏的linux内核版本⼀致的时候,驱动程序才会被安装注意license:GPL linux内核开元项⽬的许可证⼀般都是GPL这⾥尽量设置为GPL,否则有些情况下会出现错误;下⾯使⽤rmmod xxx删除驱动;-------------------------------------------------------------------------------------5:下⾯我们分析⼀下驱动。

Linux下的软件开发和编译环境配置

Linux下的软件开发和编译环境配置

Linux下的软件开发和编译环境配置在Linux操作系统中,配置适合软件开发和编译的环境是非常重要的。

正确地设置开发环境,可以提高开发效率,同时确保软件的质量和稳定性。

本文将介绍如何在Linux下配置软件开发和编译环境,以帮助开发人员顺利进行开发工作。

一、安装必要的开发工具在开始配置软件开发环境之前,您需要安装一些必要的开发工具。

在Linux中,常用的开发工具包括GCC编译器、Make工具、调试器(如GDB)、版本控制工具(如Git)等。

您可以通过包管理器(如APT、YUM等)来安装这些工具。

以下是安装这些工具的示例命令(以基于Debian的系统为例):```sudo apt-get updatesudo apt-get install build-essentialsudo apt-get install gdbsudo apt-get install git```通过执行这些命令,您可以安装所需的开发工具,以便后续的配置步骤。

二、配置开发环境要配置软件开发环境,您需要设置一些环境变量和配置文件。

以下是一些常见的配置步骤:1. 配置PATH环境变量在Linux中,PATH环境变量用于指定可执行程序的搜索路径。

为了方便地访问开发工具和编译器,您应该将它们所在的目录添加到PATH环境变量中。

您可以通过编辑`.bashrc`文件来实现这一点。

打开终端,输入以下命令编辑文件:```vi ~/.bashrc```在文件末尾添加以下行(假设开发工具的路径为`/usr/local/bin`):```export PATH=$PATH:/usr/local/bin```保存并退出文件。

然后,使用以下命令使更改生效:```source ~/.bashrc```现在,您可以在任何目录下直接运行开发工具和编译器。

2. 配置编辑器选择一个适合您的编辑器来编写代码是很重要的。

在Linux中有多种编辑器可供选择,如Vim、Emacs、Sublime Text等。

使用YOCTO编译环境修改内核源码的方法

使用YOCTO编译环境修改内核源码的方法

使用YOCTO编译环境修改内核源码的方法YOCTO Project是一个开放源代码项目,为嵌入式Linux开发提供了一个灵活的框架。

它允许开发人员根据自己的需求构建一个定制的Linux 发行版,包括内核、设备驱动和用户空间组件。

在YOCTO Project中修改内核源码的方法可以分为以下几个步骤:1.准备开发环境:在开始之前,需要安装好YOCTO Project的开发环境。

详细的安装过程可以参考YOCTO Project的官方文档。

安装完成后,需要设置好环境变量,以便可以使用YOCTO Project的工具链。

2.获取内核源码:YOCTO Project使用BitBake构建系统来构建Linux发行版。

内核源码在YOCTO Project中是使用git管理的,可以通过git命令来获取。

首先需要指定要使用的内核版本,然后使用git clone命令来获取源码。

3.创建内核工作目录:在YOCTO Project中,涉及到对内核进行修改时,最好是在源码目录以外创建一个工作目录来进行操作,以免影响原有的源码。

4.配置内核:进入内核工作目录后,可以使用bitbake -c menuconfigvirtual/kernel命令来配置内核。

这将打开一个配置菜单,可以对内核进行各种设置。

可以根据项目需求来进行配置,如开启一些硬件支持、关闭不需要的功能等。

5.修改内核源码:6.构建内核:修改完成后,需要构建内核以生成相应的内核镜像。

可以使用bitbake virtual/kernel命令进行构建。

构建过程中,YOCTO Project将自动将修改的文件编译为目标文件,并将其添加到最终生成的内核镜像中。

7.安装内核:构建完成后,可以使用bitbake virtual/kernel -c deploy命令将内核安装到目标设备上。

安装过程中,生成的内核镜像将被复制到目标设备的指定位置。

8.配置设备:在将内核安装到目标设备上后,需要进行一些配置来确保内核的正常工作。

linux、内核源码、内核编译与配置、内核模块开发、内核启动流程

linux、内核源码、内核编译与配置、内核模块开发、内核启动流程

linux、内核源码、内核编译与配置、内核模块开发、内核启动流程(转)linux是如何组成的?答:linux是由用户空间和内核空间组成的为什么要划分用户空间和内核空间?答:有关CPU体系结构,各处理器可以有多种模式,而LInux这样的划分是考虑到系统的安全性,比如X86可以有4种模式RING0~RING3 RING0特权模式给LINUX内核空间RING3给用户空间linux内核是如何组成的?答:linux内核由SCI(System Call Interface)系统调用接口、PM(Process Management)进程管理、MM(Memory Management)内存管理、Arch、VFS(Virtual File Systerm)虚拟文件系统、NS(Network Stack)网络协议栈、DD(Device Drivers)设备驱动linux 内核源代码linux内核源代码是如何组成或目录结构?答:arc目录存放一些与CPU体系结构相关的代码其中第个CPU子目录以分解boot,mm,kerner等子目录block目录部分块设备驱动代码crypto目录加密、压缩、CRC校验算法documentation 内核文档drivers 设备驱动fs 存放各种文件系统的实现代码include 内核所需要的头文件。

与平台无关的头文件入在include/linux子目录下,与平台相关的头文件则放在相应的子目录中init 内核初始化代码ipc 进程间通信的实现代码kernel Linux大多数关键的核心功能者是在这个目录实现(程序调度,进程控制,模块化)lib 库文件代码mm 与平台无关的内存管理,与平台相关的放在相应的arch/CPU目录net 各种网络协议的实现代码,注意而不是驱动samples 内核编程的范例scripts 配置内核的脚本security SElinux的模块sound 音频设备的驱动程序usr cpip命令实现程序virt 内核虚拟机内核配置与编译一、清除make clean 删除编译文件但保留配置文件make mrproper 删除所有编译文件和配置文件make distclean 删除编译文件、配置文件包括backup备份和patch补丁二、内核配置方式make config 基于文本模式的交互式配置make menuconfig 基于文本模式的菜单配置make oldconfig 使用已有的配置文件(.config),但配置时会询问新增的配置选项make xconfig 图形化配置三、make menuconfig一些说明或技巧在括号中按“y”表示编译进内核,按“m”编译为模块,按“n”不选择,也可以按空格键进行选择注意:内核编译时,编译进内核的“y”,和编译成模块的“m”是分步编译的四、快速配置相应体系结构的内核配置我们可以到arch/$cpu/configs目录下copy相应的处理器型号的配置文件到内核源目录下替换.config文件五、编译内核1.————————————————————————————make zImage 注:zImage只能编译小于512k的内核make bzImage同样我们也可以编译时获取编译信息,可使用make zImage V=1make bzImage V=1编译好的内核位于arch/$cpu/boot/目录下————————————————————————————以上是编译内核make menuconfig时先“m”选项的编译接下来到编译“y”模块,也就是编译模块2.make modules 编译内核模块make modules_install 安装内核模块------>这个选项作用是将编译好的内核模块从内核源代码目录copy至/lib/modules下六、制作init ramdiskmkinitrd initrd-$version $version/**** mkinitrd initrd-$(可改)version $version(不可改,因为这version是寻找/lib/modules/下相应的目录来制作) ****/七、内核安装复制内核到相关目录下再作grub引导也就可以了1.cp arch/$cpu/boot/bzImage /boot/vmlinux-$version2.cp $initrd /boot/3.修改引导器/etc/grub.conf(lio.conf)正确引导即可#incldue <linux/init.h>#include <linux/module.h>static int hello_init(void){printk(KERN_WARNING"Hello,world!\n");return 0;}static void hello_exit(void){printk(KERN_INFO"Good,world!\n");}module_init(hello_init);module_exit(hello_exit);___________hello,world!范例___________________一、必需模块函数1.加载函数module_init(hello_init); 通过module_init宏来指定2.卸载函数module_exit(hello_exit); 通过module_exit宏来指定编译模块多使用makefile二、可选模块函数1.MODULE_LICENSE("*******"); 许可证申明2.MODULE_AUTHOR("********"); 作者申明3.MODELE_DESCRIPTION("***"); 模块描述4.MODULE_VERSION("V1.0"); 模块版本5.MODULE_ALIAS("*********"); 模块别名三、模块参数通过宏module_param指定模块参数,模块参数用于在加载模块时传递参数模块module_param(neme,type,perm);name是模块参数名称type是参数类型type常见值:boot、int、charp(字符串型)perm是参数访问权限perm常见值:S_IRUGO、S_IWUSRS_IRUGO:任何用户都对sys/module中出现的参数具有读权限S_IWUSR:允许root用户修改/sys/module中出现的参数/*****——————范例————————*******/int a = 3;char *st;module_param(a,int,S_IRUGO);module_param(st,charp,S_IRUGO);/*********————结束——————**********//**********----makefile范例----*************/ifneq ($(KERNELRELFASE),)obj-m := hello.o //这里m值多用obj-(CONFIG_**)代替elseKDIR := /lib/modules/$version/buildall:make -C $(KDIR) M=$(PWD) modulesclean:rm -f *.ko *.o *.mod.o *.mod.c *.symyersendif/*****这里可以扩展多文件makefile 多个obj-m***********end***************//******模块参数*****/#include <linux/init.h>#include <linux/module.h>MODULE_LICENSE("GPL");static char *name = "Junroc Jinx";static int age = 30;module_param(arg,int,S_IRUGO);module_param(name,charp,S_IRUGO);static int hello init(void){printk(KERN_EMERG"Name:%s\n",name);printk(KERN_EMERG"Age:%d\n",age);return 0;}static void hello_exit(void){printk(KERN_INFA"Module Exit\n");}moduleJ_init(hello_init);module_exit(hello_exit);/****************/----------------------------------------------------------------------------/proc/kallsyms 文档记录了内核中所有导出的符号的名字与地址什么是导出?答:导出就是把模块依赖的符号导进内核,以便供给其它模块调用为什么导出?答:不导出依赖关系就解决不了,导入就失败符号导出使用说明:EXPORT_SYMBOL(符号名)EXPORT_SYMBOL_GPL(符号名)其中EXPORT_SYMBOL_GPL只能用于包含GPL许可证的模块模块版本不匹配问题的解决:1、使用modprobe --force-modversion 强行插入2、确保编译内核模块时,所依赖的内核代码版本等同于当前正在运行的内核uname -r ----------------------------------------------------------------------printk内核打印:printk允许根据严重程度,通过附加不同的“优先级”来对消息分类在<linux/kernel.h>定义了8种记录级别。

Linux设备驱动程序原理及框架-内核模块入门篇

Linux设备驱动程序原理及框架-内核模块入门篇

Linux设备驱动程序原理及框架-内核模块入门篇内核模块介绍应用层加载模块操作过程内核如何支持可安装模块内核提供的接口及作用模块实例内核模块内核模块介绍Linux采用的是整体式的内核结构,这种结构采用的是整体式的内核结构,采用的是整体式的内核结构的内核一般不能动态的增加新的功能。

为此,的内核一般不能动态的增加新的功能。

为此,Linux提供了一种全新的机制,叫(可安装) 提供了一种全新的机制,可安装) 提供了一种全新的机制模块” )。

利用这个机制“模块”(module)。

利用这个机制,可以)。

利用这个机制,根据需要,根据需要,在不必对内核重新编译链接的条件将可安装模块动态的插入运行中的内核,下,将可安装模块动态的插入运行中的内核,成为内核的一个有机组成部分;成为内核的一个有机组成部分;或者从内核移走已经安装的模块。

正是这种机制,走已经安装的模块。

正是这种机制,使得内核的内存映像保持最小,的内存映像保持最小,但却具有很大的灵活性和可扩充性。

和可扩充性。

内核模块内核模块介绍可安装模块是可以在系统运行时动态地安装和卸载的内核软件。

严格来说,卸载的内核软件。

严格来说,这种软件的作用并不限于设备驱动,并不限于设备驱动,例如有些文件系统就是以可安装模块的形式实现的。

但是,另一方面,可安装模块的形式实现的。

但是,另一方面,它主要用来实现设备驱动程序或者与设备驱动密切相关的部分(如文件系统等)。

密切相关的部分(如文件系统等)。

课程内容内核模块介绍应用层加载模块操作过程内核如何支持可安装模块内核提供的接口及作用模块实例内核模块应用层加载模块操作过程内核引导的过程中,会识别出所有已经安装的硬件设备,内核引导的过程中,会识别出所有已经安装的硬件设备,并且创建好该系统中的硬件设备的列表树:文件系统。

且创建好该系统中的硬件设备的列表树:/sys 文件系统。

(udev 服务就是通过读取该文件系统内容来创建必要的设备文件的。

)。

linux源代码分析

linux源代码分析

linux源代码分析Linux源代码是Linux操作系统的基础,它是开源的,其源代码可以被任何人查看、分析和修改。

Linux源代码的分析对于了解Linux操作系统的原理和机制非常有帮助。

在本文中,我将对Linux源代码进行分析,介绍其结构、特点以及一些常见的模块。

首先,我们来了解一下Linux源代码的目录结构。

Linux源代码的根目录是一个包含各种子目录的层次结构。

其中,arch目录包含了与硬件体系结构相关的代码;block目录包含了与块设备相关的代码;fs目录包含了文件系统相关的代码等等。

每个子目录下又有更详细的子目录,以及各种源代码文件。

Linux源代码的特点之一是它的模块化。

Linux操作系统是由许多独立的模块组成的,每个模块负责完成特定的功能。

这种模块化的设计使得Linux操作系统更容易理解和维护。

例如,网络模块负责处理与网络相关的功能,文件系统模块负责处理文件系统相关的功能,设备驱动程序模块负责处理硬件设备的驱动等等。

通过分析这些模块的源代码,我们能够深入了解Linux操作系统的各个功能组成。

在Linux源代码中,有一些常见的模块是非常重要的,例如进程调度模块、内存管理模块和文件系统模块。

进程调度模块负责为不同的进程分配CPU时间,实现多任务处理能力。

内存管理模块负责管理系统的内存资源,包括内存的分配和释放。

文件系统模块负责处理文件的读写操作,提供文件系统的功能。

通过对这些重要模块的源代码进行分析,我们可以更加全面地了解Linux操作系统的内部工作原理。

除了这些模块以外,Linux源代码还包含了许多其他的功能和模块,例如设备驱动程序、网络协议栈、系统调用等等。

这些模块共同组成了一个完整的操作系统,为用户提供了丰富的功能和服务。

对于分析Linux源代码,我们可以使用一些工具和方法来辅助。

例如,我们可以使用文本编辑器来查看和修改源代码文件,使用编译器来编译和运行代码,使用调试器来调试代码等等。

linux 开发环境 原理

linux 开发环境 原理

Linux开发环境的原理介绍Linux是一种开源的操作系统,由内核和应用程序构成。

它可以运行在各种硬件平台上,如个人电脑、服务器、智能手机等。

Linux 的内核主要负责系统的调度、进程管理和内存管理等基本操作,应用程序则负责实现用户所需的各种功能。

在Linux上开发应用程序需要一个完整的开发环境,包括编译器、调试器、集成开发环境(IDE)等。

下面将介绍这些组件的原理以及如何在Linux上搭建这样的开发环境。

1. 编译器Linux上的编译器主要用于将高级编程语言(如C、C++等)编译为可执行文件。

常用的编译器包括GCC、Clang等。

这些编译器使用Linux系统提供的函数库进行编程和编译,它们会使用文本文件(通常是源代码文件)创建可执行文件。

2. 调试器调试器是开发人员在开发应用程序时使用的工具,它可以帮助开发人员跟踪程序运行过程中的变量和表达式,以及定位和修复程序中的错误。

Linux上常用的调试器包括GDB、LLDB等。

这些调试器通过控制台与应用程序进行交互,并使用源代码文件分析程序的执行逻辑。

3. 集成开发环境(IDE)集成开发环境是一种用于编辑、编译和调试程序的软件工具,它可以提供一种易于使用的界面,让开发人员更轻松地进行程序开发。

Linux上常用的IDE包括Eclipse、IntelliJ IDEA等。

这些IDE会使用Linux系统提供的函数库进行编程和编译,它们会使用文本文件(通常是源代码文件)创建可执行文件。

4. 在Linux上搭建开发环境在Linux上搭建开发环境通常包括安装所需的软件包,如GCC、GDB等,并根据需要配置相关的环境变量。

在Ubuntu这样的易用的Linux操作系统上,可以通过命令行安装和配置这些组件。

同时,Ubuntu还提供了多个版本的安装镜像文件,可根据需要选择适合的版本进行安装。

需要注意的是,不同的Linux发行版和开发工具可能会有所不同,因此在搭建开发环境时需要根据实际情况选择适合的工具和环境。

想要成为Linux底层驱动开发高手这些技巧绝对不能错过

想要成为Linux底层驱动开发高手这些技巧绝对不能错过

想要成为Linux底层驱动开发高手这些技巧绝对不能错过对于想要成为Linux底层驱动开发高手的人来说,掌握一些关键技巧是非常重要的。

本文将介绍一些不能错过的技巧,帮助读者提升自己在Linux底层驱动开发领域的能力。

1. 深入理解Linux内核:在成为Linux底层驱动开发高手之前,你需要对Linux内核有深入的理解。

了解内核的基本概念、代码结构和内核模块之间的关系是非常重要的。

阅读Linux内核的源代码、参与内核邮件列表的讨论以及阅读相关的文献资料都是提升自己技能的好途径。

2. 熟悉底层硬件知识:作为底层驱动开发者,你需要熟悉底层硬件的工作原理。

这包括了解处理器架构、设备的寄存器操作、中断处理等。

掌握底层硬件知识可以帮助你编写高效、稳定的驱动程序。

3. 学习使用适当的开发工具:在Linux底层驱动开发中,使用适当的开发工具是非常重要的。

例如,使用调试器可以帮助你快速定位驱动程序中的问题。

掌握使用GCC编译器、GNU调试器(GDB)和性能分析工具(如OProfile)等工具可以提高你的开发效率。

4. 阅读相关文档和源代码:Linux底层驱动开发涉及到大量的文档和源代码。

阅读设备供应商提供的文档、Linux内核源代码以及其他相关文献资料可以帮助你更好地了解特定设备的工作原理和使用方法。

5. 编写清晰、高效的代码:编写清晰、高效的代码对于成为Linux底层驱动开发高手是至关重要的。

使用良好的编码风格、注释和命名规范可以提高代码的可读性。

此外,了解Linux内核的设计原则和最佳实践也是编写高质量驱动程序的关键。

6. 多实践、调试和优化:在实际开发过程中,积累经验是非常重要的。

通过多实践、调试和优化不同类型的驱动程序,你可以更好地理解Linux底层驱动开发的技巧和要点。

此外,学会使用内核调试工具和性能分析工具可以帮助你提高驱动程序的质量和性能。

7. 参与开源社区:参与开源社区是成为Linux底层驱动开发高手的好方法。

Linux 内核配置机制(make menuconfig、Kconfig、makefile)讲解

Linux 内核配置机制(make menuconfig、Kconfig、makefile)讲解

printk(KERN_WARNING fmt, ##arg) printk(KERN_DEBUG fmt, ##arg)
/* Module Init & Exit function */ static int __init myModule_init(void) {
/* Module init code */ PRINTK("myModule_init\n"); return 0;
图形
工具
前面我们介绍模块编程的时候介绍了驱动进入内核有两种方式:模块和直接编译进内核,并介绍 了模块的一种编译方式——在一个独立的文件夹通过makefile配合内核源码路径完成
那么如何将驱动直接编译进内核呢? 在我们实际内核的移植配置过程中经常听说的内核裁剪又是怎么麽回事呢? 我们在进行linux内核配置的时候经常会执行make menuconfig这个命令,然后屏幕上会出现以下 界面:
首页 业界 移动 云计算 研发 论坛 博客 下载 更多
process的专栏
您还未登录!| 登录 | 注册 | 帮助
个人资料
dianhuiren
访问:71424次 积分:1219分 排名:第8764名 原创:37篇 转载:127篇 译文:0篇 评论:3条
目录视图
摘要视图
订阅
《这些年,我们读过的技术经典图书》主题有奖征文 经理
这些配置工具都是使用脚本语言,如 Tcl/TK、Perl 编写的(也包含一些用 C 编写的代码)。本文
/dianhuiren/article/details/6917132
1/5
2012年04月 (6) 2012年03月 (15) 2012年02月 (16)
并不是对配置系统本身进行分析,而是介绍如何使用配置系统。所以,除非是配置系统的维护者,一般 的内核开发者无须了解它们的原理,只需要知道如何编写 Makefile 和配置文件就可以。

Linux网络驱动开发步骤

Linux网络驱动开发步骤

Linux网络设备驱动程序开发Linux系统对网络设备驱动的体系结构如下图所示,划分为4层:开发网络设备驱动程序,我们需要完成的主要工作是编写设备驱动功能层的相关函数以填充net_device数据结构的内容并将net_device注册入内核。

各层介绍一、网络设备接口层网络设备接口层为网络设备定义了统一、抽象的数据结构net_device结构体,包含网络设备的属性描述和操作接口。

主要包含如下几部分:(1)全局信息。

char name[IFNAMESIZ]; //name是网络设备的名称int (*init)(struct net_device *dev); /*init 为设备初始化函数指针,如果这个指针被设置了,则网络设备被注册时将调用该函数完成对net_device 结构体的初始化。

设备驱动程序可以不实现这个函数并将其赋值为NULL。

*/(2)硬件信息。

unsigned long mem_end; //设备所使用的共享内存的起始地址unsigned long mem_start; //设备所使用的共享内存的结束地址unsigned long base_addr; //网络设备I/O 基地址unsigned char irq; //设备使用的中断号unsigned char if_port; //多端口设备使用哪一个端口,该字段仅针对多端口设备unsigned char dma; //指定分配给设备的DMA通道(3)接口信息。

unsigned short hard_header_len; //网络设备的硬件头长度,以太网设备为ETH_HLEN-14unsigned short type; //接口的硬件类型unsigned mtu; //最大传输单元(MTU)unsigned char dev_addr[MAX_ADDR_LEN]; //存放设备的硬件地址unsigned char broadcast[MAX_ADDR_LEN]; /*存放设备的广播地址, 以太网设备的广播地址为6个0xFF。

Linux0.01内核源代码及注释

Linux0.01内核源代码及注释

Bootsect.s(1-9)!! SYS_SIZE is the number of clicks (16 bytes) to be loaded.! 0x3000 is 0x30000 bytes = 196kB, more than enough for current! versions of linux ! SYS_SIZE 是要加载的节数(16 字节为1 节)。

0x3000 共为1 2 3 4 5 60x7c000x00000x900000x100000xA0000system 模块代码执行位置线路0x90200! 0x30000 字节=192 kB(上面Linus 估算错了),对于当前的版本空间已足够了。

!SYSSIZE = 0x3000 ! 指编译连接后system 模块的大小。

参见列表1.2 中第92 的说明。

! 这里给出了一个最大默认值。

!! bootsect.s (C) 1991 Linus Torvalds!! bootsect.s is loaded at 0x7c00 by the bios-startup routines, and moves! iself out of the way to address 0x90000, and jumps there.!! It then loads 'setup' directly after itself (0x90200), and the system! at 0x10000, using BIOS interrupts.!! NOTE! currently system is at most 8*65536 bytes long. This should be no! problem, even in the future. I want to keep it simple. This 512 kB! kernel size should be enough, especially as this doesn't contain the! buffer cache as in minix!! The loader has been made as simple as possible, and continuos! read errors will result in a unbreakable loop. Reboot by hand. It! loads pretty fast by getting whole sectors at a time whenever possible.!! 以下是前面这些文字的翻译:! bootsect.s (C) 1991 Linus Torvalds 版权所有!! bootsect.s 被bios-启动子程序加载至0x7c00 (31k)处,并将自己! 移到了地址0x90000 (576k)处,并跳转至那里。

Linux下的软件开发与测试环境搭建

Linux下的软件开发与测试环境搭建

Linux下的软件开发与测试环境搭建在软件开发和测试过程中,搭建一个合适的开发与测试环境是非常重要的。

Linux作为一种常用的操作系统,具备了强大的开发和测试功能,本文将针对Linux环境下的软件开发与测试环境搭建进行详细讲解。

一、安装Linux操作系统首先,我们需要在一台计算机上安装Linux操作系统。

目前市面上有许多不同的Linux发行版可供选择,例如Ubuntu、CentOS等。

根据个人喜好和项目要求,选择一款适合的Linux发行版进行安装。

安装完成后,我们需要进行必要的系统配置,例如网络设置、用户管理等。

确保系统安装完毕后,能够正常地连接网络和进行用户登录。

二、软件开发工具的安装1. 编程语言环境的安装根据项目需要,我们可能需要安装不同的编程语言环境,例如C/C++、Java、Python等。

以C/C++为例,我们可以通过以下命令在Linux上安装GCC编译器:sudo apt-get install gcc类似地,通过类似的命令也可以安装其他编程语言的编译器或解释器。

2. 集成开发环境(IDE)的安装在软件开发过程中,使用一个功能强大的集成开发环境可以提高开发效率。

Linux下有许多优秀的开源IDE可供选择,例如Eclipse、IntelliJ IDEA等。

以Eclipse为例,我们可以通过以下步骤进行安装:1)下载Eclipse的安装包,例如eclipse-cpp-2021-06-R-linux-gtk-x86_64.tar.gz。

2)解压安装包,例如通过以下命令解压:tar -zxvf eclipse-cpp-2021-06-R-linux-gtk-x86_64.tar.gz3)进入解压后的目录,并运行eclipse可执行文件:cd eclipse./eclipse安装完成后,按照IDE的提示进行进一步的配置和插件安装,以满足项目开发的需求。

三、软件测试工具的安装在软件开发过程中,测试是非常重要的一环。

linux 开发新驱动步骤

linux 开发新驱动步骤

linux 开发新驱动步骤Linux作为一款开源的操作系统,其内核源码也是开放的,因此,许多开发人员在Linux上进行驱动开发。

本文将介绍在Linux上进行新驱动开发的步骤。

第一步:确定驱动类型和接口在进行驱动开发前,需要确定驱动类型和接口。

驱动类型包括字符设备驱动、块设备驱动、网络设备驱动等。

接口包括设备文件、系统调用、ioctl等。

根据驱动类型和接口的不同,驱动开发的流程也有所不同。

第二步:了解Linux内核结构和API驱动开发需要熟悉Linux内核的结构和API。

Linux内核由许多模块组成,每个模块都有自己的功能。

API是应用程序接口,提供了许多函数和数据结构,开发人员可以使用这些函数和数据结构完成驱动开发。

第三步:编写驱动代码在了解了Linux内核结构和API后,就可以编写驱动代码了。

驱动代码需要按照Linux内核的编码规范编写,确保代码风格统一、可读性好、可维护性强等。

在编写代码时,需要使用API提供的函数和数据结构完成相应的功能。

第四步:编译驱动代码和内核模块驱动代码编写完成后,需要编译成内核模块。

编译内核模块需要使用内核源码中的Makefile文件。

编译完成后,会生成一个.ko文件,这个文件就是内核模块。

第五步:加载和卸载内核模块内核模块编译完成后,需要加载到Linux系统中。

可以使用insmod命令加载内核模块,使用rmmod命令卸载内核模块。

在加载和卸载内核模块时,需要注意依赖关系,确保依赖的模块已经加载或卸载。

第六步:调试和测试驱动开发完成后,需要进行调试和测试。

可以使用printk函数输出调试信息,在/var/log/messages文件中查看。

测试时需要模拟各种可能的情况,确保驱动程序的稳定性和可靠性。

Linux驱动开发需要掌握Linux内核结构和API,熟悉驱动类型和接口,按照编码规范编写驱动代码,并进行编译、加载、调试和测试。

只有掌握了这些技能,才能进行高效、稳定和可靠的驱动开发。

linux 内核源码需要掌握的数据结构和算法

linux 内核源码需要掌握的数据结构和算法

linux 内核源码需要掌握的数据结构和算法在深入理解Linux内核源码的过程中,掌握数据结构和算法是非常重要的。

数据结构和算法是编程和系统编程的基础,也是理解Linux内核源码的关键。

本文将介绍Linux内核源码需要掌握的一些常见数据结构和算法,帮助读者更好地理解内核源码。

一、数据结构1.数组:Linux内核源码中经常使用数组来存储固定大小的元素。

数组在内核源码中主要用于存储数据结构(如链表、树、图等)的元素。

2.链表:链表是一种常见的数据结构,它由一系列节点组成,每个节点包含数据和指向下一个节点的指针。

在Linux内核源码中,链表常用于实现内存管理、文件系统、网络协议等。

3.树:树是一种由节点和边组成的图形结构,其中每个节点最多只有两个子节点。

在Linux内核源码中,树常用于进程调度、内存管理、文件系统等。

4.二叉树:二叉树是一种特殊的树结构,每个节点最多只有两个子节点,通常称为根、左子节点和右子节点。

在Linux内核源码中,二叉树常用于维护设备树、路由表等。

5.图:图是由节点和边组成的图形结构,其中每个节点可以有多个相邻节点。

在Linux内核源码中,图常用于网络协议、进程间通信等。

6.哈希表:哈希表是一种基于哈希函数的数据结构,它可以快速查找、插入和删除元素。

在Linux内核源码中,哈希表常用于进程调度、内存管理等。

二、算法1.遍历算法:遍历算法是用于遍历数据结构的算法,如深度优先搜索(DFS)、广度优先搜索(BFS)等。

这些算法在Linux内核源码中常用于遍历链表、树、图等数据结构。

2.排序算法:排序算法是用于将数据元素按照一定顺序排列的算法,如冒泡排序、快速排序等。

在Linux内核源码中,排序算法常用于维护内存分配表、设备驱动等。

3.查找算法:查找算法是用于在数据结构中查找特定元素的算法,如线性查找、二分查找等。

在Linux内核源码中,查找算法常用于设备驱动、内存管理等。

4.递归算法:递归算法是一种通过函数自我调用来解决问题的方法。

linux中编译驱动的方法

linux中编译驱动的方法

linux中编译驱动的方法
在Linux中编译驱动的方法通常涉及以下步骤:
1. 编写驱动代码:首先,您需要编写适用于Linux内核的驱动代码。

这通常是在内核源代码树之外编写的。

驱动代码通常以C语言编写,并遵循内核编程约定。

2. 获取内核源代码:为了编译驱动,您需要获得Linux内核的源代码。

您可以从Linux官方网站或镜像站点下载内核源代码。

3. 配置内核:在编译驱动之前,您需要配置内核以包含您的驱动。

这可以通过运行`make menuconfig`命令来完成。

在配置菜单中,您可以选择要编译的驱动以及相关的内核选项。

4. 编译驱动:一旦您配置了内核并选择了要编译的驱动,您可以使用`make`命令来编译驱动。

这将在内核源代码目录下生成可执行文件或模块文件。

5. 加载和测试驱动:一旦驱动被编译,您可以将其加载到Linux 内核中以进行测试。

您可以使用`insmod`命令将模块加载到内核,然后使用`dmesg`命令检查内核日志以查看驱动是否正确加载。

这些是基本的步骤,但具体的步骤可能会因您的环境和需求而有所不同。

在编译和加载驱动时,请确保您具有适当的权限和知识,因为这可能需要管理员权限,并且错误的操作可能会导致系统不稳定或损坏。

嵌入式Linux内核模块的配置与编译

嵌入式Linux内核模块的配置与编译

嵌入式Linux内核模块的配置与编译一、简介随着 Linux操作系统在嵌入式领域的快速发展,越来越多的人开始投身到这方面的开发中来。

但是,面对庞大的Linux内核源代码,开发者如何开始自己的开发工作,在完成自己的代码后,该如何编译测试,以及如何将自己的代码编译进内核中,所有的这些问题都直接和Linux的驱动的编译以及Linux的内核配置系统相关。

内核模块是一些在操作系统内核需要时载入和执行的代码,它们扩展了操作系统内核的功能却不需要重新启动系统,在不需要时可以被操作系统卸载,又节约了系统的资源占用。

设备驱动程序模块就是一种内核模块,它们可以用来让操作系统正确识别和使用使用安装在系统上的硬件设备。

Linux内核是由分布在全球的Linux爱好者共同开发的,为了方便开发者修改内核,Linux的内核采用了模块化的内核配置系统,从而保证内核扩展的简单与方便。

本文通过一个简单的示例,首先介绍了如何在Linux下编译出一个内核模块,然后介绍了Linux内核中的配置系统,讲述了如何将一个自定义的模块作为系统源码的一部分编译出新的操作系统,注意,在这里我们介绍的内容均在内核2.6.13.2(也是笔者的开发平台的版本)上编译运行通过,在2.6.*的版本上基本上是可以通用的。

二、单独编译内核模块首先,我们先来写一个最简单的内核模块:#include <linux/module.h>#include <linux/kernel.h>#include <linux/errno.h>#define DRIVER_VERSION "v1.0"#define DRIVER_AUTHOR "RF"#define DRIVER_DESC "just for test"MODULE_AUTHOR(DRIVER_AUTHOR);MODULE_DESCRIPTION(DRIVER_DESC);MODULE_LICENSE("GPL");staticintrfmodule_init(void){printk("hello,world:modele_init");return 0;}static void rfmodule_exit(void){printk("hello,world:modele_exit");}module_init (rfmodule_init);module_exit (rfmodule_exit);这个内核模块除了在载入和卸载的时候打印2条信息之外,没有任何其他功能,不过,对于我们这个编译的例子来讲,已经足够了。

Linux底层驱动开发从入门到精通的学习路线推荐

Linux底层驱动开发从入门到精通的学习路线推荐

Linux底层驱动开发从入门到精通的学习路线推荐Linux底层驱动开发是一项涉及操作系统核心的技术,对于想要深入了解Linux系统内部工作原理的开发人员来说,是一门重要的技能。

本文将为你推荐一条学习路线,帮助你从入门到精通掌握Linux底层驱动开发。

一、基础知识学习阶段在开始学习Linux底层驱动开发之前,你需要掌握一些基础知识。

以下是你可以参考的学习路线:1.1 Linux操作系统基础学习Linux操作系统的基础知识是理解和使用Linux底层驱动的前提。

可以选择阅读《鸟哥的Linux私房菜》等入门书籍,了解Linux的基本概念、命令行操作等。

1.2 C语言编程C语言是Linux底层驱动开发的主要语言。

建议学习《C Primer Plus》等经典教材,掌握C语言的基本语法和编程技巧。

1.3 Linux系统编程学习Linux系统编程是理解Linux内核和驱动开发的关键。

推荐学习《Linux系统编程手册》等教材,学习Linux系统调用、进程管理等知识。

1.4 数据结构与算法良好的数据结构和算法基础对于优化和设计高效的驱动程序至关重要。

可以学习《算法导论》等经典教材,掌握数据结构和常用算法的原理和实现。

二、Linux内核了解与分析阶段在掌握了基础知识后,你需要进一步了解Linux内核和驱动的工作原理。

以下是你可以参考的学习路线:2.1 Linux内核源码阅读通过阅读Linux内核源码,你可以深入了解Linux的内核机制和实现细节。

可以选择《深入理解Linux内核》等相关书籍,逐步学习Linux内核代码的组织结构和关键部分。

2.2 设备驱动模型了解Linux内核的设备驱动模型对于编写高效且可维护的驱动程序至关重要。

可以学习Linux设备驱动模型的相关文档和教程,例如Linux Device Drivers (LDD)等。

2.3 内核调试与分析工具掌握一些常用的内核调试和分析工具是进行底层驱动开发的必要技能。

操作系统实验---配置和编译Linux内核

操作系统实验---配置和编译Linux内核
实 验 报 告
实验题目
姓名:
学号:
课程名称:
操作系统
所在学院:
信息科学与工程学院
专业班级:
计算机
任课教师:
实验项目名称
在Ubuntu16.04上配置和编译Linux内核
一、实验目的与要求:
1.按照提供的连接认真准备实验。
2.提前了解Linux内核的特点以及编译方法。
3.熟悉相关的指令代码并知道其作用。
4.编译完成可使用的内核,内核以姓名和学号命名,请勿直接拷贝其他同学的内核。
二、实验设备及软件:
计算机一台
Linux操作系统
三、实验方法(原理、流程图)
1、构建内核源码树
1)下载安装包
2)解压到内核源码目录下
2、编译内核
1)安装基本工具软件
2)在终端进入你的解压的内核源码的目录
3)依次执行相对应的命令
七、教师批阅意见:
成绩评定:
教师签字:
年月日
八、备注:
(4)依次执行以下命令
$ cd linux-3.19.0
$ cp /boot/config-$(uname -r) .config
$ make menuconfig
$ kg clean
$ fakeroot make-kpkg--initrd--revision166003566.001--append-to-version--20160906 kernel_image kernel_headers
3.编译完成可使用的内核
得到最终文件
四、实验过程、步骤及内容
五、编译内核
(1)安装基本的工具软件。
(2)我是在这里下载的源码包:https:///pub/linux/kernel/v3.x/,我下载的源码包是linux-3.19.0.tar.xz

linux驱动开发流程

linux驱动开发流程

linux驱动开发流程Linux驱动开发流程。

Linux驱动开发是一项复杂而又重要的工作,它涉及到操作系统内核的底层编程和硬件设备的交互。

在进行Linux驱动开发时,需要按照一定的流程来进行,以确保驱动程序的稳定性和可靠性。

下面将介绍一般的Linux驱动开发流程,希望能够对初学者有所帮助。

1. 硬件设备了解。

在进行Linux驱动开发之前,首先需要对要开发的硬件设备有一个全面的了解。

需要了解硬件设备的型号、接口、工作原理等信息,以便于后续的驱动程序编写和调试工作。

2. 硬件设备驱动框架选择。

针对不同的硬件设备,可以选择不同的驱动框架进行开发。

常用的驱动框架包括字符设备驱动、块设备驱动、网络设备驱动等。

根据硬件设备的特点和需求,选择合适的驱动框架进行开发。

3. 编写驱动程序。

在选择好驱动框架之后,就可以开始编写驱动程序了。

驱动程序是连接硬件设备和操作系统内核的桥梁,需要按照一定的规范和接口来进行编写。

在编写驱动程序时,需要考虑到硬件设备的特性和操作系统的要求,确保驱动程序能够正确地控制硬件设备。

4. 调试和测试。

编写完驱动程序后,需要进行调试和测试工作。

通过调试和测试,可以发现驱动程序中的bug和问题,及时进行修复和优化。

调试和测试是保证驱动程序稳定性和可靠性的重要环节,需要认真对待。

5. 集成到内核。

当驱动程序经过调试和测试后,可以将其集成到Linux内核中。

在将驱动程序集成到内核时,需要按照内核的规范和流程来进行,确保驱动程序能够正确地被内核加载和使用。

6. 发布和维护。

最后,当驱动程序集成到内核后,可以进行发布和维护工作。

发布驱动程序时,需要提供清晰的文档和说明,以便其他开发者能够正确地使用和理解驱动程序。

同时,还需要对驱动程序进行定期的维护和更新,以适应不断变化的硬件设备和内核版本。

总结。

通过以上的介绍,我们可以看到Linux驱动开发流程是一个系统而又复杂的过程。

需要对硬件设备有深入的了解,选择合适的驱动框架,编写稳定可靠的驱动程序,并经过严格的调试和测试,最终将其集成到内核并进行发布和维护。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Linux驱动开发环境配置(内核源码树构造)
来源:季义钦BLOG 作者:季义钦
初次接触Linux驱动程序开发,买了一本《Linux设备驱动程序》,第一件事当然就是构建开发环境了!!!
它上面有一个Hello World的列子:
//hello.c
#include <linux/init.h>
#include <linux/module.h>
MODULE_LICENSE("Dual BSD/GPL");
static int hello_init(void){
printk(KERN_ALERT "Hello, world\n");
return 0;
}
static void hello_exit(void){
printk(KERN_ALERT"Goodbye, cruel world\n");
}
module_init(hello_init);
module_exit(hello_exit);
下面我们来看怎么让它跑起来:
驱动程序和用户程序可不一样,它是作为一个模块连接到内核模块来运行的,运行在内核空间里面。

所以要运行我们自己构造的模块,需要自己的系统已经配置好内核树,然后把目标模块和内核树连接起来运行!但是我们安装的Linux没有源码(至少我的是这样),更不要说已经编译好的内核树了~
(1)下载Linux源码:
首先查看可以下载的Linux内核源码包
root@jiq-desktop:~#apt-cache search linux-source
然后选定要下载的源码包:
root@jiq-desktop:~#apt-get install linux-source-2.6.22
下载完成后,在/usr/src下,文件名为:linux-source-2.6.32.tar.bz2,是一个压缩包,然后用
命令解压即可获得Linux内核的源代码:
root@jiq-desktop:/usr/src#tar jxvf linux-source-2.6.32.tar.bz2
(2)然后在Linux内核源码目录/usr/src/linux-source-2.6.32目录下面用老的方法配置好Linux内核:
root@jiq-desktop:/usr/src/linux-source-2.6.32#make oldconfig
(3)然后执行:
root@jiq-desktop:/usr/src/linux-source-2.6.32#make bzImage
这个过程大概需要一个小时左右。

执行完成后会在当前目录下面生成一个文件vmlinux.o
(4)然后编译模块:
root@jiq-desktop:/usr/src/linux-source-2.6.32#make modules
这个过程又是大概一个小时。

(5)然后便可以安装模块了:
root@jiq-desktop:/usr/src/linux-source-2.6.32#make modules_install 这个过程大概两分钟:
以上步骤完成以后,会在/lib/modules目录下面生成一个文件夹
linux-2.6.32-24-generic,至此你差不多已经成了,因为你已经构造好了内核树!!!
下面开始在自己的工程文件夹下面建立两个文件:
hello.c(不用说了)
Makefile(它需要能够找到内核树,然后将目标模块链接上去):
注意里面各种变量的颜色额~有兴趣的读者可以自己去研究一下这个文件,里面唯一和hello.c相关的部分就是
obj-m := hello.o 那一行了!第5行表明了内核树build目录的位置。

下面在当前目录下面执行
root@jiq-desktop:/usr/jiq/DriverProject#make
生成以下文件
然后利用insmod命令将模块插入到内核树中:
root@jiq-desktop:/usr/jiq/DriverProject#insmod ./hello.ko
模块装载触发hello.c的init()方法,输出hello world,如果没有的话,是因为其将输出放到/var/log/syslog中去了。

打开便可以看见你的结果!
卸载目标模块命令是:
root@jiq-desktop:/usr/jiq/DriverProject#rmsmod ./hello.ko
至此你已经成功迈出了Linux驱动开发的第一步~。

相关文档
最新文档