25.1.2概率公开课

合集下载

人教版数学九年级上册25.1.2概率说课稿

人教版数学九年级上册25.1.2概率说课稿
1.师生互动:在课堂教学中,通过提问、讨论等方式,引导学生积极参与思考,及时了解学生的学习状况,给予针对性的指导。
2.生生互动:
(1)小组讨论:将学生分成小组,针对某一问题进行讨论,促使学生在交流中相互启发,共同解决问题。
(2)合作实验:组织学生进行小组实验,共同设计实验方案,收集和分析数据,培养学生的团队协作能力。
1.知识与技能目标
(1)理解随机现象和必然现象的概念;
(2)掌握概率的定义,能运用概率公式进行计算;
(3)能运用概率知识解决实际问题。
2.过程与方法目标
(1)通过实例分析,培养学生观察、比较、分析问题的能力;
(2)通过小组讨论,培养学生合作交流的能力;
(3)通过解决实际问题,培养学生运用数学知识解决实际问题的能力。
(3)互评互改:让学生相互评价作业和成果,提出改进意见,以提高学生的自我评价和反思能力。
四、教学过程设计
(一)导入新课
为了快速吸引学生的注意力和兴趣,我将采用以下方式导入新课:
1.创设情境:通过展示一个与概率相关的实际问题,如彩票中奖概率、比赛胜负概率等,让学生感受到概率在生活中的广泛应用,激发学生的好奇心。
3.掌握了一些基本的数学运算方法。
可能存在的学习障碍有:
1.对随机现象和必然现象的理解不够深入,容易混淆;
2.对概率的定义及计算方法掌握不够熟练,运用时容易出错;
3.在解决实际问题中,难以将问题转化为概率问题,缺乏运用概率知识解决实际问题的能力。
(三)学习动机
为了激发学生的学习兴趣和动机,我将采取以下策略或活动:
(2)概率的定义及计算方法;
(3)概率在实际问题中的应用。
2.教学难点
(1)理解随机现象的本质特征;

人教版九年级数学上册25.1.2 概率公开课精品教案

人教版九年级数学上册25.1.2 概率公开课精品教案

概率【知识与技能】1.了解什么是概率,认识概率是反映随机事件发生可能性大小的量.2.了解频率可以看作为事件发生概率的估计值,了解必然事件和不可能事件的概率.3.理解概率反映可能性大小的一般规律.【过程与方法】通过试验得出和理解概率的意义,正确鉴别有限等可能性事件,了解简单事件发生概率的计算方法.【情感态度】通过分析探究简单随机事件的概率,培养学生良好的动脑习惯,提高运用数学知识解决实际问题的意识,激发学习兴趣,体验数学的应用价值.【教学重点】1.正确理解有限等可能性.2.用概率定义求简单随机事件的概率.【教学难点】正确理解有限等可能性,准确计算随机事件的概率.一、情境导入,初步认识请同学讲“守株待兔”的故事.问:(1)这是个什么事件?(2)这个事件发生的可能性有多大?引入课题.【教学说明】通过熟悉的故事激起学生的学习兴趣,同时结合上节课所学,思考如何衡量一个随机事件发生的可能性的大小,从而引出课题.二、思考探究,获取新知探究试验1:从分别标有1、2、3、4、5号的5根纸签中随机地抽取一根,回答下列问题:①抽出的号码有多少种情况?②抽到1的可能性与抽到2的可能性一样吗?它们的可能性是多少呢?【讨论结果】①抽出的号码有1、2、3、4、5等5种可能的结果.②由于纸签的形状、大小相同,又是随机抽取的,所以每个号码被抽到的可能性大小相等,抽到一个号码即5种等可能的结果之一发生,于是:1/5就表示每一个号码被抽到的可能性的大小.【教学说明】通过本试验,帮助学生理解、体会在一次试验中,可能出现的结果为有限多个,并且每种结果发生的可能性相同.试验2:投一枚骰子,向上一面的点数有多少种可能?向上一面的点数是1或3的可能性一样吗?是多少呢?【教学说明】学生通过试验,交流得出结论,感知在这个过程中,每种结果的可能性,在一次试验中,可能结果只有有限种.思考(1)概率是从数量上刻画一个随机事件发生的可能性的大小,根据上述两个试验分析讨论,你能给概率下定义吗?(2)以上两个试验有什么共同特征?【讨论结果】(1)一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值称为随机事件A发生的概率,记作:P(A).(2)以上两个试验有两个共同特征:①一次试验中,可能出现的结果有有限多个.②一次试验中,各种结果发生的可能性相等.【教学说明】对于具有上述特点的试验,我们常从事件所包含的各种可能的结果在全部可能的试验结果中所占的比分析出事件的概率.问:(1)根据上面的理解,你认为问题2中向上的一面为偶数的概率是多少?(2)像上述试验,可列举的有限等可能事件的概率,可以怎样表达事件的概率?【讨论结果】(1)“向上一面为偶数”这个事件包括2、4、6三种可能结果,在全部6种可能的结果中所占的比为3/6=1/2.∴P(向上一面为偶数)=1/2.(2)一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=m/n.问:(3)请同学们思考P(A)的取值范围是多少?分析:∵m≥0,n>0,∴0≤m≤n,∴0≤mn≤1,即0≤P(A)≤1.问:(4)P(A)=1,P(A)=0各表示什么事件呢?【讨论结果】当A为必然事件时,P(A)=1.当A为不可能事件时,P(A)=0.由此可知:事件发生的可能性越大,它的概率越接近于1;反之,事件发生的可能性越小,它的概率越接近于0,如下图:三、典例精析,掌握新知例1掷一个骰子,观察向上一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2且小于5.分析:(1)掷一个质地均匀的骰子,向上一面的点数共有几种情况?(2)点数为2时有几种可能?点数为奇数有几种可能?点数大于2且小于5有几种可能呢?【教学说明】例1是教材的例1,以此规范简单事件的概率求值的一般步骤,并在运用中进一步体会概率的意义.教师板书完整的解题过程.例2如图所示是一个转盘,转盘分成7个相同的扇形,颜色分为红、绿、黄三种颜色,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作向右的扇形).求下列事件的概率:(1)指针指向红色;(2)指针指向红色或黄色;(3)指针不指向红色.分析:①指针停止后所指向的位置是否是有限等可能性事件?为什么?②指针指向红色有几种可能?③指针指向红色或黄色是什么意思?④指针不指向红色等价于什么说法?【教学说明】教师引导学生分析问题,学生通过对问题的思考和交流,写出完整的解题过程,这个转盘问题,实际上是几何概率的模型,是通过面积的大小关系来刻画概率的.例3 教材第133页例3.分析:第二步怎样走取决于踩在哪部分遇到地雷可能性的大小,因此,问题的关键是分别计算在两个区域的任何一个方格内踩中地雷的概率并比较大小就可以了.问1:若例3中,小王在游戏开始时踩中的第一个格上出现了标号1,则下一步踩在哪一区域比较安全?答案:一样,每个区域遇雷的概率都是1/8.问2:谁能重新设计,通过改换雷的总数,使得下一步踩在A区域合适?并计算说明. 这是开放性问题,答案不唯一,仅举一例供参考:把雷的总数由10颗改为31颗,则:A区域的方格共有8个,标号3表示在这8个方格中有3个方格各有1颗地雷,因此踩A 区域遇雷概率是:3/8B区域中共有:9×9-8-1=72(个)小方格,其中有31-3=28(个)方格内各藏有1颗地雷,因此踩B区域的任一方格遇到地雷的概率是:28 72而328872,∴踩A区域遇雷的可能性小于踩B区域遇雷的可能性.【教学说明】这个问题对于有游戏经验的同学来说容易理解题意,若是没有经验就不是很容易理解的,教师要引导学生理解题意,进而分析问题.对于第二步应怎样走关键只要分别计算两个区域内遇雷的概率,这是学生解决这一问题的关键所在.当学生完成问题后,顺势提出后面的2个问题,从正、反两方面对题目进行变式练习.四、运用新知,深化理解1.“从一布袋中随机摸出一球恰是黑球的概率为1/3”的意思是()A.摸球三次就一定有一次摸到黑球B.摸球三次就一定有两次不能摸到黑球C.如果摸球次数很多,那么平均每摸球三次就有一次摸到黑球D.布袋中有一个黑球和两个别的颜色的球2.某班共有41名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是()A.0B.1/41C.2/41D.13.要在一只口袋中装入若干个形状与大小都完全相同的球,使得从袋中摸到红球的概率为1/5,四位同学分别采用了下列装法,你认为他们中装错的是()A.口袋中装入10个小球,其中只有两个是红球B.装入1个红球,1个白球,1个黄球,1个蓝球,1个黑球C.装入红球5个,白球13个,黑球2个D.装入红球7个,白球13个,黑球2个,黄球13个4.从一副未曾启封的扑克牌中取出1张红桃,2张黑桃的牌共3张,洗匀后,从这3张牌中任取1张牌,恰好是黑桃的概率是()A.1/2B.1/3C.2/3D.15.在四张完全相同的卡片上,分别画上圆、矩形、等边三角形、等腰梯形,现从中随机抽取1张,是中心对称图形的概率是______.6.下列事件的概率,哪些能作为等可能性事件的概率求?哪些不能?(1)抛掷一枚图钉,钉尖朝上.(2)随意地抛一枚硬币,背面向上与正面向上.7.摸彩券100张,分别标有1,2,3,……100的号码,只有摸中的号码是7的倍数的彩券才有奖,小明随机地摸出一张,那么他中奖的概率是多少?8.从一副扑克牌中找出所有红桃的牌共13张,从这13张牌中任意抽取一张,求下列事件的概率.(1)抽到红桃5;(2)抽到花牌J、Q、K中的一张;(3)若规定花牌点为0.5,其余牌按数字记点,抽到点数大于5的可能性有多大?【教学说明】上述练习一方面从正反对照的角度深化了对有限等可能的理解,进一步明确了古典概型的使用条件;另一方面还能帮助学生熟练掌握有限等可能的随机事件概率的计算方法,教师应先让学生自主完成,再进行评讲.【答案】1.C2.C【解析】所有可能结果数是41,而每个学生被提问的可能性相等,其中有2个学生是习惯用左手写字,故习惯用左手写字的同学被选中的概率为2/41.3.C4.C5.1/2【解析】圆、矩形是中心对称图形,所以P(中心对称图形)=2/4=1/2.6.(1)不能(2)能7.7/50(提示:本题的关键是找公式P(A)=m/n中的m:从7的1倍到7的14倍,一共14个数.)8.(1)因为13张牌中只有一张红桃5,故抽到红桃5的概率为1/13;(2)13张牌中有1张J、1张Q、1张K,共3张花牌,故抽到一张花牌的概率为3/13;(3)13张牌中点数大于5的牌共有6、7、8、9、10共5张,故抽到点数大于5的牌的概率为5/13. 五、师生互动,课堂小结本堂课你学到了哪些概率知识?你有什么疑问和困惑?1.布置作业,从教材“习题25.1”中选取.2.完成创优作业中本课时练习的“课时作业”部分.1.通过抽签,用学生喜欢的扑克牌和掷骰子试验导入新课,吸引学生迅速进入状态,让学生充分认识概率的意义;由学生自主探索、合作交流此类型概率的求法,利用学生掌握本节课的知识,学生在解决问题的过程中,发展了思维能力,增强思维的缜密性,并且培养了学生解决问题的信心.2.在概率的古典定义基础上,教科书给出了概率的取值范围为0-1的性质,事件发生的可能性越大,它的概率越接近1,其中必然事件的概率为1,不可能事件的概率为0,两个确定事件可以看作特殊的随机事件.学生在学习例2时,应注意三种颜色并非三种可能。

25.1.2 概率课件 2024-2025学年人教版数学九年级上册

25.1.2 概率课件 2024-2025学年人教版数学九年级上册

随堂练习
2. 任意掷一枚质地均匀的骰子.
(1) 掷出的点数大于4的概率是多少?
(2) 掷出的点数是偶数的概率是多少?
解:任意掷一枚质地均匀的骰子,掷出的点数可能是1,2,3,4,
5,6,即所有可能的结果有6种.因为骰子是质地均匀的,所以每种
结果出现的可能性相等.
随堂练习
2. 任意掷一枚质地均匀的骰子.
(1) 掷出的点数大于4的概率是多少?
(1)掷出的点数大于4的结果只有2种,即
掷出的点数分别是5,6.
所以P(掷出的点数大于4)=

= .

随堂练习
2. 任意掷一枚质地均匀的骰子.
(2) 掷出的点数是偶数的概率是多少?
(2)掷出的点数是偶数的结果有3种,即掷
出的点数分别是2,4,6.
所以P(掷出的点数是偶数)=
知识点2 简单随机事件的概率的求法
【例 4】一儿童行走在如图所示的地板上,当他随意停下时,最终停
在地板上阴影部分的概率是( A )
A.

B.


C.


D.


解析:观察这个图可知,阴影区域(3块)的面积占
总面积(9块)的


,故其概率为 .


知识讲解
知识点2 简单随机事件的概率的求法
【例 5】如图所示的是一个可以自由转动的转盘,转盘分成7个大小相
1颗地雷.小王在游戏开始时随机地点击一个方格,点击后出
现如图所示的情况.我们把与标号3的方格相邻的方格记为A区
域(画线部分),A区域外的部分记为B区域.数字3表示在A区域
有3颗地雷.下一步应该点击A区域还是B区域?

最新数学人教版初中九年级上册25.1.2概率2公开课教学设计

最新数学人教版初中九年级上册25.1.2概率2公开课教学设计

2512 概率教学目标〈一〉知识与技能1知道通过大量重复试验时的频率可以作为事件发生概率的估计值2在具体情境中了解概率的意义〈二〉教学思考让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型初步理解频率与概率的关系〈三〉解决问题在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念〈四〉情感态度与价值观在合作探究学习过程中,激发学生学习的好奇心与求知欲体验数学的价值与学习的乐趣通过概率意义教学,渗透辩证思想教育【教学重点】在具体情境中了解概率意义【教学难点】对频率与概率关系的初步理解【教具准备】壹元硬币数枚、图钉数枚、多媒体课件【教学过程】一、创设情境,引出问题教师提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去我很为难,真不知该把球给谁请大家帮我想个办法决定把球票给谁学生:抓阄、抽签、猜拳、投硬币,……教师对同学的较好想法予以肯定(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法如抓阄、投硬币)追问,为什么要用抓阄、投硬币的方法呢?由学生讨论:这样做公平能保证小强与小明得到球票的可能性一样大在学生讨论发言后,教师评价归纳用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定“正面朝上”还上“反面朝上”,但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大质疑:那么,这种直觉是否真的是正确的呢?引导学生以投掷壹元硬币为例,不妨动手做投掷硬币的试验验证一下说明:现实中不确定现象是大量存在的,新课标指出:“学生数学学习内容应当是现实的、有意义、富有挑战的”,设置实际生活问题情境贴近学生的生活实际,很容易激发学生的学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造民主和谐的气氛,也为下一步引导学生开展探索交流活动打下基础二、动手实践,合作探究1.教师布置试验任务(1)明确规则把全班分成10组,每组中有一名学生投掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行(2)明确任务,每组掷币50次,以实事求是的态度,认真统计“正面朝上”的频数及“正面朝上”的频率,整理试验的数据并记录下2.教师巡视学生分组试验情况注意:(1).观察学生在探究活动中,是否积极参与试验活动、是否愿意交流等,关注学生是否积极思考、勇于克服困难(2).要求真实记录试验情况对于合作学习中有可能产生的纪律问题予以调控3各组汇报实验结果由于试验次数较少,所以有可能有些组试验获得的“正面朝上”的频率与先前的猜想有出入提出问题:是不是我们的猜想出了问题?引导学生分析讨论产生差异的原因在学生充分讨论的基础上,启发学生分析讨论产生差异的原因使学生认识到每次随机试验的频率具有不确定性,同时相信随机事件发生的频率也有规律性,引导他们小组合作,进一步探究解决的办法是增加试验的次数,鉴于课堂时间有限,引导学生进行全班交流合作4.全班交流把各组测得数据一一汇报,教师将各组数据记录在黑板上全班同学对数据进行累计,按照书上P140要求填好25-2并根据所整理的数据,在251-1图上标注出对应的点完成统计图表25-2n图25.1-1想一想1(投影出示)观察统计表与统计图,你发现“正面向上”的频率有什么规律?注意学生的语言表述情况,意思正确予以肯定与鼓励“正面朝上”的频率在05上下波动想一想2(投影出示)随着抛掷次数增加,“正面向上”的频率变化趋势有何规律?在学生讨论的基础上,教师帮助归纳使学生认识到每次试验中随机事件发生的频率具有不确定性,同时发现随机事件发生的频率也有规律性在试验次数较少时,“正面朝上”的频率起伏较大,而随着试验次数的逐渐增加,一般地,频率会趋于稳定,“正面朝上”的频率越越接近05 这也与我们刚开始的猜想是一致的我们就用05这个常数表示“正面向上”发生的可能性的大小说明:注意帮助解决学生在填写统计表与统计图遇到的困难通过以上实践探究活动,让学生真实地感受到、清楚地观察到试验所体现的规律,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率)鼓励学生在学习中要积极合作交流,思考探究学会倾听别人意见,勇于表达自己的见解为了给学生提供大量的、快捷的试验数据利用计算机模拟掷硬币试验的课件,丰富学生的体验、提高课堂教学效率,使他们能直观地、便捷地观察到试验结果的规律性--大量重复试验中,事件发生的频率逐渐稳定到某个常数附近其实,历史上有许多著名数学家也做过掷硬币的试验让学生阅读历史上数学家做掷币试验的数据统计表(看书P141表25-3)表25-3通过以上学生亲自动手实践电脑辅助演示历史材料展示让学生真实地感受到、清楚地观察到试验所体现的规律,大量重复试验中,事件发生的频率逐渐稳定到某个常数附近即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率)同时又感受到无论试验次数多么大也无法保证事件发生的频率充分地接近事件发生的概率在探究学习过程中应注意评价学生在活动中参与程度、自信心、是否愿意交流等,鼓励学生在学习中不怕困难积极思考,敢于表达自己的观点与感受养成实事求是的科学态度5下面我们能否研究一下“反面向上”的频率情况?学生自然可依照“正面朝上”的研究方法,很容易总结得出:“反面向上”的频率也相应稳定到05教师归纳:(1)由以上试验,我们验证了开始的猜想,即抛掷一枚质地均匀的硬币时,“正面向上”与“反面向上”的可能性相等(各占一半)也就是说,用抛掷硬币的方法可以使小明与小强得到球票的可能性一样(2)在实际生活还有许多这样的例子,如在足球比赛中,裁判用掷硬币的办法决定双方的比赛场地等等说明:这个环节,让学生亲身经历了猜想试验——收集数据——分析结果的探索过程,在真实数据的分析中形成数学思考,在讨论交流中达成知识的主动建构,为下一环节概率意义的教学作了很好的铺垫三、评价概括,揭示新知问题1通过以上大量试验,你对频率有什么新的认识?有没有发现频率还有其他作用?学生探究交流发现随机事件的可能性的大小可以用随机事件发生的频率逐渐稳定到的值(或常数)估计或去描述通过猜想试验及探究讨论,学生不难有以上认识对学生可能存在语言上、描述中的不准确等注意予以纠正,但要求不必过高归纳:以上我们用随机事件发生的频率逐渐稳定到的常数刻画了随机事件的可能性的大小那么我们给这样的常数一个名称,引入概率定义给出概率定义(板书):一般地,在大量重复试验中,如果事件A 发生的频率nm会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率(prbability ) 记作P (A )= p注意指出:1.概率是随机事件发生的可能性的大小的数量反映2.概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同想一想(学生交流讨论)问题2.频率与概率有什么区别与联系?从定义可以得到二者的联系 可用大量重复试验中事件发生频率估计事件发生的概率另一方面大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值而频率随不同试验次数而有所不同是概率的近似值二者不能简单地等同说明:猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破为下节课进一步研究概率和今后的学习打下了基础 当然,学生随机观念的养成是循序渐进的、长期的这节课教学应把握教学难度,注意关注学生接受情况四.练习巩固,发展提高 学生练习1.书上P143练习1 巩固用频率估计概率的方法 2.书上P143练习2 巩固对概率意义的理解教师应当关注学生对知识掌握情况,帮助学生解决遇到的问题五.归纳总结,交流收获:1.学生互相交流这节课的体会与收获,教师可将学生的总结与板书串一起,使学生对知识掌握条理化、系统化2.在学生交流总结时,还应注意总结评价这节课所经历的探索过程,体会到的数学价值与合作交流学习的意义【作业设计】(1)完成P144 习题251 2、4(2)课外活动分小组活动,用试验方法获得图钉从一定高度落下后钉尖着地的概率【教学设计说明】这节课是在学习了2511节随机事件的基础上学习的,学生通过大量重复试验,体验用事件发生的频率去刻画事件发生的可能性大小,从而得到概率的定义1.对概率意义的正确理解,是建立在学生通过大量重复试验后,发现事件发生的频率可以刻画随机事件发生可能性的基础上结合学生认知规律与教材特点,这节课以用掷硬币方法分配球票为问题情境,引导学生亲身经历猜测试验—收集数据—分析结果的探索过程这符合《新课标》“从学生已有生活经验出发,让学生亲身经历将实际问题抽象为数学模型并进行解释与应用的过程”的理念贴近生活现实的问题情境,不仅易于激发学生的求知欲与探索热情,而且会促进他们面对要解决的问题大胆猜想,主动试验,收集数据,分析结果,为寻求问题解决主动与他人交流合作在知识的主动建构过程中,促进了教学目标的有效达成更重要的是,主动参与数学活动的经历会使他们终身受益2.随机现象是现实世界中普遍存在的,概率的教学的一个很重要的目标就是培养学生的随机观念为了实现这一目标,教学设计中让学生亲身经历对随机事件的探索过程,通过与他人合作探究,使学生自我主动修正错误经验,揭示频率与概率的关系,从而逐步建立正确的随机观念,也为以后进一步学习概率有关知识打下基础3.在教学中,本课力求向学生提供从事数学活动的时间与空间,为学生的自主探索与同伴的合作交流提供保障,从而促进学生学习方式的转变,使之获得广泛的数学活动经验教师在学习活动中是组织者、引导者与合作者,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,给学生以适时的引导与鼓励。

25.1.2“概率”.1.2概率(公开课)

25.1.2“概率”.1.2概率(公开课)

n
思考: 你知道m与n之间的大小关系吗?
m 由m和n的含义可知0 ≤ m ≤ n,进而 0 ≤ ≤1 n ∴0 ≤ P(A) ≤1
特别地:当A为必然事件时,P(A)=1;当A为不可能事件时,P(A)=0.
易知:事件发生的可能性越大,它的概率越接近1, 事件发生的可能性越小,它的概率越接近0。
事件发生的可能性越来越小
以上试验有两个共同点:
(1)每一次试验中可能出现的结果只有有限个;
(2)每一次试验中,各种结果出现的可能性相等。
这样的事件是有限等可能事件
对于具有上述特点的试验,可以从事件 所包含的各种可能的结果数在全部可能的结 果数中所占的比,分析出事件发生的概率。
古典概率:
一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性 都相等,事件A包含其中的m种结果, 那么事件A发生的概率 P A m .
随 机 事 件 发 生 的 可 能 性 究 竟 有 多 大 ?
我可没我朋 友那么粗心, 撞到树上去, 让他在那等 着吧,嘿嘿!
思考:
从分别写着1、2、3、4、5的五个竹签中随 机抽取一个。 ①在抽签之前你知道会抽到几吗?抽到结 果有多少种呢? ②每个签号被抽到的可能性一样吗?那数 字5被抽到的机会有多大呢?能用一个具体的 数值表示吗?
(2)指针指向红色或黄色; (3)指针不指向红色。
解:按颜色把6个扇形分别记为:红1,红2,红3,黄1,黄2,绿1, 所有可能结果的总数为6。 (1)指针指向红色(记为事件A)的结果有三个,因此 P(A)=3/6=1/2 (2)指针指向红色或黄色(记为事件B)的结果有五个,因此 P(B)=5/6 (3)指针不指向红色(记为事件C)的结果有三个,因此 P(C)=3/6=1/2

25.1.2 概率课件(30张PPT)

25.1.2 概率课件(30张PPT)

3 8
解: (1)
x 3 , 5 x 3 y. x y 8即y 5 x. 3 Nhomakorabeax枚 y枚
(2)往盒中再放进10枚黑棋,取得黑棋的概率变为 1 , 2 求x和y的值.
x10 1, x y10 2
∴x+10=y, 又5x=3y, ∴x=15,y=25. x+10枚 y枚 5x=3y
区域事件发生的概率: 在与图形有关的概率问题中,概率的大小往往 与面积有关.
s s
随堂演练
基础巩固 1.“明天降水的概率是15%”,下列说法中,正确的是( A.明天降水的可能性较小 A B.明天将有15%的时间降水 C.明天将有15%的地区降水 D.明天肯定不降水 )
2.事件A:打开电视,它正在播广告;事件B:抛掷一 枚质地均匀的骰子,朝上的点数小于7;事件C:在标准 大气压下,温度低于0℃时冰融化.3个事件发生的概率 分别记为P(A)、P(B)、P(C),则 P(A)、P(B)、P(C)的 大小关系正确的是( ) B A.P(C)<P(A)= P(B) B.P(C)<P(A)<P(B) C.P(C)<P(B)<P(A) D.P(A)<P(B)<P(C)
3.如图所示,在平行四边形纸片上作随机扎针实验,针 头扎在阴影区域内的概率为( ) B
1 A . 3
1 B . 4
1 C . 5
1 D . 6
4.掷一枚质地均匀的硬币的试验有2种可能的结果,它们 的可能性相同,由此确定“正面向上”的 概率是
1 2
.
5.10件外观相同的产品中有1件不合格.现从中任意抽取 1件进行检测,抽到不合格产品的概 1 率为 1 0 .
8.如图是一个转盘.转盘分成8个相同的部分,颜色分为红、 绿、黄三种.指针的位置固定,转动转盘后任其自由停止, 其中的某个扇形会恰好停在指针所指的位置(指针指向两个 图形的交线时,当作指向右边的图形).求下列事件的概率:

25.1.2概率课件

25.1.2概率课件

有人说,既然抛掷一枚硬币出现正面的概率是0.5,那 有人说,既然抛掷一枚硬币出现正面的概率是0.5,那 0.5, 么连续两次抛掷一枚质地均匀的硬币, 么连续两次抛掷一枚质地均匀的硬币,一定是一次正面 朝上,一次反面朝上.你认为这种想法正确么? 朝上,一次反面朝上.你认为这种想法正确么?
不正确. 不正确.连续两次抛掷一枚质地均匀的硬币仅仅 是做两次重复抛掷硬币的试验, 是做两次重复抛掷硬币的试验,其结果仍然是随机 的. 事实上,可能出现三种可能的结果: 事实上,可能出现三种可能的结果: “两次正面 朝上” 两次反面朝上” 朝上” ; “两次反面朝上” ; “一次正面朝 一次反面朝上” 上,一次反面朝上”.
一般地,如果在一次试验中 有 种可能的结 一般地 如果在一次试验中,有n种可能的结 如果在一次试验中 并且它们发生的可能性都相等 事件A 果,并且它们发生的可能性都相等 事件 并且它们发生的可能性都相等,事件 种结果,那么生的概 率为
抛掷一个骰子, 例1.抛掷一个骰子,观察向上的一面的点数 求 抛掷一个骰子 观察向上的一面的点数,求 下列事件的概率:①点数为2;②点数为奇数; 下列事件的概率 ①点数为 ②点数为奇数 点数大于2且小于 且小于5. ③点数大于 且小于 掷一个骰子时,向上一面的点数可能为 解:掷一个骰子时 向上一面的点数可能为 掷一个骰子时 1,2,3,4,5,6,共6种.这些点数出现的可能性相等 这些点数出现的可能性相等. 共 种 这些点数出现的可能性相等
概率从数量上刻画了一个随机事 概率从数量上刻画了一个随机事 数量 件发生的可能性大小。 件发生的可能性大小。
试验具有两个共同特征: 试验具有两个共同特征:
(1)每一次试验中,可能出现的结果只有有限个; (1)每一次试验中,可能出现的结果只有有限个; (2)每一次试验中,各种结果出现的可能性相等。 (2)每一次试验中,各种结果出现的可能性相等。

25.1.2概率公开课课件

25.1.2概率公开课课件
必然事件:在一定条件下,必然 会发生的事件;
不可能事件:必然不会发生的事件;
随机事件:可能会发生,也可能不 发生的事件.也叫不确定性事件
随机事件
随机事件
随机事件
我可没我朋友 那么笨呢!撞 到树上去让你 吃掉,你好好 等着吧,哈哈!
小明得了很严重 的病,动手术只有 千分之一的成功率, 父母很担心!
正面朝上
开 始
反面朝上
实验2:抛掷一个质地均匀的骰子
(1)它落地时向上的点数有几种可能的结果?
6种
(2)各点数出现的可能性会相等吗?相等 (3)试猜想:你能用一个数值来说明各点数 出现的可能性大小吗?
实验3:从分别标有1,2,3,4,5的5根纸签 中随机抽取一根
(1)抽取的结果会出现几种可能?
(2)每根纸签抽到的可能性会相等吗?
2、一副扑克牌,从中任意抽出一张,求下列结果的概率:
1
① P(抽到红桃5)=__5_4_
1
②P(抽到大王或小王)=__2_7_
2
③P(抽到A)=__27__
13
④P(抽到方快)=__5_4_
3、如图,能自由转动的转盘中, A、B、C、
D四个扇形的圆心角的度数分别为
180°、 30 °、 60 °、 90 °,转动
实验3:从分别标有1,2,3,4,5的5根纸签 中随机抽取一根
(4) 你能用一个数值来说明抽到标有1的可能 性大小吗?
抽出的签上号码有5种可能,即1,2,3,4,5。
标有1的只是其中的一种,所以标有1的概率就为1/5
(5) 你能用一个数值来说明抽到标有偶数号的 可能性大小吗?
抽出的签上号码有5种可能,即1,2,3,4,5。 标有偶数号的有2,4两种可能,所以标有偶数号的概率

人教版数学九年级上册25.1.2 概率 教学课件

人教版数学九年级上册25.1.2 概率 教学课件

3
1
P(点数为奇数)= 6 = 2 .
③点数大于2且小于5有 2 种可能,分别_ 3,_4__,
2
1
P(点数大于2且小于5)= 6 = 3 .
练一练
1.在一个不透明的口袋中,装有10个大小和外形一模
一样的小球,其中有6个红球,4个白球,并在口袋中
搅匀.任意从口袋中摸出一个球,摸到红球的概率为
3
2
__5__;摸到白球的概率为___5_.
新课导入
在问题1中,从分别标有1,2,3,4,5的五
个纸团中随机抽取一个,因为纸团看上去完全一
样,又是随机抽取,所以每个数字被抽取的可能
1
性大小 相等 ,所以我们可以用 5 表示每一
个数字被抽到的可能性大小.
新课导入
问题2 小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻 有1到6的点数.掷一枚骰子,向上一面的点数有几种可能? 每种点数出现的可能性大小是多少?
0≤ P(A) ≤1
P(A)=1,A为必然事件; P(A)=0,A为不可能事件.
知识讲解
事件发生的可能性越大,它的概率越接近1;反之, 事件发生的可能性越小,它的概率越接近0.
0 不可能事件
事件发生的可能性越来越小 事件发生的可能性越来越大
一般地,随机事件 发生的可能性是有 大小的.
1 概率的值
必然事件
遇到地雷的可能性,因而第二步应该点击B区域.
随堂训练
1. 袋子里有1个红球,3个白球和5个黄球,每一个球除颜色
外都相同,从中任意摸出一个球,则
1
P(摸到红球)= 9 ; 1
P(摸到白球)= 3 ;
5
P(摸到黄球)= 9 .
随堂练习

人教版九年级数学上册(课件)25.1.2概率

人教版九年级数学上册(课件)25.1.2概率

① P(点数为2)= 1 .
② 点数为奇数有 3 种6可能,分别为_1_,__3_,_5__,
P(点数为奇数)= ③点数大于2且小于5有
3 6
=
1 2
.
2 种可能,分别_
3,4___,
2 P(点数大于2且小于5)= 6
=
1 3
.
三、研学教材
抛掷一枚质地均匀的硬币,向上一面 有几种可能的结果?它们的可能性相等吗? 由此能得到“下面向上”的概率吗? 答:有2种可能;它们的可能性相等;
三、研学教材
知识点一 概率的意义与表示方法
1、①在问题1中,从分别标有1,2,3,4, 5的五个纸团中随机抽取一个,由于每个数 字1被抽到的可能性大小 相等 ,所以我们用
5 表示每个数字被抽到的可能性大小。 ②在问题2中,掷一枚骰子,向上一面的点 数大有 小6相个等可能,,所由以于我每们种用点1数出表现示的每可一能个性点 数出现的可能性大小。 6
九年级数学上册·R
第25章 概率初步
25.1.2概率
一、学习目标
1、理解概率的定义,掌握求事件A发
生的概率的方法P( A )= m ;
mn
2、理解并应用P(A)=
n
(在一次试验中有n种可能 的 结果,其中A包含m种)的意义。
二、新课引入
彩票广告上说2元中256万元, 某人买了100张彩票,那么他中奖 是 随机 事件.
分析:转动此转盘共有_7_种__等可能结果.
三、研学教材
解:(1)指针指向红色的结果有___3__个, 所以P(指针指向红色)=___3__ (2)指针指向红色或黄色的7结果有__5__个, 所以P(指针指向红色或黄色)=__5__ (3)指针不指向红色的结果有___47___个, 所以P(指针不指向红色)=__4___0

九年级数学上册人教版(课件):25.1.2概率

九年级数学上册人教版(课件):25.1.2概率

三、研学教材
2、一般地,对于一个随机事件A,我们 把 刻画其发生可能性大小的数值 ,称为
随机事件A发生的 概率 ,记作 P(A).
3、以上两个试验有两个共同的特点;
①每一次试验中可能出现的结果只有_有限___个; ②每一次试验中各种结果出现的可能性___相等_.
1 例如问题1中,P(抽到1)= 5 ;
7
三、研学教材
不透明袋子中装有5个红球、3个绿球,
这些球除了颜色外无其他差别.从袋子中随机
地摸出一个球,“摸出红球”和“摸出绿球” 的可能性相等吗?两者的概率分别是多少?
答:不相等,P(绿球)=
5 8
,P(红球)=
3 8
三、研学教材
例3 :计算机中“扫雷”游戏的画面,在一 个有9×9个小方格的正方形雷区中,随机埋 藏着10颗地雷,每个小方格内最多只能藏一 颗地雷.小王在游戏开始时随机地点击一个方 格,踩中后出现了如图所示的情况.我们把与 标号3的方格相临的方格记为A区域(画线部 分),A区域外的部分记为B区域,数字3表示 在A区域中有3颗地雷,那么第二步 应该点击A区域还是பைடு நூலகம்区域?
当A为不可能事件时,P(A)= 0 .
三、研学教材
知识点二 概率的计算
例1 掷一枚地均匀的骰子,观察向上一面的
点数,求下列事件的概率:①点数为2;
②点数为奇数;③点数大于2且小于5.
解:掷一枚骰子,向上一面的点数可能性相
等,分别为:_1_,_2_,_3_,__4_,_5_,__6_,共 6 种可能.
三、研学教材
知识点一 概率的意义与表示方法
1、①在问题1中,从分别标有1,2,3,4, 5的五个纸团中随机抽取一个,由于每个数 字1被抽到的可能性大小 相等 ,所以我们用
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
活动一 复习引入 复习:下列事件中哪些事件是随机事件?哪些 事件是必然事件?哪些是不可能事件? (1)抛出的铅球会下落; (1)必然事件;
(2)不可能事件; (2)某运动员百米赛跑的成绩为1秒; (3)随机事件; (3)买到的电影票,座位号为单号; (4) a 1 是正数;
2
(4)必然事件; (5)随机事件.
事件发生的可能性越来越小
0 1
概率的值
不可能发生
事件发生的可能性越来越大
必然发生
• 例1:投掷一个骰子,观察向上的 一面的点数,求下列事件的概率: • (1)掷得点数为2 • (2)掷得点数为奇数 • (3)掷得的点数大于2且小于5;
例2.如图:是一个转盘,转盘分成7个相同的扇 形,颜色分为红黄绿三种,指针固定,转动转盘 后任其自由停止,某个扇形会停在指针所指的位 置,(指针指向交线时当作指向右边的扇形)求 下列事件的概率。 (1)指向红色; (2) 指向红色或黄色; (3) 不指向红色。
(5)投掷一枚硬币,正面朝上.
随 机 事 件 发 生 的 可 能 性 究 竟 有 多 大 ?
我可没我朋 友那么粗心, 撞到树上去, 让他在那等 着吧,嘿嘿!
概率
在同样条件下,随机事件可能发生, 也可能不发生,那么它发生的可能性有多 大呢?能否用数值进行刻画呢?
活动二
探索新知
(一)概率定义
请看两个试验: 1.从分别标有1、2、3、4、5号的5根纸签中随机地抽取一
6
概率从数量上有刻画 了一个随机事件发生 的可能性的大小.
以上的两个试验中有两共同点: (1)每一次试验中,可能出现的结果只有有限个。 (2)每一次试验中,各种结果出现的可能性相等。
古典概率:
一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性 都相等,事件A包含其中的m种结果, 那么事件A发生的概率 P A m .
根.抽出的号码有5种可能,即1、2、3、4、5.由于纸签的形状、 大小相同,又是随机抽取的,所以每个号码被抽到的可能性大 小相等,都是
1 . 5
2.掷一个骰子,向上的一面的点数有6种可能,即1、2、3、
4、5、6.由于骰子的构造相同、质地均匀,又是随机掷出的,
所以每种结果的可能性大小相等,都是 1 .
随机事件C,则0<P(C)<1。
3、古典概率的条件及求法 P=
事件结果的发生数 所有均等出现的结果数
作业:
必做:P132:3\4\5
选做:P132:6\7
练习册:P92
做一做 甲、乙 两人做如下的游戏: 如图是一个均匀的骰子,它的每个面上分别标 有数字1,2,3,4,5,6。 任意掷出骰子后,若朝上的数字是6,则甲获胜; 若朝上的数字不是6,则乙获胜。
你认为这个游戏 对甲、乙双方公平吗?

课堂练习:P130
课堂小结:
1、概率的定义
2、必然事件A,则P(A)=1; 不可能事件B,则P(B)=0;
n
必然事件的概率和不可能事件的概率 分别是多少呢?. P(必然事件)=1 P(不可能事件)=0
• 如果事件A在n次试验中发生了m次,那么有 0≤m≤n, 0≤m/n≤1 于是可得 • 0≤P(A) ≤1. 显然,必然事件的概率是1,不可能事件的概 率是0.
事件发生的可能性越大,它的概率越 接近1;反之,事件发生的可能性越小, 它的概率越接近0
相关文档
最新文档