成都高新世纪城南路学校数学几何模型压轴题中考真题汇编[解析版]

合集下载

七年级上册成都高新世纪城南路学校数学期末试卷中考真题汇编[解析版]

七年级上册成都高新世纪城南路学校数学期末试卷中考真题汇编[解析版]

七年级上册成都高新世纪城南路学校数学期末试卷中考真题汇编[解析版]一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图1,已知∠MON=140°,∠AOC与∠BOC互余,OC平分∠MOB,(1)在图1中,若∠AOC=40°,则∠BOC=°,∠NOB=°.(2)在图1中,设∠AOC=α,∠NOB=β,请探究α与β之间的数量关系(必须写出推理的主要过程,但每一步后面不必写出理由);(3)在已知条件不变的前提下,当∠AOB绕着点O顺时针转动到如图2的位置,此时α与β之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出此时α与β之间的数量关系.【答案】(1)解:如图1,∵∠AOC与∠BOC互余,∴∠AOC+∠BOC=90°,∵∠AOC=40°,∴∠BOC=50°,∵OC平分∠MOB,∴∠MOC=∠BOC=50°,∴∠BOM=100°,∵∠MON=40°,∴∠BON=∠MON-∠BOM=140°-100°=40°,(2)解:β=2α-40°,理由是:如图1,∵∠AOC=α,∴∠BOC=90°-α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°-α)=180°-2α,又∵∠MON=∠BOM+∠BON,∴140°=180°-2α+β,即β=2α-40°;(3)解:不成立,此时此时α与β之间的数量关系为:2α+β=40°,理由是:如图2,∵∠AOC=α,∠NOB=β,∴∠BOC=90°-α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°-α)=180°-2α,∵∠BOM=∠MON+∠BON,∴180°-2α=140°+β,即2α+β=40°,答:不成立,此时此时α与β之间的数量关系为:2α+β=40.【解析】【分析】(1)先根据余角的定义计算∠BOC=50°,再由角平分线的定义计算∠BOM=100°,根据角的差可得∠BON的度数;(2)同理先计算∠MOB=2∠BOC=2(90°-α)=180°-2α,再根据∠BON=∠MON-∠BOM列等式即可;(3)同理可得∠MOB=180°-2α,再根据∠BON+∠MON=∠BOM列等式即可.2.将一副直角三角尺按如图所示的方式叠放在一起(其中∠A=60°,∠D=30°,∠E=∠B =45°,直角顶点C保持重合).(1)①若∠DCE=45°,则∠ACB的度数为________.②若∠ACB=140°,则∠DCE的度数为________.(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由.(3)将三角尺BCE绕着点C顺时针转动,当∠ACE<180°,且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE角度所有可能的值(并写明此时哪两条边平行,但不必说明理由);若不存在,请说明理由.【答案】(1)135°;40°(2)∠ACB+∠DCE=180°.理由如下:∵∠ACB=∠ACD+∠DCB=90°+∠DCB,∴∠ACB+∠DCE=90°+∠DCB+∠DCE=90°+∠ECB=90°+90°=180°.(3)(3)存在.当∠ACE=30°时,AD∥BC;当∠ACE=45°时,AC∥BE;当∠ACE=120°时,AD∥CE;当∠ACE=135°时,CD∥BE;当∠ACE=165°时,AD∥BE.【解析】【解答】(1)①∵∠ECB=90°,∠DCE=45°,∴∠DCB=90°-45°=45°,∴∠ACB=∠ACD+∠DCB=90°+45°=135°.②∵∠ACB=140°,∠ACD=90°,∴∠DCB=140°-90°=50°,∴∠DCE=90°-50°=40°.【分析】(1)①根据角的和差,由∠DCB=∠BCE-∠DCE,即可算出∠DCB的度数,进而根据∠ACB=∠ACD+∠DCB即可算出答案;②根据角的和差,由∠DCB=∠ACB-∠ACD算出∠DCB的度数,再根据∠DCE=∠ECB-∠DCB即可算出答案;(2)∠ACB+∠DCE=180°.理由如下:根据角的和差得出∠ACB=∠ACD+∠DCB=90°+∠DCB ,故由∠ACB+∠DCE=90°+∠DCB+∠DCE =90°+∠ECB 即可算出答案;(3)存在.当∠ACE=30°时,根据内错角相等二直线平行得出AD∥BC;当∠ACE=45°时,内错角相等二直线平行得出AC∥BE;当∠ACE=120°时,根据同旁内角互补,二直线平行得出AD∥CE;当∠ACE=135°时,根据内错角相等二直线平行得出CD∥BE;当∠ACE =165°时,根据同旁内角互补,二直线平行得出AD∥BE.3.定义:从一个角的顶点出发,把这个角分成1:2的两个角的射线,叫做这个角的三分线,显然,一个角的三分线有两条.例如:如图1所示,若∠BOC=2∠AOC,则OC是∠AOB的一条三分线.(1)如图1所示,OC是∠AOB的一条三分线,且∠BOC>∠AOC,若∠AOB=60°,求∠AOC 的度数:(2)已知∠AOB=90°,如图2所示,若OC,OD是∠AOB的两条三分线.①求∠COD的度数;②现以点O为中心,将∠COD顺时针旋转n度得到∠C’DD’,当OA恰好是∠C’OD’的三分线时,求n的值.【答案】(1)解:如图1,∵ OC是∠AOB的一条三分线,且∠BOC>∠AOC,∴∠AOC= ∠AOB,又∵∠AOB=60°,∴∠AOC=20°(2)解:① 如图2,∵∠AOB=90°,OC,OD是∠AOB的两条三分线,∴∠COD = ∠AOB =30°;② 分两种情况:当OA是∠C′OD'的三分线,且∠AOD'>∠AOC'时,∠AOC'=10°,∴∠DOC'=30°-10°=20°,∴∠DOD'=20°+30°=50°;当OA是∠C'OD'的三分线,且∠AOD'<∠AOC'时,∠AOC'=20°,∴∠DOC'=30°-20°=10°,∴∠DOD'=10°+30°=40°;综上所述,n=40°或50°【解析】【分析】(1)根据题中给出的角的三分线的定义结合已知条件可得∠AOC=∠AOB ,计算即可得出答案.(2)①根据题中给出的角的三分线的定义结合已知条件∠COD =∠AOB,计算即可得出答案;②根据题意分情况讨论:当OA是∠C′OD'的三分线,且∠AOD'>∠AOC'时;当OA 是∠C'OD'的三分线,且∠AOD'<∠AOC'时;分别结合角的三分线的定义计算即可得出答案.4.已知,,OB、OM、ON是内的射线.(1)如图,若OM平分,ON平分,,则 ________ ;(2)如图,若OM平分,ON平分,求的度数;(3)如图,OC是内的射线,若,OM平分,ON平分,当射线OB在内时,求的度数.【答案】(1)60(2)解:,,,平分,OM平分,,,;(3)解:设,则,平分,ON平分,,,【解析】【解答】,,,平分,,故答案为:60;【分析】(1)由题意和角的构成知∠BOD=∠AOD-∠AOB,再根据角平分线的定义得∠BON=∠BOD可求解;(2)由角的构成可求得∠BOD的度数,再根据角平分线的定义得∠BOM=∠AOB,∠BON=∠BOD,则∠MON=∠BOM+∠BON可求解;(3)设∠AOB=x,由角的构成得∠BOD=∠AOD-∠AOB=160°-x,由角平分线的定义得∠COM=∠AOC,∠BON=∠BOD,由角的构成得∠MON=∠COM+∠BON-∠BOC可求解. 5.如图,OB是∠AOC的平分线,OD是∠COE的平分线.(1)如果∠AOB=40°,∠DOE=30°,那么∠BOD是多少度?(2)如果∠AOE=160°,∠COD=30°,∠AOB那么是多少度?【答案】(1)解:因为OB是∠AOC的平分线,OD是∠COE的平分线.所以∠AOB=∠BOC=40°,∠COD=∠DOE=30°.∠BOD=∠BOC+∠COD=40°+30°=70°(2)解:因为∠AOB=∠BOC,∠COD=∠DOE=30°,∠AOE=160°∠AOE=∠AOB+∠BOC+∠COD+∠DOE160°=2∠AOB+30°+30°,所以∠AOB=50°【解析】【分析】(1)根据角平分线定义和已知条件可得∠AOB=∠BOC=40°,∠COD=∠DOE=30°,由∠BOD=∠BOC+∠COD即可求得答案.(2)根据角平分线定义和已知条件可得∠AOB=∠BOC,∠COD=∠DOE=30°,再由∠AOE=∠AOB+∠BOC+∠COD+∠DOE即求得答案.6.如图1,射线OC在的内部,图中共有3个角:、和,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是的“定分线”(1)一个角的平分线________这个角的“定分线”;填“是”或“不是”(2)如图2,若,且射线PQ是的“定分线”,则 ________ 用含a的代数式表示出所有可能的结果(3)如图2,若,且射线PQ绕点P从PN位置开始,以每秒的速度逆时针旋转,当PQ与PN成时停止旋转,旋转的时间为t秒同时射线PM绕点P以每秒的速度逆时针旋转,并与PQ同时停止当PQ是的“定分线”时,求t的值. 【答案】(1)是(2)或或(3)解:依题意有三种情况:①10t= (5t+45),解得t=1.8(秒);②10t= (5t+45),解得t=3(秒);③10t= (5t+45),解得:t=4.5(秒),故t为1.8秒或3秒或4.5秒时,PQ是∠MPN的“定分线”【解析】【解答】解:(1)当OC是角∠AOB的平分线时,∵∠AOB=2∠AOC,∴一个角的平分线是这个角的“定分线”;故答案为:是( 2 )∵∠MPN=∴∠MPQ= 或或;故答案为:或或.【分析】(1)根据新定义运算及角平分线的定义即可解决问题;(2)根据新定义及三个角之间的两两的倍数关系即可解决问题;(3)根据新定义及旋转中角的倍数关系,分三种情况分别列出方程,求解即可.7.我们学过角的平分线的概念类比给出新概念:从一个角的顶点出发把这个角分成1:2的两个角的射线,叫做这个角的三分线显然,一个角的三分线有两条,例如:如图1,若∠BOC=2∠AOC,则OC是∠AOB的一条三分线。

成都高新世纪城南路学校七年级上册数学 压轴题 期末复习试题及答案解答

成都高新世纪城南路学校七年级上册数学 压轴题 期末复习试题及答案解答

成都高新世纪城南路学校七年级上册数学 压轴题 期末复习试题及答案解答一、压轴题1.已知数轴上,点A 和点B 分别位于原点O 两侧,AB=14,点A 对应的数为a ,点B 对应的数为b.(1) 若b =-4,则a 的值为__________. (2) 若OA =3OB ,求a 的值.(3) 点C 为数轴上一点,对应的数为c .若O 为AC 的中点,OB =3BC ,直接写出所有满足条件的c 的值.2.如图,在数轴上的A 1,A 2,A 3,A 4,……A 20,这20个点所表示的数分别是a 1,a 2,a 3,a 4,……a 20.若A 1A 2=A 2A 3=……=A 19A 20,且a 3=20,|a 1﹣a 4|=12.(1)线段A 3A 4的长度= ;a 2= ; (2)若|a 1﹣x |=a 2+a 4,求x 的值;(3)线段MN 从O 点出发向右运动,当线段MN 与线段A 1A 20开始有重叠部分到完全没有重叠部分经历了9秒.若线段MN =5,求线段MN 的运动速度. 3.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯. ()1观察发现()1n n 1=+______;()1111122334n n 1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m ,记2个数的和为1a ;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a ;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a ;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a ;⋯⋯如此进行了n 次.n a =①______(用含m 、n 的代数式表示);②当na6188=时,求123n1111a a a a+++⋯⋯+的值.4.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m和数n的两点之间的距离等于∣m-n∣.直接应用:表示数a和2的两点之间的距离等于____,表示数a和-4的两点之间的距离等于____;灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____;(3)若∣a-2∣+∣a+4∣=10,则a =______;实际应用:已知数轴上有A、B、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A、C两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。

成都高新世纪城南路学校数学几何图形初步中考真题汇编[解析版]

成都高新世纪城南路学校数学几何图形初步中考真题汇编[解析版]

一、初一数学几何模型部分解答题压轴题精选(难)1.如图AB∥CD,点H在CD上,点E、F在AB上,点G在AB、CD之间,连接FG、GH、HE,HG⊥HE,垂足为H,FG⊥HG,垂足为G.(1)求证:∠EHC+∠GFE=180°.(2)如图2,HM平分∠CHG,交AB于点M,GK平分∠FGH,交HM于点K,求证:∠GHD=2∠EHM.(3)如图3,EP平分∠FEH,交HM于点N,交GK于点P,若∠BFG=50°,求∠NPK的度数. 【答案】(1)解:∵HG⊥HE,FG⊥HG∴FG∥EH,∴∠GFE+∠HEF=180°,∵AB∥CD∴∠BEH=∠CHE∴∠EHC+∠GFE=180°(2)解:设∠EHM=x,∵HG⊥HE,∴∠GHK=90°-x,∵MH平分∠CHG,∴∠EHC=90°-2x,∵AB∥CD∴∠HMB=90°-x,∴∠HMB=∠MHG=90°-x,∵AB∥CD,∴∠BMH+∠DHM=180°,即∠BMH+∠GHM+∠GHD =180°,∴90°-x+90°-x+∠GHD =180°,解得,∠GHD =2x,∴∠GHD=2∠EHM;(3)解:延长FG,GK,交CD于R,交HE于S,如图,∵AB∥CD,∠BFG=50°∴∠HRG=50°∵FG⊥HG,∴∠GHR=40°,∵HG⊥HE,∴∠EHG=90°,∴∠CHE=180°-90°-40°=50°,∵AB∥CD,∴∠FEH=∠CHE=50°,∵EP是∠HEF的平分线,∴∠SEP= ∠FEH=25°,∵GH平分∠HGF,∴∠HGS= ∠HGF=45°,∴∠HSG=45°,∵∠SEP+∠SPE=∠HSP=45°,∴∠EPS=20°,即∠NPK=20°.【解析】【分析】(1)根据HG⊥HE,FG⊥HG可证明FG∥EH,从而得∠GFE+∠HEF=180°,再根据AB∥CD可得∠BEH=∠CHE,进而可得结论;(2)设∠EHM=x,根据MH是∠CHG的平分线可得∠MHG=90°-x,∠EHC=90°-2x,根据平行线的性质得∠HMB=90°-x,从而得∠HMB=∠MHG,再由平行线的性质得∠BMH+∠DHM=180°,从而可得结论;(3)分别延长FG,GK,交CD于R,交HE于S,由AB∥CD得∠HRG=50°,由FG⊥HG得∠GHR=40°,由MH平分∠CHG得∠CHE=50°,由AB∥CD得∠MEH=∠CHE=50°,可得∠SEP=25°,最后由三角形的外角可得结论.2.将一副三角板中的两个直角顶点叠放在一起(如图①),其中,, .(1)猜想与的数量关系,并说明理由;(2)若,求的度数;(3)若按住三角板不动,绕顶点转动三角,试探究等于多少度时,并简要说明理由.【答案】(1)解:,理由如下:,(2)解:如图①,设,则,由(1)可得,,,(3)解:分两种情况:①如图1所示,当时,,又,;②如图2所示,当时,,又,.综上所述,等于或时, .【解析】【分析】(1)由∠BCD=∠ACB+∠ACD=90°+∠ACD,即可求出∠BCD+∠ACE的度数.(2)如图①,设∠ACE=a,可得∠BCD=3a,结合(1)可得3a+a=180°,求出a的度数,即得∠BCD的度数.(3)分两种情况讨论,①如图1所示,当AB∥CE时,∠BCE=180°-∠B=120°,②如图2所示,当AB∥CE时,∠BCE=∠B=60°,分别求出∠BCD的度数即可.3.感知:如图①,∠ACD为△ABC的外角,易得∠ACD=∠A+∠B(不需证明) ;(1)探究:如图②,在四边形ABDC中,试探究∠BDC与∠A、∠B.、∠C之间的关系,并说明理由;(2)应用:如图③,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ 恰好经过点B、C,若∠A=50°,则∠ABX+∠ACX=________度;(直接填答案,不需证明) (3)拓展:如图④,BE平分∠ABD,CE平分∠ACD,若∠BAC=100°,∠BDC=150°,则∠BEC=________度. (直接填答案,不需证明)【答案】(1)解:如图5,连接AD并延长至点F.∵∠BDF为△ABD的外角,∴∠BDF=∠BAD+∠B,同理可得∠CDF=∠CAD+∠C,∴∠BDF+∠CDF=∠BAD+∠B+∠CAD+∠C,即∠BDC=∠BAC+∠B+∠C;(2)40°(3)125°【解析】【解答】解:(2)由题意可得∠BXC=90°,由(1)中结论可得∠BXC=∠A+∠ABX+∠ACX,∵∠A=50°,∴∠ABX+∠ACX=90°-50°=40°;(3)如图6,∵∠A=100°,∠BDC=150°,∠BDC=∠A+∠ABD+∠ACD,∴∠ABD+∠ACD=150°-100°=50°,∵BE平分∠ABD,CE平分∠ACD,∴∠ABE+∠ACE= (∠ABD+∠ACD)=25°,又∵∠BEC=∠A+∠ABE+∠ACE,∴∠BEC=100°+25°=125°.【分析】(1)如图5,连接AD并延长至F,然后利用三角形外角的性质进行分析证明即可得到∠BDC=∠BAC+∠B+∠C;(2)由题意可知∠BXC=90°,结合∠A=50°和(1)中所得结论即可得到∠ABX+∠ACX=90°-50°=40°;(3)如图6,利用(1)中所得结论结合已知条件进行分析解答即可.4.如图,点C在∠AOB的边OA上,过点C的直线DE∥OB,CF平分∠ACD,CG⊥CF于C.(1)若∠O=40°,求∠ECF的度数;(2)试说明CG平分∠OCD;(3)当∠O为多少度时,CD平分∠OCF?并说明理由.【答案】(1)解:∵DE//OB ,∴∠O=∠ACE,(两直线平行,同位角相等)∵∠O =40°,∴∠ACE =40°,∵∠ACD+∠ACE= (平角定义)∴∠ACD=又∵CF平分∠ACD ,∴ (角平分线定义)∴∠ECF=(2)证明:∵CG⊥CF,∴ .∴又∵)∴∵∴ (等角的余角相等)即CG平分∠OCD(3)解:结论:当∠O=60°时,CD平分∠OCF .当∠O=60°时∵DE//OB,∴∠DCO=∠O=60°.∴∠ACD=120°.又∵CF平分∠ACD∴∠DCF=60°,∴即CD平分∠OCF【解析】【分析】(1)根据平行线“两直线平行,同位角相等”,求得∠ACE=40°,根据平角的定义以及CF平分∠ACD ,可得到∠ACF=70°,然后求出∠ECF的度数;(2)根据∠DCG+∠DCF=90°,∠GCO+∠FCA=90°,以及∠ACF=∠DCF,可得到∠GCO =∠GCD,即可证明CG平分∠OCD;(3)根据两直线平行,内错角相等得出∠DCO=∠O=60°,根据角平分线可得到∠DCF=60°,以此可得∠DCO=∠DCF,即CD平分∠OCF.5.如图,BE平分∠ABC,∠ABC=2∠E,∠ADE+∠BCF=180°.(1)请说明AB∥EF的理由;(2)若AF平分∠BAD,判断AF与BE的位置关系,并说明理由.【答案】(1)证明:∵BE平分∠ABC,∴∠ABE= ∠ABC.又∵∠ABC=2∠E,即∠E= ∠ABC,∴∠E=∠ABE.∴AB∥EF(2)解:结论:AF⊥BE.理由:∵∠ADE+∠ADF=180°,∠ADE+∠BCF=180°,∴∠ADF=∠BCF,∴AD∥BC;∴∠DAB+∠CBA=180°,∵∠OAB= DAB,∠OBA= ∠CBA,∴∠OAB+∠OBA=90°,∴∠AOB=90°,∴AF⊥BE【解析】【分析】(1)由BE平分∠ABC,得∠ABE=∠ABC,结合∠ABC=2∠E,得∠E=∠ABC,等量代换得∠E=∠ABE,则内错角相等两直线平行,AB平行EF;(2)由同角的补角相等得∠ADF=∠BCF,则同位角相等两直线平行,AD∥BC,由于∠DAB和∠CBA是同旁内角,得∠DAB+∠CBA=180°,由于∠OAB和∠OBA分别是∠DAB和∠CBA的一半,则∠OAB和∠OBA之和为90°,即AF⊥BE。

成都高新世纪城南路学校数学一元一次方程中考真题汇编[解析版]

成都高新世纪城南路学校数学一元一次方程中考真题汇编[解析版]
2.如图,已知点 A 在数轴上对应的数为 a,点 B 对应的数为 b,且 a、b 满足|a+3|+(b﹣ 2)2=0.
(1)求 A、B 两点的对应的数 a、b;
(2)点 C 在数轴上对应的数为 x,且 x 是方程 2x+1= x﹣8 的解. ①求线段 BC 的长; ②在数轴上是否存在点 P,使 PA+PB=BC?求出点 P 对应的数;若不存在,说明理由. 【答案】 (1)解:∵ |a+3|+(b﹣2)2=0, ∴ a+3=0,b﹣2=0, 解得,a=﹣3,b=2, 即点 A 表示的数是﹣3,点 B 表示的数是 2 。
价,乙种手机加价 40%作为标价.
从 A,B 两种中任选一题作答:
A:在实际出售时,若同时购买甲,乙手机各一部打九折销售,此时经销商可获利 1570 元.
求甲,乙两种手机每部的进价.
B:经销商采购甲种手机的数量是乙种手机数量的 1.5 倍.由于性能良好,因此在按标价进行
销售的情况下,乙种手机很快售完,接着甲种手机的最后 10 部按标价的八折全部售完.在
这次销售中,经销商获得的利润率为 42.5%.求甲,乙两种手机每部的进价.
【答案】 (1)解:设购进甲种手机 部,乙种手机
部,
根据题意,得 解得:
元 设每部甲种手机的进价为 元,每部乙种手机的进价 根据题意,得
元,
解得:
答:求甲,乙两种手机每部的进价分别为:3000 元,2000 元.
B:乙种手机:
部,甲种手机
部,
设每部甲种手机的进价为 元,每部乙种手机的进价
元,
根据题意,得
解得:
答:求甲,乙两种手机每部的进价分别为:2000 元,3000 元. 【解析】【分析】(1)甲的单价乘以部数加上乙的单价乘以部数等于总数,根据题意列 出,然后解方程得到结果。(2)A 根据进价加利润等于甲和乙的售价,列出方程 B 先求出甲 乙的部数,表示出甲乙的标价,列出关系式,50 部甲×甲的标价+10 部甲×甲标价的八折 +40 部乙×乙的标价=利润率乘以成本,即可解出结果。

2021-2022学年成都市高新区新城学校中考数学押题试卷含解析

2021-2022学年成都市高新区新城学校中考数学押题试卷含解析

2021-2022学年成都市高新区新城学校中考数学押题试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.二元一次方程组632x yx y+=⎧⎨-=-⎩的解是()A.51xy=⎧⎨=⎩B.42xy=⎧⎨=⎩C.51xy=-⎧⎨=-⎩D.42xy=-⎧⎨=-⎩2.若x是2的相反数,|y|=3,则12y x-的值是()A.﹣2 B.4 C.2或﹣4 D.﹣2或43.如图,矩形ABCD中,AD=2,AB=3,过点A,C作相距为2的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是()A.5B.136C.1 D.564.正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为()A.30°B.60°C.120°D.180°5.如图,Rt△ABC中,∠C=90°,AC=4,BC=43,两等圆⊙A,⊙B外切,那么图中两个扇形(即阴影部分)的面积之和为()A.2πB.4πC.6πD.8π6.下列所给函数中,y随x的增大而减小的是()A.y=﹣x﹣1 B.y=2x2(x≥0)C.2yx=D.y=x+17.制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元8.为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是()A.0.1 B.0.2C.0.3 D.0.49.一元二次方程x2+x﹣2=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根10.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()A.52°B.38°C.42°D.60°二、填空题(共7小题,每小题3分,满分21分)11.若关于x的分式方程2122x ax-=-的解为非负数,则a的取值范围是_____.12.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1500人,则据此估计步行的有_____.13.在平面直角坐标系中,将点A(﹣3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是_____.14.如图:图象①②③均是以P0为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P1P2P3,第二次移动后图形①②③的圆心依次为P4P5P6…,依此规律,P0P2018=_____个单位长度.15.计算两个两位数的积,这两个数的十位上的数字相同,个位上的数字之和等于1.53×57=3021,38×32=1216,84×86=7224,71×79=2.(1)你发现上面每个数的积的规律是:十位数字乘以十位数字加一的积作为结果的千位和百位,两个个位数字相乘的积作为结果的,请写出一个符合上述规律的算式.(2)设其中一个数的十位数字为a,个位数字为b,请用含a,b的算式表示这个规律.16.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.17364-______________.三、解答题(共7小题,满分69分)18.(10分)已知关于x的分式方程11mx+-=2①和一元二次方程mx2﹣3mx+m﹣1=0②中,m为常数,方程①的根为非负数.(1)求m的取值范围;(2)若方程②有两个整数根x 1、x 2,且m 为整数,求方程②的整数根.19.(5分)如图,矩形ABCD 中,对角线AC ,BD 相交于点O ,且8cm AB =,6cm BC .动点P ,Q 分别从点C ,A 同时出发,运动速度均为lcm/s .点P 沿C D A →→运动,到点A 停止.点Q 沿A O C →→运动,点Q 到点O 停留4s 后继续运动,到点C 停止.连接BP ,BQ ,PQ ,设BPQ 的面积为()2cm y (这里规定:线段是面积为0的三角形),点P 的运动时间为()x s .(1)求线段PD 的长(用含x 的代数式表示);(2)求514x 时,求y 与x 之间的函数解析式,并写出x 的取值范围;(3)当12BDP y S =△时,直接写出x 的取值范围.20.(8分)如图1,在直角梯形ABCD 中,动点P 从B 点出发,沿B→C→D→A 匀速运动,设点P 运动的路程为x ,△ABP 的面积为y ,图象如图2所示.(1)在这个变化中,自变量、因变量分别是 、 ;(2)当点P 运动的路程x =4时,△ABP 的面积为y = ;(3)求AB 的长和梯形ABCD 的面积.21.(10分)水果店老板用600元购进一批水果,很快售完;老板又用1250元购进第二批水果,所购件数是第一批的2倍,但进价比第一批每件多了5元,问第一批水果每件进价多少元?22.(10分)由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y 1(万m³)与干旱持续时间x (天)的关系如图中线段l 1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y 2(万m³)与时间(天)的关系如图中线段l 2所示(不考虑其他因素).(1)求原有蓄水量y 1(万m³)与时间(天)的函数关系式,并求当x=20时的水库总蓄水量.(2)求当0≤x≤60时,水库的总蓄水量y 万(万m³)与时间x (天)的函数关系式(注明x 的范围),若总蓄水量不多于900万m³为严重干旱,直接写出发生严重干旱时x 的范围.23.(12分)如图,在△ABC 中,AB =AC ,点D ,E 在BC 边上,AD AE =.求证:BD CE =.24.(14分)为提高城市清雪能力,某区增加了机械清雪设备,现在平均每天比原来多清雪300立方米,现在清雪4 000立方米所需时间与原来清雪3 000立方米所需时间相同,求现在平均每天清雪量.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】利用加减消元法解二元一次方程组即可得出答案【详解】解:①﹣②得到y =2,把y =2代入①得到x =4,∴42x y =⎧⎨=⎩, 故选:B .【点睛】此题考查了解二元一次方程组,解方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.2、D【解析】直接利用相反数以及绝对值的定义得出x,y的值,进而得出答案.【详解】解:∵x是1的相反数,|y|=3,∴x=-1,y=±3,∴y-12x=4或-1.故选D.【点睛】此题主要考查了有理数的混合运算,正确得出x,y的值是解题关键.3、D【解析】过F作FH⊥AE于H,根据矩形的性质得到AB=CD,AB//CD,推出四边形AECF是平行四边形,根据平行四边形的性质得到AF=CE,根据相似三角形的性质得到AE ADAF FH=,于是得到AE=AF,列方程即可得到结论.【详解】解:如图:解:过F作FH⊥AE于H,四边形ABCD是矩形,∴AB=CD,AB∥CD,AE//CF, ∴四边形AECF是平行四边形,∴AF=CE,∴DE=BF,∴AF=3-DE,∴24DE+∠FHA=∠D=∠DAF=90o,∴∠AFH+∠HAF=∠DAE+∠FAH=90, ∴∠DAE=∠AFH, ∴△ADE~△AFH,∴AE AD AF FH=∴AE=AF,∴3DE=-,∴DE=5 6 ,故选D.【点睛】本题主要考查平行四边形的性质及三角形相似,做合适的辅助线是解本题的关键.4、C【解析】求出正三角形的中心角即可得解【详解】正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为120°,故选C.【点睛】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角,掌握正多边形的中心角的求解是解题的关键5、B【解析】先依据勾股定理求得AB的长,从而可求得两圆的半径为4,然后由∠A+∠B=90°可知阴影部分的面积等于一个圆的面积的14.【详解】在△ABC中,依据勾股定理可知,∵两等圆⊙A,⊙B外切,∴两圆的半径均为4,∵∠A+∠B=90°,∴阴影部分的面积=2904360π⨯=4π.故选:B.【点睛】本题主要考查的是相切两圆的性质、勾股定理的应用、扇形面积的计算,求得两个扇形的半径和圆心角之和是解题的关键.6、A【解析】根据二次函数的性质、一次函数的性质及反比例函数的性质判断出函数符合y随x的增大而减小的选项.【详解】解:A.此函数为一次函数,y随x的增大而减小,正确;B.此函数为二次函数,当x<0时,y随x的增大而减小,错误;C.此函数为反比例函数,在每个象限,y随x的增大而减小,错误;D.此函数为一次函数,y随x的增大而增大,错误.故选A.【点睛】本题考查了二次函数、一次函数、反比例函数的性质,掌握函数的增减性是解决问题的关键.7、C【解析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.【详解】3m×2m=6m2,∴长方形广告牌的成本是120÷6=20元/m2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m2,∴扩大后长方形广告牌的成本是54×20=1080元,故选C.【点睛】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.8、B【解析】∵在5.5~6.5组别的频数是8,总数是40,∴=0.1.故选B.9、A【解析】∵∆=12-4×1×(-2)=9>0,∴方程有两个不相等的实数根.故选A.点睛:本题考查了一元二次方程ax 2+bx +c =0(a≠0)的根的判别式△=b 2﹣4ac :当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.10、A【解析】试题分析:如图:∵∠3=∠2=38°°(两直线平行同位角相等),∴∠1=90°﹣∠3=52°,故选A .考点:平行线的性质.二、填空题(共7小题,每小题3分,满分21分)11、1a ≥-且2a ≠【解析】分式方程去分母得:2(2x -a )=x -2,去括号移项合并得:3x =2a -2, 解得:223a x -=, ∵分式方程的解为非负数,∴ 2203a -≥且 22203a --≠, 解得:a ≥1 且a ≠4 .12、1【解析】 ∵骑车的学生所占的百分比是126360×100%=35%, ∴步行的学生所占的百分比是1﹣10%﹣15%﹣35%=40%,∴若该校共有学生1500人,则据此估计步行的有1500×40%=1(人),故答案为1.13、(0,0)【解析】根据坐标的平移规律解答即可.【详解】将点A(-3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是(-3+3,2-2),即(0,0),故答案为(0,0).【点睛】此题主要考查坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.14、1【解析】根据P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P0P7=3,P0P8=3,P0P9=3;可知每移动一次,圆心离中心的距离增加1个单位,依据2018=3×672+2,即可得到点P2018在正南方向上,P0P2018=672+1=1.【详解】由图可得,P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P0P7=3,P0P8=3,P0P9=3;∵2018=3×672+2,∴点P2018在正南方向上,∴P0P2018=672+1=1,故答案为1.【点睛】本题主要考查了坐标与图形变化,应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.15、(1)十位和个位,44×46=2024;(2) 10a(a+1)+b(1﹣b)【解析】分析:(1)、根据题意得出其一般性的规律,从而得出答案;(2)、利用代数式表示出其一般规律得出答案.详解:(1)由已知等式知,每个数的积的规律是:十位数字乘以十位数字加一的积作为结果的千位和百位,两个个位数字相乘的积作为结果的十位和个位,例如:44×46=2024,(2)(1a+b)(1a+1﹣b)=10a(a+1)+b(1﹣b).点睛:本题主要考查的是规律的发现与整理,属于基础题型.找出一般性的规律是解决这个问题的关键.16、54【解析】试题解析:由主视图可知,搭成的几何体有三层,且有4列;由左视图可知,搭成的几何体共有3行;第一层有7个正方体,第二层有2个正方体,第三层有1个正方体,共有10个正方体,∵搭在这个几何体的基础上添加相同大小的小正方体,以搭成一个大正方体,∴搭成的大正方体的共有4×4×4=64个小正方体,∴至少还需要64-10=54个小正方体.【点睛】先由主视图、左视图、俯视图求出原来的几何体共有10个正方体,再根据搭成的大正方体的共有4×4×4=64个小正方体,即可得出答案.本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,关键是求出搭成的大正方体共有多少个小正方体.17、-1【解析】-1.故答案为:-1.三、解答题(共7小题,满分69分)18、(1)3m ≥-且1m ≠-,0m ≠;(2)当m=1时,方程的整数根为0和3.【解析】(1)先解出分式方程①的解,根据分式的意义和方程①的根为非负数得出m 的取值;(2)根据根与系数的关系得到x 1+x 2=3,12111m x x m m -⋅==-,根据方程的两个根都是整数可得m =1或1-.结合(1)的结论可知m =1.解方程即可.【详解】解:(1)∵关于x 的分式方程121m x +=-的根为非负数, ∴0x ≥且1x ≠. 又∵302m x +=≥,且312m +≠, ∴解得3m ≥-且1m ≠-.又∵方程2310mx mx m -+-=为一元二次方程,∴0m ≠.综上可得:3m ≥-且1m ≠-,0m ≠.(2)∵一元二次方程2310mx mx m -+-=有两个整数根x 1、x 2,m 为整数,∴x 1+x 2=3,12111m x x m m -⋅==-, ∴11m-为整数,∴m =1或1-. 又∵3m ≥-且1m ≠-,0m ≠,∴m =1.当m =1时,原方程可化为230x x -=.解得:10x =,23x =.∴当m =1时,方程的整数根为0和3.【点睛】考查了解分式方程,一元二次方程根与系数的关系,解一元二次方程等,熟练掌握方程的解法是解题的关键.19、(1)当0<x≤1时,PD=1-x ,当1<x≤14时,PD=x-1.(2)y=2312(58)2216(89)24888(914)55x x x x x x x ⎧-+≤≤⎪⎪-<≤⎨⎪⎪-+-<≤⎩;(3)5≤x≤9【解析】(1)分点P 在线段CD 或在线段AD 上两种情形分别求解即可.(2)分三种情形:①当5≤x≤1时,如图1中,根据y=12S △DPB ,求解即可.②当1<x≤9时,如图2中,根据y=12S △DPB ,求解即可.③9<x≤14时,如图3中,根据y=S △APQ +S △ABQ -S △PAB 计算即可.(3)根据(2)中结论即可判断.【详解】解:(1)当0<x≤1时,PD=1-x ,当1<x≤14时,PD=x-1.(2)①当5≤x≤1时,如图1中,∵四边形ABCD 是矩形,∴OD=OB ,∴y=12S △DPB =12×12•(1-x )•6=32(1-x )=12-32x .②当1<x≤9时,如图2中,y=12S △DPB =12×12(x-1)×1=2x-2.③9<x≤14时,如图3中,y=S △APQ +S △ABQ -S △PAB =12•(14-x )•45(x-4)+12×1×35(tx-4)-12×1×(14-x )=-25x 2+485x-11.综上所述,y=2312(58)2216(89)24888(914)55x x x x x x x ⎧-+≤≤⎪⎪-<≤⎨⎪⎪-+-<≤⎩.(3)由(2)可知:当5≤x≤9时,y=12S △BDP . 【点睛】本题属于四边形综合题,考查了矩形的性质,三角形的面积等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.20、(1)x ,y ;(2)2;(3)AB =8,梯形ABCD 的面积=1.【解析】(1)依据点P 运动的路程为x ,△ABP 的面积为y ,即可得到自变量和因变量;(2)依据函数图象,即可得到点P运动的路程x=4时,△ABP的面积;(3)根据图象得出BC的长,以及此时三角形ABP面积,利用三角形面积公式求出AB的长即可;由函数图象得出DC的长,利用梯形面积公式求出梯形ABCD面积即可.【详解】(1)∵点P运动的路程为x,△ABP的面积为y,∴自变量为x,因变量为y.故答案为x,y;(2)由图可得:当点P运动的路程x=4时,△ABP的面积为y=2.故答案为2;(3)根据图象得:BC=4,此时△ABP为2,∴12AB•BC=2,即12×AB×4=2,解得:AB=8;由图象得:DC=9﹣4=5,则S梯形ABCD=12×BC×(DC+AB)=12×4×(5+8)=1.【点睛】本题考查了动点问题的函数图象,弄清函数图象上的信息是解答本题的关键.21、120【解析】设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,根据用1250元所购件数是第一批的2倍,列方程求解.【详解】解:设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,由题意得,×2=,解得:x=120,经检验:x=120是原分式方程的解,且符合题意.答:第一批水果每件进价为120元.【点睛】本题考查了分式方程的应用,解题的关键是熟练的掌握分式方程的应用.22、(1)y1=-20x+1200,800;(2)15≤x≤40.【解析】(1)根据图中的已知点用待定系数法求出一次函数解析式(2)设y2=kx+b,把(20,0)和(60,1000)代入求出解析式,在已知范围内求出解即可.【详解】解:(1)设y 1=kx+b ,把(0,1200)和(60,0)代入得1200600b k b =⎧⎨+=⎩解得201200k b =-⎧⎨=⎩,所以y 1=-20x+1200,当x=20时,y 1=-20×20+1200=800,(2)设y 2=kx+b ,把(20,0)和(60,1000)代入得200601000k b k b +=⎧⎨+=⎩则25500k b =⎧⎨=-⎩,所以y 2=25x-500,当0≤x≤20时,y=-20x+1200,当20<x≤60时,y=y 1+y 2=-20x+1200+25x-500=5x+700,由题意2012009005700900x x -+≤⎧⎨+≤⎩ 解得该不等式组的解集为15≤x≤40所以发生严重干旱时x 的范围为15≤x≤40.【点睛】此题重点考察学生对一次函数和一元一次不等式的实际应用能力,掌握一次函数和一元一次不等式的解法是解题的关键.23、见解析【解析】试题分析:证明△ABE ≌△ACD 即可.试题解析:法1:∵AB =AC,∴∠B =∠C,∵AD =CE,∴∠ADE =∠AED,∴△ABE ≌△ACD,∴BE =CD ,∴BD =CE,法2:如图,作AF ⊥BC 于F ,∵AB =AC,∴BF =CF ,∵AD =AE,∴DF =EF ,∴BF -DF =CF -EF ,即BD=CE.24、现在平均每天清雪量为1立方米.【解析】分析:设现在平均每天清雪量为x立方米,根据等量关系“现在清雪4 000立方米所需时间与原来清雪3 000立方米所需时间相同”列分式方程求解.详解:设现在平均每天清雪量为x立方米,由题意,得40003000300 x x=-解得x=1.经检验x=1是原方程的解,并符合题意.答:现在平均每天清雪量为1立方米.点睛:此题主要考查了分式方程的应用,关键是确定问题的等量关系,注意解分式方程的时候要进行检验.。

成都高新世纪城南路学校数学全等三角形中考真题汇编[解析版]

成都高新世纪城南路学校数学全等三角形中考真题汇编[解析版]

成都高新世纪城南路学校数学全等三角形中考真题汇编[解析版]一、八年级数学轴对称三角形填空题(难)1.在平面直角坐标系xOy中,已知点A(2,3),在x轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有_____个.【答案】4【解析】【分析】以O为圆心,OA为半径画弧交x轴于点P1、P3,以A为圆心,AO为半径画弧交x轴于点P4,作OA的垂直平分线交x轴于P2.【详解】解:如图,使△AOP是等腰三角形的点P有4个.故答案为4.【点睛】本题考查了在平面直角坐标系中寻找等腰三角形,掌握两圆一线找等腰三角形是解题的关键.2.如图,已知△ABC和△ADE都是正三角形,连接CE、BD、AF,BF=4,CF=7,求AF的长_________ .【答案】3【解析】【分析】过点A作AF⊥CE交于I,AG⊥BD交于J,证明CAE≅BAD,再证明CAI≅BAJ,求出°7830∠=∠=,然后求出12IF FJ AF==,,通过设FJ x=求出x,即可求出AF的长.【详解】解:过点A作AF⊥CE交于I,AG⊥BD交于J在CAE和BAD中AC ABCAE BADAE AD=⎧⎪∠=∠⎨⎪=⎩∴CAE≅BAD∴ICA ABJ∠=∠∴BFE CAB∠=∠(8字形)∴°120CFD∠=在CAI和BAJ中°90ICA ABJCAI BJACA BA∠=∠⎧⎪∠=∠=⎨⎪=⎩∴CAI≅BAJ,AI AJ CI BJ==∴°60CFA AFJ∠=∠=∴°30FAI FAE∠=∠=在RtAIF 和RtAJF 中°30FAI FAE ∠=∠=∴12IF FJ AF ==设FJ x = 7,4CF BF ==则47x x +=-32x ∴=2AF FJ =AF ∴=3【点睛】此题主要考查了通过做辅助线证明三角形全等,得出相关的边相等,学会合理添加辅助线求解是解决本题的重点.3.如图,线段AB ,DE 的垂直平分线交于点C ,且72ABC EDC ∠=∠=︒,92AEB ∠=︒,则EBD ∠的度数为 ________ .【答案】128︒【解析】【分析】连接CE ,由线段AB ,DE 的垂直平分线交于点C ,得CA=CB ,CE=CD ,ACB=∠ECD=36°,进而得∠ACE=∠BCD ,易证∆ACE ≅∆BCD ,设∠AEC=∠BDC=x ,得则∠BDE=72°-x ,∠CEB=92°-x ,BDE 中,∠EBD=128°,根据三角形内角和定理,即可得到答案.【详解】连接CE,∵线段AB,DE的垂直平分线交于点C,∴CA=CB,CE=CD,∵72ABC EDC∠=∠=︒=∠DEC,∴∠ACB=∠ECD=36°,∴∠ACE=∠BCD,在∆ACE与∆BCD中,∵CA CBACE BCDCE CD=⎧⎪∠=∠⎨⎪=⎩,∴∆ACE≅∆BCD(SAS),∴∠AEC=∠BDC,设∠AEC=∠BDC=x,则∠BDE=72°-x,∠CEB=92°-x,∴∠BED=∠DEC-∠CEB=72°-(92°-x)=x-20°,∴在∆BDE中,∠EBD=180°-(72°-x)-(x-20°)=128°.故答案是:128︒.【点睛】本题主要考查中垂线的性质,三角形全等的判定和性质定理以及三角形内角和定理,添加辅助线,构造全等三角形,是解题的关键.4.如图,在△ABC中,AB的中垂线交BC于D,AC的中垂线交BC于E,若∠BAC=126°,则∠EAD=_____°.【答案】72°【解析】【分析】根据AB 的中垂线可得BAD ∠,再根据AC 的中垂线可得EAC ∠,再结合∠BAC=126°即可计算出∠EAD . 【详解】根据AB 的中垂线可得BAD ∠=B根据AC 的中垂线可得EAC ∠=C ∠18012654B C ︒︒︒∠+∠=-=又 126BAD DAE EAC BAC ︒∠+∠+∠=∠=+C+126B DAE ︒∴∠∠∠=72DAE ︒∴∠=【点睛】本题主要考查中垂线的性质,重点在于等量替换表示角度.5.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC 交AB 于E ,交AC 于F ,过点O 作OD AC ⊥于D 下列结论:①EF BE CF =+;②点O 到ABC ∆各边的距离相等;③1902BOC A ∠=+∠;④设OD m =,AE AF n +=,则AEF S mn ∆=;⑤1()2AD AB AC BC =+-.其中正确的结论是.__________.【答案】①②③⑤【解析】【分析】由在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,根据角平分线的定义与三角形内角和定理,即可求得③∠BOC =90°+12∠A 正确;由平行线的性质和角平分线的定义得出△BEO和△CFO是等腰三角形得出EF=BE+CF故①正确;由角平分线的性质得出点O到△ABC各边的距离相等,故②正确;由角平分线定理与三角形面积的求解方法,即可求得④设OD=m,AE+AF=n,则S△AEF=12mn,故④错误,根据HL证明△AMO≌△ADO得到AM=AD,同理可证BM=BN,CD=CN,变形即可得到⑤正确.【详解】∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°﹣12∠A,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+12∠A;故③正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF.∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA.∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,∴S△AEF=S△AOE+S△AOF=12AE•OM+12AF•OD=12OD•(AE+AF)=12mn;故④错误;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,故②正确;∵AO=AO,MO=DO,∴△AMO≌△ADO(HL),∴AM=AD;同理可证:BM=BN,CD=CN.∵AM+BM=AB,AD+CD=AC,BN+CN=BC,∴AD=12(AB+AC﹣BC)故⑤正确.故答案为:①②③⑤.【点睛】本题考查了角平分线的定义与性质,等腰三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用.6.如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的垂直平分线上;④S△DAC:S△ABC=1:3.其中正确的是__________________.(填所有正确说法的序号)【答案】4【解析】【分析】①连接NP,MP,根据SSS定理可得△ANP≌△AMP,故可得出结论;②先根据三角形内角和定理求出∠CAB的度数,再由AD是∠BAC的平分线得出∠1=∠2=30°,根据直角三角形的性质可知∠ADC=60°;③根据∠1=∠B可知AD=BD,故可得出结论;④先根据直角三角形的性质得出∠2=30°,CD=12AD,再由三角形的面积公式即可得出结论.【详解】①连接NP,MP.在△ANP与△AMP中,∵AN AMNP MPAP AP=⎧⎪=⎨⎪=⎩,∴△ANP≌△AMP,则∠CAD=∠BAD,故AD是∠BAC的平分线,故此选项正确;②∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.∵AD是∠BAC的平分线,∴∠1=∠2=12∠CAB=30°,∴∠3=90°﹣∠2=60°,∴∠ADC=60°,故此选项正确;③∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上,故此选项正确;④∵在Rt△ACD中,∠2=30°,∴CD=12AD,∴BC=BD+CD=AD+12AD=32AD,S△DAC=12AC•CD=14AC•AD,∴S △ABC=12AC•BC=12AC•32AD=34AC•AD,∴S△DAC:S△ABC=1:3,故此选项正确.故答案为①②③④.【点睛】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.7.如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC=60°,则当△ABM为直角三角形时,AM的长为______.【答案】7或34【解析】【分析】分三种情况讨论:①当M在AB下方且∠AMB=90°时,②当M在AB上方且∠AMB=90°时,③当∠ABM=90°时,分别根据含30°直角三角形的性质、直角三角形斜边的中线的性质或勾股定理,进行计算求解即可.【详解】如图1,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OB=4,又∵∠AOC=∠BOM=60°,∴△BOM是等边三角形,∴BM=BO=4,∴Rt△ABM中,AM223AB BM如图2,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OA=4,又∵∠AOC=60°,∴△AOM是等边三角形,∴AM=AO=4;如图3,当∠ABM=90°时,∵∠BOM=∠AOC=60°,∴∠BMO=30°,∴MO=2BO=2×4=8,∴Rt△BOM中,BM=22-=43,MO OB∴Rt△ABM中,AM=22+=47.AB BM综上所述,当△ABM为直角三角形时,AM的长为43或47或4.故答案为43或47或4.8.如图,在平面直角坐标系中,点 A,B 的坐标分别是(1,5)、(5,1),若点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有_____________个【答案】5【解析】【分析】分别以A、B为圆心,AB为半径画圆,及作AB的垂直平分线,数出在x轴上的点C的数量即可【详解】解:由图可知:点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有5个故答案为:5【点睛】本题考查了等腰三角形的存在性问题,掌握“两圆一线”找等腰三角形是解题的关键9.如图,∠AOB=45°,点M、点C在射线OA上,点P、点D在射线OB上,且OD=32,则CP+PM+DM的最小值是_____.34【解析】【分析】如图,作点C关于OB的对称点C′,作点D关于OA的对称点D′,连接OC′,PC′,D′M,OD′,C′D′,根据轴对称的性质得到OC′=OC=2,OD′=OD=2,CP=C′P,DM=D′M,∠C′OD=′COD=∠COD′=45°,于是得到CP+PM+MD=C′+PM+D′M≥C′D′,当仅当C′,P,M,D′三点共线时,CP+PM+MD最小为C′D′,作C′T⊥D′O于点T,于是得到结论.【详解】解:如图,作点C关于OB的对称点C′,作点D关于OA的对称点D′,连接OC′,PC ′,D ′M ,OD ′,C ′D ′,则OC ′=OC =2,OD ′=OD =32,CP =C ′P ,DM =D ′M ,∠C ′OD =′COD =∠COD ′=45°,∴CP +PM +MD =C ′+PM +D ′M ≥C ′D ′,当仅当C ′,P ,M ,D ′三点共线时,CP +PM +MD 最小为C ′D ′,作C ′T ⊥D ′O 于点T ,则C ′T =OT =2,∴D ′T =42,∴C ′D ′=34,∴CP +PM +DM 的最小值是34.故答案为:34.【点睛】本题考查了最短路径问题,掌握作轴对称点是解题的关键.10.如图,已知30AOB ∠=︒,点P 在边OA 上,14OD DP ==,点E ,F 在边OB 上,PE PF =.若6EF =,则OF 的长为____.【答案】18【解析】【分析】由30°角我们经常想到作垂线,那么我们可以作DM 垂直于OA 于M ,作PN 垂直于OB 于点N ,证明△PMD ≌△PND ,进而求出DF 长度,从而求出OF 的长度.【详解】如图所示,作DM 垂直于OA 于M ,作PN 垂直于OB 于点N.∵∠AOB=30°,∠DMO=90°,PD=DO=14,∴DM=7,∠NPO=60°,∠DPO=30°,∴∠NPD=∠DPO=30°,∵DP=DP ,∠PND=∠PMD=90°,∴△PND ≌△PMD ,∴ND=7,∵EF=6,∴DF=ND-NF=7-3=4,∴OF=DF+OD=14+4=18.【点睛】本题考查了全等三角形的判定及性质定理,作辅助线构造全等三角形是解题的关键.二、八年级数学轴对称三角形选择题(难)11.如图,在射线OA ,OB 上分别截取11OA OB =,连接11A B ,在11B A ,1B B 上分别截取1212B A B B =,连接22A B ,按此规律作下去,若11A B O α∠=,则1010A B O ∠=( )A .102aB .92aC .20aD .18a 【答案】B【解析】【分析】根据等腰三角形两底角相等用α表示出22A B O ∠,依此类推即可得到结论.解:1212B A B B =,11A B O α∠=,2212A B O α∴∠=, 同理332111222A B O αα∠=⨯=, 44312A B O α∠=, 112n n n A B O α-∴∠=, 101092A B O α∴∠=,故选:B .【点睛】本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键.12.已知:如图,点D ,E 分别在△ABC 的边AC 和BC 上,AE 与BD 相交于点F ,给出下面四个条件:①∠1=∠2;②AD=BE ;③AF=BF ;④DF=EF ,从这四个条件中选取两个,不能判定△ABC 是等腰三角形的是( )A .①②B .①④C .②③D .③④【答案】C【解析】【分析】 根据全等三角形的判定和性质以及等腰三角形的判定进行判断即可.【详解】选取①②:在ADF ∆ 和BEF ∆ 中{12AFD BFEAD BEADF BEFAF BFFAB FBACAB CBAAC BC∠=∠=∴∆≅∆∴=∴∠=∠∠=∠∴∠=∠∴=选取①④:在ADF ∆ 和BEF ∆ 中 1=2{12AFD BFEFD FEADF BEFAF BFFAB FBACAB CBAAC BC∠∠∠=∠=∴∆≅∆∴=∴∠=∠∠=∠∴∠=∠∴=选取③④:在ADF ∆ 和BEF ∆ 中 ={12AF BFAFD BFEFD FEADF BEFAF BFFAB FBACAB CBAAC BC∠=∠=∴∆≅∆∴=∴∠=∠∠=∠∴∠=∠∴=故选C.【点睛】本题考查了等腰三角形的性质和判定,全等三角形的性质和判定的应用,关键是熟练地运用定理进行推理,是一道开放性的题目,能培养学生分析问题的能力.13.如图,在△ABC 中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M、N,作直线MN,交BC于点D,连接AD,若△ADC的周长为14,BC=8,则AC 的长为A.5 B.6 C.7 D.8【答案】A【解析】【分析】根据题意可得MN是直线AB的中点,所以可得AD=BD,BC=BD+CD,而△ADC为AC+CD+AD=14,即AC+CD+BD=14,因此可得AC+BC=14,已知BC即可求出AC.【详解】∴=根据题意可得MN是直线AB的中点AD BDAC CD AD++=ADC的周长为14∴++=AC CD BD14=+BC BD CD∴+AC BC=14BD=已知8∴=,故选BAC6【点睛】本题主要考查几何中的等量替换,关键在于MN是直线AB的中点,这样所有的问题就解决了.14.如图,已知一条线段的长度为a,作边长为a的等边三角形的方法是:①画射线AM;②连结AC、BC;③分别以A、B为圆心,以a的长为半径作圆弧,两弧交于点C;④在射线AM上截取AB=a;以上画法正确的顺序是()A.①②③④B.①④③②C.①④②③D.②①④③【答案】B【解析】【分析】根据尺规作等边三角形的过程逐项判断即可解答.【详解】解:已知一条线段的长度为a ,作边长为a 的等边三角形的方法是:①画射线AM ;②在射线AM 上截取AB =a ;③分别以A 、B 为圆心,以a 的长为半径作圆弧,两弧交于点C ;④连结AC 、BC .△ABC 即为所求作的三角形.故选答案为B .【点睛】本题考查了尺规作图和等边三角形的性质,解决本题的关键是理解等边三角形的作图过程.15.如图,已知:30MON ∠=︒,点1A 、2A 、3A …在射线ON 上,点1B 、2B 、3B …在射线OM 上,112A B A △、223A B A △、334A B A △…均为等边三角形,若112OA =,则667A B A 的边长为( )A .6B .12C .16D .32【答案】C【解析】【分析】 先根据等边三角形的各边相等且各角为60°得:∠B 1A 1A 2=60°,A 1B 1=A 1A 2,再利用外角定理求∠OB 1A 1=30°,则∠MON=∠OB 1A 1,由等角对等边得:B 1A 1=OA 1=12,得出△A 1B 1A 2的边长为12,再依次同理得出:△A 2B 2A 3的边长为1,△A 3B 3A 4的边长为2,△A 4B 4A 5的边长为:22=4,△A 5B 5A 6的边长为:23=8,则△A 6B 6A 7的边长为:24=16.【详解】解:∵△A 1B 1A 2为等边三角形,∴∠B 1A 1A 2=60°,A 1B 1=A 1A 2,∵∠MON=30°,∴∠OB 1A 1=60°-30°=30°,∴∠MON=∠OB 1A 1,∴B 1A 1=OA 1=12, ∴△A 1B 1A 2的边长为12, 同理得:∠OB 2A 2=30°, ∴OA 2=A 2B 2=OA 1+A 1A 2=12+12=1, ∴△A 2B 2A 3的边长为1, 同理可得:△A 3B 3A 4的边长为2,△A 4B 4A 5的边长为:22=4,△A 5B 5A 6的边长为:23=8,则△A 6B 6A 7的边长为:24=16.故选:C .【点睛】本题考查等边三角形的性质和外角定理,运用类比的思想,依次求出各等边三角形的边长,解题关键是总结规律,得出结论.16.如图,60AOB ∠=,OC 平分AOB ∠,如果射线OA 上的点E 满足OCE ∆是等腰三角形,那么OEC ∠的度数不可能为( )A .120°B .75°C .60°D .30°【答案】C【解析】【分析】 分别以每个点为顶角的顶点,根据等腰三角形的定义确定∠OEC 是度数即可得到答案.【详解】∵60AOB ∠=,OC 平分AOB ∠,∠AOC=30︒,当OC=CE 时,∠OEC=∠AOC=30︒,当OE=CE 时,∠OEC=180OCE COE ∠∠︒--=120︒,当OC=OE 时,∠OEC=12(180COE ∠︒- )=75︒, ∴∠OEC 的度数不能是60°,故选:C.【点睛】此题考查等腰三角形的定义,角平分线的定义,根据题意正确画出符合题意的图形是解题的关键.17.如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN=x,CN=n,则以x,m,n为边长的三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.随x,m,n的值而定【答案】C【解析】【分析】将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.想办法证明∠HCN=120°HN=MN=x即可解决问题.【详解】将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°.∵∠MON=30°,∴∠CBH+∠CBN=∠ABM+∠CBN=30°,∴∠NBM=∠NBH.∵BM=BH,BN=BN,∴△NBM≌△NBH,∴MN=NH=x.∵∠BCH=∠A=60°,CH=AM=n,∴∠NCH=120°,∴x,m,n为边长的三角形△NCH是钝角三角形.故选C.【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质、旋转的性质等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考常考题型.18.如图,在平面直角坐标系中,A(a,0),B(0,a),等腰直角三角形ODC的斜边经过点B,OE⊥AC,交AC于E,若OE=2,则△BOD与△AOE的面积之差为()A.2 B.3 C.4 D.5【答案】A【解析】【分析】首先证明△DOB≌△COA(SAS),推出S△DOB﹣S△AOE=S△EOC,再证明△OEC是等腰直角三角形即可解决问题.【详解】∵A(a,0),B(0,a),∴OA=OB.∵△ODC是等腰直角三角形,∴OD=OC,∠D=∠DCO=45°.∵∠DOC=∠BOA=90°,∴∠DOB=∠COA.在△DOB和△COA中,∵OD=OC,∠DOB=∠COA,OB=OA,∴△DOB≌△COA(SAS),∴∠D=∠OCA=45°,S△DOB﹣S△AOE=S△EOC.∵OE⊥AC,∴∠OEC=90°,∴△CEO是等腰直角三角形,∴OE=EC=2,∴S△DOB﹣S△AOE=S△EOC12=⨯2×2=2.故选A.【点睛】本题考查了等腰直角三角形的性质和判定,全等三角形的判定和性质等知识,解题的关键是证明△OEC是等腰直角三角形.19.如图所示,在等边△ABC中,E是AC边的中点,AD是BC边上的中线,P是AD上的动点,若AD=3,则EP+CP的最小值为()A.2 B.3 C.4 D.5【答案】B【解析】由等边三角形的性质得,点B,C关于AD对称,连接BE交AD于点P,则EP+CP=BE最小,又BE=AD,所以EP+CP的最小值是3.故选B.点睛:本题主要考查了等边三角形的性质和轴对称的性质,求一条定直线上的一个动点到定直线的同旁的两个定点的距离的最小值,常用的方法是,①确定两个定点中的一个关于定直线的对称点;②连接另一个定点与对称点,与定直线的交点就是两线段和的值最小时,动点的位置.20.如图,一张长方形纸沿AB对折,以AB中点O为顶点将平角五等分,并沿五等分的折线折叠,再沿CD剪开,使展开后为正五角星(正五边形对角线所构成的图形).则∠OCD 等于()A.108°B.114°C.126°D.129°【答案】C【解析】【分析】按照如图所示的方法折叠,剪开,把相关字母标上,易得∠ODC和∠DOC的度数,利用三角形的内角和定理可得∠OCD的度数.【详解】解:展开如图,五角星的每个角的度数是,180=36°.5∵∠COD=360°÷10=36°,∠ODC=36°÷2=18°,∴∠OCD=180°-36°-18°=126°,故选C.【点睛】本题主要考查轴对称性质,解决本题的关键是能够理解所求的角是五角星的哪个角,解题时可以结合正五边形的性质解决.。

成都高新世纪城南路学校中考数学期末几何综合压轴题模拟汇编

成都高新世纪城南路学校中考数学期末几何综合压轴题模拟汇编

成都高新世纪城南路学校中考数学期末几何综合压轴题模拟汇编一、中考几何压轴题1.定义:有一组邻边相等且对角互补的四边形叫做等补四边形.(问题理解)(1)如图1,点A、B、C在⊙O上,∠ABC的平分线交⊙O于点D,连接AD、CD.求证:四边形ABCD是等补四边形;(拓展探究)(2)如图2,在等补四边形ABCD中,AB=AD,连接AC,AC是否平分∠BCD?请说明理由;(升华运用)(3)如图3,在等补四边形ABCD中,AB=AD,其外角∠EAD的平分线交CD的延长线于点F.若CD=6,DF=2,求AF的长.2.(问题情境)(1)如图1,在矩形ABCD中,将矩形沿AC折叠,点B落在点E处,设AD与CE相交于点F,那么AC与DE的位置关系为.(类比探究)(2)如图2,若四边形ABCD为平行四边形,上述“问题情境”中的条件不变,①猜想AC与DE的位置关系,并证明你的结论;②当∠B与∠ACB满足什么数量关系时,△ABC∽△FEA?请说明理由;(拓展应用)(3)如图3,▱ABCD中,∠B=60°,AB=6,上述“问题情境”中的条件不变,当△AEC是直角三角形时,请直接写出DE的长为.3.将抛物线y=ax2的图像(如图1)绕原点顺时针旋转90度后可得新的抛物线图像(如x.图2),记为C:y2=1a(概念与理解)将抛物线y1=4x2和y2=x2按上述方法操作后可得新的抛物线图像,记为:C1:_____________;C2:____________.(猜想与证明)在平面直角坐标系中,点M(x,0)在x轴正半轴上,过点M作平行于y轴的直线,分别交抛物线C1于点A、B,交抛物线C2于点C、D,如图3所示.(1)填空:当x=1时,ABCD=______;当x=2时,ABCD=_______;(2)猜想:对任意x(x>0)上述结论是否仍然成立?若成立,请证明你的猜想;若不成立,请说明理由.(探究与应用)①利用上面的结论,可得△AOB与△COD面积比为;②若△AOB和△COD中有一个是直角三角形时,求△COD与△AOB面积之差;(联想与拓展)若抛物线C3:y2=mx、C4:y2=nx(0<m<n),M(k,0)在x轴正半轴上,如图所示,过点M作平行于y轴的直线,分别交抛物线C3于点A、B,交抛物线C4于点C、D.过点A 作x轴的平行线交抛物线C4于点E,过点D作x轴的平行线交抛物线C3于点F.对于x轴上任取一点P,均有△PAE与△PDF面积的比值1:3,请直接写出m和n之间满足的等量关系是______.4.随着教育教学改革的不断深入,数学教学如何改革和发展,如何从“重教轻学”向自主学习探索为主的方向发展,是一个值得思考的问题.从数学的产生和发展历程来看分析,不外乎就是三个环节:(观察猜想)-(探究证明)-(拓展延伸).下面同学们从这三个方面试看解决下列问题:已知:如图1所示将一块等腰三角板BMN放置与正方形ABCD的B重含,连接AN、CM,E是AN的中点,连接BE.(观察猜想)(1)CM 与 BE 的数量关系是________,CM 与BE 的位置关系是___________;(探究证明)(2)如图2所示,把三角板 BMN 绕点B 逆时针旋转(090)αα<<,其他条件不变,线段CM 与BE 的关系是否仍然成立,并说明理由;(拓展延伸)(3)若旋转角45α=︒,且2NBE ABE ∠=∠,求BCBN的值. 5.如图,已知ABC 和ADE 均为等腰三角形,AC BC =,DE AE =,将这两个三角形放置在一起.(1)问题发现:如图①,当60ACB AED ∠=∠=︒时,点B 、D 、E 在同一直线上,连接CE ,则线段BD 、CE 之间的数量关系是_________,CEB ∠=_________︒; (2)拓展探究:如图②,当ACB AED α∠=∠=时,点B 、D 、E 不在同一直线上,连接CE ,求出线段BD 、CE 之间的数量关系及BD 、CE 所在直线相交所成的锐角的大小(都用含α的式子表示),并说明理由: (3)解决问题:如图③,90ACB AED ∠=∠=︒,10AC =2AE =CE 、BD ,在AED 绕点A 旋转的过程中,当CE 所在的直线垂直于AD 时,请你直接写出BD 的长. 6.在矩形ABCD 中,ADk AB=(k 为常数),点P 是对角线BD 上一动点(不与B ,D 重合),将射线PA 绕点P 逆时针旋转90°与射线CB 交于点E ,连接AE .(1)特例发现:如图1,当k =1时,将点P 移动到对角线交点处,可发现点E 与点B 重合,则PAPE= ,∠AEP = ;当点P 移动到其它位置时,∠AEP 的大小 (填“改变”或“不变”);(2)类比探究:如图2,若k ≠1时,当k 的值确定时,请探究∠AEP 的大小是否会随着点P 的移动而发生变化,并说明理由;(3)拓展应用:当k ≠1时,如图2,连接PC ,若PC ⊥BD ,//AE PC ,PC =2,求AP 的长.7.(问题探究)(1)如图1,△ABC和△DEC均为等腰直角三角形,∠ACB=∠DCE=90°,点B,D,E在同一直线上,连接AD,BD.①请探究AD与BD之间的位置关系?并加以证明.②若AC=BC=10,DC=CE=2,求线段AD的长.(拓展延伸)(2)如图2,△ABC和△DEC均为直角三角形,∠ACB=∠DCE=90°,AC=21,BC=7,CD=3,CE=1.将△DCE绕点C在平面内顺时针旋转,设旋转角∠BCD为α(0°≤α<360°),作直线BD,连接AD,当点B,D,E在同一直线上时,画出图形,并求线段AD 的长.8.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD,BE之间的数量关系为.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD2,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.9.点E 是矩形ABCD 边AB 延长线上的一动点,在矩形ABCD 外作Rt △ECF ,其中∠ECF =90°,过点F 作FG ⊥BC ,交BC 的延长线于点G ,连接DF ,交CG 于点H .(1)发现:如图1,若AB =AD ,CE =CF ,猜想线段DH 与HF 的数量关系是 ; (2)探究:如图2,若AB =nAD ,CF =nCE ,则(1)中的猜想是否仍然成立?若成立,请给予证明;若不成立,请说明理由.(3)拓展:在(2)的基础上,若射线FC 过AD 的三等分点,AD =3,AB =4,则直接写出线段EF 的长.10.△ABC 中,∠BAC=α°,AB=AC ,D 是BC 上一点,将AD 绕点A 顺时针旋转α°,得到线段AE ,连接BE .(1)(特例感知)如图1,若α=90,则BD+BE 与AB 的数量关系是 .(2)(类比探究)如图2,若α=120,试探究BD+BE 与AB 的数量关系,并证明. (3)(拓展延伸)如图3,若α=120,AB=AC=4,BD=332,Q 为BA 延长线上的一点,将QD 绕点Q 顺时针旋转120°,得到线段QE ,DE ⊥BC ,求AQ 的长.11.将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中90,30C B E ∠=︒∠=∠=︒.(1)操作发现:如图2,固定,ABC 使DEC 绕点C 旋转,设BDC 的面积为1,S AEC 的面积为2,S 当点D 恰好落在AB 边上时,则1S 与2S 的数量关系是 ;(2)猜想论证:当DEC 绕点C 旋转到如图3所示的位置时,小明猜想()1中1S 与2S 的数量关系为相等,并尝试分别作出了BDC 和AEC 中BC CE 、边上的高,DM AN 、请你证明小明的猜想,即证明:12S S .(3)拓展探究:已知60ABC ∠=︒,点D 是角平分线上的一点,,4,//BD CD BE DE AB ==交BC 于点E (如图4).若射线BA 上存在点F ,使DCF BDE S S =△△,请直接写出相应的BF 的长.12.问题提出(1)如图(1),在等边三角形ABC 中,点M 是BC 上的任意一点(不含端点B 、C ),连接AM ,以AM 为边作等边三角形AMN ,连接CN ,则∠ACN = °. 类比探究(2)如图(2),在等边三角形ABC 中,点M 是BC 延长线上的任意一点(不含端点C ),其他条件不变,(1)中的结论还成立吗?请说明理由. 拓展延伸(3)如图(3),在等腰三角形ABC 中,BA =BC ,点M 是BC 上的任意一点(不含端点B 、C ),连接AM ,以AM 为边作等腰三角形AMN ,使AM =MN ,连接CN .添加一个条件,使得∠ABC =∠ACN 仍成立,写出你所添加的条件,并说明理由.13.(性质探究)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,AE 平分∠BAC ,交BC 于点E .作DF ⊥AE 于点H ,分别交AB ,AC 于点F ,G . (1)判断△AFG 的形状并说明理由. (2)求证:BF =2OG . (迁移应用)(3)记△DGO 的面积为S 1,△DBF 的面积为S 2,当1213S S =时,求ADAB的值. (拓展延伸)(4)若DF 交射线AB 于点F ,(性质探究)中的其余条件不变,连结EF ,当△BEF 的面积为矩形ABCD 面积的110时,请直接写出tan ∠BAE 的值.14.问题发现:(1)如图1,ABC 与DCE 同为等边三角形,连接,BD AE 则BD 与AE 的数量关系为________;直线BD 与AE 所夹的锐角为_________;类比探究:(2)BC A △与DCE 同为等腰直角三角形,其他条件同(1),请问(1)中的结论还成立吗?请说明理由;拓展延伸:(3)ABC 中90,30BAC C ∠=︒∠=︒,DE 为ABC ∆的中位线,将CDE △绕点C 逆时针自由旋转,已知2AB =,在自由旋转过程中,当ADE 、、在一条直线上时,请直接写出AD 的值.15.如图,四边形ABCD 是正方形,点O 为对角线AC 的中点.(1)问题解决:如图①,连接BO ,分别取CB ,BO 的中点P ,Q ,连接PQ ,则PQ 与BO 的数量关系是_____,位置关系是____;(2)问题探究:如图②,AO E ∆'是将图①中的AOB ∆绕点A 按顺时针方向旋转45︒得到的三角形,连接CE ,点P ,Q 分别为CE ,BO '的中点,连接PQ ,PB .判断PQB ∆的形状,并证明你的结论;(3)拓展延伸:如图③,AO E ∆'是将图①中的AOB ∆绕点A 按逆时针方向旋转45︒得到的三角形,连接BO ',点P ,Q 分别为CE ,BO '的中点,连接PQ ,PB .若正方形ABCD 的边长为1,求PQB ∆的面积. 16.综合与实践:问题情境:在数学课上,以“等腰直角三角形为主体,以点的对称为基础,探究线段间的变化关系”.如图1,在ABC 中,90ACB ∠=︒,AC BC =,点E 为ACB ∠的角平分线CD 上一动点但不与点C 重合,作点E 关于直线BC 的对称点为F ,连接AE 并延长交CB 延长线于点H ,连接FB 并延长交直线AH 于点G . 探究实践:(1)勤奋小组的同学发现AE BF =,请写出证明; 探究发现:(2)智慧小组在勤奋小组的基础上继续探究,发现线段FG ,EG 与CE 存在数量关系,请写出他们的发现并证明; 探究拓展:(3)如图2,奇异小组的同学在前两个小组探究的基础上,连接GC ,得到三条线段GE ,GC 与GF 存在一定的数量关系,请直接写出.17.(1)观察发现:如图1,在ABC ∆中,AC BC =,90ACB ∠=︒,点D 是ACB ∠的平分线CM 上一点,将线段CD 绕点C 逆时针旋转90°到CE ,连结BE 、BD ,DE 交BC 于F .填空:①线段BD 与BE 的数量关系是_________; ②线段BC 与DE 的位置关系是_________.(2)拓展探究:如图2,在ABC ∆中,AC BC =,ACB α∠=,点D 是边AB 的中点,将CD 绕点C 逆时针旋转α到CE ,连结BE 、DE ,DE 交BC 于F .(1)中的结论是否仍然成立?请说明理由.(3)拓展应用:如图3,在ABC ∆中,AB AC =,60BAC ∠=︒,2BC =,ACB ∠的平分线交AB 于D ,点E 是射线CD 上的一点,将CE 绕点C 顺时针旋转60°到CF ,连结AE 、AF 、EF ,EF 与AC 相交于G ,若以A 、F 、G 为顶点的三角形与ADE ∆全等,直接写出EF 的长.18.(教材呈现)下图是华师版八年级下册教材第89页的部分内容.例6:如图18.2.12,G、H是平行四边形ABCD对角线AC上的两点,且AG=CH,E、F分别是边AB和CD的中点.图18.2.12求证:四边形EHFG是平行四边形.证明:连结EF交AC于点O.∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.又∵E、F分别是AB、CD的中点,∴AE=CF.又∵AB∥CD,∴∠EAO=∠FCO.又∵∠AOE=∠COF,.∴AOE COF请补全上述问题的证明过程.............(探究)如图①,在ABC中,E,O分别是边AB、AC的中点,D、F分别是线段AO、CO△,若四边形DEFG的面积为的中点,连结DE、EF,将DEF绕点O旋转180°得到DGF8,则ABC的面积为.(拓展)如图②,GH是正方形ABCD对角线AC上的两点,且AG=CH,GH=AB,E、F分别是AB和CD的中点.若正方形ABCD的面积为16,则四边形EHFG的面积为.19.定义:如图1,点M、N把线段AB分割成AM、MN和BN,若以AM、MN、BN为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股点.已知点M、N是线段AB 的勾股点,若AM=1,MN=2,则BN =.(1)(类比探究)如图2,DE 是△ABC 的中位线,M 、N 是AB 边的勾股点(AM <MN <NB ),连接 CM 、CN 分别交DE 于点G 、H .求证:G 、H 是线段DE 的勾股点.(2)(知识迁移)如图3,C ,D 是线段AB 的勾股点,以CD 为直径画⊙O ,P 在⊙O 上,AC =CP , 连结PA ,PB ,若∠A =2∠B ,求∠B 的度数.(3)(拓展应用)如图4,点P (a ,b )是反比例函数y =2x (x >0)上的动点,直线2y x =-+与坐标轴分别交于A 、B 两点,过点P 分别向x 、y 轴作垂线,垂足为C 、D ,且交线段AB 于E 、F .证明:E 、F 是线段AB 的勾股点.20.(问题探究)课堂上老师提出了这样的问题:“如图①,在ABC 中,108BAC ∠=︒,点D 是BC 边上的一点,7224BAD BD CD AD ∠=︒==,,,求AC 的长”.某同学做了如下的思考:如图②,过点C 作CE AB ∥,交AD 的延长线于点E ,进而求解,请回答下列问题:(1)ACE ∠=___________度;(2)求AC 的长.(拓展应用)如图③,在四边形ABCD 中,12075BAD ADC ∠=︒∠=︒,,对角线AC BD 、相交于点E ,且AC AB ⊥,22EB ED AE ==,,则BC 的长为_____________.【参考答案】***试卷处理标记,请不要删除一、中考几何压轴题1.(1)见解析;(2) AC 平分∠BCD ,理由见解析;(3) AF =4.【分析】(1)由圆内接四边形互补可知∠A+∠C=180°,∠ABC+∠ADC=180°,再证AD=CD ,即可根据等补四边形的解析:(1)见解析;(2) AC 平分∠BCD ,理由见解析;(3) AF =4.【分析】(1)由圆内接四边形互补可知∠A+∠C=180°,∠ABC+∠ADC=180°,再证AD=CD ,即可根据等补四边形的定义得出结论;(2)过点A 分别作AE ⊥BC 于点E ,AF 垂直CD 的延长线于点F ,证△ABE ≌△ADF ,得到AE=AF ,根据角平分线的判定可得出结论;(3)连接AC ,先证∠EAD=∠BCD ,推出∠FCA=∠FAD ,再证△ACF ∽△DAF ,利用相似三角形对应边的比相等可求出AF 的长.【详解】(1)证明:∵四边形ABCD 为圆内接四边形∴∠A+∠C =180°,∠ABC+∠ADC =180°.∵BD 平分∠ABC∴∠ABD =∠CBD∴弧AD =弧CD∴AD =CD∴四边形ABCD 是等补四边形(2)AC 平分∠BCD ,理由如下:过点A 作AE ⊥BC 于E ,AF ⊥CD 于F 则∠AEB =∠AFD =90°∵四边形ABCD 是等补四边形∴∠ADC+∠B =180°又∵∠ADC+∠ADF =180°∴∠B =∠ADF在△AFD 与△AEB 中ADF B AEB AFD AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AFD ∆≌AEB ∆∴AE AF =∴点A 一定在∠BCD 的平分线上即AC 平分∠BCD.(3)连接AC同(2)理得∠EAD =∠BCD由(2)知AC 平分∠BCD 所以∠FCA =12∠BCD同理∠FAD =12∠EAD∴∠FCA =∠FAD.又∵∠F =∠F∴△FAD ∽△FCA ∴AF CF DF AF = 即2()2(26)16AF DF CF DF DF CF =⋅=+=⨯+=∴AF =4【点睛】本题考查了新定义等补四边形,圆的有关性质,全等三角形的判定与性质,角平分线的判定,相似三角形的判定与性质等,解题关键是要能够通过自主学习来进行探究,运用等. 2.(1)AC//DE ;(2)①AC//DE ;②∠B+3∠ACB =180°,理由见解析;(3)或.【分析】【问题情境】AC//DE ,根据矩形的性质和折叠的性质得出∠EDA =∠3即可;【类比探究】①解析:(1)AC //DE ;(2)①AC //DE ;②∠B +3∠ACB =180°,理由见解析;(3)6333【分析】【问题情境】AC //DE ,根据矩形的性质和折叠的性质得出∠EDA =∠3即可;【类比探究】①AC //DE ,根据平行四边形的性质和折叠的性质得出∠EDA =∠3即可;②由①得∠DAC =∠ACB =∠ACE ,根据三角形外角的性质可得∠AFE =2∠ACB ,若△ABC ∽△FEA ,根据相似三角形的性质可得∠BAC =∠EFA =2∠ACB ,∠B =∠AEC ,根据平行线的性质可得∠B +∠BAD =180°,即∠B +∠BAC +∠DAC =180°,可得出∠B +3∠ACB =180°;【拓展应用】分两种情形:①∠EAC =90°时,如图3﹣1.②如图2,当∠ACE =90°时,分别求解即可.【详解】【问题情境】如图①中,∵矩形ABCD沿AC折叠,∴∠1=∠2,∵AD//BC,∴∠1=∠3,∴∠2=∠3,∴AF=CF,∵AD=BC,BC=CE,∴AD=CE,∴AD﹣AF=CE﹣CF,即EF=DF,∴∠FED=∠FDE,∵∠AFC=∠EFD,∴∠3=∠ADE,∴AC//DE.故答案为:AC//DE;【类比探究】①如图②中,∵沿AC折叠,∴∠ACB=∠ACE,BC=CE,∵AD//BC,∴∠DAC=∠ACB,∴∠DAC=∠ACE,∴FA=FC,∵AD=BC,BC=CE,∴AD=CE,∴AD﹣FA=CE﹣FC,即EF=DF,∴∠FED=∠FDE,∴∠DAC=∠ADE,∴AC//DE,②由①得∠DAC=∠ACB=∠ACE,∴∠AFE=∠DAC+∠ACE=2∠ACB,若△ABC∽△FEA,则∠BAC=∠EFA=2∠ACB,∠B=∠AEC,∵AD//BC,∴∠B+∠BAD=180°,即∠B+∠BAC+∠DAC=180°,∵∠BAC=2∠ACB,∠DAC=∠ACB,∴∠B+3∠ACB=180°,∴当∠B+3∠ACB=180°时,△ABC∽△FEA;【拓展应用】①∠EAC=90°时,如图,∵沿AC折叠,∴AE=AB=6,∠AEC=∠ABC=60°,∠BAC=∠EAC=90°,∴B、A、E三点共线,∵四边形ABCD为平行四边形,∴AB//CD,即AE//CD,AB=CD,∴AE//CD,AE=CD,∴四边形ACDE为平行四边形,∴DE=AC,在Rt△BAC中,AC=AB•tan∠B=6363⨯=,②如图,当∠ACE=90°时,∵沿AC折叠,∴AE=AB=6,∠ACE=∠ABC=60°,∠BCA=∠ECA=90°,∴B、C、E三点共线,∵AD //BE ,∠ECA =90°,∴四边形ACED 为矩形,∴DE =AC ,在Rt △ABC 中,AC =AB •sin ∠B =6=综上可知,当△AEC 是直角三角形时,DE 的长为故答案为:【点睛】本题属于相似形综合题,考查了矩形的性质,相似三角形的判定和性质,解直角三角形,翻折变换等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题. 3.【概念与理解】,;【猜想与证明】(1),;(2)成立,证明见解析;【探究与应用】①;②△COD 与△AOB 面积之差为或;【联想与拓展】n3=9m3.【分析】【概念与理解】:根据题意信息即可得出答案解析:【概念与理解】214y x =,2y x =;【猜想与证明】(1)12,12;(2)成立,证明见解析;【探究与应用】①12;②△COD 与△AOB 面积之差为116或12;【联想与拓展】n 3=9m 3.【分析】【概念与理解】:根据题意信息即可得出答案; 【猜想与证明】:(1)当x =1时,求出A ,B ,C ,D 的坐标进而得出AB ,CD 即可得出答案;当x =2时,求出A ,B ,C ,D 的坐标进而得出AB ,CD 即可得出答案;(2)任意x (x >0),求出A ,B ,C ,D 的坐标进而得出AB ,CD 即可得出答案;【探究与应用】:①根据已知条件表示出△AOB 与△COD 面积即可得出答案; ②设M (x ,0)(x >0),根据已知条件可得出2COD AOB x S S -=△AOB 是直角三角形时解得14x =,当△COD 是直角三角形时,解得1x =,把x 代入即可; 【联想与拓展】:根据题意求出AEDF 的坐标然后表示出面积再利用△PAE 与△PDF 面积的比值1:3,即可得出关系式;【详解】【概念与理解】∵y 1=4x 2∴由题意可得C 1:214y x = ∵y 2=x 2∴由题意可得C2:2y x=故答案为:C1:21 4y x=,C2:2y x=;【猜想与证明】(1)当x=1时,∵点A、B在抛物线C1上∴令x=1,则11 2y=±∴A1(1,)2,B1(1,)2-∴AB=1∵点C、D在抛物线C2上∴令x=1,则21y==±∴C(1,1),D(1,1)-∴CD=2∴ABCD =1 2当x=2时,∵点A、B在抛物线C1上∴令x=2,则1y==∴A,B(2,∴AB∵点C、D在抛物线C2上∴令x=2,则2y=∴C,D(2,∴CD=∴ABCD1 2 =(2)对任意x(x>0)上述结论仍然成立理由如下:对任意x(x>0),1y=∴A(x,B(,x∴AB对任意x(x>0),2y=∴C(x,D(,x∴CD =2x ∴AB CD =122x x = 【探究与应用】 ①连接OA ,OB ,OC ,OD12AOB SAB OM = 12COD S CD OM = ∴12AOB COD S AB S CD == 故答案为:12②设M (x ,0)(x >0), ∵M (x ,0)∴114x y x = ∴AB x∵M (x ,0), ∴2y =∴CD =∵122AOB x SAB OM == 1222COD x S CD OM ==∴2COD AOB x S S -=当△AOB 是直角三角形时,由题意可知OA =OB∴△△AOB 为等腰直角三角形∴OM =AM∴x =解得:14x =∴1216COD AOB x S S -== 当△COD 是直角三角形时,由题意可知OD =OC∴△△COD 为等腰直角三角形∴OM=CM∴x =解得:1x =∴122COD AOB x S S -== 综上所述:△COD 与△AOB 面积之差为116或12 【联想与拓展】∵M (k ,0)且点A 、B 在抛物线C 3上∴令x =k ,则1y ==∴A (k∵AE ∥x 轴,且交C 4于点E∴E (km n()km AE k n -∴= ∵M (k ,0)且点C 、D 在抛物线C 4上∴令x =k ,则2y ==∴D (k∵DF ∥x 轴,且交C 3于点F∴F (kn m ()kn DF k m =∴- ∵AE ∥x 轴,且交C 4于点E∴△PEA 的高∵DF ∥x 轴,且交C 3于点F∴△PDF 的高∴11(22PEA km SAE km k n ==- 11(22PDF kn S FD kn k m ==-∵△PAE 与△PDF面积的比值1:3 ∴ 1(1213(2PEAPDF km k Sn kn S k m-==- ∴13= ∴339n m =故答案为:339n m =【点睛】本题考出了抛物线性质的综合运用以及旋转等知识,由特殊到一般的数学思想的运用,等腰直角三角形的性质的运用,三角形的面积公式的运用,轴对称的性质的运用,在解答本题时运用两个抛物线上的点的特征不变建立方程求解是关键.4.(1)CM=2BE ,CM ⊥BE ;(2)成立,理由见解析;(3)【分析】(1)设证明,由点是的中点,得到,进而求解;(2)证明和,得到,,进而求解;(3)证明,过点作于点,设,则,,则,即可求解析:(1)CM =2BE,CM ⊥BE ;(2)成立,理由见解析;(3【分析】(1)设证明()ABN CBM SAS ∆≅∆,由点E 是AN 的中点,得到1122BE AN CM ==,进而求解;(2)证明()AEF NEB SAS ∆≅∆和()FAB MBC SAS ∆≅∆,得到2CM BF BE ==,BCM ABF ∠=∠,进而求解;(3)证明30BMC ∠=︒,过点C 作CG MB ⊥于点G ,设CG m =,则BC ,3MG m =,则3MB BN m m ==-,即可求解.【详解】解:(1)设AN 交CM 于点H ,BMN ∆为等腰直角三角形,BM BN ∴=,AB BC =,90ABN CBM ∠=∠=︒,()ABN CBM SAS ∴∆≅∆,AN CM ∴=,BAN BCM ∠=∠,点E 是AN 的中点,则1122BE AN CM ==,即2CM BE =,EBN ENB ∴∠=∠,90HBC HCB ANB BNA ∴∠+∠=∠+∠=︒, 即CM BE ⊥,故答案为:2CM BE =,CM ⊥BE ;(2)2CM BE =,CM BE ⊥,仍然成立.如图所示,延长BE 至F 使EF BE =,连接AF ,AE EN =,AEF NEB ∠=∠,()AEF NEB SAS ∴≅△△,AF BN ∴=,F EBN ∠=∠,//AF BN ∴,AF BM =,180FAB ABN ∴∠+∠=︒,而9090180MBC ABN ABC ABM ABN ∠+∠=∠+∠+∠=︒+︒=︒,FAB MBC ∴∠=∠,AB BC =,BM BN AF ==,()FAB MBC SAS ∴≅△△,2CM BF BE ∴==,BCM ABF ∠=∠,90ABF FBC ∠+∠=︒,90BCM FBC ∴∠+∠=︒,BE CM ∴⊥;(3)由45α=︒得45MBA ABN ∠=∠=︒,2NBE ABE ∠=∠,则15ABE ∠=︒,由(2)知15MCB ABE ∠=∠=︒,135MBC ∠=︒,30BMC ∴∠=︒,过点C 作CG MB ⊥于点G ,设CG m =,则2BC m =,3MG m =,3MB BN m m ∴=-, ∴2623BC m BN m m+- 【点睛】本题是四边形综合题,主要考查了正方形的性质、直角三角形中线定理、解直角三角形、三角形全等等,综合性强,难度较大.5.(1),60;(2),;(3)或【分析】(1)证明,得出,,即可得出结论;(2)证明,即可得出结论;(3)先判断出,再求出,①当点在点上方时,先判断出四边形是矩形,求出,再根据勾股定理求出,解析:(1)BD CE =,60;(2)2sin 2BD EC α=⋅⋅,902α︒-;(3)242【分析】(1)证明ACE ABD ∆≅∆,得出CE BD =,AEC ADB ∠=∠,即可得出结论;(2)证明ACE ABD ∆∆∽,即可得出结论;(3)先判断出2BD CE =,再求出25AB =①当点E 在点D 上方时,先判断出四边形APDE 是矩形,求出2AP DP AE ==32BP =22BD =②当点E 在点D 下方时,同①的方法得,2AP DP AE ==32BP =42BD BP DP =+=【详解】解:(1)如图①中,在ABC ∆为等腰三角形,AC BC =,60ACB ∠=︒,ABC ∆∴是等边三角形,AC AB ∴=,60CAB ∠=︒,同理:AE AD =,60AED ADE EAD ∠=∠=∠=︒,EAD CAB ∴∠=∠,EAC DAB ∠=∠∴,()ACE ABD SAS ∴∆≅∆,CE BD ∴=,AEC ADB ∠=∠,点B 、D 、E 在同一直线上,180120ADB ADE ∴∠=︒-∠=︒,AEC 120∴∠=︒,60CEB AEC AEB ∴∠=∠-∠=︒,故答案为:BD CE =,60.(2)如图②中,2sin 2BD CE α=⋅,BD 、CE 所在直线相交所成的锐角的大小为902α︒-. 理由:延长BD 交CE 的延长线于T ,设AE 交BT 于点O .在等腰三角形ABC 中,AC BC =,ACB α∠=,2sin 2AB AC α∴=⋅,同理,2sin 2AD AE α=⋅, ∴AE AC AD AB =,DAE CAB ∠=∠,EAC DAB ∠=∠∴,ACE ABD ∴∆∆∽,∴2sin 2BD AB EC AC α==, ECA DBA ∴∠=∠,2sin 2BD EC α=⋅⋅,COT AOB ∠=∠,902CTO CAB α∴∠=∠=︒-. BD ∴、CE 所在直线相交所成的锐角的大小为902α︒-.(3)由(2)知,ACE ABD ∆∆∽,2BD CE ∴=, 在Rt ABC △中,10AC =,225AB AC ∴==,①当点E 在点D 上方时,如图③,过点A 作AP BD ⊥交BD 的延长线于P ,当CE AD ⊥时,可证135AEC ADB ∠=∠=︒,45ADE ∠=︒,90EDB ∴∠=︒,90PDE AED APD ∴∠=∠=∠=︒,∴四边形APDE 是矩形,AE DE =,∴矩形APDE 是正方形,2AP DP AE ∴===,在Rt APB 中,根据勾股定理得,2222(25)(2)32BP AB AP =-=-=,22BD BP PD ∴=-=.②当点E 在点D 下方时,如图④同①的方法得,2AP DP AE ===,32BP =,42BD BP DP ∴=+=,综上所述,BD 的长为222【点睛】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,等边三角形的性质,判断出△ACE ∽△ABD 是解本题的关键. 6.(1)1,45°,不变;(2)∠AEP 的大小不变,理由见解析;(3).【分析】(1)当点P 为对角线交点时,根据正方形的性质可得出结论,当点P 移动到其它位置时,过点P 分别作AB ,BC 的垂线,垂足分解析:(1)1,45°,不变;(2)∠AEP 的大小不变,理由见解析;(3)6.【分析】(1)当点P 为对角线交点时,根据正方形的性质可得出结论,当点P 移动到其它位置时,过点P 分别作AB ,BC 的垂线,垂足分别为M ,N .证△PAM ≌△PEN ,可得∠AEP 的大小不变;(2)类似(1),过点P 分别作AB ,BC 的垂线,垂足分别为M ,N .证△PAM ∽△PEN ,可得∠AEP 的大小不变;(3)利用(2)的结论,证BE = EC .再证△ABE ∽△BCD ,利用比例式求出k ,再利用三角函数求出AP 的长.【详解】解:(1)如图,∵k =1,∴在矩形ABCD 是正方形,∵点P 移动到对角线交点处,∴PA=PE ,∠AEP=45°,故=1PA PE,如图,当点P 移动到其它位置时,过点P 分别作AB ,BC 的垂线,垂足分别为M ,N . ∴∠PMA =∠PMB =∠PNB =∠PNC =90°.∵四边形ABCD 是正方形,∴∠MBN =90°,PN =PM ,∴四边形PMBN 是正方形,∴∠MPN =90°,∵∠APE =90°,∴∠APM +∠MPE =∠EPN +∠MPE =90°,∴∠APM =∠EPN .又∵∠PMA =∠PNB ,∴△PAM ≌△PEN ,∴PA=PE ,∴∠AEP=45°, 故=1PA PE,∠AEP 的大小不变; 故答案为:1,45°,不变;(2)∠AEP 的大小不变.理由如下:过点P 分别作AB ,BC 的垂线,垂足分别为M ,N .∴∠PMA =∠PMB =∠PNB =∠PNC =90°.∵四边形ABCD 是矩形,∴∠MBN =∠BAD =∠BCD =90°,∴四边形PMBN 是矩形,∴∠MPN =90°,PN =BM ,又∵∠APE =90°,∴∠APM +∠MPE =∠EPN +∠MPE =90°,∴∠APM =∠EPN .又∵∠PMA =∠PNB ,∴△PAM ∽△PEN ,∴PA PE =PM PN . 在Rt △PBM 和Rt △BAD 中,tan ∠ABD =PM AD k BM AB ==. 在Rt △APE 中,tan ∠AEP =PA PM PM k PE PN BM===. ∵k 为定值,∴∠AEP 的大小不变.(3)∵PC ⊥BD ,∠BCD =90°,∴∠PBC +∠PCB =∠PBC +∠BDC =∠BPE +∠EPC =90°.∵AE ∥PC ,∴∠AEB =∠PCB ,∠AEP =∠EPC .∵tan ∠AEP =k ,tan ∠ABD =k ,∴∠AEP =∠ABD .∵四边形ABCD 是矩形,∴AB =CD ,AD =BC ,AB ∥CD ,∴∠ABD =∠BDC ,∴∠AEB =∠PCB =∠BDC =∠AEP =∠EPC ,∠PBC =∠BPE ,∴BE =PE =EC .∵∠AEB =∠BDC ,∠ABE =∠BCD ,∴△ABE ∽△BCD , ∴AB BE BC CD =,即12BC AB BC AB=, ∴BC 2=2AB 2, ∴2AD BC AB =,k 2在Rt △BPC 中,tan ∠PCB =PB PC=tan ∠AEP =k 2 ∴PB 2PC =22 由勾股定理得22222(22)23BC PC PB +=+∴PE =12BC 3∴PA 26.【点睛】本题考查了矩形的性质与判定,正方形的判定与性质,相似三角形判定与性质,解直角三角形,解题关键是恰当作辅助线,构建全等三角形或相似三角形,利用解直角三角形的知识求解. 7.(1)①,证明见解析;②4;(2)画图见解析,或【分析】(1)①由“”可证,可得,可得;②过点作于点,由勾股定理可求,,的长,即可求的长;(2)分点在左侧和右侧两种情况讨论,根据勾股定理和相似解析:(1)①AD BD ⊥,证明见解析;②4;(2)画图见解析,3323【分析】(1)①由“SAS ”可证ACD BCE ≅∆∆,可得45ADC BEC ∠=∠=︒,可得AD BD ⊥;②过点C 作CF AD ⊥于点F ,由勾股定理可求DF ,CF ,AF 的长,即可求AD 的长; (2)分点D 在BC 左侧和BC 右侧两种情况讨论,根据勾股定理和相似三角形的性质可求解.【详解】解:(1)ABC ∆和DEC ∆均为等腰直角三角形,AC BC ∴=,CE CD =,45ABC DEC CDE ∠=∠=︒=∠,90ACB DCE ∠=∠=︒,ACD BCE ∠∠∴=,且AC BC =,CE CD =,()ACD BCE SAS ∴∆≅∆,45ADC BEC ∴∠=∠=︒,90ADE ADC CDE ∴∠=∠+∠=︒,AD BD ∴⊥,故答案为:AD BD ⊥;②如图,过点C 作CF AD ⊥于点F ,45ADC ∠=︒,CF AD ⊥,2CD =,1DF CF ∴==, 223AF AC CF ∴=-=,4AD AF DF ∴=+=,故答案为:4;(2)若点D 在BC 右侧,如图,过点C 作CF AD ⊥于点F ,90ACB DCE ∠=∠=︒,21AC 7BC =3CD =1CE =.ACD BCE ∠∠∴=,3AC CD BC CE ==, ACD BCE ∴∆∆∽, ADC BEC ∠∠∴=,3CD =,1CE =,222DE DC CE ∴=+=,ADC BEC ∠=∠,90DCE CFD ∠=∠=︒,DCE CFD ∴∆∆∽,∴DE DC CE DC CF DF==, 即2313CF DF ==, 32CF ∴=,32DF =, 22532AF AC CF ∴=-=, 33AD DF AF ∴=+=,若点D 在BC 左侧,90ACB DCE ∠=∠=︒,21AC 7BC =3CD =1CE =.ACD BCE ∠∠∴=,3AC CD BC CE=, ACD BCE ∴∆∆∽, ADC BEC ∠∠∴=,CED CDF ∴∠=∠,3CD =1CE =,222DE DC CE ∴+,CED CDF ∠=∠,90DCE CFD ∠=∠=︒,DCE CFD ∴∆∆∽,∴DE DC CE DC CF DF==, 313DF =,32CF ∴=,DF =,AF ∴=AD AF DF ∴=-=【点睛】本题是几何变换综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,等腰三角形的性质等知识点,关键是添加恰当辅助线.8.(1)①60°;②相等;(2)∠AEB=90°,AE=2CM+BE ,证明见解析;(3),【分析】(1)由条件易证△ACD ≌△BCE ,从而得到:AD=BE ,∠ADC=∠BEC .由点A ,D ,E 在同一解析:(1)①60°;②相等;(2)∠AEB =90°,AE =2CM +BE ,证明见解析;(3)【分析】(1)由条件易证△ACD ≌△BCE ,从而得到:AD =BE ,∠ADC =∠BEC .由点A ,D ,E 在同一直线上可求出∠ADC ,从而可以求出∠AEB 的度数.(2)仿照(1)中的解法可求出∠AEB 的度数,证出AD =BE ;由△DCE 为等腰直角三角形及CM 为△DCE 中DE 边上的高可得CM =DM =ME ,从而证到AE =2CH +BE .(3)由PD =1可得:点P 在以点D 为圆心,1为半径的圆上;由∠BPD =90°可得:点P 在以BD 为直径的圆上.显然,点P 是这两个圆的交点,由于两圆有两个交点,接下来需对两个位置分别进行讨论.然后,添加适当的辅助线,借助于(2)中的结论即可解决问题.【详解】解:(1)①如图1.∵△ACB 和△DCE 均为等边三角形,∴CA =CB ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACD =∠BCE .在△ACD 和△BCE 中,∵AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△BCE (SAS ),∴∠ADC =∠BEC .∵△DCE 为等边三角形,∴∠CDE =∠CED =60°.∵点A ,D ,E 在同一直线上,∴∠ADC =120°,∴∠BEC =120°,∴∠AEB =∠BEC ﹣∠CED =60°. 故答案为:60°. ②∵△ACD ≌△BCE , ∴AD =BE . 故答案为:AD =BE .(2)∠AEB =90°,AE =BE +2CM .理由:如图2.∵△ACB 和△DCE 均为等腰直角三角形, ∴CA =CB ,CD =CE ,∠ACB =∠DCE =90°, ∴∠ACD =∠BCE . 在△ACD 和△BCE 中,CA CB ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△BCE (SAS ), ∴AD =BE ,∠ADC =∠BEC . ∵△DCE 为等腰直角三角形, ∴∠CDE =∠CED =45°. ∵点A ,D ,E 在同一直线上, ∴∠ADC =135°, ∴∠BEC =135°,∴∠AEB =∠BEC ﹣∠CED =90°. ∵CD =CE ,CM ⊥DE , ∴DM =ME . ∵∠DCE =90°, ∴DM =ME =CM , ∴AE =AD +DE =BE +2CM .(3)点A 到BP 的距离为312-或312+.理由如下:∵PD =1,∴点P 在以点D 为圆心,1为半径的圆上. ∵∠BPD =90°,∴点P 在以BD 为直径的圆上, ∴点P 是这两圆的交点.①当点P 在如图3①所示位置时,连接PD 、PB 、PA ,作AH ⊥BP ,垂足为H ,过点A 作AE ⊥AP ,交BP 于点E ,如图3①. ∵四边形ABCD 是正方形,∴∠ADB =45°.AB =AD =DC =BC =2,∠BAD =90°, ∴BD =2. ∵DP =1, ∴BP =3.∵∠BPD =∠BAD =90°,∴A 、P 、D 、B 在以BD 为直径的圆上, ∴∠APB =∠ADB =45°, ∴△PAE 是等腰直角三角形.又∵△BAD 是等腰直角三角形,点B 、E 、P 共线,AH ⊥BP , ∴由(2)中的结论可得:BP =2AH +PD , ∴3=2AH +1,∴AH =312-.②当点P 在如图3②所示位置时,连接PD 、PB 、PA ,作AH ⊥BP ,垂足为H ,过点A 作AE ⊥AP ,交PB 的延长线于点E ,如图3②. 同理可得:BP =2AH ﹣PD , ∴3AH ﹣1,∴AH 31+. 综上所述:点A 到BP 31-31+.【点睛】本题考查了等边三角形的性质、正方形的性质、等腰三角形的性质、直角三角形斜边上的中线等于斜边的一半、圆周角定理、三角形全等的判定与性质等知识,考查了运用已有的知识和经验解决问题的能力,是体现新课程理念的一道好题.而通过添加适当的辅助线从而能用(2)中的结论解决问题是解决第(3)的关键.9.(1)DH=HF ;(2)DH=HF 仍然成立,理由见解析;(3)或 . 【分析】(1)证明,得,则,则证,得出即可;(2)证,则,由矩形的性质得出,证,即可得出; (3)根据矩形的性质和已知得,则解析:(1)DH =HF ;(2)DH =HF 仍然成立,理由见解析;55517.【分析】(1)证明()GCF BEC AAS ∆∆≌,得BC GF =,则CD GF =,则证()HCD HGF ASA ∆∆≌,得出DH HF =即可; (2)证FCG CEB ∆∆∽,则GF FC n BC CE ==,由矩形的性质得出CDn BC=,证()HCD HGF ASA ∆∆≌,即可得出DH HF =;(3)根据矩形的性质和已知得43AB n AD ==,则43CE CF =,分两种情况,根据勾股定理和平行线的性质进行解答即可. 【详解】解:(1)DH HF =,理由如下:∵四边形ABCD 是矩形,AB AD =, ∴四边形ABCD 是正方形,∴BC CD =,90ABC EBC BCD ∠=∠=∠=︒, ∵FG BC ⊥,90ECF ∠=︒,∴//CD GF ,90CGF ECF EBC ∠=∠=∠=︒, ∴+90GCF BCE ∠∠=︒, ∵+90BCE BEC ∠∠=︒, ∴=GCF BEC ∠∠, 在GCF ∆和BEC ∆中,。

成都高新世纪城南路学校七年级数学上册第四单元《几何图形初步》测试卷(包含答案解析)

成都高新世纪城南路学校七年级数学上册第四单元《几何图形初步》测试卷(包含答案解析)

一、选择题1.一个角的补角比这个角的余角3倍还多10°,则这个角的度数为( )A .140°B .130°C .50°D .40° 2.α∠和β∠的顶点和一边都重合,另一边都在公共边的同侧,且αβ∠>∠,那么α∠的另一半落在β∠的( )A .另一边上B .内部;C .外部D .以上结论都不对 3.已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD 等于( )A .15 cmB .16 cmC .10 cmD .5 cm4.如图,工作流程线上A 、B 、C 、D 处各有一名工人,且AB=BC=CD=1,现在工作流程线上安放一个工具箱,使4个人到工具箱的距离之和为最短,则工具箱安放的位置( )A .线段BC 的任意一点处B .只能是A 或D 处C .只能是线段BC 的中点E 处D .线段AB 或CD 内的任意一点处5.一副三角板按如图方式摆放,且1∠的度数比2∠的度数小20︒,则2∠的度数为( )A .35︒B .40︒C .45︒D .55︒ 6.平面内有两两相交的七条直线,若最多有m 个交点,最少有n 个交点,则m+n 等于( )A .16B .22C .20D .187.如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )A .2B .1C .0D .-18.下列说法正确的是( )A .射线PA 和射线AP 是同一条射线B .射线OA 的长度是3cmC .直线,AB CD 相交于点 P D .两点确定一条直线 9.如图,甲从A 点出发向北偏东70°方向走到点B ,乙从点A 出发向南偏西15°方向走到点C ,则∠BAC 的度数是( )A .85°B .105°C .125°D .160°10.如图,点A 、B 、C 是直线l 上的三个定点,点B 是线段AC 的三等分点,AB =BC +4m ,其中m 为大于0的常数,若点D 是直线l 上的一动点,M 、N 分别是AD 、CD 的中点,则MN 与BC 的数量关系是( )A .MN =2BCB .MN =BC C .2MN =3BCD .不确定11.已知线段AB ,在AB 的延长线上取一点C ,使25BC AC =,在AB 的反向延长线上取一点D ,使34DA AB =,则线段AD 是线段CB 的____倍 A .98 B .89C .32D .23 12.两个锐角的和是( )A .锐角B .直角C .钝角D .锐角或直角或钝角二、填空题13.硬币在桌面上快速地转动时,看上去象球,这说明了_________________. 14.若A ,B ,C 三点在同一直线上,线段AB =21cm ,BC =10cm ,则A ,C 两点之间的距离是________.15.(1)比较两条线段的长短,常用的方法有_________,_________.(2)比较两条线段a 和b 的大小,结果可能有 种情况,它们是_______________. 16.如图,OC AB ⊥于点O ,OE 为COB ∠的平分线,则AOE ∠的度数为______.17.如图,点C 是线段AB 上一点,点M ,N ,P 分别是线段AC ,BC ,AB 的中点.若3AC =,1CP =,则线段PN 的长为________.18.魏老师去农贸市场买菜时发现,若把10千克的菜放在秤上,则指针盘上的指针转了180︒,第二天魏老师请同学们回答以下两个问题:(1)若把0.5千克的菜放在秤上,则指针转过________度;(2)若指针转了243︒,则这些菜共有________千克.19.25°20′24″=______°.20.如图,C 岛在A 岛的北偏东60°方向,在B 岛的北偏西45°方向,则从C 岛看A 、B 两岛的视角∠ACB =_______.三、解答题21.已知线段AB =10cm ,直线AB 上有一点C ,BC =6cm ,M 为线段AB 的中点,N 为线段BC 的中点,求线段MN 的长.22.如图,点C 在线段AB 上,AC=6cm ,MB=10cm ,点M 、N 分别为AC 、BC 的中点.(1)求线段BC 的长;(2)求线段MN 的长;(3)若C 在线段AB 延长线上,且满足AC ﹣BC=b cm ,M ,N 分别是线段AC ,BC 的中点,你能猜想MN 的长度吗?请写出你的结论(不需要说明理由)23.如图所示,已知O 是直线AB 上一点,90BOE FOD ∠=∠=︒,OB 平分COD ∠.(1)图中与DOE ∠互余的角有________________;(2)图中是否有与DOE ∠互补的角?如果有,直接写出全部结果;如果没有,说明理由.24.已知线段10cm AB =,在直线AB 上取一点C ,使16cm AC =,求线段AB 的中点与AC 的中点的距离.25.如图,点C 在线段AB 上,点,M N 分别是AC BC 、的中点.(1)若9,6AC cm CB cm ==,求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC CB acm +=,其它条件不变,你能求出MN 的长度吗?请说明理由.(3)若C 在线段AB 的延长线上,且满足,,AC BC bcm M N -=分别为 AC 、BC 的中点,你能求出MN 的长度吗?请画出图形,写出你的结论,并说明理由.26.如图,点B 和点C 为线段AD 上两点,点B 、C 将AD 分成2︰3︰4三部分,M 是AD 的中点,若MC =2,求AD 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,列出方程,然后解方程即可.【详解】设这个角为α,则它的余角为90°-α,补角为180°-α,根据题意得,180°-α=3(90°-α)+10°,180°-α=270°-3α+10°,解得α=50°.故选C.【点睛】本题考查了互为余角与补角的性质,表示出这个角的余角与补角然后列出方程是解题的关键.2.C解析:C【分析】根据题意画出图形,利用数形结合即可得出结论.【详解】解:如图所示:.故选C.【点睛】本题考查的是角的大小比较,能根据题意画出图形是解答此题的关键.3.A解析:A【分析】根据C 点为线段AB 的中点,D 点为BC 的中点,可知AC=CB=12AB ,CD=12CB ,AD=AC+CD ,又AB=4cm ,继而即可求出答案.【详解】∵点C 是线段AB 的中点,AB=20cm ,∴BC=12AB=12×20cm=10cm , ∵点D 是线段BC 的中点, ∴BD=12BC=12×10cm=5cm , ∴AD=AB-BD=20cm-5cm=15cm .故选A .【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.4.A解析:A【详解】要想4个人到工具箱的距离之和最短,据图可知:•位置在A 与B 之间时,距离之和;AD BC >+‚位置在B 与C 之间时,距离之和;AD BC =+ƒ位置在C 与D 之间时,距离之和.AD BC >+则工具箱在B 与C 之间时,距离之和最短.故选A .5.D解析:D【分析】根据题意结合图形列出方程组,解方程组即可.【详解】解:由题意得,1290,2120∠+∠︒⎧⎨∠-∠︒⎩==,解得135,255.∠︒⎧⎨∠︒⎩==. 故选:D .【点睛】本题考查的是余角和补角的概念和性质,两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.6.B解析:B【分析】由题意可得7条直线相交于一点时交点最少,任意两直线相交都产生一个交点时交点最多,由此可得出m ,n 的值,进而可得答案.【详解】解:根据题意可得:7条直线相交于一点时交点最少,此时交点为1个,即n=1;任意两直线相交都产生一个交点时,交点最多,此时交点为:7×(7﹣1)÷2=21,即m=21;则m+n=21+1=22.故选:B.【点睛】本题考查了直线的交点问题,注意掌握直线相交于一点时交点最少,任意n条直线两两相交时交点最多为12n(n﹣1)个.7.A解析:A【分析】根据A、D两点在数轴上所表示的数,求得AD的长度,然后根据2AB=BC=3CD,求得AB、BD的长度,从而找到BD的中点E所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD,∴AB=1.5CD,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=12BD=4,∴|6-E|=4,∴点E所表示的数是:6-4=2.∴离线段BD的中点最近的整数是2.故选:A.【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.8.D解析:D【分析】根据直线、射线、线段的性质对各选项分析判断后利用排除法.【详解】解:A 、射线PA 和射线AP 不是同一条射线,故本选项错误;B 、射线是无限长的,故本选项错误;C 、直线AB 、CD 可能平行,没有交点,故本选项错误;D 、两点确定一条直线是正确的.故选:D .【点睛】本题主要考查了直线、射线、线段的特性,是基础题,需熟练掌握.9.C解析:C【分析】首先求得AB 与正东方向的夹角的度数,即可求解.【详解】根据题意得:∠BAC =(90°﹣70°)+15°+90°=125°,故选:C .【点睛】本题考查了方向角,正确理解方向角的定义是关键.10.C解析:C【分析】可用特殊值法,设坐标轴上的点A 为0,C 为12m ,求出B 的值,得出BC 的长度,设D 为x ,则M 为2x ,N 为122m x +,即可求出MN 的长度为6m ,可算出MN 与BC 的关系. 【详解】设坐标轴上的点A 为0,C 为12m ,∵AB =BC+4m ,∴B 为8m ,∴BC =4m ,设D 为x ,则M 为2x ,N 为122m x +, ∴MN 为6m ,∴2MN =3BC ,故选:C .【点睛】本题考查了两点间的距离,解题关键是注意特殊值法的运用及方程思想的运用. 11.A解析:A【分析】 根据25BC AC =,AC=AB+BC 可得出BC 与AB 的倍数关系,根据34DA AB =,利用等量代换即可得答案.【详解】 ∵25BC AC =,AC=AB+BC , ∴BC=25(AB+BC ), ∴AB=32BC , ∵34DA AB =, ∴AD=34×32BC=98BC , ∴线段AD 是线段CB 的98倍, 故选A.【点睛】本题考查了比较线段的长短,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.12.D解析:D【分析】在0度到90度之间的叫锐角,可以用赋值法讨论.【详解】解:当∠A=10°,∠B=20°时,∠A+∠B=30°,即两锐角的和为锐角;当∠A=30°,∠B=60°时,∠A+∠B=90°,即两锐角的和为直角;当∠A=50°,∠B=60°时,∠A+∠B=110°,即两锐角的和为钝角;综上所述,两锐角的和可能是锐角,可能是直角,也可能是钝角故选D.【点睛】利用赋值法解题,可以使一些难以直接证明的问题简单易解.二、填空题13.面动成体【分析】本题是面动成体的原理在现实中的具体表现根据面动成体原理解答即可【详解】硬币在桌面上快速地转动时看上去象球这说明了面动成体故答案为面动成体【点睛】本题考查了点线面体掌握面动成体原理是解 解析:面动成体【分析】本题是面动成体的原理在现实中的具体表现,根据面动成体原理解答即可.【详解】硬币在桌面上快速地转动时,看上去象球,这说明了面动成体,故答案为面动成体.本题考查了点、线、面、体,掌握面动成体原理是解题的关键.14.11cm或31cm【分析】分类讨论:当点C在线段AB上则有AC=AB﹣BC;当点C在线段AB的延长线上则AC=AB+BC然后把AB=21cmBC=10cm分别代入计算即可【详解】当点C在线段AB上则解析:11cm或31cm【分析】分类讨论:当点C在线段AB上,则有AC=AB﹣BC;当点C在线段AB的延长线上,则AC=AB+BC,然后把AB=21cm,BC=10cm分别代入计算即可.【详解】当点C在线段AB上,则AC=AB﹣BC=21cm﹣10cm=11cm;当点C在线段AB的延长线上,则AC=AB+BC=21cm+10cm=31cm;综上所述:A.C两点之间的距离为11cm或31cm.故答案为11cm或31cm.【点睛】本题考查了两点间的距离:连接两点间的线段的长度叫两点间的距离.15.(1)度量比较法叠合比较法;(2)3a>ba=ba<b【分析】(1)比较两条线段长短的方法有两种:度量比较法叠合比较法依此即可求解;(2)两条线段a和b的大小有三种情况【详解】(1)比较两条线段的大解析:(1)度量比较法,叠合比较法;(2)3,a>b、a=b、a<b【分析】(1)比较两条线段长短的方法有两种:度量比较法、叠合比较法.依此即可求解;(2)两条线段a和b的大小有三种情况.【详解】(1)比较两条线段的大小通常有两种方法,分别是度量比较法、重合比较法.(2)比较两条线段a和b的大小,结果可能有3种情况,它们是a>b、a=b、a<b.故答案为度量比较法,重合比较法;3,a>b、a=b、a<b.【点睛】本题考查了比较线段的长短,是基础题型,是需要识记的知识.16.135°【解析】【分析】先根据垂直的定义求得∠AOC∠BOC的度数是90°然后由角平分线的定义可知∠COE=∠BOC最后根据∠AOE=∠COE+∠AOC从而可求得∠AOE【详解】因为于点O所以∠AO解析:135°【解析】【分析】先根据垂直的定义求得∠AOC、∠BOC的度数是90°,然后由角平分线的定义可知∠COE=12∠BOC,最后根据∠AOE=∠COE+∠AOC从而可求得∠AOE.因为OC AB⊥于点O,所以∠AOC=∠BOC=90°,因为OE为COB∠的平分线,所以∠COE=12∠BOC=45°,又因为∠AOE=∠COE+∠AOC,所以∠AOE=90°+45°=135°.故答案为:135°.【点睛】本题主要考查垂直的定义和角平分线的定义,解决本题的关键是要熟练掌握垂直定义,角平分线的定义.17.【解析】【分析】根据线段中点的性质计算即可CB的长结合图形根据线段中点的性质可得CN的长进而得出PN的长【详解】∵AP=AC+CPCP=1∴AP=3+1=4∵P为AB的中点∴AB=2AP=8∵CB=解析:3 2【解析】【分析】根据线段中点的性质计算即可CB的长,结合图形、根据线段中点的性质可得CN的长,进而得出PN的长.【详解】∵AP=AC+CP,CP=1,∴AP=3+1=4,∵P为AB的中点,∴AB=2AP=8,∵CB=AB-AC,AC=3,∴CB=5,∵N为CB的中点,∴CN=12BC=52,∴PN=CN-CP=32.故答案为32.【点睛】本题考查的是两点间的距离的计算,掌握线段的中点的性质、灵活运用数形结合思想是解题的关键.18.135【分析】(1)算出秤上放1千克菜转过的角度为多少乘以05即可;(2)让243°除以1千克菜转过的角度即可【详解】解:(1)=18°05×18°=9°05千克的菜放在秤上指针转过9°;(2)24解析:13.5【分析】(1)算出秤上放1千克菜转过的角度为多少,乘以0.5即可;(2)让243°除以1千克菜转过的角度即可.【详解】解:(1)18010=18°,0.5×18°=9°,0.5千克的菜放在秤上,指针转过9°;(2)243°÷18°=13.5(千克),答:共有菜13.5千克.故答案为9,13.5【点睛】本题考查了角度计算的应用,解决本题的关键是得到秤上放1千克菜转过的角度为多少.19.34°【分析】此类题是进行度分秒的转化运算相对比较简单注意以60为进制【详解】25°20′24″=2534°故答案为2534【点睛】进行度分秒的转化运算注意以60为进制解析:34°【分析】此类题是进行度、分、秒的转化运算,相对比较简单,注意以60为进制.【详解】25°20′24″=25.34°,故答案为25.34.【点睛】进行度、分、秒的转化运算,注意以60为进制.20.【分析】先求出∠CAB及∠ABC的度数再根据三角形内角和是180°即可进行解答【详解】∵C岛在A岛的北偏东60°方向在B岛的北偏西45°方向∴∠CAB+∠ABC=180°﹣(60°+45°)=75°解析:【分析】先求出∠CAB及∠ABC的度数,再根据三角形内角和是180°即可进行解答.【详解】∵C岛在A岛的北偏东60°方向,在B岛的北偏西45°方向,∴∠CAB+∠ABC=180°﹣(60°+45°)=75°,∵三角形内角和是180°,∴∠ACB=180°﹣∠CAB﹣∠ABC=180°﹣30°﹣45°=105°.故答案为105.【点睛】此题主要考查了方向角的概念和三角形的内角和定理,根据题意得到∠CAB 和∠ABC 的度数是解题关键.三、解答题21.2cm 或8cm【分析】分两种情况:(1)点C 在线段AB 上时,(2)点C 在AB 的延长线上时,分别求出线段MN 的值,即可.【详解】解:(1)若为图1情形,∵M 为AB 的中点,∴MB =MA =5cm ,∵N 为BC 的中点,∴NB =NC =3cm ,∴MN =MB ﹣NB =2cm ;(2)若为图2情形,∵M 为AB 的中点,∴MB =AB =5cm ,∵N 为BC 的中点,∴NB =NC =3cm ,∴MN =MB +BN =8cm .【点睛】本题主要考查线段的和差倍分和线段的中点概念,根据题意,画出图形,分类讨论,是解题的关键.22.(1)BC= 7cm ;(2)MN= 6.5cm ;(3)MN=2b 【分析】(1)根据线段中点的性质,可得MC 的长,根据线段的和差,可得BC 的长;(2)根据线段中点的性质,可得MC 、NC 的长,根据线段的和差,可得MN 的长; (3)根据(1)(2)的结论,即可解答.【详解】解:(1)∵AC=6cm ,点M 是AC 的中点, ∴12MC AC =3cm , ∴BC=MB ﹣MC=10﹣3=7cm .(2)∵N 是BC 的中点,∴CN=12BC=3.5cm , ∴MN=MC+CN=3+3.5=6.5cm .(3)如图,MN=MC ﹣NC=1122AC BC -=12(AC ﹣BC )=12b . MN=2b . 【点睛】 本题考查两点间的距离.23.(1)EOF ∠,BOD ∠,BOC ∠;(2)BOF ∠,COE ∠.【分析】(1)由∠BOE=90°,则∠DOE+∠BOD=90°,要求与∠DOE 互余的角,只要找到与∠BOD 相等的角即可,即∠BOC ,∠EOF ;(2)根据同角的余角相等,结合OB 平分∠COD ,可得∠DOE=∠AOF ,∠EOF=∠BOD=∠BOC ,则∠DOE 的补角与∠AOF 的补角相等,即∠DOE 互补的角:∠BOF 、∠EOC ;【详解】解:(1)∵∠BOE=∠FOD=90°,∴∠AOF+∠EOF=90°,∠BOD+∠DOE=90°,∠DOE+∠EOF=90°,∵OB 平分∠COD ,∴∠BOD=∠BOC ,∠AOF=∠DOE ,∴与∠DOE 互余的是:∠EOF 、∠BOD 、∠BOC ;故答案为:∠EOF 、∠BOD 、∠BOC ;(2)由(1)以及同角的余角相等可知,∠AOF=∠DOE ,∠EOF=∠BOD=∠BOC , ∴∠DOE 的补角与∠AOF 的补角相等,∵∠AOF+∠BOF=180°,∠BOF=∠EOC ,∴∠AOF+∠EOC=180°,∴∠DOE 的补角有:∠BOF 和∠EOC .【点睛】本题考查了补角和余角的定义,以及角平分线的定义,解题的关键是根据同角或等角的余角相等,同角或等角的补角相等进行解答.24.13cm 或3cm .【分析】结合题意画出简单的图形,再结合图形进行分类讨论:当C 在BA 延长线上时,当C 在AB 延长线上时,分别依据线段的和差关系求解.【详解】解:①如图,当C 在BA 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点, 所以15cm 2AD AB ==,18cm 2AE AC ==, 所以81513(cm)DE AE AD =+=+=. ②如图,当C 在AB 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点,所以15cm 2AD AB ==,18cm 2AE AC ==, 所以853(cm)DE AE AD =-=-=. 综上,线段AB 的中点与AC 的中点的距离为13cm 或3cm .【点睛】本题主要考查了两点间的距离,解决问题的关键是依据题意画出图形,进行分类讨论. 25.(1)7.5;(2)12a ,理由见解析;(3)能,MN=12b ,画图和理由见解析 【分析】(1)据“点M 、N 分别是AC 、BC 的中点”,先求出MC 、CN 的长度,再利用MN=CM+CN 即可求出MN 的长度即可.(2)据题意画出图形,利用MN=MC+CN 即可得出答案.(3)据题意画出图形,利用MN=MC-NC 即可得出答案.【详解】解:(1)点M 、N 分别是AC 、BC 的中点,∴CM=12AC=4.5cm , CN=12BC=3cm , ∴MN=CM+CN=4.5+3=7.5cm .所以线段MN 的长为7.5cm .(2)MN 的长度等于12a , 根据图形和题意可得:MN=MC+CN=12AC+12BC=12(AC+BC )=12a ;(3)MN 的长度等于12b , 根据图形和题意可得:MN=MC-NC=12AC-12BC=12(AC-BC)=12b.【点睛】本题主要考查了两点间的距离,关键是掌握线段的中点把线段分成两条相等的线段,注意根据题意画出图形也是关键.26.AD=36.【分析】根据点B、C将AD分成2︰3︰4三部分可得出CD与AD的关系,根据中点的定义可得MD=12AD,利用MC=MD-CD即可求出AD的长度.【详解】∵点B、C将AD分成2︰3︰4三部分,∴CD=49AD,∵M是AD的中点,∴MD=12 AD,∵MC=MD-CD=2,∴12AD-49AD=2,∴AD=36.【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.。

成都高新世纪城南路学校八年级上册压轴题数学模拟试卷及答案

成都高新世纪城南路学校八年级上册压轴题数学模拟试卷及答案

成都高新世纪城南路学校八年级上册压轴题数学模拟试卷及答案一、压轴题1.如图1,我们定义:在四边形ABCD 中,若AD=BC ,且∠ADB+∠BCA=180°,则把四边形ABCD 叫做互补等对边四边形.(1)如图2,在等腰ABE △中,AE=BE ,四边形ABCD 是互补等对边四边形,求证:∠ABD=∠BAC=12∠AEB . (2)如图3,在非等腰ABE △中,若四边形ABCD 仍是互补等对边四边形,试问∠ABD=∠BAC=12∠AEB 是否仍然成立?若成立,请加以证明;若不成立,请说明理由.2.在《经典几何图形的研究与变式》一课中,庞老师出示了一个问题:“如图1,等腰直角三角形的三个顶点分别落在三条等距的平行线1l ,2l ,3l 上,90BAC ∠=︒,且每两条平行线之间的距离为1,求AB 的长度”.在研究这道题的解法和变式的过程中,同学们提出了很多想法:(1)小明说:我只需要过B 、C 向1l 作垂线,就能利用全等三角形的知识求出AB 的长. (2)小林说:“我们可以改变ABC 的形状.如图2,AB AC =,120BAC ∠=︒,且每两条平行线之间的距离为1,求AB 的长.”(3)小谢说:“我们除了改变ABC 的形状,还能改变平行线之间的距离.如图3,等边三角形ABC 三个顶点分别落在三条平行线1l ,2l ,3l 上,且1l 与2l 之间的距离为1,2l 与3l 之间的距离为2,求AB 的长、”请你根据3位同学的提示,分别求出三种情况下AB 的长度.3.如图1,在等边△ABC中,E、D两点分别在边AB、BC上,BE=CD,AD、CE相交于点F.(1)求∠AFE的度数;(2)过点A作AH⊥CE于H,求证:2FH+FD=CE;(3)如图2,延长CE至点P,连接BP,∠BPC=30°,且CF =2 9CP,求PFAF的值.(提示:可以过点A作∠KAF=60°,AK交PC于点K,连接KB)4.已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求ABFACFSS的值.5.阅读下面材料,完成(1)-(3)题.数学课上,老师出示了这样一道题:如图1,已知等腰△ABC中,AB=AC,AD为BC边上的中线,以AB为边向AB左侧作等边△ABE,直线CE与直线AD交于点F.请探究线段EF、AF、DF之间的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠DFC 的度数可以求出来.”小强:“通过观察和度量,发现线段DF 和CF 之间存在某种数量关系.”小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”......老师:“若以AB 为边向AB 右侧作等边△ABE ,其它条件均不改变,请在图2中补全图形,探究线段EF 、AF 、DF 三者的数量关系,并证明你的结论.”(1)求∠DFC 的度数;(2)在图1中探究线段EF 、AF 、DF 之间的数量关系,并证明;(3)在图2中补全图形,探究线段EF 、AF 、DF 之间的数量关系,并证明.6.已知ABC 和ADE 都是等腰三角形,AB AC =,AD AE =,DAE BAC ∠=∠. (初步感知)(1)特殊情形:如图①,若点D ,E 分别在边AB ,AC 上,则DB __________EC .(填>、<或=)(2)发现证明:如图②,将图①中的ADE 绕点A 旋转,当点D 在ABC 外部,点E 在ABC 内部时,求证:DB EC =.(深入研究)(3)如图③,ABC 和ADE 都是等边三角形,点C ,E ,D 在同一条直线上,则CDB ∠的度数为__________;线段CE ,BD 之间的数量关系为__________.(4)如图④,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,点C 、D 、E 在同一直线上,AM 为ADE 中DE 边上的高,则CDB ∠的度数为__________;线段AM ,BD ,CD 之间的数量关系为__________.(拓展提升)(5)如图⑤,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,将ADE 绕点A 逆时针旋转,连结BE 、CD .当5AB =,2AD =时,在旋转过程中,ABE △与ADC 的面积和的最大值为__________.7.已知:ABC 中,过B 点作BE ⊥AD ,=90=,∠︒ACB AC BC .(1)如图1,点D 在BC 的延长线上,连AD ,作BE AD ⊥于E ,交AC 于点F .求证:=AD BF ;(2)如图2,点D 在线段BC 上,连AD ,过A 作AE AD ⊥,且=AE AD ,连BE 交AC 于F ,连DE ,问BD 与CF 有何数量关系,并加以证明;(3)如图3,点D 在CB 延长线上,=AE AD 且AE AD ⊥,连接BE 、AC 的延长线交BE 于点M ,若=3AC MC ,请直接写出DB BC的值.8.如图1.在△ABC 中,∠ACB =90°,AC =BC =10,直线DE 经过点C ,过点A ,B 分别作AD ⊥DE ,BE ⊥DE ,垂足分别为点D 和E ,AD =8,BE =6.(1)①求证:△ADC ≌△CEB ;②求DE 的长;(2)如图2,点M 以3个单位长度/秒的速度从点C 出发沿着边CA 运动,到终点A ,点N 以8个单位长度/秒的速度从点B 出发沿着线BC —CA 运动,到终点A .M ,N 两点同时出发,运动时间为t 秒(t >0),当点N 到达终点时,两点同时停止运动,过点M 作PM ⊥DE 于点P ,过点N 作QN ⊥DE 于点Q ;①当点N 在线段CA 上时,用含有t 的代数式表示线段CN 的长度;②当t 为何值时,点M 与点N 重合;③当△PCM 与△QCN 全等时,则t = .9.某校八年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC 中,∠ABC 与∠ACB 的平分线交于点P ,∠A =64°,则∠BPC = ;(2)如图2,△ABC 的内角∠ACB 的平分线与△ABC 的外角∠ABD 的平分线交于点E .其中∠A =α,求∠BEC .(用α表示∠BEC );(3)如图3,∠CBM 、∠BCN 为△ABC 的外角,∠CBM 、∠BCN 的平分线交于点Q ,请你写出∠BQC 与∠A 的数量关系,并证明.10.数学活动课上,老师出了这样一个题目:“已知:MF NF ⊥于F ,点A 、C 分别在NF 和MF 上,作线段AB 和CD (如图1),使90FAB MCD ∠-∠=︒.求证://AB CD ”.(1)聪聪同学给出一种证明问题的辅助线:如图2,过A 作//AG FM ,交CD 于G .请你根据聪聪同学提供的辅助线(或自己添加其它辅助线),给出问题的证明. (2)若点E 在直线CD 下方,且知30BED ∠=︒,直接写出ABE ∠和CDE ∠之间的数量关系.11.(1)探索发现:如图1,已知Rt △ABC 中,∠ACB =90°,AC =BC ,直线l 过点C ,过点A 作AD ⊥l ,过点B 作BE ⊥l ,垂足分别为D 、E .求证:AD =CE ,CD =BE .(2)迁移应用:如图2,将一块等腰直角的三角板MON 放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O 重合,另两个顶点均落在第一象限内,已知点M 的坐标为(1,3),求点N 的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线y =﹣3x+3与y 轴交于点P ,与x 轴交于点Q ,将直线PQ 绕P 点沿逆时针方向旋转45°后,所得的直线交x 轴于点R .求点R 的坐标.12.现给出一个结论:直角三角形斜边的中线等于斜边的一半;该结论是正确的,用图形语言可以表示为:如图1在ABC ∆中,90︒∠=C ,若点D 为AB 的中点,则12CD AB =. 请结合上述结论解决如下问题:已知,点P 是射线BA 上一动点(不与A,B 重合)分别过点A,B 向直线CP 作垂线,垂足分别为E,F,其中Q 为AB 的中点(1)如图2,当点P 与点Q 重合时,AE 与BF 的位置关系____________;QE 与QF 的数量关系是__________(2)如图3,当点P 在线段AB 上不与点Q 重合时,试判断QE 与QF 的数量关系,并给予证明.(3)如图4,当点P 在线段BA 的延长线上时,此时(2)中的结论是否成立?请画出图形并写出主要证明思路.13.小敏与同桌小颖在课下学习中遇到这样一道数学题:“如图(1),在等边三角形ABC 中,点E 在AB 上,点D 在CB 的延长线上,且ED EC =,试确定线段AE 与DB 的大小关系,并说明理由”.小敏与小颖讨论后,进行了如下解答:(1)取特殊情况,探索讨论:当点E 为AB 的中点时,如图(2),确定线段AE 与DB 的大小关系,请你写出结论:AE _____DB (填“>”,“<”或“=”),并说明理由.(2)特例启发,解答题目:解:题目中,AE 与DB 的大小关系是:AE _____DB (填“>”,“<”或“=”).理由如下:如图(3),过点E 作EF ∥BC ,交AC 于点F .(请你将剩余的解答过程完成) (3)拓展结论,设计新题:在等边三角形ABC 中,点E 在直线AB 上,点D 在直线BC 上,且ED EC =,若△ABC 的边长为1,2AE =,求CD 的长(请你画出图形,并直接写出结果).14.(阅读材料):(1)在ABC ∆中,若90C ∠=︒,由“三角形内角和为180°”得1801809090A B C ∠︒+∠=-∠︒︒-=︒=.(2)在ABC ∆中,若90A B ∠+∠=︒,由“三角形内角和为180°”得180()1809090C A B ∠=︒-∠+∠=︒-︒=︒.(解决问题):如图①,在平面直角坐标系中,点C 是x 轴负半轴上的一个动点.已知//AB x 轴,交y 轴于点E ,连接CE ,CF 是∠ECO 的角平分线,交AB 于点F ,交y 轴于点D .过E 点作EM 平分∠CEB ,交CF 于点M .(1)试判断EM 与CF 的位置关系,并说明理由;(2)如图②,过E 点作PE ⊥CE ,交CF 于点P .求证:∠EPC=∠EDP ;(3)在(2)的基础上,作EN 平分∠AEP ,交OC 于点N ,如图③.请问随着C 点的运动,∠NEM 的度数是否发生变化?若不变,求出其值:若变化,请说明理由.15.(1)发现:如图1,ABC ∆的内角ABC ∠的平分线和外角ACD ∠的平分线相交于点O 。

成都高新世纪城南路学校数学整式的乘法与因式分解中考真题汇编[解析版]

成都高新世纪城南路学校数学整式的乘法与因式分解中考真题汇编[解析版]

一、八年级数学整式的乘法与因式分解解答题压轴题(难)1.阅读以下材料,并按要求完成相应的任务.在初中数学课本中重点介绍了提公因式法和运用公式法两种因式分解的方法,其中运用公式法即运用平方差公式:22()()a b a b a b -=+-和完全平方公式:222)2(a ab b a b ±+=±进行分解因式,能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.当一个二次三项式不能直接能运用完全平方公式分解因式时,可应用下面方法分解因式,先将多项式2ax bx c ++(0)a ≠变形为2()a x m n ++的形式,我们把这样的变形方法叫做多项式2ax bx c ++的配方法.再运用多项式的配方法及平方差公式能对一些多项式进行分解因式.例如:21124x x ++2221111112422x x ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭ 2112524x ⎛⎫=+- ⎪⎝⎭ 1151152222x x ⎛⎫⎛⎫=+++- ⎪⎪⎝⎭⎝⎭ (8)(3)x x =++.根据以上材料,完成相应的任务:(1)利用“多项式的配方法”将268x x -+化成2()a x m n ++的形式为_______;(2)请你利用上述方法因式分解:①223x x +-; ②24127x x +-.【答案】(1)2(3)1x --;(2)①(3)(1)x x +-;②(27)(21)x x +-【解析】【分析】(1)将多项式2233+-即可完成配方;(2)①将多项式+1-1后即可用配方法再根据平方差公式分解因式进行解答;②将多项式2233+-即可完成配方,再根据平方差公式分解因式,整理后即可得到结果.【详解】解:(1)268x x -+=2226338x x -+-+=2(3)1x --,故答案为:2(3)1x --;(2)①223x x +-22113x x =++--2(1)4x =+-(12)(12)x x =+++-(3)(1)x x =+-.②24127x x +-222(2)12337x x =++--2(23)16x =+-(234)(234)x x =+++-(27)(21)x x =+-.【点睛】此题考查多项式的配方法,多项式的分解因式,正确理解题中的配方法的解题方法是关键.2.(1)你能求出(a ﹣1)(a 99+a 98+a 97+…+a 2+a +1)的值吗?遇到这样的问题,我们可以先从简单的情况入手,分别计算下列各式的值.(a ﹣1)(a +1)= ;(a ﹣1)(a 2+a +1)= ;(a ﹣1)(a 3+a 2+a +1)= ;…由此我们可以得到:(a ﹣1)(a 99+a 98+…+a +1)= .(2)利用(1)的结论,完成下面的计算:2199+2198+2197+…+22+2+1.【答案】(1)21a -,31a -,41a -,1001a -(2)20021-【解析】【分析】根据简单的多项式运算推出同类复杂多项式运算结果的一般规律,然后根据找出的规律进行解决较难的运算问题.【详解】解:(1)21a - 31a - 41a - 1001a -(2)1991981972222221+++⋅⋅⋅++=()21- ⨯(1991981972222221+++⋅⋅⋅++)=20021-.【点睛】考查了学生的基础运算能力和对同一类运算问题计算结果的一般规律性洞察力.3.阅读材料:若m 2﹣2mn+2n 2﹣8n+16=0,求m 、n 的值.解:∵m 2﹣2mn+2n 2﹣8n+16=0,∴(m 2﹣2mn+n 2)+(n 2﹣8n+16)=0∴(m ﹣n )2+(n ﹣4)2=0,∴(m ﹣n )2=0,(n ﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知x 2﹣2xy+2y 2+6y+9=0,求xy 的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2﹣10a﹣12b+61=0,求△ABC 的最大边c的值;(3)已知a﹣b=8,ab+c2﹣16c+80=0,求a+b+c的值.【答案】(1)9;(2)△ABC的最大边c的值可能是6、7、8、9、10;(3)8.【解析】试题分析:(1)直接利用配方法得出关于x,y的值即可求出答案;(2)直接利用配方法得出关于a,b的值即可求出答案;(3)利用已知将原式变形,进而配方得出答案.试题解析:(1)∵x2﹣2xy+2y2+6y+9=0,∴(x2﹣2xy+y2)+(y2+6y+9)=0,∴(x﹣y)2+(y+3)2=0,∴x﹣y=0,y+3=0,∴x=﹣3,y=﹣3,∴xy=(﹣3)×(﹣3)=9,即xy的值是9.(2)∵a2+b2﹣10a﹣12b+61=0,∴(a2﹣10a+25)+(b2﹣12b+36)=0,∴(a﹣5)2+(b﹣6)2=0,∴a﹣5=0,b﹣6=0,∴a=5,b=6,∵6﹣5<c<6+5,c≥6,∴6≤c<11,∴△ABC的最大边c的值可能是6、7、8、9、10.(3)∵a﹣b=8,ab+c2﹣16c+80=0,∴a(a﹣8)+16+(c﹣8)2=0,∴(a﹣4)2+(c﹣8)2=0,∴a﹣4=0,c﹣8=0,∴a=4,c=8,b=a﹣8=4﹣8=﹣4,∴a+b+c=4﹣4+8=8,即a+b+c的值是8.4.观察下列各式:()()2111,-+=-x x x()()23-++=-x x x x111,()()324x x x x x-+++=-111,()()4325-++++=-111,x x x x x x······()1根据规律()()122 1 ...1n n x x x x x ---+++++=(其中n 为正整数) ;()()3029282(51)5555251-+++++()3计算:201920182017321(2)(2)(2)(2)(2)(2)1-+-+-++-+--++ 【答案】(1)1n x -;(2)311-5;(3)2020213-- 【解析】【分析】(1)归纳总结得到一般性规律,即可得到结果;(2)根据一般性结果,将n=31,x=5代入(1)中即可;(3)将代数式适当变形为(1)的形式,根据前面总结的规律即可计算出结果.【详解】(1)根据上述规律可得()()122 1 ...1n n x x x x x ---+++++=1n x -,故填:1n x -;(2)由(1)可知()3029282(51)555551-+++++=311-5()3 201920182017321(2)(2)(2)(2)(2)(2)1-+-+-+⋅+-+-+-+ =201920182011732[(2)1](2)(2)(2)(2)(2)(2)13⎡⎤---+-+-+⋯+-+--+⎣⎦-+ =2020(2)13--- =2020213-- 【点睛】本题考查整式的乘法,能根据题例归纳总结出一般性规律是解题关键,(3)中能对整式适当变形是解题关键,但需注意变形时要为等量变形.5.图①是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)请用两种不同的方法求图②中阴影部分的面积: 方法1: 方法2:(2)观察图②请你写出下列三个代数式:(m+n )2,(m ﹣n )2,mn 之间的等量关系. ;(3)根据(2)题中的等量关系,解决:已知:a ﹣b=5,ab=﹣6,求:(a+b )2的值;【答案】(1)(m-n )2;(m+n )2-4mn ;(2)(m-n )2=(m+n )2-4mn ;(3)1.【解析】【分析】(1)方法1:表示出阴影部分的边长,然后利用正方形的面积公式列式;方法2:利用大正方形的面积减去四周四个矩形的面积列式;(2)根据不同方法表示的阴影部分的面积相同解答;(3)根据(2)的结论整体代入进行计算即可得解.【详解】解:(1)方法1:∵阴影部分的四条边长都是m-n,是正方形,∴阴影部分的面积=(m-n )2方法2:∵阴影部分的面积=大正方形的面积减去四周四个矩形的面积∴阴影部分的面积=(m+n )2-4mn ;(2)根据(1)中两种计算阴影部分的面积方法可知(m-n )2=(m+n )2-4mn ;(3)由(2)可知(a+b )2=(a-b )2+4ab ,∵a-b=5,ab=-6,∴(a+b )2=(a-b )2+4ab=52+4×(-6)=25-24=1.【点睛】本题考查几何图形与完全平方公式,应从整体和部分两方面来理解完全平方公式的几何意义;主要围绕图形面积展开分析.6.一个四位数,记千位上和百位上的数字之和为x ,十位上和个位上的数字之和为y ,如果x y =,那么称这个四位数为“和平数”.例如:1423,14x =+,23y =+,因为x y =,所以1423是“和平数”.(1)直接写出:最小的“和平数”是 ,最大的“和平数”是 ;(2)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”.例如:1423与4132为一组“相关和平数”求证:任意的一组“相关和平数”之和是1111的倍数.(3)求个位上的数字是千位上的数字的两倍且百位上的数字与十位上的数字之和是12的倍数的所有“和平数”;【答案】(1)1001,9999;(2)见详解;(3)2754和4848【解析】【分析】(1)根据和平数的定义,即可得到结论;(2)设任意的两个“相关和平数”为abcd,badc(a,b,c,d分别取0,1,2, (9)a≠0,b≠0),于是得到abcd badc+=1100(a+b)+11(c+d)=1111(a+b),即可得到结论.(3)设这个“和平数”为abcd,于是得到d=2a,a+b=c+d,b+c=12k,求得2c+a=12k,即a=2、4,6,8,d=4、8、12(舍去)、16(舍去);①、当a=2,d=4时,2(c+1)=12k,得到c=5则b=7;②、当a=4,d=8时,得到c=4则b=8,于是得到结论;【详解】解:(1)由题意得,最小的“和平数”1001,最大的“和平数”9999,故答案为:1001,9999;(2)设任意的两个“相关和平数”为abcd,badc(a,b,c,d分别取0,1,2,…,9且a≠0,b≠0),则+=1100(a+b)+11(c+d)=1111(a+b);abcd badc即两个“相关和平数”之和是1111的倍数.(3)设这个“和平数”为abcd,则d=2a,a+b=c+d,b+c=12k,∴2c+a=12k,即a=2、4,6,8,d=4、8、12(舍去)、16(舍去),①当a=2,d=4时,2(c+1)=12k,可知c+1=6k且a+b=c+d,∴c=5则b=7,②当a=4,d=8时,2(c+2)=12k,可知c+2=6k且a+b=c+d,∴c=4则b=8,综上所述,这个数为:2754和4848.【点睛】本题考查了因式分解的应用,正确的理解新概念和平数”是解题的关键.7.一个四位正整数m各个数位上的数字互不相同且都不为0,四位数m的前两位数字之和为5,后两位数字之和为11,称这样的四位数m为“半期数”;把四位数m的各位上的数字依次轮换后得到新的四位数m′,设m′=abcd,在m′的所有可能的情况中,当|b+2c﹣a ﹣d|最小时,称此时的m′是m的“伴随数”,并规定F(m′)=a2+c2﹣2bd;例如:m=2365,则m′为:3652,6523,5236,因为|6+10﹣3﹣2|=11,|5+4﹣6﹣3|=0,|2+6﹣5﹣6|=3,0最小,所以6523叫做2365的“伴随数”,F(5236)=52+32﹣2×2×6=10.(1)最大的四位“半期数”为;“半期数”3247的“伴随数”是.(2)已知四位数P=abcd是“半期数”,三位数Q=2ab,且441Q﹣4P=88991,求F(P')的最大值.【答案】(1)4192,7324;(2)42.【解析】【分析】(1)根据“半期数”的定义分析最大的四位“半期数”应该是千位最大,最大只能为4,所以百位是1,十位最大是9,个位是2,所以最大半期数为:4192,分析3247的所有可能为,2473,4732,7324.根据题意|b+2c﹣a﹣d|最小的数是7324,所以3247的“伴随数”是:7324.(2)根据定义可知a+b=5,c+d=11.再根据441Q﹣4P=88991,可以算出P的值,从而求出F(P')的最大值.【详解】解;(1)根据题意可得最大的四位“半期数”应该是千位最大,最大只能为4,所以百位是1,十位最大是9,个位是2,所以最大半期数为:4192.∵3247的所有可能为,2473,4732,7324.∵|4+14﹣2﹣3|=13,|7+6﹣4﹣2|=7,|3+4﹣7﹣4|=4, 4最小,所以7324为3247的“伴随数”.故答案为4192;7324.(2)∵P为“半期数”∴a+b=5,c+d=11,∴b=5﹣a,d=11﹣c,∴P=1000a+100(5﹣a)+10c+11﹣c=900a+9c+511.∵Q=200+10a+c,∴441Q﹣4P=88991,∴441(200+10a+c)﹣4(900a+9c+511)=88991化简得:2a+c=7①当a=1时,c=5,此时这个四位数为1456符合题意;②当a=2时,c=3,此时这个四位数为2338不符合题意,舍去;③当a=3时,c=1,不符合题意,舍去;综上所述:这个四位数只能是1456,则P'可能为4561,5614,6145.∵|5+12﹣4﹣1|=12,|6+2﹣5﹣4|=1,|1+8﹣6﹣5|=2,1最小,所以5614为P的“伴随数”,∴F(5614)=a2+c2﹣2bd=25+1﹣2×6×4=﹣22;F(4561)=a2+c2﹣2bd=16+36﹣2×5×1=42;F(6145)=a2+c2﹣2bd=36+16﹣2×1×5=42;∴F(P')的最大值为42.【点睛】解决本道题的关键是理解好半期数的定义:一个四位正整数m各个数位上的数字互不相同且都不为0,四位数m的前两位数字之和为5,后两位数字之和为11,称这样的四位数m 为“半期数”,然后根据当|b+2c﹣a﹣d|最小时,称此时的m'是m的“伴随数”来确定伴随数.8.任何一个正整数n 都可以进行这样的分解:n =p ×q (p 、q 是正整数,且p ≤q ).如果p ×q 在n 的所有这种分解中两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解,并且规定F (n )=p q .例如18=1×18=2×9=3×6,这时就有F (18)=3162=.请解答下列问题:(1)计算:F (24);(2)当n 为正整数时,求证:F (n 3+2n 2+n )=1n . 【答案】(1)23;(2) 1n . 【解析】分析:(1)根据最佳分解的意义,把24分解成两数的积,找出差的绝对值最小的两数,求比值即可;(2)根据(1)的求法,确定差的绝对值最小的两数的特点,然后根据要求变形即可. 详解:(1)∵24=1×24=2×12=3×8=4×6,其中4与6的差的绝对值最小,∴F(24)=46=23. (2)∵n 3+2n 2+n =n(n +1)2,其中n(n +1)与(n +1)的差的绝对值最小,且(n +1)≤n(n +1),∴F(n 3+2n 2+n)=()n 1n n 1++=1n. 点睛: 本题主要考查实数的运算,理解最佳分解的定义,并将其转化为实数的运算是解题的关键.9.阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.下面是小涵同学用换元法对多项式(x 2﹣4x +1)(x 2﹣4x +7)+9进行因式分解的过程. 解:设x 2﹣4x =y原式=(y +1)(y +7)+9(第一步)=y 2+8y +16(第二步)=(y +4)2(第三步)=(x 2﹣4x +4)2(第四步)请根据上述材料回答下列问题:(1)小涵同学的解法中,第二步到第三步运用了因式分解的 ;A .提取公因式法B .平方差公式法C .完全平方公式法(2)老师说,小涵同学因式分解的结果不彻底,请你写出该因式分解的最后结果:;(3)请你用换元法对多项式(x2+2x)(x2+2x+2)+1进行因式分解.【答案】(1)C;(2)(x﹣2)4;(3)(x+1)4.【解析】【分析】(1)根据完全平方公式进行分解因式;(2)最后再利用完全平方公式将结果分解到不能分解为止;(3)根据材料,用换元法进行分解因式.【详解】(1)故选C;(2)(x2﹣4x+1)(x2﹣4x+7)+9,设x2﹣4x=y,则:原式=(y+1)(y+7)+9=y2+8y+16=(y+4)2=(x2﹣4x+4)2=(x﹣2)4.故答案为:(x﹣2)4;(3)设x2+2x=y,原式=y(y+2)+1=y2+2y+1=(y+1)2=(x2+2x+1)2=(x+1)4.【点睛】本题考查了因式分解﹣换元法,公式法,也是阅读材料问题,熟练掌握利用公式法分解因式是解题的关键.10.材料阅读:若一个整数能表示成a2+b2(a、b是正整数)的形式,则称这个数为“完美数”.例如:因为13=32+22,所以13是“完美数”;再如:因为a2+2ab+2b2=(a+b)2+b2(a、b是正整数),所以a2+2ab+2b2也是“完美数”.(1)请你写出一个大于20小于30的“完美数”,并判断53是否为“完美数”;(2)试判断(x2+9y2)·(4y2+x2)(x、y是正整数)是否为“完美数”,并说明理由.【答案】(1)25,53是完美数; (2)是,理由见解析.【解析】【分析】(1)根据“完美数”的定义判断即可;(2)根据多项式的乘法法则计算出结果后,根据“完美数”的定义判断即可.【详解】(1)25=4²+3²,∵53=49+4=7²+2²,∴53是“完美数”;(2)(x²+9y²)⋅(4y²+x²)是“完美数”,(x²+9y²)⋅(4y²+x²)=4x2y²+364y+4x+9x²y²=13x²y²+364y+4x=(6y²+x²) ²+x²y²,∴(x²+9y²)⋅(4y²+x²)是“完美数”.【点睛】本题考查了因式分解的应用,正确的理解新概念“完美数”是解题的关键.。

成都高新世纪城南路学校七年级数学压轴题专题

成都高新世纪城南路学校七年级数学压轴题专题

成都高新世纪城南路学校七年级数学压轴题专题一、七年级上册数学压轴题1.已知:AOD 160∠=︒,OB 、OM 、ON ,是AOD ∠ 内的射线.(1)如图 1,若 OM 平分 AOB ∠, ON 平分BOD ∠.当射线OB 绕点O 在AOD ∠ 内旋转时,MON ∠= 度.(2)OC 也是AOD ∠内的射线,如图2,若BOC 20∠=︒ ,OM 平分AOC ∠,ON 平分BOD ∠,当射线OB 绕点O 在AOC ∠内旋转时,求MON ∠的大小.(3)在(2)的条件下,当射线OB 从边OA 开始绕O 点以每秒2︒的速度逆时针旋转t秒,如图3,若AOM DON 23∠∠=::,求t 的值. 2.如图一,点C 在线段AB 上,图中有三条线段AB 、AC 和BC ,若其中一条线段的长度是另外一条线段长度的2倍,则称点C 是线段AB 的“巧点”.(1)填空:线段的中点 这条线段的巧点(填“是”或“不是”或“不确定是”) (问题解决)(2)如图二,点A 和B 在数轴上表示的数分别是20-和40,点C 是线段AB 的巧点,求点C 在数轴上表示的数。

(应用拓展)(3)在(2)的条件下,动点P 从点A 处,以每秒2个单位的速度沿AB 向点B 匀速运动,同时动点Q 从点B 出发,以每秒4个单位的速度沿BA 向点A 匀速运动,当其中一点到达中点时,两个点运动同时停止,当A 、P 、Q 三点中,其中一点恰好是另外两点为端点的线段的巧点时,直接写出运动时间()t s 的所有可能值.3.在数轴上,点A 向右移动1个单位得到点B ,点B 向右移动()1n +(n 为正整数)个单位得到点C ,点A ,B ,C 分别表示有理数a ,b ,c ; (1)当1n =时,①点A ,B ,C 三点在数轴上的位置如图所示,a ,b ,c 三个数的乘积为正数,数轴上原点的位置可能( )A .在点A 左侧或在A ,B 两点之间 B .在点C 右侧或在A ,B 两点之间 C .在点A 左侧或在B ,C 两点之间D .在点C 右侧或在B ,C 两点之间②若这三个数的和与其中的一个数相等,求a 的值;(2)将点C 向右移动()2+n 个单位得到点D ,点D 表示有理数d ,若a 、b 、c 、d 四个数的积为正数,这四个数的和与其中的两个数的和相等,且a 为整数,请写出n 与a 的关系式.4.已知多项式622437x y x y x ---,次数是b ,4a 与b 互为相反数,在数轴上,点A 表示a ,点B 表示数b .(1)a= ,b= ;(2)若小蚂蚁甲从点A 处以3个单位长度/秒的速度向左运动,同时小蚂蚁乙从点B 处以4个单位长度/秒的速度也向左运动,丙同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O 处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t 秒,求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t .(写出解答过程)(3)若小蚂蚁甲和乙约好分别从A ,B 两点,分别沿数轴甲向左,乙向右以相同的速度爬行,经过一段时间原路返回,刚好在16s 时一起重新回到原出发点A 和B ,设小蚂蚁们出发t(s)时的速度为v(mm/s),v 与t 之间的关系如下图,(其中s 表示时间单位秒,mm 表示路程单位毫米) t (s ) 0<t≤2 2<t≤5 5<t≤16 v (mm/s )10168①当t 为1时,小蚂蚁甲与乙之间的距离是 .②当2<t≤5时,小蚂蚁甲与乙之间的距离是 .(用含有t 的代数式表示) 5.已知:a 是最大的负整数,且a 、b 满足|c-7|+(2a+b)2=0,请回答问题:(1)请直接写出a 、b 、c 的值:a =_____,b =_____,c =_____;(2)数a 、b 、c 所对应的点分别为A 、B 、C ,已知数轴上两点间的距离为这两点所表示的数的差的绝对值(或用这两点所表示的数中较大的数减去较小的数),若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB ,试计算此时BC-AB 的值; (3)在(1)(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,则经过t 秒钟时,请问:BC-AB 的值是否随着时间t 的变化而改变?若变化,请说明理由,若不变,请求其值.6.数轴上有A ,B ,C 三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“关联点”.例如:数轴上点A ,B ,C 所表示的数分别为1,3,4,此时点B 是点A ,C 的“关联点”.回答下列问题:(1)若点A 表示数-2,点B 表示数1.下列各数-1,2,4,6所对应的点是1C 、2C 、3C .其中是点A ,B 的“关联点”的是______.(2)点A 表示数4,点B 表示数10,P 为数轴上一个动点:①若点P 在点B 的左侧,且点P 是点A ,B 的“关联点”,则此时点P 表示的数是多少? ②若点P 在点B 的右侧,点P ,A ,B 中,有一个点恰好是其它两个点的“关联点”,请直接写出此时点P 表示的数.7.已知,A ,B 在数轴上对应的数分用a ,b 表示,且()220100a b -++=,数轴上动点P 对应的数用x 表示.(1)在数轴上标出A 、B 的位置,并直接写出A 、B 之间的距离; (2)写出x a x b -+-的最小值;(3)已知点C 在点B 的右侧且BC =9,当数轴上有点P 满足PB =2PC 时, ①求P 点对应的数x 的值;②数轴上另一动点Q 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点Q 能移动到与①中的点P 重合的位置吗?若都不能,请直接回答.若能,请直接指出,第几次移动可以重合。

成都高新世纪城南路学校九年级上册压轴题数学模拟试卷及答案

成都高新世纪城南路学校九年级上册压轴题数学模拟试卷及答案

成都高新世纪城南路学校九年级上册压轴题数学模拟试卷及答案一、压轴题1.在锐角△ABC 中,AB=AC ,AD 为BC 边上的高,E 为AC 中点.(1)如图1,过点C 作CF ⊥AB 于F 点,连接EF .若∠BAD =20°,求∠AFE 的度数;(2)若M 为线段BD 上的动点(点M 与点D 不重合),过点C 作CN ⊥AM 于N 点,射线EN ,AB 交于P 点.①依题意将图2补全;②小宇通过观察、实验,提出猜想:在点M 运动的过程中,始终有∠APE =2∠MAD . 小宇把这个猜想与同学们进行讨论,形成了证明该猜想的几种想法:想法1:连接DE ,要证∠APE =2∠MAD ,只需证∠PED =2∠MAD .想法2:设∠MAD =α,∠DAC =β,只需用α,β表示出∠PEC ,通过角度计算得∠APE =2α.想法3:在NE 上取点Q ,使∠NAQ =2∠MAD ,要证∠APE =2∠MAD ,只需证△NAQ ∽△APQ .……请你参考上面的想法,帮助小宇证明∠APE =2∠MAD .(一种方法即可)2.定义:对于已知的两个函数,任取自变量x 的一个值,当0x ≥时,它们对应的函数值相等;当0x <时,它们对应的函数值互为相反数,我们称这样的两个函数互为相关函数.例如:正比例函数y x =,它的相关函数为(0)(0)x x y x x ≥⎧=⎨-<⎩. (1)已知点()5,10A -在一次函数5y ax =-的相关函数的图像上,求a 的值;(2)已知二次函数2142y x x =-+-. ①当点3,2B m ⎛⎫ ⎪⎝⎭在这个函数的相关函数的图像上时,求m 的值; ②当33x -≤≤时,求函数2142y x x =-+-的相关函数的最大值和最小值. (3)在平面直角坐标系中,点M 、N 的坐标分别为1,12⎛⎫- ⎪⎝⎭、9,12⎛⎫ ⎪⎝⎭,连结MN .直接写出线段MN 与二次函数24y x x n =-++的相关函数的图像有两个公共点时n 的取值范围.3.定义:对于二次函数2y ax bx c =++(0)a ≠,我们称函数221()1111()222ax bx c x m y ax bx c x m ⎧++-≥⎪=⎨---+<⎪⎩为它的m 分函数(其中m 为常数).例如:2y x 的m 分函数为221()11()2x x m y x x m ⎧-≥⎪=⎨-+<⎪⎩.设二次函数244y x mx m =-+的m 分函数的图象为G .(1)直接写出图象G 对应的函数关系式.(2)当1m =时,求图象G 在14x -≤≤范围内的最高点和最低点的坐标.(3)当图象G 在x m ≥的部分与x 轴只有一个交点时,求m 的取值范围.(4)当0m >,图象G 到x 轴的距离为m 个单位的点有三个时,直接写出m 的取值范围.4.已知:如图,抛物线2134y x x =--交x 正半轴交于点A ,交y 轴于点B ,点()4,C n -在抛物线上,直线l :34y x m =-+过点B ,点E 是直线l 上的一个动点,ACE △的外心是P .(1)求m ,n 的值.(2)当点E 移动到点B 时,求ACE △的面积.(3)①是否存在点E ,使得点P 落在ACE △的边上,若存在,求出点E 的坐标,若不存在,请说明理由.②过点A 作直线AD x ⊥轴交直线l 于点D ,当点E 从点D 移动到点B 时,圆心P 移动的路线长为_____.(直接写出答案)5.二次函数22(0)63m m y x x m m =-+>的图象交y 轴于点A ,顶点为P ,直线PA 与x 轴交于点B . (1)当m =1时,求顶点P 的坐标;(2)若点Q (a ,b )在二次函数22(0)63m m y x x m m =-+>的图象上,且0b m ->,试求a 的取值范围;(3)在第一象限内,以AB 为边作正方形ABCD .①求点D 的坐标(用含m 的代数式表示);②若该二次函数的图象与正方形ABCD 的边CD 有公共点,请直接写出符合条件的整数m 的值.6.已知点P(2,﹣3)在抛物线L :y =ax 2﹣2ax+a+k (a ,k 均为常数,且a≠0)上,L 交y 轴于点C ,连接CP .(1)用a 表示k ,并求L 的对称轴及L 与y 轴的交点坐标;(2)当L 经过(3,3)时,求此时L 的表达式及其顶点坐标;(3)横、纵坐标都是整数的点叫做整点.如图,当a <0时,若L 在点C ,P 之间的部分与线段CP 所围成的区域内(不含边界)恰有4个整点,求a 的取值范围;(4)点M(x 1,y 1),N(x 2,y 2)是L 上的两点,若t≤x 1≤t+1,当x 2≥3时,均有y 1≥y 2,直接写出t 的取值范围.7.如图1,在Rt ABC △中,90A ∠=︒,AB AC =,点D ,E 分别在边AB ,AC上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是_________,位置关系是_________;(2)探究证明:把ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN 的形状,并说明理由;(3)拓展延伸:把ADE 绕点A 在平面内自由旋转,若4=AD ,10AB =,请直接写出PMN 面积的最大值.8.如图1,抛物线221y x x =-+-的顶点A 在x 轴上,交y 轴于B ,将该抛物线向上平移,平移后的抛物线与x 轴交于,C D ,顶点为()1,4E .(1)求点B 的坐标和平移后抛物线的解析式;(2)点M 在原抛物线上,平移后的对应点为N ,若OM ON =,求点M 的坐标; (3)如图2,直线CB 与平移后的抛物线交于F .在抛物线的对称轴上是否存在点P ,使得以,,C F P 为顶点的三角形是直角三角形?若存在,直接写出点P 的坐标;若不存在,请说明理由.9.如图,在平面直角坐标系中,已知抛物线2y x bx c =++与直线AB 相交于A ,B 两点,其中()3,4A --,()0,1B -.(1)求该抛物线的函数表达式;(2)点P 为直线AB 下方抛物线上的任意一点,连接PA ,PB ,求PAB △面积的最大值; (3)将该抛物线向右平移2个单位长度得到抛物线()211110y a x b x c a =++≠,平移后的抛物线与原抛物线相交于点C ,点D 为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E ,使以点B ,C ,D ,E 为顶点的四边形为菱形,若存在,请直接写出点E 的坐标;若不存在,请说明理由.10.如图①,在ABC 中,AB AC =,BAC α∠=,点D 、E 分别在边AB 、AC 上,AD AE =,连接BE ,点M 、P 、N 分别为DE 、BE 、BC 的中点.(1)观察猜想:图①中,线段PM 与PN 的数量关系是_____________,用含α的代数式表示MPN ∠的度数是________________________;(2)探究证明:把ADE 绕点A 顺时针方向旋转到图②的位置,连接MN ,BD ,CE ,当120α=︒时,判断PMN 的形状,并说明理由;(3)拓展延伸:把ADE 绕点A 在平面内任意旋转,若90α=︒,3AD =,7AB =,请直接写出线段MN 的最大值和最小值.11.新定义:在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的长方形的周长与面积相等,则这个点叫做“和谐点”.例如,如图①,过点P 分别作x 轴、y 轴的垂线,与坐标轴围成长方形OAPB 的周长与面积相等,则点P 是“和谐点”.(1)点M (1,2)_____“和谐点”(填“是”或“不是”);若点P (a ,3)是第一象限内的一个“和谐点”,3x a y =⎧⎨=⎩是关于x ,y 的二元一次方程y x b =-+的解,求a ,b 的值. (2)如图②,点E 是线段PB 上一点,连接OE 并延长交AP 的延长线于点Q ,若点P (2,3),2OBE EPQ S S ∆∆-=,求点Q 的坐标;(3)如图③,连接OP ,将线段OP 向右平移3个单位长度,再向下平移1个单位长度,得到线段11O P .若M 是直线11O P 上的一动点,连接PM 、OM ,请画出图形并写出OMP ∠与1MPP ∠,1MOO ∠的数量关系.12.已知在矩形ABCD 中,AB=2,AD=4.P 是对角线BD 上的一个动点(点P 不与点B 、D 重合),过点P 作PF⊥BD,交射线BC 于点F .联结AP ,画∠FPE=∠BAP,PE 交BF 于点E .设PD=x ,EF=y .(1)当点A 、P 、F 在一条直线上时,求△ABF 的面积;(2)如图1,当点F 在边BC 上时,求y 关于x 的函数解析式,并写出函数定义域;(3)联结PC ,若∠FPC=∠BPE,请直接写出PD 的长.13.如图,在平面直角坐标系中,点O 为坐标原点,抛物线21y x bx c 3=-++交x 轴于点A 、点B(点A 在点B 的左边),交y 轴于点C ,直线()y kx 6k k 0=-≠经过点B ,交y 轴于点D ,且CD OD =,1tan OBD 3∠=. ()1求b 、c 的值;()2点()P m,m 在第一象限,连接OP 、BP ,若OPB ODB ∠∠=,求点P 的坐标,并直接判断点P 是否在该抛物线上;()3在()2的条件下,连接PD ,过点P 作PF //BD ,交抛物线于点F ,点E 为线段PF 上一点,连接DE 和BE ,BE 交PD 于点G ,过点E 作EH BD ⊥,垂足为H ,若DBE 2DEH ∠∠=,求EG EF的值.14.如图,抛物线23y ax bx =++经过点A (1,0),B (4,0)与y 轴交于点C .(1)求抛物线的解析式;(2)如图①,在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由.(3)如图②,点Q是线段OB上一动点,连接BC,在线段BC上是否存在这样的点M,使△CQM为等腰三角形且△BQM为直角三角形?若存在,求M的坐标;若不存在,请说明理由.15.如图,在平面直角坐标系xOy中,已知直线AB经过点A(﹣2,0),与y轴的正半轴交于点B,且OA=2OB.(1)求直线AB的函数表达式;(2)点C在直线AB上,且BC=AB,点E是y轴上的动点,直线EC交x轴于点D,设点E的坐标为(0,m)(m>2),求点D的坐标(用含m的代数式表示);(3)在(2)的条件下,若CE:CD=1:2,点F是直线AB上的动点,在直线AC上方的平面内是否存在一点G,使以C,G,F,E为顶点的四边形是菱形?若存在,请求出点G 的坐标;若不存在,请说明理由.16.如图,抛物线y=mx2﹣4mx+2m+1与x轴交于A(x1,0),B(x2,0)两点,与y轴交于点C,且x2﹣x1=2.(1)求抛物线的解析式;(2)E 是抛物线上一点,∠EAB =2∠OCA ,求点E 的坐标;(3)设抛物线的顶点为D ,动点P 从点B 出发,沿抛物线向上运动,连接PD ,过点P 做PQ ⊥PD ,交抛物线的对称轴于点Q ,以QD 为对角线作矩形PQMD ,当点P 运动至点(5,t )时,求线段DM 扫过的图形面积.17.如图,在直角ABC ∆中,90C ∠=︒,5AB =,作ABC ∠的平分线交AC 于点D ,在AB 上取点O ,以点O 为圆心经过B 、D 两点画圆分别与AB 、BC 相交于点E 、F (异于点B ).(1)求证:AC 是O 的切线;(2)若点E 恰好是AO 的中点,求BF 的长;(3)若CF 的长为34. ①求O 的半径长;②点F 关于BD 轴对称后得到点F ',求BFF '∆与DEF '∆的面积之比.18.如图1,已知Rt ABC ∆中,90ACB ∠=,2AC =,23BC =,它在平面直角坐标系中位置如图所示,点,A C 在x 轴的负半轴上(点C 在点A 的右侧),顶点B 在第二象限,将ABC ∆沿AB 所在的直线翻折,点C 落在点D 位置(1)若点C 坐标为()1,0-时,求点D 的坐标;(2)若点B 和点D 在同一个反比例函数的图象上,求点C 坐标;(3)如图2,将四边形BCAD 向左平移,平移后的四边形记作四边形1111B C A D ,过点1D 的反比例函数(0)k y k x=≠的图象与CB 的延长线交于点E ,则在平移过程中,是否存在这样的k ,使得以点1,,E B D 为顶点的三角形是直角三角形且点11,,D B E 在同一条直线上?若存在,求出k 的值;若不存在,请说明理由19.如图,在直角坐标系中,点C 在第一象限,CB x ⊥轴于B ,CA y ⊥轴于A ,3CB =,6CA =,有一反比例函数图象刚好过点C .(1)分别求出过点C 的反比例函数和过A ,B 两点的一次函数的函数表达式;(2)直线l x ⊥轴,并从y 轴出发,以每秒1个单位长度的速度向x 轴正方向运动,交反比例函数图象于点D ,交AC 于点E ,交直线AB 于点F ,当直线l 运动到经过点B 时,停止运动.设运动时间为t (秒).①问:是否存在t 的值,使四边形DFBC 为平行四边形?若存在,求出t 的值;若不存在,说明理由;②若直线l 从y 轴出发的同时,有一动点Q 从点B 出发,沿射线BC 方向,以每秒3个单位长度的速度运动.是否存在t 的值,使以点D ,E ,Q ,C 为顶点的四边形为平行四边形;若存在,求出t 的值,并进一步探究此时的四边形是否为特殊的平行四边形;若不存在,说明理由.20.(问题发现)(1)如图①,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边的中点,E 是AB 边上一动点,则EC +ED 的最小值是 .(问题研究)(2)如图②,平面直角坐标系中,分别以点A (﹣2,3),B (3,4)为圆心,以1、3为半径作⊙A 、⊙B ,M 、N 分別是⊙A 、⊙B 上的动点,点P 为x 轴上的动点,试求PM +PN 的最小值.(问题解决)(3)如图③,该图是某机器零件钢构件的模板,其外形是一个五边形,根据设计要求,边框AB 长为2米,边框BC 长为3米,∠DAB =∠B =∠C =90°,联动杆DE 长为2米,联动杆DE 的两端D 、E 允许在AD 、CE 所在直线上滑动,点G 恰好是DE 的中点,点F 可在边框BC 上自由滑动,请确定该装置中的两根连接杆AF 与FG 长度和的最小值并说明理由.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)证明见解析;(2)① 补图见解析;②证明见解析.【解析】【分析】【详解】(1)证明:∵AB=AC,AD为BC边上的高,∠BAD=20°,∴∠BAC=2∠BAD=40°.∵CF⊥AB,∴∠AFC=90°.∵E为AC中点,∴EF=EA=12 AC.∴∠AFE=∠BAC=40°.(2)① 当点P在边AB上是,补全图形如图当点P在AB的延长线上是,补全图形如图②Ⅰ、当点P在边AB上时,证明:想法1:如图3,连接DE.∵AB=AC,AD为BC边上的高,∴D为BC中点.∵E为AC中点,∴ED∥AB,∴∠PED=∠APE.∵∠ADC=90∘,E为AC中点,∴12 AE DE CE AC ===同理可证12 AE NE CE AC ===∴AE=NE=CE=DE.∴A,N,D,C在以点E为圆心,AC为直径的圆上,∴∠PED=2∠MAD.∴∠APE=2∠MAD.想法2:设∠MAD=α,∠DAC=β,∵CN⊥AM,∴∠ANC=90∘.∵E为AC中点,∴AE=NE=12 AC.∴∠ANE=∠NAC=∠MAD+∠DAC=α+β.∴∠NEC=∠ANE+∠NAC=2α+2β.∵AB=AC,AD⊥BC,∴∠BAC=2∠DAC=2β.∴∠APE=∠PEC−∠BAC=2α.∴∠APE=2∠MAD.Ⅱ、当点P在AB的延长线上时证明:想法1:连接DE.∵AB=AC,AD为BC边上的高,∴D为BC中点.∵E为AC中点,∴ED∥AB,∴∠1=∠APE.∵∠ADC=90°,E为AC中点,∴12AE DE CE AC===.同理可证12AE NE CE AC===.∴AE=NE=CE=DE.∴A,N,D,C在以点E为圆心,AC为直径的圆上.∴∠1=2∠MAD.∴∠APE=2∠MAD.想法2:设∠MAD=α,∠DAC=β,∵CN⊥AM,∴∠ANC=90∘.∵E为AC中点,∴AE=NE=12 AC.∴∠ANE=∠NAC=∠MAD+∠DAC=α+β.∴∠NEC=∠ANE+∠NAC=2α+2β.∵AB=AC,AD⊥BC,∴∠BAC=2∠DAC=2β.∴∠APE=∠PEC−∠BAC=2α.∴∠APE=2∠MAD.想法3:在NE上取点Q,使∠NAQ=2∠MAD,12∠∠∴=,AB AC AD BC =⊥BAD CAD ∴∠=∠12BAD CAD ∴∠-∠=∠-∠即∠3=∠4.34NAQ NAQ ∴∠+∠=∠+∠即PAQ EAN ∠=∠CN AM ⊥ 90ANC ︒∴∠=∵E 为AC 的中点,12AE NE AC ∴==,ANE EAN PAQ ANE ∴∠=∠∠=∠ AQP AQP ∠=∠~PAQ ANQ ∴2APE NAQ MAD ∴∠=∠=∠2.(1)1;(2)①2225-;②max 432y =,min 12y =-;(3)31n -<≤-,514n <≤【解析】 【分析】(1)先求出5y ax =-的相关函数,然后代入求解,即可得到答案;(2)先求出二次函数的相关函数,①分为m <0和m ≥0两种情况将点B 的坐标代入对应的关系式求解即可; ②当-3≤x <0时,y=x 2-4x+12,然后可 此时的最大值和最小值,当0≤x≤3时,函数y=-x 2+4x-12,求得此时的最大值和最小值,从而可得到当-3≤x≤3时的最大值和最小值; (3)首先确定出二次函数y=-x 2+4x+n 的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值,然后结合函数图象可确定出n 的取值范围. 【详解】解:(1)根据题意,一次函数5y ax =-的相关函数为5,(0)5,(0)ax x y ax x -≥⎧=⎨-+<⎩, ∴把点()5,10A -代入5y ax =-+,则(5)510a -⨯-+=,∴1a =;(2)根据题意,二次函数2142y x x =-+-的相关函数为2214,(0)214,(0)2x x x y x x x ⎧-+-≥⎪⎪=⎨⎪-+<⎪⎩,①当m <0时,将B (m ,32)代入y=x 2-4x+12得m 2-4m+1322=,解得:m=2- 当m≥0时,将B (m ,32)代入y=-x 2+4x-12得:-m 2+4m-12=32,解得:m=2综上所述:m=2m=2m=2 ②当-3≤x <0时,y=x 2-4x+12,抛物线的对称轴为x=2,此时y 随x 的增大而减小, ∴当3x =-时,有最大值,即2143(3)4(3)22y =--⨯-+=, ∴此时y 的最大值为432. 当0≤x≤3时,函数y=-x 2+4x 12-,抛物线的对称轴为x=2, 当x=0有最小值,最小值为12-, 当x=2时,有最大值,最大值y=72. 综上所述,当-3≤x≤3时,函数y=-x 2+4x 12-的相关函数的最大值为432,最小值为12-;(3)如图1所示:线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有1个公共点.∴当x=2时,y=1,即-4+8+n=1,解得n=-3.如图2所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=x2-4x-n与y轴交点纵坐标为1,∴-n=1,解得:n=-1.∴当-3<n≤-1时,线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.如图3所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=-x2+4x+n经过点(0,1),∴n=1.如图4所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.∵抛物线y=x 2-4x-n 经过点M (12-,1), ∴14+2-n=1,解得:n=54. ∴1<n≤54时,线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有2个公共点. 综上所述,n 的取值范围是-3<n≤-1或1<n≤54. 【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数的图象和性质、函数图象上点的坐标与函数解析式的关系,求得二次函数y=-x 2+4x+n 的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值是解题的关键.3.(1)22441()1221()2x mx m x m y x mx m x m ⎧-+-≥⎪=⎨-+-+<⎪⎩(2)图象G 在14x -≤≤范围内的最高点和最低点的坐标分别为(4,3),71,2⎛⎫-- ⎪⎝⎭(3)当13m <或12m =或1m 时,图象G 在x m ≥的部分与x 轴只有一个交点(451333m ++<<,1334m -<<.【解析】 【分析】(1)根据分函数的定义直角写成关系式即可;(2)将m=1代入(1)所得的分函数可得2243(1)121(1)2x x x y x x x ⎧-+≥⎪=⎨-+-<⎪⎩,然后分11x -≤<和14x ≤≤两种情况分别求出最高点和最低点的坐标,最后比较最大值和最小值即可解答;(3)由于图象G 在x m ≥的部分与x 轴只有一个交点时,则可令对应二元一次方程的根的判别式等于0,即可确定m 的取值;同时发现无论m 取何实数、该函数的图象与x 轴总有交点,再令x=m 代入原函数解析式,求出m 的值,据此求出m 的取值范围; (4)先令2441x mx m m -+-=或-m①,利用根的判别式小于零确定求出m 的取值范围,然后再令x=m 代入2441x mx m m -+-=或-m②,然后再令判别式小于零求出m 的取值范围,令x=m 代入212212x mx m m -+-+=或-m③,令判别式小于零求出m 的范围,然后取①②③两两的共同部分即为m 的取值范围. 【详解】(1)图象G 对应的函数关系式为22441()1221()2x mx m x m y x mx m x m ⎧-+-≥⎪=⎨-+-+<⎪⎩(2)当1m =时,图象G 对应的函数关系式为2243(1)121(1)2x x x y x x x ⎧-+≥⎪=⎨-+-<⎪⎩.当11x -≤<时,将21212y x x =-+-配方,得21(2)12y x =--+. 所以函数值y 随自变量x 的增大而增大,此时函数有最小值,无最大值. 所以当1x =-时,函数值y 取得最小值,最小值为72y =-. 所以最低点的坐标为71,2⎛⎫-- ⎪⎝⎭. 当14x ≤≤时,将243y xx =-+配方,得2(2)1y x =--.所以当2x =时,函数值y 取得最小值,最小值为1y =- 所以当4x =时,函数值y 取得最大值,最大值为3y = 所以最低点的坐标为(2,1)-,最高点的坐标为(4,3)所以,图象G 在14x -≤≤范围内的最高点和最低点的坐标分别为(4,3),71,2⎛⎫-- ⎪⎝⎭. (3)当x m ≥时,令0y =,则24410x mx m -+-=2(4)4(41)m m ∆=-- 24(21)m =-所以无论m 取何实数,该函数的图象与x 轴总有交点. 所以当12m =时,图象G 在12x ≥的部分与x 轴只有一个交点. 当x m =时,222441341y m m m m m =-+-=-+-. 令0y =,则23410m m -+-=. 解得113m =,21m =. 所以当13m <或1m 时,图象G 在x m ≥的部分与x 轴只有一个交点.综上所述,当13m <或12m =或1m 时,图象G 在x m ≥的部分与x 轴只有一个交点.(4)当2441x mx m m -+-=即24310x mx m -+-=, △=()()22443116124m m m m --=-+>0,方∵212416452<0-⨯⨯=-, ∴m 不存在;当2441x mx m m -+-=-即24510x mx m -+-=, △=()()22445116204m m m m --=-+<0,解得14<m <1;① 将x=m 代入2441>x mx m m -+-得-3m 2+3m-1>0,因△=()()234133<0-⨯--=-则m 不存在;将x=-m 代入2441>x mx m m -+-得-3m 2+5m-1>0, 解得m 或m ;②将x=m 代入212212x mx m m -+-+=得 221023<m m -+,解得m <或m <③ 将x=m 代入212212x mx m m -+-+=-得 21=023m m -+,因△=23145<02-⨯=-故m 不存在;在①②③m <14m <<,即为图象G 到x 轴的距离为m 个单位的点有三个时的m 的取值范围. 【点睛】本题属于二次函数综合题,考查了新定义函数的定义、二次函数最值和二次函数图像,正确运用二次函数图像的性质和分类讨论思想是解答本题的关键. 4.(1)3,5m n =-=;(2)30ACES=;(3)①点E 的坐标为:1653,1122⎛⎫-- ⎪⎝⎭或6415,1111E ⎛⎫- ⎪⎝⎭或3660,1111E ⎛⎫- ⎪⎝⎭; ②圆心P 移动的路线长=8【解析】 【分析】 (1)令2130,4y x x =--=求出点A (6,0),把点C (-4,n )代入在抛物线方程,解得:n=5,把点B (0,-3)代入34y x m =-+,从而可得答案;(2)记AC 与y 轴的交点为H ,利用()1.2ACEA C SBH x x =••-即可求解; (3)①分当点P 落在CA 上时,点P 落在AE 上时,点P 落在CE 上时三种情况讨论即可; ②分E 在D 和B 点两种情况,求出圆心12,P P 点的坐标,则圆心P 移动的路线长=12PP ,即可求解. 【详解】 解:(1)令2130,4y x x =--= 24120,x x ∴--=()()260,x x ∴+-= 122,6,x x ∴=-=∴ 点A (6,0),把点C (-4,n )代入在抛物线方程, 解得:()()214435,4n =⨯----= ()4,5C ∴-,把点B (0,-3)代入34y x m =-+,解得:3m =-, 则:直线l :334y x =--,…① 3,5,m n ∴=-=(2)由(1)知:A (6,0)、B (0,-3)、C (-4,5)、 AC 中点为51,,2⎛⎫⎪⎝⎭设AC 为:,y kx b =+6045k b k b +=⎧∴⎨-+=⎩解得:123k b ⎧=-⎪⎨⎪=⎩AC ∴所在的直线方程为:132y x =-+, 如图,AC 与y 轴交点H 坐标为:(0,3),()1161030.22ACEA C SBH x x ∴=••-=⨯⨯=(3)如下图: ①当点P 落在CA 上时, 圆心P 为AC 的中点51,,2⎛⎫⎪⎝⎭其所在的直线与AC 垂直,1,2AC k =-AC ∴的垂直平分线即圆心P 所在的直线方程为:2,y x a =+把51,2⎛⎫⎪⎝⎭代入得:52,2a =+1,2a ∴=122y x ∴=+…②,334122y x y x ⎧=--⎪⎪∴⎨⎪=+⎪⎩①②解得:1611,5322x y ⎧=-⎪⎪⎨⎪=-⎪⎩E 的坐标为1653,1122⎛⎫-- ⎪⎝⎭; 当点P 落在AE 上时, 设点3,3,4E m m ⎛⎫-- ⎪⎝⎭则点P 的坐标633,282m m +⎛⎫-- ⎪⎝⎭, 则PA=PC ,2222633633645282282m m m m ++⎛⎫⎛⎫⎛⎫⎛⎫∴-++=++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 解得:64,11m =-故点6415,.1111E ⎛⎫- ⎪⎝⎭当点P 落在CE 上时, 则PC=PA ,同理可得:36,11m = 故点3660,1111E ⎛⎫- ⎪⎝⎭综上,点E 的坐标为:1653,1122⎛⎫-- ⎪⎝⎭或6415,1111E ⎛⎫- ⎪⎝⎭或3660,1111E ⎛⎫- ⎪⎝⎭; ②当E 在D 点时,作AD 的垂直平分线交AC 的垂直平分线于1P 点,则156,2D ⎛⎫- ⎪⎝⎭,1P 的纵坐标为15,4- 代入②式,解得:11715,,84P ⎛⎫-- ⎪⎝⎭ 同理当当E 在B 点时, 作AB 的垂直平分线交AC 的垂直平分线于2P 点,()()6,0,0,3,A B -AB ∴的中点为:33,2⎛⎫- ⎪⎝⎭,设AB 为:y ex f =+, 603e f f +=⎧∴⎨=-⎩解得:123e f ⎧=⎪⎨⎪=-⎩ ∴ AB 直线方程为:132y x =-, 设AB 的垂直平分线方程为:12,y x b =-+1323,2b ∴-⨯+=- 192b ∴=,∴ AB 的垂直平分线方程为:92,2y x =-+ 122922y x y x ⎧=+⎪⎪∴⎨⎪=-+⎪⎩解得:152x y =⎧⎪⎨=⎪⎩251,,2P ⎛⎫∴ ⎪⎝⎭则圆心P 移动的路线长=221217515251 5.8248PP ⎛⎫⎛⎫=+++= ⎪ ⎪⎝⎭⎝⎭255 【点评】 本题是二次函数的综合题,考查了二次函数与x 轴的交点坐标,利用待定系数法求解一次函数的解析式,三角形的外心的性质、一次函数的交点问题,勾股定理的应用,综合性很强,是难度较大类题目.5.(1)P (2,13);(2)a 的取值范围为:a <0或a >4;(3)①D (m ,m +3); ②2,3,4.【解析】【分析】(1)把m =1代入二次函数22(0)63m m y x x m m =-+>解析式中,进而求顶点P 的坐标即可; (2)把点Q (a ,b )代入二次函数22(0)63m m y x x m m =-+>解析式中,根据0b m ->得到关于a 的一元二次不等式即一元一次不等式组,解出a 的取值范围即可; (3)①过点D 作DE ⊥x 轴于点E ,过点A 作AF ⊥DE 于点F ,求出二次函数与y 轴的交点A 的坐标,得到OA 的长,再根据待定系数法求出直线AP 的解析式,进而求出与x 轴的交点B 的坐标,得到OB 的长;通过证明△ADF ≌△ABO ,得到AF=OA=m ,DF=OB=3,DE=DF+EF= DF+OA=m+3,求出点D 的坐标;②因为二次函数的图象与正方形ABCD 的边CD 有公共点,由①同理可得:C (m+3,3),分当x 等于点D 的横坐标时与当x 等于点C 的横坐标两种情况,进行讨论m 可能取的整数值即可.【详解】解:(1)当m =1时,二次函数为212163y x x =-+, ∴顶点P 的坐标为(2,13); (2)∵点Q (a ,b )在二次函数22(0)63m m y x x m m =-+>的图象上, ∴2263m m b a a m =-+, 即:2263m m b m a a -=- ∵0b m ->, ∴2263m m a a ->0, ∵m >0,∴2263a a ->0, 解得:a <0或a >4,∴a 的取值范围为:a <0或a >4;(3)①如下图,过点D 作DE ⊥x 轴于点E ,过点A 作AF ⊥DE 于点F ,∵二次函数的解析式为2263m m y x x m =-+, ∴顶点P (2,3m ), 当x=0时,y=m ,∴点A (0,m ),∴OA=m ;设直线AP 的解析式为y=kx+b(k≠0),把点A (0,m ),点P (2,3m )代入,得: 23m b m k b =⎧⎪⎨=+⎪⎩, 解得:3m k b m⎧=-⎪⎨⎪=⎩,∴直线AP 的解析式为y=3m -x+m , 当y=0时,x=3,∴点B (3,0);∴OB=3;∵四边形ABCD 是正方形,∴AD=AB ,∠DAF+∠FAB=90°,且∠OAB+∠FAB =90°,∴∠DAF=∠OAB ,在△ADF 和△ABO 中, DAF OAB AFD AOB AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADF ≌△ABO (AAS ),∴AF=OA=m ,DF=OB=3,DE=DF+EF= DF+OA=m+3,∴点D 的坐标为:(m ,m+3);②由①同理可得:C (m+3,3),∵二次函数的图象与正方形ABCD 的边CD 有公共点,∴当x =m 时,3y m ≤+,可得322363m m m m -+≤+,化简得:32418m m -≤. ∵0m >,∴2184m m m -≤,∴218(2)4m m--≤, 显然:m =1,2,3,4是上述不等式的解,当5m ≥时,2(2)45m --≥,18 3.6m ≤,此时,218(2)4m m-->, ∴符合条件的正整数m =1,2,3,4; 当x = m +3时,y ≥3,可得2(3)2(3)363m m m m m ++-+≥, ∵0m >,∴21823m m m ++≥,即218(1)2m m++≥, 显然:m =1不是上述不等式的解,当2m ≥时,2(1)211m ++≥,189m ≤,此时,218(1)2m m++>恒成立, ∴符合条件的正整数m =2,3,4;综上:符合条件的整数m 的值为2,3,4.【点睛】本题考查二次函数与几何问题的综合运用,熟练掌握二次函数的图象和性质、一次函数的图象和性质、正方形的性质是解题的关键.6.(1)k=-3-a ;对称轴x =1;y 轴交点(0,-3);(2)2y=2x -4x-3,顶点坐标(1,-5);(3)-5≤a <-4;(4)-1≤t ≤2.【解析】【分析】(1)将点P(2,-3)代入抛物线上,求得k 用a 表示的关系式;抛物线L 的对称轴为直线2a x==12a--,并求得抛物线与y 轴交点; (2)将点(3,3)代入抛物线的解析式,且k=-3-a ,解得a=2,k=-5,即可求得抛物线解析式与顶点坐标;(3)抛物线L 顶点坐标(1,-a-3),点C ,P 之间的部分与线段CP 所围成的区域内(不含边界)恰有4个整点,这四个整点都在x=1这条直线上,且y 的取值分别为-2、-1、0、1,可得1<-a-3≤2,即可求得a 的取值范围;(4)分类讨论取a >0与a <0的情况进行讨论,找出1x 的取值范围,即可求出t 的取值范围.【详解】解:(1)∵将点P(2,-3)代入抛物线L :2y=ax -2ax+a+k ,∴-3=4a 4a a+k=a+k -+∴k=-3-a ;抛物线L 的对称轴为直线-2a x=-=12a,即x =1; 将x=0代入抛物线可得:y=a+k=a+(-3-a)=-3,故与y 轴交点坐标为(0,-3);(2)∵L 经过点(3,3),将该点代入解析式中,∴9a-6a+a+k=3,且由(1)可得k=-3-a ,∴4a+k=3a-3=3,解得a=2,k=-5,∴L 的表达式为2y=2x -4x-3;将其表示为顶点式:2y=2(x-1)-5,∴顶点坐标为(1,-5);(3)解析式L 的顶点坐标(1,-a-3),∵在点C ,P 之间的部分与线段CP 所围成的区域内(不含边界)恰有4个整点,这四个整点都在x=1这条直线上,且y 的取值分别为-2、-1、0、1,∴1<-a-3≤2,∴-5≤a <-4;(4)①当a <0时,∵2x 3≥,为保证12y y ≥,且抛物线L 的对称轴为x=1,∴就要保证1x 的取值范围要在[-1,3]上,即t ≥-1且t+1≤3,解得-1≤t ≤2;②当a >0时,抛物线开口向上,t ≥3或t+1≤-1,解得:t ≥3或t ≤-2,但会有不符合题意的点存在,故舍去,综上所述:-1≤t ≤2.【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,数形结合解题是关键.7.(1)PM PN =,PM PN ⊥;(2)等腰直角三角形,见解析;(3)492【解析】【分析】(1)由三角形中位线定理及平行的性质可得PN 与PM 等于DE 或CE 的一半,又△ABC 为等腰直角三角形,AD=AE ,所以得PN=PM ,且互相垂直;(2)由旋转可推出BAD CAE ∆∆≌,再利用PM 与PN 皆为中位线,得到PM=PN ,再利用角度间关系推导出垂直即可;(3)找到面积最大的位置作出图形,由(2)可知PM=PM ,且PM ⊥PN ,利用三角形面积公式求解即可.【详解】(1)PM PN =,PM PN ⊥;已知点M ,P ,N 分别为DE ,DC ,BC 的中点,根据三角形的中位线定理可得 12PM EC =,12PN BD =,//PM EC ,//PN BD 根据平行线性质可得DPM DCE ∠=∠,NPD ADC ∠=∠在Rt ABC ∆中,90A ∠=︒,AB AC =,AD AE =可得BD EC =,90DCE ADC ∠+∠=︒即得PM PN =,PM PN ⊥故答案为:PM PN =;PM PN ⊥.(2)等腰直角三角形,理由如下:由旋转可得BAD CAE ∠=∠,又AB AC =,AD AE =∴BAD CAE ∆∆≌∴BD CE =,ABD ACE ∠=∠,∵点M ,P 分别为DE ,DC 的中点∴PM 是DCE ∆的中位线∴12PM CE =,且//PM CE , 同理可证12PN BD =,且//PN BD ∴PM PN =,MPD ECD ∠=∠,PNC DBC ∠=∠,∴MPD ECD ACD ACE ACD ABD ∠=∠=∠+∠=∠+∠,DPN PNC PCN DBC PCN ∠=∠+∠=∠+∠,∴90MPN MPD DPN ACD ABD DBC PCN ABC ACB ∠=∠+∠=∠+∠+∠+∠=∠+∠=︒,即PMN ∆为等腰直角三角形.(3)把ADE ∆绕点A 旋转的如图的位置,此时1()72PN AD AB =+=,1()72PM AE AC =+=且PN 、PM 的值最长,由(2)可知PM PN =,PM PN ⊥所以PMN ∆面积最大值为1497722⨯⨯=. 【点睛】本题主要考查三角形中位线的判定及性质、全等三角形的判定及性质、等腰直角三角形的判定及性质、旋转的性质等相关知识,解题关键在于找到图形中各角度之间的数量关系.8.(1)B 点坐标(0,-1),平移后的抛物线为2y=-x +2x+3;(2)点M 的坐标为(1+2-2),或(1-2-2),;(3)存在,1P (1,1),2P (1,6)-,3P (12),,4P (1,8)-,详解见解析.【解析】【分析】(1)将x=0代入抛物线公式2y=-x +2x-1求出y 值,即可得到抛物线与y 轴交点B 的坐标,平移后的抛物线的顶点为E(1,4),可根据顶点式求出平移后抛物线的解析式;(2)因为抛物线向上平移4个单位,所以MN=4,又因为OM=ON ,可知点M 的纵坐标为-2,将y=-2代入原抛物线2y=-x +2x-1,即可求出x 值,点M 的坐标就可以表示出来. (3)要使C 、F 、P 为顶点的三角形为直角三角形,可以画一个以C 、F 为直径的圆(直径对应圆周角为直角),交抛物线对称轴x=-1可得点1P 、2P 的坐标解,另外可以使∠PCF=90°或∠CFP=90°,可分别得出点3P 、4P 的坐标解.【详解】解:(1)抛物线2y=-x +2x-1与y 轴相交于点B ,将x=0代入,求得y=-1,∴B 点坐标(0,-1).∵设平移后的抛物线为2y=-(x-h)+k ,顶点为E(1,4),即h=1,k=4,∴2y=-(x-1)+4,即平移后的抛物线为22y=-(x-1)+4=-x +2x+3.(2)如上图所示,∵原坐标顶点A(1,0),平移后抛物线顶点为E(1,4),∴抛物线向上平移了4个单位,即MN //y 轴,MN ⊥x 轴,又∵OM=ON ,MN=4,∴点O 在垂直平分线上,点M 、N 关于x 轴对称,∴M 点的纵坐标为–2,将y=-2代入2y=-x +2x-1,得:222-x +2x-1=-2-(x -2x+1)=-2(x-1)=2x=12± 解得:x=12±,∴点M 的坐标为(1+2-2),或(1-2-2),. (3)存在,且1P (1,1),2P (1,6)-,3P (12),,4P (1,8)-. 如图所示,点P 一共有四种结果,∵C 点为平移后的解析式与x 轴的左交点,将y=0代入2y=-x +2x+3,得x=-13或, ∴C(-1,0),且点B(0,-1),将点B(0,-1)、C(-1,0)代入直线BC 解析式为:y=kx+b , ∴-k+b=0b=-1⎧⎨⎩,解得:k=-1b=-1⎧⎨⎩,即直线BC 解析式:y=-x-1, 根据题意可知,直线BC 与平移后的解析式相交于点F ,∴2y=-x-1y=-x +2x+3⎧⎨⎩,解得:x=-1(舍)或4,y=-5,即F(4,-5), ∵要使C 、F 、P 为顶点的三角形为直角三角形,可以画一个以C 、F 为直径的圆,该圆与抛物线对称轴x=-1交点即为点P (因为圆的直径对应的圆周角为90°,即∠CPF=90°) ∴以C 、F 为直径的圆,圆心为线段CF 的中点(32,5-2),直径为线段CF 的长52∴圆的方程为:22235x-+y+=22()(),将x=1代入圆的方程,得:y=1或-6, 即1P (1,1),2P (1,6)-, ∵直线CF 解析式:y=-x-1,即斜率k=-1,即直线CF 与x 轴夹角为45°,要使C 、F 、P 为顶点的三角形为直角三角形,则使∠PCF=90°,直线CP 与x 轴夹角也为45°,即直线CP 斜率为1,直线CP 的解析式为:y=x+1,此时该直线与抛物线对称轴x=1的交点为3P (1,2),又∵直线CF 解析式:y=-x-1,即斜率k=-1,即直线CF 与x 轴夹角为45°,要使C 、F 、P 为顶点的三角形为直角三角形,则使∠CFP=90°,直线FP 与x 轴夹角也为45°,即直线FP 斜率为1,直线FP 的解析式为:y=x-9,此时该直线与抛物线对称轴x=1的交点为4P (1,-8).【点睛】本题考查了一元二次函数与坐标轴、直线的交点,一元二次函数的平移及应用,圆的直径所对应的圆周角为直角等知识点,该题有一定的难度,所以一定要结合图形进行分析,这样才不会把解遗漏.9.(1)241y x x =+-;(2)PAB △面积最大值为278;(3)存在,1234(12)(34(34(13)E E E E ------,,,,,,【解析】【分析】(1)将点A 、B 的坐标代入抛物线表达式,即可求解;(2)设AB y kx b =+,求得解析式,过点P 作x 轴得垂线与直线AB 交于点F ,设点()2,41P a a a +-,则(,1)F a a -,1||2PABB A S PF x x ∆=⋅-23327228a ⎛⎫=-++ ⎪⎝⎭,即可求解; (3)分BC 为菱形的边、菱形的的对角线两种情况,分别求解即可.【详解】解:(1)∵抛物线过(3,4)A --,(0,1)B -∴9341b c c -+=-⎧⎨=-⎩∴41b c =⎧⎨=-⎩∴241y x x =+-(2)设AB y kx b =+,将点()3,4A --(0,1)B -代入AB y∴1AB y x =-。

成都高新世纪城南路学校七年级下册数学期末压轴难题试题及答案解答

成都高新世纪城南路学校七年级下册数学期末压轴难题试题及答案解答

成都高新世纪城南路学校七年级下册数学期末压轴难题试题及答案解答 一、选择题1.1.96的算术平方根是() A .0.14 B .1.4 C .0.14- D .±1.4 2.下列车标图案,可以看成由图形的平移得到的是( )A .B .C .D .3.如图,小手盖住的点的坐标可能为( )A .()5,4B .()3,4-C .()2,3-D .()4,5--4.命题:①对顶角相等;②过一点有且只有一条直线与已知直线平行;③垂直于同一条直线的两条直线平行:④同旁内角互补.其中错误的有( ) A .1个B .2个C .3个D .4个5.如图,//,AB CD ABK ∠的平分线BE 的反向延长线和DCK ∠的平分线CF 的反向延长线相交于点 24H K H ∠-∠=︒,,则K ∠=( )A .76︒B .78︒C .80︒D .82︒ 6.下列计算正确的是( )A .2(3)3-=-B .366=±C .393=D .382--=7.已知:如图,AB ∥EF ,CD ⊥EF ,∠BAC =30°,则∠ACD =( )A .100°B .110°C .120°D .130°8.如图,一个蒲公英种子从平面直角坐标系的原点O 出发,向正东走3米到达点1A ,再向正北方向走6米到达点2A ,再向正西方向走9米到达点3A ,再向正南方向走12米到达点4A ,再向正东方向走15米到达点5A ,以此规律走下去,当蒲公英种子到达点10A 时,它在坐标系中坐标为( )A .(12,12)--B .(15,18)C .(15,12)-D .(15,18)-二、填空题9.若|y+6|+(x ﹣2)2=0,则y x =_____.10.点A (-2,1)关于x 轴对称的点的坐标是____________________.11.如图,AD ∥BC ,∠ABC 的角平分线BP 与∠BAD 的角平分线AP 相交于点P ,作PE ⊥AB 于点E .若PE =2,则两平行线AD 与BC 间的距离为_____.12.如图,直线a ∥b ,直角三角形的直角顶点在直线b 上,已知∠1=48°,则∠2的度数是___度.13.将长方形纸带沿EF 折叠(如图1)交BF 于点G ,再将四边形EDCF 沿BF 折叠,得到四边形GFC D '',EF 与GD '交于点O (如图2),最后将四边形GFC D ''沿直线AE 折叠(如图3),使得A 、E 、Q 、H 四点在同一条直线上,且D ''恰好落在BF 上若在折叠的过程中,//''EG QD ,且226∠=︒,则1∠=________.14.如图,数轴上A ,B 两点表示的数分别为2和4.1,则A ,B 两点之间表示整数的点共有____个.15.在平面直角坐标系中,已知线段3,AB =且//AB x 轴,且点A 的坐标是()1,2,则点B 的坐标是____.16.如图,在平面直角坐标系中,将正方形①依次平移后得到正方形②,③,④…;相应地,顶点A 依次平移得到A 1,A 2,A 3,…,其中A 点坐标为(1,0),A 1坐标为(0,1),则A 20的坐标为__________.三、解答题17.计算:(1)()4129-⨯()432054⎛⎫-⨯- ⎪⎝⎭18.求下列各式中x 的值. (1)4x 2=64; (2)3(x ﹣1)3+24=0. 19.补全下列推理过程:如图,已知EF //AD ,∠1=∠2,∠BAC =70°,求∠AGD . 解:∵EF //AD∴∠2= ( ) 又∵∠1=∠2( ) ∴∠1=∠3( ) ∴AB // ( ) ∴∠BAC + =180°( ) ∵∠BAC =70° ∴∠AGD = .20.在平面直角坐标系中有三个点(3,2)A -、B (-5,1)、(2,0)C -,(,)P a b 是ABC 的边AC 上任意一点,ABC 经平移后得到111A B C △,点P 的对应点...为1(6,2)P a b ++,(1)点A 到x 轴的距离是 个单位长度; (2)画出ABC 和111A B C △; (3)求111A B C △的面积. 21.阅读下面的对话,解答问题:21,将这个数减去其整数部分,差就是小数部分.又例如:∵479<,即 273< ,∴7 的整数部分为2,小数部分为72 . 请解答:(115的整数部分_____,小数部分可表示为________. (2)已知:3,其中x 是整数,且0<y<1,求x -y 的相反数.二十二、解答题22.喜欢探究的亮亮同学拿出形状分别是长方形和正方形的两块纸片,其中长方形纸片的长为3dm ,宽为2dm ,且两块纸片面积相等.(1)亮亮想知道正方形纸片的边长,请你帮他求出正方形纸片的边长;(结果保留根号)(2)在长方形纸片上截出两个完整的正方形纸片,面积分别为22dm和23dm,亮亮认为两个正方形纸片的面积之和小于长方形纸片的总面积,所以一定能截出符合要求的正方形纸片来,你同意亮亮的见解吗?为什么?(参考数据:2 1.414≈)≈,3 1.732二十三、解答题23.已知直线AB//CD,点P、Q分别在AB、CD上,如图所示,射线PB按逆时针方向以每秒12°的速度旋转至PA便立即回转,并不断往返旋转;射线QC按逆时针方向每秒3°旋转至QD停止,此时射线PB也停止旋转.(1)若射线PB、QC同时开始旋转,当旋转时间10秒时,PB'与QC'的位置关系为;(2)若射线QC先转15秒,射线PB才开始转动,当射线PB旋转的时间为多少秒时,PB′//QC′.24.如图,AB⊥AK,点A在直线MN上,AB、AK分别与直线EF交于点B、C,∠MAB+∠KCF=90°.(1)求证:EF∥MN;(2)如图2,∠NAB与∠ECK的角平分线交于点G,求∠G的度数;(3)如图3,在∠MAB内作射线AQ,使∠MAQ=2∠QAB,以点C为端点作射线CP,交直.线.AQ于点T,当∠CTA=60°时,直接写出∠FCP与∠ACP的关系式.25.小明在学习过程中,对教材中的一个有趣问题做如下探究:(习题回顾)已知:如图1,在ABC 中,90ACB ∠=︒,AE 是角平分线,CD 是高,AE 、CD 相交于点F .求证:CFE CEF ∠=∠;(变式思考)如图2,在ABC 中,90ACB ∠=︒,CD 是AB 边上的高,若ABC 的外角BAG ∠的平分线交CD 的延长线于点F ,其反向延长线与BC 边的延长线交于点E ,则CFE ∠与CEF ∠还相等吗?说明理由;(探究延伸)如图3,在ABC 中,AB 上存在一点D ,使得ACD B ∠=∠,BAC ∠的平分线AE 交CD 于点F .ABC 的外角BAG ∠的平分线所在直线MN 与BC 的延长线交于点M .直接写出M ∠与CFE ∠的数量关系.26.已知,//AB CD ,点E 为射线FG 上一点.(1)如图1,写出EAF ∠、AED ∠、EDG ∠之间的数量关系并证明; (2)如图2,当点E 在FG 延长线上时,求证:EAF AED EDG ∠=∠+∠;(3)如图3,AI 平分BAE ∠,DI 交AI 于点I ,交AE 于点K ,且EDI ∠:2:1CDI ∠=,20AED ∠=︒,30I ∠=︒,求EKD ∠的度数.【参考答案】一、选择题 1.B 解析:B 【分析】根据算术平方根的定义:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根即可得出答案. 【详解】 解:∵21.4 1.96=, ∴1.96的算术平方根是1.4, 故选:B . 【点睛】本题考查了算术平方根,掌握算术平方根的定义是解题的关键,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.2.A【分析】根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解.【详解】解:A、可以由一个“基本图案”平移得到,故本选项符合题意;B、不是由一个“基本图案”平移得到,故本选项解析:A【分析】根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解.【详解】解:A、可以由一个“基本图案”平移得到,故本选项符合题意;B、不是由一个“基本图案”平移得到,故本选项不符合题意;C、可以由一个“基本图案”旋转得到,故本选项不符合题意;D、可以由一个“基本图案”旋转得到,故本选项不符合题意.故选:A.【点睛】本题主要考查了图形的平移和旋转,准确分析判断是解题的关键.3.C【分析】根据各象限内点的坐标特征判断即可.【详解】由图可知,小手盖住的点在第四象限,∴点的横坐标为正数,纵坐标为负数,∴(2,-3)符合.其余都不符合故选:C.【点睛】本题考查了各象限内点的坐标特征,熟记各象限内点的坐标特征是解题的关键.4.C【分析】根据对顶角的性质、同旁内角的概念、平行公理及推论逐一进行判断即可.【详解】解:①对顶角相等,原命题正确;②过直线外一点有且只有一条直线与已知直线平行,原命题错误;③在同一平面内,垂直于同一条直线的两条直线平行,原命题错误;④两直线平行,同旁内角互补,原命题错误.故选:C.【点睛】本题考查了平行公理及推论,对顶角、邻补角和同旁内角等知识,熟记其概念和性质是解题的关键. 5.A 【分析】分别过K 、H 作AB 的平行线MN 和RS ,根据平行线的性质和角平分线的性质可用ABK ∠和DCK ∠分别表示出H ∠和K ∠,从而可找到H ∠和K ∠的关系,结合条件可求得K ∠. 【详解】解:如图,分别过K 、H 作AB 的平行线MN 和RS ,//AB CD ,//////AB CD RS MN ∴,12RHB ABE ABK ∴∠=∠=∠,12SHC DCF DCK ∠=∠=∠,180NKB ABK MKC DCK ∠+∠=∠+∠=︒,1180180()2BHC RHB SHC ABK DCK ∴∠=︒-∠-∠=︒-∠+∠,180BKC NKB MKC ∠=︒-∠-∠180ABK DCK =∠+∠-︒,36021801802BKC BHC BHC ∴∠=︒-∠-︒=︒-∠,又24BKC BHC ∠-∠=︒,24BHC BKC ∴∠=∠-︒, 1802(24)BKC BKC ∴∠=︒-∠-︒, 76BKC ∴∠=︒,故选:A .【点睛】本题主要考查平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④//a b ,////⇒b c a c . 6.D 【分析】分别根据算术平方根的定义以及立方根的定义逐一判断即可. 【详解】 解:A ()233-,故本选项不合题意;B 、366=,故本选项不合题意;C 、393≠,故本选项不合题意;D 、382--=,故本选项符合题意; 故选:D . 【点睛】本题主要考查算术平方根及立方根,熟练掌握求一个数的算术平方根及立方根是解题的关键. 7.C 【分析】如图,过点C 作//GH AB ,利用平行线的性质得到BAC GCA ∠=∠,CD GH ⊥,则易求∠ACD 的度数. 【详解】解:过点C 作//GH AB ,则30BAC GCA ∠=∠=︒,//AB EF ,//GH EF ∴,CD EF ⊥,CD GH ∴⊥,3090120ACD GCA GCD ∴∠=∠+∠=︒+︒=︒,故选:C . 【点睛】本题考查了平行线的性质.该题通过作辅助线,将ACD ∠转化为(BAC ∠+90°)来求.8.B 【分析】由题意可知:OA1=3;A1A2=3×2;A2A3=3×3;可得规律:An ﹣1An =3n ,根据规律可得到A9A10=3×10=30,进而求得A10的横纵坐标. 【详解】 解:根据题意可解析:B 【分析】由题意可知:OA 1=3;A 1A 2=3×2;A 2A 3=3×3;可得规律:A n ﹣1A n =3n ,根据规律可得到A 9A 10=3×10=30,进而求得A 10的横纵坐标. 【详解】解:根据题意可知:OA1=3,A1A2=6,A2A3=9,A3A4=12,A4A5=15,A5A6=18•••,A9A10=30,∴A1点坐标为(3,0),A2点坐标为(3,6),A3点坐标为(﹣6,6),A4点坐标为(﹣6,﹣6),A5点坐标为(9,﹣6),A6点坐标为(9,12),以此类推,A9点坐标为(15,﹣12),所以A10点横坐标为15,纵坐标为﹣12+30=18,∴A10点坐标为(15,18),故选:B.【点睛】本题主要考查了坐标确定位置的运用,解题的关键是发现规律,利用规律解决问题,解题时注意:各象限内点P(a,b)的坐标特征为:①第一象限:a>0,b>0;②第二象限:a<0,b>0;③第三象限:a<0,b<0;④第四象限:a>0,b<0.二、填空题9.36【解析】由题意得,y+6=0,x﹣2=0,解得x=2,y=﹣6,所以,yx=(﹣6)2=36.故答案是:36.解析:36【解析】由题意得,y+6=0,x﹣2=0,解得x=2,y=﹣6,所以,y x=(﹣6)2=36.故答案是:36.10.(-2,-1)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:点(-2,1)关于x轴对称的点的坐标是(-2,-1),故答案为:(-2,-1).【点睛】本解析:(-2,-1)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:点(-2,1)关于x轴对称的点的坐标是(-2,-1),故答案为:(-2,-1).【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.11.4【分析】根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案.【详解】解:过点P作MN⊥AD,∵AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线A解析:4【分析】根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案.【详解】解:过点P作MN⊥AD,∵AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,PE⊥AB于点E,∴AP⊥BP,PN⊥BC,∴PM=PE=2,PE=PN=2,∴MN=2+2=4.故答案为4.12.42【分析】利用平行线的性质,平角的性质解决问题即可.【详解】解:∵∠4=90°,∠1=48°,∴∠3=90°-∠1=42°,∵a∥b,∴∠2=∠3=42°,故答案为:42.【点解析:42【分析】利用平行线的性质,平角的性质解决问题即可.【详解】解:∵∠4=90°,∠1=48°,∴∠3=90°-∠1=42°,∵a ∥b ,∴∠2=∠3=42°,故答案为:42.【点睛】本题考查了平行线的性质,平角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.32°【分析】连接EQ ,根据A 、E 、Q 、H 在同一直线上得到,,根据得到,从而求得,再根据题意求解即可得到答案.【详解】解:如图所示,连接EQ ,∵A 、E 、Q 、H 在同一直线上∴∥∴∵∥解析:32°【分析】连接EQ ,根据A 、E 、Q 、H 在同一直线上得到EQ GD ''∥,=QEG EGB ∠∠,根据EG QD ''∥得到=QD G EGB ''∠∠,从而求得=QEG QD G ''∠∠,再根据题意求解即可得到答案.【详解】解:如图所示,连接EQ ,∵A 、E 、Q 、H 在同一直线上∴EQ ∥GD ''∴=QEG EGB ∠∠∵EG ∥QD ''=QD G EGB ''∠∠∴=QEG QD G ''∠∠∵226∠=︒,QD C ''''∠=90°∴=QEG QD G ''∠∠=180°-90°-26°=64°由折叠的性质可知:1=QEO ∠∠ ∴1=2QEG ∠1∠=32° 故答案为:32°.【点睛】本题主要考查了平行线的性质,折叠的性质,解题的关键在于能够熟练掌握相关知识进行求解.14.3【分析】根据无理数的估算、结合数轴求解即可【详解】解:∴∴∴在到4.1之间由2,3,4这三个整数故答案为:3.【点睛】本题考查了无理数的估算、实数与数轴,掌握无理数的估算方法是解析:3【分析】根据无理数的估算、结合数轴求解即可【详解】解:1234 4.1<<<<∴(22122<<∴12<<∴4.1之间由2,3,4这三个整数故答案为:3.【点睛】本题考查了无理数的估算、实数与数轴,掌握无理数的估算方法是解题关键.15.或【分析】设点B 的坐标为,然后根据轴得出B 点的纵坐标,再根据即可得出B 点的横坐标.【详解】设点B 的坐标为,∵轴,点A (1,2)∴B 点的纵坐标也是2,即 .∵,或 ,解得或 ,∴点解析:()4,2或()2,2-【分析】设点B 的坐标为(,)a b ,然后根据//AB x 轴得出B 点的纵坐标,再根据3,AB =即可得出B 点的横坐标.【详解】设点B 的坐标为(,)a b ,∵//AB x 轴,点A (1,2)∴B 点的纵坐标也是2,即2b = .∵3AB =,13a ∴-=或13a -= ,解得4a =或2a =- ,∴点B 的坐标为()4,2或()2,2-.故答案为:()4,2或()2,2-.【点睛】本题主要考查平行于x 轴的线段上的点的特点,掌握平行于x 轴的线段上的点的特点是解题的关键.16.(-19,8)【分析】求出A3,A6,A9的坐标,观察得出A3n 横坐标为1−3n ,可求出A18的坐标,从而可得结论.【详解】解:观察图形可知:A3(−2,1),A6(−5,2),A9(−8,解析:(-19,8)【分析】求出A3,A6,A9的坐标,观察得出A3n横坐标为1−3n,可求出A18的坐标,从而可得结论.【详解】解:观察图形可知:A3(−2,1),A6(−5,2),A9(−8,3),•••,∵−2=1−3×1,−5=1−3×2,−8=1−3×3,∴A3n横坐标为1−3n,∴A18横坐标为:1−3×6=−17,∴A18(−17,6),把A18向左平移2个单位,再向上平移2个单位得到A20,∴A20(−19,8).故答案为:(−19,8).【点睛】本题主要考查坐标系中点、线段的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.三、解答题17.(1)-1;(2)-1【分析】(1)根据乘方及二次根式的化简即可求解;(2)根据乘法的分配率计算即可.【详解】(1)(2)【点睛】本题考查的是实数的运算,掌握运算法则及乘法的分配率是解析:(1)-1;(2)-1【分析】(1)根据乘方及二次根式的化简即可求解;(2)根据乘法的分配率计算即可.【详解】-⨯(1)()412(2)()()()434320=-20--20=-1615=-15454⎛⎫-⨯-⨯⨯+ ⎪⎝⎭【点睛】本题考查的是实数的运算,掌握运算法则及乘法的分配率是关键.18.(1)x=±4;(2)x=-1【分析】(1)根据平方根的定义解方程即可;(2)根据立方根的定义解方程即可.【详解】解:(1)4x2=64,∴x2=16,∴x=±4;(2)3(x-1)解析:(1)x =±4;(2)x =-1【分析】(1)根据平方根的定义解方程即可;(2)根据立方根的定义解方程即可.【详解】解:(1)4x 2=64,∴x 2=16,∴x =±4;(2)3(x -1)3+24=0,∴3(x -1)3=-24,∴(x -1)3=-8,∴x -1=-2,∴x =-1.【点睛】本题主要考查了平方根和立方根,解题时注意一个正数的平方根有两个,不要漏解. 19.∠3;两直线平行,同位角相等;已知;等量代换;DG ;内错角相等,两直线平行;∠AGD ;两直线平行,同旁内角互补;110°【分析】根据平行线的性质得出∠2=∠3,求出∠1=∠3,根据平行线的判定得解析:∠3;两直线平行,同位角相等;已知;等量代换;DG ;内错角相等,两直线平行;∠AGD ;两直线平行,同旁内角互补;110°【分析】根据平行线的性质得出∠2=∠3,求出∠1=∠3,根据平行线的判定得出AB //DG ,根据平行线的性质推出∠BAC +∠AGD =180°,代入求出即可求得∠AGD .【详解】解:∵EF //AD ,∴∠2=∠3(两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴AB //DG ,(内错角相等,两直线平行)∴∠BAC +∠AGD =180°,(两直线平行,同旁内角互补)∵∠BAC =70°,∴∠AGD =110°故答案为:∠3,两直线平行,同位角相等,已知,等量代换,DG ,内错角相等,两直线平行,∠AGD ,两直线平行,同旁内角互补;110°.【点睛】本题考查了平行线的性质和判定的应用,能正确根据平行线的性质和判定定理进行推理是解此题的关键.20.(1)2;(2)见解析;(3)2.5【分析】(1)根据A 点的纵坐标即可求解;(2)根据网格结构找出点A 、B 、C 的位置,然后顺次连接即可,再根据点P 、P1的坐标确定出变化规律,然后找出点A1、B解析:(1)2;(2)见解析;(3)2.5【分析】(1)根据A 点的纵坐标即可求解;(2)根据网格结构找出点A 、B 、C 的位置,然后顺次连接即可,再根据点P 、P 1的坐标确定出变化规律,然后找出点A 1、B 1、C 1的位置,然后顺次连接即可;(3)利用三角形所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解.【详解】(1)∵(3,2)A -∴点A 到x 轴的距离是2个单位长度故答案为:2;(2)如图,ABC ∆和111A B C ∆为所求作(3)S=111 32121213 222⨯-⨯⨯-⨯⨯-⨯⨯=6-1-1-1.5=2.5【点睛】本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.21.(1)3,;(2)【分析】(1)先根据二次根式的性质求出的整数部分,则小数部分可求;(2)先根据二次根式的性质确定的整数部分,得出10- 的整数部分,即x值,则其小数部分可求,即y值,则x-解析:(1)3153;(2)63-【分析】(115(233x值,则其小数部分可求,即y值,则x-y值可求.【详解】解:(1)∵91516∴3154<,∴整数部分是3,15.故答案为:315.(2)解:∵132<∴8 <39∵x是整数,且0<y<1,∴x=8,38=23,∴x-y=(826-=∵6的相反数为:(66-=-∴x -y 的相反数是 6-.【点睛】本题主要考查了估算无理数的大小,代数式求值.解题的关键是确定无理数的整数部分即可解决问题. 二十二、解答题22.(1);(2)不同意,理由见解析【分析】(1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x 的值;(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个解析:(1;(2)不同意,理由见解析【分析】(1)设正方形边长为dm x ,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x 的值;(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个正方形边长的和,并与3比较即可解答.【详解】解:(1)设正方形边长为dm x ,则223x =⨯,由算术平方根的意义可知x =.(2)不同意.因为:两个小正方形的面积分别为22dm 和23dm 和3.1≈,即两个正方形边长的和约为3.1dm ,所以3.13>,即两个正方形边长的和大于长方形的长,所以不能在长方形纸片上截出两个完整的面积分别为22dm 和23dm 的正方形纸片.【点睛】本题考查了算术平方根的应用,解题的关键是读懂题意并熟知算术平方根的概念. 二十三、解答题23.(1)PB′⊥QC′;(2)当射线PB 旋转的时间为5秒或25秒或45秒时,PB′∥QC′【分析】(1)求出旋转10秒时,∠BPB′和∠CQC′的度数,设PB′与QC′交于O ,过O 作OE ∥AB ,根解析:(1)PB ′⊥QC ′;(2)当射线PB 旋转的时间为5秒或25秒或45秒时,PB ′∥QC ′【分析】(1)求出旋转10秒时,∠BPB′和∠CQC′的度数,设PB′与QC′交于O,过O作OE∥AB,根据平行线的性质求得∠POE和∠QOE的度数,进而得结论;(2)分三种情况:①当0<t≤15时,②当15<t≤30时,③当30<t<45时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间.【详解】解:(1)如图1,当旋转时间30秒时,由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,过O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案为:PB′⊥QC′;(2)①当0<t≤15时,如图,则∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②当15<t≤30时,如图,则∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③当30<t≤45时,如图,则∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;综上,当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′.【点睛】本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题.24.(1)见解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP或∠FCP+2∠ACP=180°.【分析】(1)有垂直定义可得∠MAB+∠KCN=90°,然后根据同角的余角相等可得∠KAN=∠K解析:(1)见解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP或∠FCP+2∠ACP=180°.【分析】(1)有垂直定义可得∠MAB+∠KCN=90°,然后根据同角的余角相等可得∠KAN=∠KCF,从而判断两直线平行;(2)设∠KAN=∠KCF=α,过点G作GH∥EF,结合角平分线的定义和平行线的判定及性质求解;(3)分CP 交射线AQ 及射线AQ 的反向延长线两种情况结合角的和差关系分类讨论求解.【详解】解:(1)∵AB ⊥AK∴∠BAC=90°∴∠MAB+∠KAN =90°∵∠MAB+∠KCF =90°∴∠KAN=∠KCF∴EF ∥MN(2)设∠KAN=∠KCF=α则∠BAN=∠BAC+∠KAN=90°+α∠KCB=180°-∠KCF=180°-α∵AG 平分∠NAB ,CG 平分∠ECK∴∠GAN=12∠BAN=45°+12α,∠KCG=12∠KCB=90°-12α∴∠FCG=∠KCG+∠KCF=90°+12α过点G 作GH ∥EF∴∠HGC=∠FCG=90°+12α又∵MN ∥EF∴MN ∥GH∴∠HGA=∠GAN=45°+12α∴∠CGA=∠HGC -∠HGA=(90°+12α)-(45°+12α)=45°(3)①当CP 交射线AQ 于点T∵180CTA TAC ACP ∠+∠+∠=︒∴180CTA QAB BAC ACP ∠+∠+∠+∠=︒又∵=60,90CTA BAC ∠︒∠=︒∴30QAB ACP ∠+∠=︒由(1)可得:EF ∥MN∴FCA MAC ∠=∠∵FCP FCA ACP ∠=∠+∠∴FCP MAC ACP ∠=∠+∠∵MAC MAQ QAB BAC ∠=∠+∠+∠,2MAQ QAB ∠=∠∴()390=330901803MAC QAB ACP ACP ∠=∠+︒︒-∠+︒=︒-∠∴1803FCP ACP ACP ∠=︒-∠+∠即∠FCP +2∠ACP=180°②当CP 交射线AQ 的反向延长线于点T ,延长BA 交CP 于点GFCP FCA ACP ∠=∠-∠,由EF ∥MN 得MAC FCA ∠=∠∴FCP MAC ACP ∠=∠-∠又∵TAG QAB ∠=∠,180BAC CAG ∠+∠=︒,90BAC ∠=︒∴18090CAG BAC ∠=︒-∠=︒90CAT CAG TAG QAB ∠=∠-∠=︒-∠∵180CAT CTA ACP ∠+∠+∠=︒,60CTA ∠=︒∴120CAT ACP ∠+∠=︒∴90120QAB ACP ︒-∠+∠=︒∴30QAB ACP ∠=∠-︒由①可得390MAC QAB ∠=∠+︒∴()=330903MAC ACP ACP ∠∠-︒+︒=∠∴32FCP MAC ACP ACP ACP ACP ∠=∠-∠=∠-∠=∠综上,∠FCP =2∠ACP 或∠FCP +2∠ACP=180°.【点睛】本题考查平行线的判定和性质以及角的和差关系,准确理解题意,正确推理计算是解题关键.25.[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸] ∠M+∠CFE=90°,证明见解析.【分析】[习题回顾]根据同角的余角相等可证明∠B=∠ACD ,再根据三角形的外角的性质即可解析:[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸]∠M+∠CFE=90°,证明见解析.【分析】[习题回顾]根据同角的余角相等可证明∠B=∠ACD ,再根据三角形的外角的性质即可证明;[变式思考]根据角平分线的定义和对顶角相等可得∠CAE=∠DAF 、再根据直角三角形的性质和等角的余角相等即可得出CFE ∠=CEF ∠;[探究延伸]根据角平分线的定义可得∠EAN=90°,根据直角三角形两锐角互余可得∠M+∠CEF=90°,再根据三角形外角的性质可得∠CEF=∠CFE ,由此可证∠M+∠CFE=90°.【详解】[习题回顾]证明:∵∠ACB=90°,CD 是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD ,∵AE 是角平分线,∴∠CAF=∠DAF ,∵∠CFE=∠CAF+∠ACD ,∠CEF=∠DAF+∠B ,∴∠CEF=∠CFE ;[变式思考]相等,理由如下:证明:∵AF 为∠BAG 的角平分线,∴∠GAF=∠DAF ,∵∠CAE=∠GAF ,∴∠CAE=∠DAF ,∵CD 为AB 边上的高,∠ACB=90°,∴∠ADC=90°,∴∠ADF=∠ACE=90°,∴∠DAF+∠F=90°,∠E+∠CAE=90°,∴∠CEF=∠CFE ;[探究延伸]∠M+∠CFE=90°,证明:∵C 、A 、G 三点共线 AE 、AN 为角平分线,∴∠EAN=90°,又∵∠GAN=∠CAM ,∴∠M+∠CEF=90°,∵∠CEF=∠EAB+∠B ,∠CFE=∠EAC+∠ACD ,∠ACD=∠B ,∴∠CEF=∠CFE ,∴∠M+∠CFE=90°.【点睛】本题考查三角形的外角的性质,直角三角形两锐角互余,角平分线的有关证明,等角或同角的余角相等.在本题中用的比较多的是利用等角或同角的余角相等证明角相等和三角形一个外角等于与它不相邻的两个内角之和,理解并掌握是解决此题的关键.26.(1),证明见解析;(2)证明见解析;(3).【分析】(1)过E 作EH ∥AB ,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H∠+∠=∠,证明见解析;(2)证明见解析;(3)解析:(1)EAF EDG AED∠=︒.EKD80【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H,根据∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,进而得到∠EAF=∠AED+∠EDG;α+5°,再根(3)设∠EAI=∠BAI=α,则∠CHE=∠BAE=2α,进而得出∠EDI=α+10°,∠CDI=12α+5°+α+10°+20°,求得据∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α=12α=70°,即可根据三角形内角和定理,得到∠EKD的度数.【详解】解:(1)∠AED=∠EAF+∠EDG.理由:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)证明:如图2,设CD与AE交于点H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分∠BAE,∴可设∠EAI=∠BAI=α,则∠BAE=2α,如图3,∵AB∥CD,∴∠CHE=∠BAE=2α,∵∠AED=20°,∠I=30°,∠DKE=∠AKI,∴∠EDI=α+30°-20°=α+10°,又∵∠EDI:∠CDI=2:1,∴∠CDI=12∠EDK=12α+5°,∵∠CHE是△DEH的外角,∴∠CHE=∠EDH+∠DEK,即2α=12α+5°+α+10°+20°,解得α=70°,∴∠EDK=70°+10°=80°,∴△DEK中,∠EKD=180°-80°-20°=80°.【点睛】本题主要考查了平行线的性质,三角形外角性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造内错角,运用三角形外角性质进行计算求解.解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都高新世纪城南路学校数学几何模型压轴题中考真题汇编[解析版]一、初三数学 旋转易错题压轴题(难)1.如图1,在Rt ABC △中,90A ∠=︒,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是_________,位置关系是_________;(2)探究证明:把ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN 的形状,并说明理由;(3)拓展延伸:把ADE 绕点A 在平面内自由旋转,若4=AD ,10AB =,请直接写出PMN 面积的最大值.【答案】(1)PM PN =,PM PN ⊥;(2)等腰直角三角形,见解析;(3)492【解析】【分析】(1)由三角形中位线定理及平行的性质可得PN 与PM 等于DE 或CE 的一半,又△ABC 为等腰直角三角形,AD=AE ,所以得PN=PM ,且互相垂直;(2)由旋转可推出BAD CAE ∆∆≌,再利用PM 与PN 皆为中位线,得到PM=PN ,再利用角度间关系推导出垂直即可;(3)找到面积最大的位置作出图形,由(2)可知PM=PM ,且PM ⊥PN ,利用三角形面积公式求解即可.【详解】(1)PM PN =,PM PN ⊥;已知点M ,P ,N 分别为DE ,DC ,BC 的中点,根据三角形的中位线定理可得 12PM EC =,12PN BD =,//PM EC ,//PN BD 根据平行线性质可得DPM DCE ∠=∠,NPD ADC ∠=∠在Rt ABC ∆中,90A ∠=︒,AB AC =,AD AE =可得BD EC =,90DCE ADC ∠+∠=︒即得PM PN =,PM PN ⊥故答案为:PM PN =;PM PN ⊥.(2)等腰直角三角形,理由如下:由旋转可得BAD CAE ∠=∠,又AB AC =,AD AE =∴BAD CAE ∆∆≌∴BD CE =,ABD ACE ∠=∠, ∵点M ,P 分别为DE ,DC 的中点∴PM 是DCE ∆的中位线∴12PM CE =,且//PM CE , 同理可证12PN BD =,且//PN BD ∴PM PN =,MPD ECD ∠=∠,PNC DBC ∠=∠,∴MPD ECD ACD ACE ACD ABD ∠=∠=∠+∠=∠+∠,DPN PNC PCN DBC PCN ∠=∠+∠=∠+∠,∴90MPN MPD DPN ACD ABD DBC PCN ABC ACB ∠=∠+∠=∠+∠+∠+∠=∠+∠=︒,即PMN ∆为等腰直角三角形.(3)把ADE ∆绕点A 旋转的如图的位置,此时1()72PN AD AB =+=,1()72PM AE AC =+= 且PN 、PM 的值最长,由(2)可知PM PN =,PM PN ⊥ 所以PMN ∆面积最大值为1497722⨯⨯=. 【点睛】本题主要考查三角形中位线的判定及性质、全等三角形的判定及性质、等腰直角三角形的判定及性质、旋转的性质等相关知识,解题关键在于找到图形中各角度之间的数量关系.2.探究:如图1和图2,四边形ABCD 中,已知AB =AD ,∠BAD =90°,点E 、F 分别在BC、CD上,∠EAF=45°.(1)①如图1,若∠B、∠ADC都是直角,把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,直接写出线段BE、DF和EF之间的数量关系;②如图2,若∠B、∠D都不是直角,但满足∠B+∠D=180°,线段BE、DF和EF之间的结论是否仍然成立,若成立,请写出证明过程;若不成立,请说明理由.(2)拓展:如图3,在△ABC中,∠BAC=90°,AB=AC=22.点D、E均在边BC边上,且∠DAE=45°,若BD=1,求DE的长.【答案】(1)①EF=BE+DF;②成立,理由详见解析;(2)DE=53.【解析】【分析】(1)①根据旋转的性质得出AE=AG,∠BAE=∠DAG,BE=DG,求出∠EAF=∠GAF=45°,根据SAS推出△EAF≌△GAF,根据全等三角形的性质得出EF=GF,即可求出答案;②根据旋转的性质作辅助线,得出AE=AG,∠B=∠ADG,∠BAE=∠DAG,求出C、D、G 在一条直线上,根据SAS推出△EAF≌△GAF,根据全等三角形的性质得出EF=GF,即可求出答案;(2)如图3,同理作旋转三角形,根据等腰直角三角形性质和勾股定理求出∠ABC=∠C=45°,BC=4,根据旋转的性质得出AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,求出∠FAD =∠DAE=45°,证△FAD≌△EAD,根据全等得出DF=DE,设DE=x,则DF=x,BF=CE=3﹣x,根据勾股定理得出方程,求出x即可.【详解】解:(1)∵把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,∴AE=AG,∠BAE=∠DAG,BE=DG,∠B=∠ADG=90°,∵∠ADC=90°,∴∠ADC+∠ADG=90°∴F、D、G共线,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠EAF=∠GAF=45°,在△EAF和△GAF中,∵AF AFEAF GAFAE AG=⎧⎪∠=∠⎨⎪=⎩,∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=DF+DG=BE+DF,故答案为:EF=BE+DF;②成立,理由:如图2,把△ABE绕A点旋转到△ADG,使AB和AD重合,则AE=AG,∠B=∠ADG,∠BAE=∠DAG,∵∠B+∠ADC=180°,∴∠ADC+∠ADG=180°,∴C、D、G在一条直线上,与①同理得,∠EAF=∠GAF=45°,在△EAF和△GAF中,∵AF AFEAF GAFAE AG=⎧⎪∠=∠⎨⎪=⎩,∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=BE+DF;(2)解:∵△ABC中,AB=AC=2,∠BAC=90°,∴∠ABC=∠C=45°,由勾股定理得:BC22AB AC+4,如图3,把△AEC绕A点旋转到△AFB,使AB和AC重合,连接DF,则AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,∵∠DAE=45°,∴∠FAD=∠FAB+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=90°﹣45°=45°,∴∠FAD=∠DAE=45°,在△FAD和△EAD中AD ADFAD EAD AF AE=⎧⎪∠=∠⎨⎪=⎩,∴△FAD≌△EAD(SAS),∴DF=DE,设DE=x,则DF=x,∵BC=4,∴BF=CE=4﹣1﹣x=3﹣x,∵∠FBA=45°,∠ABC=45°,∴∠FBD=90°,由勾股定理得:DF2=BF2+BD2,x2=(3﹣x)2+12,解得:x=53,即DE=53.【点睛】本题考查了四边形的综合题,旋转的性质,全等三角形的性质和判定,勾股定理的应用,此题是开放性试题,运用类比的思想;首先在特殊图形中找到规律,然后再推广到一般图形中,对学生的分析问题,解决问题的能力要求比较高.3.在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.【答案】(1)证明见解析;(2)成立,理由见解析【解析】试题分析:(1)①由旋转的性质得出OC=O C′,OD=OD′,∠AOC′=∠BOD′,证出OC′=OD′,由SAS证明△AOC′≌△BOD′,得出对应边相等即可;②由全等三角形的性质得出∠OAC′=∠OBD′,又由对顶角相等和三角形内角和定理得出∠BEA=90°,即可得出结论;(2)由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,由平行线得出比例式,得出,证明△AOC′∽△BOD′,得出∠OAC′=∠OBD′再由对顶角相等和三角形内角和定理即可得出∠AEB=θ.试题解析:(1)证明:①∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵OA=OB,C、D为OA、OB的中点,∴OC=OD,∴OC′=OD′,在△AOC′和△BOD′中,,∴△AOC′≌△BOD′(SAS),∴AC′=BD′;②延长AC′交BD′于E,交BO于F,如图1所示:∵△AOC′≌△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∠OAC′+∠AFO=90°,∴∠OBD′+∠BFE=90°,∴∠BEA=90°,∴AC′⊥BD′;(2)解:∠AEB=θ成立,理由如下:如图2所示:∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵CD∥AB,∴,∴,∴,又∠AOC′=∠BOD′,∴△AOC′∽△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∴∠AEB=∠AOB=θ.考点:相似三角形的判定与性质;全等三角形的判定与性质;旋转的性质.4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2.【解析】试题分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF;(2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;(3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF.试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE与△AFE中,,∴△AGE≌△AFE(SAS);(2)设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF 绕着点A 顺时针旋转90°,得到△AGH ,连结HM ,HE .由(1)知△AEH ≌△AEF ,则由勾股定理有(GH+BE )2+BG 2=EH 2,即(GH+BE )2+(BM ﹣GM )2=EH 2又∴EF=HE ,DF=GH=GM ,BE=BM ,所以有(GH+BE )2+(BE ﹣GH )2=EF 2,即2(DF 2+BE 2)=EF 2考点:四边形综合题5.请认真阅读下面的数学小探究系列,完成所提出的问题:()1探究1:如图1,在等腰直角三角形ABC 中,90ACB ∠=,BC a =,将边AB 绕点B 顺时针旋转90得到线段BD ,连接.CD 求证:BCD 的面积为21.(2a 提示:过点D 作BC 边上的高DE ,可证ABC ≌)BDE ()2探究2:如图2,在一般的Rt ABC 中,90ACB ∠=,BC a =,将边AB 绕点B 顺时针旋转90得到线段BD ,连接.CD 请用含a 的式子表示BCD 的面积,并说明理由. ()3探究3:如图3,在等腰三角形ABC 中,AB AC =,BC a =,将边AB 绕点B 顺时针旋转90得到线段BD ,连接.CD 试探究用含a 的式子表示BCD 的面积,要有探究过程.【答案】(1)详见解析;(2)BCD 的面积为212a ,理由详见解析;(3)BCD 的面积为214a . 【解析】【分析】()1如图1,过点D作BC 的垂线,与BC的延长线交于点E,由垂直的性质就可以得出ABC≌BDE,就有DE BC a.==进而由三角形的面积公式得出结论;()2如图2,过点D作BC的垂线,与BC的延长线交于点E,由垂直的性质就可以得出ABC ≌BDE,就有DE BC a.==进而由三角形的面积公式得出结论;()3如图3,过点A作AF BC⊥与F,过点D作DE BC⊥的延长线于点E,由等腰三角形的性质可以得出1BF BC2=,由条件可以得出AFB≌BED就可以得出BF DE=,由三角形的面积公式就可以得出结论.【详解】()1如图1,过点D作DE CB⊥交CB 的延长线于E,BED ACB90∠∠∴==,由旋转知,AB AD=,ABD90∠=,ABC DBE90∠∠∴+=,A ABC90∠∠+=,A DBE∠∠∴=,在ABC和BDE中,ACB BEDA DBEAB BD∠=∠⎧⎪∠=∠⎨⎪=⎩,ABC∴≌()BDE AASBC DE a∴==,BCD1S BC DE2=⋅,2BCD1S a2∴=;()2BCD的面积为21a2,理由:如图2,过点D作BC的垂线,与BC的延长线交于点E,BED ACB90∠∠∴==,线段AB绕点B顺时针旋转90得到线段BE,AB BD∴=,ABD90∠=,ABC DBE90∠∠∴+=,A ABC90∠∠+=,A DBE∠∠∴=,在ABC和BDE中,ACB BEDA DBEAB BD∠=∠⎧⎪∠=∠⎨⎪=⎩,ABC∴≌()BDE AAS,BC DE a∴==,BCD1S BC DE2=⋅,2BCD1S a2∴=;()3如图3,过点A作AF BC⊥与F,过点D作DE BC⊥的延长线于点E,AFB E90∠∠∴==,11BF BC a22==,FAB ABF90∠∠∴+=,ABD90∠=,ABF DBE90∠∠∴+=,FAB EBD∠∠∴=,线段BD是由线段AB旋转得到的,AB BD∴=,在AFB和BED中,AFB E FAB EBDAB BD∠=∠⎧⎪∠=∠⎨⎪=⎩,AFB∴≌()BED AAS,1BF DE a2∴==,2BCD1111S BC DE a a a2224=⋅=⋅⋅=,BCD∴的面积为21a4.【点睛】本题考查了旋转的性质、直角三角形的性质、等腰三角形的性质、全等三角形的判定与性质、三角形的面积等,综合性较强,有一定的难度,正确添加辅助线、熟练掌握和灵活运用相关的性质与定理是解题的关键.6.如图,已知△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE的中点,连接CF,DF.(1)如图1,当点D在AB上,点E在AC上时①证明:△BFC是等腰三角形;②请判断线段CF,DF的关系?并说明理由;(2)如图2,将图1中的△ADE绕点A旋转到图2位置时,请判断(1)中②的结论是否仍然成立?并证明你的判断.【答案】(1)①证明见解析;②结论:CF=DF且CF⊥DF.理由见解析;(2)(1)中的结论仍然成立.理由见解析.【解析】【详解】分析:(1)、根据“直角三角形斜边上的中线等于斜边的一半”可知CF=BF=EF,根据∠CFD=2∠ABC,∠ACB=90°,∠ABC=45°得出∠CFD=90°,从而得出答案;(2)、延长DF至G使FG=DF,连接BG,CG,DC,首先证明△BFG和△EFD全等,然后再证明△BCG和△ACD全等,从而得出GC=DC,∠BCG=∠ACD,∠DCG=∠ACB=90°,最后根据直角三角形斜中线的性质得出答案.详解:(1)①证明:∵∠BCE=90°.EF=FB,∴CF=BF=EF,∴△BFC是等腰三角形.②解:结论:CF=DF且CF⊥DF.理由如下:∵∠ADE=90°,∴∠BDE=90°,又∵∠BCE=90°,点F是BE的中点,∴CF=DF=12BE=BF,∴∠1=∠3,∠2=∠4,∴∠5=∠1+∠3=2∠1,∠6=∠2+∠4=2∠2,∴∠CFD=∠5+∠6=2(∠1+∠2)=2∠ABC,又∵△ABC是等腰直角三角形,且∠ACB=90°,∴∠ABC=45°,∴∠CFD=90°,∴CF=DF且CF⊥DF.(2)(1)中的结论仍然成立.理由如下:如图,延长DF至G使FG=DF,连接BG,CG,DC,∵F是BE的中点,∴BF=EF,又∵∠BFG=∠EFD,GF=DF,∴△BFG≌△EFD(SAS),∴∠FBG=∠FED,BG=ED,∴BG∥DE,∵△ADE和△ACB都是等腰直角三角形,∴DE=DA,∠DAE=∠DEA=45°,AC=BC,∠CAB=∠CBA=45°,又∵∠CBG=∠EBG﹣∠EBA﹣∠ABC=∠DEF﹣(180°﹣∠AEB﹣∠EAB)﹣45°=∠DEF﹣180°+∠AEB+∠EAB﹣45°=(∠DEF+∠AEB)+∠EAB﹣225°=360°﹣∠DEA+∠EAB﹣225°=360°﹣45°+∠EAB﹣225°=90°+∠EAB,而∠DAC=∠DAE+∠EAB+∠CAB=45°+∠EAB+45°=90°+∠EAB,∴∠CBG=∠DAC,又∵BG=ED,DE=DA,∴BG=AD,又∵BC=AC,∴△BCG≌△ACD(SAS),∴GC=DC,∠BCG=∠ACD,∴∠DCG=∠DCB+∠BCG=∠DCB+∠ACD=∠ACB=90°,∴△DCG是等腰直角三角形,又∵F是DG的中点,∴CF⊥DF且CF=DF.点睛:主要考查了旋转的性质,等腰三角形和全等三角形的判定,及勾股定理的运用.要掌握等腰三角形和全等三角形的性质及其判定定理并会灵活应用是解题的关键.7.如图,矩形OABC的顶点A在x轴正半轴上,顶点C在y轴正半轴上,点B的坐标为(4,m)(5≤m≤7),反比例函数y=16x(x>0)的图象交边AB于点D.(1)用m的代数式表示BD的长;(2)设点P在该函数图象上,且它的横坐标为m,连结PB,PD①记矩形OABC面积与△PBD面积之差为S,求当m为何值时,S取到最大值;②将点D绕点P逆时针旋转90°得到点E,当点E恰好落在x轴上时,求m的值.【答案】(1)BD=m﹣4(2)①m=7时,S取到最大值②m=5【解析】【分析】(1)先确定出点D横坐标为4,代入反比例函数解析式中求出点D横坐标,即可得出结论;(2)①先求出矩形OABC的面积和三角形PBD的面积得出S=﹣12(m﹣8)2+24,即可得出结论;②利用一线三直角判断出DG=PF,进而求出点P的坐标,即可得出结论.【详解】解:(1)∵四边形OABC是矩形,∴AB⊥x轴上,∵点B(4,m),∴点D的横坐标为4,∵点D在反比例函数y=16x上,∴D(4,4),∴BD=m﹣4;(2)①如图1,∵矩形OABC的顶点B的坐标为(4,m),∴S矩形OABC=4m,由(1)知,D(4,4),∴S△PBD=12(m﹣4)(m﹣4)=12(m﹣4)2,∴S=S矩形OABC﹣S△PBD=4m﹣12(m﹣4)2=﹣12(m﹣8)2+24,∴抛物线的对称轴为m=8,∵a<0,5≤m≤7,∴m=7时,S取到最大值;②如图2,过点P作PF⊥x轴于F,过点D作DG⊥FP交FP的延长线于G,∴∠DGP=∠PFE=90°,∴∠DPG+∠PDG=90°,由旋转知,PD=PE,∠DPE=90°,∴∠DPG+∠EPF=90°,∴∠PDG=∠EPF,∴△PDG≌△EPF(AAS),∴DG=PF,∵DG=AF=m﹣4,∴P(m,m﹣4),∵点P在反比例函数y=16x,∴m(m﹣4)=16,∴m=2+25或m=2﹣25(舍).【点睛】此题是反比例函数综合题,主要考查了待定系数法,矩形的性质,三角形的面积公式,全等三角形的判定,构造出全等三角形是解本题的关键.8.如图,正方形ABCO的边OA、OC在坐标轴上,点B的坐标为(6,6),将正方形ABCO 绕点C逆时针旋转角度α(0°<α<90°),得到正方形CDEF,ED交线段AB于点G,ED的延长线交线段OA于点H,连接CH、CG.(1)求证:△CBG≌△CDG;(2)求∠HCG的度数;并判断线段HG、OH、BG之间的数量关系,说明理由;(3)连接BD、DA、AE、EB得到四边形AEBD,在旋转过程中,四边形AEBD能否为矩形?如果能,请求出点H的坐标;如果不能,请说明理由.【答案】(1)证明见解析;(2)45°;HG= HO+BG;(3)(2,0).【解析】试题分析:(1)求证全等,观察两个三角形,发现都有直角,而CG为公共边,进而再锁定一条直角边相等即可,因为其为正方形旋转得到,所以边都相等,即结论可证.(2)根据(1)中三角形全等可以得到对应边、角相等,即BG=DG,∠DCG=∠BCG.同第一问的思路容易发现△CDH≌△COH,也有对应边、角相等,即OH=DH,∠OCH=∠DCH.于是∠GCH为四角的和,四角恰好组成直角,所以∠GCH=90°,且容易得到OH+BG=HG.(3)四边形AEBD若为矩形,则需先为平行四边形,即要对角线互相平分,合适的点只有G为AB中点的时候.由上几问知DG=BG,所以此时同时满足DG=AG=EG=BG,即四边形AEBD为矩形.求H点的坐标,可以设其为(x,0),则OH=x,AH=6﹣x.而BG为AB的一半,所以DG=BG=AG=3.又由(2),HG=x+3,所以Rt△HGA中,三边都可以用含x的表达式表达,那么根据勾股定理可列方程,进而求出x,推得H坐标.(1)证明:∵正方形ABCO绕点C旋转得到正方形CDEF,∴CD=CB,∠CDG=∠CBG=90°.在Rt△CDG和Rt△CBG中,,∴△CDG≌△CBG(HL);(2)解:∵△CDG≌△CBG,∴∠DCG=∠BCG,DG=BG.在Rt△CHO和Rt△CHD中,∵,∴△CHO≌△CHD(HL),∴∠OCH=∠DCH,OH=DH,∴∠HCG=∠HCD+∠GCD=∠OCD+∠DCB=∠OCB=45°,∴HG=HD+DG=HO+BG;(3)解:四边形AEBD可为矩形.如图,连接BD、DA、AE、EB,四边形AEBD若为矩形,则需先为平行四边形,即要对角线互相平分,合适的点只有G为AB中点的时候.∵DG=BG,∴DG=AG=EG=BG,即平行四边形AEBD对角线相等,则其为矩形,∴当G点为AB中点时,四边形AEBD为矩形.∵四边形DAEB为矩形,∴AG=EG=BG=DG.∵AB=6,∴AG=BG=3.设H点的坐标为(x,0),则HO=x∵OH=DH,BG=DG,∴HD=x,DG=3.在Rt△HGA中,∵HG=x+3,GA=3,HA=6﹣x,∴(x+3)2=32+(6﹣x)2,解得x=2.∴H点的坐标为(2,0).考点:几何变换综合题.二、初三数学圆易错题压轴题(难)9.在圆O中,C是弦AB上的一点,联结OC并延长,交劣弧AB于点D,联结AO、BO、AD、BD.已知圆O的半径长为5,弦AB的长为8.(1)如图1,当点D是弧AB的中点时,求CD的长;(2)如图2,设AC=x,ACOOBDSS=y,求y关于x的函数解析式并写出定义域;(3)若四边形AOBD是梯形,求AD的长.【答案】(1)2;(2)2825x x x-+(0<x<8);(3)AD=145或6.【解析】【分析】(1)根据垂径定理和勾股定理可求出OC的长.(2)分别作OH⊥AB,DG⊥AB,用含x的代数式表示△ACO和△BOD的面积,便可得出函数解析式.(3)分OB∥AD和OA∥BD两种情况讨论.【详解】解:(1)∵OD过圆心,点D是弧AB的中点,AB=8,∴OD ⊥AB ,AC=12AB=4, 在Rt △AOC 中,∵∠ACO=90°,AO=5,∴,∴OD=5,∴CD=OD ﹣OC=2;(2)如图2,过点O 作OH ⊥AB ,垂足为点H ,则由(1)可得AH=4,OH=3,∵AC=x ,∴CH=|x ﹣4|,在Rt △HOC 中,∵∠CHO=90°,AO=5,∴∴CD=OD ﹣OC=5过点DG ⊥AB 于G ,∵OH ⊥AB ,∴DG ∥OH ,∴△OCH ∽△DCG , ∴OH OC DG CD=, ∴DG=OH CD OC ⋅35, ∴S △ACO =12AC ×OH=12x ×3=32x , S △BOD =12BC (OH +DG )=12(8﹣x )×(335)=32(8﹣x ) ∴y=ACO OBD S S=()323582x x -(0<x <8) (3)①当OB ∥AD 时,如图3,过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F ,则OF=AE ,∴S=12AB•OH=12OB•AE ,AE=AB OH OB ⋅=245=OF , 在Rt △AOF 中,∠AFO=90°,AO=5,∴AF=22AO OF -=75∵OF 过圆心,OF ⊥AD , ∴AD=2AF=145. ②当OA ∥BD 时,如图4,过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G ,则由①的方法可得DG=BM=245, 在Rt △GOD 中,∠DGO=90°,DO=5,∴GO=22DO DG -=75,AG=AO ﹣GO=185, 在Rt △GAD 中,∠DGA=90°, ∴AD=22AG DG +=6综上得AD=145或6.故答案为(1)2;(2)y=()282558x x x x -+-(0<x <8);(3)AD=145或6. 【点睛】本题是考查圆、三角形、梯形相关知识,难度大,综合性很强.10.已知:图1 图2 图3(1)初步思考:如图1, 在PCB ∆中,已知2PB =,BC=4,N 为BC 上一点且1BN =,试说明:12PN PC = (2)问题提出:如图2,已知正方形ABCD 的边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC +的最小值. (3)推广运用:如图3,已知菱形ABCD 的边长为4,∠B ﹦60°,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC -的最大值.【答案】(1)详见解析;(2)5;(3)最大值DG =【解析】【分析】(1)利用两边成比例,夹角相等,证明BPN ∆∽BCP ∆,得到PN BN PC BP =,即可得到结论成立;(2)在BC 上取一点G ,使得BG=1,由△PBG ∽△CBP ,得到12PG PC =,当D 、P 、G 共线时,12PD PC +的值最小,即可得到答案; (3)在BC 上取一点G ,使得BG=1,作DF ⊥BC 于F ,与(2)同理得到12PG PC =,当点P 在DG 的延长线上时,12PD PC -的值最大,即可得到答案. 【详解】(1)证明:∵2,1,4PB BN BC ===,∴24,4PB BN BC =⋅=,∴2PB BN BC =⋅, ∴BN BP BP BC=, ∵B B ∠=∠,∴BPN BCP ∆∆∽, ∴12PN BN PC BP ==, ∴12PN PC =;(2)解:如图,在BC 上取一点G ,使得BG=1,∵242,212PB BC BG PB ====, ∴,PB BC PBG PBC BG PB=∠=∠, ∴PBG CBP ∆∆∽,∴12PG BG PC PB ==, ∴12PG PC =, ∴12PD PC DP PG +=+; ∵DP PG DG +≥, ∴当D 、P 、G 共线时,12PD PC +的值最小, ∴最小值为:22435DG =+=;(3)如图,在BC 上取一点G ,使得BG=1,作DF ⊥BC 于F ,与(2)同理,可证12PG PC =, 在Rt △CDF 中,∠DCF=60°,CD=4,∴DF=CD •sin60°=23CF=2,在Rt △GDF 中,22(23)537+=,∴12PD PC PD PG DG -=-≤, 当点P 在DG 的延长线上时,12PD PC -的值最大, ∴最大值为:37DG =【点睛】本题考查圆综合题、正方形的性质、菱形的性质、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.11.如图①、②、③是两个半径都等于2的⊙O1和⊙O2,由重合状态沿水平方向运动到互相外切过程中的三个位置,⊙O1和⊙O2相交于A、B两点,分别连结O1A、O1B、O2A、O2B和AB.(1)如图②,当∠AO1B=120°时,求两圆重叠部分图形的周长l;(2)设∠AO1B的度数为x,两圆重叠部分图形的周长为y,求y关于x的函数关系式,并写出自变量x的取值范围;(3)在(2)中,当重叠部分图形的周长时,则线段O2A所在的直线与⊙O1有何位置关系?请说明理由.除此之外,它们是否还有其它的位置关系?如果有,请直接写出其它位置关系时的x的取值范围.【答案】(1)83(2)(0≤x≤180)(3)O2A与⊙O1相切;当0≤x≤90和0≤x≤180时,线段O2A所在的直线与⊙O1相交【解析】试题分析:(1)解法一、依对称性得,∠AO2B=∠AO1B=120°,∴解法二、∵O1A=O1B=O2A=O2B∴AO1BO2是菱形∴∠AO2B=∠AO1B=120°∴l=2׈A=(2)∵由(1)知,菱形AO1BO2中∠AO2B=∠AO1B=x度,∴重叠图形的周长, 即(0≤x≤180)(3) 当时,线段O2A所在的直线与⊙O1相切!理由如下:∵,由(2)可知:,解之x=90度∴AO1B=90°,因此菱形AO1BO2是正方形,∴O1AO2=90°,即O2A⊥O1A,而O1A是⊙O1的半径,且A为半径之外端;∴O2A与⊙O1相切.还有如下位置关系:当0≤x≤90和0≤x≤180时,线段O2A所在的直线与⊙O1相交考点:直线与圆的位置关系点评:本题主要考查直线与圆的位置关系,掌握判定直线与圆的位置关系是解本题的关键,会求函数的解析式,本题难度比较大12.如图1,△ABC内接于⊙O,直径AD交BC于点E,延长AD至点F,使DF=2OD,连接FC并延长交过点A的切线于点G,且满足AG∥BC,连接OC,若cos∠BAC=13,BC=8.(1)求证:CF是⊙O的切线;(2)求⊙O的半径OC;(3)如图2,⊙O的弦AH经过半径OC的中点F,连结BH交弦CD于点M,连结FM,试求出FM的长和△AOF的面积.【答案】(1)见解析;(2)32332232【解析】【分析】(1)由DF=2OD,得到OF=3OD=3OC,求得13OE OCOC OF==,推出△COE∽△FOE,根据相似三角形的性质得到∠OCF=∠DEC=90°,于是得到CF是⊙O的切线;(2)利用三角函数值,设OE=x,OC=3x,得到CE=3,根据勾股定理即可得到答案;(3)连接BD,根据圆周角定理得到角相等,然后证明△AOF∽△BDM,由相似三角形的性质,得到FM为中位线,即可求出FM的长度,由相似三角形的性质,以及中线分三角形的面积为两半,即可求出面积.【详解】解:(1)∵DF=2OD,∴OF=3OD=3OC,∴13 OE OCOC OF==,∵∠COE=∠FOC,∴△COE∽△FOE,∴∠OCF =∠DEC =90°,∴CF 是⊙O 的切线;(2)∵∠COD =∠BAC ,∴cos ∠BAC =cos ∠COE =13OE OC =, ∴设OE =x ,OC =3x ,∵BC =8,∴CE =4,∵CE ⊥AD ,∴OE 2+CE 2=OC 2,∴x 2+42=9x 2,∴x =2(负值已舍去),∴OC =3x =32,∴⊙O 的半径OC 为32;(3)如图,连结BD ,由圆周角定理,则∠OAF=∠DBM ,2AOF ADC ∠=∠,∵BC ⊥AD ,∴AC AB =,∴∠ADC=∠ADB ,∴2AOF ADC BDM ∠=∠=∠,∴△AOF ∽△BDM ;∵点F 是OC 的中点,∴AO :OF=BD :DM=2,又∵BD=DC ,∴DM=CM ,∴FM 为中位线,∴322, ∴S △AOF : S △BDM =(326 2 34=;∵111118(322)42 22222BDM BCDS S BC DE∆∆==⨯•=⨯⨯⨯-=;∴S△AOF=3424⨯=32;【点睛】本题考查了圆的综合问题,圆周角定理,切线的判定和性质,相似三角形的判定和性质,利用勾股定理求边长,以及三角形中线的性质,解题的关键是熟练掌握所学的定理和性质,运用属性结合的思想进行解题.13.阅读材料:“最值问题”是数学中的一类较具挑战性的问题.其实,数学史上也有不少相关的故事,如下即为其中较为经典的一则:海伦是古希腊精通数学、物理的学者,相传有位将军曾向他请教一个问题﹣﹣如图1,从A点出发,到笔直的河岸l去饮马,然后再去B地,走什么样的路线最短呢?海伦轻松地给出了答案:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小.解答问题:(1)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值;(2)如图3,已知菱形ABCD的边长为6,∠DAB=60°.将此菱形放置于平面直角坐标系中,各顶点恰好在坐标轴上.现有一动点P从点A出发,以每秒2个单位的速度,沿A→C 的方向,向点C运动.当到达点C后,立即以相同的速度返回,返回途中,当运动到x轴上某一点M时,立即以每秒1个单位的速度,沿M→B的方向,向点B运动.当到达点B 时,整个运动停止.①为使点P能在最短的时间内到达点B处,则点M的位置应如何确定?②在①的条件下,设点P的运动时间为t(s),△PAB的面积为S,在整个运动过程中,试求S与t之间的函数关系式,并指出自变量t的取值范围.【答案】(1)PA+PC的最小值是32)①点M30)时,用时最少;②S与t之间的函数关系式是当3t3S=3﹣3t;当0<t3S =3t.当3t3S=﹣3t3【解析】【分析】(1)延长AO交圆O于M,连接CM交OB于P,连接AC,AP+PC=PC+PM=CM最小;(2)①根据运动速度不同以及运动距离,得出当PB⊥AB时,点P能在最短的时间内到达点B处;②根据三角形的面积公式求出从A到C时,s与t的关系式和从C到(3,0)以及到B 的解析式.【详解】解:(1)延长AO交圆O于M,连接CM交OB于P,连接AC,则此时AP+PC=PC+PM=CM最小,∵AM是直径,∠AOC=60°,∴∠ACM=90°,∠AMC=30°,∴AC=12AM=2,AM=4,由勾股定理得:CM=22AM AC=23.答:PA+PC的最小值是23.(2)①根据动点P从点A出发,以每秒2个单位的速度,沿A→C的方向,向点C运动.当到达点C后,立即以相同的速度返回,返回途中,当运动到x轴上某一点M时,立即以每秒1个单位的速度,沿M→B的方向,向点B运动,即为使点P能在最短的时间内到达点B处,∴当PB⊥AB时,根据垂线段最短得出此时符合题意,∵菱形ABCD,AB=6,∠DAB=60°,∴∠BAO=30°,AB=AD,AC⊥BD,∴△ABD是等边三角形,∴BD=6,BO=3,由勾股定理得:AO=3在Rt△APB中,AB=6,∠BAP=30°,BP=12AP,由勾股定理得:AP=3,BP=3,∴点M30)时,用时最少.②当0<t≤33时,AP=2t,∵菱形ABCD,∴∠OAB=30°,∴OB=12AB=3,由勾股定理得:AO=CO=33,∴S=12AP×BO=12×2t×3=3t;③当33<t≤43时,AP=63﹣(2t﹣63)=123﹣2t,∴S=12AP×BO=12×(123﹣2t)×3=183﹣3t.当43<t≤63时,S=12AB×BP=12×6×[23﹣(t﹣43)]=﹣3t+183,答:S与t之间的函数关系式是当33<t≤43时,S=183﹣3t;当0<t≤33时,S=3t.当43<t≤63时,S=﹣3t+183.【点睛】本题主要考查对含30度角的直角三角形,勾股定理,三角形的面积,轴对称-最短问题,圆周角定理等知识点的理解和掌握,能综合运用性质进行计算是解此题的关键.14.如图,已知AB是⊙O的直径,C是⊙O上一点(不与A、B重合),D为的AC中点,过点D作弦DE⊥AB于F,P是BA延长线上一点,且∠PEA=∠B.(1)求证:PE是⊙O的切线;(2)连接CA与DE相交于点G,CA的延长线交PE于H,求证:HE=HG;(3)若tan∠P=512,试求AHAG的值.【答案】(1)证明见解析;(2)证明见解析;(3)1310 AHAG.【解析】【分析】(1)连接OE,由圆周角定理证得∠EAB+∠B=90°,可得出∠OAE=∠AEO,则∠PEA+∠AEO=90°,即∠PEO=90°,则结论得证;(2)连接OD,证得∠AOD=∠AGF,∠B=∠AEF,可得出∠PEF=2∠B,∠AOD=2∠B,可证得∠PEF=∠AOD=∠AGF,则结论得证;(3)可得出tan∠P=tan∠ODF=512OFDF=,设OF=5x,则DF=12x,求出AE,BE,得出23AEBE=,证明△PEA∽△PBE,得出23PAPE=,过点H作HK⊥PA于点K,证明∠P=∠PAH,得出PH=AH,设HK=5a,PK=12a,得出PH=13a,可得出AH=13a,AG=10a,则可得出答案.【详解】解:(1)证明:如图1,连接OE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠EAB+∠B=90°,∵OA=OE,∴∠OAE=∠AEO,∴∠B+∠AEO=90°,∵∠PEA=∠B,∴∠PEA+∠AEO=90°,∴∠PEO=90°,又∵OE为半径,∴PE是⊙O的切线;(2)如图2,连接OD,∵D为AC的中点,∴OD⊥AC,设垂足为M,∴∠AMO=90°,∵DE⊥AB,∴∠AFD=90°,∴∠AOD+∠OAM=∠OAM+∠AGF=90°,∴∠AOD=∠AGF,∵∠AEB=∠EFB=90°,∴∠B=∠AEF,∵∠PEA=∠B,∴∠PEF=2∠B,∵DE⊥AB,∴AE AD=,∴∠AOD=2∠B,∴∠PEF=∠AOD=∠AGF,∴HE=HG;(3)解:如图3,∵∠PEF=∠AOD,∠PFE=∠DFO,∴∠P=∠ODF,∴tan∠P=tan∠ODF=512 OFDF=,设OF=5x,则DF=12x,∴OD22OF DF+13x,∴BF=OF+OB=5x+13x=18x,AF=OA﹣OF=13x﹣5x=8x,∵DE⊥OA,∴EF=DF=12x,∴AE22AF EF+13,BE22EF BF+13,∵∠PEA=∠B,∠EPA=∠BPE,∴△PEA∽△PBE,∴41323613PA AEPE BE===,∵∠P+∠PEF=∠FAG+∠AGF=90°,∴∠HEG=∠HGE,∴∠P=∠FAG,又∵∠FAG=∠PAH,∴∠P=∠PAH,∴PH =AH ,过点H 作HK ⊥PA 于点K ,∴PK =AK , ∴13PK PE =, ∵tan ∠P =512, 设HK =5a ,PK =12a ,∴PH =13a ,∴AH =13a ,PE =36a ,∴HE =HG =36a ﹣13a =23a ,∴AG =GH ﹣AH =23a ﹣13a =10a , ∴13131010AH a AG a ==. 【点睛】 本题是圆的综合题,考查了垂径定理,圆周角定理,相似三角形的判定和性质,切线的判定,解直角三角形,勾股定理,等腰三角形的性质等知识,掌握相似三角形的判定定和性质定理及方程思想是解题的关键.15.在平面直角坐标系xOy 中,对于两个点A ,B 和图形ω,如果在图形ω上存在点P ,Q (P ,Q 可以重合),使得AP =2BQ ,那么称点A 与点B 是图形ω的一对“倍点”. 已知⊙O 的半径为1,点B (0,3).(1)①点B 到⊙O 的最大值,最小值;②在A 1(5,0),A 2(0,10),A 3)这三个点中,与点B 是⊙O 的一对“倍点”的是 ;(2)在直线y =x +b 上存在点A 与点B 是⊙O 的一对“倍点”,求b 的取值范围; (3)正方形MNST 的顶点M (m ,1),N (m +1,1),若正方形上的所有点与点B 都是⊙O 的一对“倍点”,直接写出m 的取值范围.【答案】(1)①点B 到⊙O 的最大值是4,最小值是2;②A 1;(2)b -≤≤;(3)3≤m ≤1或≤m ≤﹣4【解析】【分析】(1)①根据点与圆的位置关系求解即可;②先求出123,,A A A 三个点到⊙O 的最大值与最小值,再根据“倍点”的定义求解即可; (2)如图1(见解析),过点O 作OD l ⊥,先求428BQ ≤≤,再求出直线:3l y x b =+上的点到⊙O 的最小值,只要这个最小值小于等于8即可满足题意,然后求解即可;(3)根据正方形的位置,可分20,01,1,2m m m m -≤<≤≤><-四种情况,分别求出每种情况下,正方形最近顶点、最远顶点到⊙O 的最大值与最小值,然后根据“倍点”的定义列出不等式组求解即可.【详解】(1)①点B 到⊙O 的最大值是314BO r +=+=点B 到⊙O 的最小值是312BO r -=-=;②1A 到⊙O 的最大值6,最小值4;2A 到⊙O 的最大值11,最小值9;3A 到⊙O 的最大值3,最小值1由(1)知,点B 到⊙O 的最大值是4,最小值是2因此,在⊙O 上存在点P ,Q ,使得12A P BQ =,则1A 与B 是⊙O 的一对“倍点”故答案为1A ;(2)∵点B 到⊙O 的最大值是4,最小值是2428BQ ∴≤≤如图1,过点O 作OD l ⊥由直线:l y x b =+的解析式可知:60,DCO OC b ∠=︒=由直角三角形的性质可得:1,2CD b OD ===则点D 到⊙O 1-,即直线:3l y x b =+上的点到⊙O 的最小值为1-要使直线:l y x b =+上存在点A 与点B 是⊙O 的一对“倍点”18-≤解得:b ≤b -≤≤;(3)由(2)知,428BQ ≤≤依题意,需分20,01,1,2m m m m -≤<≤≤><-四种情况讨论:①当20m -≤<时,顶点(1,1)N m +到⊙O 14<,此时顶点N 不符题意②当01m ≤≤时,顶点(,1)M m 到⊙O 14<,此时顶点M 不符题意③当1m ,如图2,正方形MNST 处于1号正方形位置时则顶点S 和T 的坐标为(1,0),(,0)S m T m +此时,点T 到⊙O 的最小值为1m -,最大值为1m +;点N 到⊙O 的最小值为。

相关文档
最新文档