初一一元一次方程应用题及答案
一元一次方程应用题集(含答案)
一元一次方程应用题集(含答案)一元一次方程应用题集(含答案)1. 碰碰车票价问题A市游乐园内的碰碰车是最受欢迎的项目之一。
假设每张碰碰车票价为15元,一天内售出了250张票,总票款为多少元?解答:设总票款为x元,则根据题意可得一元一次方程:15 × 250 = x。
解这个方程可得x = 3750。
所以,游乐园一天内的碰碰车票款为3750元。
2. 足球比赛门票销售问题一场足球比赛在体育馆举行,门票分为成人票和学生票,成人票的售价为50元,学生票的售价为30元。
某次比赛一共售出了210张门票,总票款为6900元。
问成人票和学生票各售出多少张?解答:设成人票的售出数量为x张,学生票的售出数量为y张。
根据题意可得两个方程:50x + 30y = 6900 (总票款为6900元)x + y = 210 (门票总数量为210张)首先,我们可以通过第二个方程解得x = 210 - y,然后代入第一个方程中,得到50(210 - y) + 30y = 6900。
化简后可得到50y - 50(210) + 30y = 6900,继续化简得到80y = 6900 - 50(210)。
继续计算可得到80y = 6900 - 10500,即80y = -3600。
解这个方程可得y = -3600 / 80,即y = -45。
然后将y的值代回第二个方程,可得x = 210 -(-45),即x = 210 + 45。
所以,成人票售出了255张,学生票售出了45张。
3. 汽车行驶问题小明开车从A市到B市,全程共500公里。
他以每小时80公里的速度行驶,途中共用了多长时间?解答:设小明使用的时间为t小时,则根据题意可得一元一次方程:80t = 500。
解这个方程可得t = 500 / 80,即t = 6.25。
所以,小明行驶这段距离共用了6.25小时。
4. 苹果购买问题小华去水果市场购买苹果,市场上卖家A每斤售价为4元,卖家B 每斤售价为3元。
初一一元一次方程应用题及答案
初一一元一次方程应用题及答案1、把200千米的水引到城市中来,这个任务交给了甲,乙两个施工队,工期50天,甲,乙两队合作了30天后,乙队因另有任务需离开10天,于是甲队加快速度,每天多修0.6千米,10天后乙队回来,为了保证工期,甲队速度不变,乙队每天比原来多修0.4千米,结果如期完成。
问:甲乙两队原计划各修多少千米?2、XXX买了4支自动铅笔和2支钢笔,共付14元;XXX 买了同样的1支自动铅笔和2支钢笔,共付11元。
求自动笔的单价,和钢笔的单价。
3、据统计2009年某地区建筑商出售商品房后的利润率为25%。
1)2009年该地区一套总售价为60万元的商品房,成本是多少?2)2010年第一季度,该地区商品房每平方米价格上涨了2a元,每平方米成本仅上涨了a元,这样60万元所能购买的商品房的面积比2009年减少了20平方米,建筑商的利润率达到三分之一,求2010年该地区建筑商出售的商品房每平方米的利润。
4、某物流公司,要将300吨物资运往某地,现有A、B 两种型号的车可供调用,已知A型车每辆可装20吨,B型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A型车的前提下至少还需调用B型车多少辆?5、某城市平均每天产生生活垃圾700吨,全部由甲,乙两个垃圾厂处理,已知甲厂每小时处理垃圾55吨,需费用550元;乙厂每小时处理垃圾45吨,需费用495元。
如果规定该城市处理垃圾的费用每天不超过7370元,甲厂每天至少需要处理垃圾多少小时?6、学校将若干间宿舍分配给七年级一班的女生住宿,已知该班女生少于35人,若每个房间住5人,则剩下5人没处可住;若每个房间住8人,则空出一间房,并且还有一间房也不满。
有多少间宿舍,多少名女生?7、某手机生产厂家根据其产品在市场上的销售情况,决定对原来以每部2000元出售的一款彩屏手机进行调价,并按新单价的八折优惠出售,结果每部手机仍可获得实际销售价的20%的利润(利润=销售价—成本价).已知该款手机每部成本价是原销售单价的60%。
初一上册数学一元一次方程-含答案
【典型例题】例1 将一批数据输入电脑,甲独做需要50分钟完成,乙独做需要30分钟完成,现在甲独做30分钟,剩下的部分由甲、乙合做,问甲、乙两人合做的时间是多少?解析:首先设甲乙合作的时间是x分钟,根据题意可得等量关系:甲工作(30+x)分钟的工作量+乙工作x分钟的工作量=1,根据等量关系,列出方程,再解方程即可.设甲乙合作的时间是x分钟,由题意得:【方法突破】工程问题是典型的a=bc型数量关系,可以知二求一,三个基本量及其关系为:工作总量=工作效率×工作时间需要注意的是:工作总量往往在题目条件中并不会直接给出,我们可以设工作总量为单位1。
二、比赛计分问题【典型例题】例1某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。
已知某人有5道题未作,得了103分,则这个人选错了多少道题。
解:设这个人选对了x道题目,则选错了(45-x)道题,于是3x-(45-x)=1034x=148解得 x=37则 45-x=8答:这个人选错了8道题.例2某校高一年级有12个班.在学校组织的高一年级篮球比赛中,规定每两个班之间只进行一场比赛,每场比赛都要分出胜负,每班胜一场得2分,负一场得1分.某班要想在全部比赛中得18分,那么这个班的胜负场数应分别是多少?因为共有12个班,且规定每两个班之间只进行一场比赛,所以这个班应该比赛11场,设胜了x场,那么负了(11-x)场,根据得分为18分可列方程求解.【解析】设胜了x场,那么负了(11-x)场.2x+1•(11-x)=18x=711-7=4那么这个班的胜负场数应分别是7和4.【方法突破】比赛积分问题的关键是要了解比赛的积分规则,规则不同,积分方式不同,常见的数量关系有:每队的胜场数+负场数+平场数=这个队比赛场次;得分总数+失分总数=总积分;失分常用负数表示,有些时候平场不计分,另外如果设场数或者题数为x,那么x最后的取值必须为正整数。
人教版七年级上册数学一元一次方程应用题及答案
人教版七年级上册数学一元一次方程应用题及答案1.某商店开张,为了吸引顾客,所有商品一律按八折优惠出售。
已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%。
问这种皮鞋标价是多少元?优惠价是多少元?答:根据知能点1中的公式,可得:商品利润率 = (售价 - 成本价)/ 成本价 × 100%40% = (售价 × 0.8 - 60)/ 60 × 100%售价 = 96元优惠价 = 76.8元2.一家商店将某种服装按进价提高40%后标价,又以八折优惠卖出,结果每件仍获利15元。
这种服装每件的进价是多少?答:设进价为x元,则:售价 = 1.2x × 0.8 = 0.96x利润 = 0.96x - x = 0.04x0.04x = 15x = 375元3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元。
这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为:答:根据知能点1中的公式,可得:售价 = 1.45x × 0.8 = 1.16x利润 = 1.16x - x = 0.16x0.16x = 50x = 312.5元4.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折。
答:设打折为x折,则:售价 = 1200 × x / 10 = 120x利润 = 120x - 800利润率 = 利润 / 进价 × 100%5% = (120x - 800)/ 800 × 100%x = 6.67折,即至多打7折。
5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”。
经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价。
答:设原售价为x元,则:售价 = 1.4x × 0.8 = 1.12x非法收入 = (1.12x - x)× 10 = 0.12x × 10 = 1.2x罚款 = 2700元1.2x = 2700x = 2250元6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元。
初中数学一元一次方程精选试题(含答案和解析)
初中数学一元一次方程精选试题(含答案和解析)一.选择题1.(2018·湖北省恩施·3分)一商店在某一时间以每件120元的价格卖出两件衣服.其中一件盈利20%.另一件亏损20%.在这次买卖中.这家商店()A.不盈不亏 B.盈利20元C.亏损10元D.亏损30元【分析】设两件衣服的进价分别为x、y元.根据利润=销售收入﹣进价.即可分别得出关于x、y的一元一次方程.解之即可得出x、y的值.再用240﹣两件衣服的进价后即可找出结论.【解答】解:设两件衣服的进价分别为x、y元.根据题意得:120﹣x=20%x.y﹣120=20%y.解得:x=100.y=150.∴120+120﹣100﹣150=﹣10(元).故选:C.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.2.(2018湖南省邵阳市)(3分)程大位是我国明朝商人.珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著.详述了传统的珠算规则.确立了算盘用法.书中有如下问题:一百馒头一百僧.大僧三个更无争.小僧三人分一个.大小和尚得几丁.意思是:有100个和尚分100个馒头.如果大和尚1人分3个.小和尚3人分1个.正好分完.大、小和尚各有多少人.下列求解结果正确的是()A.大和尚25人.小和尚75人 B.大和尚75人.小和尚25人C.大和尚50人.小和尚50人 D.大、小和尚各100人【分析】根据100个和尚分100个馒头.正好分完.大和尚一人分3个.小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100.大和尚分得的馒头数+小和尚分得的馒头数=100.依此列出方程即可.【解答】解:设大和尚有x人.则小和尚有(100﹣x)人.根据题意得:3x+=100.解得x=25则100﹣x=100﹣25=75(人)所以.大和尚25人.小和尚75人.故选:A.【点评】本题考查了一元一次方程的应用.关键以和尚数和馒头数作为等量关系列出方程.二.填空题1.(2018·湖北江汉油田、潜江市、天门市、仙桃市·3分)某公司积极开展“爱心扶贫”的公益活动.现准备将6000件生活物资发往A.B两个贫困地区.其中发往A区的物资比B区的物资的1.5倍少1000件.则发往A区的生活物资为3200 件.【分析】设发往B区的生活物资为x件.则发往A区的生活物资为(1.5x﹣1000)件.根据发往A.B两区的物资共6000件.即可得出关于x的一元一次方程.解之即可得出结论.【解答】解:设发往B区的生活物资为x件.则发往A区的生活物资为(1.5x﹣1000)件.根据题意得:x+1.5x﹣1000=6000.解得:x=2800.∴1.5x﹣1000=3200.答:发往A区的生活物资为3200件.故答案为:3200.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.3.(2018•上海•4分)方程组的解是..【分析】方程组中的两个方程相加.即可得出一个一元二次方程.求出方程的解.再代入求出y即可.【解答】解:②+①得:x2+x=2.解得:x=﹣2或1.把x=﹣2代入①得:y=﹣2.把x=1代入①得:y=1.所以原方程组的解为..故答案为:..【点评】本题考查了解高次方程组.能把二元二次方程组转化成一元二次方程是解此题的关键.三.解答题1.(2018•广东•7分)某公司购买了一批A.B型芯片.其中A型芯片的单价比B型芯片的单价少9元.已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A.B型芯片的单价各是多少元?(2)若两种芯片共购买了200条.且购买的总费用为6280元.求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x ﹣9)元/条.根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.即可得出关于x的分式方程.解之经检验后即可得出结论;(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据总价=单价×数量.即可得出关于a的一元一次方程.解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x﹣9)元/条.根据题意得:=.解得:x=35.经检验.x=35是原方程的解.∴x﹣9=26.答:A型芯片的单价为26元/条.B型芯片的单价为35元/条.(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据题意得:26a+35(200﹣a)=6280.解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用.解题的关键是:(1)找准等量关系.正确列出分式方程;(2)找准等量关系.正确列出一元一次方程.2.(2018•海南•8分)“绿水青山就是金山银山”.海南省委省政府高度重视环境生态保护.截至2017年底.全省建立国家级、省级和市县级自然保护区共49个.其中国家级10个.省级比市县级多5个.问省级和市县级自然保护区各多少个?【分析】设市县级自然保护区有x个.则省级自然保护区有(x+5)个.根据国家级、省级和市县级自然保护区共49个.即可得出关于x的一元一次方程.解之即可得出结论.【解答】解:设市县级自然保护区有x个.则省级自然保护区有(x+5)个.根据题意得:10+x+5+x=49.解得:x=17.∴x+5=22.答:省级自然保护区有22个.市县级自然保护区有17个.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.3.(2018湖南张家界5.00分)列方程解应用题《九章算术》中有“盈不足术”的问题.原文如下:“今有共買羊.人出五.不足四十五;人出七.不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊.每人出5元.则差45元;每人出7元.则差3元.求人数和羊价各是多少?【分析】可设买羊人数为未知数.等量关系为:5×买羊人数+45=7×买羊人数+3.把相关数值代入可求得买羊人数.代入方程的等号左边可得羊价.【解答】解:设买羊为x人.则羊价为(5x+45)元钱.5x+45=7x+3.x=21(人).5×21+45=150(员).答:买羊人数为21人.羊价为150元.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.。
初一一元一次方程:综合问题应用题(答案)
《一元一次方程:综合问题》1、列方程解应用题: 油桶制造厂的某车间主要负责生产制造油桶用的圆形铁片和长方形铁片,该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.如图,一个油桶由两个圆形铁片和一个长方形铁片相配套.生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?【解】设生产圆形铁片的工人为x 人,则生产长方形铁片的工人为42﹣x 人, 根据题意可列方程:120x =2×80(42﹣x ),解得:x =24,则42﹣x =18.答:生产圆形铁片的有24人,生产长方形铁片的有18人2、两根同样长的蜡烛,点完一根粗的要2小时,细的要1小时,一天晚上停电同时将两根蜡烛点燃,若干分钟后,同时将两根蜡烛熄灭,发现粗蜡烛的长是细蜡烛2倍,问停电多少分钟?【解】设中间停电x 小时)1(221x x -=- 32=x 406032=⨯ 答:略。
3、长度相等,粗细不同的两支蜡烛,一支可燃3小时,另一支可燃4小时。
同时点燃,当剩余的长度中,一支是另一支的3倍时,蜡烛点燃了多少小时?【解】设蜡烛点燃了x 小时;两支蜡烛原长都为1)31(3)41(x x -=- 38=∴x 答:蜡烛点燃了38小时4、容器盛满纯酒精50升,第一次倒出一部分酒精后用水加满,第二次又倒出同样多的酒精溶液,再用水加满,这时容器中的溶液含纯酒精32升,求每次倒出液体的升数?【解】设每次倒出液体x 升,依题意得:5050x (50-x ) = 32 x =10 列方程解应用题5、请根据图中提供的信息,回答下列问题:(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯.为了迎接新年,两家商场都在搞促销活动.甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.【解】(1)设一个暖瓶x 元,则一个水杯(38﹣x )元,根据题意得:2x +3(38﹣x )=84.解得:x =30.一个水杯=38﹣30=8.故一个暖瓶30元,一个水杯8元;(2)若到甲商场购买,则所需的钱数为:(4×30+15×8)×90%=216元.若到乙商场购买,则所需的钱数为:4×30+(15﹣4)×8=208元.因为208<216.所以到乙家商场购买更合算.6、某检测站要在规定的时间内检测一批产品,原计划每天检测30件产品,则在规定的时间内只能检测完总数的,现在每天实际检测50件,结果不仅比计划提前一天完成任务,还可以多检测25件。
初一数学《一元一次方程解应用题》典型例习题及答案
《一元一次方程解应用题》典型例习题1、分配问题:例题1、把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.问这个班有多少学生?变式1:某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?变式2:某校组织七年级师生春游,若单独租用45座的客车若干辆正好坐满,租金每辆250元,若单独租用60座的客车可少租1辆,且有30个空余座位,租金每辆300元.(1)该校参加春游的师生共有多少人?(2)如果这两种车都租用了,且60座的车比45座的车多租了一辆,这样租车的总费用要比单独某一种车辆更省钱,求按这种方案租车需要租金多少元?2、匹配问题:例题2、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母。
为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、5个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?变式2:用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。
一个盒身与两个盒底配成一套罐头盒。
现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?3、利润问题例3 、一件商品每件的进价为250元,按标价的九折销售时,利润为15.2%,这种商品每件标价是多少?变式1:一件衣服的进价为x元,售价为60元,利润是______元,利润率是_______;一件衣服的进价为x元,若要利润率是20%,应把售价定为________.变式2:一件衣服的进价为x元,售价为80元,若按原价的8折出售,利润是______元,利润率是__________.变式3:一件衣服的进价为60元,若按原价的8折出售获利20元,则原价是______元,利润率是__________.;一台电视售价为1100元,利润率为10%,则这台电视的进价为_____元.变式4:一件夹克衫先按成本提高50%标价,再以八折(标价的80%)出售,结果获利28元,这件夹克衫的成本是多少元?变式5:一件商品按成本价提高20%标价,然后打九折出售,售价为270元.这种商品的成本价是多少?变式6:某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,买这两件衣服总的是盈利还是亏损,或是不盈不亏?4、工程问题:例4. 一件工作,甲单独做20小时完成,乙单独做12小时完成。
15道一元一次方程应用题带答案
优质解答1、甲乙两地相距162公里,一列慢车从甲站开出,每小时走48,一列快车从乙站开出,每小时走60公里,试问:若两车相向而行,慢车先开出1小时,再用多少小时,两车才能相遇?(一元一次方程解)设再用x小时两车相遇48(x+1)+60x=16248x+48+60x=162108x=114x=57/53数据别扭.两车同时同行(快车在后面),几小时可以追上慢车?(一元一次方程解)设x小时后追上60x-48x=16212x=162x=13.5小时答:13.5小时后追上222、一搜客船从A地出发到B地顺流行驶,用了2.5小时;从B地返回A地逆流行驶,用了3.5小时,已知水流的速度是4千米∕时,求客船在静水中的平均速度?(一元一次方程解)设客船静水速度为每小时x千米2.5(x+4)=3.5(x-4)2.5x+10=3.5x-143.5x-2.5x=10+14x=24答:客船静水速度为每小时24千米3、3、一队学生练习行军,以每小时5公里的速度步行,出发3小时后,学校通讯员以每小时60公里的速度追上去,文通讯员经过多少小时追上学生队伍?(一元一次方程解)设x小时后追上60x=5(x+3)60x=5x+1555x=15x=3/11答.4、一列慢车从某站开出,每小时行48km,过了一段时间,一列快车从同站出发与慢车通向而行,每小时行72km,又经过1.5小时追上慢车,快车开出前,慢车已行了多少小时?(一元一次方程解)设慢车已经行了x小时48x+48×1.5=72×1.548x+72=72*1.548x=36x=0.75答:慢车已经行了0.75小时5、一个人从甲村走到乙村,如果他每小时走4千米,那么走到预定的时间,离乙村还有1.5千米;如果他每小时走5km,那么比一定时间少用半小时就可以到达乙村.求预定时间是多少小时,甲村到乙村的路程是多少千米?(一元一次方程解)设预定时间为x小时4x+1.5=5(x-0.5)4x+1.5=5x-2.55x-4x=1.5+2.5x=4甲乙路程:4×4+1.5=17.5千米6、甲、乙两人环绕周长是400米的跑道散步,如果两人从同一地点背道而行,那么经过2分钟他们两人就要相遇.如果2人从同一地点同向而行,那么经过20分钟两人相遇.如果甲的速度比乙的速度快,求两人散步的速度?(一元一次方程)设甲速度为每分钟x米,乙速度为每分钟400/2-x米20x-20(400/2-x)=400x-(200-x)=20x-200+x=202x=220x=110400/2-x=200-110=90答:甲速度为每分钟110米,乙速度为每分钟90米7、某连队从驻地出发前往某地执行任务,行军速度是6千米/小时,18分钟后,驻地接到紧急命令,派遣通讯员小王必须在一刻钟内把命令传达到该连队,小王骑自行车以14千米/小时的速度沿同一路线追赶连队,问是否能在规定时间内完成任务?设小王追上连队需要x小时14x=6*18/60+6x14x=1.8+6x8x=1.8x=0.2250.225小时=13.5分钟<15分钟小王能完成任务8、一列客车和一列货车在平行的轨道上同向行驶, 客车的长是200米,货车的长是280米,客车速度与货车的速度比是5 :3,客车赶上货车的交叉时间是1分钟,求各车的速度;若两车相向行驶,它们的交叉时间是多少分钟?(一元一次方程)设客车速度为每分钟5x米,货车速度为每分钟3x米5x-3x=200+2802x=480x=2405x=240×5=12003x=240×3=720答:客车速度为每分钟1200米,货车速度为每分钟720米设交叉时间为y分钟1200y+720y=200+280191、两个仓库装粮食,第一个仓库是第二个仓库存粮的3倍,如果从第一个仓库中取出20吨放入第二个仓库中,第二个仓库中的粮食是第一个中的5/7 每个仓库各有多少粮食?设第一仓原有3x吨,第二仓原有x吨(3x-20)*5/7=x+205(3x-20)=7(x+20)15x-100=7x+1408x=240x=303x=3×30=90答:第一仓原有90吨,第二仓原有30吨2、甲乙丙三个乡合修水利工程,按照收益土地的面积比3:2:4分担费用1440元3个乡各分配多少元?设甲乙丙各分担3x,2x,4x元3x+2x+4x=14409x=1440x=1603x=3×160=4802x=2×160=3204x=4×160=640答:甲分担480元,乙分担320元,丙分担640元3、一个两位数,十位数与个位上的数之和为11,如果把十位上的数与个位上的数对调得到比原来的数大63原来的两个数是?设原数十位数字为x,个位数字为11-x10(11-x)+x-(10x+11-x)=63110-10+x-9x-11=6318x=36x=211-x=11-2=9答:原来两位数为294、一工程甲单独要10天乙要12天,丙要15天,甲丙先做3天甲离开乙参加工作问还! 需要几天?设还需要x天(1/10+1/15)*3+(1/12+1/15)x=11/2+3/20*x=13/20*x=1/2x=1/2*20/3x=10/3答:还需要10/3天5、有含盐8%盐水40KG 使盐水含盐20% ①加盐多少②蒸发水分需蒸发多少KG水?1)设加盐x千克40×8%+x=(40+x)*20%3.2+x=8+0.2xx=6答:加盐6千克2)设蒸发水x千克(40-x)*20%=40*8%8-0.2x=3.20.2x=4.8x=24答:需要蒸发水24千克6、有含酒精70%及含酒精98%的酒精,问各取多少可调配成含酒精84%的酒精100KG?设需要70%酒精x千克,98%酒精100-x千克7%x+98%(100-x)=100*84%0.07x+98-0.98x=840.91x=14x=200/13100-x=100-200/13=1100/13答:需要70%酒精200/13千克,98%酒精1100/13千克7、甲乙相距120千米乙速比甲每小时快1千米,甲先从A出发2时后,乙从B出发与甲相向而行经过10时后相遇,求甲乙的速度设甲速度为每小时x千米,乙速度为每小时x+1千米(2+10)x+10(x+1)=12012x+10x+10=120x=5x+1=5+1=6答:甲速度为每小时5千米,乙速度为每小时6千米。
七年级解一元一次方程经典50道练习题(带答案)
自我测试 60分钟看看准确率 牛刀小试 相信自己一定行1、712=+x ; 2、825=-x ; 3、7233+=+x x ; 4、735-=+x x ;解:(移项) (合并) (化系数为1)5、914211-=-x x ; 6、2749+=-x x ;7、162=+x ; 8、9310=-x ;解:(移项) (合并) (化系数为1)9、x x -=-324; 10、4227-=+-x x ;11、8725+=-x x ;12、32141+=-x x解:(移项) (合并) (化系数为1 13、1623+=x x 14、253231+=-x x ;15、152+=--x x ; 16、23312+=--xx解:(移项) (合并) (化系数为1).17、475.0=)++(x x ; 18、2-41)=-(x ; 19、511)=-(x ; 20、212)=---(x ; 解:(去括号) (移项) (合并) (化系数为1)21、)12(5111+=+x x ; 22、32034)=-(-x x . 23、5058=)-+(x ; 24、293)=-(x ; 解:(去括号) (移项) (合并) (化系数为1) 25、3-243)=+(x ; 26、2-122)=-(x ; 27、443212+)=-(x x ; 28、323236)=+(-x ;解:(去括号)(移项) (合并)(化系数为1)29、x x 2570152002+)=-(; 30、12123)=+(x .31、452x x =+; 32、3423+=-x x ; 解:(去分母)(去括号) (移项) (合并) (化系数为1) 33、)-()=+(3271131x x ; 34、)-()=+(131141x x ; 35、142312-+=-x x ;解:(去分母)(去括号) (移项) (合并) (化系数为1 36、)+(-)=-(2512121x x . 37、)+()=+(20411471x x ; 38、)-(-)=+(731211551x x . 解:(去分母)(去括号) (移项) (合并) (化系数为1 39、432141=-x ; 40、83457=-x ; 41、815612+=-x x ; 42、629721-=-x x ; 解:(去分母)(去括号) (移项) (合并) (化系数为1 43、1232151)=-(-x x ; 44、1615312=--+x x ; 45、x x 2414271-)=+(; 解:(去分母)(去括号) (移项) (合并) (化系数为146、259300300102200103 )=-()-+(x x . 47、307221159138)=-()--()--(x x x ; 解:(去分母)(去括号) (移项) (合并) (化系数为148、51413121-=+x x ; 49、13.021.02.015.0=-+--x x ; 50、3.01-x -5.02+x =12. 解:(化整)(去分母) (去括号) (移项) (合并) (化系数为1【参考答案】 1、【答案】 (1)3=x ; (2)2=x ; (3)4=x ; (4)6=x ;(5)37=x ; (6)12=-x ; (7)4=x ; (8)32=-x .1.1、【答案】 (9)25=-x ; (10)56=x ; (11)5=-x ; (12)31=-x ;(13)1=x ; (14)32=x ; (15)35=-x ; (16)1=x .2、【答案】(17)1=x ;(18)1=-x ; (19)56=x ; (20)3=-x ; (21)4=x ; (22)9=x . 2.1、【答案】(23)7=-x ; (24)23=-x ; (25)11=-x ; (26)4=-x ; (27)21=x ; (28)910=x ; (29)6=x ; (30)23=x .3、【答案】 (31)8=x ; (32)51=x ; (33)16=-x ; (34)7=x ; (35)52=-x ;(36)3=x ; (37)28=-x ; (38)165=-x .3.1、【答案】 (39)5=x ; (40)1413=x ; (41)1=-x ; (42)320=-x ; (43)1225=x ; (44)3=-x ; (45)87=x ; (46)216=x .4、【答案】 (47)3=x ; (48)1532=-x ; (49)1364=x ; (50)229=x .。
一元一次方程经典应用题(有答案)
应用题专题训练知能点1:市场经济、打折销售问题 (1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?解:设标价是x 元,80%604060100x -=解之:x =105 (元)优惠价为),(8410510080%80元=⨯=x2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?解:设进价为x 元,80%x (1+40%)— x =15x =125(元) 答:进价是125元。
3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?解:设进价是x 元,50)45.01(108=-+⨯x x解之:x =312.5 (元) 答:进价是312.5元。
4.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.解:设至多打x 折,根据题意有1200800800x -×100%=5%解得x =0.7=70%答:至多打7折出售.5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.解:设每台彩电的原售价为x 元,根据题意,有 10[x (1+40%)×80%-x ]=2700 解得 x =2250答:每台彩电的原售价为2250元.知能点2:工程问题工作量=工作效率×工作时间6. 一件工作,甲独作10天完成,乙独作8天完成,两人合作几天完成?解:甲独作10天完成,说明的他的工作效率是,101乙的工作效率是,81等量关系是:甲乙合作的效率×合作的时间=1 解:设合作x 天完成, 依题意得方程 9401)81101(==+x x 解得 答:两人合作940天完成7. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?[分析]设工程总量为单位1,等量关系为:甲完成工作量+乙完成工作量=工作总量。
(完整)一元一次方程应用题及答案
1/4a=150 a=600 千克
(完整)一元一次方程应用题及答案
水果原来有 600 千克
13、仓库有一批货物,运出五分之三后,这时仓库里又运进 20 吨,此时的货物正好是原来的二 分之一,仓库原来有多少吨?(用方程解)
设原来有 a 吨
a×(1—3/5)+20=1/2a
0.4a+20=0。5a
8、六一中队的植树小队去植树,如果每人植树 5 棵,还剩下 14 棵树苗,如果每人植树 7 棵, 就少 6 棵树苗。这个小队有多少人?一共有多少棵树苗?
解:设有 a 人
5a+14=7a—6
2a=20 a=10
一共有 10 人
有树苗 5×10+14=64 棵
9、一桶油连油带筒重 50kg,第一次倒出豆油的的一半少四千克,第二次倒出余下的四分之三多 二又三分之二 kg,这时连油带桶共重三分之一 kg,原来桶中有多少油?
甲的速度为 4.5+1.5=6 千米/小时
19、甲乙两人分别从相距 7 千米的 AB 两地出发同向前往 C 地,凌晨 6 点乙徒步从 B 地出发,甲 骑自行车在早晨 6 点 15 分从 A 地出发追赶乙,速度是乙的 1.5 倍,在上午 8 时 45 分追上乙,求 甲骑自行车的速度是多少。
解:设乙的速度为 a 千米/小时,甲的速度为 1。5a 千米/小时
解:设油重 a 千克
那么桶重 50-a 千克
第一次倒出 1/2a-4 千克,还剩下 1/2a+4 千克 精心整理
(完整)一元一次方程应用题及答案 第二次倒出 3/4×(1/2a+4)+8/3=3/8a+17/3 千克,还剩下 1/2a+4—3/8a—17/3=1/8a-5/3 千克油 根据题意 1/8a—5/3+50—a=1/3 48=7/8a a=384/7 千克 原来有油 384/7 千克 10、用一捆 96 米的布为六年级某个班的学生做衣服,做 15 套用了 33 米布,照这样计算,这 些布为哪个班做校服最合适?(1 班 42 人,2 班 43 人,3 班 45 人) 设 96 米为 a 个人做 根据题意 96:a=33:15 33a=96×15 a≈43。6 所以为 2 班做合适,有富余,但是富余不多,为 3 班做就不够了 精心整理
7年级上一元1次解方程方程100道及其步骤答案
7年级上一元1次解方程方程100道及其步骤答案7年级上一元1次解方程方程100道及其步骤答案7(2x-1)-3(4x-1)=4(3x+2)-1;(5y+1)+ (1-y)= (9y+1)+ (1-3y);20%+(1-20%)(320-x)=320×40%2(x-2)+2=x+12(x-2)-3(4x-1)=9(1-x)x/3 -5 = (5-x)/22(x+1) /3=5(x+1) /6 -1(1/5)x +1 =(2x+1)/4(5-2)/2 - (4+x)/3 =1x/3 -1 = (1-x)/2(x-2)/2 - (3x-2)/4 =-111x+64-2x=100-9x15-(8-5x)=7x+(4-3x)3(x-7)-2[9-4(2-x)]=223/2[2/3(1/4x-1)-2]-x=22(x-2)-3(4x-1)=9(1-x)11x+64-2x=100-9x15-(8-5x)=7x+(4-3x)3(x-7)-2[9-4(2-x)]=223/2[2/3(1/4x-1)-2]-x=22(x-2)+2=x+11.7(2x-1)-3(4x-1)=4(3x+2)-12.(5y+1)+ (1-y)= (9y+1)+ (1-3y)3.[ (- 2)-4 ]=x+24.20%+(1-20%)(320-x)=320×40%5.2(x-2)+2=x+16.2(x-2)-3(4x-1)=9(1-x)7.11x+64-2x=100-9x8.15-(8-5x)=7x+(4-3x)9.3(x-7)-2[9-4(2-x)]=2210.3/2[2/3(1/4x-1)-2]-x=211.5x+1-2x=3x-212.3y-4=2y+113.87X*13=514.7Z/93=4115.15X+863-65X=5416.58Y*55=2748917.2(x+2)+4=918.2(x+4)=1019.3(x-5)=1820.4x+8=2(x-1)21.3(x+3)=9+x22.6(x/2+1)=1223.9(x+6)=6324.2+x=2(x-1/2)25.8x+3(1-x)=-226.7+x-2(x-1)=127.x/3 -5 = (5-x)/228.2(x+1) /3=5(x+1) /6 -129.(1/5)x +1 =(2x+1)/430.(5-2)/2 - (4+x)/3 =1 15x-8(5x+1.5)=18*1.25+x 3X+189=5214Y+119=223X*189=58Z/6=4583X+77=594Y-6985=8187X*13=57Z/93=4115X+863-65X=5458Y*55=274891.2(x-2)-3(4x-1)=9(1-x)2.11x+64-2x=100-9x3.15-(8-5x)=7x+(4-3x)4.3(x-7)-2[9-4(2-x)]=225.3/2[2/3(1/4x-1)-2]-x=26.2(x-2)+2=x+17.0.4(x-0.2)+1.5=0.7x-0.388.30x-10(10-x)=1009.4(x+2)=5(x-2)10.120-4(x+5)=2511.15x+863-65x=5412.12.3(x-2)+1=x-(2x-1)13.11x+64-2x=100-9x14.14.59+x-25.31=015.x-48.32+78.51=8016.820-16x=45.5×817.(x-6)×7=2x18.3x+x=1819.0.8+3.2=7.220.12.5-3x=6.521.1.2(x-0.64)=0.5422.x+12.5=3.5x23.8x-22.8=1.224.1\ 50x+10=6025.2\ 60x-30=2026.3\ 3^20x+50=11027.4\ 2x=5x-328.5\ 90=10+x29.6\ 90+20x=3030.7\ 691+3x=7001 2x-10.3x=152 0.52x-(1-0.52)x=803 x/2+3x/2=74 3x+7=32-2x5 3x+5(138-x)=5406 3x-7(x-1)=3-2(x+3)7 18x+3x-3=18-2(2x-1)8 3(20-y)=6y-4(y-11)9 -(x/4-1)=510 3[4(5y-1)-8]=6(1)-3x-6x2=7(2)5x+1-2x=3x-2(3)3y-4=2y+1(4)3y-4=y+3(5)3y-y=3+4(6)0.4x-3=0.1x+2(7)5x+15-2x-2=10(8)2x-4+5-5x=-1求十道七年级上一元一次解方程,有答案2x+3=x-12x-x=-1-3x=-4-2x=-3x+83x-2x=8x=89- 3x=6-3x=6-9-3x=-3x=12x-2=92x=9+22x=11x=5.511x+64-2x=100-9x9x+64=100-9x9x+9x=100-6418x=36x=25-(8-5x)=7x5-8+5x=7x5x-3=7x2x=-3x=-1.53(x-7)-2=9-4(2-x)3x-21-2=9-8+4x3x-23=1+4x4x-3x=-23-1x=-24一元一次解方程的步骤去分母去括号移项合并同类项同除以未知数系数初一上册解方程30道带步骤带答案 6道一元一次应用题带步骤(1) 3X-(1/2+1/4)=7/123X=7/12+3/43X=4/3X=4/9(2) 6.6-5X=3/4-4X6.6-0.75=-4X+5XX=5.85(3) 1.1X+2.2=5.5-3.3X1.1X+3.3X=5.5-2.24.4X=3.3X=3/4=4/3(4)3x-3=1x=4/3(5)5x-3x=4x=2(6)3x+7=28x=7(7)3x-7=26x=11(8)9x-x=16x=2(9)24x+x=50x=2(10)3x-8=30x=38/3一1.光明中学学生为“希望小学”捐款,七年级和八年级共捐款11144元。
一元一次方程的应用题(含解析)
一元一次方程的应用题(一)考试要求:内容基本要求略高要求较高要求一元一了解一元一次方会根据具体问题列出一元一次方能运用整式的加减运算次方程程的有关概念程对多项式进行变形,进一步解决有关问题一元一理解一元一次方能熟练掌握一元一次方程的解会运用一元一次方程解次方程程解法中的各个法;会求含有字母系数(无需讨论)决简单的实际问题的解法步骤的一元一次方程的解例题精讲:应用题是中学数学中的一类重要问题,一般通过对问题中量的关系进行分析,适当的设未知数,找出等量关系列出方程加以解决.很多同学见到应用题就发怵,觉得题目长,文字多,关系复杂,难以把握.其实应用题关键在于读题,弄懂题意.一些常见的问题,比如行程问题、工程问题、利率问题、浓度问题等等,其中的基本关系一定要深刻理解.设未知数的方法一般来讲,有以下几种:直接设未知数解应用题:直接设未知数指题目问什么就设什么,它多适用于要求的未知数只有一个的情况;间接设未知数解应用题:设间接未知数,是指所设的不是所求的,而解得的间接未知数对确定所求的量起中介作用;引入辅助未知数解应用题:设辅助未知数,就是为了使题目中的数量关系更加明确,可以引进辅助未知数帮助建立方程.辅助未知数往往不需要求出,可以在解题时消去.解应用题的方法多种多样,除此之外,还有运用逆推法解应用题、运用整体思想解应用题、运用图形图表法解应用题等等,单纯的背这些方法是没有意义的,关键还在于提高理解能力,大量练习,从而学会快速读懂题意,综合运用各种方法去求解问题.列方程解应用题的步骤:①审:审题,分析题中已知什么,求什么,明确各数量之间关系②设:设未知数(一般求什么,就设什么为 x)③找:找出能够表示应用题全部意义的一个相等关系④列:根据这个相等关系列出需要的代数式,进而列出方程⑤解:解所列出的方程,求出未知数的值⑥答:检验所求解是否符合题意,写出答案(包括单位名称)模块一和差倍分问题【例1】玻璃缸里养了三个品种的金鱼,分别是“水泡”“朝天龙”“珍珠”.“水泡”的条数是“珍珠”的 3 倍;“朝天龙”的条数是“珍珠”的 2 倍,且“朝天龙”比“水泡”少 1 条,这三种金鱼各有几条呢?【解析】设“珍珠”的条数为x条,则“水泡”“朝天龙”的条数分别为3x条、2x条.依题意得:3x2x1,x1,从而3x3,2x2.【答案】3,2,1x【巩固】甲队有 32 人,乙队有 28 人,现从乙队抽人到甲队,使甲队是乙队人数的 2 倍,依题意,列出方程为【解析】略【答案】32 2(28 ).x x 【巩固】汽车若干辆装运货物一批,若每辆汽车装3.5吨货物,这批货物就有 2 吨运不走;若每辆汽车装 4 吨货物,那么装完这批货物后,还可以装其他货物 1 吨,问汽车有 多少辆?这批货物有多少吨?【解析】设有汽车 辆.依题意得:3.5 2 4 1,解之得: 6 ,41 23,故汽车 x x x x x 有 6 辆,货物有 23 吨.【答案】6 ; 23【例2】 ⑴ 甲仓库有粮120吨.乙仓库有粮90 吨.从甲仓库调运剂后甲仓库存粮是乙仓库的一半.吨到乙仓库,调 ⑵ 甲乙两个圆柱体容器,底面积比为5∶3,甲容器水深20c m ,乙容器水深10c m , 再往两个容器注入同样多的水,使两个容器的水深相等,这时水深多少厘米?1【解析】⑴ 从甲仓库调运 吨到乙仓库,依题意得120 (90) ,解得 x 50 . x x x 2⑵ 设这时水深 cm ,依题意得 5( 20) 3( 10),解得 35 .若学生不好理x x x x 解,不妨多设一个底面积比为5 ∶3 .方程为5 (20) 3 ( 10) 即可. a a a x a x 【答案】50 ;352【巩固】某公司有甲乙两个工程队,甲队人数比乙队人数的 多 28 人.现因任务需要,从3乙队调走 20 人到甲队,这时甲队人数是乙队人数的 2 倍,则甲乙两队原来的人数 分别是多少人?2【解析】设乙队原来有 x 人,则甲队有 28 人.依题意可列:x 32 2 x 20 x 28 20 ,解得: 66x 3【答案】72,66【巩固】甲、乙、丙三条铁路共长1191千米,甲铁路长比乙铁路的2 倍少189千米,乙铁路长比丙铁路少8 千米,求甲铁路的长. 【解析】设丙铁路长为 千米,则乙铁路长x 8 千米,甲铁路长2 x 8 189 千x 米.依题意可列: x x 8 2 x 8189 1191【答案】499,344,352【巩固】如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长1 1度是它的 ,另一根露出水面的长度是它的 .两根铁棒长度之和为55 ,此时cm 3 木桶中水的深度是5. cm1【解析】设此时木桶中水的深度为 c m ,依题意得,两根铁棒的长度为 [ (1 )]cm 和x x 31 1 1[x (1 )]cm ,故[x (1 )] [x (1 )] 55,解得 20.x 5 3 5【答案】20【例3】 牧羊人赶着一群羊寻找一个草长得茂盛的地方,一个过路人牵着一只肥羊从后面跟了上来,他对牧羊人说:“你赶的这群羊大概有 100 只吧!”牧羊人答道:“如果这群 羊增加一倍,再加上原来这群羊的一半,又加上原来这群羊一半的一半,连你这只 羊也算进去,才刚好凑满 100 只.”问牧羊人的这群羊共有多少只?1 2 14【解析】设这群羊共有 只,依题意,有2 1100 ,解之得 36 .x x x x x 【答案】36模块二 行程问题追击问题解决追击问题的一个最基本的公式:追击时间 速度差 追击的路程.于此相关 的问题都可以应用这一公式进行解答.【例4】 敌我两军相距 32 千米,敌军以每小时 6 千米的速度逃窜,我军同时以每小时 16 千米的速度追击在相距 2 千米的地方发生战斗,问战斗是从 开始追击后几小时发生的?【解析】根据追击问题的基本公式:追击时间 速度差 追击的路程.设战斗是从开始追击后 小时发生的.则依题意可列:166 x 32 2 , x 解得: 3. x 【答案】3【巩固】环城自行车赛,最快的人在开始 48 分钟后遇到最慢的人,已知最快的人的速度是3最慢的人速度的 倍,环城一周是 20 千米,求两个人的速度。
七年级上册数学一元一次方程应用题及答案
七年级上册数学一元一次方程应用题及答案元;“神州行”使用者不缴纳月基础费,但每通话需支付1.2元。
某用户使用这两种业务,每月通话时间为t分钟,且月通话费用不超过100元。
问该用户每月最多能通话多长时间?解题思路:设“全球通”通话次数为x,“神州行”通话次数为y,由题意可列出如下不等式:50+1x+1.2y≤100又因为每次通话时间为1分钟,所以x+y=t将y用x和t表示出来,代入不等式中,得到一个关于x的一元一次不等式,解出x的取值范围,再根据x和t的关系,求出y的取值范围,最后计算出两种业务的通话时间,比较大小即可。
知能点3:比例问题8.某地区有一条公路,全长360千米,其中高速公路占公路总长度的3/5,其余部分为普通公路,现在规划在普通公路上修建一条公路,使得高速公路占公路总长度的3/4,问这条新修建的公路长度是多少千米?解题思路:设普通公路长度为x,由题意可列出如下比例:高速公路长度:普通公路长度=3:2修建新公路后,高速公路长度与普通公路长度的比例为3:1,因此新修建的公路长度为y,则有:3/5+y/360=3/4解得y=108,即新修建的公路长度为108千米。
1.电话费问题1) y1 = 0.2x + 0.1.y2 = 0.4x2) 通话时间为25分钟时,两种通话方式的费用相同3) 若预计一个月内使用话费120元,则应选择“神州行”通话方式较合算2.电费问题1) a = 602) 该用户九月份共用电800千瓦时,应交电费为288元3.进货方案问题1) 购进20台A型电视和30台B型电视2) 选择购进20台A型电视和30台B型电视的方案,因为这样可以获得最大利润。
4.灯的费用问题1) 用一盏节能灯的费用为49 + 0.045x元,用一盏白炽灯的费用为18 + 0.2x元2) 选购一盏节能灯和一盏白炽灯,每盏灯照明时间为1500小时,这样可以获得最低费用。
5.储蓄利息问题1) 利息 = 本金 ×利率 ×期数,本息和 = 本金 + 利息,利息税 = 利息 × 0.22) 利润 = 每个期数内的利息11.某同学存入250元钱,半年后取出时得到了252.7元,求银行半年期的年利率是多少?(不考虑利息税)12.为了准备XXX上大学的学费,他的父亲参加了教育储蓄,有三种方式可选择:直接存入一个6年期、先存入一个三年期再自动转存一个三年期、先存入一个一年期再自动转存下一个一年期。
七年级上册数学一元一次方程应用题及答案
1.小明买了一些苹果,一共花了100元。
如果每个苹果2元,他一共买了多少个苹果?解:设苹果的个数为x,则2x=100,解得x=50。
小明买了50个苹果。
2.甲乙两个人一起跑步,甲每分钟跑500米,乙每分钟跑400米。
他们同时出发,如果甲跑了12分钟后才追上乙,请问甲跑了多少米?解:设甲跑了x米,则12分钟后甲共跑了12*500=6000米。
乙已经跑了400*12=4800米。
所以甲比乙多跑了6000-4800=1200米。
3.一辆汽车以每小时60公里的速度行驶,从A地到B地全程300公里。
如果汽车从A地出发一段时间后遇到雨,速度减少为每小时50公里,这时到达B地需要多少时间?解:设汽车在遇到雨前行驶了t小时。
则在遇到雨前汽车已经行驶了60t公里。
从遇到雨到到达B地,汽车的速度变为50公里/小时,所以这段路程需要的时间为(300-60t)/50小时。
所以汽车从A地到B地一共需要的时间为t+(300-60t)/50小时。
4.小明爸爸的年龄是小明年龄的3倍,两人的总年龄是60岁。
请问小明的年龄是多少?解:设小明的年龄为x岁,则小明爸爸的年龄为3x岁。
根据题意,有x+3x=60,解得x=15、所以小明的年龄是15岁。
5.一只小猫每天要吃掉它体重的1/10的食物,如果小猫每天吃1斤食物,请问它需要多少天才能吃完自己的体重?解:设小猫需要吃x天才能吃完自己的体重。
根据题意,有x*(1/10)=1,解得x=10。
所以小猫需要10天才能吃完自己的体重。
6.高铁的速度是普通列车的2倍,假设普通列车从A地到B地需要5小时,高铁从A地到B地需要多少小时?解:设高铁从A地到B地需要x小时。
根据题意,有5/x=2,解得x=2.5、所以高铁从A地到B地需要2.5小时。
7.一个矩形的长度是宽度的2倍,如果周长为30米,请问这个矩形的长和宽各是多少米?解:设矩形的宽度为x米,则矩形的长度为2x米。
根据题意,有2*(x+2x)=30,解得x=4、所以矩形的长度为8米,宽度为4米。
一元一次方程应用题(含答案解析)
一元一次方程应用题(含答案解析)一元一次方程应用题知能点1:市场经济、打折销售问题×100%(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为()A.45%×(1+80%)x-x=50B. 80%×(1+45%)x - x = 50C. x-80%×(1+45%)x = 50D.80%×(1-45%)x - x = 504.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.知能点2:方案选择问题6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,?经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,?但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,?在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?7.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50?元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1?分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?8.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一一元一次方程应用题及答案——初一的数学已经远远超出小学的水平,更多的需要同学们发散思维和积极动脑思考,关于一元一次方程应用题及答案,供同学们练习和对照参考!
1、把200千米的水引到城市中来,这个任务交给了甲,乙两个施工队,工期50天,甲,乙两队合作了30天后,乙队因另有任务需离开10天,于是甲队加快速度,每天多修0.6千米,10天后乙队回来,为了保证工期,甲队速度不变,乙队每天比原来多修0.4千米,结果如期完成。
问:甲乙两队原计划各修多少千米?
解:设甲乙原来的速度每天各修a千米,b千米
根据题意
(a+b)×50=200(1)
10×(a+0.6)+40a+30b+10×(b+0.4)=200(2)
化简
a+b=4(3)
a+0.6+4a+3b+b+0.4=20
5a+4b=19(4)
(4)-(3)×4
a=19-4×4=3千米
b=4-3=1千米
甲每天修3千米,乙每天修1千米
甲原计划修3×50=150千米
乙原计划修1×50=50千米
2、小华买了4支自动铅笔和2支钢笔,共付14元;小兰买了同样的1支自动铅笔和2支钢笔,共付11元。
求自动笔的单价,和钢笔的单价。
解:设自动铅笔X元一支钢笔Y元一支
4X+2Y=14
X+2Y=11
解得X=1
Y=5
则自动铅笔单价1元
钢笔单价5元
3、据统计2009年某地区建筑商出售商品房后的利润率为25%。
(1)2009年该地区一套总售价为60万元的商品房,成本是多少?
(2)2010年第一季度,该地区商品房每平方米价格上涨了2a元,每平方米成本仅上涨了a元,这样60万元所能购买的商品房的面积比2009年减少了20平方米,建筑商的利润率达到三分之一,求2010年该地区建筑商出售的商品房每平方米的利润。
解:(1)成本=60/(1+25%)=48万元
(2)设2010年60万元购买b平方米
2010年的商品房成本=60/(1+1/3)=45万
60/b-2a=60/(b+20)(1)
45/b-a=48/(b+20)(2)
(2)×2-(1)
30/b=36/(b+20)
5b+100=6b
b=100平方米
2010年每平方米的房价=600000/100=6000元
利润=6000-6000/(1+1/3)=1500元
4、某物流公司,要将300吨物资运往某地,现有A、B两种型号的车可供调用,已知A型车每辆可装20吨,B型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A型车的前提下至少还需调用B型车多少辆?
解:设还需要B型车a辆,由题意得
20×5+15a≥300
15a≥200
a≥40/3
解得a≥13又1/3 .
由于a是车的数量,应为正整数,所以x的最小值为14.
答:至少需要14台B型车.
5、某城市平均每天产生生活垃圾700吨,全部由甲,乙两个垃圾厂处理,已知甲厂每小时处理垃圾55吨,需费用550元;乙厂每小时处理垃圾45吨,需费用495元。
如果规定该城市处理垃圾的费用每天不超过7370元,甲厂每天至少需要处理垃圾多少小时?
解:设甲场应至少处理垃圾a小时
550a+(700-55a)÷45×495≤7370
550a+(700-55a)×11≤7370
550a+7700-605a≤7370
330≤55a
a≥6
甲场应至少处理垃圾6小时
6、学校将若干间宿舍分配给七年级一班的女生住宿,已知该班女生少于35人,若每个房间住5人,则剩下5人没处可住;若每个房间住8人,则空出一间房,并且还有一间房也不满。
有多少间宿舍,多少名女生?
解:设有宿舍a间,则女生人数为5a+5人
根据题意
a>0(1)
0<5a+5<35(2)
0<5a+5-[8(a-2)]<8(3)
由(2)得
-5<5a<30
-1
由(3)
0<5a+5-8a+16<8
-21<-3a<-13
13/3
由此我们确定a的取值范围
4又1/3
a为正整数,所以a=5
那么就是有5间宿舍,女生有5×5+5=30人
7、某手机生产厂家根据其产品在市场上的销售情况,决定对原来以每部2000元出售的一款彩屏手机进行调价,并按新单价的八折优惠出售,结果每部手机仍可获得实际销售价的20%的利润(利润=销售价—成本价).已知该款手机每部成本价是原销售单价的60%。
(1)求调整后这款彩屏手机的新单价是每部多少元?让利后的实际销售价是每部多少元?
解:手机原来的售价=2000元/部
每部手机的成本=2000×60%=1200元
设每部手机的新单价为a元
a×80%-1200=a×80%×20%
0.8a-1200=0.16a
0.64a=1200
a=1875元
让利后的实际销售价是每部1875×80%=1500元
(2)为使今年按新单价让利销售的利润不低于20万元,今年至少应销售这款彩屏手机多少部?
20万元=200000元
设至少销售b部
利润=1500×20%=300元
根据题意
300b≥200000
b≥2000/3≈667部
至少生产这种手机667部。
8、某家具店出售桌子和椅子,单价分别为300元一张和60元一把,该家具店制定了两种优惠方案:(1)买一张桌子赠送两把椅子;(2)按总价的87.5%付款。
某单位需购买5张桌子和若干把椅子(不少于10把)。
如果已知要购买X把椅子,讨论该单位购买同样多的椅子时,选择哪一种方案更省钱?
设需要买x(x≥10)把椅子,需要花费的总前数为y
第一种方案:
y=300x5+60×(x-10)=1500+60x-600=900+60x
第二种方案:
y=(300x5+60x)×87.5%=1312.5+52.5x
若两种方案花钱数相等时
900+60x=1312.5+52.5x
7.5x=412.5
x=55
当买55把椅子时,两种方案花钱数相等
大于55把时,选择第二种方案
小于55把时,选择第一种方案
9、张栋同学到百货大楼买了两种型号的信封,共30个,其中买A型号的信封用了1元5角,买B型号的信封用了1元5角,B型号的信封每个比A型号的信封便宜2分。
两种型号的信封的单价各是多少?
解:设A型信封的单价为a分,则B型信封单价为a-2分
设买A型信封b个,则买B型信封30-b个
1元5角=150分
ab=150(1)
(a-2)(30-b)=150(2)
由(2)
30a-60-ab+2b=150
把(1)代入
30a-150+2b=210
30a+2b=360
15a+b=180
b=180-15a
代入(1)
a(180-15a)=150
a??-12a+10=0
(a-6)??=36-10
a-6=±√26
a=6±√26
a1≈11分,那么B型信封11-2=9分
a2≈0.9分,那么B型信封0.9-2=-1.1不合题意,舍去
A型单价11分,B型9分
10.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?
设慢车开出a小时后与快车相遇
50a+75(a-1)=275
50a+75a-75=275
125a=350
a=2.8小时
11.一辆汽车以每小时40km的速度由甲地开往乙地,车行3h后,因遇雨,平均速度被迫每小时减少10km,结果到乙地比预计的时间晚了45min,求甲乙两地距离。
设原定时间为a小时
45分钟=3/4小时
根据题意
40a=40×3+(40-10)×(a-3+3/4)
40a=120+30a-67.5
10a=52.5
a=5.25=5又1/4小时=21/4小时
所以甲乙距离40×21/4=210千米
12、某车间的钳工班,分两队参见植树劳动,甲队人数是乙队人数的 2倍,从甲队调16人到乙队,则甲队剩下的人数比乙队的人数的一半少3人,求甲乙两队原来的人数?
解:设乙队原来有a人,甲队有2a人
那么根据题意
2a-16=1/2×(a+16)-3
4a-32=a+16-6
3a=42
a=14
那么乙队原来有14人,甲队原来有14×2=28人
现在乙队有14+16=30人,甲队有28-16=12人
十二、已知某商店3月份的利润为10万元,5月份的利润为13.2万元,5月份月增长率比4月份增加了10个百分点.求3月份的月增长率。
解:设四月份的利润为x
则x*(1+10%)=13.2
所以x=12
设3月份的增长率为y
则10*(1+y)=x
y=0.2=20%
所以3月份的增长率为20%。