高三数学第二次模拟考试试题

合集下载

安徽省安庆市2024届高三模拟考试(二模)数学试题含答案

安徽省安庆市2024届高三模拟考试(二模)数学试题含答案

2024年安庆市高三模拟考试(二模)数学试题(答案在最后)命题:安庆市高考命题研究课题组考试时间120分钟,满分150分一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,有且只有一项符合题目要求.1.设集合{}213A x x =-≤,集合101x B x x ⎧⎫+=>⎨⎬-⎩⎭,则A B = ()A.(1,2]B.[1,2]C.(1,1)- D.(1,2)-【答案】A 【解析】【分析】计算出集合A 、B 后借助交集定义即可得.【详解】由213x -≤,可得12x -≤≤,故{}12A x x =-≤≤,由101x x +>-,可得()()110x x +->,即1x >或1x <-,故{1B x x =>或}1x <-,则{}12A B x x ⋂=<≤.故选:A.2.已知复数2z =,z 是z 的共轭复数,则z z ⋅=()A.14B.1C.2D.4【答案】B 【解析】【分析】首先分析题意,对给定复数化简,再利用共轭复数知识求解即可.【详解】221=+i 422z -+-,而1i 22z =--,可得1113(+i)(1222244z z ⋅=---=+=.故选:B.3.设F 是椭圆22:1259x y C +=的一个焦点,过椭圆C 中心的直线交椭圆于P ,Q 两点,则PQF △的周长的最小值为()A.12B.14C.16D.18【答案】C 【解析】【分析】根据椭圆的定义求出10PF QF +=,再由min 26PQ b ==,即可求解.【详解】由椭圆的对称性可知P ,Q 两点关于原点对称,设椭圆的另一个焦点为1F ,则四边形1PFQF 为平行四边形,由椭圆定义可知:11420PF PF QF QF a +++==,又1PF QF =,1PF QF =,所以10PF QF +=,又PQ 过原点,所以min 26PQ b ==,所以PQF △的周长的最小值为:10616+=.故选:C4.在一次学科核心素养能力测试活动中,随机抽取了100名同学的成绩(评分满分为100分),将所有数据按[40,50],(50,60],(60,70],(70,80],(80,90],(90,100]进行分组,整理得到频率分布直方图如图所示,则估计这次调查数据的第64百分位数为()A.80B.78C.76D.74【答案】B 【解析】【分析】借助百分位数的定义计算即可得.【详解】由0.005100.015100.020100.4⨯+⨯+⨯=,0.005100.015100.020100.030100.7⨯+⨯+⨯+⨯=,故这次调查数据的第64百分位数位于(70,80]之间,设这次调查数据的第64百分位数为x ,则有700.640.4100.70.4x --=-,解得78x =.故选:B .5.设{}n a 是公比不为1的无穷正项等比数列,则“{}n a 为递减数列”是“存在正整数0n ,对任意的正整数0n n >,1n a <”的()A.充分不必要条件B.必要不充分条件C .充要条件D.既不充分也不必要条件【答案】C 【解析】【分析】由等比数列基本量的计算以及正项等比数列的单调性、充要条件的定义即可得解.【详解】{}n a 是公比不为1的无穷正项等比数列,所以()*0,N n a n >∈,一方面:“{}n a 为递减数列”,等价于101n na q a +<=<,要使得()111,0nn a a q a =<>,只需11nq a <,即1lg lg n q a <-,从而1lg lg a n q>-,所以取10lg max 1,1lg n q a ⎧⎫⎡⎤=-+⎨⎬⎢⎣⎦⎩⎭,其中[]x 是指不超过x 的最大整数,则当0n n >时,有1n a <,另一方面:我们假设1q >,且“存在正整数0n ,对任意的正整数0n n >,1n a <”,则当n 越来越大时,同理可得()111,0nn a a q a =>>,但这与“存在正整数0n ,对任意的正整数0n n >,1n a <”矛盾,综上所述,“{}n a 为递减数列”是“存在正整数0n ,对任意的正整数0n n >,1n a <”的充要条件.故选:C.6.已知点(1,0)P,(C ,O 是坐标原点,点B 满足1BC = ,则OP 与PB夹角的最大值为()A.56π B.23π C.2π D.3π【答案】A 【解析】【分析】根据题意,求得点B的轨迹是以C 为圆心,半径1r =的圆,结合直线与圆相切,求得切线的倾斜角,即可求解.【详解】设点(,)B x y,可得()BC x y =--,因为1BC =,可得22(1x y +-=,即点B的轨迹是以C 为圆心,半径1r =的圆,如图所示,设过点P 与圆C 相切的直线PB 的方程为(1)y k x =-,即kx y k 0--=,1=,解得3k =-,设切线的倾斜角为(0π)αα≤<,则tan 3α=-,可得5π6α=,即OP 与PB 夹角的最大值为5π6.故选:A.7.已知函数2()2cos sin 21(0)f x x x ωωω=+->的图象关于点π,04⎛⎫ ⎪⎝⎭对称,且()f x 在π0,3⎛⎫⎪⎝⎭上没有最小值,则ω的值为()A.12B.32C.52D.72【答案】B 【解析】【分析】先化简解析式,根据对称性可得12,2k k ω=-∈Z ,再结合最小值点即可求解.【详解】2π()2cos sin 21cos 2sin 224f x x x x x x ωωωωω⎛⎫=+-=+=+ ⎪⎝⎭,因为()f x 的图象关于点π,04⎛⎫⎪⎝⎭对称,所以πππ0424f ω⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,故πππ,24k k ω+=∈Z ,即12,2k k ω=-∈Z ,当ππ22π42x k ω+=-+,即3ππ,8k x k ωω=-+∈Z 时,函数()f x 取得最小值,因为()f x 在π0,3⎛⎫⎪⎝⎭上没有最小值,所以5ππ83ω≥,即158ω≤,由115228k ω=-≤解得1918k ≤,故1k =,得32ω=.故选:B8.如图,在长方体1111ABCD A B C D -中,122AB AD AA ==,点E 是棱AB 上任意一点(端点除外),则()A.不存在点E ,使得1EC D E⊥B.空间中与三条直线11A D ,EC ,1BB 都相交的直线有且只有1条C.过点E 与平面1D AE 和平面DAEC 所成角都等于π8的直线有且只有1条D.过点E 与三条棱AB ,AD ,1AA 所成的角都相等的直线有且只有4条【答案】D 【解析】【分析】当E 为AB 的中点时判断A ;作图判断B ;利用角平分面的特征判断C ;建立空间直角坐标系,分析判断D.【详解】在长方体1111ABCD A B C D -中,122AB AD AA ==,对于A ,当E 为AB 的中点时,连接DE ,则45AED BEC ∠=∠= ,即有EC DE ⊥,而1DD ⊥平面ABCD ,EC ⊂平面ABCD ,则1EC DD ⊥,又11,,DE DD D DE DD ⋂=⊂平面1DD E ,因此EC ⊥平面1DD E ,而1D E ⊂平面1DD E ,则1EC D E ⊥,A 错误;对于B ,连接11,BD B D ,设BD EC K ⋂=,111////BB CC DD ,则平面11BDD B 与直线EC 交于K ,点K 在线段BD 上,不含端点,则直线1D K 与直线1BB 相交,同理直线1A E 与直线1BB 相交,因此直线1D K 、1A E 分别与三条直线11A D ,EC ,1BB 都相交,B 错误;对于C ,AB ⊥平面11ADD A ,而1AD ⊂平面11ADD A ,则1AB AD ⊥,又AB AD ⊥,于是1DAD ∠是二面角1D AE D --的平面角,且1π4DAD ∠=,显然1DAD ∠的平分线与平面1D AE 和平面DAEC 所成角都等于π8,过点E 与此直线平行的直线符合要求,这样的直线只有1条;半平面1D AE 与半平面DAEC 的反向延长面所成二面角的角平分面与平面1D AE 和平面DAEC 所成角都等于3π8,在此角平分面内过点E 与平面1D AE 和平面DAEC 所成角都等于π8的直线有2条,因此过点E 与平面1D AE 和平面DAEC 所成角都等于π8的直线有3条,C 错误;对于D ,建立如图所示的空间直角坐标系,直线1,,AB AD AA 的方向向量分别为(1,0,0),(0,1,0),(0,0,1),设过点E 的直线l 方向向量为(,,)a x y z =,由直线l 分别与直线1,,AB AD AA 所成角都相等,==||||||x y z ==,不妨令||1x =,有(1,1,1)a =r 或(1,1,1)a =- 或(1,1,1)a =- 或(1,1,1)a =- ,显然使得||||||1x y z ===成立的向量a有8个,其余4个分别与上述4个向量共线,所以过点E 与三条棱AB ,AD ,1AA 所成的角都相等的直线有且只有4条,D 正确.故选:D【点睛】关键点睛:建立空间直角坐标系,利用线线夹角的求法是求解选项D 的关键.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知定义在R 上的函数()f x ,满足对任意的实数x ,y ,均有()()()1f x y f x f y +=+-,且当0x >时,()1f x <,则()A.(0)1f = B.(1)(1)1f f +-=C.函数()f x 为减函数 D.函数()y f x =的图象关于点()0,1对称【答案】ACD 【解析】【分析】对A :借助赋值法令0x y ==计算即可得;对B :借助赋值法令1x =,1y =-计算即可得;对C :结合函数单调性的定义及赋值法令0y >计算即可得;对D :结合函数对称性及赋值法令y x =-计算即可得.【详解】对A :令0x y ==,则有()()()0001f f f =+-,故(0)1f =,故A 正确;对B :令1x =,1y =-,则有()()()0111f f f =+--,故()()112f f +-=,故B 错误;对C :令0y >,则有()()()1f x y f x f y +-=-,其中x y x +>,()10f y -<,令1x x y =+,2x x =,即有对1x ∀、2x ∈R ,当12x x >时,12())0(f x f x -<恒成立,即函数()f x 为减函数,故C 正确;对D :令y x =-,则有()()()1f x x f x f x -=+--,又(0)1f =,故()()2f x f x +-=,故函数()y f x =的图象关于点()0,1对称,故D 正确.故选:ACD.10.抛物线2:2(0)C x py p =>的焦点为(0,1)F ,经过点F 且倾斜角为α的直线l 与抛物线C 交于A ,B 两点,分别过点A 、点B 作抛物线C 的切线,两切线相交于点E ,则()A.当16AB =时,π3α=B.AOB 面积的最大值为2C.点E 在一条定直线上D.设直线EF 倾斜角为β,αβ-为定值【答案】CD 【解析】【分析】由焦点为(0,1)F 可得抛物线方程,联立直线与曲线方程,可得关于x 的一元二次方程,即可得与x 有关韦达定理,对A :利用韦达定理与弦长公式计算即可得;对B :利用韦达定理与弦长公式及面积公式计算即可得;对C :借助导数的几何意义可得AE l 与BE l 的方程,即可得点E 坐标,即可得解;对D :由tan tan 1αβ⋅=-,故可得2παβ-=.【详解】由抛物线的焦点为(0,1)F ,故2p =,即2:4C x y =,由题意可知,直线l 斜率存在,设():1tan AB l y kx k α=+=,()11,A x y ,()22,B x y ,联立241x y y kx ⎧=⎨=+⎩,有2440x kx --=,216160k ∆=+>,124x x k +=,124x x =-,对A:()241AB k ===+,当16AB =时,即有()24116k +=,故k =,即tan α=,即π3α=或2π3α=,故A 错误;对B:()2114122AOB S d AB k =⨯=+= ,故2AOB S ≥ ,故B 错误;对C :由()11,A x y ,2:4C x y =,即24x y =,有2x y '=,故()111:2AE x l y x x y =-+,又2114x y =,故211:24AE x x l y x =-,同理可得222:24BE x x l y x =-,设点(),E m n ,则有2112222424x x n m x xn m ⎧=-⎪⎪⎨⎪=-⎪⎩,有22121212242x x x x m x x -+=⨯=-,21121122244x x x x x x n +=⨯-=,由124x x k +=,124x x =-,故2m k =,1n =-,故点E 在一条定直线上且该直线为1y =-,故C 正确;对D :由()2,1E k -,(0,1)F ,则111tan 2k kβ+==--,故有1tan tan 1k k αβ⎛⎫⋅=⋅-=- ⎪⎝⎭,即π2αβ-=,故αβ-为定值且该定值为π2,故D 正确.故选:CD.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.11.满足12a =,21a =,()*21n n n a a a n ++=+∈N 的数列{}na 称为卢卡斯数列,则()A.存在非零实数t ,使得{}()*1n n a ta n ++∈N 为等差数列B.存在非零实数t ,使得{}()*1n n a ta n ++∈N 为等比数列C.()*243n n n a a a n ++=+∈ND.()20242023113ii i a a =-=-∑【答案】BCD 【解析】【分析】对A 、B :借助等差数列与等比数列定义计算即可得;对C :借助21n n n a a a ++=+代入即可得;对D :由()*21n n n a a a n ++=+∈N ,得到()()()2121111n n nn n n a a a ++++-=--+-,从而将()202411ii i a =-∑展开后借助该式裂项相消即可得.【详解】对A :若数列{}()*1n n a ta n ++∈N为等差数列,则有211n n n n ad ta a ta +++-+=-,即()211n n n a t a ta d ++=-++,由()*21n n n a a a n ++=+∈N,故有()111n n n n a a t a ta d +++=-++恒成立,即有1110t t d -=⎧⎪=⎨⎪=⎩,无解,故不存在这样的实数t ,故A 错误;对B :若数列{}()*1n n a ta n ++∈N为等比数列,则有211n n n na q ta a ta ++++=+,即()21n n n a q t a qta ++=-+,由()*21n n n a a a n ++=+∈N,故有()11n n n n a a q t a qta +++=-+恒成立,即有11q t qt -=⎧⎨=⎩,即210t t +-=,解得12t -±=,此时21110a ta +=-=≠,故存在非零实数t ,使得{}()*1n n a ta n ++∈N 为等比数列,故B 正确;对C :由()*21n n n a a a n ++=+∈N,则32214223n n n n n n n n n n a a a a a a a a a a ++++++++=++=+++=,即有()*243n n n a a a n ++=+∈N,故C 正确;对D :由()*21n n n a a a n ++=+∈N ,故()()()()()222121111111n n n n nn n n n n a a a a a +++++++-=-+-=--+-,故()()()()()20242320241232024111111ii i a a a a a =-=-+-+-+-=∑ ()()()()()()()()()()2232432023202221324320232022121111111111a a a a a a a a ⎡⎤⎡⎤⎡⎤⎡⎤-⨯+-⨯+--+-+--+-+--+-++--+-⎣⎦⎣⎦⎣⎦⎣⎦()()202312023202321113a a a ⎡⎤=-++---=-⎣⎦,故D 正确.故选:BCD.【点睛】关键点点睛:D 选项中关键点在于由()*21n n n a a a n ++=+∈N,得到()()()2121111n n nn n n a a a ++++-=--+-,从而将()202411ii i a =-∑展开后可借助该式裂项相消.三、填空题:本大题共3小题,每小题5分,共15分.12.在二项式10的展开式中,常数项为__________.【答案】210【解析】【分析】借助二项式展开式的通项公式计算即可得.【详解】对10,有10151536211010C C kkk k k k T x x x ---+⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,令5506k -=,则6k =,则有655671010C C 210T x -===.故答案为:210.13.已知圆锥的顶点为P ,底面圆心为M ,底面直径2AB =.圆锥的内切球和外接球的球心重合于一点O ,则该圆锥的全面积为__________.【答案】3π【解析】【分析】画出圆锥的截面PAB ,由圆锥的内切球和外接球的球心重合于一点O ,可得PAB 为等边三角形,借助圆锥的表面积公式计算即可得.【详解】画出圆锥的轴截面如图所示,由O 为圆锥的内切球球心,则有BO 为PBA ∠的角平分线,由O 为圆锥的外接球球心,则OB OP =,故PBO OPB ∠=∠,故APB PBA ∠=∠,又PA PB =,故PAB 为等边三角形,故PM =,2PB =,则22πππ1π123πS r rl =+=⨯+⨯⨯=全.故答案为:3π.14.剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的中国民间艺术.其传承赓续的视觉形象和造型格式,蕴涵了丰富的文化历史信息,表达了广大民众的社会认知、道德观念、实践经验、生活理想和审美情趣,具有认知、教化、表意、抒情、娱乐、交往等多重社会价值.现有如图所示剪纸图案,其花纹中就隐含方程为222333(0)x y a a +=>的曲线C (称为星形线),则曲线C 的内切圆半径为__________;以曲线C 上点(,)(0)m n mn ≠为切点的直线被坐标轴截得的线段长等于__________.【答案】①.2a②.a【解析】【分析】由曲线C 的方程可得,该曲线关于x 轴、原点对称,故只需研究第一象限即可,求出第一象限上的点到曲线C 的最短距离即可得其内切圆半径;当0x >,0y >时,曲线可为函数322233y a x ⎛⎫=- ⎪⎝⎭的图象,结合导数的几何意义可得曲线上的点()00,x y 的切线方程,即可得该直线被坐标轴截得的线段长.【详解】设点(),P x y 在曲线222333(0)x y a a +=>上,则(),x y -、(),x y -、(),x y --亦在曲线222333(0)x y a a +=>上,故曲线222333(0)x y a a +=>关于x 轴、y 轴、原点对称,故只需研究第一象限内部分,当0x >,0y >时,由(),P x y 曲线222333(0)x y a a +=>上,故有222333x y a +=,即有2211331x y a a ⎡⎤⎡⎤⎛⎫⎛⎫⎢⎥⎢⎥+= ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦,则可设13cos x a α⎛⎫= ⎪⎝⎭,13sin y a α⎛⎫= ⎪⎝⎭,π0,2α⎛⎫∈ ⎪⎝⎭,即3cos x a α=,3sin y a α=,则OP ======,由π0,2α⎛⎫∈ ⎪⎝⎭,则(]2sin 20,1α∈,则min2a OP ==,即曲线C 的内切圆半径为2a ;当0x >,0y >时,222333(0)x y a a +=>可化为322233y a x ⎛⎫=- ⎪⎝⎭,11221122223333333223y a x x x a x --⎛⎫⎛⎫⎛⎫=-⨯-='-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则曲线上的点()00,x y 的切线方程为:()3122122223333300y a x xa x x x -⎛⎫⎛⎫--=--- ⎪ ⎪⎝⎭⎝⎭,令0x =,则有()13122222233333000y xa x x a x -⎛⎫⎛⎫=---+- ⎪ ⎪⎝⎭⎝⎭11222222222122333333333300a x x a x a a x a y ⎡⎤⎛⎫⎛⎫⎛⎫=-+-=-=⎢⎥ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,令0y =,则有1222133333000x x a x x a x ⎛⎫=-+= ⎪⎝⎭,则AB a ====.即曲线C 上点(,)(0)m n mn ≠为切点的直线被坐标轴截得的线段长等于a .故答案为:2a;a .【点睛】关键点点睛:本题关键点在于借助曲线的对称性,得出只需研究第一象限部分,若点(),P x y 曲线222333(0)x y a a +=>上,可设13cos x a α⎛⎫= ⎪⎝⎭,13sin y a α⎛⎫= ⎪⎝⎭,0,2πα⎛⎫∈ ⎪⎝⎭,从而计算出点P 到曲线的最短距离即可得曲线C 的内切圆半径,当0x >,0y >时,曲线可为函数322233y a x ⎛⎫=- ⎪⎝⎭的图象,结合导数的几何意义可得曲线上的点()00,x y 的切线方程,即可计算得该直线被坐标轴截得的线段长.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.如图,在平面凸四边形ABCD 中,2sin tan tan cos BADABD ADB ABD∠∠+∠=∠.(1)求ADB ∠;(2)若4AD BD ==,6ACB BDC π∠=∠=,求CD .【答案】(1)3π(2)4【解析】【分析】(1)借助三角恒等变换将所给式子化简计算即可得;(2)结合题意,借助正弦定理与余弦定理计算即可得.【小问1详解】由已知得:sin sin 2sin cos cos cos ABD ADB BADABD ADB ABD∠∠∠+=∠∠∠,故sin cos cos sin 2sin cos cos cos ABD ADB ABD ADB BADABD ADB ABD∠∠+∠∠∠=∠∠∠,所以sin()2sin cos cos cos ABD ADB BADABD ADB ABD∠+∠∠=∠∠∠.因为()()sin sin πsin 0ABD ADB BAD BAD ∠+∠=-∠=∠≠,故1cos 2ADB ∠=,由三角形内角范围知π3ADB ∠=;【小问2详解】由4AD BD ==,π3ADB ∠=,故ABD △为边长为4的等边三角形,在ABC 中,π6ACB ∠=,由正弦定理得sin sin BC AB BAC ACB=∠∠,故sin 8sin sin AB BACBC BAC ACB∠==∠∠,由于πBAC BCA ABD CBD ∠+∠+∠+∠=,所以π2BAC CBD ∠+∠=,故8cos BC CBD =∠,在BCD △中,由余弦定理得2222cos CD BD BC BD BC CBD =+-⨯⨯∠,即22248cos 16CD BC BC CBD =+-⨯⨯∠=,得4CD =.16.已知函数()2ln ()mf x x x m x=-+∈R .(1)当3m =-时,求函数()f x 的单调区间;(2)若不等式()0f x ≤对任意的[1,)x ∈+∞恒成立,求实数m 的取值范围.【答案】(1)递增区间为(0,3),递减区间为(3,)+∞(2)(,1]-∞【解析】【分析】(1)求出导函数后借助导函数的正负即可得原函数的单调性;(2)可借助(1)0f ≤,得到1m £,在1m £的情况下,借助1()2ln 2ln m f x x x x x x x=-+≤-+,从而构造函数1()2ln g x x x x=-+,结合该函数的单调性及最值即可得解;亦可通过参变分离,得到22ln m x x x ≤-对任意的[1,)x ∈+∞恒成立,通过研究2()2ln h x x x x =-得解.【小问1详解】当3m =-时,3()2ln f x x x x=--,其定义域为(0,)+∞,()()2222312323()1x x x x f x x x x x--+-++='=-+=,令()0f x '=,得3x =(=1x -舍去),当03x <<时,()0f x '>,函数()f x 单调递增;当3x >时,()0f x '<,函数()f x 单调递减.所以函数()f x 的单调递增区间为(0,3),单调递减区间为(3,)+∞;【小问2详解】方法1:由条件可知(1)0f ≤,于是10m -≤,解得1m £.当1m £时,1()2ln 2ln m f x x x x x x x=-+≤-+,构造函数1()2ln g x x x x=-+,1x ≥,()222121()10x g x x x x-=---'=≤,所以函数()g x 在[1,)+∞上单调递减,于是()(1)0g x g ≤=,因此实数m 的取值范围是(,1]-∞.方法2:由条件可知22ln m x x x ≤-对任意的[1,)x ∈+∞恒成立,令2()2ln h x x x x =-,1x ≥,只需min [()]m h x ≤即可.()()()22ln 12ln 1h x x x x x =-+=--',令()ln 1x x x μ=--,则()10x x xμ-'=≥,所以函数()h x '在[1,)+∞上单调递增,于是()()10h x h ''≥=,所以函数()h x 在[1,)+∞上单调递增,所以()()min 11h x h ⎡⎤==⎣⎦,于是1m £,因此实数m 的取值范围是(,1]-∞.17.如图,将边长为2的菱形ABDC 沿其对角线BC 对折,使得点A 、D 分别位于边长为2的等边PBC 所在平面的两侧,且PA PD =.设E 是PA 的中点.(1)证明:平面PBC ⊥平面ABC ;(2)求平面EBD 与平面ABC 夹角的正弦值.【答案】(1)证明见解析(2)217【解析】【分析】(1)取BC 的中点O ,根据题意,分别证得OP BC ⊥和OP OA ⊥,利用线面垂直的判定定理,证得OP ⊥平面ABC ,进而证得平面PBC⊥平面ABC .(2)以O 为原点,建立空间直角坐标系,根据题意,分别求得平面ABC 和EBD 得到法向量(0,0,1)m =和()3,2n =,结合向量的夹角公式,即可求解.【小问1详解】证明:取BC 的中点O ,连接OA 、OP ,如图所示.因为四边形ABDC 是边长为2的菱形,PBC 是边长为2的等边三角形,所以ABC 也是边长为2的等边三角形,在等边PBC 中,O 是BC 的中点,可得OP BC ⊥且3OA OP ==又因为6PA =222PA OA OP =+,所以OP OA ⊥,因为⋂=OA BC O ,且,OA BC ⊂平面ABC ,所以OP ⊥平面ABC ;又因为OP ⊂平面PBC ,故平面PBC ⊥平面ABC .【小问2详解】解:由(1)知,OP BC ⊥,OP OA ⊥.因为O 是等边ABC 的BC 边中点,可得OA BC ⊥.所以,以O 为原点,分别以,,OA OB OP 所在直线为x 、y 、z 轴,建立空间直角坐标系,如图所示,则3,0,0),,(0,1,0)(0,1,0)3),A B C -,可得33,0,22E ⎛⎫⎪⎪⎝⎭,因为DBC △是边长为2的等边三角形,故OD OP PD ===,所以60POD ∠=︒,且OD BC ⊥,又因为OP BC ⊥,OD OP O ⋂=,故BC ⊥平面DOP ,则D 在平面xOz 内,可得3,0,22D ⎛⎫- ⎪ ⎪⎝⎭,所以,1,22BE ⎛⎫=- ⎪ ⎪⎝⎭,3,1,22BD ⎛⎫=-- ⎪ ⎪⎝⎭,设平面ABC 的法向量为(,,)m a b c = ,显然可令(0,0,1)m =;设平面EBD 的法向量为(,,)n x y z =,则0223022n BE x y z n BE x y z ⎧⋅=-+=⎪⎪⎨⎪⋅=--+=⎪⎩,令2z =,则0x =,y =()2n =,所以cos ,7m mm n m n ⋅===,设平面EBD 与平面ABC 的夹角为θ,则sin 7θ==,故平面EBD 与平面ABC 的夹角的正弦值为217.18.树人高中拟组织学生到某航天基地开展天宫模拟飞行器体验活动,该项活动对学生身体体能指标和航天知识素养有明确要求.学校所有3000名学生参加了遴选活动,遴选活动分以下两个环节,当两个环节均测试合格可以参加体验活动.第一环节:对学生身体体能指标进行测试,当测试值12.2ξ≥时体能指标合格;第二环节:对身体体能指标符合要求的学生进行航天知识素养测试,测试方案为对A ,B 两类试题依次作答,均测试合格才能符合遴选要求.每类试题均在题库中随机产生,有两次测试机会,在任一类试题测试中,若第一次测试合格,不再进行第二次测试.若第一次测试不合格,则进行第二次测试,若第二次测试合格,则该类试题测试合格,若第二次测试不合格,则该类试题测试不合格,测试结束.经过统计,该校学生身体体能指标ξ服从正态分布(9,2.56)N .参考数值:()0.6827P X μσμσ-<<+=,(22)0.9545P X μσμσ-<<+=,(33)0.9973P X μσμσ-<<+=.(1)请估计树人高中遴选学生符合身体体能指标的人数(结果取整数);(2)学生小华通过身体体能指标遴选,进入航天知识素养测试,作答A 类试题,每次测试合格的概率为13,作答B 类试题,每次测试合格的概率为14,且每次测试相互独立.①在解答A 类试题第一次测试合格的条件下,求测试共进行3次的概率.②若解答A 、B 两类试题测试合格的类数为X ,求X 的分布列和数学期望.【答案】(1)68(2)①34;②分布列见解析,115()144E X =.【解析】【分析】(1)首先分析题意,利用正态分布的性质求解即可.(2)进行分类讨论,求解出分布列,再求出期望即可.【小问1详解】10.9545(12.2)(2)0.022752P P ξξμσ-≥=≥+==.所以符合该项指标的学生人数为:30000.0227568.2568⨯=≈人.【小问2详解】①记1A 表示解答A 类试题第一次测试合格,1B ,2B 分别表示解答B 类试题第一次和第二次测试合格,测试共进行3次记为事件M ,则()113P A =,()()()1121213113313443444P A M P AB B P AB B =+=⨯⨯+⨯⨯=.()()()()()112112111134().143P A B B P A B B P A M P M A P A P A +====∣②设X 的取值为0,1,2,224(0)339P x ==⨯=,13321335(1)344334416P x ==⨯⨯+⨯⨯⨯=,35(2)1(0)(1)144P x P x P x ==-=-==,所以X 的分布列为X12P4951635144数学期望4535115()012916144144E X =⨯+⨯+⨯=.19.取整函数被广泛应用于数论、函数绘图和计算机领域,其定义如下:设x ∈R ,不超过x 的最大整数称为x 的整数部分,记作[]x ,函数[]y x =称为取整函数.另外也称[]x 是x 的整数部分,称{}[]x x x =-为x 的小数部分.(1)直接写出[]ln π和34⎧⎫-⎨⎬⎩⎭的值;(2)设a ,*b ∈N ,证明:a a a b b b b ⎡⎤⎧⎫=+⎨⎬⎢⎥⎣⎦⎩⎭,且01a b b b ⎧⎫≤≤-⎨⎬⎩⎭,并求在b 的倍数中不大于a 的正整数的个数;(3)对于任意一个大于1的整数a ,a 能唯一写为1212k aaak a p p p =⨯⨯⨯ ,其中i p 为质数,i a 为整数,且对任意的i j <,i j p p <,i ,{1,2,3,,}j k ∈⋯,称该式为a 的标准分解式,例如100的标准分解式为2210025=⨯.证明:在!n 的标准分解式中,质因数i p (i p n ≤,1n >,*n ∈N )的指数231i r r i i i i n n n n a p p p p ∞=⎡⎤⎡⎤⎡⎤⎡⎤=+++=⎢⎥⎢⎢⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦∑ .【答案】(1)1,0.25(2)证明见解析,a b ⎡⎤⎢⎥⎣⎦个(3)证明见解析【解析】【分析】(1)结合定义计算即可得;(2)由题意可得a a ab b b ⎡⎤⎧⎫=+⎨⎬⎢⎥⎣⎦⎩⎭,等式两边同时乘b ,即可得证a a a b b b b ⎡⎤⎧⎫=+⎨⎬⎢⎥⎣⎦⎩⎭,由a ,b 都为整数,结合定义可证得0a b b b ⎧⎫≤<⎨⎬⎩⎭,即可得证01a b b b ⎧⎫≤≤-⎨⎬⎩⎭,假设b ,2b ,…,nb 都小于等于a ,可得a a nb a b b b b ⎡⎤⎧⎫≤=+⎨⎬⎢⎥⎣⎦⎩⎭,即有a a n b b ⎡⎤⎧⎫≤+⎨⎬⎢⎥⎣⎦⎩⎭,又01a b ⎧⎫≤<⎨⎬⎩⎭,即可得a n b ⎡⎤≤⎢⎥⎣⎦,即可得解;(3)利用(2)中结论可得i p 的倍数中不大于n 的正整数的个数为i n p ⎡⎤⎢⎥⎣⎦,2i p 的倍数中不大于n 的正整数的个数为2i n p ⎡⎤⎢⎥⎣⎦,3i p 的倍数中不大于n 的正整数的个数为3i n p ⎡⎤⎢⎥⎣⎦,依次进行下去,可得123r i r i i i i n n n n a p p p p ∞=⎡⎤⎡⎤⎡⎤⎡⎤=+++=∑⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦,即得证.【小问1详解】由e π2e <<,故12ln π<<,故[]1ln π=,()3333110.2544444⎧⎫⎡⎤-=---=---==⎨⎬⎢⎥⎩⎭⎣⎦;【小问2详解】因为a a a b b b ⎡⎤⎧⎫=+⎨⎬⎢⎥⎣⎦⎩⎭,等式两边同时乘b ,得a a a b b b b ⎡⎤⎧⎫=+⎨⎬⎢⎥⎣⎦⎩⎭,因为a ,b 都为整数,所以a a b a b b b⎧⎫⎡⎤=-⎨⎬⎢⎥⎩⎭⎣⎦也为整数,又01a b ⎧⎫≤<⎨⎬⎩⎭,所以0a b b b ⎧⎫≤<⎨⎬⎩⎭,所以01a b b b ⎧⎫≤≤-⎨⎬⎩⎭,即得证,假设b ,2b ,…,nb 都小于等于a ,*n ∈N ,因为a a a b b b b ⎡⎤⎧⎫=+⎨⎬⎢⎥⎣⎦⎩⎭,所以a a nb a b b b b ⎡⎤⎧⎫≤=+⎨⎬⎢⎥⎣⎦⎩⎭,所以a a n b b⎡⎤⎧⎫≤+⎨⎬⎢⎥⎣⎦⎩⎭,因为01a b ⎧⎫≤<⎨⎬⎩⎭,所以a n b ⎡⎤≤⎢⎥⎣⎦,所以b 的倍数中不大于a 的正整数的个数为a b⎡⎤⎢⎥⎣⎦个;【小问3详解】!123n n =⨯⨯⨯⨯ ,将2,3,…,n 每一个数都分解为质因数的乘积.对于质因数i p ,利用(2)中结论,i p 的倍数中不大于n 的正整数的个数为i n p ⎡⎤⎢⎥⎣⎦,记为1n ,将这些数都提取i p 出来,此时p 的倍数中还有可以提取出i p 的数,注意到2i p 的倍数中不大于n 的正整数的个数为2i n p ⎡⎤⎢⎥⎣⎦,记为2n ,将这些数提取i p 出来;同理,3i p 的倍数中不大于n 的正整数的个数为3i n p ⎡⎤⎢⎥⎣⎦,记为3n ,依此这样进行下去,则质因数i p的指数112323ri ri i i in n n na n n np p p p∞=⎡⎤⎡⎤⎡⎤⎡⎤=+++=+++=∑⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦,即得证.。

黑龙江省实验中学2023届高三第二次模拟考试数学试卷

黑龙江省实验中学2023届高三第二次模拟考试数学试卷

-
1 Sn -1
=
2
,又
1 S1
=
1 a1
=
2,
\ 数列
ì í î
1 Sn
ü ý þ
是以
2
为首项,
2
为公差的等差数列,A
正确;
对于 B,由 A 知: 1 Sn
= 2 + 2(n -1) = 2n ,\ Sn
=
1 2n
,B 正确;
对于
C,当 n
³
2
时, an
=
Sn
-
Sn-1
=
1 2n
-
1
2(n -1)
8.若 a = 0.04, b = ln1.04, c = log31.04 则( )
A. c < b < a
B. b < a < c
C. c < a < b
D. b<c<a
二、多选题
9.若函数
f
(x)
=
2 sin 2
æ çè
x
-
ππö 4 ÷ø
+
3
sin
æ çè
2x
-
6
ö ÷ø
-
1
,则下列结论正确的是(
11.已知正数 x,y 满足 x2 = y3 < 1,则下列结论正确的是( )
A. 0 < x < y < 1
B. 0 < y < x < 1
C.
y
-
x
£
4 27
D.
y2 - x2
£
4 27
12.如图,若正方体的棱长为 2,点 P 是正方体 ABCD - A1B1C1D1 的上底面 A1B1C1D1 上

辽宁省鞍山市第一中学2024届高三第二次模拟考试数学试题

辽宁省鞍山市第一中学2024届高三第二次模拟考试数学试题

一、单选题二、多选题1. 攒尖是我国古代建筑中屋顶的一种结构形式,通常有圆形攒尖、三角攒尖、四角攒尖,多见于亭阁式建筑、园林建筑.下面以四角攒尖为例,如图1,它的屋顶部分的轮廓可以近似看作如图2所示的正四棱锥,其中底面边长和攒尖高的比值为,若点是棱的中点,则异面直线与所成角的正切值为()A.B.C.D.2. 已知a >0>b ,则下列不等式一定成立的是( )A .a 2<-abB .|a |<|b |C.D.3. “碳达峰”是指二氧化碳的排放不再增长,达到峰值之后开始下降,而“碳中和”是指企业、团体或个人通过植树造林、节能减排等形式,抵消自身产生的二氧化碳排放量,实现二氧化碳“零排放”.某地区二氧化碳的排放量达到峰值a (亿吨)后开始下降,其二氧化碳的排放量S (亿吨)与时间t (年)满足函数关系式,若经过4年,该地区二氧化碳的排放量为(亿吨).已知该地区通过植树造林、节能减排等形式抵消自身产生的二氧化碳排放量为(亿吨),则该地区要实现“碳中和”,至少需要经过( )(参考数据:)A .13年B .14年C .15年D .16年4. 已知抛物线的焦点为,过上一点作的切线与轴交于点,则一定为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .钝角三角形5. 已知偶函数在上单调递减,且,则不等式的解集为( )A.B.C.D.6. 已知函数,,则的最小值为( )A.B .1C .0D.7. 已知集合,则( )A.B.C.D.8. 已知,,则的值为( )A .7B.C.D.9. 某商场前有一块边长为60米的正方形地皮,为了方便消费者停车,拟划出一块矩形区域用于停放电动车等,同时为了美观,建造扇形花坛,现设计两种方案如图所示,方案一:,在线段上且,方案二:在圆弧上且.若花坛区域工程造价0.2万元/平方米,停车区域工程造价为0.1万元/平方米,则下列说法正确的是( )辽宁省鞍山市第一中学2024届高三第二次模拟考试数学试题三、填空题四、解答题A .两个方案中矩形停车区域的最大面积为2400平方米B .两个方案中矩形停车区域的最小面积为1200平方米C .方案二中整个工程造价最低为万元D .两个方案中整个工程造价最高为万元10. 对圆周率的计算几乎贯穿了整个数学史.古希腊数学家阿基米德(公元前287—公元前212)借助正96边形得到著名的近似值:.我国数学家祖冲之(430—501)得出近似值,后来人们发现,这是一个“令人吃惊的好结果” .随着科技的发展,计算的方法越来越多.已知,定义的值为的小数点后第n 个位置上的数字,如,,规定.记,,集合为函数的值域,则以下结论正确的有( )A.B.C.对D .对中至少有两个元素11. 已知函数,,,则下列结论正确的是( )A .在上单调递增B .当时,方程有且只有2个不同实根C .的值域为D .若对于任意的,都有成立,则12. 已知函数(,),将图象上所有的点向左平移个单位长度后得到函数的图象,若是偶函数,且在上恰有一个极值点,则的取值可能是( )A .1B .3C .5D .713.二项式的展开式中的系数为________.14. 已知,,则的最小值为___________.15. 函数()的值域有6个实数组成,则非零整数的值是_________.16. 如图,在四棱锥中,,平面平面ABCD ,E ,F 分别为棱PD ,AD 的中点,.(1)求证:平面平面PAD;(2)若,求几何体PABCEF的体积.17. 已知函数.(1)当时,讨论函数的单调性;(2)若不等式恒成立,求实数的取值范围.18. 在四棱台中,底面ABCD是正方形,且侧棱垂直于底面ABCD,,O,E分别是AC与的中点.(1)求证:平面.(2)求四面体的体积.19. 已知函数.(1)当时,求函数的最小值;(2)讨论函数极值点的个数.20. 已知函数满足:都有(1)用定义证明:是上的增函数;(2)设为正实数,若试比较与的大小.21. 各项均为正数的数列的前n项和为,满足,,.(1)求数列的通项公式:(2)若,数列的前n项和为,对一切正整数n,都有,求的取值范围.。

2025届陕西省咸阳彩虹中学高三二诊模拟考试数学试卷含解析

2025届陕西省咸阳彩虹中学高三二诊模拟考试数学试卷含解析

2025届陕西省咸阳彩虹中学高三二诊模拟考试数学试卷注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.中,如果,则的形状是( )A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形2.已知函数()32,0log ,0x x f x x x ⎧≤=⎨>⎩,则3=f f ⎛⎫ ⎪ ⎪⎝⎭⎝⎭( ) A 2B .12C .3log 2-D .3log 23.已知i 为虚数单位,若复数z 满足5i 12iz =-+,则z =( ) A .1i +B .1i -+C .12i -D .12i +4.已知双曲线C :22221x y a b-=()0,0a b >>的左右焦点分别为1F ,2F ,P 为双曲线C 上一点,Q 为双曲线C 渐近线上一点,P ,Q 均位于第一象限,且22QP PF =,120QF QF ⋅=,则双曲线C 的离心率为( ) A 31B 31C 132D 1325.若双曲线E :22221x y a b-=(0,0a b >>)的一个焦点为(3,0)F ,过F 点的直线l 与双曲线E 交于A 、B 两点,且AB 的中点为()3,6P --,则E 的方程为( )A .22154x y -=B .22145x y -=C .22163x y -=D .22136x y -=6.很多关于整数规律的猜想都通俗易懂,吸引了大量的数学家和数学爱好者,有些猜想已经被数学家证明,如“费马大定理”,但大多猜想还未被证明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的内容是:对于每一个正整数,如果它是奇数,则将它乘以3再加1;如果它是偶数,则将它除以2;如此循环,最终都能够得到1.下图为研究“角谷猜想”的一个程序框图.若输入n 的值为10,则输出i 的值为( )A.5B.6C.7D.87.已知α满足1sin3α=,则cos cos44ππαα⎛⎫⎛⎫+-=⎪ ⎪⎝⎭⎝⎭()A.718B.79C.718-D.79-8.复数21i-(i为虚数单位)的共轭复数是A.1+i B.1−i C.−1+i D.−1−i9.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A.B.C.D.10.已知函数e 1()e 1x x f x -=+,()0.32a f =,()0.30.2b f =,()0.3log 2c f =,则a ,b ,c 的大小关系为( )A .b a c <<B .c b a <<C .b c a <<D .c a b <<11.执行如下的程序框图,则输出的S 是( )A .36B .45C .36-D .45-12.()712x x-的展开式中2x 的系数为( )A .84-B .84C .280-D .280二、填空题:本题共4小题,每小题5分,共20分。

浙江省温州市2024届高三第二次适应性考试数学试题(原卷版)

浙江省温州市2024届高三第二次适应性考试数学试题(原卷版)

温州市普通高中2024届高三第二次适应性考试数学试题卷2024.3本试卷共4页,19小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名、准考证号填写在答题卷上.将条形码横贴在答题卷右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卷上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卷的整洁,不要折叠、不要弄破.选择题部分(共58分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知z C ∈,则“2R z ∈”是“R z ∈”的()A.充分条件但不是必要条件B.必要条件但不是充分条件C.充要条件D.既不是充分条件也不是必要条件2.已知集合{{,M x y N y y ====,则M N ⋂=()A.∅B.RC.MD.N3.在正三棱台111ABC A B C -中,下列结论正确的是()A.1111113ABC A B C A BB C V V --=B.1AA ⊥平面11AB CC.11A B B C⊥ D.1AA BC⊥4.已知0.50.3sin0.5,3,log 0.5a b c ===,则,,a b c 的大小关系是()A.a b c<< B.a c b<< C.c a b<< D.c b a<<5.在()()531x x --展开式中,x 的奇数次幂的项的系数和为()A.64- B.64C.32- D.326.已知等差数列{}n a 的前n 项和为n S ,公差为d ,且{}n S 单调递增.若55a =,则d ∈()A.50,3⎡⎫⎪⎢⎣⎭B.100,7⎡⎫⎪⎢⎣⎭C.50,3⎛⎫ ⎪⎝⎭D.100,7⎛⎫⎪⎝⎭7.若关于x 的方程22112x mx x mx mx +++-+=的整数根有且仅有两个,则实数m 的取值范围是()A.52,2⎡⎫⎪⎢⎣⎭B.52,2⎛⎫ ⎪⎝⎭C.55,22,22⎛⎤⎡⎫-- ⎪⎥⎢⎝⎦⎣⎭D.55,22,22⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭8.已知定义在()0,1上的函数()()1,,1,m x m n f x n n x ⎧⎪=⎨⎪⎩是有理数是互质的正整数是无理数,则下列结论正确的是()A.()f x 的图象关于12x =对称 B.()f x 的图象关于11,22⎛⎫ ⎪⎝⎭对称C.()f x 在()0,1单调递增D.()f x 有最小值二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,()3,4P -为其终边上一点,若角β的终边与角2α的终边关于直线y x =-对称,则()A .()3cos π5α+=B.()π2π22k k βα=++∈Z C.7tan 24β=D.角β的终边在第一象限10.已知圆221:6C x y +=与圆222:20C x y x a ++-=相交于,A B 两点.若122C AB C AB S S =△△,则实数a的值可以是()A.10B.2C.223D.14311.已知半径为r 球与棱长为1的正四面体的三个侧面同时相切,切点在三个侧面三角形的内部(包括边界),记球心到正四面体的四个顶点的距离之和为d ,则()A.r 有最大值,但无最小值B.r 最大时,球心在正四面体外C.r 最大时,d 同时取到最大值D.d 有最小值,但无最大值非选择题部分(共92分)三、填空题:本大题共3小题,每题5分,共15分.把答案填在题中的横线上.12.平面向量,a b满足()2,1a = ,a b ,a b ⋅= ,则b = ______.13.如图,在等腰梯形ABCD 中,12AB BC CD AD ===,点E 是AD 的中点.现将ABE 沿BE 翻折到A BE ' ,将DCE △沿CE 翻折到D CE '△,使得二面角A BE C '--等于60︒,D CE B '--等于90︒,则直线A B '与平面D CE '所成角的余弦值等于______.14.已知P ,F 分别是双曲线()22221,0x y a b a b -=>与抛物线()220y px p =>的公共点和公共焦点,直线PF 倾斜角为60 ,则双曲线的离心率为______.四、解答题:本大题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.记ABC 的内角,,A B C 所对的边分别为,,a b c ,已知2sin c B =.(1)求C ;(2)若tan tan tan A B C =+,2a =,求ABC 的面积.16.已知直线y kx =与椭圆22:14xC y +=交于,A B 两点,P 是椭圆C 上一动点(不同于,A B ),记,,OP PA PB k k k 分别为直线,,OP PA PB 的斜率,且满足OP PA PB k k k k ⋅=⋅.(1)求点P 的坐标(用k 表示);(2)求OP AB ⋅的取值范围.17.红旗淀粉厂2024年之前只生产食品淀粉,下表为年投入资金x (万元)与年收益y (万元)的8组数据:x1020304050607080y12.816.51920.921.521.92325.4(1)用ln y b x a =+模拟生产食品淀粉年收益y 与年投入资金x 的关系,求出回归方程;(2)为响应国家“加快调整产业结构”的号召,该企业又自主研发出一种药用淀粉,预计其收益为投入的10%.2024年该企业计划投入200万元用于生产两种淀粉,求年收益的最大值.(精确到0.1万元)附:①回归直线ˆˆˆu bv a =+中斜率和截距的最小二乘估计公式分别为:1221ˆni ii n ii v unv ubv nv ==-⋅=-∑∑,ˆˆa u bv =-⋅②81ii y=∑81ln ii x=∑821ii x=∑()128ln i i x =∑81ln iii y x=∑1612920400109603③ln20.7,ln5 1.6≈≈18.数列{}{},n n a b 满足:{}n b 是等比数列,122,5b a ==,且()()*1122238N n n n n a b a b a b a b n ++⋅⋅⋅+=-+∈.(1)求,n n a b ;(2)求集合()(){}*0,2,Ni i A x x a x b i n i =--=≤∈中所有元素的和;(3)对数列{}n c ,若存在互不相等的正整数()12,,,2j k k k j ⋅⋅⋅≥,使得12j k k k c c c ++⋅⋅⋅+也是数列{}n c 中的项,则称数列{}n c 是“和稳定数列”.试分别判断数列{}{},n n a b 是否是“和稳定数列”.若是,求出所有j 的值;若不是,说明理由.19.如图,对于曲线Γ,存在圆C 满足如下条件:①圆C 与曲线Γ有公共点A ,且圆心在曲线Γ凹的一侧;②圆C 与曲线Γ在点A 处有相同的切线;③曲线Γ的导函数在点A 处的导数(即曲线Γ的二阶导数)等于圆C 在点A 处的二阶导数(已知圆()()222x a y b r -+-=在点()00,A x y 处的二阶导数等于()230r b y -);则称圆C 为曲线Γ在A 点处的曲率圆,其半径r 称为曲率半径.(1)求抛物线2y x =在原点的曲率圆的方程;(2)求曲线1y x=的曲率半径的最小值;(3)若曲线e x y =在()11,ex x 和()()2212,e x x xx ≠处有相同的曲率半径,求证:12ln2x x +<-.。

2024学年福建省永安市三中高三第二次模拟考试数学试题(详细答案版)

2024学年福建省永安市三中高三第二次模拟考试数学试题(详细答案版)

2024学年福建省永安市三中高三第二次模拟考试数学试题(详细答案版)考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设()f x 是定义在实数集R 上的函数,满足条件()1y f x =+是偶函数,且当1x ≥时,()112xf x ⎛⎫=- ⎪⎝⎭,则()3log 2a f =,31log2b f ⎛⎫=- ⎪⎝⎭,()3c f =的大小关系是( ) A .a b c >>B .b c a >>C .b a c >>D .c b a >>2.若(1+2ai)i =1-bi ,其中a ,b ∈R ,则|a +bi|=( ). A .12B .5C .52D .53.如图所示的程序框图,若输入4a =,3b =,则输出的结果是( )A .6B .7C .5D .84.设x ,y 满足约束条件34100640280x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩,则2z x y =+的最大值是( )A .4B .6C .8D .105.已知函数()[]f x x x =-,其中[]x 表示不超过x 的最大正整数,则下列结论正确的是( ) A .()f x 的值域是[]0,1 B .()f x 是奇函数 C .()f x 是周期函数D .()f x 是增函数6.如图是二次函数2()f x x bx a =-+的部分图象,则函数()ln ()g x a x f x '=+的零点所在的区间是( )A .11,42⎛⎫⎪⎝⎭B .1,12⎛⎫⎪⎝⎭C .(1,2)D .(2,3)7.设a 、b R +∈,数列{}n a 满足12a =,21n n a a a b +=⋅+,n *∈N ,则( )A .对于任意a ,都存在实数M ,使得n a M <恒成立B .对于任意b ,都存在实数M ,使得n a M <恒成立C .对于任意()24,b a ∈-+∞,都存在实数M ,使得n a M <恒成立D .对于任意()0,24b a ∈-,都存在实数M ,使得n a M <恒成立8.已知y ax b =+与函数()2ln 5f x x =+和2()4g x x =+都相切,则不等式组3020x ay x by -+≥⎧⎨+-≥⎩所确定的平面区域在2222220x y x y ++--=内的面积为( )A .2πB .3πC .6πD .12π9.已知非零向量a 、b ,若2b a =且23a b b -=,则向量b 在向量a 方向上的投影为( ) A .32b B .12b C .32b -D .12b -10.一个封闭的棱长为2的正方体容器,当水平放置时,如图,水面的高度正好为棱长的一半.若将该正方体绕下底面(底面与水平面平行)的某条棱任意旋转,则容器里水面的最大高度为( )A .1B 2C 3D .2211.如图所示,在平面直角坐标系xoy 中,F 是椭圆22221(0)x ya b a b+=>>的右焦点,直线2b y =与椭圆交于B ,C两点,且90BFC ∠=︒,则该椭圆的离心率是( )A .63B .34C .12D .3212.已知圆截直线所得线段的长度是,则圆与圆的位置关系是( ) A .内切B .相交C .外切D .相离二、填空题:本题共4小题,每小题5分,共20分。

淮南市(二模)2023届高三第二次模拟考试数学试卷及答案

淮南市(二模)2023届高三第二次模拟考试数学试卷及答案

淮南市2023届高三第二次模拟考试学试题数本试卷分为第I卷(选择题〉和第E卷〈非选择题〉两部分.考试时间120分钟.第I卷,....... 3、N··一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,有且只有一项符合题目要求.1己知全集U=R ,集合A=�eRly=�},则CuA=<D . {x i x 三-1}C .{x lx 豆-1}B .{x lx <O }A .{x lx <-1}2己知复数z 满足(2-i)·z = i2023,(i 是虚数单位),则复数z 在复平面内所对应的点位于〉A.第一象限B.第二象限c.第三象限 D.第四象限3.四位同学各自在“五一”劳动节五天假期中任选一天参加公益活动,则甲在5月1日、乙不在5D .-25c 土25月1日参加公益活动的概率为(4 B. -54己知函数f(x )=A s 叫ω+的,[A >阳〉喇〈立的相邻两个对称中心距离为2且图\2)象经过Ml 乏,A i ,若将f(x )图象上的所有点向右平移至个单位长度得到函数g(x )的图象,飞。

)6则函数g(x )的单调递减区间是〈 B.[k π中π刽k eZ[叶,kπ叶ke ZA.D.[k 什叶十εZC.[k 7r,ktr +f J.k eZ〉〉汩。

A ..!_52,r5.在A ABC中,己知LACB=一-,BC=4,AC=3,D是边AB的中点,点E满足3一-3一-1一一一一一『A E=-AB+-AC,则CD·DE=()4 4A.-三B.l c ..!.8 2 86.我国古代数学在宋元时期达到繁荣的顶点,涌现了一大批卓有成就的数学家,其中朱世杰与秦九韶、杨辉、李冶被誉为我国“宋元数学四大家”朱世杰著有《四元玉鉴》和《算学启蒙》等,在《算学启蒙》中,最为引人入胜的问题莫过于堆垛问题,其中记载有以下问题:“今有三角、四角果子垛各一所,共积六百八十五个,只云三角底子一面不及四角底子一面七个,问二垛底子一面几何?”其中“积”是和的意思,“三角果子垛”是每层都是正三角形的果子垛,自上至下依次有I,3, 6, 10, 15, ...,个果子,“四角果子垛”是每层都是正方形的果子垛,自上至下依次有L4, 9, 16, ...,个果子,“底子一面”指每垛最底层每条边”根据题意,可知该三角、四角果子垛最底层每条边上的果子数是〈(参考公式:川山·+n2=巾+俨1))A.4,11B.5,12 c.6,137.如圈,αiβ,αnβ=l,Aeα,Beβ,点A,B在棱l上的射影分别是码,B i,若AA1=BB1 =2, AB=4,则异面直线AB1与A1B所成角的余弦值为D.7,14A.主B.I第7题图5521c.一D.一338.定义在R上的函数f(x)满足f(-x)+f(x)+2cosx=0,当x�O时,J'(x)>sinx,则不等式f(x)+2cosx>f(π-x)的解集为A.(J, +co)B.(斗) c.(-咒) D.(一∞,π)二、多项选择踵I;I 尔踵共4,J、踵,每小题5分,共20分.在每小踵给出的选项中,有多项符合匾目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.己知单位向盘a,b ,则下列命题正确的是(A. (;i+b )土(;i -b )B剖=(-手,J.b -(coC若|二-bl 川,记向盘二,5的夹角为θ,则θ的最小值为子’--‘’霄『-.-D 若(a.b) =二,则向盘b栩如上的投影向盘是γ飞’I 3IO.己知圆M 的方程为:x 2+y 2+ax +咿-2a-4=o,(a εR ),点P(l,l ),给出以下结论其中正确的有(A.过点P 的任意直线与圆M都相交B若因l M 与直线川+川无交点则ae (÷棉)C.四M 面积最小时的圆与圆Q:x 2+ y 2 +6x-10y+16=0有三条公切线D.无论。

2023届江苏省南京市、盐城市高三第二次模拟考试数学卷(含解析)

2023届江苏省南京市、盐城市高三第二次模拟考试数学卷(含解析)

南京市、盐城市2023届高三年级第二次模拟考试数学2023.3第Ⅰ卷(选择题共60分)一、选择题;本大题共8小题,每小题5分,共40分.1.设,2k M x x k ⎧⎫==∈⎨⎬⎩⎭Z ,1,2N x x k k ⎧⎫==+∈⎨⎬⎩⎭Z ,则A.M NÞ B.N MÞ C.M N= D.M N ⋂=∅2.若()()()()1R f x x x x a a =++∈为奇函数,则a 的值为A.-1B.0C.1D.-1或13某种品牌手机的电池使用寿命X (单位:年)服从正态分布()()24,0N σσ>,且使用寿命不少于2年的概率为0.9,则该品牌手机电池至少使用6年的概率为A.0.9B.0.7C.0.3D.0.14.已知函数()()()sin 20f x x ϕϕπ=+<<的图象关于直线6x π=对称,则ϕ的值为A.12π B.6π C.3π D.23π5.三星堆古遗址作为“长江文明之源",被誉为人类最伟大的考古发现之一.3号坑发现的神树纹玉琮,为今人研究古蜀社会中神树的意义提供了重要依据.玉琮是古人用于祭祀的礼器,有学者认为其外方内圆的构造,契合了古代“天圆地方”观念,是天地合一的体现,如图,假定某玉琮形状对称,由一个空心圆柱及正方体构成,且圆柱的外侧面内切于正方体的侧面,圆柱的高为12cm ,圆柱底面外圆周和正方体的各个顶点均在球O 上,则球O 的表面积为A.272cmπ B.2162cmπ C.2216cmπ D.2288cmπ6.设等比数列{}n a 的前n 项和为n S .已知1122n n S S +=+,*N n ∈,则6S =A.312B.16C.30D.6327.已知椭圆E :()222210x y a b a b+=>>的两条弦AB ,CD 相交于点P (点P 在第一象限),且AB x ⊥轴,CD y⊥轴.若:::1:3:1:5PA PB PC PD =,则椭圆E 的离心率为A.5B.5C.5D.58.设,a b ∈R ,462baa=-,562abb=-,则A.1a b<< B.0b a<< C.0b a<< D.1b a <<二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,请把答案填涂在答题卡相应位置上.全部选对得5分,部分选对得2分,不选或有错选的得0分.9.新能源汽车包括纯电动汽车、增程式电动汽车、混合动力汽车、燃料电池电动汽车、氢发动机汽车等.我国的新能源汽车发展开始于21世纪初,近年来发展迅速,连续8年产销量位居世界第一.下面两图分别是2017年至2022年我国新能源汽车年产量和占比(占我国汽车年总产盘的比例)情况,则A.2017~2022年我国新能源汽车年产量逐年增加B.2017~2022年我国新能源汽车年产量的极差为626.4万辆C.2022年我国汽车年总产量超过2700万辆D.2019年我国汽车年总产量低于2018年我国汽车年总产量10.已知z 为复数,设z ,z ,i z 在复平面上对应的点分别为A ,B ,C ,其中O 为坐标原点,则A.OA OB =B.OA OC ⊥C.AC BC= D.OB AC∥ 11.已知点()1,0A -,()1,0B ,点P 为圆C :2268170x y x y +--+=上的动点,则A.PAB △面积的最小值为8-B.AP 的最小值为C.PAB ∠的最大值为512πD.AB AP ⋅的最大值为8+12.已知()cos 4cos3f θθθ=+,且1θ,2θ,3θ是()f θ在()0,π内的三个不同零点,则A.{}123,,7πθθθ∈ B.123θθθπ++=C.1231cos cos cos 8θθθ=-D.1231cos cos cos 2θθθ++=三、填空题:本大题共4小题,每小题5分,共20分.请把答案填写在答题卡相应位置上.13.编号为1,23,4的四位同学,分别就座于编号为1,2,3,4的四个座位上,每位座位恰好坐一位同学,则恰有两位同学编号和座位编号一致的坐法种数为___________.14.已知向量a ,b 满足2a = ,3b = ,0a b ⋅= .设2c b a =-,则cos ,a c = ___________.15.已知抛物线24y x =的焦点为F ,点Р是其准线上一点,过点P 作PF 的垂线,交y 轴于点A ,线段AF 交抛物线于点B .若PB 平行于x 轴,则AF 的长度为____________.16.直线x t =与曲线1C :()e R xy ax a =-+∈及曲线2C :exy ax -=+分别交于点A ,B .曲线1C 在A 处的切线为1l ,曲线2C 在B 处的切线为2l .若1l ,2l 相交于点C ,则ABC △面积的最小值为____________.四、解答题;本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出必要的文字说明,证明过程或演算步骤.17.(本小题满分10分)在数列{}n a 中,若()*1123n n a a a a a d n N+=⋅⋅-∈⋅,则称数列{}na 为“泛等差数列”,常数d 称为“D 差”.已知数列{}n a 是一个“泛等差数列”,数列{}n b 满足22212123n n n a a a a a a a b =⋅++⋅⋅⋅⋅-⋅+.(1)若数列{}n a 的“泛差”1d =,且1a ,2a ,3a 成等差数列,求1a ﹔(2)若数列{}n a 的“泛差”1d =-,且112a =,求数列{}n b 的通项n b .18.(本小题满分12分)在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,()2sin cos c b A A =-.(1)若sin 10sin B C =,求sin A 的值;(2)在下列条件中选择一个,判断ABC △是否存在,加果在在,求h 的最小值;如果不存在,说明理由.①ABC △的面积1S =+;②bc =③222a b c +=.如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,ABC △和ACD △均为正三角形,4AC =,BE =.(1)在线段AC 上是否存在点F ,使得BF ∥平面ADE ?说明理由;(2)求平面CDE 与平面ABC 所成的锐二面角的正切值.20.(本小题满分12分)人工智能是研究用于模拟和延伸人类智能的技术科学,被认为是21世纪最重要的尖端科技之一,其理论和技术正在日益成熟,应用领域也在不断扩大.人工智能背后的一个基本原理:首先确定先验概率,然后通过计算得到后验概率,使先验概率得到修正和校对,再根据后验概率做出推理和决策.基于这一基本原理,我们可以设计如下试验模型;有完全相同的甲、乙两个袋子,袋子有形状和大小完全相同的小球,其中甲袋中有9个红球和1个白球t 乙袋中有2个红球和8个白球.从这两个袋子中选择一个袋子,再从该袋子中等可能摸出一个球,称为一次试验.若多次试验直到摸出红球,则试验结束.假设首次试验选到甲袋或乙袋的概率均为12(先验概率).(1)求首次试验结束的概率;(2)在首次试验摸出白球的条件下,我们对选到甲袋或乙袋的概率(先验概率)进行调整。

湖南省长沙市2024届高三下学期第二次模拟考试数学试题含答案

湖南省长沙市2024届高三下学期第二次模拟考试数学试题含答案

2024届模拟试卷(二)数学(答案在最后)命题人:注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数()x f =的定义域是A .[]2,2-B .()2,2-C .{}2,2x x x <->或D .{}2,2-2.已知函数()y f x =的图象是下列四个选项图象之一,且其导函数()y f'x =的图象如图所示,则该函数的图象是A .B .C .D .3.中心在坐标原点,离心率为53的双曲线的焦点在y 轴上,则该双曲线的渐近线方程为A .34y x =±B .43y x =±C .45y x =±D .54y x=±4.已知定义在R 上的函数()f x 是奇函数,对任意x ∈R 都有()()11f x f x +=-,当()32f -=-时,则()2023f 等于A .2B .2-C .0D .4-5.将函数()2sin 24f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移ϕ(0ϕ>)个单位长度,再将图象上每一点的横坐标缩短到原来的12倍(纵坐标不变),所得图象关于直线π4x =对称,则ϕ的最小值为A .3π4B .1π2C .3π8D .1π86.为调查某地区中学生每天睡眠时间(单位:小时),采用样本量比例分配的分层随机抽样,现抽取初中生800人,其每天睡眠时间均值为9,方差为1,抽取高中生1200人,其每天睡眠时间均值为8,方差为0.5,则估计该地区中学生每天睡眠时间的方差为A .0.96B .0.94C .0.79D .0.757.在等腰△ABC 中,120BAC ∠=︒,AD 平分∠BAC 且与BC 相交于点D ,则向量BD 在BA上的投影向量为A .32BAB .4BAC .2BAD .34BA8.如图,点P 在正方体1111ABCD A B C D -的面对角线1BC (包括端点)上运动,则下列结论一定成立的是A .三棱锥1A A PD -的体积大小与点P 的位置有关B .1A P 与平面1ACD 相交C .平面1PDB ⊥平面11A BC D .1AP D C⊥二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.设a ,b ,c ,d 为实数,且0a b c d >>>>,则下列不等式正确的有A .2c cd<B .a c b d -<-C .ac bd<D .0c d a b->10.在《增删算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.”则下列说法正确的是A .此人第二天走了九十六里路B .此人第三天走的路程占全程的18C .此人第一天走的路程比后五天走的路程多六里D .此人后三天共走了四十二里路11.三棱锥A -BCD 的侧棱AB 垂直于底面BCD ,BC CD ⊥,2AB BC ==,三棱锥A -BCD 的体积43A BCD V -=,则A .三棱锥A -BCD 的四个面都是直角三角形B .2CD =C .π2CDA ∠=D .三棱锥A -BCD 外接球的体积三、填空题:本题共3小题,每小题5分,共15分.12.在复数范围内方程210x x ++=的解为.13.已知圆N :22650x y y +-+=,直线1y =-,圆M 与圆N 外切,且与直线1y =-相切,则点M 的轨迹方程为.14.若m ,*n ∈N ,3m ≥,2n m +≥,则22111222A A A C A A mm m n m n m n ----=++.(请用一个排列数来表示)四、解答题:本题共5小题,共77分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)在△ABC 中,已知22sin cos 212A BC ++=,外接圆半径2R =.(1)求角C 的大小;(2)求△ABC 面积的最大值.16.(本小题满分15分)如图,四棱锥P -ABCD 中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB =,1AD =,PD ⊥底面ABCD .(1)证明:PA BD ⊥;(2)若PD AD =,求二面角A -PB -C 的余弦值.17.(本小题满分15分)已知椭圆G :22221x y a b+=(0a b >>)的离心率为63,右焦点为(),斜率为1的直线l 与椭圆G交于A ,B 两点,以AB 为底边作等腰三角形,顶点为()3,2P -.(1)求椭圆G 的方程;(2)求△PAB 的面积.18.(本小题满分17分)某手机App 为了答谢新老用户,设置了开心大转盘抽奖游戏,制定了如下中奖机制:每次抽奖中奖的概率为p ,n 次抽奖仍未中奖则下一次抽奖时一定中奖.每次中奖时有12的概率中积分奖,有12的概率中现金奖.若某一次中奖为积分奖,则下一次抽奖必定中现金奖,抽到现金奖后抽奖结束.(1)若2n =,12p =,试求直到第3次才抽到现金奖的概率;(2)若19n =,0.01p =,X 表示抽到现金奖时的抽取次数.(ⅰ)求X 的分布列(用p 表示即可);(ⅱ)求X 的数学期望()E X .(180.990.8345≈,结果四舍五入精确到个位数)19.(本小题满分17分)极值的广义定义如下:如果一个函数在一点的一个邻域(包含该点的开区间)内处处都有确定的值,而以该点处的值为最大(小),这函数在该点处的值就是一个极大(小)值.对于函数()y f x =,设自变量x 从0x 变化到0x x +∆,当0x ∆>,()()000limx f x x f x x∆→+∆-∆是一个确定的值,则称函数()y f x =在点0x 处右可导;当0x ∆<,()()000limx f x x f x x∆→+∆-∆是一个确定的值,则称函数()y f x =在点0x 处左可导.当函数()y f x =在点0x 处既右可导也左可导且导数值相等,则称函数()y f x =在点0x 处可导.(1)请举出一个例子,说明该函数在某点处不可导,但是该点是该函数的极值点;(2)已知函数()22132e sin e ax f x x x x x +=--.(ⅰ)求函数()21esin e ax g x x x +=--在0x =处的切线方程;(ⅱ)若0x =为()f x 的极小值点,求a 的取值范围.2024届模拟试卷(二)数学参考答案一、二、选择题题号1234567891011答案DBAACBDCADACDABD2.B【解析】由()y f'x =的图象知,()y f x =为增函数,且在区间()1,0-上增长速度越来越快,而在区间()0,1上增长速度越来越慢.故选B .3.A【解析】∵53c a =,∴222259a b a +=,∴43b a =.∵双曲线的焦点在y 轴上,∴双曲线的渐近线方程为a y x b =±.∴所求双曲线的渐近线方程为34y x =±.故选A .4.A【解析】定义在R 上的函数()f x 是奇函数,且对任意x ∈R 都有()()11f x f x +=-,故函数()f x 的图象关于直线1x =对称,∴()()2f x f x =-,故()()()2f x f x f x -=+=-,∴()()()24f x f x f x =-+=+,∴()f x 是周期为4的周期函数.则()()()3(202350533)42f f f f =⨯+==--=.故选A .6.B【解析】初中生人数800m =,每天睡眠时间的平均数9x =,方差211s =;高中生人数1200n =,每天睡眠时间的平均数8y =,方差220.5s =.总的样本平均数8.4mx n y a m n +==+.总的样本方差()()22221220.94m s x a n s y a s m n⎡⎤⎡⎤+-++-⎢⎥⎢⎥⎣⎦⎣⎦==+.故选B .7.D【解析】设AB AC x ==,由余弦定理可知22222cos1203BC AB AC AB AC x =+-⋅⋅︒=,∴BC =,30ABC ∠=︒,∵AD 平分∠BAC 且与BC 相交于点D ,△ABC 是等腰三角形,∴D 是BC 中点,2BD x =,由图可知向量BD 在BA 上的投影向量为BE ,3cos304BE BD x =︒= ,34BE BA = ,∴34BE BA =.故选D .8.C 【解析】对于选项A ,11A A PD P AA D V V --=.在正方体中,1BC ∥平面1AA D ,所以点P 到平面1AA D 的距离不变,即三棱锥1P AA D -的高不变,又1AA D ∆的面积不变,因此三棱锥1P AA D -的体积不变,即三棱锥1A A PD -的体积与点P 的位置无关,故A 不成立;对于选项B ,由于11BC AD ∥,1AD ⊂平面1ACD ,1BC ⊂/平面1ACD ,所以1BC ∥平面1ACD ,同理可证1BA ∥平面1ACD ,又11BA BC B = ,所以平面11BA C ∥平面1ACD ,因为1A P ⊂平面11BA C ,所以1A P ∥平面1ACD ,故B 不成立;对于选项C ,因为11A C BD ⊥,111A C BB ⊥,1BD BB B = ,所以11A C ⊥平面1BB D ,则111A C B D ⊥;同理11A B B D ⊥,又1111A C A B A = ,所以1B D ⊥平面11A BC ,又1B D ⊂平面1PDB ,所以平面1PDB ⊥平面11A BC ,故C 成立;对于选项D ,当B 与P 重合时,AP 与1D C 的夹角为π4,故D 不成立.故选C .9.AD 【解析】因为0a b c d >>>>,所以0a b >>,0c d >>,对于A ,因为0c d >>,由不等式的性质可得2c cd <,故选项A 正确;对于B ,取2a =,1b =,1c =-,2d =-,则3a c -=,3b d -=,所以a c b d -=-,故选项B 错误;对于C ,取2a =,1b =,1c =-,2d =-,则2ac =-,2bd =-,所以ac bd =,故选项C 错误;对于D ,因为0a b >>,0d c <<,则ad bc <,所以c d a b >,故0c da b->,故选项D 正确.故选AD .10.ACD【解析】设此人第n 天走n a 里路,则数列{}n a 是首项为1a ,公比为12q =的等比数列,因为6378S =,所以166112378112a S ⎛⎫- ⎪⎝⎭==-,解得1192a =,对于A ,由于21192962a =⨯=,所以此人第一天走了九十六里路,所以A 正确;对于B ,由于31192484a =⨯=,4813788>,所以B 不正确;对于C ,由于378192186-=,1921866-=,所以此人第一天走的路程比后五天走的路程多六里,所以C 正确;对于D ,456378192964842a a a ++=---=,所以此人后三天共走了四十二里路,所以D 正确.故选ACD .11.ABD 【解析】∵AB BC ⊥,BC CD ⊥,构造如图所示的长方体,则AD 为三棱锥A -BCD的外接球的直径.设外接球的半径为R .∵1114223263A BCD V BC CD AB CD -=⨯⨯⨯⨯=⨯⨯⨯=,∴2CD =,∴该长方体为正方体,∴AD =∴R =,∴外接球体积为34π3V R ==.故选ABD .三、填空题:本题共3小题,每小题5分,共15分.12.12x -=13.212x y=【解析】由题意得,直线l :1y =-,且圆N :()2234x y +-=,设点M 到直线l 的距离为r ,则点M 到l ':3y =-与点M 到点N 的距离相等,都是2r +,故点M 的轨迹是以N 为焦点,以l '为准线的抛物线,故方程为212x y =.14.2A mn -【解析】法一:直接计算,略.法二:实际意义:从n 个元素中选取m 个元素排列到m 个位置上去,对于两个指定的元素a ,b 进行分类,a ,b 都被选出来,有222A A m m n --种排法,a ,b 中有一个被选出来,有11122C A A m m n --种排法,a ,b 都没有被选出来,有2A mn -种排法,所以221112222A A A C A A A mm m mn m n m n n -----=++.法三:特值法试一试,如取3m =,7n =,再猜出排列数.四、解答题:本题共5小题,共77分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.【解析】(1)()cos 2cos cos C A B C =+=-,22cos cos 10C C +-=,1cos 2C =,因为()0,πC ∈,所以π3C =.(2)由外接圆半径2R =和正弦定理知1sin sin 2ABC S ab C A B ∆==,2ππsin sin 3sin 22236ABC S A B A A A A A ∆⎛⎫⎛⎫==-=+=- ⎪ ⎪⎝⎭⎝⎭,当π3A =时,△ABC的面积最大值为16.【解析】(1)因为60DAB ∠=︒,2AB =,1AD =,由余弦定理得BD =,从而222BD AD AB +=,故BD AD ⊥.因为PD ⊥平面ABCD ,BD ⊂平面ABCD ,所以PD BD ⊥.又AD PD D = ,AD ,PD ⊂平面PAD ,所以BD ⊥平面PAD .因为PA ⊂平面PAD ,所以PA BD ⊥.(2)如图,以D 为坐标原点,射线DA ,DB ,DP 分别为x ,y ,z 的正半轴建立空间直角坐标系D -xyz,则()1,0,0A,()B,()C -,()0,0,1P.()AB =-,()1PB =-,()1,0,0BC =- 设平面PAB 的法向量为(),,n x y z =,则00n AB n PB ⎧⋅=⎪⎨⋅=⎪⎩,即0x z ⎧-+=⎪-=,因此可取n =.设平面PBC 的法向量为m ,则0m PB m BC ⎧⋅=⎪⎨⋅=⎪⎩,可取(0,1,m =-,则cos ,7m n <>==-,经判断,二面角A -PB -C 为钝角,故二面角A -PB -C的余弦值为7-.17.【解析】(1)由已知得c =3c a =,解得a =,又2224b a c =-=,所以椭圆G 的方程为221124x y +=.(2)设直线l 的方程为y x m =+,由221124y x m x y =+⎧⎪⎨+=⎪⎩消去y 得22463120x mx m ++-=,①设A ,B 的坐标分别为()11,x y ,()22,x y (12x x <),AB 中点为()00,E x y ,则120324x x x m +==-,004my x m =+=,因为AB 是等腰△PAB 的底边,所以PE AB ⊥,所以PE 的斜率为241334mk m -==--+,解得2m =,此时方程①为24120x x +=,解得13x =-,20x =,所以11y =-,22y =,所以AB =,又点()3,2P -到直线AB :20x y -+=的距离2d ==,所以1922PAB S AB d ∆=⋅=.18.【解析】(1)设抽到现金奖时共抽取了3次为事件A ,则事件A 包括第一次未中奖第二次未中奖第三次中了现金奖或第一次未中奖第二次中了积分奖第三次中现金奖,则()1111111222244P A =⨯⨯+⨯⨯=,所以直到第3次才抽到现金奖的概率为14.(2)(ⅰ)X 的可能取值为1,2,3,…,19,20,21.()112P X p ==,()()()()()2121111121222i i i P X i p p p p p p p ---==-⋅+-⋅=--,2i =,3, (19)()()()()18191811120111222P X p p p p ==-⋅+-⋅=-,()()()1919112111122P X p p ==-⋅⨯=-,所以X 的分布列为X 12…i …2021P 12p ()122p p -…()()21212i p p p ---…()18112p -()19112p -其中2i =,3,…,19.(ⅱ)()()()()()()12111112232121192222i E X p p p p p p i p p p -=⨯+⨯-+⨯--++⨯--++⨯ ()()()1719181112120(1)211222p p p p p --+⨯-+⨯-()()()()()()217181911212231411911011222p p p p p p p p ⎡⎤=+-+-+-++-+-+-⎣⎦ ,令()()()21723141191S p p p =+-+-++- ,则()()()()()23181213141191p S p p p p -=-+-+-++- ,作差得()()()17181112191p p pS p p ⎡⎤---⎣⎦=+--,所以()()()()()18182111192221222p p p p p S p p p p ⎡⎤----⎣⎦-=-+---,()()()()()()()181818192111192122110112222p p p E X p p p p p p p ⎡⎤----⎣⎦=+-+---+-+-()1811112192p p p p ⎛⎫=++---≈ ⎪⎝⎭,所以X 的数学期望()E X 约为19.19.【解析】(1)y x =,0x =为该函数的极值点,该函数在0x =处的左导数为1-,右导数为1,所以该函数在0x =处不可导.(2)(ⅰ)切线方程为0y =.(ⅱ)()()22213221e sin e e sin e ax ax f x x x x x x x x ++=--=--,因为当0x ≠时,20x >,故()f x 与()g x 同号,()21e sin e ax g x x x +=--,现考察()g x 的性质,由于()g x 为偶函数,只需分析其在()0,+∞上的性质即可,()212e sin cos ax g'ax x x x x +=--,()0,0g'=,()()222124e 2cos sin ax a a x x x x g''x +=+-+,()2e 20g 'a '=-,则必有()e 2002g''a =-≥,即1e a ≥.①否则,若()e 2002g''a =-<,即1ea <,则必存在一个区间()0,m ,使得()0g''x <,则()g'x 在()0,m 单调递减,又()00g'=,则()g'x 在区间()0,m 内小于0,则()g x 在()0,m 单调递减,又()00g =,故()g x 在区间()0,m 内小于0,故()f x 在区间()0,m 内小于0,则0x =不可能为()f x 的极小值点.②当1ea ≥时,()22111e e sin e e sin e x ax g x x x x x ++=----≥,令()211e esin e x h x x x +=--,()2112e sin cos e x e x h x x x 'x +=--,()2112e 224e 2cos sin e e x h x x x x ''x +⎛⎫=+-+ ⎪⎝⎭,易知2112e 224e e e x y x +⎛⎫=+ ⎪⎝⎭在区间()0,+∞上单调递增,对2cos sin y x x x =-+,2sin sin cos 3sin cos y'x x x x x x x =++=+,则3sin cos y'x x x =+在区间π0,2⎛⎫ ⎪⎝⎭上大于0,故2cos sin y x x x =-+在区间π0,2⎛⎫ ⎪⎝⎭上单调递增.故()2112e 224e 2cos sin e e x h x x x x ''x +⎛⎫=+-+ ⎪⎝⎭在区间π0,2⎛⎫ ⎪⎝⎭上单调递增.又()00h''=,故()0h''x ≥,故()h'x 在区间π0,2⎛⎫ ⎪⎝⎭上单调递增,又()00h'=,故()0h'x ≥,故()h x 在区间π0,2⎛⎫ ⎪⎝⎭上单调递增,又()00h =,故()0h x >,π0,2x ⎛⎫∈ ⎪⎝⎭,则()()21e sin e 0ax x x x g x h +=-->≥,π0,2x ⎛⎫∈ ⎪⎝⎭,故当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0f x >,由偶函数知π,02x ⎛⎫∈-⎪⎝⎭时,()0f x >,故0x =为()f x 的极小值点,所以a 的取值范围为1e a ≥.。

2024年北京西城区高三数学5月第二次模拟测试卷附答案解析

2024年北京西城区高三数学5月第二次模拟测试卷附答案解析

2024年北京西城区高三数学5月第二次模拟测试卷本试卷150分.考试时长120分钟.2024.5第一部分选择题共40分一、选择题(共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项).1.在复平面内,复数z对应的点的坐标是,1)-,则⋅=z z ()A .1B .2C .3D .42.已知向量a ,b 满足()4,3a = ,()210,5a b -=-,则()A .0a b += B .0a b ⋅= C .a b> D .a b∥3.已知集合{}1,0,1A =-,{}B x x c =>.若{}0,1A B = ,则c 的最小值是()A .1B .0C .1-D .2-4.设443243210(21)-=++++x a x a x a x a x a ,则1234+++=a a a a ()A .1-B .0C .1D .25.已知,R R ∈∈a b .则“1ab >”是“222a b +>”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知双曲线22:1+=C mx ny 的焦点在y 轴上,且C 的离心率为2,则()A .30m n -=B .30m n -=C .30m n +=D .30m n +=7.将函数()tan f x x =的图象向右平移1个单位长度,所得图象再关于y 轴对称,得到函数()g x 的图象,则()g x =()A .1tan -xB .1tan --xC .tan (1)--x D .tan (1)-+x 8.楔体形构件在建筑工程上有广泛的应用.如图,某楔体形构件可视为一个五面体ABCDEF ,其中面ABCD 为正方形.若6cm AB =,3cm EF =,且EF 与面ABCD 的距离为2cm ,则该楔体形构件的体积为()A .318cmB .324cmC .330cm D .348cm 9.已知{}n a 是无穷等比数列,其前n 项和为n S ,1233,2==a S .若对任意正整数n ,都有(1)0--⋅>n n S A ,则A 的取值范围是()A .(3,1)-B .[2,1)-C .3(3,)2-D .3[2,)2-10.一组学生站成一排.若任意相邻的3人中都至少有2名男生,且任意相邻的5人中都至多有3名男生,则这组学生人数的最大值是()A .5B .6C .7D .8第二部分非选择题共110分二、填空题(共5小题,每小题5分,共25分).11.函数()=f x 的定义域是.12.已知圆C 经过点()1,0-和()3,0,且与直线2y =相切,则圆C 的方程为.13.已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭.直线22y =与曲线()y f x =的两个交点,A B 如图所示,若π4AB =,且()f x 在区间5π11π,1212⎛⎫⎪⎝⎭上单调递减,则ω=;ϕ=.14.已知函数()22,2121x x x x f x x ⎧+-⎪=-≤≤或,()()g x f x a =-,其中a ∈R .①若函数()g x 无零点,则a 的一个取值为;②若函数()g x 有4个零点(1,2,3,4)=i x i ,则1234x x x x +++=.15.在数列{}n a 中,1163=a ,1134(2,3,)7--+==-+ n n n a a n a .给出下列三个结论:①存在正整数N ,当n N ≥时,2n a >;②存在正整数N ,当n N ≥时,1n n a a ->;③存在正整数N ,当n N ≥时,112-++>n n n a a a .其中所有正确结论的序号是.三、解答题(共6小题,共85分.解答应写出文字说明,演算步骤或证明过程).16.已知函数2()2cos2xf x x =+.在ABC 中,()()f A f B =,且a b ¹.(1)求C ∠的大小;(2)若5c =,且ABC 的面积为ABC 的周长.17.如图,正方体1111ABCD A B C D -的棱长为2,E 为BC 的中点,点M 在1BD 上.再从下列三个条件中选择一个作为已知,使点M 唯一确定,并解答问题.条件①:MA MC =;条件②:EM AD ⊥;条件③://EM 平面11CDD C .(1)求证:M 为1BD 的中点;(2)求直线EM 与平面MCD 所成角的大小,及点E 到平面MCD 的距离.注:如果选择的条件不符合要求,第(1)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.18.为研究中国工业机器人产量和销量的变化规律,收集得到了20152023-年工业机器人的产量和销量数据,如下表所示.年份201520162017201820192020202120222023产量万台 3.37.213.114.818.723.736.644.343.0销量万台6.98.713.815.414.015.627.129.731.6记20152023-年工业机器人产量的中位数为a ,销量的中位数为b .定义产销率为“100%=⨯销量产销率产量”.(1)从20152023-年中随机取1年,求工业机器人的产销率大于100%的概率;(2)从20202318-年这6年中随机取2年,这2年中有X 年工业机器人的产量不小于a ,有Y 年工业机器人的销量不小于b .记Z X Y =+,求Z 的分布列和数学期望()E Z ;(3)从哪年开始的连续5年中随机取1年,工业机器人的产销率超过70%的概率最小.结论不要求证明19.已知函数22()4sin (1)=++f x a x a x ,其中0a ≥.(1)若()f x 在0x =处取得极小值,求a 的值;(2)当1a =时,求()f x 在区间π[,π]2上的最大值;(3)证明:()f x 有且只有一个极值点.20.已知椭圆2222:1(0)+=>>x y E a b a b的一个顶点为(2,0)D ,焦距为(1)求椭圆E 的方程;(2)设点P 是第一象限内椭圆E 上一点,过P 作y 轴的垂线,垂足为Q .点P 关于原点的对称点为A ,直线DQ 与椭圆的另一个交点为B ,直线DP 与y 轴的交点为C .求证:,,A B C 三点共线.21.已知数列12:,,,n A a a a L ,从A 中选取第1i 项、第2i 项、…、第k i 项12<<< k i i i 构成数列12,,,:ki i i a a a B L ,B 称为A 的k 项子列.记数列B 的所有项的和为()T B .当2k ≥时,若B 满足:对任意{1,2,,1}∈- s k ,11+-=s s i i ,则称B 具有性质P .规定:A 的任意一项都是A 的1项子列,且具有性质P .(1)当4n =时,比较A 的具有性质P 的子列个数与不具有性质P 的子列个数的大小,并说明理由;(2)已知数列:1,2,3,,(2)≥A n n L .(ⅰ)给定正整数2nk ≤,对A 的k 项子列B ,求所有()T B 的算术平均值;(ⅱ)若A 有m 个不同的具有性质P 的子列12,,,m B B B L ,满足:1<∀≤≤i j m ,i B 与j B 都有公共项,且公共项构成A 的具有性质P 的子列,求m 的最大值.1.D【分析】由复数的几何意义得出z ,再运算化简即可.【详解】复数z 对应的点的坐标是1)-,所以i z =,i z =+,所以)22ii i 314z z ⋅==-=+=.故选:D .2.B【分析】根据向量坐标运算,先求出b,再逐一验证即可.【详解】因为()4,3a = ,()210,5a b -=-,所以()3,4b =-,所以()1,7a b +=,故A 错;()43340a b ⋅=⨯-+⨯=,故B 正确;5a b ==,故C 错;因为4433⨯≠-⨯,所以,a b不平行,故D 错.故选:B 3.C【分析】根据交集结果可确定c 的范围,由此可得结果.【详解】{}0,1A B = ,{}1,0,1A =-,{}B x x c =>,10c ∴-≤<,即c 的最小值为1-.故选:C.4.B【分析】利用赋值法,令0x =,1x =即可求得正确答案.【详解】依题意,()44324321021x a x a x a x a x a +++=-+,令0x =,得01a =;令1x =,得012341a a a a a ++++=,所以12340a a a a +++=.故选:B.5.A【分析】由充分条件和必要条件的定义求解即可.【详解】当1ab >时,则2222a b ab +≥>,当且仅当a b =时取等,所以充分性成立,取4,1a b =-=,满足222a b +>,但1ab <,故必要性不成立,所以“1ab >”是“222a b +>”的充分不必要条件.故选:A.6.C【分析】由题意可得2c e a ====,化简即可得出答案.【详解】化简双曲线22:1+=C mx ny 可得22:111y x C n m-=-,因为双曲线C 的焦点在y 轴上,所以2211,a b n m==-,所以C 的离心率为2c e a ====,则3nm-=,所以30m n +=.故选:C.7.D【分析】根据正切函数图象的平移变换、对称变换即可得变换后的函数()g x 的解析式.【详解】将函数()tan f x x =的图象向右平移1个单位长度,所得函数为()(1)tan 1f x x -=-,则函数()(1)tan 1f x x -=-的图象再关于y 轴对称得函数()()()()1tan 1tan 1g x f x x x =--=--=-+.故选:D.8.C【分析】设G ,H 分别为AB ,DC 的中点,连接EG ,EH ,GH ,由//EG FB ,//EH FC ,//GH BC ,可知EGH FBC -为三棱柱,再利用椎体与柱体的体积关系计算该几何体的体积.【详解】如图所示,设G ,H 分别为AB ,DC 的中点,连接EG ,EH ,GH ,因为面ABCD 为正方形,所以//AB DC ,又AB ⊄平面EFCD ,DC ⊂平面EFCD ,所以//AB 平面EFCD ,又平面EFCD 平面ABFE EF =,所以//AB EF ,因为G ,H 分别为AB ,DC 的中点,6cm AB =,3cm EF =,所以//,EF GB EF GB =,则EGBF 为平行四边形,则//EG FB ,同理//EH FC ,又//GH BC ,所以EGH FBC -为三棱柱,由题意,可得11163212333AGHD E AGHD V S h AD AG h -=⋅=⋅⋅=⨯⨯⨯=矩形四棱锥;又33EGH FBC B EGH E BGH V V V ---==三棱柱三棱锥三棱锥13331218222E AGHD E AGHD V V --=⨯⨯=⋅=⨯=四棱锥四棱锥;所以该多面体的体积为2121830cm E AGHD EGH FBC V V V --=+=+=四棱锥三棱柱.故选:C .9.D【分析】根据等比数列的基本量求得232a =-,从而可得公差2112a q a ==-,由等比数列得前n 项和公式得n S ,分类讨论,结合数列的单调性即可得求得满足不等式(1)0--⋅>n n S A 时A 的取值范围.【详解】因为等比数列{}n a ,由1233,2==a S 可得21232S a a =+=,所以232a =-,则公比2112a q a ==-,所以133********nn n S ⎛⎫-⨯- ⎪⎛⎫⎝⎭==-⨯- ⎪⎛⎫⎝⎭-- ⎪⎝⎭,当n 为奇数时,1(1)2202nnn S A A ⎛⎫--⋅=+⨯+> ⎪⎝⎭恒成立,所以1222nA ⎛⎫>--⨯ ⎪⎝⎭,又数列1222n ⎧⎫⎪⎪⎛⎫--⨯⎨⎬ ⎪⎝⎭⎪⎪⎩⎭为递增数列,所以n →+∞,12222n ⎛⎫--⨯→- ⎪⎝⎭,则此时2A ≥-;当n 为偶数时,1(1)2202nnn S A A ⎛⎫--⋅=-⨯-> ⎪⎝⎭恒成立,所以1222nA ⎛⎫<-⨯ ⎪⎝⎭,又数列1222n ⎧⎫⎪⎪⎛⎫-⨯⎨⎬ ⎪⎝⎭⎪⎪⎩⎭为递增数列,2min1132222222n ⎛⎫⎛⎫⎛⎫-⨯=-⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则此时32A <;综上,A 的取值范围是3[2,)2-.故选:D.10.B【分析】考虑前7个人,分别每相邻的3人取成一组与每相邻的5人取成一组,从而推出矛盾,再考虑人数为6的情况,由此得解.【详解】如果人数大于6,考虑前7个人:ABCDEFG ,每相邻的3人取成一组,则有,,,,ABC BCD CDE DEF EFG 5组,因为任意相邻的3人中都至少有2名男生,所以这7个人里至少有10名男生;每相邻的5人取成一组,则有,,ABCDE BCDEF CDEFG 3组,因为任意相邻的5人中都至多有3名男生,所以这7个人里至多有9名男生;显然矛盾,故人数不可能大于6,当人数为6时,用1表示男生,0表示女生,则可以101101.故选:B.【点睛】关键点点睛:本题解决的关键是找到矛盾的分界人数,利用条件推出矛盾,从而得解.11.1[,)3+∞【分析】由题意可得出31log 0x x +≥⎧⎨>⎩,结合对数函数的单调性求解即可.【详解】函数()=f x 的定义域是:31log 00x x +≥⎧⎨>⎩,解得:13x ≥.故答案为:1[,)3+∞.12.()2214x y -+=【分析】设圆C 的方程为()()222x a y b r -+-=()0r >,进而利用待定系数法求解即可.【详解】设圆C 的方程为()()222x a y b r -+-=()0r >,则由题意可得()()()()22222210302a b r a b r b r ⎧--+-=⎪⎪-+-=⎨⎪-=⎪⎩,解得102a b r =⎧⎪=⎨⎪=⎩,所以圆C 的方程为()2214x y -+=故答案为:()2214x y -+=13.2π3-【分析】根据()2f x =和π4AB =,可构造方程求得ω,并确定5π11π,1212⎛⎫ ⎪⎝⎭为半个周期,根据正弦函数单调性可构造方程组求得ϕ.【详解】设()()1122,,,A x y B x y ,由()2f x =得:()12π2π43π2π4x k k x k ωϕωϕ⎧+=+⎪⎪∈⎨⎪+=+⎪⎩Z ,()21π2x x ω∴-=,又21π4AB x x =-=,ππ42ω∴=,解得:2ω=,此时()f x 的最小正周期2ππT ω==,11π5ππ121222T -==,()f x 在区间5π11π,1212⎛⎫⎪⎝⎭上单调递减,5π12x ∴=和11π12x =分别为()f x 单调递减区间的起点和终点,当5π11π,1212x ⎛⎫∈ ⎪⎝⎭时,5π11π2,66x ϕϕϕ⎛⎫+∈++ ⎪⎝⎭,()5ππ2π6211π3π2π62k k k ϕϕ⎧+=+⎪⎪∴∈⎨⎪+=+⎪⎩Z ,()π2π3k k ϕ∴=-+∈Z ,又π2ϕ<,π3ϕ∴=-;综上所述:2ω=,π3ϕ=-.故答案为:2;π3-.14.1-2-【分析】①结合函数()f x 的图象,函数()g x 无零点,即()y f x =与y a =的图象无交点,所以可得到a 的一个取值;②由图象对称,即可算出1234x x x x +++的值.【详解】画函数()22,2121x x x x f x x ⎧+-⎪=-≤≤或的图象如下:①函数()()g x f x a =-无零点,即()0f x a -=无解,即()y f x =与y a =的图象无交点,所以a<0,可取1a =-;②函数()g x 有4个零点,即()0f x a -=有4个根,即()y f x =与y a =的图象有4个交点,由14x x 、关于=1x -对称,所以142x x +=-,23x x 、关于0x =对称,所以230x x +=,所以12342x x x x +++=-.故答案为:1-;2-.15.②③【分析】根据递推关系求出2312,8a a ==-,用差比较法可判定各选项.【详解】对于①:由1163=a ,1134(2,3,)7--+==-+ n n n a a n a ,可得2312,8a a ==-,又()111152342277n n n n n a a a a a -----+-=-=-+-,当12n a -<时2n a <,因为38a =-,所以3n ≥时2n a <,故①错误;对于②:()211111123477n n n n n n n a a a a a a a -------+-=-=-+-,又443a =-,结合①的结论3n ≥时2n a <,所以当4n ≥时,1n n a a ->,故②正确;对于③:111347473n nn n n na a a a a a ---+-=⇒=-++,()()()31122743423773n n n n n n n n n n n n a a a a a a a a a a a a -+-⎛⎫⎛⎫-++-=-+-= ⎪ ⎪+--+⎝⎭⎝⎭,所以当4n ≥时,420,70,330n n n a a a a -<->+>+>,所以1111202n n n n n n a a a a a a -+-+++-<⇒<,故③正确;故答案为:②③.【点睛】关键点睛:本题关键在于求出2312,8a a ==-,根据递推关系分析出当12n a -<时2n a <,进而判定①,利用差比较法结合结论①可判定②③.16.(1)π3(2)12【分析】(1)化简函数π()2sin()16f x x =++,根据题意,得到ππsin()sin()66+=+A B ,进而求得2π3A B +=,即可求解;(2)由(1)和ABC 的面积取得8ab =,利用余弦定理得2225+-=a b ab ,进而求得a b +的值,即可求得ABC 的周长.【详解】(1)解:由函数2π()2coscos 12sin()126x f x x x x x =+=++=++,因为()()f A f B =,可得ππsin(sin(66+=+A B ,在ABC 中,因为,(0,π)A B ∈,所以ππ7πππ7π(,),(,666666A B +∈+∈,又因为a b ¹,所以A B ≠,所以ππ()(π66+++=A B ,解得2π3A B +=,因为πA B C ++=,所以π3C =.(2)解:由(1)知π3C =,因为ABC的面积为1sin 2ABC S ab C ==V 8ab =,在ABC 中,由余弦定理得2222cos c a b ab C =+-,即22π252cos3a b ab =+-,整理得2225+-=a b ab ,所以2()325a b ab +-=,即2()25349+=+=a b ab ,所以7a b +=,所以ABC 的周长为12a b c ++=.17.(1)证明见解析(2)30︒;22【分析】(1)分别选条件①②③,结合线面平行位置关系的判定定理和性质定理,即可得证;(2)以D 为原点,建立空间直角坐标系,求得向量(,,)011=-EM uuu r和平面MCD 的法向量为(1,0,1)m =- ,利用向量的夹角公式,求得1sin 2θ=,结合sin d EM θ= ,即可求解.【详解】(1)证明:选条件①:由MA MC =,根据正方体1111ABCD A B C D -的对称性,此时点M 为1BD 上的任意一点,所以不成立;选条件②:EM AD ⊥.连接1CD ,在正方体1111ABCD A B C D -中,由BC ⊥平面11CDD C ,因为1CD ⊂平面11CDD C ,所以1BC CD ⊥,又因为EM AD ⊥,//AD BC ,所以EM BC ⊥,因为1,EM CD ⊂平面1BCD ,所以1//EM CD ,又因为E 为BC 的中点,所以M 为1BD 的中点.选择条件③://EM 平面11CDD C .连接1CD ,因为//EM 平面11CDD C ,EM ⊂平面1BCD ,且平面1BCD ⋂平面111CDD C CD =,所以所以1//EM CD ,因为E 为BC 的中点,所以M 为1BD 的中点.(2)解:在正方体1111ABCD A B C D -中,1,,DA DC DD 两两互相垂直,建立空间直角坐标系,如图所示,则(0,0,0),(0,2,0),(1,2,0),(1,1,1)D C E M ,所以(0,2,0)DC = ,(1,1,1)DM = ,(,,)011=-EM uuu r,设平面MCD 的法向量为(,,)m x y z =u r ,则00m DC y m DM x y z ⎧⋅==⎪⎨⋅=++=⎪⎩ ,令1x =,则0,1y z ==-.于是(1,0,1)m =-,设直线EM 与平面MCD 所成的角为θ,则1sin cos ,2m EM m EM m EM θ⋅===⋅,所以直线EM 与平面MCD 所成角的大小为30 ,点E 到平面MCD的距离为2sin sin 302d EM θ===.18.(1)49(2)分布列见解析;()103E Z =(3)2018年和2019年【分析】(1)按古典概型的概率计算求解.(2)先根据中位数的概念确定a ,b 的值,在确定X ,Y 的所有可能值,进一步得Z 的所有可能的取值,再求Z 的分布列.(3)计算产销率,可直接得到结论.【详解】(1)记事件A 为“工业机器人的产销率大于100%”.由表中数据,工业机器人的产销率大于100%的年份为2015年,2016年,2017年,2018年,共4年.所以()49P A =.(2)因为18.7a =,15.4b =,所以X 的所有可能的取值为1,2;Y 的所有可能的取值为1,2.所以Z 的所有可能的取值为234,,.2226C 1(2)C 15===P Z ,112426C C 8(3)C 15===P Z ,2426C 2(4)C 5===P Z .所以Z 的分布列为:Z234P11581525故Z 的数学期望()18210234151553E Z =⨯+⨯+⨯=.(3)2018年和2019年.19.(1)0a =(2)22π(3)证明见解析【分析】(1)利用可导函数的极小值点是导数值为0的充分不必要条件来解题需要检验;(2)一阶导函数()4(cos )f x x x '=+不能够判断正负,需要借助二阶导函数来进一步研究一阶导函数的取值恒为正,从而来判断原函数2()4sin 2=+f x x x 在区间π[,π]2是单调递增的,即可得到最大值;(3)一阶导函数2()4cos 2(1)'=++f x a x a x 看不出零点及取值的正负,但可以对参数0a ≥分两类讨论,当0a =时,2()f x x =是二次函数易得证,当0a >,则需要二阶导函数21()4(sin )2a g x a x a+'=--,此时联想到不等式可证2112a a+≥,则可判断()0g x '≥,从而得到2()4cos 2(1)'=++f x a x a x 的单调性,然后判断函数()f x 零点的存在性,问题即可得证.【详解】(1)由2()4cos 2(1)'=++f x a x a x ,因为()f x 在0x =处取得极小值,所以(0)0f '=,即2(0)4cos02(1)040f a a a '=++⨯==,解得0a =,检验:当0a =时,2()f x x =,由二次函数的性质可得:()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增,满足题意,所以0a =.(2)当1a =时,2()4sin 2=+f x x x ,()4cos 44(cos )'=+=+f x x x x x .令()()4(cos )g x f x x x '==+,则()4(sin 1)g x x '=-+,因为ππ2≤≤x ,所以()4(sin 1)0g x x '=-+≥,即()4(cos )g x x x =+在区间π[,π]2上单调递增,所以min ()4(cos )2022g x πππ=+=>,即()0f x '>,所以()f x 在区间π[,π]2上单调递增,即()f x 的最大值为222(π)4sin 2π402π2πf π=+=⨯+=.(3)由2()4cos 2(1)'=++f x a x a x ,当0a =时,2()f x x =,由二次函数的单调性可得:()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增,所以()f x 恰有一个极值点;当0a >时,设24cos 2((()1))a x a x g x f x '+==+,则221()4sin 2(1)4(sin )2+'=-++=--a g x a x a a x a.因为2111222a a a a +=+≥=,且sin 1x ≤,所以()0g x '≥,即()g x 在(,)-∞+∞上单调递增.因为2π()(1)π02-=-+<g a ,(0)40g a =>,所以存在0π(,0)2x ∈-,使00()()0g x f x '==,根据()g x 在(,)-∞+∞上单调递增,可知当0x x <时,()()0f x g x '=<,所以()f x 在0(,)-∞x 上单调递减,可知当0x x >时,()()0f x g x '=>,所以()f x 在0(,)+∞x 上单调递增,即()f x 恰有一个极值点.综上所述,当0a ≥时,()f x 有且只有一个极值点.20.(1)22142x y +=(2)证明见解析【分析】(1)依题意可得a 、c 的值,从而求出2b ,即可得解;(2)设(),P m n ()0,0m n >>,表示出直线DP 的方程,即可求出C 点坐标,联立直线DQ 的方程与椭圆方程,消元,设(,)B B B x y ,利用韦达定理求出B x ,从而表示出B y ,计算出0AC BC k k -=,即可得证.【详解】(1)依题意可得22222a c a b c =⎧⎪=⎨⎪-=⎩,解得2242a b ⎧=⎨=⎩,所以椭圆E 的方程为22142x y +=.(2)[方法一]:设而不求设(),P m n ,则()0,Q n ,(),A m n --,其中2224m n +=,0,0m n >>.则直线DP 的方程为(2)2ny x m =--,令0x =,可得22n y m -=-,所以20,2n C m -⎛⎫ ⎪-⎝⎭,又直线DQ 的方程为(2)2ny x =--,由22(2)224n y x x y ⎧=--⎪⎨⎪+=⎩,消去y 整理得2222(2)4480+-+-=n x n x n ,所以()()422Δ164248640n n n =-+-=>,设(,)B B B x y ,所以22482B D n x x n -=+,解得22242B n x n -=+.所以24(2)22B B n ny x n =--=+,所以222244,22n n B n n ⎛⎫- ⎪++⎝⎭.由题意,点,A B 均不在y 轴上,所以直线,AC BC 的斜率均存在,且222242222242AC BCn n nn m n m k k n mn -++-+--=--+2244(2)2(2)(2)(24)(2)mn n n m n n m m n m --++=----222[(4)(24)2(22)](2)(24)nm n m n m m m n =---+---2224(24)(2)(24)nn m m m n -=+---0=,即AC BC k k =,所以A 、B 、C三点共线.[方法二]:转化思想设()(,)0,0P m n m n >>则2224m n +=,且(0,)Q n ,(,)A m n --,(2,0)D ,则DP l :(2)2ny x m =--,令0x =,则22n y m -=-,20,2n C m -⎛⎫∴ ⎪-⎝⎭,又BD l :2n y x n =-+,AC l :2222n n n m y x m m --=--,设BD l 与AC l 交于点E ,由22222n y x n nn n m y x m m ⎧=-+⎪⎪⎨-⎪-=-⎪-⎩,解得2222888E E m x m n y m ⎧-=⎪⎪-⎨⎪=⎪-⎩,若A 、B 、C 三点共线,则点E 为点B ,即点E 在椭圆上,则只需证明2224E E x y +=,2222228288m n m m ⎛⎫-⎛⎫+ ⎪ ⎪--⎝⎭⎝⎭ ()()()424222224164412888m m m n m m ⎡⎤+-+⎣⎦==--()()42224166448m m m -+==-,所以点E 在椭圆上,所以A 、B 、C 三点共线.[方法三]:设()()0000,02,0P x y x y <且220024x y +=,则()00,Q y ,()00,A x y --,∵(2,0)D ,所以DQ l :0(2)2y y x =--,由022(2)224y y x x y ⎧=-⎪⎨⎪+=⎩,消去y 整理得()()222200024420y x y x y +-+-=,所以()440Δ16164640y y =--=>,设()11,B x y ,则()201204222y x y -=+,所以()20120222y x y -=+,则()20012022222y y yy ⎡⎤-⎢⎥=-+⎢⎥⎣⎦2042y y =+,()2002200224,22y y B y y ⎛⎫- ⎪∴ ⎪++⎝⎭,又DP l :()0022y y x x =--,令0x =,则0022y y x =-,0020,2y C x ⎛⎫∴ ⎪-⎝⎭,()2300022200000020426442222ABy y y y y k y x y x y x y +++∴==-++-++,又000020002242ACy y x y x y k x x x +--==-,所以()()20000222000000644422AB AC y y y x k k y x y x x x +--=--++-()()()()()()22220000000002220000006244424422y y x x x y x y x y x y x x x ⎡⎤+----++⎣⎦=-++-()()()()2322000000000222000000622482422204422x x y x x x x x x y x y x x x ⎡⎤⎛⎫⎛⎫+------+-+⎢⎥⎪ ⎪⎝⎭⎝⎭⎣⎦==-++-AB AC k k ∴=,∴A 、B 、C 三点共线.[方法四]:依题意DP 的斜率存在且不为0,设DP 的方程为2x my =+()0m ≠,222142x my x y =+⎧⎪∴⎨+=⎪⎩,消去x 整理得()22240m y my ++=,显然0∆>,所以242P Q m y y m -+=+,0D y = ,242Pmy m -∴=+,22224422222P P m m x my m m--∴+=+=+=+,则240,2m Q m -⎛⎫ ⎪+⎝⎭,所以2224222DQmm m k m -+==+-,则DQ 的方程为22(2)2m y x m=-+,由2222(2)2142m y x m x y ⎧=-⎪⎪+⎨⎪+=⎪⎩,所以()()()224222222228324161610222m m m m x x m m m⎡⎤-+-⎢⎥+-+=⎢⎥+++⎣⎦,显然0∆>,()()()222242222324482B D m mx x mm m m+∴+=⨯++++24232124m m m =++,所以2424242322882124124B m m m x m m m m -+-=-=++++,则()42242461622124B m m m y m m m -+-=⨯+++()24282124m m m m -+=++,所以()()22426282248288BC m m m m k m m m -++++=-+-()4242428162248244m m m m m m m --+++=--+()22322m m m +=-,又222422242ACm m m k m m ++=-+()22322m m m +=+,所以BC AC k k =,∴A 、B 、C 三点共线.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式;(5)代入韦达定理求解.21.(1)A 的具有性质P 的子列个数大于不具有性质P 的子列个数;理由见解析(2)(ⅰ)(1)2k n +;(ⅱ)224n n+【分析】(1)根据定义得出4n =时,A 共有15个子列,结合性质P 的内容即可判断;(2)(ⅰ)根据12,,,ki i i a a a L 是A 的()2≤n k k 项子列,121,1,,1ki i i n a n a n a +-+-+-L 也是A 的()2≤nk k 项子列,可得11(1)(1)()()==++-=+'+=∑∑j j k ki i j j a n a k n T B T B ,又A 有C kn 个k 项子列,即可求出结果;(ⅱ)设(1,2,,)=k B k m L 的首项为k x ,末项为k y ,记0max{}k k x x =,则可得对任意1,2,,j m = ,都有0j k x y ≥,故共有00(1)k k x n x +-种不同的情况,又00(1)k k x n x m +-≥,所以分n 为奇数或者偶数两种情况进行分析即可.【详解】(1)当4n =时,A 共有42115-=个子列,其中具有性质P 的子列有432110+++=个,故不具有性质P 的子列有5个,所以A 的具有性质P 的子列个数大于不具有性质P 的子列个数.(2)(ⅰ)若12,,,:ki i i a a a B L 是A 的()2≤nk k 项子列,则12:1,1,,1+-+-+-'ki i i n a n a n a B L 也是A 的()2≤nk k 项子列.所以11(1)(1)()()==++-=+'+=∑∑j j k ki i j j a n a k n T B T B .因为给定正整数2n k ≤,A 有C kn 个k 项子列,所以所有()T B 的算术平均值为11(1)C (1)C 22+⋅⋅+=kn k nk n k n .(ⅱ)设(1,2,,)=k B k m L 的首项为k x ,末项为k y ,记0max{}k k x x =.若存在1,2,,j m = ,使0j k y x <,则j B 与0k B 没有公共项,与已知矛盾.所以,对任意1,2,,j m = ,都有0j k x y ≥.因为对于1,2,,k m = ,0{1,2,,}k k x x ∈L ,0{,1,,}k k k y x x n ∈+L ,所以共有0(1)k k x n x +-种不同的情况.因为12,,,m B B B L 互不相同,所以对于不同的子列,i j B B ,i j x x =与i j y y =中至多一个等式成立.所以0(1)k k x n x m +-≥.当n 是奇数时,取1{1,2,,}2+∈k n x L ,13{,,,}22k n n y n ++∈L ,共有211(1)(1)224+++⋅+-=n n n n 个满足条件的子列.当n 是偶数时,取{1,2,,}2∈k nx L ,{,1,,}22∈+k n n y n L ,共有22(1)224+⋅+-=n n n nn 个满足条件的子列.综上,n 为奇数时,m 的最大值为2(1)4n +;n 为偶数时,m 的最大值为224n n+.【点睛】方法点睛:(1)阅读理解能力考查;(2)分类讨论思想;(3)数列和集合概念的理解.。

江西省新余市2023-2024学年高三第二次模拟考试数学试题答案

江西省新余市2023-2024学年高三第二次模拟考试数学试题答案

新余市2023-2024学年高三第二次模拟考试数学答案1.C【分析】将这组数据从小到大排列后借助百分位数定义计算即可得.2.A【分析】将点代入抛物线的方程,即可求解,再结合抛物线的公式,即可求解3.A【分析】利用向量积的运算律计算,再利用向量数量积的定义计算,列出相关等式可得的值.4.D【分析】由题意可得两个大人不相邻,不相邻问题用插空法即可得.5.B【分析】根据空间直线与平面平行、垂直,平面与平面平行、垂直的判定定理和性质定理,逐项判断,即可得出结论.【点睛】本题考查了空间线面位置关系的判定和证明,其中熟记空间线面位置中的平行与垂直的判定定理与性质定理是解题的关键,考查直观想象能力,属于基础题.6.B【分析】求出圆的圆心及半径后,结合正三角形的性质可计算出当为正三角形时的值,结合充分条件与必要条件定义即可判断.7.C【分析】借助“1”的活用将分式其次化后结合基本不等式计算即可得.8.B【分析】由与双曲线相切,可得,即可得,作轴于点,结合相似三角形的性质可得,计算即可得的值,从而求出离心率.又有,化简即可得切线方程为:.故选:B.【点睛】关键点点睛:本题关键在于构造相似三角形,从而将求的值,转化为求的值.Q C p ()a b b +⋅ ()a b b +⋅ λMCN △a MA 22:1MA m n l x y a b -=2,0a A m ⎛⎫ ⎪⎝⎭MB x ⊥B OD OM OA OB ⋅=⋅OD OM ⋅2200221x y a b-=00221x x y y a b -=OD OM ⋅OA OB ⋅9.ABC【分析】根据复数的四则运算,结合共轭复数的定义即可求解ABC ,举反例即可求解D.10.AD【分析】借助三角恒等变换公式将原函数化为正弦型函数后,借助正弦型函数的值域、对称性、单调性与极值点逐项计算并判断即可得.11.BCD【分析】对A 、B ,利用赋值法进行计算即可得;对C 、D ,利用赋值法后结合数列的性质进行相应的累加及等差数列公式法求和即可得.【点睛】关键点点睛:本题C 、D 选项关键在于利用赋值法,结合数列的性质进行相应的累加及等差数列公式法求和.12.【分析】借助正态分布定义可得,结合方差的性质计算即可得.13.165【分析】由等比和等差数列的性质求出公差,再由前项和公式求出结果即可.14.60π【分析】先结合线面角的定义与已知条件可得,从而知,过点作于点,根据三棱锥的体积公式,将条件转化为取得最大值,再结合勾股定理确定点的位置,然后利用补形法求外接球的半径即可.15.(1).【分析】(1)由三角形面积公式可得,即可由余弦定理求解,(2)利用等面积法即可求解.16.(1)2(2).【分析】(1)求定义域,求导,得到函数单调性,求出最小值;(2)在(0,+∞)上恒成立,参变分离得到,令,求导得到φ(x )的单调性,得到,从而求出a 的取值范围.36()D X n BME CMF ∠=∠2MF EM =M MN EF ⊥N MN M π3222a c b ac +-=2,e⎡⎫+∞⎪⎢⎣⎭()2ln 0x h x a x =-≤'2ln x a x ≥()2ln x x xϕ=()max 2ln e 2e e x ϕ==17.(1)证明见解析(2)【分析】(1)取中点为,利用直角梯形中位线的性质,线面垂直的性质判定推理即可;(2)通过正三角形证明,以为坐标原点,建立空间直角坐标系,利用二面角得向量求法计算求解即可..18.(1)(2)(3)分布列见解析,.【分析】(1)借助概率乘法公式计算即可得;(2)借助全概率公式计算即可得;(3)求出的可能取值后计算其对应概率即可得其分布列,结合期望计算公式与数列中错位相减法即可得其期望.19.(1)(2)(i ;(ⅱ)是,2【分析】(1)借助所给定义计算即可得;(2)(i )计算出该斜椭圆的长轴长与焦距,结合离心率定义计算即可得;(ⅱ)法一:设出直线、,联立斜椭圆方程可得与交点横坐标有关韦达定理,结合弦长法二:将所有点、直线与曲线都绕原点O 顺时针旋转后,再设出直线、旋转后方程,算即可得.23BC E CO AD ⊥O 13321936()11n p p--X ()6,31l 2l π41l 2l。

2024届南京市高三第二次模拟考试(南京二模)数学试卷(含答案详解)

2024届南京市高三第二次模拟考试(南京二模)数学试卷(含答案详解)

江苏省南京市2024届高三第二次模拟考试高三数学试题卷一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知向量()1,2a = ,(),3b x x =+ .若a b,则x =()A .6-B .2-C .3D .62.“02r <<”是“过点(1,0)有两条直线与圆222:(0)C x y r r +=>相切”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.为了得到函数πsin 23y x ⎛⎫=+ ⎪⎝⎭的图象,只要把函数sin 2y x =图象上所有的点()A .向左平移π6个单位B .向左平移π3个单位C .向右平移π6个单位D .向右平移π3个单位4.我们把各项均为0或1的数列称为01-数列,01-数列在计算机科学和信息技术领域有着广泛的应用.把佩尔数列{}n P (10P =,21P =,212n n n P P P ++=+,*n ∈N )中的奇数换成0,偶数换成1,得到01-数列{}n a .记{}n a 的前n 项和为n S ,则20S =()A .16B .12C .10D .85.已知3()5P A =,()15P AB =,1(|)2P A B =,则()P B =()A .15B .25C .35D .456.在圆台12O O 中,圆2O 的半径是圆1O 半径的2倍,且2O 恰为该圆台外接球的球心,则圆台的侧面积与球的表面积之比为()A .3:4B .1:2C .3:8D .3:107.已知椭圆C 的左、右焦点分别为1F ,2F ,下顶点为A ,直线1AF 交C 于另一点B ,2ABF △的内切圆与2BF 相切于点P .若12BP F F =,则C 的离心率为()A .13B .12C .23D .348.在斜ABC 中,若sin cos A B =,则3tan tan B C +的最小值为()AB C D .二、选择题:本题共3小题,每小题6分,共18分。

昌平区2024届高三二模数学试题及答案

昌平区2024届高三二模数学试题及答案

昌平区2024年高三年级第二次统一练习数学试卷 2024.5本试卷共9页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题:共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合 题目要求的一项。

1. 已知集合{}1,0,1,2,3A =−,{}2|20B x x x =−>,则A B =A.{}0,1,2B.{}1C.{}1,0,1,2−D.{}1,3−2. 已知数列{}n a 满足12n n a a +=,24a =,则数列{}n a 的前4项和等于 A.16 B.24 C.30 D.623. 已知抛物线22 (0)y px p =>的焦点和双曲线2213yx −=的右顶点重合,则p 的值为 A.1 B.2 C.4 D.64. 在61)x 的展开式中,常数项为A.15−B.15C.30D.3605. 若01a b <<<,1c >,则 A.b a c c <B.log log c c a b >C.sinsin c ca b> D.c c a b <6. 若圆22860x x y y m ++−+=与x 轴,y 轴均有公共点,则实数m 的取值范围是 A.(,9]−∞ B.(,16]−∞C.)[9,25D.[16,25)7. 设,m n 是两条不同的直线,,αβ是两个不同的平面,且m α⊂,//αβ,则“n β⊥”是“n m ⊥”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件8. 已知函数24,1()ln(1), 1x x x f x x x ⎧−+≤⎪=⎨−>⎪⎩,若对任意的x 都有|()|f x ax ≥恒成立,则实数a 的取值范围是 A.(,0]−∞B.[4,0]−C.[3,0]−D.(,2]−∞9. 中国茶文化博大精深,茶水的口感与茶叶类型和水的温度有关. 经验表明,某种绿茶用90C ︒的水泡制,再等到茶水温度降至60C ︒时饮用,可以产生最佳口感. 在20C ︒室温下,茶水温度从90C ︒开始,经过min t 后的温度为C y ︒,可选择函数600.920t y =⨯+(0)t ≥来近似地刻画茶水温度随时间变化的规律. 则在上述条件下,该种绿茶茶水达到最佳饮用口感时,需要放置的时间最接近的是(参考数据:lg20.30≈,lg30.48≈) A.2.5minB.4.5minC.6minD.8min10. 已知数列{}n a 满足431n a −=−,411n a −=,2n n a a =,该数列的前n 项和为n S ,则下列论断中错误..的是 A.311a = B.20241a =−C.∃非零常数T ,*n ∀∈N ,使得n T n a a +=D.*n ∀∈N ,都有22n S =−第二部分(非选择题 共110分)二、填空题共5小题,每小题5分,共25分。

2025届上海市七宝中学高三第二次模拟考试数学试卷含解析

2025届上海市七宝中学高三第二次模拟考试数学试卷含解析

2025届上海市七宝中学高三第二次模拟考试数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下边程序框图的算法源于我国古代的中国剩余定理.把运算“正整数N 除以正整数m 所得的余数是n ”记为“(mod )N n m ≡”,例如71(mod 2)≡.执行该程序框图,则输出的n 等于( )A .16B .17C .18D .192.已知函数2()4ln f x ax ax x =--,则()f x 在(1,4)上不单调的一个充分不必要条件可以是( )A .12a >-B .1016a <<C .116a >或102a -<<D .116a > 3.若()f x 是定义域为R 的奇函数,且()()2f x f x +=-,则A .()f x 的值域为RB .()f x 为周期函数,且6为其一个周期C .()f x 的图像关于2x =对称D .函数()f x 的零点有无穷多个4.已知向量,a b 满足||1,||3a b ==,且a 与b 的夹角为6π,则()(2)a b a b +⋅-=( ) A .12 B .32- C .12- D .325.等比数列{},n a 若3154,9a a ==则9a =( )A .±6B .6C .-6D .1326.运行如图所示的程序框图,若输出的i 的值为99,则判断框中可以填( )A .1S ≥B .2S >C .lg99S >D .lg98S ≥ 7.已知抛物线2:4C y x =和点(2,0)D ,直线2x ty =-与抛物线C 交于不同两点A ,B ,直线BD 与抛物线C 交于另一点E .给出以下判断:①以BE 为直径的圆与抛物线准线相离;②直线OB 与直线OE 的斜率乘积为2-;③设过点A ,B ,E 的圆的圆心坐标为(,)a b ,半径为r ,则224a r -=.其中,所有正确判断的序号是( )A .①②B .①③C .②③D .①②③ 8.已知复数为纯虚数(为虚数单位),则实数( ) A .-1 B .1 C .0D .2 9.已知数列{}n a 满足11a =,1n n a a n --=(2n ≥),则数列{}n a 的通项公式n a =( )A .()112n n +B .()1312n n -C .2n n 1-+D .222n n -+10.已知正四面体ABCD 的棱长为1,O 是该正四面体外接球球心,且AO x AB y AC z AD =++,,,x y z ∈R ,则x y z ++=( )A .34B .13C .12D .14 11.已知复数11i z i+=-,则z 的虚部是( )A .iB .i -C .1-D .1 12.已知函数()ln x f x x =,()x g x xe -=.若存在()10,x ∈+∞,2x R ∈使得()()()120f x g x k k ==<成立,则221k x e x ⎛⎫ ⎪⎝⎭的最大值为( )A .2eB .eC .24eD .21e 二、填空题:本题共4小题,每小题5分,共20分。

2025届贵州省六盘水市七中高三第二次模拟考试数学试卷含解析

2025届贵州省六盘水市七中高三第二次模拟考试数学试卷含解析

2025届贵州省六盘水市七中高三第二次模拟考试数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在棱长为2的正方体ABCD −A 1B 1C 1D 1中,P 为A 1D 1的中点,若三棱锥P −ABC 的四个顶点都在球O 的球面上,则球O 的表面积为( ) A .12πB .21π2C .41π4D .10π2.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”.如图就是一重卦.在所有重卦中随机取一重卦,则该重卦至少有2个阳爻的概率是( )A .764B .1132C .5764D .11163.已知函数()()sin ,04f x x x R πωω⎛⎫=+∈> ⎪⎝⎭的最小正周期为π,为了得到函数()cos g x x ω=的图象,只要将()y f x =的图象( )A .向左平移8π个单位长度 B .向右平移8π个单位长度 C .向左平移4π个单位长度 D .向右平移4π个单位长度 4.已知函数()()()2ln 14f x ax x ax =-+-,若0x >时,()0f x ≥恒成立,则实数a 的值为( )A .2eB .4eC 2e - D 4e- 5.已知函数()f x 是定义在R 上的偶函数,当0x ≥时,()e xf x x =+,则32(2)a f =-,2(log 9)b f =,5)c f =的大小关系为( ) A .a b c >>B .a c b >>C .b a c >>D .b c a >>6.已知定义在R 上的偶函数()f x ,当0x ≥时,22()2xx x f x e +=-,设2(ln 2),(2),(ln )2a fb fc f ===,则( ) A .b a c >>B .b a c >=C .a c b =>D .c a b >>7.设O 为坐标原点,P 是以F 为焦点的抛物线24y x =上任意一点,M 是线段PF 上的点,且PM MF =,则直线OM 的斜率的最大值为( )A .1B .12C .22D .528.已知集合A ={y |y 21x =-},B ={x |y =lg (x ﹣2x 2)},则∁R (A ∩B )=( )A .[0,12) B .(﹣∞,0)∪[12,+∞) C .(0,12)D .(﹣∞,0]∪[12,+∞) 9.正项等比数列{}n a 中,153759216a a a a a a ++=,且5a 与9a 的等差中项为4,则{}n a 的公比是 ( ) A .1B .2C .22D .210.已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,1,03A ⎛⎫ ⎪⎝⎭为()f x 图象的对称中心,若图象上相邻两个极值点1x ,2x 满足121x x -=,则下列区间中存在极值点的是( )A .,06π⎛⎫- ⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .1,3π⎛⎫ ⎪⎝⎭D .,32ππ⎛⎫ ⎪⎝⎭11.直线经过椭圆的左焦点,交椭圆于两点,交轴于点,若,则该椭圆的离心率是() A .B .C .D .12.若x ,y 满足约束条件0,2,10,x y x y x -≤⎧⎪+≤⎨⎪+≥⎩,则4z x y =+的取值范围为( )A .[]5,1--B .[]5,5-C .[]1,5-D .[]7,3-二、填空题:本题共4小题,每小题5分,共20分。

湖北省宜昌市第二中学2025届高三第二次模拟考试数学试卷含解析

湖北省宜昌市第二中学2025届高三第二次模拟考试数学试卷含解析

湖北省宜昌市第二中学2025届高三第二次模拟考试数学试卷注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.点P 为棱长是2的正方体1111ABCD A B C D -的内切球O 球面上的动点,点M 为11B C 的中点,若满足DP BM ⊥,则动点P 的轨迹的长度为( ) A .55π B .255πC .455πD .855π2.已知函数()()cos 0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭的最小正周期为π,且满足()()f x f x ϕϕ+=-,则要得到函数()f x 的图像,可将函数()sin g x x ω=的图像( ) A .向左平移12π个单位长度 B .向右平移12π个单位长度C .向左平移512π个单位长度 D .向右平移512π个单位长度 3.设,则"是""的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.设ln3a =,则lg3b =,则( )A .a b a b ab +>->B .a b ab a b +>>-C .a b a b ab ->+>D .a b ab a b ->>+5.双曲线C :2215x y m-=(0m >),左焦点到渐近线的距离为2,则双曲线C 的渐近线方程为( ) A .250x y ±=B .250x y ±=C .520x y ±=D .50x y ±=6. “纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为3的正方形将其包含在内,并向该正方形内随机投掷200个点,己知恰有80个点落在阴影部分据此可估计阴影部分的面积是( )A .165B .325C .10D .1857.函数()()sin ωϕ=+f x x 的部分图象如图所示,则()f x 的单调递增区间为( )A .51,,44k k k Z ππ⎡⎤-+-+⎢⎥⎦∈⎣B .512,2,44k k k Z ππ⎡⎤-+-+∈⎢⎥⎣⎦C .51,,44k k k Z ⎡⎤-+-+∈⎢⎥⎣⎦D .512,2,44k k k Z ⎡⎤-+-+∈⎢⎥⎣⎦8.第24届冬奥会将于2022年2月4日至2月20日在北京市和张家口市举行,为了解奥运会会旗中五环所占面积与单独五个环面积之和的比值P ,某学生做如图所示的模拟实验:通过计算机模拟在长为10,宽为6的长方形奥运会旗内随机取N 个点,经统计落入五环内部及其边界上的点数为n 个,已知圆环半径为1,则比值P 的近似值为( )A .8NnπB .12nNπ C .8nNπ D .12Nnπ9.已知抛物线2:8C y x =的焦点为F ,A B 、是抛物线上两个不同的点,若||||8AF BF +=,则线段AB 的中点到y 轴的距离为( ) A .5 B .3C .32D .210.2-31ii =+( ) A .15-22i B .15--22iC .15+22i D .15-+22i 11.双曲线﹣y 2=1的渐近线方程是( )A .x±2y=0B .2x±y=0C .4x±y=0D .x±4y=012.某个命题与自然数n 有关,且已证得“假设()*n k k N =∈时该命题成立,则1n k =+时该命题也成立”.现已知当7n =时,该命题不成立,那么( )A .当8n =时,该命题不成立B .当8n =时,该命题成立C .当6n =时,该命题不成立D .当6n =时,该命题成立二、填空题:本题共4小题,每小题5分,共20分。

通州区2024届高三二模数学试题及答案

通州区2024届高三二模数学试题及答案

通州区2024届高三年级模拟考试数学试卷 2024年4月本试卷共9页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题:共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合 题目要求的一项。

1. 已知集合{}1,0,1,2,3U =−,{}1,2A =,{}0,2,3B =,则()U C A B =A.{}3B.{}0,3C.{}1,2,3D.{}0,1,2,32. 在复平面内,复数z 对应的点的坐标为(1,1)−,则2i z =A.1i −+B.22i −+C.1i −D.22i − 3. 在262()x x−的展开式中,常数项为A.60B.120C.180D.2404. 下列函数中,是奇函数且在区间(0,)+∞上单调递减的是A.1()1f x x =+B.3()f x x =−C.()tan f x x =D.12()log ||f x x =5. 在梯形ABCD 中,//AB CD ,2AD DC BC ===,4AB =,则AB AC ⋅=A. B.8 C.12 D.6. 在平面直角坐标系xOy 中,角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边与单位圆交于点43(,)55P −,则cos(π2)α−=A.925−B.725−C.725D.9257. 已知圆心为C 的圆22(2)(4)16x y ++−=与双曲线222:14x y E b −=(0)b >交于,A B 两点,且CA CB ⊥,则双曲线E 的渐近线方程为A.y x =B.12y x =±C.y =D.2y x =±8. 某池塘里原有一块浮萍,浮萍蔓延后的面积S (单位:平方米)与时间t (单位:月)的关系式为1t S a +=(0,1)a a >≠且,图象如图所示. 则下列 结论正确的个数为①浮萍每个月增长的面积都相等;②浮萍蔓延4个月后,面积超过30平方米;③浮萍面积每个月的增长率均为50%;④若浮萍蔓延到3平方米、4平方米、12平方米所经过的时间分别是123,,t t t ,则123t t t +=.A.0B.1C.2D.39. 已知等差数列{}n a 的前n 项和为n S ,则“2220S a −<”是“1(1)n n nS n S +>+”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件10. 已知函数2||1,1()log 1,1x x x f x x x −≤⎧=⎨+>⎩,()ln g x x x =,若关于x 的方程(()2)(())0f x g x m −−=恰有3个不同的实数根,则实数m 的取值范围是A.1(,0)e −B.1(,1)e −C.(0,)+∞D.(1,)+∞第二部分(非选择题 共110分)二、填空题共5小题,每小题5分,共25分。

吉林省长春市东北师范大学附属中学2023-2024学年高三上学期第二次模拟考试数学试题

吉林省长春市东北师范大学附属中学2023-2024学年高三上学期第二次模拟考试数学试题

一、单选题二、多选题1. 已知点的坐标为,将向量绕原点逆时针方向旋转到的位置,则点坐标为( )A.B.C.D.2. 已知复数,则( )A.B .1C.D .3. 已知、是双曲线:的左、右焦点,点是双曲线上的任意一点(不是顶点),过作角平分线的垂线,垂足为,是坐标原点.若,则双曲线的渐近线方程为( )A.B.C.D.4. 若直线与圆相交,且两个交点位于坐标平面的同一象限,则k 的取值范围是( )A.B.C.D.5.设函数,则对任意实数a 、b,是的A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件6. 设全集,若集合,,则( )A.B.C.D.7. 设集合,若,,则( )A.B.C.D.8. 已如函数,若,且,则的取值范围是( )A.B.C.D.9. 已知函数的部分图象如图所示,则()A.函数的最小正周期为πB .点是曲线的对称中心C .函数在区间内单调递增D .函数在区间内有两个最值点10. (多选)2020年12月26日太原地铁2号线开通,在一定程度上缓解了市内交通的拥堵状况,为了了解市民对地铁2号线开通的关注情况,某调查机构在地铁开通后两天抽取了部分乘坐地铁的市民作为样本,分析其年龄和性别结构.并制作出如下等高堆积条形图:吉林省长春市东北师范大学附属中学2023-2024学年高三上学期第二次模拟考试数学试题三、填空题根据图中信息,下列结论正确的是( )A .样本中男性比女性更关注地铁2号线开通B .样本中多数女性是35岁及以上C .样本中35岁以下的男性人数比35岁及以上的女性人数多D .样本中35岁及以上的人对地铁2号线的开通关注度更高11. 如图,棱长为2的正方体中,为棱的中点,为正方形内一个动点(包括边界),且平面,则下列说法正确的有()A .动点轨迹的长度为B .三棱锥体积的最小值为C .与不可能垂直D .当三棱锥的体积最大时,其外接球的表面积为12. 已知函数在区间上单调,且满足.有下列结论:①;②若,则函数的最小正周期为;③关于的方程在区间上最多有个不相等的实数解;④若函数在区间上恰有个零点,则的取值范围为.其中所有正确结论的编号为________.13.对于任意的,且,均有定直线与圆相切,则直线的方程为______.14. “灯笼”是中国传统农业时代的文化产物,兼具生活功能与艺术特色.如图,现有悬挂着的6盏不同的花灯需要从下往上依次取下,每次取1盏,则不同取法总数为___________.四、填空题五、填空题六、解答题七、解答题八、解答题九、解答题15. 已知,则______.______.16. 直线与轴交于点,交圆于,两点,过点作圆的切线,轴上方的切点为,则__________;的面积为__________.17. 用表示不超过的最大整数,已知数列满足:,,.若,,则________;若,则________.18. 某校高中“数学建模”实践小组欲测量某景区位于“观光湖”内两处景点,之间的距离,如图,处为码头入口,处为码头,为通往码头的栈道,且,在B 处测得,在处测得(均处于同一测量的水平面内)(1)求两处景点之间的距离;(2)栈道所在直线与两处景点的连线是否垂直?请说明理由.19. 如图,正方体中,直线平面,,.(1)设,,试在所给图中作出直线,使得,并说明理由;(2)设点A 与(1)中所作直线确定平面.①求平面与平面ABCD 的夹角的余弦值;②请在备用图中作出平面截正方体所得的截面,并写出作法.20.如图,矩形和梯形所在平面互相垂直,,,,,,.(1)求证:平面;(2)当的长为何值时,二面角的大小为.21. 某生鲜批发店每天从蔬菜生产基地以5元/千克购进某种绿色蔬菜,售价8元/千克,若每天下午4点以前所购进的绿色蔬菜没有售完,则对十、解答题未售出的绿色蔬菜降价处理,以3元/千克出售.根据经验,降价后能够把剩余蔬菜全部处理完毕,且当天不再进货.该生鲜批发店整理了过往30天(每天下午4点以前)这种绿色蔬菜的日销售量(单位:千克)得到如下统计数据(视频率为概率)(注:x ,y ∈N *)每天下午4点前销售量350400450500550天数39xy2(1)求在未来3天中,至少有1天下午4点前的销售量不少于450千克的概率.(2)若该生鲜批发店以当天利润期望值为决策依据,当购进450千克比购进500千克的利润期望值大时,求x 的取值范围.22. 近年来,国际环境和局势日趋严峻,高精尖科技围堵和竞争更加激烈,国家号召各类高科技企业汇聚科研力量,加强科技创新,大力增加研发资金,以突破我国在各个领域的“卡脖子”关键技术.某市为了解本市高科技企业的科研投入和产出方面的情况,抽查了本市8家半导体企业2018年至2022年的研发投资额x (单位:百亿元)和因此投入而产生的收入附加额y (单位:百亿元),对研发投资额和收入附加额进行整理,得到相关数据,并发现投资额x 和收入附加额y 成线性相关.投资额(百亿元)234568911收入附加额(百亿元)3.64.14.85.46.27.57.99.1(1)求收入的附加额y 与研发投资额x 的线性回归方程(保留三位小数);(2)现从这8家企业且投资额不少于5百亿元的企业中,任意抽取3家企业,求抽取的3家企业中恰有1家企业的收入附加额大于投资额的概率.参考数据:.附:在线性回归方程,.。

2024年新高考九省联考高三第二次模拟数学试题及答案

2024年新高考九省联考高三第二次模拟数学试题及答案

2024年高考第二次模拟考试高三数学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合(){}{}ln 3,1A x y x Bx x ==−=≤−,则()A B =R ( )A .{}13x x −<≤B .{}1x x >− C .{1x x ≤−,或}3x >D .{}3x x >2.已知复数i z a b =+(a ∈R ,b ∈R 且a b ),且2z 为纯虚数,则zz=( ) A .1B .1−C .iD .i −3.已知向量()2,4a =−,()1,b t = ,若a 与b 共线,则向量a b + 在向量()0,1j = 上的投影向量为( )A . jB . j −C . 2jD . 2j −4. “1ab >”是“10b a>>”( ) A . 充分不必要条件 B . 必要不充分条件 C . 充分必要条件D . 既不充分也不必要条件5.有甲、乙等五人到三家企业去应聘,若每人至多被一家企业录用,每家企业至少录用其中一人且甲、乙两人不能被同一家企业录用,则不同的录用情况种数是( ) A .60 B .114 C .278 D .3366.已知D :222210x y ax a +−−−=,点()3,0P −,若D 上总存在M ,N 两点使得PMN 为等边三角形,则a 的取值范围是( ) A . ()5,11,3 −−∪−+∞B . [)5,1,3−∞−∪+∞C . (][) ,21,−∞−∪+∞D . [)()2,11,−−−+∞7.已知ABC ∆中,60BAC ∠=°,2AB =,Q 是边BC 上的动点.若PA ⊥平面ABC ,PA =,且PQ与面ABC ,则三棱锥−P ABC 的外接球的表面积为( ) A . 4πB . 6πC . 8πD . 9π8.加斯帕尔-蒙日是1819世纪法国著名的几何学家.如图,他在研究圆锥曲线时发现:椭圆的任意两条互相垂直的切线的交点都在同一个圆上,其圆心是椭圆的中心,这个圆被称为“蒙日圆”.若长方形G 的四边均与椭圆22:164x y M +=相切,则下列说法错误的是( )A .椭圆MB .椭圆M 的蒙日圆方程为2210x y +=C .若G 为正方形,则G 的边长为D .长方形G 的面积的最大值为18二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得60分.9.已知抛物线2:6C y x =的焦点为F ,过点F 的直线交C 于,M N 两个不同点,则下列结论正确的是( ) A .MN 的最小值是6 B .若点5,22P,则MF MP +的最小值是4C .113MF NF+= D .若18MF NF ⋅=,则直线MN 的斜率为1± 10.已知双曲线()222:102x y E a a−=>的左、右焦点别为1F ,2F ,过点2F 的直线l 与双曲线E 的右支相交于,P Q 两点,则( )A . 若E 的两条渐近线相互垂直,则a =B. 若E E 的实轴长为1C . 若1290F PF ∠=°,则124PF PF ⋅=D . 当a 变化时,1F PQ 周长的最小值为11.在棱长为2的正方体1111ABCD A B C D −中,,E F 分别是棱,BC CD 的中点,则( ) A .11B D 与EF 是异面直线B .存在点P ,使得12A P PF =,且BC //平面1APBC .1A F 与平面1B EBD .点1B 到平面1A EF 的距离为45三、填空题:本题共3小题,每小题5分,共15分.12.若二项式nx+的展开式中二项式系数之和为64,则二项展开式中系数最大的项为13.若函数()sin f x ax x =+ 的图像上存在两条互相垂直的切线,则实数a 是__________.14. 若过点()0,1的直线l 自左往右交抛物线214y x =及圆()22114x y +−=于,,,A B C D 四点,则3AB CD +的最小值为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知数列{}n a 的前n 项和为n S ,且对于任意的*n ∈N 都有321n n S a =+. (1)求数列{}n a 的通项公式;(2)记数列{}n a 的前n 项中的最大值为n M ,最小值为n m ,令2n nn M m b +=,求数列{}n b 的前20项和20T .16.(15分)灯带是生活中常见的一种装饰材料,已知某款灯带的安全使用寿命为5年,灯带上照明的灯珠为易损配件,该灯珠的零售价为4元/只,但在购买灯带时可以以零售价五折的价格购买备用灯珠,该灯带销售老板为了给某顾客节省装饰及后期维护的支出,提供了150条这款灯带在安全使用寿命内更换的灯珠数量的数据,数据如图所示.以这150条灯带在安全使用寿命内更换的灯珠数量的频率代替1条灯带更换的灯珠数量发生的概率,若该顾客买1盒此款灯带,每盒有2条灯带,记X 表示这1盒灯带在安全使用寿命内更换的灯珠数量,n 表示该顾客购买1盒灯带的同时购买的备用灯珠数量.(1)求X 的分布列;(2)若满足()0.6P X n ≥≤的n 的最小值为0n ,求0n ;(3)在灯带安全使用寿命期内,以购买替换灯珠所需总费用的期望值为依据,比较01nn =−与0n n =哪种方案更优.17.(15分)如图,在三棱柱111ABC A B C −中,直线1C B ⊥平面ABC,平面11AA C C ⊥平面11BB C C .(1)求证:1AC BB ⊥;(2)若12AC BC BC ===,在棱11A B 上是否存在一点P ,使二面角1P BC C −−?若存在,求111B PA B 的值;若不存在,请说明理由.18.(17分)已知函数()ln =−+f x x x a .(1)若直线(e 1)yx =−与函数()f x 的图象相切,求实数a 的值; (2)若函数()()g x xf x =有两个极值点1x 和2x ,且12x x <,证明:12121ln()x x x x +>+.(e 为自然对数的底数).19.(17分)阿波罗尼斯是古希腊著名数学家,他的主要研究成果集中在他的代表作《圆锥曲线》一书中.阿波罗尼斯圆是他的研究成果之一,指的是已知动点M 与两定点Q,P 的距离之比()||0,1,||MQ MP λλλλ=>≠是一个常数,那么动点M 的轨迹就是阿波罗尼斯圆,圆心在直线PQ 上.已知动点M 的轨迹是阿波罗尼斯圆,其方程为224x y +=,定点分别为椭圆2222:1x y C a b+=(0)a b >>的右焦点F 与右顶点A,且椭圆C 的离心率为1.2e = (1)求椭圆C 的标准方程;(2)如图,过右焦点F 斜率为(0)k k >的直线l 与椭圆C 相交于B ,D(点B 在x 轴上方),点S,T 是椭圆C 上异于B,D 的两点,SF 平分,BSD TF ∠平分.BTD ∠(1)求||||BF DF 的取值范围;(2)将点S 、F 、T 看作一个阿波罗尼斯圆上的三点,若△SFT 外接圆的面积为818π,求直线l 的方程.2024年高考第二次模拟考试高三数学全解全析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.A .{13x x −<≤B .{1x x >− C.{1x x ≤−,或}3x >D .{3x x >【答案】B【分析】先化简集合,再利用集合的交并补运算求解即可, 【详解】由题意得{}3A x x =>,{}1B x x =≤−,又{}1B x x =>−R 则(){}1A B x x ∪=>−R ,故选:B.A .1B .1−C .iD .i −【答案】D【分析】利用复数的概念及四则运算法则运算即可求解.【详解】因为i z a b =+,所以()2222(i)2i z a b a b ab =+=−+,又因为2z 为纯虚数,所以2220a b ab −= ≠,即0a b =≠(舍)或0a b =−≠, 所以i z a a =−,所以i z a a =+, 所以2i 1i (1i)i i 1i (1i)(1i)z a a a a z −−−====−+++−. 故选:D3.已知向量()2,4a =−,()1,b t = ,若a 与b 共线,则向量a b +在向量()0,1j = 上的投影向量为( )A. jB. j −C. 2jD. 2j −【答案】C 【解析】【分析】根据a 与b 共线,可得240t −−=,求得2t =−,再利用向量a b +在向量()0,1j = 上的投影向量为()a b j jj j+⋅⋅ ,计算即可得解. 【详解】由向量()2,4a =−,()1,b t = ,若a与b共线,则240t −−=,所以2t =−,(1,2)a b +=−,所以向量a b +在向量()0,1j = 上的投影向量为: ()(1,2)(0,1)21a b j j j j j j+⋅−⋅⋅=⋅=, 故选:C4. “1ab >”是“10b a>>”( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】B 【解析】【分析】根据充分条件和必要条件的定义判断. 【详解】当0a >时,由1ab >,可得10b a>>, 当a<0时,由1ab >,得10b a<<; 所以“1ab >”不是“10b a>>”的充分条件. 因为01010a b ab a a>>>⇔− > ,所以1ab >, 所以“1ab >”是“10b a>>”的必要不充分条件. 故选:B.【点睛】本题考查不等式性质与充分、必要条件的判定,还考查了理解辨析问题的能力,属于基础题. 5.有甲、乙等五人到三家企业去应聘,若每人至多被一家企业录用,每家企业至少录用其中一人且甲、乙两人不能被同一家企业录用,则不同的录用情况种数是( ) A.60 B.114 C.278 D.336【答案】D【解析】命题意图 本题考查排列与组合的应用.录用3人,有 353360C A = 种情况;录用4 人,有 4232354333162C C A C A −=种情况;录用 5 人,有12323331345333333225)4(C C A C A (C A C A )11A −+−=种情况.所以共有336种.6.已知D :222210x y ax a +−−−=,点()3,0P −,若D 上总存在M ,N 两点使得PMN 为等边三角形,则a 的取值范围是( ) A. ()5,11,3 −−∪−+∞B. [)5,1,3−∞−∪+∞C. (][) ,21,−∞−∪+∞D. [)()2,11,−−−+∞【答案】B 【解析】【分析】D 的圆心坐标为(),0D a ,半径为1ra =+,要使D 上总存在M ,N 两点使得PMN 为等边三角形,则D 上存在一点M ,使得30MPD ∠=°,当PM 与D 相切时,MPD ∠最大,故sin sin 30rMPD PD∠=≥°,由此可求解. 【详解】D 的标准方程为()()2221x a y a −+=+,圆心坐标为(),0D a ,半径为1ra =+.因为,PM PN MD ND ==,所以PMD PND ≅△△.所以30MPD NPD ∠=∠=°.要使D 上总存在M ,N 两点使得PMN 为等边三角形, 则D 上存在一点M ,使得30MPD ∠=°,当PM 与D 相切时,MPD ∠最大,此时30MPD ∠≥°,故1sin sin 302r MPDPD ∠=≥°=,即()1132a a +≥+,整理得23250a a +−≥,解得[)5,1,3a∈−∞−∪+∞.故选:B.7.已知ABC 中,60BAC ∠=°,2AB =,Q 是边BC 上的动点.若PA ⊥平面ABC ,PA =,且PQ与面ABC ,则三棱锥−P ABC 的外接球的表面积为( ) A. 4π B. 6πC. 8πD. 9π【答案】B 【解析】【分析】根据题意得PQ AQ 的最小值是1,即A 到BC 的距离为1,则∠ACB =90°,结合图形找出△ABC 的外接圆圆心与三棱锥−P ABC 外接球的球心,求出外接球的半径,再计算它的表面积. 【详解】三棱锥−P ABC 中,PA ⊥平面ABC ,设直线PQ 与平面ABC 所成角为θ,∵sin θ,∴sin PA PQ θ==≤PQ ≥即PQ AQ 的最小值是1,即A 到BC 的距离为1, 直角三角形△ABQ 中,AB =2,所以∠BAQ =60°,又∠BAC =60°, 所以,A Q 重合,则∠ACB =90°, 则△ABC 的外接圆圆心M 为AB 的中点,又PA ⊥平面ABC ,从而外接球的球心O 为PB 的中点,外接球的半径R OB =,∴三棱锥−P ABC 的外接球的表面积224π4π6πS R ==×=.故选:B .8.加斯帕尔-蒙日是1819世纪法国著名的几何学家.如图,他在研究圆锥曲线时发现:椭圆的任意两条互相【分析】由椭圆标准方程求得,a b 后再求得c ,从而可得离心率,利用特殊的长方形(即边长与椭圆的轴平行)求得蒙日圆方程,从而可得长方形边长的关系,结合基本不等式得面积最大值,并得出长方形为正方形时的边长.【详解】由椭圆方程知a =2b =,则c ,离心率为e =A 正确;当长方形G 的边与椭圆的轴平行时,长方形的边长分别为4,因此蒙,圆方程为2210x y +=,B 正确; 设矩形的边长分别为,m n ,因此22402m n mn +=≥,即20mn ≤,当且仅当m n =时取等号,所以长方形G 的面积的最大值是20,此时该长方形G 为正方形,边长为C 正确,D 错误. 故选:D .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知抛物线2:6C y x =的焦点为F ,过点F 的直线交C 于,M N 两个不同点,则下列结论正确的【分析】A ,根据12||=MN x x p ++结合基本不等式即可判断;B ,由抛物线定义知当,,P M A 三点共线时MF MP +;C ,D ,设直线方程,联立抛物线,应用韦达定理即可求解.【详解】对A ,设112212(,),(,),(,0)M x y N x y x x >, 因为这些MN 倾斜角不为0, 则设直线MN 的方程为32x ky =+,联立抛物线得2690y ky −−=, 则12126,9y y k y y +=⋅=−,所以()()221212121212399363,244k x x k y y k x x k y y y y ∴+=++=+=+++=, 则212||=3666MN x x k ++=+≥(当且仅当0k =时等号成立),A 正确; 对B ,如图MA ⊥抛物线准线,MF MP MA MP +=+要使其最小, 即,,P M A 三点共线时取得最小值,即53||422MF MP MA MP PA +=+==+=,B 正确; 对C ,由()121212311||||239||||||||324x x NF MF MF NF MF NF x x x x ++++===+++,C 错误; 对D ,1212123339()()()2224MF NF x x x x x x ⋅=+⋅+=+++2293993(63)(63)1842422k k =+++=++=,解得1k =±,D 正确故选:ABD.10.已知双曲线()222:102x y E a a −=>的左、右焦点别为1F ,2F ,过点2F 的直线l 与双曲线E 的右支相交于,P Q 两点,则( ) A. 若E的两条渐近线相互垂直,则a =B. 若EE 的实轴长为1C. 若1290F PF ∠=°,则124PF PF ⋅= D. 当a 变化时,1F PQ周长的最小值为【答案】ACD 【解析】【分析】根据双曲线的渐近线、离心率、定义、三角形的周长等知识对选项进行分析,从而确定正确答案.【详解】依题意,b =,A选项,若双曲线的两条渐近线相互垂直,所以1,ba b a===,故A 正确;B 选项,若E的离心率为c e a ==, 解得1a =,所以实轴长22a =,故B 错误;C 选项,若1290F PF ∠=°,则122221224PF PF a PF PF c −=+=, 整理得222121224448,4PF PF c a b PF PF ⋅=−==⋅=,故C 正确; D 选项,根据双曲线的定义可知,121222PF PF a QF QF a −=−= ,两式相加得11114,4PF QF PQ a PF QF a PQ +−=+=+, 所以1F PQ 周长为42a PQ +,当12PQ F F ⊥时,PQ 取得最小值224b a a=,所以8424a PQ a a +≥+≥, 当且仅当84a a=,即a = 所以1F PQ周长的最小值为D 正确. 故选:ACD11.在棱长为2的正方体1111ABCD A B C D −中,,E F 分别是棱,BC CD 的中点,则( )【分析】A 选项,建立空间直角坐标系,根据112B D EF = 得到11B D 与EF 平行;B 选项,先求出242,,333P,得到平面1APB 的法向量()1,0,1m =− ,根据数量积为0得到BC m ⊥ ,得到BC //平面1APB ;C 选项,先求出1A F 与平面1B EB 所成角的正弦值,进而求出余弦值;D 选项,求出平面1A EF 的法向量,根据点到平面距离公式求出答案.【详解】A 选项,以A 作坐标原点,1,,AB AD AA 所在直线分别为,,x y z 轴,建立空间直角坐标系,()()()()()()()1112,0,2,0,2,2,2,1,0,1,2,0,0,0,2,2,0,0,2,2,0B D E F A B C ,则()()112,2,0,1,1,0B D EF =−=− ,由于112B D EF =,故11B D 与EF 平行,A 错误; B 选项,设(),,P x y z ,因为12A P PF =,所以()()2,,21,2,x y z x y z −−−−=,即224222x xy y z z =− =− −=−,解得242,,333x y z ===,故242,,333P , 设平面1APB 的法向量为(),,m a b c =,则()()()1242242,,,,0333333,,2,0,2220m AP a b c a b c mAB a b c a c ⋅=⋅=++=⋅=⋅=+= , 令1a =,则0,1b c ==−,则()1,0,1m =−, 因为()()0,2,01,0,10BC m ⋅=−= ,故BC m ⊥ ,BC //平面1APB , 故存在点P ,使得12A P PF =,且BC //平面1APB ,B 正确;C 选项,平面1B EB 的法向量为()1,0,0n =,故1A F 与平面1B EB则1A F 与平面1B EBC 正确;D 选项,设平面1A EF 的法向量为()1111,,n x y z =,则()()()()11111111111111,,2,1,2220,,1,1,00n A E x y z x y z n EF x y z x y ⋅⋅−+− ⋅=⋅−=−+= , 令11x =,则1131,2y z ==,故131,1,2n = , 则点1B 到平面1A EFD 错误.故选:BC三、填空题:本题共3小题,每小题5分,共15分.12.若二项式nx+的展开式中二项式系数之和为64,则二项展开式中系数最大的项为【答案】240 【解析】【详解】因为二项式nx+ 的展开式中二项式系数之和为64,所以264n =,得6n =,所以二项式为6x+,则二项式展开式的通项3662166C C 2r r r r r rr T x x −−+=, 令第1r +项的系数最大,则11661166C 2C 2C 2C 2r r r r r r r r −−++ ≥ ≥ ,解得111433r ≤≤, 因为N r ∈,所以4r =,则二项展开式中系数最大的项为36444256C 2240T x −×==,所以填24013.若函数()sin f x ax x =+ 的图像上存在两条互相垂直的切线,则实数a 是__________.【答案】0 【解析】【详解】注意到,()cos f x a x =+′.若函数()f x 上存在两条切线垂直,则存在1x 、2x R ∈,使得()()()()12121cos cos 1f x f x a x a x ′′=−⇔++=−()21212cos cos cos cos 10a a x x x x ⇔+++⋅+=221212cos cos cos cos 1022x x x x a +−⇔++−=12cos cos 1,0x x a ⇔=−=±=.故答案为014. 若过点()0,1的直线l 自左往右交抛物线214y x =及圆()22114x y +−=于,,,A B C D 四点,则3AB CD +的最小值为________.【答案】2+ 【解析】【分析】根据抛物线的定义求得求出11,22A D AB y CD y =+=+,当l y ⊥轴时,则1D Ay y ==,可求3AB CD +的值;当直线方程为()1x n y =−时,代入抛物线方程,根据韦达定理结合基本不等式求得此时3AB CD +的最小值,即可得结论. 【详解】解:如图,其中抛物线214y x =的焦点坐标为()0,1F ,抛物线的准线方程为:1y =−,圆()22114x y +−=的半径12r =又抛物线的定义可得:1,1A D AF y DF y =+=+,又11,22A D AB AF BF y CD DF CF y =−=+=−=+,当l y ⊥轴时,则1A Dy y ==,所以113131622AB CD+=+++=; 当l 不垂直于y 轴时,设l 的方程为:()1x n y =−,代入抛物线方程得:()2222240n y n y n −++=, 所以2224,1A D A D n y y y y n++=⋅=。

南京市2023届高三年级第二次模拟考试数学试题(原卷版)

南京市2023届高三年级第二次模拟考试数学试题(原卷版)

南京市2023届高三年级第二次模拟考试数学2023.05一、选择题:本大题共8小题,每小题5分,共40分.1.集合A ={x ∈N |1<x <4}的子集个数为A .2B .4C .8D .162.已知复数z 满足i z =2-i ,其中i 为虚数单位,则―z 为A .-1-2iB .1+2iC .-1+2iD .1-2i3.在△ABC 中,角A ,B ,c 的对边分别为a ,b ,c .若b sinA +B 2=c sin B ,则角C 的大小为A .π6B .π3C .2π3D .5π64.在运动会中,甲、乙、丙参加了跑步、铅球、标枪三个项目,每人参加的比赛项目不同.已知:①乙没有参加跑步;②若甲参加铅球,则丙参加标枪;③若丙没有参加铅球,则甲参加铅球.下列说法正确的为A .丙参加了铅球B .乙参加了铅球C .丙参加了标枪D .甲参加了标枪5.大衍数列来源于《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生即太极生两仪原理,如图所示(图中●表示太极,表示◖阳仪,◗表示阴仪).若数列的每一项都代表太极衍生过程中经历过的两仪数量总和,即a 1为天一对应的经历过的两仪数量总和0,a 2为衍生到地二时经历过的两仪数量总和2,a 3为衍生到天三时经历过的两仪数量总和4,…,按此规律,则a 15为大衍图(第5题图)A .84B .98C .112D .1286.直角三角形ABC 中,斜边AB 长为2,绕直角边AC 所在直线旋转一周形成一个几何休,若该几何体外接球表面积为16π3,则AC 长为A .32B .1C .2D .37.已知椭圆C :x 2a 2+y 2b2=1(a >b >0),F 为其左焦点,直线y =kx (k >0)与椭圆C 交于点A ,B ,且AF ⊥AB .若∠ABF =30°,则椭圆C 的离心率为A .73B .63C .76D .668.已知函数f (x )是定义在R 上的可导函数,其导函数为f ′(x ).若对任意x ∈R 有f ′(x )>1,f (1+x )+f (1-x )=0,且f (0)=-2,则不等式f (x -1)>x -1的解集为A .(0,+∞)B .(1,+∞)C .(2,+∞)D .(3,+∞)二、选择题:本大题共4小题,每小题5分,共20分.9.在(x -2x)n 的展开式中A .常数项为160B .含x 2项的系数为60C .第4项的二项式系数为15D .所有项的系数和为110.若实数x ,y 满足x 22-y 2=1,则A .|x |≥2B .x 2+y 2≥2C .y x <12D .|x -2y |≤211.已知函数f (x )=|e x -a |,a >0.下列说法正确的为A .若a =1,则函数y =f (x )与y =1的图象有两个公共点B .若函数y =f (x )与y =a 2的图象有两个公共点,则0<a <1C .若a >1,则函数y =f (f (x ))有且仅有两个零点D .若y =f (x )在x =x 1和x =x 2处的切线相互垂直,则x 1+x 2=012.已知四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 为正方形,AA 1=AB ,∠A 1AB =∠A 1AD =60°,则A .点A 1在平面ABCD 内的射影在AC 上B .AC 1⊥平面A 1BD C .AC 1与平面A 1BD A 1BD 的重心D .二面角B 1-BD -C 的大小为45°三、填空题:本大题共4小题,每小题5分,共20分.请把答案填涂在答题卡相应位置上.13.若直线x -2y +a =0被圆x 2+y 2-2x -2y +1=0截得的弦长为2,则实数a 的值为▲.14.幂函数f (x )=x α(α∈R )满足:任意x ∈R 有f (-x )=f (x ),且f (-1)<f (2)<2,请写出符合上述条件的一个函数f (x )=▲.15.一个袋子中有n (n ∈N *)个红球和5个白球,每次从袋子中随机摸出2个球.若“摸出的两个球颜色不相同”发生的概率记为p (n ),则p (n )的最大值为▲.16.大约在公元222年,赵爽为《周髀算经》一书作序时介绍了“勾股圆方图”,亦称“赵爽弦图”(如图1).某数学兴趣小组类比“赵爽弦图”构造出图2:△ABC 为正三角形,AD ,BE ,CF 围成的△DEF 也为正三角形.若D 为BE 的中点,①△DEF 与△ABC 的面积比为▲;②设→AD =λ→AB +μ→AC ,则λ+μ=▲.(第一空2分,第二空3分)(图1)(图2)四、解答题:本大题共6小题,共70分.17.(本小题满分10分)已知f(x)=sinωx-3cosωx,ω>0.(1)若函数f(x)图象的两条相邻对称轴之间的距离为π2,求f(3π2)的值;(2)若函数f(x)的图象关于(π3,0)对称,且函数f(x)在[0,π4]上单调,求ω的值.18.(本小题满分12分)已知数列{a n}的前n项和为S n,a1=2,(n-2)S n+1+2a n+1=nS n,n∈N*.(1)求数列{a n}的通项公式;(2)求证:1a12+1a22+…+1an2<716.在梯形ABCD 中,AB ∥CD ,∠D =90°,AB =22,AD =DC =2,如图1.现将△ADC 沿对角线AC 折成直二面角P -AC -B ,如图2,点M 在线段BP 上.(1)求证:AP ⊥CM ;(2)若点M 到直线AC 的距离为255,求BM BP的值.(图1)(图2)20.(本小题满分12分)进行独立重复试验,设每次成功的概率为p (0<p <1),则失败的概率为1-p ,将试验进行到恰好出现r 次成功时结束试验,以X 表示试验次数,则称X 服从以r ,p 为参数的帕斯卡分步或负二项分布,记为X ~N B (r ,p ).(1)若X ~N B (3,13),求P (X =5);(2)若X ~N B (2,12),n ∈N *,n ≥2.①求∑ni =2P (X =i );②要使得在n 次内结束试验的概率不小于34,求n 的最小值.已知函数f(x)=a x-1-log a x,a>1.(1)若a=e,求证:f(x)≥1;(2)若关于x的不等式f(x)<1的解集为集合B,且B (1a,a),求实数a的取值范围.22.(本小题满分12分)已知抛物线C1:y2=x和圆C2:(x-3)2+y2=2.(1)若抛物线C1的准线与x轴相交于点T,MN是过C1焦点F的弦,求→TM·→TN的最小值;(2)已知P,A,B是抛物线C1上互异的三个点,且P点异于原点.若直线PA,PB被圆C2截得的弦长都为2,且PA=PB,求点P的坐标.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学第二次模拟考试试题
高三数学试题(文科)
本试卷分第I卷(选择题)和第II卷(非选择题)两部分,其中第II卷第(22)
-(24)题为选考题,其他题为必考题。

考生作答时,将答案答在答题卡上,在本试卷上答题无效。

考试结束后,将本试卷和答题卡一并交回。

注意事项:
1.
答题前,考生务必先将自己的姓名,准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。

2.
选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号,非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚。

3.
请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。

4. 保持卷面清洁,不折叠,不破损。

5.做选考题时,考生按照题目要求作答,并用2B
铅笔在答题卡上把所选题目对应的题号涂黑。

第I卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设全集,则=
A.{2}
B.{1,3}
C.{1,2,3}
D.{0,1,2,3,4}
2. 等比数列的前三项依次为,则前5项和=
A.31
B. 32
C. 16
D. 15
3. 下列命题中的真命题是
A. ,使得
B.
C.
D.
如果执行右图的程序框图,若
输人n= 6,m= 4,那么输出的P等于
A.720
B. 360
C. 240
D.120
5.设函数,将的图像向右平移
个单位长度后,所得的图像与原图像重合,则
的最小值等于
A. B. 3 C. 6 D. 9
6.
在中,已知D是AB边上一点,若
,则=
A. B. C. D.
7.
直线绕坐标原点逆时针方向旋转30°后所得
直线被圆截得的弦长为
A. B. 2 C. D.
8.
设函数,曲线在点(l,g(l))处的
切线方程为y =2x
+1,曲线在点的处切线的方程为
A.y=4x + 1
B.y = 2x + 4:
C. y = 4x
D.y= 4x + 3
9.
将一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为m,第二次出现的点数为n,向量,则向量与共线的概率为
A. B. C. D.
10.
已知某几何体的三视图如右图
所示,其中,正视图,,侧视
图均是由三角形与半圆构成,
俯视图由圆与内接三角形构成
,根据图中的数据可得此几何体的体积为
A. B.
C. D.
11.
已知函数的定义域为R,,对任意X R都有,则=
A. B. C. D.
12.
已知函数定义域为D,且方程在D 上有两个不等实根,则A的取值范围是
A. B. C. D.
第II卷
本卷包括必考题和选考题两部分,第(13)题〜
第(21)题为必考题,每个试题考生都必须做答,第(22)题〜
第(24)题为选考题,考试根据要求做答。

二、填空题:本大题共4小题,每小题5分。

13.
若:x、y满足约束条件,则的最大值_______.
14.
双曲线(a>0,b>0)的一条渐近线的斜率为一2,则双曲线的离心率是______
15. 三棱锥S-ABC 中SA平面 ABC,AB 丄BC,SA = 2,AB =B C=
1,则三棱锥S-ABC的外接球的表面积等于_____ _.
16.
设奇函数在[-1,1]上是增函数,且,若函数1对所有 ——都成立,则当时t的取值范围是______.
三、解答题:解答应写出文字说明,证明过程和演算步骤
17. (本小题满分12分)
已知函数
(I)求函数的单调递增区间;
(II)记的内角A、B、C所对的边长分别为a 、b、c若,的面积,求b
+c的值.
18. (本小题满分12分)
如图,已知四棱锥P—ABCD,侧
面PAD为边长等于2的正三角形,
底面ABCD为菱形,.
(I)证明:;
(I I)若PB = 3,求四棱锥P—ABCD的体积.
19. (本小题满分12分)
甲乙两个学校高三年级分别有1100人,1000人
,为了了解两个学校全体高三年级学生在该地区二模考试的数学成绩情况,采用分层抽样方法从两个学校一共抽取了105名学生的数学成绩,并作出了频数分布统计表如下:
甲校:
乙校:
(I)计算x,y的值;
(II)统计方法中,同一组数
据常用该区间的中点值作为
代表,试根据抽样结果分别估计甲校和乙校的数学成绩平均分;(精确到0. 1)
(III)若规定考试成绩在[120,150]内为优秀,由以上统计数据填写右面2 X
2列联表,若按是否优秀来判断,是否有97.5%的把握认为两个学校的数学成绩有差异.
附:
20. (本小题满分12分)
已知抛物线£上一点P(4,m)到焦点的距离为5.过点C(1,0)作直线交抛物线E于M,
N两点,G为线段MN的中点,过点G作X轴的平行线与抛物线E在点M处的切线交于点A
(I)求抛物线E的方程;
(II)试问点A是否恒在一条定直线上?证明你的结论.
21. (本小题满分12分)
已知函数,其中为参数,且
(I)当时,判断函数是否有极值,说明理由;
(II)要使函数的极小值大于零,求参数的
取值范围;
(III)若对(II)中所求的取值范围内的任意参数,函数在区间(2a-1,a)内都是增函数,求实数a的取值范围.
请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的
第一题记分。

作答时用2B铅笔在
答题卡上把所选题目对应的题号
涂黑。

22. (本小题满分10分)选修4一
1:几何证明选讲
如图,AB是的弦,C、F是上的点,OC垂直于弦AB,过点F作的切线,交AB的延长线于D,连结CF交AB于点E.
(I) 求证:;
(II) 若BE = 1,DE = 2AE,求 DF 的长.
23. (本小题满分10分)选修4一
4:坐标系与参数方程
在直角坐标系中,以原点为极点,X轴的正半轴为极轴建极坐标系,已知曲线C:,过点P(—2,一4)的直线l的参数方程为:
直线l与曲线C分别交于M,N.
(I)写出曲线C和直线l的普通方程;
(II)若成等比数列,求a的值.
24. (本小题满分10分)选修4一
5 :不等式选讲
已知,不等式的解集为M.
(I)求M;
(I I)当时,证明:.。

相关文档
最新文档