什么是时间序列预测法

合集下载

时间序列预测的常用方法

时间序列预测的常用方法

时间序列预测的常用方法时间序列预测是指根据过去一段时间内的数据,通过建立历史数据与时间的关系模型,预测未来一段时间内的数据趋势和变化规律。

时间序列预测在经济学、金融学、气象学、交通运输等领域有着广泛的应用。

本文将介绍时间序列预测的常用方法。

一、简单移动平均法简单移动平均法是最简单直观的时间序列预测方法之一。

它的原理是通过计算平均值来预测未来的值。

具体步骤为:首先选择一个固定的时间窗口,例如选择过去12个月的数据进行预测,然后计算过去12个月的平均值,将该平均值作为未来一个时间点的预测值。

这种方法的优点是简单易用,适用于数据变动较为平稳的时间序列。

二、指数平滑法指数平滑法是一种较为常用的时间序列预测方法,它适用于数据变动较为平稳的情况。

指数平滑法的原理是通过对过去的数据赋予不同权重,来预测未来的值。

指数平滑法将过去的值按照指定的权重递减,然后将过去的值与未来的值结合得出预测值。

常用的指数平滑法有简单指数平滑法、二次指数平滑法和三次指数平滑法等。

三、趋势法趋势法是根据时间序列中的趋势来进行预测的一种方法。

趋势可以是线性的也可以是非线性的。

线性趋势法是通过拟合线性回归模型来预测未来的值,具体步骤为根据过去的数据建立一个线性回归模型,然后利用该模型来预测未来的数据。

非线性趋势法包括二次多项式拟合、指数增长拟合等方法,其原理是根据过去的数据来选择合适的含有趋势项的非线性模型,然后通过该模型来预测未来的数据。

四、季节性分解法季节性分解法是一种将时间序列分解为趋势项、季节项和随机项三个部分的方法。

首先对时间序列进行季节性调整,然后利用调整后的数据建立趋势模型和季节模型,最后将趋势模型和季节模型相加得到预测结果。

季节性分解法适用于时间序列中存在明显的季节性变化的情况,如销售数据中的每年的圣诞节销售量增加。

五、ARIMA模型ARIMA模型(Autoregressive Integrated Moving Average Model)是一种基于时间序列的统计模型,常用于对非平稳时间序列的预测。

第七章 时间序列预测法

第七章 时间序列预测法



16
例题:
已知某企业产品 1~12 月份销售额资料,试利用一 次移动平均法预测该企业明年 1 月份的销售额, n 分别取 3 和 5 。
t
1 2 3 4 5 6 7 8 9 10 11 12
xt
240 252 246 232 258 240 238 248 2n 3
月份 销量 1 60 2 50.4 3 55 4 49.6 5 75 6 76.9 7 72 8 68 9 54.5 10 44 11 43.8 12 47
X= X=
60+50.4+55+49.6+75+76.9+72+68+54.5+44+43.8+47
12
=58 (万辆)
72+68+54.5+44+43.8+47
X 2005= Xn+1= Xn+⊿ X · = 16805+1201×1 = 18006(件) 1
X 2006= Xn+2= Xn+⊿ X · = 16805+1201×2 = 19207(件) 2
8
加权算术平均法:
是为观察期内的每一个数据确定一个权数,并在此基 础上,计算其加权平均数作为下一期的预测值。这里的权 数体现了观察期内各数据对预测期的影响程度。 x1f1+x2f2+ ……+xnfn ∑ xifi X= = f1+f2+ ……+fn ∑ fi
12
9.3 平滑预测法
所谓平滑就是将历史统计数据中的随
机因素加以过滤,消除统计数据的起伏波动状况,
使不规则的线型大致规则化,以便把握事物发展

时间序列预测法

时间序列预测法

时间序列预测法时间序列预测方法是一种用于预测未来时间点上特定变量值的统计模型。

它基于时间序列数据的历史信息,通过建立模型来分析趋势、周期和季节性等因素,并预测未来的数值。

以下是一些常用的时间序列预测方法:1. 移动平均模型(MA):移动平均模型是一种简单的预测方法,利用历史数据的平均值来预测未来值。

它基于平滑的概念,通过计算不同时间窗口内的数据均值来减少噪声。

2. 自回归模型(AR):自回归模型是一种利用过去时间点上的变量值来预测未来时间点上的值的方法。

它基于假设,即未来的值与过去的值相关,通过计算时间序列的自相关性来进行预测。

3. 移动平均自回归模型(ARMA):移动平均自回归模型是自回归模型和移动平均模型的结合。

它同时考虑了过去时间点上的变量值和噪声项的影响,通过将两者进行加权平均来预测未来值。

4. 季节性自回归移动平均模型(SARMA):季节性自回归移动平均模型是ARMA模型的扩展,考虑了季节性因素对时间序列的影响。

它通过引入季节性参数来捕捉周期性变化,从而提高预测精度。

5. 季节性自回归综合移动平均模型(SARIMA):季节性自回归综合移动平均模型是SARMA模型的进一步扩展。

它除了考虑季节性外,还同时考虑了趋势和噪声项的影响,通过引入差分操作来消除线性趋势和季节性差异,从而进一步提高预测准确度。

以上是一些常用的时间序列预测方法,每种方法都有其适用的场景和优缺点。

选择合适的方法需要对数据特点和预测目标进行分析,并结合模型评估指标进行选择。

时间序列预测方法是指在一串连续的时间点上收集到的数据样本中,通过分析各时间点之间的关系来预测未来时间点上的变量值的方法。

这些时间序列数据通常具有以下特征:趋势(如上涨或下跌的趋势)、周期性(如季节变化)、周期(如每月、每年的循环)和随机噪声(如突发事件的影响)。

时间序列预测常用于经济预测、股票预测、天气预测等领域。

在时间序列预测中,最简单的方法是移动平均模型(MA)。

时间序列预测的方法

时间序列预测的方法

时间序列预测的方法时间序列是指按一定时间间隔有序地组织起来的数值序列。

它的特点是包含了时间因素,即每个数据点有一个时间戳与之对应。

在时间序列预测中,我们希望通过已有的时间序列数据,来预测未来的数值。

时间序列预测的方法有很多种,以下是其中几种常见的方法:1. 简单平均法:这是最简单的时间序列预测方法。

它根据历史数据的平均值来预测未来值。

通过计算所有历史数据的平均值,然后将这个平均值作为未来值的预测结果。

这种方法没有考虑到数据的趋势和季节性变化。

2. 移动平均法:移动平均法是在简单平均法的基础上进行改进的方法。

它考虑到了数据的趋势性。

移动平均法通过计算一个滑动窗口(如过去几个月或几个季度)内的数据的平均值,并将这个平均值作为未来值的预测结果。

这种方法可以消除数据的随机波动,但不能处理季节性变化。

3. 线性回归法:线性回归法是一种较为常用的时间序列预测方法。

它利用变量之间的线性关系来进行预测。

线性回归法通过建立一个线性回归模型,来拟合已有的时间序列数据。

然后使用这个模型来预测未来的数值。

这种方法能够考虑到数据的趋势性和季节性变化。

4. 指数平滑法:指数平滑法是一种常用的时间序列预测方法。

它假设未来的数值是过去数据的加权平均值。

指数平滑法根据数据的权重分配方式可以分为简单指数平滑法、二次指数平滑法和三次指数平滑法。

这种方法较为简单,适用于数据变动较小的时间序列。

5. ARIMA模型:ARIMA(AutoRegressive Integrated Moving Average)模型是一种经典的时间序列预测方法。

它能够处理多种数据变化模式,包括趋势性和季节性。

ARIMA模型通过对数据的自回归、差分和移动平均进行建模,来拟合时间序列数据。

然后使用这个模型进行预测。

以上是时间序列预测的几种常见方法,不同的方法适用于不同的时间序列数据特点。

在选择方法时,需要根据数据的特点和预测的目标来进行选择。

此外,还需要注意数据的质量和数量,确保数据的稳定性和充分性,以提高预测的准确性。

第九章 时间序列预测法和回归分析预测法

第九章 时间序列预测法和回归分析预测法

9.1 时间序列预测法
2、时间序列预测法的步骤 ① 收集历史资料 ② 分析时间序列 ③ 求时间序列的长期趋势变动(T)、季节变动 (S)和不规则变动(I)的值。 利用时间序列资料求出长期趋势、季节变 动和不规则变动的数学模型后,就可以利 用它来预测未来的长期趋势值T和季节变动 值S。
3、时间序列预测法的基本特征 ⑴ 时间序列分析法 ① 事情的过去会延续到未来这个假设前提包含两层 含义: ② 不会发生突然的跳跃变化,是以相对小的步伐前 进; ③ 过去和当前的现象可能表明现在和将来活动的发 展变化趋向。 因此时间序列分析法,对短期、近期的预测比较显著。 ⑵ 时间序列数据变动存在着规律性与不确定性 ① 趋势性; ② 周期性; ③ 随机性; ④ 综合性。
•Leabharlann •⑴ 增减量预测法。这种方法是以上一期的实 际观察值与上两期之间的增减量之和,作为 本期预测值的一种预测方法。 ⑵ 平均增减量预测法。先计算出整个事件序 列筑起增减量的平均数,再与上期实际数相 加,从而确定预测值的方法。
9.1.5 季节指数预测法

9.2 回归分析预测法
回归分析预测法,是在分析市场现象自变量和因变量 自检相关关系的基础上,建立变量之间的回归方程, 并将回归方程作为预测模型,根据自变量在预测其的 数量变化来预测因变量,关系大多表现为相关关系。 1、一元线性回归分析预测法 是在考虑预测对象发展变化本质的基础上,分 析因变量随一个自变量变化而变化的关联形态,借助 回归分析建立它们之间因果关系的回归方程,描述它 们之间的平均变化数量关系,据此进行预测或控制 。 Y=a+bx
9.1.2 平均预测法


9.1.3 指数平滑预测法


9.1.4趋势延伸法

第6章 时间序列预测法

第6章  时间序列预测法

2
第一节 时间序列概述 一、时间序列分析 时间序列一般用:y1,y2,…,yt …;表示,其中t 表示时间。 在时间序列中,每个时期变量数值的大小, 都受到许多不同因素的影响。例如,手机销售 量受到居民的收入、质量,功能、价格等因素 的影响。因此,时间序列按性质不同分成一下 四类:
6
1、长期趋势(Long-term Tend) 指受某种根本性因素的影响,时间序列在 较长时间内朝着一定的方向持续上升或下降, 以及停留在某一水平上的倾向。 如图所示。
11
( 1 )加法型:yt Tt St Ct I t (2)乘法型:yt Tt St Ct I t (3)混合型:yt Tt St Ct I t ; yt St T t Ct I t 其中:yt为时间序列的变动; Tt为长期趋势; St为季节变动;Ct为循环变动;I t为不规则变动。
季 销 售 额
年 销 售 额
时间
时间
图6-2 时间序列数据季节变化曲线
图6-3 时间序列数据循环变化曲线
8
3、循环变动(Alternation variety ) 如图6-3所示。 循环变动与季节变动有相似之处,时间序列都 会在周期内有波动,而季节波动的时间序列 周期长短固定;而循环变动的时间序列波动 较长、周期长短不一,少则一两年,多则数 年甚至是数十年,周期不好预测。
105.75 104.35 104.17 95.00 153.63 72.41
2.0243 2.0183 2.0177 1.9777 2.1836 1.8598
2003
2004 ∑/n
120.00
142.00
114.29
118.33
2.0580

时间序列预测法概述

时间序列预测法概述

时间序列预测法概述时间序列预测是根据过去的数据推断未来的趋势和模式的一种方法。

它是在时间方向上观察数据点之间的关系,并据此预测未来的数值。

时间序列预测在很多领域都有应用,例如经济预测、股市预测、天气预测等。

时间序列预测的目的是根据历史数据的规律性和趋势性,发现变量之间的关系,并预测未来一段时间内的数值变化趋势。

为了达到这个目标,需要对时间序列数据进行分析和建模,然后使用模型进行预测。

时间序列预测方法可以分为传统方法和机器学习方法。

传统方法包括统计学方法和时间序列建模方法,如移动平均法、指数平滑法、自回归移动平均模型(ARMA)、季节性自回归移动平均模型(SARIMA)等。

这些方法基于一些模型假设,如平稳性、线性关系等,通过对时间序列进行平滑和分解,找出趋势、季节和残差等组成部分,然后根据这些分量进行预测。

移动平均法是一种简单的时间序列预测方法,它通过计算一定时间区间内数据点的平均值来预测未来的数值。

移动平均法的优点是简单易用,但它忽略了趋势的变化和季节性的影响。

指数平滑法是另一种常用的时间序列预测方法,它通过对数据赋予不同的权重来预测未来的数值。

指数平滑法的优点是可以对趋势进行较好的拟合,但它也忽略了季节性的影响。

自回归移动平均模型(ARMA)是一种广泛应用的时间序列预测方法,它可以对非平稳数据进行建模和预测。

ARMA模型基于自回归(AR)和移动平均(MA)两个部分,其中AR 部分通过当前观测值和过去观测值的线性组合来预测未来的数值,MA部分通过当前观测值和过去残差的线性组合来预测未来的数值。

ARMA模型可以通过最大似然估计或最小二乘法来求解模型参数。

季节性自回归移动平均模型(SARIMA)是ARMA模型的一种扩展形式,它考虑了时间序列数据的季节性模式。

SARIMA 模型包括四个部分:季节性差分、自回归、移动平均和非季节性差分。

季节性差分用于去除季节性成分,自回归和移动平均用于建立模型和预测,非季节性差分用于还原季节性成分。

时间序列预测的方法及优缺点

时间序列预测的方法及优缺点
二次移动平均法是对一次移动平均数再次进行移 动平均,并在两次移动平均的基础上建立预测模 型对预测对象进行预测。
二次移动平均法与一次移动平均法相比,其优点 是大大减少了滞后偏差,使预测准确性提高。
二次移动平均只适用于短期预测。而且只用于T 0 的情形。
8.3.2 二次移动平均法(2)
二次移动平均法的预测模型如下:
时间序列的变动形态一般分为四种:长期趋势变动,季 节变动,循环变动,不规则变动。
8.2 平均数预测
平均数预测是最简单的定量预测方法。平均数预测法的 运算过程简单,常在市场的近期、短期预测中使用。
最常用的平均数预测法有: 简单算术平均数法 加权算术平均数法 几何平均数法
8.2.1 简单算术平均数法(1)
第八章 时间序列预测
什么是时间序列预测 时间序列预测的常用方法 时间序列预测法的优缺点分析
8.1 时间序列预测的概述
时间序列预测的概念 时间序列预测的原理与依据
8.1.1 时间序列预测的概念
时间序列预测法是一种定量分析方法,它是在时间序列 变量分析的基础上,运用一定的数学方法建立预测模型, 使时间趋势向外延伸,从而预测未来市场的发展变化趋 势,确定变量预测值。
时序 1 2 3 4 5 6 7 8 9 10 11 12
实际观察值 38 45 35 49 70 43 46 55 45 65 64 43
Mt(1)(n=4)
41.75 49.75 49.25 52.00 53.50 47.25 52.75 57.25 54.25
8.3.2 二次移动平均法(1)
8.3.1 一次移动平均法(2)
一次移动平均数的计算公式如下:
x t 1
M (1) t
xt

时间序列分析预测法

时间序列分析预测法

时间序列分析预测法时间序列分析是一种用于预测未来值的统计方法,它基于历史数据的模式和趋势进行推断。

时间序列分析预测法常用于经济学、金融学、市场营销等领域,在这些领域中,准确预测未来趋势对决策制定非常重要。

时间序列分析预测法的核心思想是根据已有的时间序列数据,预测未来一段时间内的值。

该方法假设未来的模式和趋势与过去是一致的,因此通过分析过去的数据变化,可以推测未来的变化。

时间序列分析预测法主要包括以下几个步骤:首先,需要收集并整理历史数据,确保数据的准确性和完整性。

历史数据通常是按照时间顺序排列的,如每月销售额、每周股票收盘价等。

收集数据的时间跨度越长,分析的结果越准确。

其次,根据数据的特征进行时间序列分析。

时间序列数据通常包含趋势、季节性和周期性等特征。

趋势描述了数据的长期变化趋势,季节性和周期性描述了数据的短期变化。

通过统计方法和图表分析,可以揭示数据中的这些特征。

然后,选择合适的时间序列模型进行预测。

常用的时间序列模型包括移动平均法、指数平滑法和自回归移动平均模型等。

模型的选择应根据数据的特征和分析结果来确定,不同模型适用于不同类型的数据。

最后,使用已选定的时间序列模型进行预测。

根据历史数据和模型的参数,可以得出未来一段时间内的预测值。

预测的精度和可靠性取决于模型的选择和数据的准确性。

时间序列分析预测法的优点是简单直观、易于理解和实施。

它可以帮助决策者更好地了解数据的变化规律,做出合理的决策。

然而,时间序列分析也有一些局限性,比如无法处理非线性和非平稳的数据,对异常值和缺失值敏感等。

总之,时间序列分析是一种常用的预测方法,能够帮助我们理解和预测未来的数据变化。

在实际应用中,我们需要根据数据的特征选择合适的模型,并不断验证和修正预测结果,以提高预测的准确性和可靠性。

时间序列分析预测法是一种基于历史数据的统计方法,通过分析过去的数据变化模式和趋势,来预测未来一段时间内的数值。

它在经济学、金融学、市场营销等领域发挥着重要作用,为决策者提供了有价值的信息和参考。

时间序列预测法

时间序列预测法

第3章时间序列预测法§3.1 时间序列分析的基本问题3.1.1时间序列时间序列是指同一变量按发生时间的先后排列起来的一组观察值或记录值。

例如:1953~2001年的国民收入;1958~2001年全国汽车的产量;某物资公司1996~2001年逐月的机电产品月销售量;某省1962~2001年工业燃料消费量等等。

所用的时间单位可以根据情况取年、季、月等。

3.1.2时间序列预测经济预测中的预测目标及其影响因素的统计资料,大多是时间序列。

任何预测目标都有各自的时间演变过程,研究它如何由过去演变到现在的演变规律,并分析、研究它今后的变化规律,即可对它们进行预测,时间序列预测技术就是利用预测目标本身的时间序列,分析、研究预测目标未来的变化规律而进行预测的。

时间序列预测法,只要有预测目标的历史统计数据即可进行预测,统计资料易于收集,计算又比较简单,不仅可用来预测目标,还可用于预测回归预测法的影响因素。

因此,广泛地用于各方面的预测。

而当找不到预测目标的主要影响因素或者虽然知道其主要影响因素,但找不到有关的统计数据时,时间序列预测法的优越性更为显著。

时间序列预测技术,可分为确定型和随机型两大类。

本章只介绍确定型时间序列预测,第四章将介绍随机型时间序列预测。

3.1.3四类影响因素世间各种各样的事物,在各时间都可能受很多因素的影响,因此,所形成的时间序列,实际上是各个影响因素同时作用的综合结果。

我们想从给定的时间序列,分析出作用于所观察事物的每一个影响因素,是无法办到的。

因此,我们在分析各种时间序列时,通常把各种可能的影响因素,按其作用的效果分为四大类:1)趋势变动[记为T(t)]:指预测目标在长时间内的变动趋势——持续上升或持续下降。

2)季节变动[记为S(t)]:指每年受季节影响重复出现的周期性变动,一般是以十二个月或四个季度为一个周期。

3)循环变动[记为C(t)]:指以数年为周期(各周期的长短可能不一致)的一种周期性变动,例如经济景气指数,银行储蓄。

时间序列预测法

时间序列预测法

• 解:先计算出各一次和二次指数平滑值列。
当t
12时,
S (1) 12
52.23,S1(22)
49.75。
a 12
2S1(12)
S(2) 12
2 52.23
49.75
54.71
b12
1
[S1(12)
S(2) 12
]
0.3 1 0.3
(52.23
49.75)
1.06
X12T 54.711.06T
• 2. 对消去季节影响的序列X/S做散点图,选择适合 的曲线模型拟合序列的长期趋势,得到长期趋势T。
• 3. 计算周期因素C。用序列TC除以T即可得到周期 变动因素C。
• 4. 将时间序列的T、S、C分解出来后,剩余的即为 不规则变动。
案例
• 现有某商品销售额的12年的季度数据在文件。用乘法模型 分解,并预测第13年各季度的销售额。
案例数据
某商品市场需求量 单位:千吨
需求量Yt 一次移动平均数 二次移动平均数
50
50
53
56
59
54
62
56
65
59
68
62
71
65
59
74
68
62
77
71
65
80
74
68
指数平滑法
• 在实际经济活动中,最新的观察值往往包含着最 多的关于未来情况的信息。所以更为切合实际的 方法是对各期观察值依时间顺序加权。
中,时间序列值(Y)和长期趋势用绝对数表示,季 节变动、周期变动和不规则变动用相对数(百分数) 表示。
加法模型分解预测法
• 已知 y1 , y 2 , y n

时间序列预测法

时间序列预测法
详细描述
在时间序列预测中,过度拟合问题通常出现在使用复杂的模型来拟合简单的数据 时。这些模型可能会在训练数据上获得良好的拟合效果,但在测试数据上却无法 取得较好的预测结果。因此,选择合适的模型是至关重要的。
动态变化与适应性挑战
总结词
时间序列数据的动态变化使得预测模型必须具备适应性和鲁棒性。然而,这增加了时间序列预测法的 难度和复杂性。
高维时间序列预测算法改进
针对高维数据的特性,改进现有的时间序列预测算法,提高预测精 度和效率。
时序数据的深度学习与神经网络方法
深度学习
利用深度神经网络对时序数据进行深度学习,挖掘数据中的复杂模式和规律。例如,使用 循环神经网络(RNN)对具有时序依赖性的数据进行建模。
神经网络结构优化
针对时序数据的特性,优化神经网络结构,提高网络的拟合能力和泛化性能。例如,采用 卷积神经网络(CNN)对具有周期性的时间序列数据进行处理。
01
季节性ARIMA模型是一种改进的 ARIMA模型,它考虑了数据的季 节性变化。
02
季节性ARIMA模型适用于数据具 有明显季节性变化的情况。
季节性ARIMA模型的优点是能够 处理季节性变化和短期趋势,预 测结果较为准确。
03
季节性ARIMA模型的缺点是需要 对数据进行季节性差分,可能导
致数据失真。
水位预测
通过分析历史水位数据,建立时间序列模型,可以预测未来水位 的走势。
电量预测
通过分析历史电量数据,建立时间序列模型,可以预测未来电量 的走势。
交通流量预测
通过分析历史交通流量数据,建立时间序列模型,可以预测未来 交通流量的走势。
05
时间序列预测法的局限性与挑战
数据质量与噪声影响

什么是时间序列预测法

什么是时间序列预测法

什么是时间序列预测法?一种历史资料延伸预测,也称历史引伸预测法。

是以时间数列所能反映的社会经济现象的发展过程和规律性,进行引伸外推,预测其发展趋势的方法。

时间序列,也叫时间数列、历史复数或动态数列。

它是将某种统计指标的数值,按时间先后顺序排到所形成的数列。

时间序列预测法就是通过编制和分析时间序列,根据时间序列所反映出来的发展过程、方向和趋势,进行类推或延伸,借以预测下一段时间或以后若干年内可能达到的水平。

其内容包括:收集与整理某种社会现象的历史资料;对这些资料进行检查鉴别,排成数列;分析时间数列,从中寻找该社会现象随时间变化而变化的规律,得出一定的模式;以此模式去预测该社会现象将来的情况。

时间序列预测法的步骤第一步收集历史资料,加以整理,编成时间序列,并根据时间序列绘成统计图。

时间序列分析通常是把各种可能发生作用的因素进行分类,传统的分类方法是按各种因素的特点或影响效果分为四大类:(1)长期趋势;(2)季节变动;(3)循环变动;(4)不规则变动。

第二步分析时间序列。

时间序列中的每一时期的数值都是由许许多多不同的因素同时发生作用后的综合结果。

第三步求时间序列的长期趋势(T)季节变动(s)和不规则变动(I)的值,并选定近似的数学模式来代表它们。

对于数学模式中的诸未知参数,使用合适的技术方法求出其值。

第四步利用时间序列资料求出长期趋势、季节变动和不规则变动的数学模型后,就可以利用它来预测未来的长期趋势值T和季节变动值s,在可能的情况下预测不规则变动值I。

然后用以下模式计算出未来的时间序列的预测值Y:加法模式T+S+I=Y乘法模式T×S×I=Y如果不规则变动的预测值难以求得,就只求长期趋势和季节变动的预测值,以两者相乘之积或相加之和为时间序列的预测值。

如果经济现象本身没有季节变动或不需预测分季分月的资料,则长期趋势的预测值就是时间序列的预测值,即T=Y。

但要注意这个预测值只反映现象未来的发展趋势,即使很准确的趋势线在按时间顺序的观察方面所起的作用,本质上也只是一个平均数的作用,实际值将围绕着它上下波动。

时间序列预测法及定量方法介绍

时间序列预测法及定量方法介绍

时间序列预测法及定量方法介绍时间序列预测方法及定量方法介绍时间序列预测是指通过历史数据中的时间序列信息来预测未来的数值变化趋势。

时间序列预测在许多领域都有广泛的应用,例如经济学、金融学、气象学等。

本文将介绍一些常用的时间序列预测方法及定量方法。

首先,时间序列预测方法可以分为参数方法和非参数方法。

参数方法假设时间序列的未来值与历史值之间存在某种函数关系,通过拟合这种函数关系来进行预测。

非参数方法则不对函数关系做任何假设,直接通过历史值的统计特性进行预测。

参数方法中最常用的是自回归移动平均模型(ARMA)和自回归条件异方差模型(ARCH)。

ARMA模型假设未来值与过去的若干个值相关,通过拟合自回归和移动平均系数的线性组合来进行预测。

ARCH模型则是基于ARMA模型的扩展,考虑了时间序列误差项的异方差性,通过拟合自回归条件异方差系数来进行预测。

这些模型通常需要对数据进行平稳性处理和白噪声检验。

非参数方法中最常用的是移动平均法和指数平滑法。

移动平均法将时间序列按固定窗口大小进行滑动,并取滑动窗口内数据的平均值作为预测值。

这种方法可以平滑离群点的影响,但对窗口大小的选择较为敏感。

指数平滑法则是通过加权平均计算预测值,其中权重随时间递减,最新的观测值权重最大。

这种方法较好地考虑了近期观测值的重要性。

除了参数方法和非参数方法,还有一些其他的定量方法用于时间序列预测。

其中最常用的是回归分析和神经网络。

回归分析通过多元线性回归模型来预测未来值,考虑了多个自变量的影响。

神经网络则是通过多层网络结构来拟合时间序列之间的非线性关系,具有较好的非线性拟合能力。

另外,时间序列预测还可以考虑季节性和趋势性的因素。

季节性预测主要通过分解时间序列为趋势、季节和随机三个部分,并分别进行预测。

趋势性预测则是通过拟合时间序列的趋势函数来预测未来值。

常用的趋势函数有线性趋势函数、指数趋势函数和多项式趋势函数等。

综上所述,时间序列预测方法及定量方法有很多种,选择适合的方法取决于数据的性质和预测的目标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

什么是时间序列预测法?一种历史资料延伸预测,也称历史引伸预测法。

是以所能反映的社会经济现象的发展过程和规律性,进行引伸外推,预测其发展趋势的方法。

时间序列,也叫时间数列、历史复数或。

它是将某种的数值,按时间先后顺序排到所形成的数列。

时间序列预测法就是通过编制和分析时间序列,根据时间序列所反映出来的发展过程、方向和趋势,进行类推或延伸,借以预测下一段时间或以后若干年内可能达到的水平。

其内容包括:收集与整理某种社会现象的历史资料;对这些资料进行检查鉴别,排成数列;分析时间数列,从中寻找该社会现象随时间变化而变化的规律,得出一定的模式;以此模式去预测该社会现象将来的情况。

时间序列预测法的步骤第一步收集历史资料,加以整理,编成时间序列,并根据时间序列绘成。

时间序列分析通常是把各种可能发生作用的因素进行分类,传统的分类方法是按各种因素的特点或影响效果分为四大类:(1)长期趋势;(2)季节变动;(3);(4)不规则变动。

第二步分析时间序列。

时间序列中的每一时期的数值都是由许许多多不同的因素同时发生作用后的综合结果。

第三步求时间序列的长期趋势(T)季节变动(s)和不规则变动(I)的值,并选定近似的数学模式来代表它们。

对于数学模式中的诸未知参数,使用合适的技术方法求出其值。

第四步利用时间序列资料求出长期趋势、季节变动和不规则变动的数学模型后,就可以利用它来预测未来的值T和季节变动值s,在可能的情况下预测不规则变动值I。

然后用以下模式计算出未来的时间序列的预测值Y:加法模式T+S+I=Y乘法模式T×S×I=Y如果不规则变动的预测值难以求得,就只求和季节变动的预测值,以两者相乘之积或相加之和为时间序列的预测值。

如果经济现象本身没有季节变动或不需预测分季分月的资料,则长期趋势的预测值就是时间序列的预测值,即T=Y。

但要注意这个预测值只反映现象未来的发展趋势,即使很准确的在按时间顺序的观察方面所起的作用,本质上也只是一个的作用,实际值将围绕着它上下波动。

[]时间序列分析基本特征1.时间序列分析法是根据过去的变化趋势预测未来的发展,它的前提是假定事物的过去延续到未来。

时间序列分析,正是根据客观事物发展的连续规律性,运用过去的历史数据,通过统计分析,进一步推测未来的发展趋势。

事物的过去会延续到未来这个假设前提包含两层含义:一是不会发生突然的跳跃变化,是以相对小的步伐前进;二是过去和当前的现象可能表明现在和将来活动的发展变化趋向。

这就决定了在一般情况下,时间序列分析法对于短、近期预测比较显着,但如延伸到更远的将来,就会出现很大的局限性,导致预测值偏离实际较大而使决策失误。

2.时间序列数据变动存在着规律性与不规律性时间序列中的每个观察值大小,是影响变化的各种不同因素在同一时刻发生作用的综合结果。

从这些影响因素发生作用的大小和方向变化的时间特性来看,这些因素造成的时间序列数据的变动分为四种类型。

(1)趋势性:某个变量随着时间进展或自变量变化,呈现一种比较缓慢而长期的持续上升、下降、停留的同性质变动趋向,但变动幅度可能不相等。

(2)周期性:某因素由于外部影响随着自然季节的交替出现高峰与低谷的规律。

(3)随机性:个别为随机变动,整体呈统计规律。

(4)综合性:实际变化情况是几种变动的叠加或组合。

预测时设法过滤除去不规则变动,突出反映趋势性和周期性变动。

时间序列预测法的分类时间序列预测法可用于、和。

根据对资料分析方法的不同,又可分为:、、、、、、、等。

也称。

即把若干历史时期的统计数值作为观察值,求出算术平均数作为下期预测值。

这种方法基于下列假设:“过去这样,今后也将这样”,把近期和远期数据等同化和平均化,因此只能适用于事物变化不大的趋势预测。

如果事物呈现某种上升或下降的趋势,就不宜采用此法。

就是把各个时期的历史数据按近期和远期影响程度进行加权,求出平均值,作为下期预测值。

就是相继移动计算若干时期的算术平均数作为下期预测值。

即将简单移动平均数进行加权计算。

在确定权数时,近期观察值的权数应该大些,远期观察值的权数应该小些。

上述几种方法虽然简便,能迅速求出预测值,但由于没有考虑整个社会经济发展的新动向和其他因素的影响,所以准确性较差。

应根据新的情况,对预测结果作必要的修正。

即根据历史资料的上期实际数和预测值,用指数加权的办法进行预测。

此法实质是由内加权移动平均法演变而来的一种方法,优点是只要有上期实际数和上期预测值,就可计算下期的预测值,这样可以节省很多数据和处理数据的时间,减少数据的存储量,方法简便。

是国外广泛使用的一种方法。

根据经济事物每年重复出现的周期性季节变动指数,预测其季节性变动趋势。

推算季节性指数可采用不同的方法,常用的方法有季(月)别平均法和移动平均法两种:a.季(月)别平均法。

就是把各年度的数值分季(或月)加以平均,除以各年季(或月)的总平均数,得出各季(月)指数。

这种方法可以用来分析生产、、原材料储备、预计需要量等方面的经济事物的季节性变动;b.移动平均法。

即应用移动平均数计算比例求典型季节指数。

就是对产品市场寿命周期的分析研究。

例如对处于成长期的产品预测其销售量,最常用的一种方法就是根据统计资料,按时间序列画成,再将曲线外延,即得到未来销售发展趋势。

最简单的外延方法是直线外延法,适用于对的预测。

这种方法简单、直观、易于掌握。

[]时间序列预测法案例分析[]案例一:可提费用的时间序列预测一、可提费用概述可提费用是保费收人中重要的组成部分,是目前国内运营的基本保证。

它的变化规律,对于的、、以及发展规划等行为起到至关重要的作用.因此合理、相对准确地预测可提费用对于保险公司在和发展规划方面起到重要的作用。

可提费用与诸多因素有关,且这些因素多属于不确定性因素,如:市场的成长性、的持续缴费(选择期缴方式的客户)、季节性因素、的开发与投放、的等,而且由于不同产品类型的收入规律和不同国家的经济、社会水平不同,规律也不同,又因为人寿保险的产品保障类型组合非常复杂,统一的预测模式几乎不可能实现.但研究结果表明,可提费用的逐月累计余额构成的时间序列是一个有规则的周期波动,具有明显的趋势性和季节性,月度数据周期为12,这是由中国会计财年决定的(也有一些业务的月发生具有明显的季节因素),利用季节模型还可有效刻画年内的波动规律。

二、时间序列预测法1.逐步自回归(StepAR)模型:StepAR模型是有趋势、季节因素数据的模型类。

2.Winters Method—Additive模型:它是将和乘法季节因素相结合,考虑序列中有规律节波动。

3.ARlMA模型:它是处理带有趋势、季节因平稳随机项数据的模型类。

4.Winters Method—Muhiplicative模型:该方将时同趋势和乘法季节因素相结合,考虑序列规律的季节波动。

时间趋势模型可根据该序列律的季节波动对该趋势进行修正。

为了能捕捉到季节性,趋势模型包含每个季节的一个季节参季节因子采用乘法季节因子。

随机时间序列整理汇总历史上各类保险的数据得到逐月的数据,Winters Method-Multiplicative模型表示为xt = (a + b t)s(t) + εt(1)其中a和b为趋势参数,s(t)为对应于时刻t的这个季节选择的季节参数,修正方程为。

,bt= ω2(a t ? a t ? 1) + (1 ? ω2)b t ? 1(2)其中:xt,a t,b t,分别为序列在时刻t的实测值、平滑值和平滑趋势s{t-1}(t)选择在季节因子被修正之前对应于时刻t的季节因子的过去值。

在该修正系统中,趋势多项式在当前周期中总是被中心化,以便在t以后的时间里预报值的趋势多项式的截距参数总是修正后的截距参数at。

向前τ个周期的预报值是。

xt+ τ = (a t + b tτ)s t(t+ τ)(3)当季节在数据中改变时季节参数被修正,它使用季节实测值与预报值比率的平均值。

5. (ARCH)模型带自相关扰动的回归模型为。

xt= ξtβ + v t,,εt = N(0,σ2)(4)其中:xt为因变量;ξt为回归因子构成的列向量;\beta为结构参数构成的列向量;εt为均值是0、方差是一的独立同分布正态随机变量。

服从GARCH过程的序列xt,对于t时刻X的条件分布记为xt| φt ? 1?N(0,h t)(5)其中\phi_{t-1}表示时间t-1前的所有可用信息,条件方差。

(6)。

其中p≥0,q>0,,。

当p=0时,GARCH(p,q)模型退化为ARCH(p)模型,ARCH参数至少要有一个不为0。

GARCH回归模型可写成,,et? N(0,1)(7)也可以考虑服从自回归过程的扰动或带有GARCH误差的模型,即AR(n)-GARCH(p,q)。

,,(8)三、预测分析与结论在具体应用时,可在使用模型前依据数据特征对数据进行一些变换,如Log,Logistic,Cox—Box等变换。

实际数据如表所示,数据是年内累计的。

其数据散布图如图所示,其中纵轴表示“当年可提费用”,时间从2001-02~2003-11,共计34个月。

从图中可以看出,该序列具有明显的趋势性和季节性(周期).在具体应用时.可在使用模型之前依据数据特征对数据进行一些变换,如Log,Logistic,Cox-Box等变换.得到各个模型拟合的残差平方和统计量、R-Square统计量和AIC统计量。

如下表所示。

其中GARCH模型SAS系统采用极大似然方法.由于的方差太大,极大似然不能被执行,GARCH模型不能被建立.综合考虑模型{敛合的残差平方和统计量、R-Square统计量和AIC统计量,可以看出在各个预报模型中稳健的方法为Log ARIMA(1,1,0)×(O,1,O),因此选择Log ARIMA(1,l,0)×(O,1.o)预报模型,具体应用过程中,在模拟ARIMA(1,1,0)×(O,l,0)模型之前对数据进行Log变换,即yt=ln(x t)。

那么总体可提费用的数据序列{xt}t=1,2,…,N,N=34)由Log ARIMA(1,1.0)X(0.1,0)预报模型进行预测所产生的参数估计如下表从而,对数据Log变换后拟合参数的模型为(9)其中得到的对未来12个月的预报值段95%置信限(下表)和预报图及95%置信限图(下图),历史数据(2001-02~2003-11)包括在用于预报图所给范围的图形里,在预报周期的开始位置有一条参考线。

然后,利用得到的外推预报值{(l)},将其与实际值相比较,得到实际精度.将各个模型得到的003-12,2004-01,2004-02,2004-03预测值与实数据比较的误差分析结果如上表所示。

从误差分析看出,理论最佳模型具有次优的实际预测误差,而理论次优模型具有最优的实际预测误差。

相关文档
最新文档