2019年高三数学上期中第一次模拟试卷附答案(2)

合集下载

上海高中2024年高三第一次模拟考试(数学试题含解析)

上海高中2024年高三第一次模拟考试(数学试题含解析)

上海高中2024年高三第一次模拟考试(数学试题含解析)请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合2{|1}M x x ==.N 为自然数集,则下列表示不正确的是( )A .1M ∈B .{1,1}M =-C .M ∅⊆D .M N ⊆ 2.下列说法正确的是( )A .“若1a >,则21a >”的否命题是“若1a >,则21a ≤”B .“若22am bm <,则a b <”的逆命题为真命题C .0(0,)x ∃∈+∞,使0034x x >成立D .“若1sin 2α≠,则6πα≠”是真命题 3.已知数列{}n a 中,112,()1,n n n a n a a a n N *+=-=+∈ ,若对于任意的[]*2,2,a n N ∈-∈,不等式21211n a t at n +<+-+恒成立,则实数t 的取值范围为( ) A .(][),21,-∞-⋃+∞B .(][),22,-∞-⋃+∞C .(][),12,-∞-⋃+∞D .[]2,2- 4.已知15455,log log 2a b c ===,则,,a b c 的大小关系为( ) A .a b c >> B .a c b >> C .b a c >> D .c b a >>5.已知m ∈R ,复数113z i =+,22z m i =+,且12z z ⋅为实数,则m =( )A .23-B .23C .3D .-36.为实现国民经济新“三步走”的发展战略目标,国家加大了扶贫攻坚的力度.某地区在2015 年以前的年均脱贫率(脱离贫困的户数占当年贫困户总数的比)为70%.2015年开始,全面实施“精准扶贫”政策后,扶贫效果明显提高,其中2019年度实施的扶贫项目,各项目参加户数占比(参加该项目户数占 2019 年贫困户总数的比)及该项目的脱贫率见下表:参加用户比 40% 40% 10% 10%脱贫率 95% 95% 90% 90%那么2019年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的( )A .2728倍B .4735倍C .4835倍D .75倍 7.已知函数()()614,7,7x a x x f x a x -⎧-+≤=⎨>⎩是R 上的减函数,当a 最小时,若函数()4y f x kx =--恰有两个零点,则实数k 的取值范围是( )A .1(,0)2-B .1(2,)2-C .(1,1)-D .1(,1)28.函数()3221f x x ax =-+在()0,∞+内有且只有一个零点,则a 的值为( )A .3B .-3C .2D .-2 9.函数的定义域为( )A .[,3)∪(3,+∞)B .(-∞,3)∪(3,+∞)C .[,+∞)D .(3,+∞)10.2019年某校迎国庆70周年歌咏比赛中,甲乙两个合唱队每场比赛得分的茎叶图如图所示(以十位数字为茎,个位数字为叶).若甲队得分的中位数是86,乙队得分的平均数是88,则x y +=( )A .170B .10C .172D .12 11.下列与函数y x=定义域和单调性都相同的函数是( ) A .2log 2x y = B .21log 2x y ⎛⎫= ⎪⎝⎭ C .21log y x = D .14y x =12.已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( ).A .122B .112C .102D .92二、填空题:本题共4小题,每小题5分,共20分。

2018-2019学年湖北省部分重点中学高三(上)第一次联考数学试卷(文科)(解析版)

2018-2019学年湖北省部分重点中学高三(上)第一次联考数学试卷(文科)(解析版)

2018-2019学年湖北省部分重点中学高三(上)第一次联考数学试卷(文科)一、选择题(本大题共12小题,共60.0分)1.若复数z满足zi=1+2i,则z的共轭复数的虚部为()A.i B.﹣i C.﹣1D.12.下列四个结论:①命题“∃x0∈R,sinx0+cosx0<1”的否定是“∀x∈R,sinx+cosx≥1”;②若p∧q是真命题,则¬p可能是真命题;③“a>5且b>﹣5”是“a+b>0”的充要条件;④当a<0时,幂函数y=x a在区间(0,+∞)上单调递减其中正确的是()A.①④B.②③C.①③D.②④3.已知集合A=(﹣2,5],B={x|m+1≤x≤2m﹣1},若B⊆A,则实数m的取值范围是()A.(﹣3,3]B.[﹣3,3]C.(﹣∞,3]D.(﹣∞,3)4.已知函数,则以下说法正确的是()A.f(x)的对称轴为B.f(x)的对称中心为C.f(x)的单调增区间为D.f(x)的周期为4π5.已知数列{a n}的前n项之和S n=n2﹣4n+1,则|a1|+|a2|+…+|a10|的值为()A.61B.65C.67D.686.在△ABC中,内角A、B、C的对边分别为a、b、c,若b=acosC+c,则角A为()A.60°B.120°C.45°D.135°7.若均α,β为锐角,=()A.B.C.D.8.等差数列{a n}的前9项的和等于前4项的和,若a1=1,a k+a4=0,则k=()A.3B.7C.10D.49.已知函数f(x)=e x﹣2mx+3的图象为曲线C,若曲线C存在与直线y=垂直的切线,则实数m的取值范围是()A.()B.(]C.()D.(]10.已知(x+y+4)<(3x+y﹣2),若x﹣y<λ+恒成立,则λ的取值范围是()A.(﹣∞,1)∪(9,+∞)B.(1,9)C.(0,1)∪(9,+∞)D.(0,1]∪[9,+∞)11.若a,b,c>0且(a+c)(a+b)=4﹣2,则2a+b+c的最小值为()A.﹣1B. +1C.2+2D.2﹣212.已知函数f(x)=,x∈(0,+∞),当x2>x1时,不等式<0恒成立,则实数a的取值范围为()A.(﹣∞,e]B.(﹣∞,e)C.D.二、填空题(本大题共4小题,共20.0分)13.已知数列{a n}满足a1=1,a n﹣a n+1=2a n a n+1,且n∈N*,则a8=.14.已知向量的模为1,且,满足|﹣|=4,|+|=2,则在方向上的投影等于.15.设实数x,y满足,则的取值范围是.16.设P是边长为a的正△ABC内的一点,P点到三边的距离分别为h1、h2、h3,则;类比到空间,设P是棱长为a的空间正四面体ABCD内的一点,则P点到四个面的距离之和h1+h2+h3+h4=.三、解答题(本大题共6小题,共70.0分)17.设函数f(x)=,其中=(2sin(+x),cos2x),=(sin(+x),﹣),x∈R(1)求f(x)的最小正周期和对称轴;(2)若关于x的方程f(x)﹣m=2在x∈[]上有解,求实数m的取值范围.18.在△ABC中,角A,B,C的对边分别是a,b,c,且(Ⅰ)求角A的大小;(Ⅱ)若a=2,求△ABC面积的最大值.19.已知首项为1的等差数列{a n}中,a8是a5,a13的等比中项.(1)求数列{a n}的通项公式;(2)若数列{a n}是单调数列,且数列{b n}满足b n=,求数列{b n}的前项和T n.20.已知等差数列{a n}满足(n+1)a n=2n2+n+k,k∈R.(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和S n.21.(2分)已知函数f(x)=ax+lnx(a∈R)(1)若a=2,求曲线y=f(x)在x=1处的切线方程;(2)求f(x)的单调区间和极值;(3)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求实数a的取值范围.22.(理科)已知函数f(x)=e x+(a≠0,x≠0)在x=1处的切线与直线(e﹣1)x ﹣y+2018=0平行(Ⅰ)求a的值并讨论函数y=f(x)在x∈(﹣∞,0)上的单调性(Ⅱ)若函数g(x)=f(x)﹣﹣x+m+1(m为常数)有两个零点x1,x2(x1<x2)①求实数m的取值范围;②求证:x1+x2<0.2018-2019学年湖北省部分重点中学高三(上)第一次联考数学试卷(文科)参考答案与试题解析一、选择题(本大题共12小题,共60.0分)1.若复数z满足zi=1+2i,则z的共轭复数的虚部为()A.i B.﹣i C.﹣1D.1【分析】利用复数的运算法则、共轭复数的定义、虚部的定义即可得出.【解答】解:iz=1+2i,∴﹣i•iz=﹣i(1+2i),z=﹣i+2则z的共轭复数=2+i的虚部为1.故选:D.【点评】本题考查了复数的运算法则、共轭复数的定义、虚部的定义,考查了推理能力与计算能力,属于基础题.2.下列四个结论:①命题“∃x0∈R,sinx0+cosx0<1”的否定是“∀x∈R,sinx+cosx≥1”;②若p∧q是真命题,则¬p可能是真命题;③“a>5且b>﹣5”是“a+b>0”的充要条件;④当a<0时,幂函数y=x a在区间(0,+∞)上单调递减其中正确的是()A.①④B.②③C.①③D.②④【分析】利用命题的否定判断①的正误;命题的否定判断②的正误;充要条件判断③的正误;幂函数的形状判断④的正误;【解答】解:①命题“∃x0∈R,sinx0+cosx0<1”的否定是“∀x∈R,sinx+cosx≥1”;满足命题的否定形式,正确;②若p∧q是真命题,p是真命题,则¬p是假命题;所以②不正确;③“a>5且b>﹣5”可得“a+b>0”成立,“a+b>0”得不到“a>5且b>﹣5”所以③不正确;④当a<0时,幂函数y=x a在区间(0,+∞)上单调递减,正确,反例:y=,可知:x∈(﹣∞,0)时,函数是增函数,在(0,+∞)上单调递减,所以④正确;故选:A.【点评】本题考查命题的真假的判断与应用,涉及命题的否定,复合命题的真假,充要条件的应用,是基本知识的考查.3.已知集合A=(﹣2,5],B={x|m+1≤x≤2m﹣1},若B⊆A,则实数m的取值范围是()A.(﹣3,3]B.[﹣3,3]C.(﹣∞,3]D.(﹣∞,3)【分析】当B=∅时,m+1>2m﹣1,当B≠∅时,,由此能求出实数m的取值范围.【解答】解:∵集合A=(﹣2,5],B={x|m+1≤x≤2m﹣1},B⊆A,∴当B=∅时,m+1>2m﹣1,解得m<2,成立;当B≠∅时,,解得2≤m≤3.综上,实数m的取值范围是(﹣∞,3].故选:C.【点评】本题考查实数的取值范围的求法,考查子集、不等式的性质等基础知识,考查运算求解能力,是基础题.4.已知函数,则以下说法正确的是()A.f(x)的对称轴为B.f(x)的对称中心为C.f(x)的单调增区间为D.f(x)的周期为4π【分析】由题意利用正弦函数的图象和性质,逐一判断各个选项是否正确,从而得出结论.【解答】解:对于函数,令2x+=kπ+,求得x=+,k∈Z,故它的图象的对称轴为x=+,k∈Z,故A不正确.令2x+=kπ,求得x=﹣,k∈Z,故它的图象的对称中心为(﹣,0 ),k∈Z,故B正确.令2kπ﹣≤2x+≤2kπ+,求得kπ﹣≤x≤kπ﹣,k∈Z,故它增区间[kπ﹣,kπ﹣],k∈Z,故C不正确.该函数的最小正周期为=π,故D错误,故选:B.【点评】本题主要考查正弦函数的图象和性质,属于基础题.5.已知数列{a n}的前n项之和S n=n2﹣4n+1,则|a1|+|a2|+…+|a10|的值为()A.61B.65C.67D.68【分析】首先运用a n=求出通项a n,判断正负情况,再运用S10﹣2S2即可得到答案.【解答】解:当n=1时,S1=a1=﹣2,当n≥2时,a n=S n﹣S n﹣1=(n2﹣4n+1)﹣[(n﹣1)2﹣4(n﹣1)+1]=2n﹣5,故a n=,据通项公式得a1<a2<0<a3<a4<…<a10∴|a1|+|a2|+…+|a10|=﹣(a1+a2)+(a3+a4+…+a10)=S10﹣2S2=102﹣4×10+1﹣2(﹣2﹣1)=67.故选:C.【点评】本题主要考查数列的通项与前n项和之间的关系式,注意n=1的情况,是一道基础题.6.在△ABC中,内角A、B、C的对边分别为a、b、c,若b=acosC+c,则角A为()A.60°B.120°C.45°D.135°【分析】利用正弦定理把已知等式转化成角的关系,根据三角形内角和定理,两角和的正弦函数公式,同角三角函数基本关系式可求cosA的值,结合A的范围即可得解A的值.【解答】解:∵b=acosC+c.∴由正弦定理可得:sinB=sinAcosC+sinC,可得:sinAcosC+sinCcosA=sinAcosC+sinC,可得:sinCcosA=sinC,∵sinC≠0,∴cosA=,∵A∈(0°,180°),∴A=60°.故选:A.【点评】本题主要考查了正弦定理的应用,三角函数恒等变换的应用.注重了对学生基础知识综合考查,属于基础题.7.若均α,β为锐角,=()A.B.C.D.【分析】由题意求出cosα,cos(α+β),利用β=α+β﹣α,通过两角差的余弦函数求出cosβ,即可.【解答】解:α,β为锐角,则cosα===;<sinα,∴,则cos(α+β)=﹣=﹣=﹣,cosβ=cos(α+β﹣α)=cos(α+β)cosα+sin(α+β)sinα==.故选:B.【点评】本题考查两角和与差的三角函数的化简求值,注意角的范围与三角函数值的关系,考查计算能力.8.等差数列{a n}的前9项的和等于前4项的和,若a1=1,a k+a4=0,则k=()A.3B.7C.10D.4【分析】由“等差数列{a n}前9项的和等于前4项的和”可求得公差,再由a k+a4=0可求得结果.【解答】解:∵等差数列{a n}前9项的和等于前4项的和,∴9+36d=4+6d,其中d为等差数列的公差,∴d=﹣,又∵a k+a4=0,∴1+(k﹣1)d+1+3d=0,代入可解得k=10,故选:C.【点评】本题考查等差数列的前n项和公式及其应用,涉及方程思想,属基础题.9.已知函数f(x)=e x﹣2mx+3的图象为曲线C,若曲线C存在与直线y=垂直的切线,则实数m的取值范围是()A.()B.(]C.()D.(]【分析】求函数的导数,利用导数的几何意义以及直线垂直的等价条件,转化为e x﹣2m=﹣3有解,即可得到结论.【解答】解:函数的f(x)的导数f′(x)=e x﹣2m,若曲线C存在与直线y=x垂直的切线,则切线斜率k=e x﹣2m,满足(e x﹣2m)=﹣1,即e x﹣2m=﹣3有解,即2m=e x+3有解,∵e x+3>3,∴m>,故选:A.【点评】本题主要考查导数的几何意义的应用,以及直线垂直的关系,结合指数函数的性质是解决本题的关键.10.已知(x+y+4)<(3x+y﹣2),若x﹣y<λ+恒成立,则λ的取值范围是()A.(﹣∞,1)∪(9,+∞)B.(1,9)C.(0,1)∪(9,+∞)D.(0,1]∪[9,+∞)【分析】根据已知得出x,y的约束条件,画出满足约束条件的可行域,再用角点法,求出目标函数z=x﹣y的最大值,再根据最值给出λ的求值范围.【解答】解:由题意得x,y的约束条件.画出不等式组表示的可行域如图示:在可行域内平移直线z=x﹣y,当直线经过3x+y﹣2=0与x=3的交点A(3,﹣7)时,目标函数z=x﹣y有最大值z=3+7=10.x﹣y<λ+恒成立,即:λ+≥10,即:.解得:λ∈(0,1]∪[9,+∞)故选:D.【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.11.若a,b,c>0且(a+c)(a+b)=4﹣2,则2a+b+c的最小值为()A.﹣1B. +1C.2+2D.2﹣2【分析】利用基本不等式的性质即可得出.【解答】解:∵a,b,c>0且(a+b)(a+c)=4﹣2,则2a+b+c=(a+b)+(a+c)≥=2=2,当且仅当a+b=a+c=﹣1时取等号.故选:D.【点评】本题考查了基本不等式的性质,考查了推理能力与计算能力,属于基础题.12.已知函数f(x)=,x∈(0,+∞),当x2>x1时,不等式<0恒成立,则实数a的取值范围为()A.(﹣∞,e]B.(﹣∞,e)C.D.【分析】根据题意可得函数g(x)=xf(x)=e x﹣ax2在x∈(0,+∞)时是单调增函数,求导,分离参数,构造函数,求出最值即可【解答】解:∵x∈(0,+∞),∴x1f(x1)<x2f(x2).即函数g (x )=xf (x )=e x ﹣ax 2在x ∈(0,+∞)时是单调增函数. 则g′(x )=e x ﹣2ax ≥0恒成立. ∴2a ≤,令,则,x ∈(0,1)时m'(x )<0,m (x )单调递减, x ∈(1,+∞)时m'(x )>0,m (x )单调递增, ∴2a ≤m (x )min =m (1)=e , ∴.故选:D .【点评】本题考查了函数的单调性问题,考查函数恒成立问题,考查转化思想,考查导数的应用,属于中档题.二、填空题(本大题共4小题,共20.0分)13.已知数列{a n }满足a 1=1,a n ﹣a n +1=2a n a n +1,且n ∈N*,则a 8=.【分析】直接利用递推关系式求出数列的通项公式,进一步根据通项公式求出结果. 【解答】解:数列{a n }满足a 1=1,a n ﹣a n +1=2a n a n +1,则:(常数),数列{}是以为首项,2为公差的等差数列.则:,所以:,当n=1时,首项a 1=1, 故:.所以:.故答案为:【点评】本题考查的知识要点:数列的通项公式的求法及应用.14.已知向量的模为1,且,满足|﹣|=4,|+|=2,则在方向上的投影等于﹣3.【分析】由已知中向量的模为1,且,满足|﹣|=4,|+|=2,我们易求出•的值,进而根据在方向上的投影等于得到答案.【解答】解:∵||=1,|﹣|=4,|+|=2,∴|+|2﹣|﹣|2=4•=﹣12∴•=﹣3=||||cosθ∴||cosθ=﹣3故答案为:﹣3【点评】本题考查的知识点是平面向量数量积的含义与物理意义,其中根据已知条件求出•的值,是解答本题的关键.15.设实数x,y满足,则的取值范围是[﹣,] .【分析】首先画出可行域,利用目标函数的几何意义求z的最值.【解答】解:由实数x,y满足,得到可行域如图:由图象得到的范围为[k OB,k OA],A(1,1),B(,)即∈[,1],∈[1,7],﹣ [﹣1,].所以则的最小值为﹣;m最大值为:;所以的取值范围是:[﹣,]故答案为:[﹣,].【点评】本题考查了简单线性规划问题;关键是正确画出可行域,利用目标函数的几何意义求出其最值,然后根据对勾函数的性质求m的范围.16.设P是边长为a的正△ABC内的一点,P点到三边的距离分别为h1、h2、h3,则;类比到空间,设P是棱长为a的空间正四面体ABCD内的一点,则P点到四个面的距离之和h1+h2+h3+h4=.【分析】由平面图形的性质向空间物体的性质进行类比时,常用的思路有:由平面图形中点的性质类比推理出空间里的线的性质,由平面图形中线的性质类比推理出空间中面的性质,由平面图形中面的性质类比推理出空间中体的性质.固我们可以根据已知中平面几何中,关于线的性质“正三角形内任意一点到三边距离之和是一个定值”,推断出一个空间几何中一个关于面的性质.【解答】解:类比P是边长为a的正△ABC内的一点,本题可以用一个正四面体来计算一下棱长为a的三棱锥内任一点到各个面的距离之和,如图:由棱长为a可以得到BF=a,BO=AO=,在直角三角形中,根据勾股定理可以得到BO2=BE2+OE2,把数据代入得到OE=a,∴棱长为a的三棱锥内任一点到各个面的距离之和4×a=a,故答案为:a.【点评】本题考查的知识点是类比推理,类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).三、解答题(本大题共6小题,共70.0分)17.设函数f(x)=,其中=(2sin(+x),cos2x),=(sin(+x),﹣),x∈R(1)求f(x)的最小正周期和对称轴;(2)若关于x的方程f(x)﹣m=2在x∈[]上有解,求实数m的取值范围.【分析】(1)用向量数量积公式计算后再化成辅助角形式,最后用正弦函数的周期公式和对称轴的结论可求得;(2)将方程有解转化为求函数的值域,然后用正弦函数的性质解决.【解答】解:(1)∵f(x)=•=2sin(+x)•sin(+x)﹣cos2x=2sin2(+x)﹣cos2x=1﹣cos[2(+x)]﹣cos2x=sin2x﹣cos2x+1=2sin(2x﹣)+1,∴最小正周期T=π,由2x﹣=+kπ,得x=+,k∈Z,所以f(x)的对称轴为:x=+,k∈Z,(2)因为f(x)﹣m=2可化为m=2sin(2x﹣)﹣1在x∈[,]上有解,等价于求函数y=2sin(2x﹣)﹣1的值域,∵x∈[,],∴2x﹣∈[,],∴sin(2x﹣)∈[,1]∴y∈[0,1]故实数m的取值范围是[0,1]【点评】本题考查了平面向量数量积的性质及其运算.属基础题.18.在△ABC中,角A,B,C的对边分别是a,b,c,且(Ⅰ)求角A的大小;(Ⅱ)若a=2,求△ABC面积的最大值.【分析】(Ⅰ)由已知及正弦定理,三角形内角和定理,三角函数恒等变换的应用可得,结合sinB≠0,可得,结合A为三角形内角,可求A 的值.(Ⅱ)由余弦定理,基本不等式可得,根据三角形面积公式即可计算得解.【解答】解:(Ⅰ)由正弦定理可得:,从而可得:,即,又B为三角形内角,所以sinB≠0,于是,又A为三角形内角,所以.(Ⅱ)由余弦定理:a2=b2+c2﹣2bccosA,得:,所以,所以≤2+,即△ABC面积的最大值为2+.【点评】本题主要考查了正弦定理,三角形内角和定理,三角函数恒等变换的应用,余弦定理,基本不等式,三角形面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.19.已知首项为1的等差数列{a n}中,a8是a5,a13的等比中项.(1)求数列{a n}的通项公式;(2)若数列{a n}是单调数列,且数列{b n}满足b n=,求数列{b n}的前项和T n.【分析】(1)根据等差数列的通项公式和等比数列的性质列出关于公差d的方程,利用方程求得d,然后写出通项公式;(2)根据单调数列的定义推知a n=2n﹣1,然后利用已知条件求得b n的通项公式,再由错位相减法求得答案.【解答】解:(1)∵a8是a5,a13的等比中项,{a n}是等差数列,∴(1+7d)2=(1+4d)(1+12d)解得d=0或d=2,∴a n=1或a n=2n﹣1;(2)由(1)及{a n}是单调数列知a n=2n﹣1,(i)当n=1时,T1=b1===.(ii)当n>1时,b n==,∴T n=+++…+……①∴T n=+++…++……②①﹣②得T n=+++…+﹣=﹣,∴T n=﹣.综上所述,T n=﹣.【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式、“错位相减法”,考查了推理能力与计算能力,属于中档题综上所述,20.已知等差数列{a n}满足(n+1)a n=2n2+n+k,k∈R.(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和S n.【分析】(1)直接利用等差数列的性质求出数列的通项公式.(2)利用裂项相消法求出数列的和.【解答】解:(1)等差数列{a n}满足(n+1)a n=2n2+n+k,k∈R.令n=1时,,n=2时,, n=3时,,由于2a 2=a 1+a 3, 所以,解得k=﹣1. 由于=(2n ﹣1)(n +1),且n +1≠0, 则a n =2n ﹣1;(2)由于===,所以S n =+…+=+n==.【点评】本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法在数列求和中的应用.21.(2分)已知函数f (x )=ax +lnx (a ∈R ) (1)若a=2,求曲线y=f (x )在x=1处的切线方程; (2)求f (x )的单调区间和极值;(3)设g (x )=x 2﹣2x +2,若对任意x 1∈(0,+∞),均存在x 2∈[0,1],使得f (x 1)<g (x 2),求实数a 的取值范围.【分析】(1)利用导数的几何意义,可求曲线y=f (x )在x=1处切线的斜率,从而求出切线方程即可;(2)求导函数,在区间(0,﹣)上,f'(x )>0;在区间(﹣,+∞)上,f'(x )<0,故可得函数的单调区间;求出函数的极值即可;(3)由已知转化为f (x )max <g (x )max ,可求g (x )max =2,f (x )最大值﹣1﹣ln (﹣a ),由此可建立不等式,从而可求a 的取值范围.【解答】解:(1)由已知f′(x)=2+(x>0),…(2分)∴f'(1)=2+1=3,f(1)=2,故曲线y=f(x)在x=1处切线的斜率为3,故切线方程是:y﹣2=3(x﹣1),即3x﹣y﹣1=0…(4分)(2)求导函数可得f′(x)=a+=(x>0).…当a<0时,由f'(x)=0,得x=﹣.在区间(0,﹣)上,f'(x)>0;在区间(﹣,+∞)上,f'(x)<0,所以,函数f(x)的单调递增区间为(0,﹣),单调递减区间为(﹣,+∞),=﹣1﹣ln(﹣a)…(10分)故f(x)极大值=f(﹣)(3)由已知转化为f(x)max<g(x)max.∵g(x)=x2﹣2x+2=(x﹣1)2+1,x2∈[0,1],∴g(x)max=2…(11分)由(2)知,当a≥0时,f(x)在(0,+∞)上单调递增,值域为R,故不符合题意.(或者举出反例:存在f(e3)=ae3+3>2,故不符合题意.)当a<0时,f(x)在(0,﹣)上单调递增,在(﹣,+∞)上单调递减,故f(x)的极大值即为最大值,f(﹣)=﹣1+ln(﹣)=﹣1﹣ln(﹣a),所以2>﹣1﹣ln(﹣a),所以ln(﹣a)>﹣3,解得a<﹣.…(14分)【点评】本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性,考查求参数的值,解题的关键是转化为f(x)max<g(x)max.22.(理科)已知函数f(x)=e x+(a≠0,x≠0)在x=1处的切线与直线(e﹣1)x ﹣y+2018=0平行(Ⅰ)求a的值并讨论函数y=f(x)在x∈(﹣∞,0)上的单调性(Ⅱ)若函数g(x)=f(x)﹣﹣x+m+1(m为常数)有两个零点x1,x2(x1<x2)①求实数m的取值范围;②求证:x1+x2<0.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)根据函数的单调性求出函数的最小值,求出m的范围,构造函数m(x)=g(x)﹣g(﹣x)=g(x)﹣g(﹣x)=e x﹣e﹣x﹣2x,(x<0)则m'(x)=e x+e﹣x﹣2>0,根据函数的单调性证明即可.【解答】解:(Ⅰ)∵,∴∴a=1,∴f(x)=e x,f令h(x)=x2e x﹣1,h'(x)=(2x+x2)e x,h(x)在(﹣∞,﹣2)上单调递增,在(﹣2,0)上单调递减,所以x∈(﹣∞,0)时,h(x),即x∈(﹣∞,0)时,f'(x)<0,所以函数y=f(x)在x∈(﹣∞,0)上单调递减.(Ⅱ) 由条件可知,g(x)=e x﹣x+m+1,①g'(x)=e x﹣1,∴g(x)在(﹣∞,0)上单调递减,在(0,+∞)上单调递增,要使函数有两个零点,则g(x)min=g(0)=m+2<0,∴m<﹣2.‚②证明:由上可知,x1<0<x2,∴﹣x2<0,∴构造函数m(x)=g(x)﹣g(﹣x)=g(x)﹣g(﹣x)=e x﹣e﹣x﹣2x,(x<0)则m'(x)=e x+e﹣x﹣2>0,所以m(x)>m(0)即g(x2)=g(x1)>g(﹣x1)又g(x)在(﹣∞,0)上单调递减,所以x1<﹣x2,即x1+x2<0.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,属于中档题.。

四川省成都市2019届高三第一次诊断性检测数学(理)试题(含参考答案)

四川省成都市2019届高三第一次诊断性检测数学(理)试题(含参考答案)

n = 9 ,满足循环终止条件,退出循环,
输出的 n 值是 9,故选 C. 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点: (1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循 环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,
{
}
{
}
{
}
2 +i (i 为虚数单位)在复平面内对应的点位于( ) i
B. 第二象限 D. 第四象限
A. 第一象限 C. 第三象限 【答案】D 【解析】 【分析】
利用复数代数形式的乘除运算化简复数 z = 【详解】 z =
2 +i ,求出 z 在复平面内对应点的坐标即可得结果. i
2+i (2 + i)(- i) = = 1 - 2i , i - i2
(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条 件即可. 6.设 S n 为等差数列 {an } 的前 n 项和,且 2 + a5 = a6 + a3 ,则 S7 = ( A. 28 B. 14 C. 7 D. 2 )
【答案】B 【解析】 【分析】 由等差数列的性质求得 a4 = 2 ,利用等差数列的前 n 项和公式结合等差的性质可得结果. 【详解】因为 2 + a5 = a6 + a3 = a5 + a4 , 所以 a4 = 2
C.
6 3
D.
2 2
【答案】C 【解析】 【分析】 以 A 为原点, AC 为 y 轴, AA1 为 z 轴,建立空间直角坐标系,利用向量法能求出异面直线 A1M 与

高三数学第一次月考试题(附答案)

高三数学第一次月考试题(附答案)

高三数学第一次月考试题(注意:答案一律写在答题纸上)一、填空题 (本大题共12小题,每小题4分,共48分)1. 已知集合A ={x |x 2-p x +15=0}B ={x |x 2-5x +q =0},如果A ∩B ={3},那么p +q =2. 已知集合}2,1,1{-=M ,集合},|{2M x x y y N ∈==,则N M = 3. 设A 、B 、C 是三个集合,则“A ∩B=A ∩C ”是“B=C ”的 条件。

4. 已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)= 。

5. 设函数 f (x )在 (-∞,+∞)内有定义,下列函数(1) y =-|f (x )|; (2) y = x f (x 2); (3) y =-f (-x ); (4) y =f (x )-f (-x ) 中必为奇函数的有▁▁▁▁▁▁(要求填写正确答案的序号)。

6.⎪⎩⎪⎨⎧<-=>=0,10,00,1)(x x x x f ,则方程()1(12)f x x x +=-的各个解之和为7.已知函数y =f (x )是奇函数,周期T =5,若f (-2)=2a -1则f (7)= 8.函数 )0(12≤-=x x y 反函数是9.某班有50名学生,其中 15人选修A 课程,另外35人选修B 课程.从班级中任选两名学生,他们是选修不同课程的学生的概率是 (结果用分数表示). 10.若不等式|2|6ax +<的解集为(-1,2),则实数a = 。

11.当不等式61022≤++≤px x 恰有一个解时,实数p 的值是____。

12. 已知集合M ={x |1≤x ≤10,x ∈N },对它的非空子集A ,将A 中每个元素k ,都乘以(-1)k再求和(如A={1,3,6},可求得和为(-1)·1+(-1)3·3+(-1)6·6=2,则对M 的所有非空子集,这些和的总和是 . 二、选择题(本大题共4小题,共16分)13.若函数y =f (x ) (f (x )不恒为零)的图象与函数y =-f (x )的图象关于原点对称,则函数y =f (x ) ( )(A )是奇函数而不是偶函数 (B )是偶函数而不是奇函数(C )既是奇函数又是偶函数 (D )既不是奇函数又不是偶函数设函数14.三人互相传球,由甲开始发球,并作为第一次传球,经过5次传球后,球仍然回到甲手中,则不同的传球方式有 ( ) (A ) 6种 (B ) 8种 (C ) 10种 (D )16种 15、已知关于x 的方程:2x =x 2解的个数为 ( ) (A )1 (B )2 (C )3 (D ) 4 16. 设函数()f x 的定义域为R ,有下列三个命题:(1)若存在常数M ,使得对任意R ∈x ,有()f x M ≤,则M 是函数()f x 的最大值; (2)若存在R ∈0x ,使得对任意R ∈x ,且0x x ≠,有)()(0x f x f <,则)(0x f 是函数()f x 的最大值;(3)若存在R ∈0x ,使得对任意R ∈x ,有)()(0x f x f ≤,则)(0x f 是函数()f x 的最大值.。

2019年四川省成都市高考数学一诊试卷(理科)(解析版)

2019年四川省成都市高考数学一诊试卷(理科)(解析版)

2019年四川省成都市高考数学一诊试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x>﹣2},B={x|x≥1},则A∪B=()A.{x|x>﹣2}B.{x|﹣2<x≤1}C.{x|x≤﹣2}D.{x|x≥1}2.(5分)复数(i为虚数单位)在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)一个三棱锥的正视图和侧视图如图所示(均为直角三角形),则该三棱锥的体积为()A.4B.8C.16D.244.(5分)设实数x,y满足约束条件,则z=3x+y的最小值为()A.1B.2C.3D.65.(5分)执行如图所示的程序框图,则输出的n值是()A.5B.7C.9D.116.(5分)设S n为等差数列{a n}的前n项和,且2+a5=a6+a3,则S7=()A.28B.14C.7D.27.(5分)下列判断正确的是()A.“x<﹣2”是“ln(x+3)<0”的充分不必要条件B.函数的最小值为2C.当α,β∈R时,命题“若α=β,则sinα=sinβ”的逆否命题为真命题D.命题“∀x>0,2019x+2019>0”的否定是“∃x0≤0,2019x+2019≤0”8.(5分)已知函数f(x)=3x+2cos x,若,b=f(2),c=f(log27),则a,b,c的大小关系是()A.a<b<c B.c<a<b C.b<a<c D.b<c<a9.(5分)在各棱长均相等的直三棱柱ABC﹣A1B1C1中,已知M是棱BB1的中点,N是棱AC的中点,则异面直线A1M与BN所成角的正切值为()A.B.1C.D.10.(5分)齐王有上等,中等,下等马各一匹;田忌也有上等,中等,下等马各一匹.田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.现从双方的马匹中随机各选一匹进行一场比赛,若有优势的马一定获胜,则齐王的马获胜的概率为()A.B.C.D.11.(5分)已知定义在R上的函数f(x)的图象关于直线x=a(a>0)对称,且当x≥a时,f(x)=e x﹣2a.若A,B是函数f(x)图象上的两个动点,点P(a,0),则当的最小值为0时,函数f(x)的最小值为()A.e B.e﹣1C.e D.e﹣212.(5分)设椭圆C:=1(a>b>0)的左,右顶点为A,B.P是椭圆上不同于A,B的一点,设直线AP,BP的斜率分别为m,n,则当(3﹣)+3(ln|m|+ln|n|)取得最小值时,椭圆C的离心率为()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上.13.(5分)已知双曲线C:x2﹣y2=1的右焦点为F,则点F到双曲线C的一条渐近线的距离为.14.(5分)(2x+)4展开式的常数项是.15.(5分)设S n为数列{a n}的前n项和,且a1=4,,则a5=.16.(5分)已知G为△ABC的重心,过点G的直线与边AB,AC分别相交于点P,Q,若AP=λAB,则当△ABC与△APQ的面积之比为时,实数λ的值为.三、解答题:本大题共5小题,共70分.解答应写出文字说明证明过程或演算步骤.17.(12分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知,.(1)求a的值;(2)若b=1,求△ABC的面积.18.(12分)如图,四棱锥P﹣ABCD的底面ABCD是边长为2的菱形,∠ABC=,P A ⊥平面ABCD,点M是棱PC的中点.(Ⅰ)证明:P A∥平面BMD;(Ⅱ)当P A=时,求直线AM与平面PBC所成角的正弦值.19.(12分)在2018年俄罗斯世界杯期间,莫斯科的部分餐厅经营了来自中国的小龙虾,这些小龙虾标有等级代码.为得到小龙虾等级代码数值x与销售单价y之间的关系,经统计得到如下数据:(Ⅰ)已知销售单价y与等级代码数值x之间存在线性相关关系,求y关于x的线性回归方程(系数精确到0.1);(Ⅱ)若莫斯科某个餐厅打算从上表的6种等级的中国小龙虾中随机选2种进行促销,记被选中的2种等级代码数值在60以下(不含60)的数量为X,求X的分布列及数学期望.参考公式:对一组数据(x1,y1),(x2,y2),…(x n,y n),其回归直线=x的斜率和截距最小二乘估计分别为:=,=.参考数据:x i y i=8440,x=25564.20.(12分)已知长度为4的线段AB的两个端点A,B分别在x轴和y轴上运动,动点P 满足=3,记动点P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)设不经过点H(0,1)的直线y=2x+t与曲线C相交于两点M,N.若直线HM与HN的斜率之和为1,求实数t的值.21.(12分)已知函数.(Ⅰ)当a<0时,讨论函数f(x)的单调性;(Ⅱ)当a=1时,若关于x的不等式f(x)+(x+)e x﹣bx≥1恒成立,求实数b的取值范围.请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数).在以坐标原点O为极点,x轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线C的极坐标方程是.(1)求直线l的普通方程与曲线C的直角坐标方程;(2)设点P(0,﹣1).若直线l与曲线C相交于两点A,B,求|P A|+|PB|的值.[选修4-5:不等式选讲]23.已知函数|.(Ⅰ)求不等式f(x)﹣3<0的解集;(Ⅱ)若关于x的方程f(x)﹣m2﹣2m﹣=0无实数解,求实数m的取值范围.2019年四川省成都市高考数学一诊试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:集合A={x|x>﹣2},B={x|x≥1},则A∪B={x|x>﹣2}.故选:A.2.【解答】解:∵=,∴复数在复平面内对应的点的坐标为(1,﹣2),位于第四象限.故选:D.3.【解答】解:由三视图知几何体为三棱锥,且侧棱AO与底面OCB垂直,其直观图如图:∵其俯视图是直角三角形,直角边长为2;4;∴OA=6,∴棱锥的体积V==8.故选:B.4.【解答】解:作出实数x,y满足约束条件表示的平面区域(如图示:阴影部分):由得A(0,1),由z=3x+y得y=﹣3x+z,平移y=﹣3x,易知过点A时直线在y上截距最小,所以z=1.故选:A.5.【解答】解:执行如图所示的程序框图如下,n=1时,S==,n=3时,S=+=,n=5时,S=++=,n=7时,S=+++=,满足循环终止条件,此时n=9,则输出的n值是9.故选:C.6.【解答】解:∵2+a5=a6+a3,∴a4=2,S7==7a4=14.故选:B.7.【解答】解:“x<﹣2”推不出“ln(x+3)<0”,反正成立,所以“x<﹣2”是“ln(x+3)<0”的充分不必要条件,所以A不正确;函数的最小值为3+;所以B不正确;当α,β∈R时,命题“若α=β,则sinα=sinβ”是真命题,所以它的逆否命题为真命题;所以C正确;命题“∀x>0,2019x+2019>0”的否定是“∃x0≤0,2019x+2019≤0”不满足命题的否定形式,所以D不正确;故选:C.8.【解答】解:根据题意,函数f(x)=3x+2cos x,其导数函数f′(x)=3﹣2sin x,则有f′(x)=3﹣2sin x>0在R上恒成立,则f(x)在R上为增函数;又由2=log24<log27<3<,则b<c<a;故选:D.9.【解答】解:高各棱长均相等的直三棱柱ABC﹣A1B1C1中,棱长为2,以A为原点,AC为y轴,AA1为z轴,建立空间直角坐标系,则A1(0,0,2),M(,1,1),B(,1,0),N(0,1,0),=(,﹣1),=(﹣,0,0),设异面直线A1M与BN所成角为θ,则cosθ===,∴tanθ=.∴异面直线A1M与BN所成角的正切值为.故选:C.10.【解答】解:设齐王上等,中等,下等马分别为A,B,C,田忌上等,中等,下等马分别为a,b,c,现从双方的马匹中随机各选一匹进行一场比赛,基本事件有:(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),(C,a),(C,b),(C,c),共9种,有优势的马一定获胜,齐王的马获胜包含的基本事件有:(A,a),(A,b),(A,c),(B,b),(B,c),(C,c),共6种,∴齐王的马获胜的概率为p==.故选:C.11.【解答】解如图,显然的模不为0,故当最小值为0时,只能是图中的情况,此时,P A⊥PB,且P A,PB与函数图象相切,根据对称性,易得∠BPD=45°,设B(x0,y0),当x≥a时,f′(x)=e x﹣2a,∴∴x0=2a∵P(a,0)∴PD=a,∴BD=a,即B(2a,a),∴e2a﹣2a=a,∴a=1,∴当x≥1时,f(x)=e x﹣2,递增,故其最小值为:e﹣1,根据对称性可知,函数f(x)在R上最小值为e﹣1.故选:B.12.【解答】解:A(﹣a,0),B(a,0),设P(x0,y0),则,则m=,n=,∴mn==,∴(3﹣)+3(ln|m|+ln|n|)==,令=t>1,则f(t)=.f′(t)==,∴当t=2时,函数f(t)取得最小值f(2).∴.∴e=,故选:D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上. 13.【解答】解:双曲线C:x2﹣y2=1的a=b=1,c=,则可设F(,0),设双曲线的一条渐近线方程为y=x,则F到渐近线的距离为d==1.故答案为:1.14.【解答】解:由通项公式得:T r+1=C(2x)4﹣r()r=24﹣r C x4﹣2r,令r=2,得展开式的常数项为:24﹣2C=24,故答案为:2415.【解答】解:S n为数列{a n}的前n项和,且a1=4,a n+1=S n,①,则:当n≥2时,a n=S n﹣1②①﹣②得:a n+1﹣a n=a n,所以:(常数),所以:数列{a n}是以4为首项,2为公比的等比数列.所以:(首项不符合通项).故:,当n=5时,.故答案为:3216.【解答】解:∵设AQ=μACG为△ABC的重心,∴==.∵P,G,Q三点共线,∴.△ABC与△APQ的面积之比为时,.∴或,故答案为:或.三、解答题:本大题共5小题,共70分.解答应写出文字说明证明过程或演算步骤. 17.【解答】解:(1)由题意可得,,由余弦定理可得,cos A=(2分)即=,(4分)∴a=(6分)(2)∵a=,b=1,由正弦定理可得,sin B===(8分)∵a>b,∴B=,(9分)C=π﹣A﹣B=(10分)∴S△ABC===(12分)18.【解答】证明:(Ⅰ)如图,连结AC,交BD于点O,连结MO,∵M,O分别为PC,AC的中点,∴P A∥MO∵P A⊄平面BMD,MO⊂平面BMD,∴P A∥平面BMD.解:(Ⅱ)如图,取线段BC的中点H,连结AH,∵ABCD为菱形,∠ABC=,∴AH⊥AD,分别以AH,AD,AP所在直线为x轴,y轴,z轴,建立空间直角坐标系,∴A(0,0,0),B(),C(),P(0,0,),M(),∴=(,),=(0,2,0),=(),设平面PBC的法向量=(x,y,z),则,取z=1,∴=(1,0,1),设直线AM与平面PBC所成角为θ,∴sinθ=|cos<>|===.∴直线AM与平面PBC所成角的正弦值为.19.【解答】解:(Ⅰ)由题意得:=(38+48+58+68+78+88)=63,=(16.8+18.8+20.8+22.8+24+25.8)=21.5,=≈0.2,=﹣=8.9,故所求回归方程是:=0.2x+8.9;(Ⅱ)由题意知X的所有可能为0,1,2,∵P(X=0)==,P(X=1)==,P(X=2)==,故X的分布列为:故E(X)=0×+1×+2×=1.20.【解答】解:(Ⅰ)设P(x,y),A(m,0),B(0,n),∵,∴(x,y﹣n)=3(m﹣x,﹣y)=(3m﹣3x,﹣3y),即,∴,∵|AB|=4,∴m2+n2=16,∴,∴曲线C的方程为:;(Ⅱ)设M(x1,y1),N(x2,y2),由,消去y得,37x2+36tx+9(t2﹣1)=0,由△=(36t)2﹣4×37×9(t2﹣1)>0,可得﹣,又直线y=2x+t不经过点H(0,1),且直线HM与HN的斜率存在,∴t≠±1,又,,∴k HM+k HN===4﹣=1,解得t=3,故t的值为3.21.【解答】解:(Ⅰ)由题意知:f′(x)=,∵当a<0,x>0时,有ax﹣e x<0,∴当x>1时,f′(x)<0,当0<x<1时,f′(x)>0,∴函数f(x)在(0,1)递增,在(1,+∞)递减;(Ⅱ)由题意当a=1时,不等式f(x)+(x+)e x﹣bx≥1恒成立,即xe x﹣lnx+(1﹣b)x≥1恒成立,即b﹣1≤e x﹣﹣恒成立,设g(x)=e x﹣﹣,则g′(x)=,设h(x)=x2e x+lnx,则h′(x)=(x2+2x)e x+,当x>0时,有h′(x)>0,故h(x)在(0,+∞)递增,且h(1)=e>0,h()=﹣ln2<0,故函数h(x)有唯一零点x0,且<x0<1,故当x∈(0,x0)时,h(x)<0,g′(x)<0,g(x)递减,当x∈(x0,+∞)时,h(x)>0,g′(x)>0,g(x)递增,即g(x0)为g(x)在定义域内的最小值,故b﹣1≤﹣﹣,∵h(x0)=0,得x0=﹣,<x0<1,…(*)令k(x)=xe x,<x<1,故方程(*)等价于k(x)=k(﹣lnx),<x<1,而k(x)=k(﹣lnx)等价于x=﹣lnx,<x<1,设函数m(x)=x+lnx,<x<1,易知m(x)单调递增,又m()=﹣ln2<0,m(1)=1>0,故x0是函数的唯一零点,即lnx0=﹣x0,=,故g(x)的最小值g(x0)=1,故实数b的取值范围是(﹣∞,2].请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.[选修4-4:坐标系与参数方程]22.【解答】解:(1)已知直线l的参数方程为(t为参数).转换为直角坐标方程为:.曲线C的极坐标方程是.转换为直角坐标方程为:x2+y2=2x+2y,整理得:(x﹣1)2+(y﹣1)2=2,(2)将直线l的参数方程为(t为参数),代入(x﹣1)2+(y﹣1)2=2.得到:,化简得:,所以:(t 1和t2为A、B对应的参数).故:.[选修4-5:不等式选讲]23.【解答】解:(Ⅰ)当x≥,f(x)﹣3=2x﹣1++1﹣3<0,解得x<,即有≤x <;当﹣2<x<时,f(x)﹣3=1﹣2x++1﹣3<0,解得x>﹣,即有﹣<x<;当x≤﹣2时,f(x)﹣3=1﹣2x﹣﹣1﹣3<0,解得x>﹣,即有x∈∅.综上可得原不等式的解集为(﹣,):(Ⅱ)由f(x)=,可得f(x)的值域为[,+∞),关于x的方程f(x)﹣m2﹣2m﹣=0无实数解,可得m2+2m+<,即m2+2m<0,解得﹣2<m<0,则m的范围是(﹣2,0).。

江苏省苏锡常镇四市2025届高三第一次模拟考试数学试卷含解析

江苏省苏锡常镇四市2025届高三第一次模拟考试数学试卷含解析

江苏省苏锡常镇四市2025届高三第一次模拟考试数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知等差数列{}n a 中,27a =,415a =,则数列{}n a 的前10项和10S =( )A .100B .210C .380D .4002.一个由两个圆柱组合而成的密闭容器内装有部分液体,小圆柱底面半径为1r ,大圆柱底面半径为2r ,如图1放置容器时,液面以上空余部分的高为1h ,如图2放置容器时,液面以上空余部分的高为2h ,则12h h =( )A .21r rB .212r r ⎛⎫ ⎪⎝⎭C .321r r ⎛⎫ ⎪⎝⎭D .21r r 3.甲、乙、丙、丁四位同学利用暑假游玩某风景名胜大峡谷,四人各自去景区的百里绝壁、千丈瀑布、原始森林、远古村寨四大景点中的一个,每个景点去一人.已知:①甲不在远古村寨,也不在百里绝壁;②乙不在原始森林,也不在远古村寨;③“丙在远古村寨”是“甲在原始森林”的充分条件;④丁不在百里绝壁,也不在远古村寨.若以上语句都正确,则游玩千丈瀑布景点的同学是( )A .甲B .乙C .丙D .丁4.已知x ,y 满足2y x x y x a ≥⎧⎪+≤⎨⎪≥⎩,且2z x y =+的最大值是最小值的4倍,则a 的值是( )A .4B .34C .211D .14 5.函数的图象可能是下列哪一个?( )A .B .C .D .6.某中学2019年的高考考生人数是2016年高考考生人数的1.2倍,为了更好地对比该校考生的升学情况,统计了该校2016年和2019年的高考情况,得到如图柱状图:则下列结论正确的是( ).A .与2016年相比,2019年不上线的人数有所增加B .与2016年相比,2019年一本达线人数减少C .与2016年相比,2019年二本达线人数增加了0.3倍D .2016年与2019年艺体达线人数相同7.已知函数()()f x x R ∈满足(1)1f =,且()1f x '<,则不等式()22lg lg f x x <的解集为( ) A .10,10⎛⎫ ⎪⎝⎭ B .10,10,10 C .1,1010⎛⎫ ⎪⎝⎭D .()10,+∞ 8.已知函数()sin(2)4f x x π=-的图象向左平移(0)ϕϕ>个单位后得到函数()sin(2)4g x x π=+的图象,则ϕ的最小值为( )A .4πB .38πC .2πD .58π 9.已知集合{}|26M x x =-<<,{}2|3log 35N x x =-<<,则MN =( ) A .{}2|2log 35x x -<<B .{}2|3log 35x x -<<C .{}|36x x -<<D .{}2|log 356x x << 10.已知(2sin ,cos ),(3cos ,2cos )2222x x x x a b ωωωω==,函数()f x a b =·在区间4[0,]3π上恰有3个极值点,则正实数ω的取值范围为( )A .85[,)52 B .75[,)42 C .57[,)34 D .7(,2]411.若双曲线C :221x y m-=的一条渐近线方程为320x y +=,则m =( ) A .49 B .94 C .23 D .3212.函数ln ||()xx x f x e =的大致图象为( ) A . B .C .D .二、填空题:本题共4小题,每小题5分,共20分。

浙江省91高中联盟2019届高三上学期期中考试数学试题(解析版)

浙江省91高中联盟2019届高三上学期期中考试数学试题(解析版)

浙江省9 1高中联盟2019届高三上学期期中考试数学试一、选择题(本大题共 10小题,共40.0分)1 . 已知集合,,贝UAAB=( )A. B. C,D.2 .已知i 是虚数单位,若复数 z 满足zi=1 + i,则z 2=()A.B. 2iC. D. 23 .已知双曲线C : — —=1 (b>0)的离心率为 ,则焦点到渐近线的距离为A. 2B. -C. 4D. 8A.B. 1C. 2D. 45,已知x, y 都是实数,则 X 可是|X|可『的()A,充分不必要条件 B,必要不充分条件C.充分必要条件6, 函数f (x) =e x ?n|x|的大致图象为(A. -B. -C. -D.-8. 若正实数x, y 满足In (x+2y) =lnx+lny,则2x+y 取最小值时,x=()A. 5B. 3C. 2D. 19,若方程x 3-2ax 2+ (a 2+2)x=4a--有四个不相等的正根,则实数a 的取值范围是()A. -B. -C. 一 一 D, 一10,设I 是含数兀的有限实数集,f (x)是定义在I 上的函数,若f (x)的图象绕坐标原点逆时针旋转-后与原图象重合,则在以下各项中,f(Tt)的取值不可能是( )A. -B. -C.D.一4,若x 、y 满足约束条件,则z=x+y 的最大值是()7, 若 cos a = 21+sin )a , a wk —,k€Z,贝U tan a =()二、填空题(本大题共7小题,共36.0分)11. log39=;若a=log43,贝U 2a=.12.已知随机变量E的分布列如表,若当EE=时,则a=, D ( E) =0 1 2P a b —13.我国古代数学著作《算法统宗》第八卷商功”第五章撰述:刍莞(churdo):倍下长,加上长,以广乘之,又以高乘,用六归之.如屋脊:上斜下平.”刘徽注曰:止斩方亭两边,合之即刍薨”之形也.即将方台的两边切下来合在一起就是刍薨”,是一种五面体(如图):矩形ABCD,棱EF /AB, AB=4 , EF=2, AADE和ABCF 都是边长为2的等边三角形,则此几何体的表面积为 ,体积为.£ F14.已知F1, F2分别为椭圆C:—+y2=1 (a>1)的左、右焦点,点F2关于直线y=x的对称点Q在椭圆上,则长轴长为 ;若P是椭圆上的一点,且|PF1|?|PF2|='贝U S △=.15.将1, 2, 3, 4, 5, 6 随机排成一行,记为a, b, c, d, e, f,则使a>^Xc+d 沟xf是偶数的排列有种.(用数字作答)16.设平面向量,满足1W|| R 2W||中则| |+| - |的取值范围是 .17.设数列{a n}满足a n+1=2 (|a n|-1) , nCN ,若存在常数M >0,使得对于任意的n €N, 恒有|a n|M,则a1的取值范围是 .三、解答题(本大题共5小题,共74.0分)<-的部分图象如图所示:19 .如图,那BC 为正三角形,且 BC=CD=2, CD1BC,将 "BC 沿BC 翻折.(I)若点A 的射影在BD 上,求AD 的长;(n )若点A 的射影在4BCD 内,且直线 AB 与平面ACD 所成角的正弦值为求AD 的长.20 .设各项为正项的数列{a n },其前n 项和为T n, a i =2 , a n a n+i =6T n -2.(I )求数列{an }的通项公式;(n)若bn=2n,求数列{|an-bn|}的前n 项和Sn.18.已知函数(1)求函数f (x)的解析式;21.已知抛物线C: y2=4x上动点P (Xi, yi),点A在射线1: x-2y+8=0 (y刊上,满足PA的中点Q在抛物线C上.(I)若直线PA的斜率为1,求点P的坐标;(II)若射线1上存在不同于A的另一点B,使得PB的中点也在抛物线C上,求|AB|的最大值.22.已知函数f (x) =x-lnx-a有两个不同的零点xi, X2.(1)求实数a的取值范围;(2)证明:x1+x2> a+1 .答案和解析1.【答案】C【解析】解:A={x|x- 1>0}={x|x >1]则AH B={x|1 <x<2]故选:C.求出集合A的等价条件,结合集合交集的定义进行求解即可.本题主要考查集合的基本运算,求出集合的等价条件结合交集的定义是解决本题的关键.比较基础.2.【答案】A【解析】解:.•复数z满足zi=1+i,. z= - =1-i,. z2=-2i,故选:A.根据已知,求出z值,进而可得答案.本题考查的知识点是复数代数形式的乘除运算,难度不大,属于基础题.3.【答案】B【解析】।i解:双曲线c:^-^=i b>o)的离心率为卜tr贝e= a = V-,即c= V - x2v 2 =4,贝U b=21「士.设焦点为4, 0),渐近线方程为y=x,则d=.行=2 6 ,故选:B.运用离心率公式和渐近线方程可得b,c,结合点到直线的距离公式,进而得到焦点到渐近线的距离.本题考查双曲线的方程和性质,主要考查离心率和渐近线方程的运用,属于基础题.4.【答案】D【解析】(上+1 > 0解:画出约束条件(产2<n 表示的平面区域,如图所示;{ 2x-y-2 <02由z=x+y 得y=-x+z ,平移直线y=-x+z,由图象可知当直线y=-x+z经过点A时,直线y=-x+z的截距最大,此时z最大;田-y- 2- ii,解得{言,即A 2,2),代入目标函数z=x+y得z=2+2=4.即目标函数z=x+y的最大值为4.故选:D.画出约束条件表示的平面区域,找出最优解,求出目标函数的最大值.本题主要考查了线性规划的应用问题,利用数形结合是解决线性规划题目的常用方法,利用平移确定目标函数取得最优解的条件是解题的关键.5.【答案】D【解析】解:当x=-2, y=0时,满足x&y,但|x| 0根成立,当x=0, y=-2时,满足|x| &MxWy不成立,即“x&yi”"|x| 0的既不充分也不必要条件,故选:D.根据不等式的关系,结合充分条件和必要条件的定义进行判断即可.本题主要考查充分条件和必要条件的判断,结合不等式的性质和关系是解决本题的关键.6.【答案】A【解析】解:函数f x)为非奇非偶函数,图象不关于y轴对称,排除C,D,当x一+00, f x)一+00, #卜除B,故选:A.判断函数的奇偶性和对称性的关系,利用极限思想进行求解即可.本题主要考查函数图象的识别和判断,利用函数的对称性以及极限思想是解决本题的关键.7.【答案】C【解析】解:cos a =2Q+sin / ,所以:仃斗=一折门dJ=2区门口+(心0,_A・ nCON x —SUI 1整理得:二2,STH j =—由于:a w2k :, kQ,所以:故选:C.直接利用三角函数关式的变换和同角三角函数关系式的应用求出结果.本题考查的知识要点:三角函数关系式的恒等变变换,同角三角函数关系式的应用,主要考查学生的运算能力和转化能力,属于基础题型.8 .【答案】B【解析】解:"n X+2y)=lnx+lny ;x+2y=xy ,且x>0, y>0;.. , I. . 2r 九 .,一.2U. 红十见(-+7E 十・十"十1 > •计4 + 1 =% 当且仅当-=-,IP £ y y 『 , \fJ :,x=y=3时取等号.故选:B.___ 一 ,一一.一.-21_____ .根据ln x+2y)=lnx+lny 及x,y 都为正数即可得出+ - =1 ,从而得出* y匕+y)(工」)=1+ " +力+根据基本不等式即可得出■/+2'7> I ,并且当x=3时取等号,即得出2x+y 取最小值时,x=3. 考查对数的运算性质,基本不等式及其应用.9.【答案】A 【解析】解:方程x 3-2ax 2+ a 2+2)x=4a-'有四个不相等的正根, £可得a 2x-a 2x 2+4)+ x 3+2x+ 1)=0有四个不相等的正根, £ 即有土 2x 2+4)2-4x x 3+2x+ ')=8x 2,=x+ ±v,2 ,x>0,由a=x+ : + W 有两个不等正根, X j 2 —二 由 y=x+ +V2 >2v2 + v,2 =3V ,2 , 可得a>3Vg 时,a=x+: +V,有两个不等正根; 即有a=x+: -v7在a>3V2有两个不等正根, 综上可得a >3V2 , 故选:A.由题意可得a 2x-a 2x2+4) + x3+2x+ ' )=0有四个不相等的正根,由二次方程 的求根公式和基本不等式,即可得到所求范围.解得a=2J J+4-2V 2J本题考查函数方程的转化思想,注意运用主元法和二次方程思想是解题的突破口,考查运算能力,属于难题.10.【答案】B【解析】解:他意可得:问题相当于圆上由6个点为一组,每次绕原点逆时针旋转;个单位后与下个点会重合.设f (九)处的点为A1,•.fx)惘象绕原点逆时针旋转:后与原图象重合,••旋转后A1的对应点A2也在f X)惘象上,同理人2的对应点A3也在图象上,以此类推,f X)对应的图象可以为一个圆周上6等分的6个点,当f (兀)=/^时,即A18d后),当f (九)=冗时,即A5 (冗,\缶),贝U位七),不符合函数的定义,故B错误;故选:B.直接利用定义函数的应用求出结果.本题函数值的求法,考查学生分析解决问题的能力,考查函数定义等基础知识,质数形结合思想,是中档题11.【答案】2 一【解析】解:log39=2;若a=log43,贝 1 4a=3,••2a= V'Q .故答案为:2, .利用对数、指数的性质、运算法则直接求解.本题考查对数式、指数式化简求值,考查对数、指数的性质、运算法则等基础知识,考查运算求解能力,是基础题.12.【答案】- -【解析】解:根据E的分布列得:+ +a+b=1,…①E 己=,. 0 >a+i >b+2 x, =1 …②… … I 2由①②联立得a= b=,,,11 i J'.'Y] =a E +b- D (0 = 0-])2Xfj +1—1)2、+2-富)2>$i = 97 =9 -故答案为::;:.利用概率的性质和期望构建关于a、b的方程组,求出a、b值,然后利用方差公式求解即可.本题考查了概率的性质、分布列及期望,解决本题要注意利用概率和为1这一条件,还要会利用E” =aE± +b13.【答案】8+8 一一【解析】解:由题意知该五面体的表面积为:S=S矩形ABCD+2S3DE+2S梯形ABFE=2M+2x| >2X V22-1-+2X' X 2+4) X/豆币=8+8 日;过F作FOH*面ABCD ,垂足为O,取BC的中点P,连结PF,过F作FQ^AB ,垂足为Q,连结OQ.vzADE和ABCF都是边长为2的等边三角形,-I E 二 K一I 八••OP=- AB-EF)=1, PF=V 22-12-V3 , OQ= 7BC=1,,OF= v PF--UP2-v ,采用分割的方法,分别过F,E 作与平面ABCD 垂直的平面,这两个平面把几 何体分割成三部分,如图,包含一个三棱柱EMN-FQH,两个全等的四棱锥:E-AMND , F-QBCH , ..这个几何体的体积:V=V EMN-FQH +2V F-QBCHI=S A QFH >MQ+2< S S 矩形 QBCH ^FQ 1J='MX e >2+2x' X1 >2x x /2 =.故答案为:8+8g ;噌.由题意知两个三角形全等,两个梯形全等,由此求出五面体的表面;采用分割 的方法,分别过F, E 作与平面ABCD 垂直的平面,这两个平面把几何体分割 成三部分,包括一个三棱柱和两个四棱 锥,其中两个四棱锥的体积相等,三 者相加得到几何体的体积.本题考查不规则几何体的体积求法,考查运算求解能力、空间想象能力,考 查数形结合思想方法和数学 转化思想方法,是中档题. 14 .【答案】求出点52关于直线y=x 的对称点Q,代入椭圆方程求得a,则长轴长可求;利 用余弦定理结合椭圆定义求得sin/F 1PF 2,代入三角形面积公式得答案.2解:由椭圆C :,+y 2=1 a> 1),夕c 八Hi . .F2 (v1^-1 , 0),,$2关于直线y=x 的对称点Q 0, \,41 ),由题意可得:v ,即a=V2,则长轴长为2V2; .,椭圆方程为3+/】. 则『川+『52|=22=2城",叉PF 1|?|P 坛『JU-不一 = 纲臼7q I 2. sinzF 1PF 2=乎.则 S =11"...;.._6:".= ,; -\< — =故答案为:、上品;@. :i求出点52关于直线y=x 的对称点Q,代入椭圆方程求得a,则长轴长可求;利. cos /F 1PF 2=|PF/+|P6|J 旧局]用余弦定理结合椭圆定义求得sin/F1PF2,代入三角形面积公式得答案.本题考查椭圆的简单性质,考查椭圆定义及余弦定理的应用,是中档题.15.【答案】648 【解析】解:1,2, 3, 4,5, 6随机排成一列,共有A66=720种,abc+def为偶数等价于“gb, c不全为奇数,且d,e, f不全为奇数“.•共有A66-2A33A33=648,故答案为:648利用间接法,先求出1,2, 3, 4, 5, 6随机排成一列,再排除再求a, b, c全为奇数,且d,e, f全为奇数的种二即可本题考查排列组合等基础知识,考查运算求解能力,是基础题16.【答案】[4, 2 -]. 【解析】设t二|云 + 年|+| - |,t2= 2+ 2+2 + 2+ 2-2 +2| || - |=2 ( 2+ 2)+2| + || -|,当(? + V)!(『彳)时,即1|=团=2且胃方=0,t2min=2X 22+22)=16, * =4,当予I=I小引时,2国+了惜-引淘+7I2+I?-T|2=2促2+42)• t2max=4 W2+12)=4 22+32)=4刈3"=2\不,综上所述,5+了I+IM-的取值范围是[4, 2v;B],故答案为:[4,2\节].根据\ <\li\<2,2 < |T| < :]即可求出小十小的范围,进而得出|。

2019-2020学年江西省高三(上)第一次大联考数学试卷2(含答案解析)

2019-2020学年江西省高三(上)第一次大联考数学试卷2(含答案解析)

2019-2020学年江西省⾼三(上)第⼀次⼤联考数学试卷2(含答案解析)2019-2020学年江西省⾼三(上)第⼀次⼤联考数学试卷2⼀、选择题(本⼤题共12⼩题,共60.0分)1. 已知集合A ={x|y =lg(1?x)},B ={y|y =2x +1},则( )A. A ∩B ={x|x <0}B. A ∪B =RC. A ∪B ={x|x >1}D. A ∩B =? 2. 已知集合M ={x|?2x +1>0},N ={x|x 12 B. a <12 C. a ≤12 D. a ≥12 3. 下列命题中的真命题是( )A. 2>5B. (?1)2<0C. 12≥5D. a 2<04. 函数f(x)=x 2?2ax +3在区间[2,3]上是单调函数,则a 的取值范围是( )A. a ≤2或a ≥3B. 2≤a ≤3C. a ≤2D. a ≥35. 函数y =lnx 2的图像可能是( )A. B.C. D.6. 设函数f (x ?2)=2x +5,则f (2)=( )A. 11B. 13C. 15D. 97. 如果log 12x x >1D. x >y >1 8. 已知x ,y ∈R ,则“x +y ≤1”是“x ≤12且y ≤12”的( )A. 充分且不必要条件B. 必要且不充分条件C. 充分且必要条件D. 不充分也不必要条件 9. 已知函数f(x)=2lnx +x 22+(5?m)x 在(4,5)上单调递增,则实数m 的取值范围是( )A. (?∞,5+2√2]B. (?∞,192)C. (?∞,5+2√2)D. (?∞,192] 10. 已知函数f(x)是定义在上的偶函数,且当x ≤0时,f(x)=log 2(1?x).若f(a 2?1)<1,则实数a 的取值范围是( )A. (?√2,0)∪(0,√2)B. (?√2,√2)C. (?1,0)∪(0,1)D. (?1,1)11. 函数f(x)={1?x 2(x <1)2?x (x ≥1),f[f(?4)]=( ) A. 12 B. 18 C. 2 D. 812.已知函数f(x)=lnx?(a+1)x,若关于x的不等式f(x)>0恰有3个整数解,则这3个整数解为()A. 1,2,3B. 2,3,4C. 3,4,5D. 4,5,6⼆、填空题(本⼤题共4⼩题,共20.0分)13.函数f(x)=1xlnx的单调递增区间是______ .14.曲线f(x)=2?xe x在点(0,2)处的切线⽅程为______ .15.命题“?x∈[?1,1],x2?3x+1<0”的否定是______.16.函数的最⼤值为______,此时x=__________________.三、解答题(本⼤题共6⼩题,共70.0分)17.已知:命题p:和是⽅程的两个实根,且不等式对任意实数m∈[?1,1]恒成⽴;命题q:函数的定义域为R.若命题p是假命题,命题q是真命题,求a的取值范围.18.已知函数f(x)=a?b2x+1(a,b为常数)是奇函数,且f(1)=13.(1)求实数a,b的值;(2)若函数g(x)=(4x?1)f(x)?k有两个不同零点,求实数k的取值范围;19.已知函数f(x)=e x?x2+a,x∈R的图象在点x=0处的切线为y=bx.(1)求函数f(x)的解析式;(2)若f(x)>kx对任意的x>0恒成⽴,求实数k的取值范围.20.已知函数f(x)=x2?2ax+2,x∈[?2,3].(1)当a=?2时,求函数f(x)的最⼤值和最⼩值.(2)求y=f(x)在区间[?2,3]上的最⼩值.21.已知函数f(x)=xlnx+ax+b在(1,f(1))处的切线为2x?2y?1=0.(1)求实数a,b的值;(2)求f(x)的单调区间.+ln(1+x)22.设函数f(x)=11+x(1)求函数f(x)的单调区间;x2+1.(2)证明:当x∈(0,1)时,f(x)<(1?ln2)x3+12-------- 答案与解析 --------1.答案:D解析:解:∵集合A ={x|y =lg(1?x)}={x|x <1},B ={y|y =2x +1}={y|y >1},∴A ∩B =?.故选:D .先分别求出集合A 和B ,利⽤交集定义能求出结果.本题考查交集的求法,考查交集、并集、不等式性质等基础知识,考查运算求解能⼒,考查函数与⽅程思想,是基础题.2.答案:D解析:解:M ={x|?2x +1>0}={x|x <12},∵M ?N ,由数轴得∴a ≥12.故选:D .化简集合M ,利⽤数轴求解.本题考查了集合的包含关系,属于基础题.3.答案:C解析:解:∵2>5为假命题;(?1)2=1<0为假命题;12≥5为真命题a 2≥0恒成⽴,a 2<0为假命题;故选C根据实数⼤⼩的关系,可以判断A ,C 的真假,根据实数平⽅具有⾮负性,可以判断B ,D 的真假,进⽽得到答案.本题考查的知识点是命题的真假判断与应⽤,是对真假命题定义的直接考查,属于基础题,认真解答,属于送分题.4.答案:A解析:解:∵函数f(x)=x 2?2ax +3的图象是开⼝⽅向向上,且以x =a 为对称轴的抛物线故函数f(x)=x 2?2ax +3在区间(?∞,a]为减函数,在区间[a,+∞)上为增函数,若函数f(x)=x 2?2ax +3在区间[2,3]上为单调函数,则a ≤2,或a ≥3,故答案为:a ≤2或a ≥3.故选:A .由已知中函数的解析式f(x)=x 2?2ax +3,根据⼆次函数的图象和性质,判断出函数f(x)=x 2?2ax +3在区间(?∞,a]为减函数,在区间[a,+∞)上为增函数,由函数f(x)=x 2?2ax +3在区间[2,3上为单调函数,可得区间在对称轴的同⼀侧,进⽽构造关于a的不等式,解不等式即可得到实数a 的取值范围.本题考查的知识点是⼆次函数的性质,其中根据函数f(x)=x2?2ax+3在区间[2,3]上为单调函数,判断出区间在对称轴的同⼀侧,进⽽构造关于a的不等式是解答本题的关键.5.答案:B解析:【分析】本题主要考查函数的图像.【解答】解:因为函数为偶函数,图像关于y轴对称,故排除C,D⼜函数y=lnx2在(0,+∞)上为增函数,故排除A,故选B.6.答案:B解析:【分析】本题主要考查函数的基本概念,是基础题.令x=4,代⼊解析式即可求值.【解答】解:因为f(x?2)=2x+5,令x=4,所以f(2)=f(4?2)=2×4+5=13.故选B.7.答案:D解析:【分析】本题主要考查了对数函数的单调性.利⽤底数⼩于1时,对数函数为减函数得出x,y,1的⼤⼩关系.【解答】解:log12x2y<0=log121,因为为减函数,则x>y>1.故选D.8.答案:B解析:【分析】本题主要考查充分条件和必要条件的判断,结合不等式的关系是解决本题的关键,属于简单题.根据不等式的关系,结合充分条件和必要条件的定义进⾏解答即可.【解答】解:若x≤12且y≤12”,则x+y≤12+12=1成⽴,即必要性成⽴,当x=1,y=0时,满⾜x+y≤1,但x≤12且y≤12不成⽴,即充分性不成⽴,则“x+y≤1”是“x≤12且y≤12”必要不充分条件,故选:B.9.答案:D解析:解:函数在(4,5)上单调递增,∴f′(x)=2x+x+5?m≥0,化为:m≤2x+x+5,⽽g(x)=2x+x+5在(4,5)上单调递增,∴g(x)>g(4)=192.∴m≤192.则实数m的取值范围是(?∞,192].故选:D.函数f(x)=2lnx+x22+(5?m)x在(4,5)上单调递增,f′(x)≥0,化为:m≤2x+x+5,⽽g(x)=2x+x+5在(4,5)上单调递增,即可得出最⼩值.本题考查了利⽤导数研究函数的单调性极值与最值、分离参数法,考查了推理能⼒与计算能⼒,属于中档题.10.答案:A解析:【分析】本题考查函数的奇偶性、函数的单调性,⼀元⼆次不等式的解法,属于中档题.当x≤0时,f(x)=log2(1?x)为减函数,结合偶函数f(x)满⾜f(?1)=1,可得答案.。

2019年江苏省高考数学模拟试卷(1)(含附加,详细答案)

2019年江苏省高考数学模拟试卷(1)(含附加,详细答案)

2019年江苏省高考数学模拟试卷(1)(含附加,详细答案)文章中没有明显的格式错误和有问题的段落,因此直接改写每段话。

2019年高考模拟试卷(1)第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分。

1.已知集合A为{x-1<x<1},集合B为{-1≤x≤2},则AB 的并集为[ -1.2 )。

2.复数z=2i/(1-i)的实部是2/5.3.甲、乙两人下棋,结果是一人获胜或下成和棋。

已知甲不输的概率为0.8,乙不输的概率为0.7,则两人下成和棋的概率为0.06.4.某地区连续5天的最低气温(单位:°C)依次为8,-4,-1,0,2,则该组数据的方差为23.2.5.根据XXX所示的伪代码,当输出y的值为2时,则输入的x的值为e。

6.在平面直角坐标系xOy中,圆x^2+y^2-4x+4y+4=0被直线x-y-5=0所截得的弦长为4.7.如图,三个相同的正方形相接,则XXX∠XXX的值为1.8.如图,四棱锥P-ABCD的底面ABCD是矩形,PA⊥底面ABCD,E为PD上一点,且PE=2ED。

设三棱锥P-ACE的体积为V1,三棱锥P-ABC的体积为V2,则.9.已知F是抛物线C:y=8x的焦点,M是C上一点,FM的延长线交y轴于点N。

若M是FN的中点,则FN的长度为16.10.若函数f(x)为定义在R上的奇函数,当x>0时,f(x)=xlnx,则不等式f(x)<-e的解集为(1/e。

e)。

11.钢材市场上通常将相同的圆钢捆扎为正六边形垛(如图)。

现将99根相同的圆钢捆扎为1个尽可能大的正六边形垛,则剩余的圆钢根数为3.12.如图,在△ABC中,点M为边BC的中点,且AM=2,点N为线段AM的中点,若AB×AC=28,则NB×NC的值为21.13.已知正数x,y满足x+y+1/x+1/y=10,则x+y的最小值是4.14.设等比数列{an}满足:a1=2,an=cos(πn/2)+3sin(πn/2),其中n∈N,且nπ/2∈(0.π/2)。

精编2019级深圳市中考数学模拟试卷(有标准答案)(2)(Word版)

精编2019级深圳市中考数学模拟试卷(有标准答案)(2)(Word版)

广东省深圳市中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)6的相反数是()A.﹣6 B. C.D.62.(3.00分)260000000用科学记数法表示为()A.0.26×109B.2.6×108C.2.6×109D.26×1073.(3.00分)图中立体图形的主视图是()A.B.C.D.4.(3.00分)观察下列图形,是中心对称图形的是()A.B. C.D.5.(3.00分)下列数据:75,80,85,85,85,则这组数据的众数和极差是()A.85,10 B.85,5 C.80,85 D.80,106.(3.00分)下列运算正确的是()A.a2•a3=a6 B.3a﹣a=2a C.a8÷a4=a2D.7.(3.00分)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)8.(3.00分)如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是()A.∠1=∠2 B.∠3=∠4 C.∠2+∠4=180°D.∠1+∠4=180°9.(3.00分)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是()A.B.C.D.10.(3.00分)如图,一把直尺,60°的直角三角板和光盘如图摆放,A为60°角与直尺交点,AB=3,则光盘的直径是()A.3 B.C.6 D.11.(3.00分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c﹣3=0有两个不相等的实数根12.(3.00分)如图,A、B是函数y=上两点,P为一动点,作PB∥y轴,PA∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)分解因式:a2﹣9= .14.(3.00分)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.15.(3.00分)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是.16.(3.00分)在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=,则AC= .三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)计算:()﹣1﹣2sin45°+|﹣|+(2018﹣π)0.18.(6.00分)先化简,再求值:,其中x=2.19.(7.00分)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为人,a= ,b= .(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?20.(8.00分)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.21.(8.00分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?22.(9.00分)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.23.(9.00分)已知顶点为A抛物线经过点,点.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.广东省深圳市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)6的相反数是()A.﹣6 B. C.D.6【分析】直接利用相反数的定义进而分析得出答案.【解答】解:6的相反数是:﹣6.故选:A.【点评】此题主要考查了相反数的定义,正确把握相关定义是解题关键.2.(3.00分)260000000用科学记数法表示为()A.0.26×109B.2.6×108C.2.6×109D.26×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:260000000用科学记数法表示为2.6×108.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3.00分)图中立体图形的主视图是()A.B.C.D.【分析】根据主视图是从正面看的图形解答.【解答】解:从正面看,共有两层,下面三个小正方体,上面有两个小正方体,在右边两个.故选:B.【点评】本题考查了三视图,关键是根据学生的思考能力和对几何体三种视图的空间想象能力进行解答.4.(3.00分)观察下列图形,是中心对称图形的是()A.B. C.D.【分析】根据中心对称图形的概念对各选项分析判断即可得解【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项正确;D、是中心对称图形,故本选项错误.故选:D.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3.00分)下列数据:75,80,85,85,85,则这组数据的众数和极差是()A.85,10 B.85,5 C.80,85 D.80,10【分析】根据一组数据中出现次数最多的数据叫做众数,极差是指一组数据中最大数据与最小数据的差进行计算即可.【解答】解:众数为85,极差:85﹣75=10,故选:A.【点评】此题主要考查了众数和极差,关键是掌握众数定义,掌握极差的算法.6.(3.00分)下列运算正确的是()A.a2•a3=a6 B.3a﹣a=2a C.a8÷a4=a2D.【分析】直接利用二次根式加减运算法则以及同底数幂的乘除运算法则、合并同类项法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、3a﹣a=2a,正确;C、a8÷a4=a4,故此选项错误;D、+无法计算,故此选项错误.故选:B.【点评】此题主要考查了二次根式加减运算以及同底数幂的乘除运算、合并同类项,正确掌握运算法则是解题关键.7.(3.00分)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)【分析】根据平移的性质得出解析式,进而解答即可.【解答】解:∵该直线向上平移3的单位,∴平移后所得直线的解析式为:y=x+3;把x=2代入解析式y=x+3=5,故选:D.【点评】本题考查的是一次函数的图象与几何变换,熟知一次函数图象平移的法则是解答此题的关键.8.(3.00分)如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是()A.∠1=∠2 B.∠3=∠4 C.∠2+∠4=180°D.∠1+∠4=180°【分析】依据两直线平行,同位角相等,即可得到正确结论.【解答】解:∵直线a,b被c,d所截,且a∥b,∴∠3=∠4,故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.9.(3.00分)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是()A.B.C.D.【分析】根据题意可得等量关系:①大房间数+小房间数=70;②大房间住的学生数+小房间住的学生数=480,根据等量关系列出方程组即可.【解答】解:设大房间有x个,小房间有y个,由题意得:,故选:A.【点评】此题主要考查了由实际问题抽象出二元二一方程组,关键是正确理解题意,找出题目中的等量关系.10.(3.00分)如图,一把直尺,60°的直角三角板和光盘如图摆放,A为60°角与直尺交点,AB=3,则光盘的直径是()A.3 B.C.6 D.【分析】设三角板与圆的切点为C,连接OA、OB,由切线长定理得出AB=AC=3、∠OAB=60°,根据OB=ABtan∠OAB可得答案.【解答】解:设三角板与圆的切点为C,连接OA、OB,由切线长定理知AB=AC=3,OA平分∠BAC,∴∠OAB=60°,在Rt△ABO中,OB=ABtan∠OAB=3,∴光盘的直径为6,故选:D.【点评】本题主要考查切线的性质,解题的关键是掌握切线长定理和解直角三角形的应用.11.(3.00分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c﹣3=0有两个不相等的实数根【分析】根据抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣,得到b>0,由抛物线与y轴的交点位置得到c>0,进而解答即可.【解答】解:∵抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣,得到b>0,由抛物线与y轴的交点位置得到c>0,A、abc<0,错误;B、2a+b>0,错误;C、3a+c<0,正确;D、ax2+bx+c﹣3=0无实数根,错误;故选:C.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.12.(3.00分)如图,A、B是函数y=上两点,P为一动点,作PB∥y轴,PA∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④【分析】由点P是动点,进而判断出①错误,设出点P的坐标,进而得出AP,BP,利用三角形面积公式计算即可判断出②正确,利用角平分线定理的逆定理判断出③正确,先求出矩形OMPN=4,进而得出mn=4,最后用三角形的面积公式即可得出结论.【解答】解:∵点P是动点,∴BP与AP不一定相等,∴△BOP与△AOP不一定全等,故①不正确;设P(m,n),∴BP∥y轴,∴B(m,),∴BP=|﹣n|,∴S△BOP=|﹣n|×m=|12﹣mn|∵PA∥x轴,∴A(,n),∴AP=|﹣m|,∴S△AOP=|﹣m|×n=|12﹣mn|,∴S△AOP =S△BOP,故②正确;如图,过点P作PF⊥OA于F,PE⊥OB于E,∴S△AOP =OA×PF,S△BOP=OB×PE,∵S△AOP =S△BOP,∴OB×PE=OA×PE,∵OA=OB,∴PE=PF,∵PE⊥OB,PF⊥OA,∴OP是∠AOB的平分线,故③正确;如图1,延长BP交x轴于N,延长AP交y轴于M,∴AM⊥y轴,BN⊥x轴,∴四边形OMPN是矩形,∵点A,B在双曲线y=上,∴S△AMO =S△BNO=6,∵S△BOP=4,∴S△PMO =S△PNO=2,∴S矩形OMPN=4,∴mn=4,∴m=,∴BP=|﹣n|=|3n﹣n|=2|n|,AP=|﹣m|=,∴S△APB=AP×BP=×2|n|×=8,故④错误;∴正确的有②③,故选:B.【点评】此题是反比例函数综合题,主要考查了反比例函数的性质,三角形面积公式,角平分线定理逆定理,矩形的判定和性质,正确作出辅助线是解本题的关键.二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)分解因式:a2﹣9= (a+3)(a﹣3).【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.14.(3.00分)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.【分析】根据题意可知正六面体的骰子六个面三个奇数、三个偶数,从而可以求得相应的概率.【解答】解:个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率为:,故答案为:.【点评】本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.15.(3.00分)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是8 .【分析】根据正方形的性质得到AC=AF,∠CAF=90°,证明△CAE≌△AFB,根据全等三角形的性质得到EC=AB=4,根据三角形的面积公式计算即可.【解答】解:∵四边形ACDF是正方形,∴AC=AF,∠CAF=90°,∴∠EAC+∠FAB=90°,∵∠ABF=90°,∴∠AFB+∠FAB=90°,∴∠EAC=∠AFB,在△CAE和△AFB中,,∴△CAE≌△AFB,∴EC=AB=4,∴阴影部分的面积=×AB×CE=8,故答案为:8.【点评】本题考查的是正方形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.16.(3.00分)在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=,则AC= .【分析】先求出∠EFG=45°,进而利用勾股定理即可得出FG=EG=1,进而求出AE,最后判断出△AEF∽△AFC,即可得出结论.【解答】解:如图,∵AD,BE是分别是∠BAC和∠ABC的平分线,∴∠1=∠2,∠3=∠4,∵∠ACB=90°,∴2(∠2+∠4)=90°,∴∠2+∠4=45°,∴∠EFG=∠2+∠4=45°,过点E作EG⊥AD于G,在Rt△EFG中,EF=,∴FG=EG=1,∵AF=4,∴AG=AF﹣FG=3,根据勾股定理得,AE==,连接CF,∵AD平分∠CAB,BE平分∠ABC,∴CF是∠ACB的平分线,∴∠ACF=45°=∠AFE,∵∠CAF=∠FAE,∴△AEF∽△AFC,∴,∴AC===,故答案为.【点评】此题主要考查了角平分线定义,勾股定理,相似三角形的判定和性质,求出AE是解本题的关键.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)计算:()﹣1﹣2sin45°+|﹣|+(2018﹣π)0.【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=2﹣2×++1=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6.00分)先化简,再求值:,其中x=2.【分析】根据分式的运算法则即可求出答案,【解答】解:原式=把x=2代入得:原式=【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(7.00分)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为100 人,a= 0.25 ,b= 15 .(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?【分析】(1)根据“频率=频数÷总数”求解可得;(2)根据频数分布表即可补全条形图;(3)用总人数乘以样本中“艺术”类频率即可得.【解答】解:(1)总人数为40÷0.4=100人,a=25÷100=0.25、b=100×0.15=15,故答案为:100、0.25、15;(2)补全条形图如下:(3)估算全校喜欢艺术类学生的人数有600×0.15=90人.【点评】此题主要考查了条形统计图的应用以及利用样本估计总体,根据题意求出样本总人数是解题关键.20.(8.00分)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.【分析】(1)根据折叠和已知得出AC=CD,AB=DB,∠ACB=∠DCB,求出AC=AB,根据菱形的判定得出即可;(2)根据相似三角形的性质得出比例式,求出菱形的边长和高,根据菱形的面积公式求出即可.【解答】(1)证明:∵由已知得:AC=CD,AB=DB,由已知尺规作图痕迹得:BC是∠FCE的角平分线,∴∠ACB=∠DCB,又∵AB∥CD,∴∠ABC=∠DCB,∴∠ACB=∠ABC,∴AC=AB,又∵AC=CD,AB=DB,∴AC=CD=DB=BA∴四边形ACDB是菱形,∵∠ACD与△FCE中的∠FCE重合,它的对角∠ABD顶点在EF上,∴四边形ACDB为△FEC的亲密菱形;(2)解:设菱形ACDB的边长为x,∵四边形ABCD是菱形,∴AB∥CE,∴∠FAB=∠FCE,∠FBA=∠E,△EAB∽△FCE则:,即,解得:x=4,过A点作AH⊥CD于H点,∵在Rt△ACH中,∠ACH=45°,∴,∴四边形ACDB的面积为:.【点评】本题考查了菱形的性质和判定,解直角三角形,相似三角形的性质和判定等知识点,能求出四边形ABCD是菱形是解此题的关键.21.(8.00分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?【分析】(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据单价=总价÷单价结合第二批饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设销售单价为m元,根据获利不少于1200元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.【解答】解:(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据题意得:3•=,解得:x=8,经检验,x=8是分式方程的解.答:第一批饮料进货单价为8元.(2)设销售单价为m元,根据题意得:200(m﹣8)+600(m﹣10)≥1200,解得:m≥11.答:销售单价至少为11元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,列出关于m的一元一次不等式.22.(9.00分)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.【分析】(1)作AM垂直于BC,由AB=AC,利用三线合一得到CM等于BC的一半,求出CM的长,再由cosB的值,利用锐角三角函数定义求出AB的长即可;(2)连接DC,由等边对等角得到一对角相等,再由圆内接四边形的性质得到一对角相等,根据一对公共角,得到三角形EAC与三角形CAD相似,由相似得比例求出所求即可;(3)在BD上取一点N,使得BN=CD,利用SAS得到三角形ACD与三角形ABN全等,由全等三角形对应边相等及等量代换即可得证.【解答】解:(1)作AM⊥BC,∵AB=AC,AM⊥BC,BC=2BM,∴CM=BC=1,∵cosB==,在Rt△AMB中,BM=1,∴AB==;(2)连接DC,∵AB=AC,∴∠ACB=∠ABC,∵四边形ABCD内接于圆O,∴∠ADC+∠ABC=180°,∵∠ACE+∠ACB=180°,∴∠ADC=∠ACE,∵∠CAE公共角,∴△EAC∽△CAD,∴=,∴AD•AE=AC2=10;(3)在BD上取一点N,使得BN=CD,在△ABN和△ACD中,∴△ABN≌△ACD(SAS),∴AN=AD,∵AN=AD,AH⊥BD,∴NH=HD,∵BN=CD,NH=HD,∴BN+NH=CD+HD=BH.【点评】此题属于圆的综合题,涉及的知识有:圆周角定理,圆内接四边形的性质,全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握各自的性质是解本题的关键.23.(9.00分)已知顶点为A抛物线经过点,点.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.【分析】(1)将点B坐标代入解析式求得a的值即可得;(2)由∠OPM=∠MAF知OP∥AF,据此证△OPE∽△FAE得,即OP=FA,设点P(t,﹣2t﹣1),列出关于t的方程解之可得;(3)分点Q在AB上运动、点Q在BC上运动且Q在y轴左侧、点Q在BC上运动且点Q在y轴右侧这三种情况分类讨论即可得.【解答】解:(1)把点代入,解得:a=1,∴抛物线的解析式为:;(2)由知A(,﹣2),设直线AB解析式为:y=kx+b,代入点A,B的坐标,得:,解得:,∴直线AB的解析式为:y=﹣2x﹣1,易求E(0,1),,,若∠OPM=∠MAF,∴OP∥AF,∴△OPE∽△FAE,∴,∴,设点P(t,﹣2t﹣1),则:解得,,由对称性知;当时,也满足∠OPM=∠MAF,∴,都满足条件,∵△POE的面积=,∴△POE的面积为或.(3)若点Q在AB上运动,如图1,设Q(a,﹣2a﹣1),则NE=﹣a、QN=﹣2a,由翻折知QN′=QN=﹣2a、N′E=NE=﹣a,由∠QN′E=∠N=90°易知△QRN′∽△N′SE,∴==,即===2,∴QR=2、ES=,由NE+ES=NS=QR可得﹣a+=2,解得:a=﹣,∴Q(﹣,);若点Q在BC上运动,且Q在y轴左侧,如图2,设NE=a,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=、SE=﹣a,在Rt△SEN′中,(﹣a)2+12=a2,解得:a=,∴Q(﹣,2);若点Q在BC上运动,且点Q在y轴右侧,如图3,设NE=a,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=、SE=﹣a,在Rt△SEN′中,(﹣a)2+12=a2,解得:a=,∴Q(,2).综上,点Q的坐标为(﹣,)或(﹣,2)或(,2).【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点.。

高三第一次质量检测数学试题(附答案)

高三第一次质量检测数学试题(附答案)

高三第一次质量检测数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 第Ⅰ卷1至2页. 第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并收回.第Ⅰ卷(选择题 共60分)参考公式:三角函数的和差化积公式2cos 2sin 2sin sin βαβαβα-+=+ 2sin 2cos 2sin sin βαβαβα-+=- 2cos 2cos 2cos cos βαβαβα-+=+ 2sin 2sin 2cos cos βαβαβα-+-=- 若事件A 在一次试验中发生的概率是P,则它在n 次独立重复试验中恰好发生k 次的概率k n k k n n p p C k p --=)1()( 一组数据n x x x ,...,,21的方差212)[(1x x nS -=+22)(x x -+…+2)(x x n -] 其中x 为这组数据的平均数一、 选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的。

(1)集合P={}{}62|,6,5,4,3,2,1≤≤=x x Q ,则Q P ⋂等于 (A) {}1 (B) {}6,2 (C) {}5,4,3,2 (D) {}6,5,4,3,2 (2)若θ是第一或第四象限角,则有(A) 0tan sin <θθ (B) 0tan sin >θθ (C) 0tan cos >θθ (D) 0tan cos <θθ (3)直线2=y 与直线02=-+y x 的夹角是(A) 4π (B) 3π (C) 2π (D) 43π (4)等差数列{}n a 中,若1,164106==+a a a ,则12a 的值是(A) 64 (B) 31 (C) 30 (D) 15(5)若P: 2≥x ,Q: 01)2(≥+-x x ,则P 是Q 的(A)充分而不必要条件 (B) 必要而不充分条件(C) 充要条件 (D) 即不充分也不必要条件(6)过曲线23-+=x x y 上的点P 0的切线平行于直线14-=x y ,则切点P 0的坐标为(A)(0,-1)或(1,0) (B) (1,0)或(-1, -4)(C) (-1, -4)或(0,-2) (D) (1,0)或(2,8)(7)函数x x x f 32sin)232sin()(++=π的图象相邻的两条对称轴之间的距离是 (A) π3 (B) π6 (C) 23π (D) 43π (8) 设),3(...)1(2210Z n n x a x a x a a x n n n ∈≥++++=+且,若3132=a a ,则n 的值为 (A) 7 (B) 11 (C) 15 (D) 16(9)已知函数c bx ax x f ++=2)(的图象过点(-1, 3)和(1,1),若0<c<1,则实数a 的取值范围是(A) [2,3] (B) [1,3] (C)(1,2) (D) (1,3)(10) 已知直线l :Ax+By+C=0(A 、B 不全为0)及两点P 1(x 1,y 1),P 2(x 2,y 2),若(Ax 1+By 1+C )(Ax 2+By 2+C )>0,且|Ax 1+By 1+C|>| Ax 2+By 2+C|,则(A)直线l 与直线P 1P 2不相交 (B) 直线l 与线段P 2 P 1的延长线相交(C) 直线l 与线段P 1 P 2的延长线相交 (D) 直线l 与线段P 1P 2相交(11)已知A 、B 、C 三点共线,O 是这条直线外一点,设,=,=,=且存在实数m ,使=+-m 30成立,则点A 分的比为(A) 31- (B) 21- (C) 31 (D) 21 (12)已知双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为F 1、F 2,点P 在双曲线的右支上,若此双曲线的离心率为e ,且|PF 1|=e|PF 2|,则e 的最大值为(A) 35 (B) 37 (C) 2 (D) 12+ 第Ⅱ卷(非选择题 共90分)二、填空题:本大题共6小题,每小题4分,共24分.把答案填写在答题卡相应位置上.(13)设直线01=+-y x 和圆直线4)1(22=+-y x 相交于两点A 、B ,则弦AB 的垂直平分线方程为_________▲_________(14)已知直线53)4sin(=-x π,则直线x 2sin 的值为_______▲_______ (15)某校有教师200人,男学生1200人,女学生1000人,现用分层抽样的方法从所有师生中抽取一个容量为n 的样本,已知从女学生中抽取的人数为80人,则n 的值为_____▲___(16)从2005年12月10日零时起,徐州市电话号码由七位升到八位,若升位前与升位后0,1,9均不作为电话号码的首位,则扩容后增加了______▲_____个电话号码。

高三数学模拟试卷附答案

高三数学模拟试卷附答案

高三数学模拟试卷一、填空题:本大题共14小题,每小题5分,共70分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上. 1.设全集{1, 2, 3, 4, 5}U =,集合{1, 2}A =,{2, 3}B =,则 U A B = ð ▲ . 2.若复数312a ii++(i 是虚数单位)是纯虚数,则实数a 的值为 ▲ . 3.已知数列{}n a 是等差数列,若31124a a +=,43a =,则数列{}n a 的公差等于 ▲ . 4.直线240x y -+=与两坐标轴交点为A 、B ,则以线段AB 为直径的圆的方程是 ▲ . 5.如图1,已知一个班的语文成绩的茎叶图,则优秀率(不小于85分)是 ▲ . 6.若一个正三棱柱的三视图如图2所示,则这个正三棱柱的体积是 ▲ .图1 图27.一只蚂蚁在边长为3的正方形区域内随机地爬行,则其恰在离四个顶点距离都大于1的地方的概率为 ▲ .8.已知实数a 满足3log 182a =+,则函数3ax y =()[0,1]x ∈的值域是 ▲ . 9.已知关于某设备的使用年限与所支出的维修费用y (万元),有如下统计资料:设y 对x 具有线性相关关系,且线性回归方程为^0.08y bx =+,则回归系数b =__▲ _________ 10.甲、乙、丙三人在3天节日中值班,每人值班1天,则甲紧接着...排在乙的前面值班的概率是▲ .11.设函数()sin()1(0)6f x x πωω=+->的导函数()f x '的最大值为3,则图象()y f x =的对称轴的方程是 ▲ .12.如图3所示的流程图,输出的结果为4,则输入的实数x 的取值范围是 ▲ .主视图俯视图左视图5 1586 0344678897 35556798 023346679 01113.在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形按图所标边长,由勾股定理有:.222b ac +=设想正方形换成正方体,把截线换成如图的 截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O —LMN ,如果用321,,s s s 表示三个侧面面积,4s 表示截面面积,那么你类比得到的结论是 ▲ .14.已知函数()f x 的定义域为(2,)-+∞,部分对应值如下表,'()f x 为()f x 的导函数,函数'()y f x =的图象如图5所示,若两正数,a b 满足(2)1f a b +<,则22b a ++的取值范围是 ▲ .图3二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本题满分14分)已知A 、B 、C 三点的坐标分别为)0,3(A 、)3,0(B 、)sin ,(cos ααC ,若1-=⋅BC AC ,求αααtan 12sin sin 22++的值.如图6,正三棱柱ABC —A 1B 1C 1的底面边长为1D 在棱A 1C 1上. (1)若11A D DC =,求证:直线BC 1∥平面AB 1D ;(2)是否存在点D ,使平面AB 1D ⊥平面ABB 1A 1?若存在,请确定点D 的位置;若不存在,请说明理由.图617.(本小题满分14分) ,第一小问满分4分,第二小问满分5分,第三小问满分5分已知数列{}n a 的前n 项和为n S ,411=a ,且*),2(122211N n n a S S n n n ∈≥++=--.数列{}nb 满足431=b , 且*),2(31N n n n b b n n ∈≥=--.(1)求证:数列{}n a 为等差数列; (2)求证:数列{}n n a b -为等比数列; (3)求数列}{n b 的通项公式以及前n 项和n T .C 1B 1DA 1CBA某汽车厂有一条价值为a 万元的汽车生产线,现要通过技术改造来提高该生产线的生产能力,提高产品的增加值,经过市场调查,产品的增加值y 万元与技术改造投入x 万元之间满足:①y 与()a x -和2x 的乘积成正比;②当2ax =时,3y a =,且技术改造投入比率:(0,]2()xt a x ∈-,其中t 为常数,且(0,2]t ∈.(1)求()y f x =的解析式及定义域;(2)求出产品的增加值y 的最大值及相应的x 值.19.(本小题满分16分,第一小问满分3分,第二小问满分6分,第三小问满分7分)在图7所示的平面斜坐标系xOy 中,60xOy ∠=︒,平面上任一点P 关于该斜坐标系的坐标00(,)x y 是这样定义的:过P 作两坐标轴的平行线分别交坐标轴Ox 于A 、Oy 于B ,则A 在Ox 轴上表示的数为0x ,B 在Oy 轴上表示的数为0y .(1)若点P 在斜坐标系xOy 中的坐标为(2,3)-,求P 到O 的距离; (2)求以O 为圆心、1为半径的圆在斜坐标系xOy 中的方程,并求直线12x =截该圆所得的弦长;(3)在斜坐标系xOy 中,直线 (01)x t t =<<交(2)中的圆于M 、N 两点,问:当t 为何值时,△MON 的面积取得最大值?并求此最大值.图720.(本小题满分16分,第一小问满分5分,第二小问满分3分,第三小问满分8分)设函数()f x 的定义域为R ,若()f x x ≤对一切实数x 均成立,则称函数()f x 为Ω函数.(1)试判断函数1()sin f x x x =、()2e e 1x x f x -=+和()2321x f x x =+中哪些是Ω函数,并说明理由;(2)若函数()y f x =是定义在R 上的奇函数,且满足对一切实数x 1、x 2,均有()()1212f x f x x x --≤,求证:函数()f x 一定是Ω函数;(3) 求证:若1a >,则函数2()ln()ln f x x a a =+-是Ω函数.参考答案1.{1} 2.6- 3.3 4. 22(2)(1)5x y ++-=(或22420x y x y ++-=) 5.20% 6. 7.19π-8.[1,2] 9.1.23 10.1311.39k x ππ=+()k Z ∈12. 9[,3)413.24232221S S S S =++14. 1,32⎛⎫ ⎪⎝⎭图5图3二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.15. 解:由1-=⋅,得1)3(sin sin cos )3(cos -=-+-αααα………3分32cos sin =+∴αα…………………………………………………………………5分 95cos sin 2-=⋅∴αα ……………………………………………………………7分又αααtan 12sin sin 22++==++αααααcos sin 1cos sin 2sin 2295cos sin 2-=⋅αα 。

(完整)2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)

(完整)2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)

2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2019·南昌一模]已知复数()i2ia z a +=∈R 的实部等于虚部,则a =( ) A .12-B .12C .1-D .12.[2019·梅州质检]已知集合{}31,A x x n n ==-∈N ,{}6,8,10,12,14B =,则集合A B I 中元素的个数为( ) A .2B .3C .4D .53.[2019·菏泽一模]已知向量()1,1=-a ,()2,3=-b ,且()m ⊥+a a b ,则m =( ) A .25B .25-C .0D .154.[2019·台州期末]已知圆C :()()22128x y -+-=,则过点()3,0P 的圆C 的切线方程为( ) A .30x y +-=B .30x y --=C .230x y --=D .230x y +-=5.[2019·东北三校]中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种,现有十二生肖的吉祥物各一个,三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取礼物都满意,则选法有( ) A .30种B .50种C .60种D .90种6.[2019·汕尾质检]边长为1的等腰直角三角形,俯视图是扇形,则该几何体的体积为( )A .π9B .π3C .π6D .π187.[2019合肥质检]将函数()π2sin 16f x x ⎛⎫=+- ⎪⎝⎭的图象上各点横坐标缩短到原来的12(纵坐标不变)得到函数()g x 的图象,则下列说法正确的是( ) A .函数()g x 的图象关于点π,012⎛⎫- ⎪⎝⎭对称B .函数()g x 的周期是π2C .函数()g x 在π0,6⎛⎫⎪⎝⎭上单调递增D .函数()g x 在π0,6⎛⎫⎪⎝⎭上最大值是18.[2019·临沂质检]执行如图所示的程序框图,输出的值为( )A .0B .12C .1D .1-9.[2019·重庆一中]2sin80cos70cos20︒︒-=︒( )A .3B .1C 3D .210.[2019·揭阳一模]函数()f x 在[)0,+∞单调递减,且为偶函数.若()21f =-,则满足()31f x -≥-的x 的取值范围是( ) A .[]1,5B .[]1,3C .[]3,5D .[]2,2-11.[2019·陕西联考]已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为2F ,若C 的左支上存在点M ,使得直线0bx ay -=是线段2MF 的垂直平分线,则C 的离心率为( )AB .2CD .512.[2019·临川一中]若函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,其坐标满足条件:1212x x y y +0,则称()f x 为“柯西函数”,则下列函数:①()()10f x x x x=+>;②()()ln 0e f x x x =<<;③()cos f x x =;④()21f x x =-.其中为“柯西函数”的个数为( ) A .1 B .2 C .3 D .4二、填空题:本大题共4小题,每小题5分,共20分.13.[2019·江门一模]已知a 、b 、c 是锐角ABC △内角A 、B 、C 的对边,S 是ABC △的面积,若8a =,5b =,S =,则c =_________.14.[2019·景山中学]已知a ,b 表示直线,α,β,γ表示不重合平面. ①若a αβ=I ,b α⊂,a b ⊥,则αβ⊥;②若a α⊂,a 垂直于β内任意一条直线,则αβ⊥; ③若αβ⊥,a αβ=I ,b αγ=I ,则a b ⊥;④若a α⊥,b β⊥,a b ∥,则αβ∥.上述命题中,正确命题的序号是__________.15.[2019·林芝二中]某传媒大学的甲、乙、丙、丁四位同学分别从影视配音、广播电视、公共演讲、播音主持四门课程中选修一门,且这四位同学选修的课程互不相同.下面是关于他们选课的一些信息:①甲同学和丙同学均不选播音主持,也不选广播电视;②乙同学不选广播电视,也不选公共演讲;③如果甲同学不选公共演讲,那么丁同学就不选广播电视.若这些信息都是正确的,依据以上信息可推断丙同学选修的课程是_______(填影视配音、广播电视、公共演讲、播音主持)16.[2019·河南联考]若一直线与曲线eln y x =和曲线2y mx =相切于同一点P ,则实数m =________.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)[2019·长郡中学]设正项数列{}n a 的前n 项和为n S n a 与1n a +的等比中项,其中*n ∈N .(1)求数列{}n a 的通项公式;(2)设()11211n n n n n a b a a +++=-⋅,记数列{}n b 的前n 项和为n T ,求证:21n T <.18.(12分)[2019·维吾尔一模]港珠澳大桥是中国建设史上里程最长,投资最多,难度最大的跨海桥梁项目,大桥建设需要许多桥梁构件.从某企业生产的桥梁构件中抽取100件,测量这些桥梁构件的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[)55,65,[)65,75,[]75,85内的频率之比为4:2:1.(1)求这些桥梁构件质量指标值落在区间[]75,85内的频率;(2)若将频率视为概率,从该企业生产的这种桥梁构件中随机抽取3件,记这3件桥梁构件中质量指标值位于区间[)45,75内的桥梁构件件数为X ,求X 的分布列与数学期望.19.(12分)[2019·淄博模拟]如图,在四棱锥P ABCD -中,AB CD ∥,1AB =,3CD =,2AP =,23DP =,60PAD ∠=︒,AB ⊥平面PAD ,点M 在棱PC 上.(1)求证:平面PAB ⊥平面PCD ;(2)若直线PA ∥平面MBD ,求此时直线BP 与平面MBD 所成角的正弦值.20.(12分)[2019·泰安期末]已知椭圆()22122:10x y C a b a b+=>>的离心率为2,抛物线22:4C y x =-的准线被椭圆1C 截得的线段长为2.(1)求椭圆1C 的方程;(2)如图,点A 、F 分别是椭圆1C 的左顶点、左焦点直线l 与椭圆1C 交于不同的两点M 、N (M 、N 都在x 轴上方).且AFM OFN ∠=∠.证明:直线l 过定点,并求出该定点的坐标.21.(12分)[2019·衡水中学]已知函数()23ln f x x ax x =+-,a ∈R . (1)当13a =-时,求函数()f x 的单调区间;(2)令函数()()2x x f x ϕ'=,若函数()x ϕ的最小值为32-,求实数a 的值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】[2019·揭阳一模]以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为22cos 2a ρθ=(a ∈R ,a 为常数)),过点()2,1P 、倾斜角为30︒的直线l 的参数方程满足32x t =+,(t 为参数).(1)求曲线C 的普通方程和直线l 的参数方程;(2)若直线l 与曲线C 相交于A 、B 两点(点P 在A 、B 之间),且2PA PB ⋅=,求a 和PA PB -的值.23.(10分)【选修4-5:不等式选讲】[2019·汕尾质检]已知()221f x x x =++-的最小值为t .求t 的值;若实数a ,b 满足2222a b t +=,求221112a b +++的最小值.2019届高三第三次模拟考试卷理 科 数 学(二)答 案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】C 【解析】∵()2i i i 1i 2i 2i 22a a a z -++===--的实部等于虚部,∴122a=-,即1a =-.故选C . 2.【答案】A【解析】由题意,集合{}31,A x x n n ==-∈N ,{}6,8,10,12,14B =, ∴{}8,14A B =I ,∴集合A B I 中元素的个数为2.故选A . 3.【答案】A【解析】()()()1,12,312,31m m m m m +=-+-=--a b ,结合向量垂直判定,建立方程,可得12310m m --+=,解得25m =,故选A . 4.【答案】B【解析】根据题意,圆C :()()22128x y -+-=,P 的坐标为()3,0, 则有()()2231028-+-=,则P 在圆C 上,此时20113CP K -==--,则切线的斜率1k =, 则切线的方程为3y x =-,即30x y --=,故选B . 5.【答案】B【解析】若同学甲选牛,那么同学乙只能选狗和羊中的一种,丙同学可以从剩下的10中任意选,∴共有11210C C 20⋅=,若同学甲选马,那么同学乙能选牛、狗和羊中的一种,丙同学可以从剩下的10中任意选,∴共有11310C C 30⋅=,∴共有203050+=种.故选B . 6.【答案】A【解析】 侧视图是直角边长为1的等腰直角三角形,圆锥的高为1,底面半径为1, 俯视图是扇形,圆心角为2π3,几何体的体积为112ππ113239⨯⨯⨯⨯=.故选A .7.【答案】C【解析】将函数()f x 横坐标缩短到原来的12后,得到()π2sin 216g x x ⎛⎫=+- ⎪⎝⎭,当π12x =-时,π112f ⎛⎫-=- ⎪⎝⎭,即函数()g x 的图象关于点π,112⎛⎫-- ⎪⎝⎭对称,故选项A 错误;周期2ππ2T ==,故选项B 错误; 当π0,6x ⎛⎫∈ ⎪⎝⎭时,πππ2662x ⎛⎫+∈ ⎪⎝⎭,,∴函数()g x 在π0,6⎛⎫⎪⎝⎭上单调递增,故选项C 正确;∵函数()g x 在π0,6⎛⎫ ⎪⎝⎭上单调递增,∴()π16g x g ⎛⎫<= ⎪⎝⎭,即函数()g x 在π0,6⎛⎫⎪⎝⎭上没有最大值,故选项D 错误.故选C .8.【答案】A【解析】第一次循环,1k =,cos01S ==,112k =+=,4k >不成立; 第二次循环,2k =,π131cos 1322S =+=+=,213k =+=,4k >不成立; 第三次循环,3k =,32π31cos 12322S =+=-=,314k =+=,4k >不成立; 第四次循环,4k =,1cos π110S =+=-=,415k =+=,4k >成立, 退出循环,输出0S =,故选A . 9.【答案】C 【解析】∵()2sin 6020cos702sin80cos70cos20cos20︒+︒︒-︒-︒=︒︒2sin 60cos202cos60sin 20cos70cos20︒︒+︒︒-︒=︒2sin 60cos20sin 20cos70cos20︒︒+︒-︒=︒2sin 60cos202sin 603cos20︒︒==︒=︒.故选C .10.【答案】A【解析】∵函数()f x 为偶函数,∴()()312f x f -≥-=等价于()()32f x f -≥, ∵函数()f x 在[)0,+∞单调递减,∴32x -≤,232x -≤-≤,15x ≤≤,故选A . 11.【答案】C【解析】()2,0F c ,直线0bx ay -=是线段2MF 的垂直平分线, 可得2F 到渐近线的距离为222F P b b a ==+,即有22OP c b a =-=,由OP 为12MF F △的中位线,可得122MF OP a ==,22MF b =,可得212MF MF a -=,即为222b a a -=,即2b a =,可得221145c b e a a==+=+=.故选C .12.【答案】B【解析】由柯西不等式得:对任意实数1x ,1y ,2x ,2y ,2222121211220x x y y x y x y +-+⋅+≤恒成立, (当且仅当1221x y x y =取等号)若函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,其坐标满足条件:222212121122x x y y x y x y +-+⋅+的最大值为0,则函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,使得OA u u u r,OB u u u r 共线,即存在过原点的直线y kx =与()y f x =的图象有两个不同的交点: 对于①,方程()10kx x x x=+>,即()211k x -=,不可能有两个正根,故不存在; 对于②,,由图可知不存在;对于③,,由图可知存在;对于④,,由图可知存在,∴“柯西函数”的个数为2,故选B .二、填空题:本大题共4小题,每小题5分,共20分. 13.【答案】7【解析】根据三角形面积公式得到1sin sin 2S ab C C =⨯⇒=∵三角形为锐角三角形,故得到角C 为π3,再由余弦定理得到222π1cos 7322a b c c ab+-==⇒=.故答案为7.14.【答案】②④【解析】对于①,根据线面垂直的判定定理,需要一条直线垂直于两条相交的直线,故不正确, 对于②,a α⊂,a 垂直于β内任意一条直线,满足线面垂直的定理,即可得到αβ⊥, 又a α⊂,则αβ⊥,故正确,对于③,αβ⊥,a αβ=I ,b αγ=I ,则a b ⊥或a b ∥,或相交,故不正确, 对于④,可以证明αβ∥,故正确. 故答案为②④. 15.【答案】影视配音【解析】由①知甲和丙均不选播音主持,也不选广播电视; 由②知乙不选广播电视,也不选公共演讲;由③知如果甲不选公共演讲,那么丁就不选广播电视,综上得甲、乙、丙均不选广播电视,故丁选广播电视,从而甲选公共演讲,丙选影视配音, 故答案为影视配音. 16.【答案】12【解析】曲线eln y x =的导数为e'y x=,曲线2y mx =的导数为2y mx '=,由e2mx x =,0x >且0m >,得x =e 2⎫⎪⎪⎭,代入eln y x =得e 2=,解得12m =,故答案为12.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.【答案】(1)n a n =;(2)见解析.【解析】(1)∵2n S 是n a 与1n a +的等比中项,∴()221n n n n n S a a a a =+=+, 当1n =时,21112a a a =+,∴11a =.当2n ≥时,22111222n n n n n n n a S S a a a a ---=-=+--,整理得()()1110n n n n a a a a --+--=. 又0n a >,∴()112n n a a n --=≥,即数列{}n a 是首项为1,公差为1的等差数列. ∴()()1111n a a n d n n =+-=+-=. (2)()()()1121111111n n n n b n n n n +++⎛⎫=-⋅=-+ ⎪++⎝⎭,∴21232111111111122334212221n n T b b b b n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++=+-+++-++-+ ⎪ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L L11121n =-<+. 18.【答案】(1)0.05;(2)见解析.【解析】(1)设区间[]75,85内的频率为x ,则区间[)55,65,[)65,75内的频率分别为4x 和2x . 依题意得()0.0040.0120.0190.0310421x x x +++⨯+++=,解得0.05x =. ∴这些桥梁构件质量指标值落在区间[]75,85内的频率为0.05.(2)从该企业生产的该种桥梁构件中随机抽取3件,相当于进行了3次独立重复实验, ∴X 服从二项分布(),B n p ,其中3n =.由(1)得,区间[]45,75内的频率为0.30.20.10.6++=, 将频率视为概率得0.6p =.∵X 的所有可能取值为0,1,2,3,且()00330C 0.60.40.064P X ==⨯⨯=,()11231C 0.60.40.288P X ==⨯⨯=,()22132C 0.60.40.432P X ==⨯⨯=,()33033C 0.60.40.216P X ==⨯⨯=.∴X 的分布列为:X P0.0640.2880.4320.216X 服从二项分布(),B n p ,∴X 的数学期望为30.6 1.8EX =⨯=.19.【答案】(1)见解析;(2219565【解析】(1)∵AB ⊥平面PAD ,∴AB DP ⊥,又∵23DP=,2AP=,60PAD∠=︒,由sin sinPD PAPAD PDA=∠∠,可得1sin2PDA∠=,∴30PDA∠=︒,90APD∠=︒,即DP AP⊥,∵AB AP A=I,∴DP⊥平面PAB,∵DP⊂平面PCD,∴平面PAB⊥平面PCD;(2)以点A为坐标原点,AD所在的直线为y轴,AB所在的直线为z轴,如图所示,建立空间直角坐标系,其中()0,0,0A,()0,0,1B,()0,4,3C,()0,4,0D,)3,1,0P.从而()0,4,1BD=-u u u r,)3,1,0AP=u u u r,()3,3,3PC=-u u u r,设PM PCλ=u u u u r u u u r,从而得()33,31,3Mλλλ+,()33,31,31BMλλλ=+-u u u u r,设平面MBD的法向量为(),,x y z=n,若直线PA∥平面MBD,满足BMBDAP⎧⋅=⎪⎪⋅=⎨⎪⋅=⎪⎩u u u u ru u u ru u u rnnn,即)()()31313104030x y zy zx yλλλ-+++-=-=⎨+=,得14λ=,取()3,3,12=--n,且()3,1,1BP=-u u u r,直线BP与平面MBD所成角的正弦值等于33122sin195651565BPBPθ⋅-+===⨯⋅u u u ru u u rnn20.【答案】(1)2212xy+=;(2)直线l过定点()2,0.【解析】(1)由题意可知,抛物线2C的准线方程为1x=,又椭圆1C2,∴点2⎛⎝⎭在椭圆上,∴221112a b+=,①又2cea==,∴222212a bea-==,∴222a b=,②,由①②联立,解得22a=,21b=,∴椭圆1C的标准方程为2212xy+=.(2)设直线:l y kx m =+,设()11,M x y ,()22,N x y ,把直线l 代入椭圆方程,整理可得()222214220k x km m +++-=,()()222222164212216880k m k m k m ∆=-+-=-+>,即22210k m -+>,∴122421kmx x k +=-+,21222221m x x k -=+,∵111FM y k x =+,221FN yk x =+,M 、N 都在x 轴上方,且AFM OFN ∠=∠,∴FM FN k k =-,∴121211y yx x =-++,即()()()()122111kx m x kx m x ++=-++, 整理可得()()1212220kx x k m x x m ++++=,∴()2222242202121m km k k m m k k -⎛⎫⋅++-+= ⎪++⎝⎭,即22224444420km k k m km k m m ---++=,整理可得2m k =, ∴直线l 为()22y kx k k x =+=+,∴直线l 过定点()2,0. 21.【答案】(1)见解析;(2)56-.【解析】(1)13a =-时,()2ln f x x x x =--,则()()()221121x x x x f x x x +---'==, 令()'0f x =,解得12x =-或1x =,而0x >,故1x =,则当()0,1x ∈时,()0f x '<,即()f x 在区间内递减, 当()1,x ∈+∞时,()0f x '>,即()f x 在区间内递增. (2)由()23ln f x x ax x =+-,()123f x x a x'=+-, 则()()23223x x f x x ax x ϕ'==+-,故()2661x x ax ϕ'=+-, 又()()264610a ∆=-⨯⨯->,故方程()0x ϕ'=有2个不同的实根,不妨记为1x ,2x ,且12x x <, 又∵12106x x =-<,故120x x <<,当()20,x x ∈时,()0x ϕ'<,()x ϕ递减, 当()2,x x ∈+∞时,()0x ϕ'>,()x ϕ递增, 故()()322222min 23x x x ax x ϕϕ==+-,①又()20x ϕ'=,∴2226610x ax +-=,即222166x a x -=,②将222166x a x -=代入式,得2222222222222233316112323622x x x x x x x x x x x -+⋅⋅-=+--=--, 由题意得3221322x x --=-,即322230x x +-=,即()()222212230x x x -++=,解得21x =, 将21x =代入式中,得56a =-.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.【答案】(1)222x y a -=,3212x t y =+=+⎧⎪⎪⎨⎪⎪⎩(t 为参数);(2)2a =±,432. 【解析】(1)由22cos 2a ρθ=得()2222cos sin a ρθθ-=,又cos x ρθ=,sin y ρθ=,得222x y a -=,∴C 的普通方程为222x y a -=, ∵过点()2,1P 、倾斜角为30︒的直线l 的普通方程为)321y x =-+, 由32x =得112y t =+,∴直线l 的参数方程为3212x t y =+=+⎧⎪⎪⎨⎪⎪⎩(t 为参数). (2)将3212x t y ==+⎧⎪⎪⎨⎪⎪⎩代入222x y a -=,得()()222231230t t a ++-=, 依题意知()()222231830a ∆⎡⎤=-->⎣⎦,则上方程的根1t 、2t 就是交点A 、对应的参数,∵()21223t t a ⋅=-,由参数t 的几何意义知1212PA PB t t t t ⋅=⋅=⋅,得122t t ⋅=, ∵点P 在A 、B 之间,∴120t t ⋅<,∴122t t ⋅=-,即()2232a -=-,解得24a =(满足0∆>),∴2a =±, ∵1212PA PB t t t t -=-=+,又()122231t t +=-, ∴432PA PB -=. 23.【答案】(1)2;(2)1.【解析】(1)()31,12213,1131,1x x f x x x x x x x +≥⎧⎪=++-=+-<<⎨⎪--≤-⎩,故当1x =-时,函数()f x 有最小值2,∴2t =. (2)由(1)可知22222a b +=,故22124a b +++=,∴2222222222212111112121121244b a a b a b a b a b +++++++⎛⎫+++=+⋅=≥ ⎪++++⎝⎭, 当且仅当22122a b +=+=,即21a =,20b =时等号成立,故221112a b +++的最小值为1.。

2024年大连市高三数学第一次模拟考试卷附答案解析

2024年大连市高三数学第一次模拟考试卷附答案解析

2024年大连市高三数学第一次模拟考试卷注意事项:1.请在答题纸上作答,在试卷上作答无效.2.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{123456}U =,,,,,,集合{124}{135}A B ==,,,,,,则U B A = ð()A .{2}4,B .{16},C .{3}5,D .{1}2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,xn ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A .x 1,x 2,…,xn 的平均数B .x 1,x 2,…,xn 的标准差C .x 1,x 2,…,xn 的最大值D .x 1,x 2,…,xn 的中位数3.方程2214x y m+=表示椭圆,则实数m 的取值范围()A .0m >B .4m >C .04m <<D .0m >且4m ≠4.已知直线a ,b ,c 是三条不同的直线,平面α,β,γ是三个不同的平面,下列命题正确的是()A .若a c b c ⊥⊥,,则//a bB .若////a b a α,,则//b αC .若////a b c a αα⊥,,,且c b ⊥,则c α⊥D .若βαγα⊥⊥,,且a βγ= ,则a α⊥5.将ABCDEF 六位教师分配到3所学校,若每所学校分配2人,其中,A B 分配到同一所学校,则不同的分配方法共有()A .12种B .18种C .36种D .54种6.若π,π2α⎛⎫∈ ⎪⎝⎭,且5cos 24παα⎛⎫=- ⎪⎝⎭,则tan α=()A .43-B .34-C .13-D .17.设函数3333()sin πe e 3x x f x x x --=+--+则满足()(32)4f x f x +-<的x 的取值范围是()A .(3,)+∞B .(3),-∞C .(1,)+∞D .(,1)-∞8.设12F F ,是双曲线2222:1(00)x y C a b a b-=>>,的左、右焦点,点A 是双曲线C 右支上一点,若12AF F △的内切圆M 的半径为a (M 为圆心),且λ∃∈R ,使得123AM OM F F λ+=,则双曲线C 的离心率为()AB C .2D .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知i 是虚数单位,下列说法正确的是()A .已知a b c d ∈R ,,,,若a c b d >=,,则i i a b c d +>+B .复数12z z ,满足12z z =,则12z z =C .复数z 满足|i ||i |z z -=+,则z 在复平面内对应的点的轨迹为一条直线D .复数z 满足(1i)|1|+=z ,则ππcos isin 44z ⎫=-⎪⎭10.已知函数()sin()(0,0π)f x x ωϕωϕ=+><<,若π5π166f f ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,且π5π,66x ⎛⎫∀∈- ⎪⎝⎭,都有()1f x <,则()A .()y f x =在5π0,12⎛⎫⎪⎝⎭单调递减B .()y f x =的图象关于7π,012⎛⎫⎪⎝⎭对称C .直线12y =+是一条切线D .()y f x =的图象向右平移π3个单位长度后得到函数()g x 是偶函数11.已知函数()f x 是定义域为R 的可导函数,若()()()()3f x y f x f y xy x y +=+++,且()03f '=-,则()A .()f x 是奇函数B .()f x 是减函数C .0f=D .1x =是()f x 的极小值点第Ⅱ卷三、填空题:(本大题共3小题,每小题5分,共15分,把答案填在答卷纸的相应位置上)12.“函数()2sin f x ax x =-是奇函数”的充要条件是实数=a .13.在边长为4的正方形ABCD 中,如图1所示,E ,F ,M 分别为BC ,CD ,BE 的中点,分别沿AE ,AF 及EF 所在直线把AEB AFD ,和EFC 折起,使B ,C ,D 三点重合于点P ,得到三棱锥P AEF -,如图2所示,则三棱锥P AEF -外接球的表面积是;过点M 的平面截三棱锥P AEF -外接球所得截面的面积的取值范围是.14.已知实数0,0a b >>,且()84ab a b +=,则4a b +的最小值为四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.如图多面体ABCDEF 中,面FAB ⊥面ABCD ,FAB 为等边三角形,四边形ABCD 为正方形,EF BC ∥,且334EF BC ==,H ,G 分别为CE ,CD 的中点.(1)证明:BF AD ⊥;(2)求平面BCEF 与平面FGH 所成角的余弦值;(3)作平面FHG 与平面ABCD 的交线,记该交线与直线AD 交点为P ,写出APAD的值(不需要说明理由,保留作图痕迹).16.已知函数()()ln 1R f x x x ax a =++∈.(1)若()0f x ≥恒成立,求a 的取值范围;(2)当1x >时,证明:e ln e(1)x x x >-.17.一个不透明的盒子中有质地、大小均相同的7个小球,其中4个白球,3个黑球,现采取不放回的方式每次从盒中随机抽取一个小球,当盒中只剩一种颜色时,停止取球.(1)求停止取球时盒中恰好剩3个白球的概率;(2)停止取球时,记总的抽取次数为X ,求X 的分布列与数学期望:(3)现对方案进行调整:将这7个球分装在甲乙两个盒子中,甲盒装3个小球,其中2个白球,1个黑球:乙盒装4个小球,其中2个白球,2个黑球.采取不放回的方式先从甲盒中每次随机抽取一个小球,当盒中只剩一种颜色时,用同样的方式从乙盒中抽取,直到乙盒中所剩小球颜色和甲盒剩余小球颜色相同,或者乙盒小球全部取出后停止.记这种方案的总抽取次数为Y ,求Y 的数学期望,并从实际意义解释X 与Y 的数学期望的大小关系.18.在平面直角坐标系xOy 中,点O 为坐标原点,已知两点()()1,21,2A B ---,,点M 满足()2MA MB OM OA OB +=⋅++uuu r uuu r uuu r uu r uu u r,记点M 的轨迹为G .(1)求曲线G 的方程:(2)若P ,C ,D 为曲线G 上的三个动点,CPD ∠的平分线交x 轴于点()0(1)Q a a <-,,点Q 到直线PC 的距离为1.(ⅰ)若点Q 为PCD 重心,用a 表示点P 的坐标;(ⅱ)若PQ CD ⊥,求a 的取值范围.19.对于数列()1231:,,,1,2,3A a a a a i ∈=N ,定义“T 变换”:T 将数列A 变换成数列123:,,B b b b ,其中1(12)i i i b a a i +=-=,,且331b a a =-.这种“T 变换”记作()B T A =,继续对数列B 进行“T 变换”,得到数列123:,,C c c c ,依此类推,当得到的数列各项均为0时变换结束.(1)写出数列A :3,6,5经过5次“T 变换”后得到的数列:(2)若123,,a a a 不全相等,判断数列123:,,A a a a 不断的“T 变换”是否会结束,并说明理由;(3)设数列A :2020,2,2024经过k 次“T 变换”得到的数列各项之和最小,求k 的最小值.1.C【分析】由补集和交集的定义运算.【详解】集合{123456}U =,,,,,,集合{124}{135}A B ==,,,,,,则{}3,5,6U A =ð,有{}3,5U B A = ð.故选:C 2.B【详解】评估这种农作物亩产量稳定程度的指标是标准差或方差,故选B.点睛:众数:一组数据出现次数最多的数叫众数,众数反映一组数据的多数水平;中位数:一组数据中间的数(起到分水岭的作用),中位数反映一组数据的中间水平;平均数:反映一组数据的平均水平;方差:反映一组数据偏离平均数的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小).在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.标准差是方差的算术平方根,意义在于反映一组数据的离散程度.3.D【分析】分焦点在x 轴,y 轴两种情况讨论,写出m 范围即可.【详解】方程2214x y m+=表示椭圆,若焦点在x 轴上,40m >>;若焦点在y 轴上,4m >.综上:实数m 的取值范围是0m >且4m ≠故选:D【点睛】本题考查了椭圆的标准方程,考查了学生概念理解,分类讨论,数学运算能力,属于基础题.4.D【分析】由空间中直线与平面的位置关系,对各项进行分析即可.【详解】若a c b c ⊥⊥,,则a ,b 可以是平行,也可以是相交或异面,故A 错误;若////a b a α,,则//b α或b α⊂,故B 错误;若////a b c a αα⊥,,且c b ⊥,当//a b 时,不能证明c α⊥,C 选项错误;若βαγα⊥⊥,,且a βγ= ,在a 上取一点P ,作PQ α⊥,由面面垂直的性质定理可得PQ β⊂且PQ γ⊂,既a 与PQ 重合,可得a α⊥,故D 正确.故选:D 5.B【分析】先平均分组,再利用全排列可求不同分配方法的总数.【详解】将余下四人分成两组,每组两人,有2242C C 2种分法,故不同的分配方法共有223423C C A 182⨯=种,故选:B.6.A【分析】先利用三角恒等变换公式化简可得1cos sin 5αα+=,结合22cos sin 1αα+=可得cos ,sin αα,进而可得tan α.【详解】由5cos 2sin 4παα⎛⎫- ⎪⎝⎭得()22225cos sin cos sin 22αααα⎫-=-⎪⎪⎭,即()()5cos sin cos sin cos sin αααααα-+=-,因为π,π2α⎛⎫∈ ⎪⎝⎭,所以cos sin 0αα-≠,所以1cos sin 5αα+=,结合22cos sin 1αα+=,且cos 0,sin 0αα<>,得34cos ,sin 55αα=-=,所以sin tan s 43co ααα==-.故选:A.7.C【分析】观察题设条件与所求不等式,构造函数()()12g x f x =+-,利用奇偶性的定义与导数说明其奇偶性和单调性,从而将所求转化为()()122g x g x -<-,进而得解.【详解】因为3333()sin πe e 3x x f x x x --=+--+,所以()()3333331sin ππee 13x xf x x x +---+=++---+33sin πe e 2x x x x -=-+--+,设()()3312sin πe e x xg x f x x x -=+-=-+--,显然定义域为R ,()()12g x f x -=-,又()()3333()sin πee sinπe e ()xx x x g x x x x x g x ---=--+-+=--+--=-,所以()g x 为R 上的奇函数,又33()πcos π3e 3e 1πcos 15πcos 0x x g x x x x -'=-++-≥-+=->,所以()g x 在R 上单调递增,又()(32)4f x f x +-<,则[][]()2(32)20f x f x -+--<,所以()()1220g x g x -+-<,即()()()12222g x g x g x -<--=-,所以122x x -<-,解得1x >,则满足()(32)4f x f x +-<的x 的取值范围是(1,)+∞.故选:C .8.A【分析】向量坐标化并结合双曲线定义与等面积得123,3,AF c a AF c a =+=-点点距列方程得()3,4A a a 代入双曲线求出离心率.【详解】设()(),,,M M A A M x y A x y ,由对称性不妨设A 在第一象限,此时M 也在第一象限,因为123AM OM F F λ+=uuu r uuu u u ruu r ,所以30,44M A M A M y y y y y a -+===,所以()12121124222AF F S c a AF AF c a =⋅⋅=⋅++⋅ ,又122AF AF a -=,解得()1213,3,,0AF c a AF c a F c =+=--,所以1A AF ex a=+,所以1A AF a ex =+,解得3A x a =,所以()3,4A a a ,代入双曲线方程得:2222(3)(4)1a a a b-=,解得,b c ==,所以==ce a故选:A【点睛】关键点点睛:本题考查双曲线的离心率,关键是向量坐标化并充分利用曲线定义确定A 的坐标.9.BCD【分析】根据虚数不能比较大小可知A 错误;根据共轭复数的定义可判断B ;根据复数的几何意义可判断C ;根据复数的运算法则进行计算,可判断D.【详解】对A ,虚数不能比较大小,可知A 错误;对B ,根据共轭复数的定义知,当12z z =时,12z z =,则12z z =,故B 正确;对C ,因为复数z 满足|i ||i |z z -=+,则复数z 在复平面上对应的点到()()0,1,0,1-两点间的距离相等,则复数z 在复平面上对应的点为两点构成线段的中垂线,即z 在复平面内对应的点的轨迹为一条直线,故C 正确;因为(1i)|1|2z +==,则()()()()21i 21i 21i 1i 1i 1i 2z --====-++-,又ππ22cos isin i 1i 4422z ⎫⎫=--=-⎪⎪⎪⎭⎭,故D 正确,故选:BCD.10.BC【分析】依题意可得πT =即可求出ω,再根据函数的最大值求出ϕ,即可求出函数解析式,再根据正弦函数的性质判断A 、B 、D ,设切点为005π,sin 26x x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭,利用导数的几何意义求出0x ,即可判断C.【详解】对A ,因为()sin()(0,0π)f x x ωϕωϕ=+><<,所以()max 1f x =,又π5π166f f ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,且π5π,66x ⎛⎫∀∈- ⎪⎝⎭,都有()1f x <,所以5πππ66T ⎛⎫=--= ⎪⎝⎭,所以2ππT ω==,解得2ω=,即()()sin 2f x x ϕ=+,又ππsin 163f ϕ⎛⎫⎛⎫-=-+= ⎪ ⎪⎝⎭⎝⎭,所以ππ2π,Z 32k k ϕ-+=+∈,解得5π2π,Z 6k k ϕ=+∈,又0πϕ<<,所以5π6ϕ=,所以()5πsin 26f x x ⎛⎫=+ ⎪⎝⎭,当5π0,12x ⎛⎫∈ ⎪⎝⎭时5π5π5π2,663x ⎛⎫+∈ ⎪⎝⎭,又sin y x =在5π5π,63⎛⎫⎪⎝⎭上不单调,所以()y f x =在5π0,12⎛⎫⎪⎝⎭上不单调,故A 错误;对B ,因为7π7π5πsin 2sin 2π012126f ⎛⎫⎛⎫=⨯+== ⎪ ⎪⎝⎭⎝⎭,所以()y f x =的图象关于7π,012⎛⎫⎪⎝⎭对称,故B 正确;对C ,因为()5π2cos 26f x x ⎛⎫=+ ⎝'⎪⎭,设切点为005π,sin 26x x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭,则()005π2cos 26f x x ⎛⎫=+= ⎪⎝⎭'所以05πcos 262x ⎛⎫+=- ⎪⎝⎭,所以05π5π22π,Z 66x k k +=+∈或05π5π22π,Z 66x k k +=-+∈,解得0π,Z x k k =∈或05ππ,Z 6x k k =-+∈,又005π1sin 262x ⎛⎫+=+ ⎪⎝⎭,因为05π1sin 216x ⎛⎫-≤+≤ ⎪⎝⎭,即01112-≤+≤,解得0x ≤,所以00x =,即直线12y =+是函数()f x 在10,2⎛⎫⎪⎝⎭处的切线,故C 正确;对D ,将()y f x =的图象向右平移π3个单位长度后得到()π5ππsin 2sin 2366g x x x ⎡⎤⎛⎫⎛⎫=-+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,显然()g x 是非奇非偶函数,故D 错误.故选:BC 11.ACD【分析】令0x y ==求出()0f ,令y x =-可确定奇偶性,将y 当作常数,x 作为变量,对原式求导,然后可通过赋值,解不等式求单调性及极值.【详解】令0x y ==,得()00f =,令y x =-,得()()0f x f x =+-,所以()f x 是奇函数,A 正确;()()()()()22233,63f x y f x f y x y xy f x y f x yx y '+=+++'∴+=++ 令()()20,03x f y f y =∴=+'',又()()()2303,33,3f f y y f y y y c '=-∴='=-∴-+ ,()()()3300,0,3,3,0f c f y y y f x x x f=∴=∴=-∴=-∴= ,令()0f x '=,1x ∴=±,()0f x '>,1x <-或()1,0,11x f x x ><-<<'()f x ∴在(),1∞--和()1,∞+上为增函数,()f x 在()1,1-上为减函数,1x ∴=是()f x 的极小值,故CD 正确,B 错误.故选:ACD.12.0【分析】结合三角函数奇偶性、幂函数奇偶性以及奇偶性的定义即可运算求解.【详解】若函数()2sin f x ax x =-是奇函数,则当且仅当()()()()22sin sin f x ax x a x x f x ⎡⎤=-=----=--⎣⎦,也就是220ax =恒成立,从而只能0a =.故答案为:0.13.24π[]π,6π【分析】补体法确定外接球直径进而求得表面积;利用球的截面性质确定面积最值.【详解】由题意,将三棱锥补形为边长为2,2,4长方体,如图所示:三棱锥P AEF -外接球即为补形后长方体的外接球,所以外接球的直径()2222222424R R =++==,所以三棱锥P AEF -外接球的表面积为24π24πS R ==,过点M 的平面截三棱锥P AEF -的外接球所得截面为圆,其中最大截面为过球心O 的大圆,此时截面圆的面积为22π6πR ==,最小截面为过点M 垂直于球心O 与M 连线的圆,此时截面圆半径1r =(其中MN 长度为长方体前后面对角线长度),故截面圆的面积为2ππr =,所以过点M 的平面截三棱锥P AEF -的外接球所得截面的面积的取值范围为[]π,6π.故答案为:24π;[]π,6π14.【分析】利用消元法得到4a b +的函数关系式,再利用导数讨论其单调性后可求最小值.【详解】()222224(4)81681616a b a ab b a a b b b b+=++=++=+,设()2416g b b b =+,其中0b >,则()()322481432b g b b b b-=-+'=,当10,2b ⎛⎫∈ ⎪⎝⎭时,()0g b '<,当1,2b ∞⎛⎫∈+ ⎪⎝⎭时,()0g b '>,故()g b 在10,2⎛⎫ ⎪⎝⎭上为增函数,在1,2∞⎛⎫+ ⎪⎝⎭上为减函数,故()min 1122g b g ⎛⎫== ⎪⎝⎭,此时20a =-+>,故4a b +的最小值为故答案为:15.(1)证明见解析(3)14AP AD =,作图见解析【分析】(1)由面面垂直得到线面垂直,从而证明出线线垂直;(2)由面面垂直得到线面垂直,再建立空间直角坐标系,写出点的坐标,得到平面的法向量,进而利用平面法向量求出面面角的余弦值;(3)作出辅助线,得到线线平行,进而得到结论.【详解】(1)在正方形ABCD 中,AD AB ⊥,∵平面FAB ⊥平面ABCD ,平面FAB 平面,ABCD AB AD =⊂平面ABCD ,AD ∴⊥平面FAB ,又BF ⊂平面FAB ,BF AD ∴⊥;(2) FAB 为等边三角形,设AB 中点为O ,∴OF AB ⊥,又平面FAB ⊥平面ABCD ,面FAB 面,ABCD AB OF =⊂面FAB ,则OF ⊥面ABCD ,以O 为坐标原点,分别以,,OB OG OF 为,,x y z轴正方向建立空间直角坐标系,如图所示:因为334EF BC ==,则4BC =,则()()((()72,0,0,2,4,0,0,0,,0,3,21,,0,4,02B C F E H G ⎛ ⎝,所以(()(72,0,,0,4,0,1,,,0,4,2BF BC FH FG ⎛=-=== ⎝,设平面BCEF 的一个法向量为(),,m x y z =则020400m BF x y m BC ⎧⎧⋅=-+=⎪⎪⇒⎨⎨=⎪⋅=⎪⎩⎩ ,取1z =得0x y ==,所以)m =,设平面FGH 的一个法向量为(),,n a b c =则7002040a b n FH n FG b ⎧⎧+=⋅=⎪⎪⇒⎨⎨⋅=⎪⎪-=⎩⎩,取c =93,42a b =-=,所以93,42n ⎛=- ⎝ ,所以)93,42cos ,22n m n m n m⎛⋅- ⋅===-⋅,所以平面与BCEF 与平面FGH(3)如图所示:在AD 上取一点P ,使得DP EF =,连接,FP PG ,因为//EF BC ,AD //BC ,所以//EF AD ,即//EF DP ,所以EFPD 为平行四边形,故//FP ED ,因为H ,G 分别为CE ,CD 的中点,所以//GH DE ,故//GH PF ,即,,,G H P F共面,故14AP AD =.16.(1)1a ≥-(2)证明见解析【分析】(1)参变分离,构造函数,求导得到函数的单调性,从而求出最值,得到答案;(2)法一:在(1)的基础上得到()e 1e ln x xx x x ->,1x >,再构造函数得到e e xx >,得到()()e 1e 1x x x x->-,从而得到结论;法二:即证11ln e x x x -->,构造函数()11ln e x x G x x --=-,求导后再对分子求导,从而得到函数的单调性,得到()()10G x G >=,证明出结论.【详解】(1)由已知得,1ln a x x-≤+在()0,∞+上恒成立,设()()221111ln ,x g x x g x x x x x-=+=-=',()0g x '>,解得1x >,()0g x '<,解得01x <<,()g x ∴在()0,1上为减函数,在()1,∞+上为增函数,()()11g x g ∴≥=,即1a -≤,1a ∴≥-;(2)法一:由(1)知1a ≥-时,()0f x ≥恒成立,取1a =-,得1ln x x x-≥成立,1x =时取等号.所以当1x >时,()e 1e ln x xx x x->,设()()e e ,e e x xh x x h x =='--,故1x >时,()0h x '>,()e e x h x x ∴=-在()1,∞+上为增函数,()()10h x h ∴>=,e e x x ∴>.所以1x >时,e e xx>,即()()e 1e1xx x x->-.由此可证,当1x >时,()()e 1e ln e 1x x x x x x->>-,结论得证.法二:当1x >时,若证()e ln e 1xx x >-成立.即证11ln ex x x -->,1x >设()11ln ,1ex x G x x x --=->,()()()1112211e 1e 1e 2e e x x x x x x x x G x x x -------+-=-'=,设()()()1211e2,e 22e 21x x x m x x x m x x x ---=+-=+-=+-',当1x >时,()()0,m x m x >'∴在()1,∞+上为增函数.()()()10,0m x m G x ∴>=∴>',()G x ∴在()1,∞+上为增函数,()()10G x G >=,由此可证,当1x >时,()e ln e 1xx x >-成立.【点睛】方法点睛:对于求不等式成立时的参数范围问题,一般有三个方法,一是分离参数法,使不等式一端是含有参数的式子,另一端是一个区间上具体的函数,通过对具体函数的研究确定含参式子满足的条件.二是讨论分析法,根据参数取值情况分类讨论,三是数形结合法,将不等式转化为两个函数,通过两个函数图像确定条件.17.(1)335(2)分布列见解析,()275E X =(3)()409E Y =,在将球分装时,甲盒取完后直接取乙盒,此时甲盒中还有其它球,该球干扰作用已经消失,所以同样是要剩余同一颜色,调整后的方案总抽取次数的期望更低.【分析】(1)利用古典概型的概率公式可求A 得概率;(2)先确定X 的取值,再就每一个取值的意义结合古典概型的概率公式可求分布列,再利用公式可求期望.(3)先确定Y 的取值,再设甲盒、乙盒抽取次数分别为12Y Y 、,根据题设得到三者之间的关系,再结合古典概型的概率公式可求分布.【详解】(1)设“停止取球时盒中恰好剩3个白球”为事件A ,则()11343347C A A 3A 35P A ==;(2)X 的可能取值为3,4,5,6,()3337A 13A 35P X ===,()4113443347A C A A 44A 35P X +===,()11422334444357C A A C A A 25A 7P X +===,()11223427C C A 46A 7P X ===,所以X 的分布列为X3456P1354352747X 的数学期望()14242734563535775E X =⨯+⨯+⨯+⨯=;(3)Y 的可能取值为3,4,5,6,设甲盒、乙盒抽取次数分别为12Y Y 、,因为乙盒中两种小球个数相同,所以无论甲盒剩余小球什么颜色,乙盒只需取完一种颜色即可,()()()221224A 113123A 18P Y P Y P Y ======,()()()()()1122222212123244C A A A 12413223A A 923P Y P Y P Y P Y P Y ====+===⨯+⨯=,()()()()()121251423P Y P Y P Y P Y P Y ====+==11221122222222323444C A A A C A A 1273A A 3A 18⎛⎫=++= ⎪⎝⎭,()()()11222222123244C A A A 216243A A 3P Y P Y P Y ⎛⎫=====+= ⎪⎝⎭,Y 的数学期望()12714034561891839E Y =⨯+⨯+⨯+⨯=,在将球分装时,甲盒取完后直接取乙盒,此时甲盒中还有其它球,该球干扰作用已经消失,所以同样是要剩余同一颜色,调整后的方案总抽取次数的期望更低.18.(1)24y x=-(2)(i)334P ⎛-± ⎝,;(ii )94a <-【分析】(1)对()2MA MB OM OA OB +=⋅++uuu r uuu r uuu r uu r uu u r向量坐标化,整理得曲线轨迹方程;(2)法一:由条件得PQ CD ⊥,结合斜率和重心坐标公式得P1=,平方化简得,m n 是方程()()()2220000120y t x a y t x a -+---=的两根,直线与曲线联立,结合韦达定理求出P 坐标,即可求解;法二:由圆切线方程抽方程可知直线EF 的方程为()()001x a x a y y --+=,与圆联立得()0012221y x a k k y -+=-,结合韦达定理得P 坐标,即可求解.【详解】(1)设点()()(),,1,2,1,2M x y A B ---Q ,()()()()()1,2,1,2,,,1,2,1,2MA x y MB x y OM x y OA OB ∴=---=----==-=--uuu r uuu r uuu r uu r uu u r即()()22,2,2,0MA MB x y OA OB +=---+=-uuu r uuu r uu r uu u r,MA MB ∴+==uuu r uuu r()()()2,2,0222OM OA OB x y x ⋅++=⋅-+=-+uuu r uu r uu u r,()2,22MA MB OM OA OB x +=⋅++=-+Q uuu r uuu r uuu r uu r uu u r,化简得曲线G 的方程:24y x =-;(2)(ⅰ)解法1:设()()()112200,,,,,C x y D x y P x y ,PQ 为PCD 的角平分线.Q 为PCD 重心PQ ∴为PCD 的中线,S 三线合一可得PQ CD⊥021221124,4CD PQ y y y k k y x x y y a --===-+--Q ,Q 为PCD 重心0120y y y ∴++=(14,PQ CD k k P a ⋅=-∴-± ①设直线PC 方程为:()00x x m y y -=-,直线PD 方程为:()00x x n y y -=-,PQ ∵是CPD ∠的平分线,点Q 到直线PC 的距离为1,∴点Q 到直线PD 的距离为1,1=,可得()()()2220000120y m x a y m x a -+---=同理()()()2220000120y n x a y n x a -+---=,即,m n 是方程()()()2220000120y t x a y t x a -+---=的两根,()002021x a y m n y -∴+=-,()0024x x m y y y x ⎧-=-⎨=-⎩联立可得:2004440y my x my ++-=,011044y y m y m y ∴+=-∴=--,同理()201204,42y n y y y m n y =--∴+=-+-,点Q 为PCD 重心,0120y y y ∴++=,即()()00002024401x a y m n y y y ⎛⎫--+-=--=⎪-⎝⎭,又020008144,a x y x y +⎧=⎪=-∴⎨⎪=⎩ 故点P的坐标为81,4a +⎛ ⎝②联立①②可得174a =-即33,4P ⎛⎫- ⎪⎝⎭(ⅱ)由(ⅰ)知()002021x a y m n y -+=-,()()()()2021*******0020214422424121CDy y y k x a y x x y y m n y a y y y -----∴=====--+-+----⨯--,020,1,4PQ PQ CD y k k k y a =⋅=---Q 22216481648,04949a a a a y a a +-+-∴=∴≥----216481,049a a a a +-<-∴≥--Q 等价于94904a a -->∴<-时满足题意.(ⅰ)解法2:PQ ∵是CPD ∠的平分线,点Q 到直线PC 的距离为1,∴点Q 到直线PD 的距离为1,∴直线PC PD 、与圆22:()1Q x a y -+=相切,设直线PC PD 、与圆的切点分别为()()1122,,,E x y F x y ,设直线PC 上任意一点坐标为(),P x y ,则0PE QE ⋅=,可得()()1111,,0x x y y x a y --⋅-=,整理得()()()11110x x x a y y y --+-=,结合2211()1x a y -+=,进一步可得直线PC 方程为:()()111x a x a y y --+=,同理直线PD 方程为()()221x a x a y y --+=,因为点()00,P x y 在两条直线上,所以可知直线EF 的方程为()()001x a x a y y --+=,代入圆方程可得:()()22200()x a y x a x a y y ⎡⎤-+=--+⎣⎦即:()()()()22220000121()0y y x a x a y y x a x a ⎡⎤----+---=⎣⎦设直线QE 的斜率1114y k x a =-,直线QF 的斜率为2224y k x a=-,()()()2220001210y y y y x a x a x a x a ⎛⎫∴---+--= ⎪--⎝⎭即()0012221y x a k k y -+=-,联立直线PC 与抛物线方程,()()21141y x x a x a y y ⎧=-⎪⎨--+=⎪⎩,可得:21114140y y y a x a x a ⎛⎫--+= ⎪--⎝⎭,014C y y k ∴+=,同理可得024D y y k ∴+=,()12042C D y y k k y ∴+=+- 点Q 为PCD 重心,00C D y y y ∴++=,即()()00120028401x a y k k y y y -+-=-=-,又020008144,a x y x y +⎧=⎪=-∴⎨⎪=⎩ 故点P的坐标为81,4a +⎛ ⎝②其余过程同解法1.【点睛】关键点点睛:本题考查直线与抛物线位置关系,关键是利用角分线的意义抽方程或直线,进而得韦达定理求出P 坐标.19.(1)0,1,1(2)不会,理由见解析(3)507【分析】(1)根据数列的新定义写出经过5次“T 变换”后得到的数列即可;(2)先假设数列A 经过不断的“T 变换”结束,不妨设最后的数列123123:,,,:,,,:0,0,0D d d d E e e e F ,由F 数列往前推,则非零数量可能通过“T 变换”结束,或者数列E 为常数列,进而得到D 可能出现的情况,推出矛盾,故假设不成立,即可证明;(3)先往后推几项,发现规律,假设1次“T 变换”后得到的通项,多写几项推出规律,往后继续进行,推到使数字接近1时,再继续推,往后会发现k 次“T 变换”得到的数列是循环的,得到最小值,进而推出次数即可.【详解】(1)由题知,5次变换得到的数列依次为3,1,2;2,1,1;1,0,1;1,1,0;0,1,1;所以数列A :3,6,5经过5次“T 变换”后得到的数列为0,1,1.(2)数列A 经过不断的“T 变换”不会结束,设数列123123:,,,:,,,:0,0,0D d d d E e e e F ,且()(),E T D F T E ==,由题可知:2132310,0,0e e e e e e -=-=-=,123e e e ∴==,即非零常数列才能经过“T 变换”结束;设123e e e e ===(e 为非零常数列),则为变换得到数列E 的前两项,数列D 只有四种可能:111111111111:,,2;:,,;:,,2;:,,D d d e d e D d d e d D d d e d e D d d e d +++---,而以上四种情况,数列E 的第三项只能是0或2e ,即不存在数列D ,使得其经过“T 变换”变成非零常数列,故数列A 经过不断的“T 变换”不会结束;(3)数列A 经过一次“T 变换”后得到数列:2018,2022,4B ,其结构为,4,4,a a +(a 远大于4)数列B 经过6次“T 变换”后得到的数列依次为:4,,4;4,4,8;8,12,4;4,16,12;a a a a a a a a -------;20,4,16;24,20,4a a a a ----所以,经过6次“T 变换”后得到的数列也是形如“,4,4a a +”的数列,变化的是,除了4之外的两项均减小24,201824842,=⨯+ 则数列B 经过684504⨯=次“T 变换”后得到的数列为:2,6,4,接下来经过“T 变换”后得到的数列依次为:4,2,2;2,0,2;2,2,0;0,2,2;2,0,2;至此,数列各项和的最小值为4,以后数列循环出现,数列各项之和不会变得更小,所以最快经过16842507+⨯+=次“T 变换”得到的数列各项之和最小,即k 的最小值为507.【点睛】思路点睛:本题考查数列的新定义问题.关于数列的新定义一般思路为:()1根据定义写出几项;()2找出规律;()3写成通项;()4证明结论.。

大庆市2019届高三第一次模拟考试数学(理科)含答案解析

大庆市2019届高三第一次模拟考试数学(理科)含答案解析
A. B. C. D.
【分析】利用两角和的正弦公式化简f(x),然后由f(x0)=0求得[0, ]内的x0的值.
【解答】解:∵曲线f(x)=sin(wx)+ cos(wx)=2sin(wx+ )的两条相邻的对称轴之间的距离为 ,
∴ =π,
∴w=2
∴f(x)=2sin(2x+ ).
∵f(x)的图象关于点(x0,0)成中心对称,
【解答】解:函数f(x)=x3﹣x2﹣x+a的导数为f′(x)=3x2﹣2x﹣1,
当x>1或x<﹣ 时,f′(x)>0,f(x)递增;
当﹣ <x<1时,f′(x)<0,f(x)递减.
即有f(1)为极小值,f(﹣ )为极大值.
∵f(x)在(﹣∞,﹣ )上单调递增,
∴当x→﹣∞时,f(x)→﹣∞;
又f(x)在(1,+∞)单调递增,当x→+∞时,f(x)→+∞,
构造函数g(x)=x3+2x﹣ ,则问题转化为g(x)在x∈[﹣1,1]上的零点个数,
求导数可得g′(x)=3x2+2>0,故函数g(x)在x∈[﹣1,1]上单调递增,
由g(﹣1)g(1)<0,故函数g(x)在x∈[﹣1,1]上有唯一一个零点.
故选:A.
【点评】本题考查定积分的运算,涉及转化和数形结合的思想,属中档题.
因为直线l⊥平面α且α⊥β可得直线l平行与平面β或在平面β内,又由直线m⊂平面β,所以l与m,可以平行,相交,异面;故②为假命题;
因为直线l⊥平面α且l∥m可得直线m⊥平面α,又由直线m⊂平面β可得α⊥β;即③为真命题;
由直线l⊥平面α以及l⊥m可得直线m平行与平面α或在平面α内,又由直线m⊂平面β得α与β可以平行也可以相交,即④为假命题.

2019-2020学年市第六中学高一上学期期中数学试题(解析版)

2019-2020学年市第六中学高一上学期期中数学试题(解析版)

2019-2020学年市第六中学高一上学期期中数学试题(解析版)2019-2020学年市第六中学高一上学期期中数学试题一、单选题1.设集合M=[1,2],N={x∈Z|-1A.[1,2]B.(-1,3)C.{1}D.{1,2}【答案】D【解析】集合N为整数集,所以先用列举法求出集合N,然后根据交集的定义求出即可.【详解】解:,.故选:D.【点睛】本题考查交集的概念和运算,解题的关键是先分析出集合中的代表元素是整数,属于基础题.2.已知集合A={x|x>2},B=,则B∩∁RA等于()A.{x|2≤x≤5}B.{x|-1≤x≤5}C.{x|-1≤x≤2}D.{x|x≤-1}【答案】C【解析】已知集合A,B,则根据条件先求出,然后根据交集的定义求出即可.【详解】解:集合A={x|x>2},所以,又集合,则.故选:C.【点睛】本题考查交集和补集的概念和计算,属于基础题.3.函数f(x)=+lg(3x+1)的定义域是()A.(-∞,1)B.C.【答案】B【解析】函数f(x)的定义域即:即被开方数大于等于0,分母不为0,且对数函数的真数有意义,根据条件列出方程组,解出的范围即为所求.【详解】解:函数f(x)=+lg(3x+1)的定义域是,解得:,所以函数f(x)的定义域是.故选:B.【点睛】本题考查求复合函数的定义域,解题的关键是保证每部分都有意义,属于基础题.4.已知f()=x-x2,则函数f(x)的解析式为()A.f(x)=x2-x4B.f(x)=x-x2C.f(x)=x2-x4(x≥0)D.f(x)=-x(x≥0)【答案】C【解析】令(),解出,利用换元法将代入解析式即可得出答案.【详解】解:令(),则,所以(),所以f(x)=x2-x4().故选:C.【点睛】本题考查利用换元法求函数解析式,解题的关键是注意换元之后的定义域,属于基础题.5.与函数相同的函数是()A.B.C.D.【答案】D【解析】试题分析:A中对应关系不同;B中定义域不同;C中定义域不同;D中对应关系,定义域均相同,是同一函数【考点】函数是同一函数的标准6.下列函数中,既是偶函数又在区间上单调递减的是()A.C.D.【答案】C【解析】试题分析:因为函数是奇函数,所以选项A不正确;因为函为函数既不是奇函数,也不是偶函数,所以选项B不正确;函数的图象抛物线开口向下,对称轴是轴,所以此函数是偶函数,且在区间上单调递减,所以,选项C正确;函数虽然是偶函数,但是此函数在区间上是增函数,所以选项D不正确;故选C。

高 三 数 学 综 合 模 拟 测 试 题(附答案)2

高 三 数 学 综 合 模 拟 测 试 题(附答案)2

高三 数学试题(文)一、选择题(本大题共10小题,每小题5分,共50分)1、设 a b 、是两个非零向量,则“a b =- ”是“//a b”成立的 ( )条件 A .充要 .B .必要不充分 .C .充分不必要 . D .既不充分也不必要 2、函数)sin()(ϕω+=x x f (x ∈R ,ω>0,0≤ϕ<2)π的部分图象如图,则 ( ) A .ω=2π,ϕ=4πB .ω=3π,ϕ=6πC .ω=4π,ϕ=4πD .ω=4π,ϕ=45π3、设全集I Z =,集合A ={-1,1,2},B ={-1,0,1},从A 到B 的一个映射为{}(),,,(),I xx y f x x A y B C y y f x B C x →==∈∈==⋂则为ð( )A .{0,2}B . {0}C .{0,1}D .{-1,0}4、在等差数列{}n a 中,若4681012120a a a a a ++++=,则91113a a -的值为 ( ) A .14 B .15 C .16 D .175、已知椭圆2214x y n +=与双曲线2218x y m -=有相同的焦点,则动点(,)P n m 的轨迹为A .椭圆的一部分 B.双曲线的一部分C. 抛物线的一部分D. 直线的一部分 6、关于互不相同的直线m 、l 、n 和平面α,其中假命题是 ( ) A.若,,,m l A A m l m αα⊂=∉ 点则与不共面;B.若m 、l 是异面直线,ααα⊥⊥⊥n m n l n m l 则且,,,//,//;C.若直线,l m 与平面α所成的角相等,则//l m ;D.若,,l m αα⊥⊥则//l m 。

7、设函数)(x f =1-2x +)1(log 21-x ,则下列说法正确的是 ( )131oy xA. )(x f 是增函数,没有最大值,有最小值B. )(x f 是增函数,没有最大值,也没有最小值C. )(x f 是减函数,有最大值,没有最小值D. )(x f 是减函数,没有最大值,也没有最小值8、不等式)10(2sin log ≠>>a a x x a 且对任意)4,0(π∈x 都成立,则a 的取值范围为 ( )A 、(0,]4π B 、[,1)4π C 、)2,1()1,4(ππ⋃ D 、)1,0( 9、满足不等式()()*1221223log log N n n x x n ∈-≥-⋅+-的正整数x 的个数记为n a ,数列{}n a 的前n 项和记为n S ,则n S = ( )A .12-+n nB .12-nC .12+nD .12--n n10、若函数x x a x x f -+-=||)1lg()(2是偶函数,则常数a 的取值范围是 ( )A.11-≤≥a a 或B.1≥aC.11≤≤-aD.10≤≤a二、填空题(本大题共6小题,每小题5分,共30分)11、已知正方体1111ABCD A BCD -,E 为11A B 的中点,则异面直线DE 与1B C 所成角的余弦是 _______________ 12、函数()f x =__________13、已知sin 23sin cos A B A =,且A ≠π2k (k Z ∈),则=+-+)cos(2sin )2sin(B A A B A__________14、设命题p :⎪⎩⎪⎨⎧≥+-≤-->-+06208201243y x y x y x (R y x ∈,),命题q :222r y x ≤+(0,,,>∈r R r y x ),若命题q 是命题p ⌝的充分非必要条件,则r 的取值范围是__________ 。

高三模拟考试数学试题(附答案)

高三模拟考试数学试题(附答案)

高三数学模拟试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:(本大题共12小题,每小题5分,共60分)在每小题给出的四个选项中,只有一项是符合题目要求的,各题答案必需答在机读卡上。

1.已知集合M={x |x -a =0},N={x |ax -1=0},若M N=N ,则实数a 的值是(D )A .1B .-1C .1或-1D .0或1或-12.已知集合A B R ==,映射:f A B →满足 2()2f x x x =-+,若对于实数k B ∈,在集合A 中不存在原象,则k 的取值范围是( D )A . 1k ≥B .1k ≤C .1k <D .1k > 3.图中阴影部分可用哪一组二元一次不等式表示( C )A .⎩⎨⎧≥+--≥0221y x y B .⎩⎨⎧≤+--≥0221y x yC .⎪⎩⎪⎨⎧≥+--≥≤02210y x y xD .⎪⎩⎪⎨⎧≤+--≥≤02210y x y x4.已知F F 12,是双曲线1222=-y x 的左右焦点,P 、Q 为右支上的两点,直线PQ 过F 2且倾斜角为α,则PF QF PQ 11+-的值为( A ) A. 42 B. 8C. 22D. 随α大小变化5.已知等比数列{n a }的前n 项和12-=n n S ,则++2221a a …2n a +等于( D )A .2)12(-nB .)12(31-nC .14-nD .)14(31-n6.过点M (-2,4)作圆C :25)1()2(22=-+-y x 的切线l ,l 1:023=++a y ax 与l 平行,则l 1与l 间的距离是( A )A.512 B.528 C.58 D.52 7.已知函数y =f (x )是偶函数,y =g (x )是奇函数,它们的定义域为[-π,π],且它们在x ∈[0,π]上的图象如下图所示,则不等式)()(x g x f >0的解集为(D )A.(-3π,0)∪(3π,π)B.(-π,-3π)∪(3π,π) C.(-4π,0)∪(4π,π) D.(-π,-3π)∪(0,3π) 8.把函数y =cos x 的图象上的所有点的横坐标缩小到原来的一半,纵坐标扩大到原来的两倍,然后把图象向左平移4π个单位,则所得图形表示的函数的解析式为( B ) A .y=2sin 2x B .y=-2sin 2xC .y=2cos (x +4π) D .y=2cos (2x +4π) 9.在区间[-4,-1]上,函数f (x )=-x 2+px +q 与函数g (x )=x +x4同时取相同最大值,那么函数f (x )在区间[-4,-1]上的最小值为CA.-10B.-5C.-8D.-3210.函数y =x 2-2x 在区间[a ,b ]上的值域是[-1,3],则点(a ,b )的轨迹是图中的 ( A ) A .线段AB 和线段ADB .线段AB 和线段CDC .线段AD 和线段BC D .线段AC 和线段BD11.若抛物线y =2x 2上两点A (x 1,y 1)、B (x 2,y 2)关于直线y =x +m 对称,且x 1·x 2=-21,则实数m 的值为 B A.21 B.23 C.25 D.2 12.定义运算a*b 为:a*b=⎩⎨⎧>≤)()(b a b b a a 则关于x 的函数f (x )=x 21*的取值范围是( C )A .(]1,∞- B.(0,1) C. (]1,0 D.[1,+∞]第Ⅱ卷(非选择题 共90分)二、填空题:(本大题共4小题,每小题4分,共16分)各题答案必需填写在答题卡上(只填结果,不写过程)。

【压轴题】高三数学下期中第一次模拟试卷(附答案)(2)

【压轴题】高三数学下期中第一次模拟试卷(附答案)(2)

【压轴题】高三数学下期中第一次模拟试卷(附答案)(2)一、选择题1.等差数列{}n a 中,已知611a a =,且公差0d >,则其前n 项和取最小值时的n 的值为( ) A .6B .7C .8D .92.已知x 、y 满足约束条件50{03x y x y x -+≥+≥≤,则24z x y =+的最小值是( )A .6-B .5C .10D .10-3.等差数列{}n a 中,34512a a a ++=,那么{}n a 的前7项和7S =( ) A .22 B .24C .26D .284.已知在中,,,分别为角,,的对边,为最小角,且,,,则的面积等于( ) A .B .C .D .5.设,x y 满足约束条件0,20,240,x y x y x y -≥⎧⎪+-≥⎨⎪--≤⎩则2z x y =+的最大值为( )A .2B .3C .12D .136.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若∠C=120°,c=a ,则A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定7.如果111A B C ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,则 A .111A B C ∆和222A B C ∆都是锐角三角形 B .111A B C ∆和222A B C ∆都是钝角三角形C .111A B C ∆是钝角三角形,222A B C ∆是锐角三角形D .111A B C ∆是锐角三角形,222A B C ∆是钝角三角形8.已知数列{}n a 的首项11a =,数列{}n b 为等比数列,且1n n na b a +=.若10112b b =,则21a =( )A .92B .102C .112D .1229.已知幂函数()y f x =过点(4,2),令(1)()n a f n f n =++,n +∈N ,记数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则10n S =时,n 的值是( )A .10B .120C .130D .14010.数列{a n }满足a 1=1,对任意n ∈N *都有a n +1=a n +n +1,则122019111a a a ++⋯+=( ) A .20202019B .20191010C .20171010D .4037202011.已知ABC ∆的三边长是三个连续的自然数,且最大的内角是最小内角的2倍,则最小角的余弦值为( ) A .34B .56C .78D .2312.已知正项数列{}n a 中,*12(1)()2n n n a a a n N ++++=∈L ,则数列{}n a 的通项公式为( ) A .n a n =B .2n a n =C .2n na =D .22n n a =二、填空题13.已知数列{}n a 为正项的递增等比数列,1582a a +=,2481a a =g ,记数列2n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则使不等式112020|1|13n nT a -->成立的最大正整数n 的值是__________.14.已知()()0f x kx k =>,若正数a 、b 满足()()()()f a f b f a f b +=,且4a b f f k k ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭的最小值为1,则实数k 的值为______. 15.已知0,0a b >>,且20a b +=,则lg lg a b +的最大值为_____. 16.设正项数列{}n a 的前n 项和是n S ,若{}n a 和{}nS 都是等差数列,且公差相等,则1a =_______.17.已知实数x y ,满足2,2,03,x y x y y +≥⎧⎪-≤⎨⎪≤≤⎩则2z x y =-的最大值是____.18.设数列{}n a 中,112,1n n a a a n +==++,则通项n a =___________.19.已知三角形中,边上的高与边长相等,则的最大值是__________.20.定义11222n n n a a a H n-+++=L 为数列{}n a 的均值,已知数列{}n b 的均值12n n H +=,记数列{}n b kn -的前n 项和是n S ,若5n S S ≤对于任意的正整数n 恒成立,则实数k 的取值范围是________.三、解答题21.设函数()112f x x =++|x |(x ∈R)的最小值为a . (1)求a ;(2)已知两个正数m ,n 满足m 2+n 2=a ,求11m n+的最小值. 22.在条件①()(sin sin )()sin a b A B c b C +-=-,②sin cos()6a Bb A π=+,③sinsin 2B Cb a B +=中任选一个,补充到下面问题中,并给出问题解答.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,6b c +=,a =, . 求ABC ∆的面积.23.已知等差数列{}n a 的前n 项和为254,12,16n S a a S +==. (1)求{}n a 的通项公式; (2)数列{}n b 满足141n n n b T S =-,为数列{}n b 的前n 项和,是否存在正整数m ,()1k m k <<,使得23k m T T =?若存在,求出m ,k 的值;若不存在,请说明理由.24.在△ABC 中,角,,A B C 所对的边分别是,,a b c ,且4cos 5A =. (1)求2sincos 22B CA ++的值; (2)若2b =,ABC ∆的面积3S =,求a 的值.25.已知数列{}n a 是等差数列,111038,160,37n n a a a a a a +>⋅=+=. (1)求数列{}n a 的通项公式;(2)若从数列{}n a 中依次取出第2项,第4项,第8项,L ,第2n 项,按原来的顺序组成一个新数列,求12n n S b b b =+++L .26.已知函数()f x a b =⋅v v ,其中()()2cos 2,cos ,1,a x x b x x R ==∈v v.(1)求函数()y f x =的单调递增区间;(2)在ABC ∆中,角,,A B C 所对的边分别为(),,,2,a b c f A a ==2b c =,求ABC ∆的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】因为等差数列{}n a 中,611 aa =,所以6116111150,0,,2a a a a a d =-=-,有2[(8)64]2n dS n =--, 所以当8n =时前n 项和取最小值.故选C. 2.A解析:A 【解析】 【分析】 【详解】作出不等式50{03x y x y x -+≥+≥≤所表示可行域如图所示,作直线:24l z x y =+,则z 为直线l 在y 轴上截距的4倍, 联立3{x x y =+=,解得3{3x y ==-,结合图象知,当直线l 经过可行域上的点()3,3A -时,直线l 在y 轴上的截距最小, 此时z 取最小值,即()min 23436z =⨯+⨯-=-,故选A. 考点:线性规划3.D解析:D 【解析】试题分析:由等差数列的性质34544123124a a a a a ++=⇒=⇒=,则考点:等差数列的性质4.C解析:C 【解析】 【分析】根据同角三角函数求出;利用余弦定理构造关于的方程解出,再根据三角形面积公式求得结果. 【详解】由余弦定理得:,即解得:或为最小角本题正确选项: 【点睛】本题考查余弦定理解三角形、三角形面积公式的应用、同角三角函数关系,关键是能够利用余弦定理构造关于边角关系的方程,从而求得边长.5.C解析:C 【解析】 【分析】由约束条件可得可行域,将问题变成1122y x z =-+在y 轴截距最大问题的求解;通过平移直线可确定最大值取得的点,代入可得结果. 【详解】由约束条件可得可行域如下图所示:当2z x y =+取最大值时,1122y x z =-+在y 轴截距最大 平移直线12y x =-,可知当直线1122y x z =-+过图中A 点时,在y 轴截距最大由240y xx y =⎧⎨--=⎩得:()4,4A max 42412z ∴=+⨯=故选:C 【点睛】本题考查线性规划中最值问题的求解,关键是能够将问题转化为直线在y 轴截距最值问题的求解,属于常考题型.6.A解析:A 【解析】 【分析】由余弦定理可知c 2=a 2+b 2﹣2ab cos C ,进而求得a ﹣b 的表达式,根据表达式与0的大小,即可判断出a 与b 的大小关系. 【详解】解:∵∠C =120°,ca ,∴由余弦定理可知c 2=a 2+b 2﹣2ab cos C ,()2=a 2+b 2+ab .∴a 2﹣b 2=ab ,a ﹣b ,∵a >0,b >0, ∴a ﹣b ,∴a >b 故选A . 【点睛】本题考查余弦定理,特殊角的三角函数值,不等式的性质,比较法,属中档题.7.D解析:D 【解析】【分析】 【详解】111A B C ∆的三个内角的余弦值均大于0,则111A B C ∆是锐角三角形,若222A B C ∆是锐角三角形,由,得2121212{22A AB BC C πππ=-=-=-,那么,2222A B C π++=,矛盾,所以222A B C ∆是钝角三角形,故选D.8.B解析:B 【解析】 【分析】由已知条件推导出a n =b 1b 2…b n-1,由此利用b 10b 11=2,根据等比数列的性质能求出a 21. 【详解】数列{a n }的首项a 1=1,数列{b n }为等比数列,且1n n na b a +=, ∴3212212a a b a b a a ==,=4312341233aa b b b a b b b a ∴=∴=,,=,, …101211011211220120219101122n n a b b b b b a b b b b b b b b b -=⋯=∴=⋯=⨯⨯⋯⨯=Q ,,()()() . 故选B . 【点睛】本题考查数列的第21项的求法,是中档题,解题时要认真审题,注意递公式和等比数列的性质的合理运用.9.B解析:B 【解析】 【分析】根据幂函数所过点求得幂函数解析式,由此求得n a 的表达式,利用裂项求和法求得n S 的表达式,解方程10n S =求得n 的值. 【详解】设幂函数为()f x x α=,将()4,2代入得142,2αα==,所以()f x x =所以1n a n n =+11nn n a =+1121n S n n n n =+-L 11n =+,由1110n S n =+=解得120n =,故选B. 【点睛】本小题主要考查幂函数解析式的求法,考查裂项求和法,考查方程的思想,属于基础题.10.B解析:B 【解析】 【分析】由题意可得n ≥2时,a n -a n -1=n ,再由数列的恒等式:a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1),运用等差数列的求和公式,可得a n ,求得1n a =()21n n +=2(1n -11n +),由数列的裂项相消求和,化简计算可得所求和. 【详解】解:数列{a n }满足a 1=1,对任意n ∈N *都有a n +1=a n +n +1, 即有n ≥2时,a n -a n -1=n ,可得a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =1+2+3+…+n =12n (n +1),1n =也满足上式 1n a =()21n n +=2(1n -11n +), 则122019111a a a ++⋯+=2(1-12+12-13+…+12019-12020) =2(1-12020)=20191010.故选:B . 【点睛】本题考查数列的恒等式的运用,等差数列的求和公式,以及数列的裂项相消求和,考查化简运算能力,属于中档题.11.A解析:A 【解析】 【分析】设三角形的三边分别为,1,2(*)n n n n N ++∈,根据余弦定理求出最小角的余弦值,然后再由正弦定理求得最小角的余弦值,进而得到n 的值,于是可得最小角的余弦值. 【详解】由题意,设ABC ∆的三边长分别为,1,2(*)n n n n N ++∈,对应的三角分别为,,A B C , 由正弦定理得222sin sin sin 22sin cos n n n n A C A A A+++===,所以2 cos2nAn+=.又根据余弦定理的推论得222(2)(1)5 cos2(2)(1)2(2)n n n nAn n n+++-+==+++.所以2522(2)n nn n++=+,解得4n=,所以453 cos2(42)4A+==+,即最小角的余弦值为34.故选A.【点睛】解答本题的关键是求出三角形的三边,其中运用“算两次”的方法得到关于边长的方程,使得问题得以求解,考查正余弦定理的应用及变形、计算能力,属于基础题.12.B解析:B【解析】【分析】()()1122n n n n+-=-的表达式,可得出数列{}n a的通项公式.【详解】(1)(1),(2)22n n n nn n+-=-=≥1=,所以2,(1),nn n a n=≥=,选B.【点睛】给出n S与n a的递推关系求n a,常用思路是:一是利用1,2n n na S S n-=-≥转化为na的递推关系,再求其通项公式;二是转化为n S的递推关系,先求出n S与n之间的关系,再求n a. 应用关系式11,1{,2nn nS naS S n-==-≥时,一定要注意分1,2n n=≥两种情况,在求出结果后,看看这两种情况能否整合在一起.二、填空题13.8【解析】【分析】根据求得再求出带入不等式解不等式即可【详解】因为数列为正项的递增等比数列由解得则整理得:使不等式成立的最大整数为故答案为:【点睛】本题主要考查了等比数列的性质和等比数列的求和同时考解析:8 【解析】 【分析】 根据1524158281a a a a a a +=⎧⎨==⎩,求得15181a a =⎧⎨=⎩,13-=n n a .再求出13(1)3n n T =-,带入不等式112020|1|13n nT a -->,解不等式即可.【详解】因为数列{}n a 为正项的递增等比数列,由1524158281a a a a a a +=⎧⎨==⎩,解得15181a a =⎧⎨=⎩.则3q =,13-=n n a .1(1)1323(1)1313n n n T -=⨯=--. 112020|1|13n n T a -->⇒1112020|11|133n n ---->. 整理得:38080n <.使不等式成立的最大整数n 为8. 故答案为:8 【点睛】本题主要考查了等比数列的性质和等比数列的求和,同时考查了学生的计算能力,属于中档题.14.9【解析】【分析】由求出满足的关系然后利用基本不等式求出的最小值再由最小值为1可得【详解】∵∴即∴当且仅当时等号成立∴故答案为:9【点睛】本题考查基本不等式求最值解题时需用凑配法凑出基本不等式所需的解析:9 【解析】 【分析】由()()()()f a f b f a f b +=求出,a b 满足的关系,然后利用基本不等式求出4()()a bf f k k +的最小值,再由最小值为1可得k . 【详解】∵()()()()f a f b f a f b +=,()f x kx =,∴ka kb ka kb +=⋅,即11k a b+=,∴4()()a b f f k k +111144()(4)(5)a b a b a b k a b k b a =+=++=++19(5k k≥+=,当且仅当4a b b a=时等号成立. ∴91k=,9k =. 故答案为:9. 【点睛】本题考查基本不等式求最值.解题时需用凑配法凑出基本不等式所需的定值,然后才可用基本不等式求最值,同时还要注意等号成立的条件,等号成立的条件取不到,这个最值也取不到.15.【解析】【分析】由为定值运用均值不等式求的最大值即可【详解】当且仅当时等号成立即而当且仅当时等号成立故的最大值为2故答案为:2【点睛】本题主要考查了基本不等值求积的最大值对数的运算属于中档题 解析:2【解析】 【分析】由0,0a b >>,20a b +=为定值,运用均值不等式求ab 的最大值即可. 【详解】0,0a b ∴>>,20a b +=,20a b ∴=+≥当且仅当10a b ==时,等号成立,即100ab ≤,而lg lg lg lg1002a b ab +=≤=,当且仅当10a b ==时,等号成立, 故lg lg a b +的最大值为2, 故答案为:2 【点睛】本题主要考查了基本不等值求积的最大值,对数的运算,属于中档题.16.【解析】分析:设公差为d 首项利用等差中项的性质通过两次平方运算即可求得答案详解:设公差为d 首项和都是等差数列且公差相等即两边同时平方得:两边再平方得:又两数列公差相等即解得:或为正项数列故答案为:点 解析:14【解析】分析:设公差为d ,首项1a ,利用等差中项的性质,通过两次平方运算即可求得答案. 详解:设公差为d ,首项1a ,Q {}n a 和都是等差数列,且公差相等,∴=,即=,两边同时平方得:()1114233a d a a d +=+++14a d +=两边再平方得:()221111168433a a d d a a d ++=+,∴2211440a a d d -+=,12d a =,又两数列公差相等,2112a a d a =-==,12a =, 解得:114a =或10a =, Q {}n a 为正项数列,∴114a =.故答案为:14. 点睛:本题考查等差数列的性质,考查等差中项的性质,考查化归与方程思想.17.7【解析】试题分析:根据约束条件画出可行域得到△ABC 及其内部其中A (53)B (﹣13)C (20)然后利用直线平移法可得当x=5y=3时z=2x ﹣y 有最大值并且可以得到这个最大值详解:根据约束条件画解析:7 【解析】试题分析:根据约束条件画出可行域,得到△ABC 及其内部,其中A (5,3),B (﹣1,3),C (2,0).然后利用直线平移法,可得当x=5,y=3时,z=2x ﹣y 有最大值,并且可以得到这个最大值. 详解:根据约束条件2,2,03,x y x y y +≥⎧⎪-≤⎨⎪≤≤⎩画出可行域如图,得到△ABC 及其内部,其中A (5,3),B (﹣1,3),C (2,0) 平移直线l :z=2x ﹣y ,得当l 经过点A (5,3)时, ∴Z 最大为2×5﹣3=7. 故答案为7.点睛:在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.18.【解析】∵∴将以上各式相加得:故应填;【考点】:此题重点考察由数列的递推公式求数列的通项公式;【突破】:重视递推公式的特征与解法的选择;抓住中系数相同是找到方法的突破口;此题可用累和法迭代法等; 解析:()112n n ++【解析】∵112,1n n a a a n +==++∴()111n n a a n -=+-+,()1221n n a a n --=+-+,()2331n n a a n --=+-+,⋯,3221a a =++,2111a a =++,1211a ==+将以上各式相加得:()()()123211n a n n n n ⎡⎤=-+-+-+++++⎣⎦L()()()()11111111222n n n n n n n n ⎡⎤--+-+⎣⎦=++=++=+故应填()112n n ++;【考点】:此题重点考察由数列的递推公式求数列的通项公式;【突破】:重视递推公式的特征与解法的选择;抓住11n n a a n +=++中1,n n a a +系数相同是找到方法的突破口;此题可用累和法,迭代法等;19.22【解析】试题分析:由题意得12bcsinA=12a2⇒bcsinA=a2因此ACAB+ABAC+BC2AB ⋅AC=bc+cb+a2bc=b2+c2+a2bc=a2+2bccosA+a2bc=2c 解析:【解析】试题分析:由题意得,因此,从而所求最大值是考点:正余弦定理、面积公式【方法点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是: 第一步:定条件即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果.20.【解析】【分析】因为从而求出可得数列为等差数列记数列为从而将对任意的恒成立化为即可求得答案【详解】故则对也成立则数列为等差数列记数列为故对任意的恒成立可化为:;即解得故答案为:【点睛】本题考查了根据解析:712[,]35【解析】 【分析】因为1112222n n n b b b n -+++⋯+=⋅,2121()2212n nn b b b n --++⋯+=-⋅,从而求出2(1)n b n =+,可得数列{}n b kn -为等差数列,记数列{}n b kn -为{}n c ,从而将5n S S ≤对任意的*(N )n n ∈恒成立化为50c ≥,60c ≤,即可求得答案. 【详解】Q 1112222n n n n b b b H n-++++==L ,∴ 1112222n n n b b b n -++++=⋅L ,故2121()(22212)n nn b b n b n --⋅++=-≥+L ,∴112212()n n n n b n n -+=⋅--⋅1()2n n =+⋅,则2(1)n b n =+,对1b 也成立,∴2(1)n b n =+,则()22n b kn k n -=-+,∴数列{}n b kn -为等差数列,记数列{}n b kn -为{}n c .故5n S S ≤对任意的*N ()n n ∈恒成立,可化为:50c ≥,60c ≤;即5(2)206(2)20k k -+≥⎧⎨-+≤⎩,解得,71235k ≤≤,故答案为:712[,]35. 【点睛】本题考查了根据递推公式求数列通项公式和数列的单调性,掌握判断数列前n 项和最大值的方法是解题关键,考查了分析能力和计算能力,属于中档题.三、解答题21.(1)1a =;(2)22. 【解析】 【分析】 【详解】 试题分析:(1)根据单调性求出()f x 的最小值,即可求出a 的值; (2)根据基本不等式的性质求出其最小值即可. 试题解析:(1)f(x)=当x ∈(-∞,0)时,f(x)单调递减; 当x ∈[0,+∞)时,f(x)单调递增; ∴当x =0时,f(x)的最小值a =1. (2)由(1)知m 2+n 2=1,则m 2+n 2≥2mn ,得≥2,由于m>0,n>0, 则+≥2≥2,当且仅当m =n =时取等号. ∴+的最小值为2.22.见解析 【解析】 【分析】若选①:利用正弦定理可得(a b)()(c b)a b c +-=-,即222b c a bc +-=,再利用余弦定理求得cos A ,进而求得bc ,从而求得面积;若选②:利用正弦定理可得sin sin sin cos()6A B B A π=+,化简可得3tan 3A =,即6A π=,利用余弦定理求得bc ,从而求得面积;若选③:根据正弦定理得sin sin sin sin 2B CB A B +=,整理可得3A π=,进而求得面积 【详解】解:若选①:由正弦定理得(a b)()(c b)a b c +-=-, 即222b c a bc +-=,所以2221cos 222b c a bc A bc bc +-===,因为(0,)A π∈,所以3A π=.又2222()3a b c bc b c bc =+-=+-,a =6bc +=,所以4bc =,所以11sin 4sin 223ABC S bc A π∆==⨯⨯= 若选②:由正弦定理得sin sin sin cos()6A B B A π=+.因为0B π<<,所以sin 0B ≠,sin cos()6A A π=+,化简得1sin sin 2A A A =-,即tan A =,因为0A π<<,所以6A π=.又因为2222cos6a b c bc π=+-,所以22bc =,即24bc =-所以111sin (246222ABC S bc A ∆==⨯-⨯=- 若选③:由正弦定理得sin sinsin sin 2B CB A B +=, 因为0B π<<,所以sin 0B ≠, 所以sin sin 2B CA +=,又因为BC A +=π-, 所以cos2sin cos 222A A A =, 因为0A π<<,022A π<<,所以cos 02A≠, 1sin22A ∴=,26A π=,所以3A π=.又2222()3a b c bc b c bc =+-=+-,a =6bc +=,所以4bc =,所以11sin 4sin 223ABC S bc A π∆==⨯⨯= 【点睛】本题考查正弦定理与余弦定理处理三角形中的边角关系,考查三角形面积公式的应用,考查运算能力23.(1)*21,n a n n N =-∈(2)存在,2,12m k ==【解析】 【分析】(1)设等差数列{}n a 的公差为d ,由等差数列的通项公式与前n 项和公式得112512238a d a d +=⎧⎨+=⎩,解得112a d =⎧⎨=⎩,从而求出21n a n =-; (2)由(1)得()2122n n n S n n -=+⨯=,由211114122121n b n n n ⎛⎫==- ⎪--+⎝⎭,利用裂项相消法得21n n T n =+,若23k m T T =,则()2232121k m k m =++,整理得223412m k m m =+-,由1k m >>得11m <<+,从而可求出答案. 【详解】解:(1)设等差数列{}n a 的公差为d ,由2541216a a S +=⎧⎨=⎩得112512238a d a d +=⎧⎨+=⎩,解得112a d =⎧⎨=⎩,()*12121,n a n n n N ∴=+-=-∈;(2)()2122n n n S n n -=+⨯=,211114122121n b n n n ⎛⎫∴==- ⎪--+⎝⎭,1211111111111123352321212122121n n n T b b b n n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=++⋅⋅⋅+=-+-+⋅⋅⋅+-+-=-= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥---+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ,若23k m T T =,则()2232121k m k m =++,整理得223412m k m m =+-,又1k m >>,2234121m m m m m ⎧>⎪∴+-⎨⎪>⎩,整理得222104121m m m m m ⎧-->⎪+-⎨⎪>⎩,解得611m <<+, 又*m N ∈,2m ∴=,12k ∴=, ∴存在2,12m k ==满足题意. 【点睛】本题主要考查等差数列的性质与求和,考查裂项相消法求和,属于中档题. 24.(Ⅰ)5950(Ⅱ)a =13 【解析】 【分析】 【详解】222221131sin cos 2cos 12sin cos 12sin cos 2sin 222222 B C A A A A A A A ++=+-=++-=+-⋅3sin 5A =,4cos 5A ∴= 2231314959sin cos 2cos 2sin 2222225 5 250B C A A A ++=+-=+⨯-⨯= (2)133sin ,2,sin 25bc A b A ===25.(1)32n a n =+;(2)6226nn T n =⨯+-【解析】 【分析】(1)先由条件可以判断出数列是递增数列,再由等差数列的性质:m n p q m n p q a a a a +=+⇒+=+ 可以求得110,a a ,然后根据等差数列通项公式即可求解.(2)由(1)可得数列n b 的通项公式,然后利用分组求和即可求解. 【详解】(1)等差数列{}n a 中,111038,37n n a a a a a a +>+=+=,11011016037a a a a ⋅=⎧⎨+=⎩ 解得110532a a =⎧⎨=⎩3253101d -∴==-, ()51332n a n n ∴=+-⨯=+.(2)由(1)知,12322b a ==⨯+,24342b a ==⨯+,…2322n nn b a ==⋅+,()()()12322342322n n n S b b b ∴=+++=⨯++⨯+++⋅+L L ()122324223212n nn n +-=⨯++++=⨯+-L13262n n +=⨯-+ 6226n n =⨯+-.【点睛】本题主要考查等差数列的通项公式、性质、等比数列的求和公式、利用“分组求和法”求数列前n 项和,属于中档题. 利用“分组求和法”求数列前n 项和常见类型有两种:一是通项为两个公比不相等的等比数列的和或差,可以分别用等比数列求和后再相加减;二是通项为一个等差数列和一个等比数列的和或差,可以分别用等差数列求和、等比数列求和后再相加减;解题中需要熟练掌握公式和性质,对计算能力要求较高. 26.(1)(),36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)736.【解析】 【分析】(1)利用向量数量积的坐标运算公式、降次公式和辅助角公式,化简()f x 为()sin A x B ωϕ++的形式,将x ωϕ+代入ππ2π,2π22k k ⎡⎤-+⎢⎥⎣⎦中,解出x 的范围,由此求得函数的单调区间.(2)利用()2f A =求得角A 的大小,利用余弦定理和2b c =列方程组,解方程组求得2c 的值,由此求得三角形的面积. 【详解】 (1)=,令πππ2π22π,262k x k -≤+≤+解得,k ∈Z , 函数y=f (x )的单调递增区间是(k ∈Z ).(2)∵f(A)=2,∴,即,又∵0<A<π,∴,∵,由余弦定理得a2=b2+c2﹣2bccosA=(b+c)2﹣3bc=7,①b=2c,②,由①②得,∴.【点睛】本小题主要考查向量的数量积运算,考查三角函数降次公式、辅助角公式,考查利用余弦定理解三角形.属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年高三数学上期中第一次模拟试卷附答案(2)一、选择题1.已知{}n a 为等差数列,若20191<-a a ,且数列{}n a 的前n 项和n S 有最大值,则n S 的最小正值为( ) A .1SB .19SC .20SD .37S2.已知数列{}n a 的首项11a =,数列{}n b 为等比数列,且1n n na b a +=.若10112b b =,则21a =( )A .92B .102C .112D .1223.已知A 、B 两地的距离为10 km,B 、C 两地的距离为20 km,现测得∠ABC=120°,则A 、C 两地的距离为 ( ) A .10 kmBkmC.D.4.设{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,则{}n a 的前n 项和n S =( )A .2744n n +B .2533n n+C .2324n n+D .2n n +5.若关于x 的不等式220x ax +->在区间[]1,5上有解,则a 的取值范围是( ) A .23,5⎛⎫-+∞ ⎪⎝⎭B .23,15⎡⎤-⎢⎥⎣⎦C .()1,+∞D .23,5⎛⎤-∞ ⎥⎝⎦6.等比数列{}n a 中,11,28a q ==,则4a 与8a 的等比中项是( ) A .±4 B .4 C .14± D .147.数列{a n }满足a 1=1,对任意n ∈N *都有a n +1=a n +n +1,则122019111a a a ++⋯+=( )A .20202019B .20191010 C .20171010 D .403720208.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,S 表示ABC V 的面积,若cos cos sin ,c B b C a A +=)222S b a c =+-,则B ∠=A .90︒B .60︒C .45︒D .30︒9.在数列{}n a 中,12a =,11ln(1)n n a a n +=++,则n a =A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++10.已知等差数列{}n a 的前n 项为n S ,且1514a a +=-,927S =-,则使得n S 取最小值时的n 为( ). A .1B .6C .7D .6或711.已知0,0x y >>,且91x y +=,则11x y+的最小值是 A .10B .12?C .14D .1612.若正数,x y 满足40x y xy +-=,则3x y+的最大值为 A .13B .38C .37D .1二、填空题13.在ABC ∆中,,,a b c 分别为内角,,A B C 的对边,若32sin sin sin ,cos 5B AC B =+=,且6ABC S ∆=,则b =__________. 14.已知数列111112123123n+++++++L L L ,,,,,,则其前n 项的和等于______. 15.已知关于x 的一元二次不等式ax 2+2x+b >0的解集为{x|x≠c},则227a b a c+++(其中a+c≠0)的取值范围为_____.16.已知等比数列{a n }的前n 项和为S n ,若a 3=32,S 3=92,则a 1的值为________. 17.已知在△ABC 中,角,,A B C 的对边分别为,,a b c ,若2a b c +=,则C ∠的取值范围为________18.在△ABC 中,2BC =,AC =3B π=,则AB =______;△ABC 的面积是______.19.(理)设函数2()1f x x =-,对任意3,2x ⎡⎫∈+∞⎪⎢⎣⎭,2()4()(1)4()xf m f x f x f m m-≤-+恒成立,则实数m 的取值范围是______. 20.若两个正实数,x y 满足141x y +=,且不等式234y x m m +<-有解,则实数m 的取值范围是____________ .三、解答题21.已知数列{}n a 是一个公差为()0d d ≠的等差数列,前n 项和为245,,,n S a a a 成等比数列,且515=-S .(1)求数列{}n a 的通项公式;(2)求数列{nS n}的前10项和. 22.已知向量113,sin cos 22x x a ⎛⎫+ ⎝=⎪ ⎪⎭v 与()1,b y =v 共线,设函数()y f x =. (1)求函数()f x 的最小正周期及最大值.(2)已知锐角ABC ∆的三个内角分别为,,A B C ,若有33f A π⎛⎫-= ⎪⎝⎭,边217,sin 7BC B ==,求ABC ∆的面积. 23.已知等差数列{}n a 的前n 项和为n S ,且211a =,7161S =. (1)求数列{}n a 的通项公式; (2)若11n n n b a a +=,求数列{}n b 的前n 项和n T . 24.已知{}n a 是递增的等差数列,2a ,4a 是方程的根.(1)求{}n a 的通项公式;(2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和.25.若数列{}n a 是递增的等差数列,它的前n 项和为n T ,其中39T =,且1a ,2a ,5a 成等比数列.(1)求{}n a 的通项公式; (2)设11n n n b a a +=,数列{}n b 的前n 项和为n S ,若对任意*n N ∈,24n S a a ≤-恒成立,求a 的取值范围.26.ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos cos a C c A a +=. (1)求证:A B =; (2)若6A π=,ABC V 3,求ABC V 的周长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D【解析】 【分析】由已知条件判断出公差0d <,对20191<-a a 进行化简,运用等差数列的性质进行判断,求出结果. 【详解】已知{}n a 为等差数列,若20191<-a a ,则2019190a a a +<, 由数列{}n a 的前n 项和n S 有最大值,可得0d <,19193712029000,,0,370a a a a a S <=∴+<>>, 31208190a a a a ∴+=+<,380S <,则n S 的最小正值为37S 故选D 【点睛】本题考查了等差数列的性质运用,需要掌握等差数列的各公式并能熟练运用等差数列的性质进行解题,本题属于中档题,需要掌握解题方法.2.B解析:B 【解析】 【分析】由已知条件推导出a n =b 1b 2…b n-1,由此利用b 10b 11=2,根据等比数列的性质能求出a 21. 【详解】数列{a n }的首项a 1=1,数列{b n }为等比数列,且1n n na b a +=, ∴3212212a a b a b a a ==,=4312341233aa b b b a b b b a ∴=∴=,,=,, …101211011211220120219101122n n a b b b b b a b b b b b b b b b -=⋯=∴=⋯=⨯⨯⋯⨯=Q ,,()()() . 故选B . 【点睛】本题考查数列的第21项的求法,是中档题,解题时要认真审题,注意递公式和等比数列的性质的合理运用.3.D解析:D 【解析】 【分析】直接利用余弦定理求出A ,C 两地的距离即可. 【详解】因为A ,B 两地的距离为10km ,B ,C 两地的距离为20km ,现测得∠ABC =120°, 则A ,C 两地的距离为:AC 2=AB 2+CB 2﹣2AB •BC cos ∠ABC =102+202﹣2110202⎛⎫⨯⨯⨯-= ⎪⎝⎭700. 所以AC =107km . 故选D . 【点睛】本题考查余弦定理的实际应用,考查计算能力.4.A解析:A 【解析】 【分析】 【详解】 设公差为d 则解得,故选A.5.A解析:A 【解析】 【分析】利用分离常数法得出不等式2a x x >-在[]15x ∈,上成立,根据函数()2f x x x=-在[]15x ∈,上的单调性,求出a 的取值范围【详解】关于x 的不等式220x ax +->在区间[]1,5上有解22ax x ∴>-在[]15x ∈,上有解 即2a x x>-在[]15x ∈,上成立,设函数数()2f x x x=-,[]15x ∈,()2210f x x ∴'=--<恒成立 ()f x ∴在[]15x ∈,上是单调减函数且()f x 的值域为2315⎡⎤-⎢⎥⎣⎦, 要2a x x >-在[]15x ∈,上有解,则235a >- 即a 的取值范围是23,5⎛⎫-+∞ ⎪⎝⎭故选A 【点睛】本题是一道关于一元二次不等式的题目,解题的关键是掌握一元二次不等式的解法,分离含参量,然后求出结果,属于基础题.6.A解析:A 【解析】 【分析】利用等比数列{}n a 的性质可得2648a a a = ,即可得出.【详解】设4a 与8a 的等比中项是x .由等比数列{}n a 的性质可得2648a a a =,6x a ∴=± .∴4a 与8a 的等比中项561248x a =±=±⨯=±. 故选A . 【点睛】本题考查了等比中项的求法,属于基础题.7.B解析:B 【解析】 【分析】由题意可得n ≥2时,a n -a n -1=n ,再由数列的恒等式:a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1),运用等差数列的求和公式,可得a n ,求得1n a =()21n n +=2(1n -11n +),由数列的裂项相消求和,化简计算可得所求和. 【详解】解:数列{a n }满足a 1=1,对任意n ∈N *都有a n +1=a n +n +1, 即有n ≥2时,a n -a n -1=n ,可得a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =1+2+3+…+n =12n (n +1),1n =也满足上式1n a =()21n n +=2(1n -11n +), 则122019111a a a ++⋯+=2(1-12+12-13+…+12019-12020) =2(1-12020)=20191010.故选:B . 【点睛】本题考查数列的恒等式的运用,等差数列的求和公式,以及数列的裂项相消求和,考查化简运算能力,属于中档题.8.D解析:D 【解析】 【分析】由正弦定理,两角和的正弦函数公式化简已知等式可得sin A =1,即A =900,由余弦定理、三角形面积公式可求角C ,从而得到B 的值. 【详解】由正弦定理及cos cos sin ,c B b C a A +=得2sin cos sin cos sin ,C B B C A +=()2sin sin sin 1C B A A ⇒+=⇒=,因为000180A <<,所以090A =;由余弦定理、三角形面积公式及)222S b a c =+-,得1sin 2cos 2ab C ab C =,整理得tan C =,又00090C <<,所以060C =,故030B =. 故选D 【点睛】本题考查正、余弦定理、两角和的正弦公式、三角形面积公式在解三角形中的综合应用,考查计算能力和转化思想,属于中档题.9.A解析:A 【解析】 【分析】 【详解】试题分析:在数列{}n a 中,11ln 1n n a a n +⎛⎫-=+⎪⎝⎭112211()()()n n n n n a a a a a a a a ---∴=-+-+⋅⋅⋅⋅⋅⋅+-+12lnln ln 2121n n n n -=++⋅⋅⋅⋅⋅⋅++--12ln()2121n n n n -=⋅⋅⋅⋅⋅⋅⋅⋅+-- ln 2n =+ 故选A. 10.B 解析:B 【解析】试题分析:由等差数列的性质,可得,又,所以,所以数列的通项公式为,令,解得,所以数列的前六项为负数,从第七项开始为正数,所以使得取最小值时的为,故选B .考点:等差数列的性质.11.D解析:D 【解析】 【分析】通过常数代换后,应用基本不等式求最值. 【详解】∵x >0,y >0,且9x+y=1,∴()11119999110216y x y xx y x y x y x y x y ⎛⎫+=+⋅+=+++≥+⋅= ⎪⎝⎭当且仅当9y x x y =时成立,即11,124x y ==时取等号. 故选D. 【点睛】本题考查了应用基本不等式求最值;关键是注意“1”的整体代换和几个“=”必须保证同时成立.12.A解析:A 【解析】 【分析】分析题意,取3x y +倒数进而求3x y+的最小值即可;结合基本不等式中“1”的代换应用即可求解。

相关文档
最新文档