2018人教版八年级下册第20章 数据分析 单元测试试卷(A卷)
人教版数学八年级下册第20章数据的分析单元测试试题(有答案)
人教版数学八年级下册第20章数据的分析单元测试试题(有答案)数据的分析单元测试试题(一)一.选择题1.若一组数据﹣3,﹣2,0,1,x,6,9,12的平均数为3,这组数据的中位数是()A.0B.1C.1.5D.22.某小组有15人参加捐款,其中小明的捐款数比15人捐款的平均数多2元,下列说法正确的序号是()①小明的捐款数不可能最少;②小明的捐款数可能最多;③将捐款数按从少到多排列,小明的捐款数一定比中位数多;④将捐款数按从少到多排列,小明的捐款数可能是众数.A.①②④B.②③④C.①③④D.①②③④3.下列说法正确的是()A.北斗系统第五十五颗导航卫星发射前的零件检查,应选择抽样调查B.一组数据6,5,8,8,9的众数是8C.甲、乙两组学生身高的方差分别为S甲2=2.3,S乙2=1.8.则甲组学生的身高较整齐D.篮球运动员易建联在CBA联赛场均能得到24.2分,因此他下一场比赛的得分一定会超过20分4.甲、乙两名射击运动员10次射击成绩的平均数均为9.5环,其中甲运动员成绩的方差为0.03,乙运动员成绩的方差为0.05,则下列说法正确的是()A.甲的成绩比乙的成绩更稳定B.乙的成绩比甲的成绩更稳定C.甲、乙两人的成绩一样稳定D.甲、乙两人的成绩不能比较5.某校在计算学生的数学期评成绩时,规定期中考试成绩占40%,期末考试成绩占60%,王林同学的期中数学专试成绩为80分,期末数学考试成绩为90分,那么他的数学期评成绩是()A.80分B.82分C.84分D.86分6.某校规定学生的学期学业成绩由三部分组成:平时成绩占20%,期中成绩占30%,期末成绩占50%,小颖的平时、期中、期末成绩分别为85分、90分、92分,则她本学期的学业成绩为()A.85B.90C.92D.897.若一组数据x1,x2,…x n的平均数为17,方差为2,则另一组数据x1+1,x2+1,…,x n+1的平均数、方差分别为()A.17,2B.18,2C.17,3D.18,38.甲、乙、丙、丁四支仪仗队队员身高的平均数及方差如表所示:甲乙丙丁平均数(cm)177178178179方差0.7 1.6 1.10.9则身高较为整齐的仪仗队是()A.甲B.乙C.丙D.丁9.某篮球队5名场上队员的身高(单位:cm)是:183,185,188,190,194.现用一名身高为190cm的队员换下场上身高为185cm的队员,与换人前相比,场上队员身高的()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大10.永宁县某中学在预防“新冠肺炎”期间,要求学生每日测量体温,九(5)班一名同学连续一周体温情况如表所示:则该名同学这一周体温数据的众数和中位数分别是()日期星期一星期二星期三星期四星期五星期六星期天体温(℃)36.236.236.536.336.236.436.3 A.36.3和36.2B.36.2和36.3C.36.2和36.2D.36.2和36.1二.填空题11.长沙市某中学为积极响应“书香长沙,全民阅读”活动,助力学生良好阅读习惯的养成,形成浓厚的阅读氛围,随机调查了51名学生平均每天的阅读时间,统计结果如表所示,则在本次调查中,学生阅读时间的中位数是.时间(小时)0.51 1.52 2.5人数(人)1222104312.随机从甲、乙两块试验田中各抽取100株麦苗测量高度,计算高度的平均数和方差的结果为:=12.5,=13,S甲2=3.6,S乙2=15.8,则小麦长势比较整齐的试验田是(填“甲”或“乙”).13.九名同学参加定点投篮测试,每人投篮六次,投中的次数统计如下:4,3,5,5,2,5,3,4,1,这组数据的众数为.14.甲、乙两人参加“新冠防控知识”竞赛,经过5轮比赛,他们的平均成绩都是98分.若两人比赛成绩的方差分别为S甲2=3.85分,S乙2=2.52分,则两人中比赛成绩更加稳定的是.如下表:(单位:分)将阅读能力、思维能力和表达能力三项测试得分按1:3:1的比确定每人的最后成绩,被录用的是.应聘者阅读能力思维能力表达能力甲859080乙958095三.解答题16.小冬与小夏是某中学篮球队的队员,在最近五场球赛中的得分如表所示:第一场第二场第三场第四场第五场小冬10139810小夏12213212(1)根据上表所给的数据,填写下表:平均数中位数众数方差小冬1010 2.8小夏101232.4(2)根据以上信息,若教练选择小冬参加下一场比赛,教练的理由是什么?(3)若小冬的下一场球赛得分是16分,则在小冬得分的四个统计量中(平均数、中位数、众数与方差)哪些不变,哪些发生了改变,改变后是变大还是变小?(S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2])17.某班举行知识竞赛,评分标准是:答对一题加10分,答错一题扣5分,不回答扣2分;一共10个题,每个队的基本分均为0分.A、B、C、D前8题的答题情况如下表:参赛队题目数量(题)答对(题)答错(题)不回答(题)得分(分)A860256B8413C8431D8530(1)A队前8题的得分是:6×10+0×(﹣5)+2×(﹣2)=56分,按照这种计算方法:B队前8题共得分,C队前8题共得分,D队前8题共得分.(2)如果A队最后两道题都答错,本次知识竞赛C队的得分可能超过A队吗?请通过计算说明理由.(3)A队队员小明计算了目前各队的得分,然后告诉其他队员:“如果我们最后两题不回答,我们仍然是冠军.”队长小颖却说:“最后两题我们至少要答对一题,我们才一定是冠军.”你同意谁的说法,请通过计算说明理由.18.体育课上,老师为了解男学生定点投篮的情况,随机抽取8名男学生进行每人4次定点投篮的测试,进球数的统计如图所示.(1)男生进球数的平均数为、中位数为.(2)投球4次,进球3个以上(含3个)为优秀,全校有男生1200人,估计为“优秀”等级的男生约为多少人?19.随着冬季的来临,“新冠”疫情再次肆虐,育才中学为确保学生健康,开展了“远离新冠珍爱生命”的防“新冠”安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x <85,B.85≤x<90,C.90≤x<95,D.95≤x≤100,下面给出了部分信息:七年级10名学生的竞赛成绩是:80,86,99,96,90,99,100,82,89,99,八年级10名学生的竞赛成绩在C组中的数据是:94,94,90.七、八年级抽取的学生竞赛成绩统计表年级七年级八年级平均数9292中位数93b众数c100方差5250.4根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防“新冠”安全知识更好?请说明理由(一条即可);(3)育才中学七、八年级共2160人参加了此次竞赛活动,估计参加此次竞赛活动获得成绩优秀(x≥95)的学生人数是多少?。
人教版八年级下册数学 第20章 数据的分析 单元测试卷(含答案)
第20章 数据的分析 单元测试卷一、填空题(共14小题,每题2分,共28分)1.对于数据组3,3,2,3,6,3,6,3,2,4中,众数是_______;平均数是______;•极差是_______,中位数是______. 2.数据3,5,4,2,5,1,3,1的方差是________.3.某学生7门学科考试成绩的总分是560分,其中3门学科的总分是234分,则另外4门学科成绩的平均分是_________.4.已知一组数据1、2、y 的平均数为4,那么y 的值是 . 5.若样本x 1+1,x 2+1,…,x n +1的平均数为10,方差为2,则另一样本x 1+2,x 2+2,…,x n +2,的平均数为 ,方差为 .6.小张和小李去练习射击,第一轮10枪打完后两人的成绩如图所示,•通常新手的成绩不太稳定,那么根据图的信息,估计小张和小李两人中新手是________.7.某日天气预报说今天最高气温为8℃,气温的极差为10℃,则该日最低气温为______℃.8.一班级组织一批学生去春游,预计共需费用120元,后来又有2人参加进来,总费用不变,于是每人可以少分摊3元,原来参加春游的学生人数是 . 9.当五个整数从第6题1 2 3 5 6 7123456789 10调查序号零花钱(元)第10题小到大排列后,其中位数是4,如果这组数据的唯一众数是6,那么这组数据可能的最大的和是___ __.10.八年级某班为了引导学生树立正确的消费观,随机调查了10名同学某日除三餐以外的零花钱情况,其统计图如下,据图可知:零花钱在3元以上(包括3元)的学生所占比例为,该班学生每日零花钱的平均数大约是元.11.为了调查某一段路的汽车流量,记录了30天中每天同一时段通过该路口的汽车辆数,其中有4天是284辆,4天是290辆,12天是312辆,10天是314辆,那么这30天该路口同一时段通过的汽车平均数是.12.小芳测得连续5天日最低气温并整理后得出下表:那么空缺的两个数据是,.13.一养雨专业户为了估计池塘里鱼的条数,先随意捕上100条做上标记,然后放回湖里,过一段时间,待带标记的鱼完全混合于鱼群后,又捕捞了5次,记录如下表:由此估计池塘里大约有条鱼.14.现有A、B两个班级,每个班级各有45名学生参加一次测试,每名参加者可获得0,1,2,3,4,5,6,7,8,9分这几种不同的分值中的一种.测试结果A班的成绩如下表所示,B班的成绩如右图所示.(1)由观察可知,______班的方差较大;(2)若两班合计共有60人及格,问参加者最少获______分才可以及格.二、选择题(共4小题,每题3分,共12分)15.某学校五个绿化小组一天植树的棵数如下:10,10,12,x,8,如果这组数据的平均数与众数相等,那么这组数据的中位数是()A.8 B.9 C.10 D.1216.某班50名学生的身高测量结果如下表:那么该班学生身高的众数和中位数分别是()A.1.60,1.56 B.1.59,1.58 C.1.60,1.58 D.1.60,1. 60 17.如果一组数据a1,a2,……,a n的方差是2,那么数据2a1,2a2,……,2a n 的方差是()A.2 B.4 C.6 D.818.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:某同学分析上表后得出如下结论:(1)甲、乙两班学生成绩平均水平相等(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀)(3)甲班成绩的波动比乙班大,上述结论正确的是()A.①②③B.①②C.①③D.②③三、解答题(共60分)19.(5分)某校规定学生期末数学总评成绩由三部分构成:期末统考卷面成绩(占70%)、•平时测验成绩(占20%)、上课表现成绩(占10%),若学生董方的三部分得分依次是92分、80分、•84分,则她这学期期末数学总评成绩是多少?20.(5(1(2)小明说,他所在年龄组的参赛人数占全体参赛人数的28%,你认为小明是哪个年龄组的选手?请说明理由.21.(5分)某校八年级(1)班50名学生参加2008年通州市数学质量监控考试,(1)该班学生考试成绩的众数是 . (2)该班学生考试成绩的中位数是 .(3)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.22.(6分)当今,青少年视力水平的下降已引起全社会的关注,为了了解某校3000名学生的视力情况,从中抽取了一部分学生进行了一次抽样调查,利用所得数据,绘制出如下的直方图(长方形的高表示人数),根据图形,回答下列问题:(1)本次抽样调查共抽测了 名学生;(2)参加抽测学生的视力的众数在 内;(3)如果视力为4.9(包括4.9)以上为正常,估计该校学生视力正常的人数约为 .23.(6分)为了了解某校2000名学生参加环保知识竞赛的成绩,从中抽取了部分学生的竞赛成绩(均为整数),整理后绘制成如下的频数分布直方图(如图8),请结合图形解答下列问题.(1) 指出这个问题中的总体.2030405060(2)求竞赛成绩在79.5~89.5这一小组的频率.(3) 如果竞赛成绩在90分以上(含90分)的同学可获得奖励,请估计全校约有多少人获得奖励.24.(6分)小红的奶奶开了一个金键牛奶销售店,主要经营“金键学生奶”、“金键酸牛奶”、“金键原味奶”,可奶奶经营不善,经常有品种的牛奶滞销(没卖完)或脱销(量不够),造成了浪费或亏损,细心的小红结合所学的统计知识帮奶奶统计了一个星期牛奶的销售情况,并绘制了下表:(1)计算各品种牛奶的日平均销售量,并说明哪种牛奶销量最高? (2)计算各品种牛奶的方差(保留两位小数),并比较哪种牛奶销量最稳定?(3)假如你是小红,你会对奶奶有哪些好的建议.25.(6分)为了增强环境保护意识,6月5日“世界环境日”当天,在环保局工作49.5 79.5 89.5 69.5 6人数99.5 成绩人员指导下,若干名“环保小卫士”组成的“控制噪声污染”课题学习研究小组,抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB),将调查的数据进行处理(设所测数据是正整数),得频数分布表如下:组别噪声声级分组频数频率1 44.5——59.5 4 0.12 59.5——74.5 a0.23 74.5——89.5 10 0.254 89.5——104.5 b c5 104.5——119.56 0.15合计40 1.00根据表中提供的信息解答下列问题:(1)频数分布表中的a =________,b=________,c =_________;(2)补充完整频数分布直方图;(3)如果全市共有200个测量点,那么在这一时刻噪声声级小于75dB的测量点约有多少个?26.(6分)今年3月5日,花溪中学组织全体学生参加了“走出校门,服务社会”的活动.九年级一班高伟同学统计了该天本班学生打扫街道,去敬老院服务和到社区文艺演出的人数,并做了如下直方图和扇形统计图.请根据高伟同学所作的两个图形,解答:(1)九年级一班有多少名学生?(2)补全直方图的空缺部分.(3)若九年级有800名学生,估计该年级去敬老院的人数.参考答案一、填空题1.3,3.5,4,3 2.2.25 3.81.5分4.9 5.11,2 6.小李7.-2 8.8 9.2110.50%,2.8 11.306 12.4,2 13.1000 14.A,4二、选择题15.C 16.C 17.D 18.A三、解答题19.88.8分20.(1)众数是:14岁;中位数是:15岁;(2)16岁年龄组21.(1)88分;(2)86分;(3)略22.(1)150;(2)3.95-4.25;(3)600 23.(1)2000名学生参加环保知识竞赛的成绩;(2)0.25;(2)300人24.(1)x学生奶=3,x酸牛奶=80,x原味奶=40,金键酸牛奶销量高;(2)12.57,91.71,96.86,•金键学生奶销量最稳定;(3)建议学生奶平常尽量少进或不进,周末可进几瓶25.(1)8,12,0.3;(2)略;(3)60个26.(1)50人;(2)略;(3)160人。
人教新版八年级下册数学《第20章 数据的分析》单元测试卷和答案详解(PDF可打印)
人教新版八年级下册《第20章数据的分析》单元测试卷(1)一、选择题:(每题3分,共18分,请将答案填写在表格中)1.(3分)数据2,3,5,5,4的众数是()A.2B.3C.4D.52.(3分)两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的()A.众数B.中位数C.方差D.以上都不对3.(3分)某校五个绿化小组一天植树的棵树如下:10、10、12、x、8.已知这组数据的众数与平均数相同,那么这组数据的平均数是()A.12B.10C.8D.94.(3分)从鱼塘捕获同时放养的草鱼240条,从中任选8条称得每条鱼的质量分别为:1.5,1.6,1.4,1.3,1.5,1.2,1.7,1.8(单位:千克),那么可估计这240条鱼的总质量大约为()A.300千克B.360千克C.36千克D.30千克5.(3分)若样本x1+1,x2+1,…,x n+1的平均数为10,方差为2,则对于样本x1+2,x2+2,…,x n+2,下列结论正确的是()A.平均数为10,方差为2B.平均数为11,方差为3C.平均数为11,方差为2D.平均数为12,方差为46.(3分)甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级参加人数中位数方差平均数甲55149 1.91135乙55151 1.10135某同学分析上表后得出如下结论:①甲、乙两班学生成绩平均水平相等;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论正确的是()A.①②③B.①②C.①③D.②③二、填空题(每小题3分,共18分)7.(3分)若x,y,z的平均数是6,则5x+3、5y﹣2、5z+5的平均数是.8.(3分)一组数据1,3,2,5,2,a的众数是a,这组数据的中位数是.9.(3分)已知样本方差S2=,则这个样本的容量是,样本的平均数是.10.(3分)某校体育期末考核“立定跳远”、“800米”、“仰卧起坐”三项,并按3:5:2的比重算出期末成绩.已知小林这三项的考试成绩分别为80分、90分、100分,则小林的体育期末成绩为分.11.(3分)一名射击运动员连续打靶8次,命中的环数如图所示,这组数据的中位数是环,众数是环.12.(3分)已知一组数据的平均数是3,方差是2,把这组数据扩大2倍,那么新数据的平均数是,方差是.三、计算题:(共28分)13.(8分)学期末,某班评选一名优秀学生干部,下表是班长、学习委员和团支部书记的得分情况:班长学习委员团支部书记思想表现242826学习成绩262624工作能力282426假设在评选优秀干部时,思想表现、学习成绩、工作能力这三方面的重要比为3:3:4,通过计算说明谁应当选为优秀学生干部.14.(10分)某快餐店共有10名员工,所有员工工资的情况如下表:人员店长厨师甲厨师乙会计服务员甲服务员乙勤杂工人数111113220000700040002500220018001200工资额(元)请解答下列问题:(1)餐厅所有员工的平均工资是;所有员工工资的中位数是.(2)用平均数还是用中位数描述该餐厅员工工资的一般水平比较恰当?(3)去掉店长和厨师甲的工资后,其他员工的平均工资是多少?它是否也能反映该快餐店员工工资的一般水平?15.(10分)下表是七年级三班30名学生期末考试数学成绩表(已破损)成绩(分)5060708090100人数(人)2573已知该班学生期末考试数学成绩平均分是76分.(1)求该班80分和90分的人数分别是多少?(2)设该班30名学生成绩的众数为a,中位数为b,求a+b的值.四、综合题:(共36分)16.(12分)随着我市社会经济的发展和交通状况的改善,我市的旅游业得到了高速发展,某旅游公司对我市一企业旅游年消费情况进行了问卷调查,随机抽取部分员工,记录每个人消费金额,并将调查数据适当调整,绘制成如图两幅尚不完整的表和图.频数(人数)频率组别个人年消费金额x(元)A x≤2000180.15B2000<x≤4000a bC4000<x≤6000D6000<x≤8000240.20E x>8000120.10合计c 1.00根据以上信息回答下列问题:(1)a=,b=,c=.并将条形统计图补充完整;(2)这次调查中,个人年消费金额的中位数出现在组;(3)若这个企业有3000多名员工,请你估计个人旅游年消费金额在6000元以上的人数.17.(12分)某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿175型校服的学生有多少?(2)在条形统计图中,请把空缺部分补充完整.(3)在扇形统计图中,请计算185型校服所对应的扇形圆心角的大小;(4)求该班学生所穿校服型号的众数和中位数.18.(12分)班主任要从甲、乙两名跳远运动员中挑选一人参加校运动会比赛.在最近的10次选拔赛中,他们的成绩如下(单位:cm):甲584594608596608597602600612599乙615618580579618593585590598624(1)他们的平均成绩分别是多少?(2)甲、乙两名运动员这10次比赛成绩的极差、方差分别是多少?(3)怎样评价这两名运动员的运动成绩?(4)历届比赛表明,成绩达到5.96m就有可能夺冠,你认为为了夺冠应选择谁参加这项比赛?如果历届比赛成绩表明,成绩达到6.10m就能打破纪录,那么你认为为了打破纪录应选择谁参加这项比赛?人教新版八年级下册《第20章数据的分析》单元测试卷(1)参考答案与试题解析一、选择题:(每题3分,共18分,请将答案填写在表格中)1.(3分)数据2,3,5,5,4的众数是()A.2B.3C.4D.5【考点】众数.【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【解答】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故选:D.2.(3分)两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的()A.众数B.中位数C.方差D.以上都不对【考点】统计量的选择.【分析】根据方差的意义:是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.故要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生三级蛙跳测试成绩的方差.【解答】解:由于方差能反映数据的稳定性,需要比较这两名学生三级蛙跳成绩的方差.故选:C.3.(3分)某校五个绿化小组一天植树的棵树如下:10、10、12、x、8.已知这组数据的众数与平均数相同,那么这组数据的平均数是()A.12B.10C.8D.9【考点】众数;算术平均数.【分析】根据题意先确定x的值,再根据定义求解即可.【解答】解:当x=8或12时,有两个众数,而平均数只有一个,不合题意舍去,当众数为10,根据题意得=10,解得x=10,∵这组数据的众数与平均数相同,∴这组数据的平均数是10;故选:B.4.(3分)从鱼塘捕获同时放养的草鱼240条,从中任选8条称得每条鱼的质量分别为:1.5,1.6,1.4,1.3,1.5,1.2,1.7,1.8(单位:千克),那么可估计这240条鱼的总质量大约为()A.300千克B.360千克C.36千克D.30千克【考点】用样本估计总体;算术平均数.【分析】先计算出8条鱼的平均质量,然后乘以240即可.【解答】解:8条鱼的质量总和为(1.5+1.6+1.4+1.3+1.5+1.2+1.7+1.8)=12千克,每条鱼的平均质量=12÷8=1.5(千克),可估计这240条鱼的总质量大约为1.5×240=360(千克).故选:B.5.(3分)若样本x1+1,x2+1,…,x n+1的平均数为10,方差为2,则对于样本x1+2,x2+2,…,x n+2,下列结论正确的是()A.平均数为10,方差为2B.平均数为11,方差为3C.平均数为11,方差为2D.平均数为12,方差为4【考点】方差;算术平均数.【分析】一般地设n个数据,x1,x2,…x n,平均数=(x1+x2+x3…+x n),方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].直接用公式计算.【解答】解:由题知,x1+1+x2+1+x3+1+…+x n+1=10n,∴x1+x2+…+x n=10n﹣n=9nS12=[(x1+1﹣10)2+(x2+1﹣10)2+…+(x n+1﹣10)2]=[(x12+x22+x32+…+x n2)﹣18(x1+x2+x3+…+x n)+81n]=2,∴(x12+x22+x32+…+x n2)=83n另一组数据的平均数=[x1+2+x2+2+…+x n+2]=[(x1+x2+x3+…+x n)+2n]=[9n+2n]=×11n=11,另一组数据的方差=[(x1+2﹣11)2+(x2+2﹣11)2+…+(x n+2﹣11)2]=[(x12+x22+…+x n2)﹣18(x1+x2+…+x n)+81n]=[83n﹣18×9n+81n]=2,故选:C.6.(3分)甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级参加人数中位数方差平均数甲55149 1.91135乙55151 1.10135某同学分析上表后得出如下结论:①甲、乙两班学生成绩平均水平相等;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论正确的是()A.①②③B.①②C.①③D.②③【考点】方差;算术平均数;中位数.【分析】平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小.【解答】解:从表中可知,平均字数都是135,①正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,②正确;甲班的方差大于乙班的,又说明甲班的波动情况大,所以③也正确.①②③都正确.故选:A.二、填空题(每小题3分,共18分)7.(3分)若x,y,z的平均数是6,则5x+3、5y﹣2、5z+5的平均数是32.【考点】算术平均数.【分析】5x+3,5y﹣2,5z+5的平均数是(5x+3+5y﹣2+5z+5)÷3=[5(x+y+z)+6]÷3,因为x,y,z的平均数是6,则x+y+z=18;再整体代入即可求解.【解答】解:∵x,y,z的平均数是6,∴x+y+z=18;∴(5x+3+5y﹣2+5z+5)÷3=[5(x+y+z)+6]÷3=[5×18+6]÷3=96÷3=32.故答案为:32.8.(3分)一组数据1,3,2,5,2,a的众数是a,这组数据的中位数是2.【考点】中位数;众数.【分析】一组数据中出现次数最多的数据叫做众数,由此可得出a的值,将数据从小到大排列可得出中位数.【解答】解:1,3,2,5,2,a的众数是a,∴a=2,将数据从小到大排列为:1,2,2,2,3,5,中位数为:2.故答案为:2.9.(3分)已知样本方差S2=,则这个样本的容量是4,样本的平均数是3.【考点】方差;总体、个体、样本、样本容量;算术平均数.【分析】从方差公式中可以得到样本容量和平均数.【解答】解:根据样本方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2,其中n是这个样本的容量,是样本的平均数,所以本题中这个样本的容量是4,样本的平均数是3.故填4,3.10.(3分)某校体育期末考核“立定跳远”、“800米”、“仰卧起坐”三项,并按3:5:2的比重算出期末成绩.已知小林这三项的考试成绩分别为80分、90分、100分,则小林的体育期末成绩为89分.【考点】加权平均数.【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【解答】解:根据题意得:(80×3+90×5+100×2)÷(3+5+2)=89(分);故答案为:89.11.(3分)一名射击运动员连续打靶8次,命中的环数如图所示,这组数据的中位数是8.5环,众数是8环.【考点】众数;条形统计图;中位数.【分析】根据众数和中位数的概念求解.【解答】解:把数据按照从小到大的顺序排列为:7,8,8,8,9,9,10,10,中位数为:=8.5,众数为:8.故答案为:8.5,8.12.(3分)已知一组数据的平均数是3,方差是2,把这组数据扩大2倍,那么新数据的平均数是6,方差是8.【考点】方差;算术平均数.【分析】由题意可知,将这组数据的每个数都扩大2倍,那它的和也将扩大2倍,它的平均数也扩大2倍;根据方差的性质可知,数据中的每个数据都扩大2倍,则方差扩大4倍,即可得出答案.【解答】解:设这组数有x个,这组数的平均数是3,那么这组数的和为3x,如果这组数据的每个数都扩大2倍,则这组数的总和为3x×2,平均数为3x×2÷x=6.将这组数据中的每个数据都扩大2倍,所得到的一组数据的方差将扩大4倍,∴新数据的方差是2×4=8,故答案为:6;8.三、计算题:(共28分)13.(8分)学期末,某班评选一名优秀学生干部,下表是班长、学习委员和团支部书记的得分情况:班长学习委员团支部书记思想表现242826学习成绩262624工作能力282426假设在评选优秀干部时,思想表现、学习成绩、工作能力这三方面的重要比为3:3:4,通过计算说明谁应当选为优秀学生干部.【考点】加权平均数.【分析】根据三项成绩的不同权重,分别计算三人的成绩.【解答】解:班长的成绩=24×0.3+26×0.3+28×0.4=26.2(分);学习委员的成绩=28×0.3+26×0.3+24×0.4=25.8(分);团支部书记的成绩=26×0.3+24×0.3+26×0.4=25.4(分);∵26.2>25.8>25.4,∴班长应当选.14.(10分)某快餐店共有10名员工,所有员工工资的情况如下表:人员店长厨师甲厨师乙会计服务员甲服务员乙勤杂工人数1111132 20000700040002500220018001200工资额(元)请解答下列问题:(1)餐厅所有员工的平均工资是4350;所有员工工资的中位数是2000.(2)用平均数还是用中位数描述该餐厅员工工资的一般水平比较恰当?(3)去掉店长和厨师甲的工资后,其他员工的平均工资是多少?它是否也能反映该快餐店员工工资的一般水平?【考点】中位数;加权平均数.【分析】(1)根据加权平均数的定义和中位数的定义即可得到结论;(2)中位数描述该餐厅员工工资的一般水平比较恰当;(3)由平均数的定义即可得到结论.【解答】解:(1)平均工资为(20000+7000+4000+2500+2200+1800×3+1200×2)=4350元;工资的中位数为=2000元;故答案为:4350,2000;(2)由(1)可知,用中位数描述该餐厅员工工资的一般水平比较恰当;(3)去掉店长和厨师甲的工资后,其他员工的平均工资是2062.5元,和(2)的结果相比较,能反映餐厅员工工资的一般水平.15.(10分)下表是七年级三班30名学生期末考试数学成绩表(已破损)成绩(分)5060708090100人数(人)2573已知该班学生期末考试数学成绩平均分是76分.(1)求该班80分和90分的人数分别是多少?(2)设该班30名学生成绩的众数为a,中位数为b,求a+b的值.【考点】众数;二元一次方程组的应用;统计表;中位数.【分析】(1)根据题意:设该班80分和90分的人数分别是x、y;得方程=76与x+y=30﹣2﹣5﹣7﹣3;解方程组即可.(2)众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.求出a,b的值就可以.【解答】解:(1)据题意得,∴∴该班80分和90分的人数分别是8人,5人.成绩(分)5060708090100人数(人)257853(2)据题意得a=80,b=(80+80)÷2=80∴a+b=160四、综合题:(共36分)16.(12分)随着我市社会经济的发展和交通状况的改善,我市的旅游业得到了高速发展,某旅游公司对我市一企业旅游年消费情况进行了问卷调查,随机抽取部分员工,记录每个人消费金额,并将调查数据适当调整,绘制成如图两幅尚不完整的表和图.组别个人年消费金额x(元)频数(人数)频率A x ≤2000180.15B 2000<x ≤4000abC 4000<x ≤6000D 6000<x ≤8000240.20Ex >8000120.10合计c1.00根据以上信息回答下列问题:(1)a =36,b =0.30,c =120.并将条形统计图补充完整;(2)这次调查中,个人年消费金额的中位数出现在C组;(3)若这个企业有3000多名员工,请你估计个人旅游年消费金额在6000元以上的人数.【考点】频数(率)分布表;条形统计图;中位数;用样本估计总体.【分析】(1)首先根据A 组的人数和所占的百分比确定c 的值,然后确定a 和b 的值;(2)根据样本容量和中位数的定义确定中位数的位置即可;(3)利用样本估计总体即可得到正确的答案.【解答】解:(1)观察频数分布表知:A 组有18人,频率为0.15,∴c =18÷0.15=120,∵a =36,∴b =36÷120=0.30;∴C 组的频数为120﹣18﹣36﹣24﹣12=30,补全统计图为:故答案为:36,0.30,120;(2)∵共120人,∴中位数为第60和第61人的平均数,∴中位数应该落在C小组内;(3)个人旅游年消费金额在6000元以上的人数3000×(0.10+0.20)=900人.17.(12分)某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿175型校服的学生有多少?(2)在条形统计图中,请把空缺部分补充完整.(3)在扇形统计图中,请计算185型校服所对应的扇形圆心角的大小;(4)求该班学生所穿校服型号的众数和中位数.【考点】条形统计图;中位数;众数;扇形统计图.【分析】(1)根据穿165型的人数与所占的百分比列式进行计算即可求出学生总人数,再乘以175型所占的百分比计算即可得解;(2)求出185型的人数,然后补全统计图即可;(3)用185型所占的百分比乘以360°计算即可得解;(4)根据众数的定义以及中位数的定义解答.【解答】解:(1)15÷30%=50(名),50×20%=10(名),即该班共有50名学生,其中穿175型校服的学生有10名;(2)185型的学生人数为:50﹣3﹣15﹣15﹣10﹣5=50﹣48=2(名),补全统计图如图所示;(3)185型校服所对应的扇形圆心角为:×360°=14.4°;(4)165型和170型出现的次数最多,都是15次,故众数是165和170;共有50个数据,第25、26个数据都是170,故中位数是170.18.(12分)班主任要从甲、乙两名跳远运动员中挑选一人参加校运动会比赛.在最近的10次选拔赛中,他们的成绩如下(单位:cm):甲584594608596608597602600612599乙615618580579618593585590598624(1)他们的平均成绩分别是多少?(2)甲、乙两名运动员这10次比赛成绩的极差、方差分别是多少?(3)怎样评价这两名运动员的运动成绩?(4)历届比赛表明,成绩达到5.96m就有可能夺冠,你认为为了夺冠应选择谁参加这项比赛?如果历届比赛成绩表明,成绩达到6.10m就能打破纪录,那么你认为为了打破纪录应选择谁参加这项比赛?【考点】方差;算术平均数;极差.【分析】(1)根据平均数的公式进行计算即可;(2)根据极差和方差的计算公式计算即可;(3)从方差和极差两个数比较即可;(4)根据成绩稳定性与目标进行分析即可.【解答】解:(1)甲的平均数=(584+594+…+599)=600(cm),乙的平均数=(615+618+…+624)=600(cm);(2)甲的极差为:612﹣584=28;乙的极差为:624﹣579=45;S甲2=[(584﹣600)2+(594﹣600)2+…+(599﹣600)2]=59.4,S乙2=[(615﹣600)2+(618﹣600)2+…+(624﹣600)2]=266.8.(3)甲的方差较小,成绩较稳定,乙的方差较大,波动较大,但最好成绩较好,爆发力强.(4)若只想夺冠,选甲参加比赛,因为甲的方差较小,成绩较稳定,且大于或等于5.96m 的次数有8次;若要打破纪录,应选乙参加比赛,因为有四次超过6.10m,最好成绩较好,爆发力强.。
【3套】人教版八年级下册数学 第20章 数据的分析 单元测试(含答案)
人教版八年级下册数学第20章数据的分析单元测试(含答案)一、选择题1.数据2、3、2、3、5、3的众数是()A. 2B. 2.5C. 3D. 52.已知一组数据:1,2,6,3,3,下列说法正确的是()A. 中位数是6B. 平均数是4C. 众数是3D. 方差是53.小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高为1.65米,而小华的身高为1.66米.下列说法错误的是().A. 1.65米是该班学生身高的平均水平B. 班上比小华高的学生不会超过25人C. 这组身高的中位数不一定是1.65米D. 这组身高的众数不一定是1.65米4.在体育达标测试中,某校初三5班第一小组六名同学一分钟跳绳成绩如下:93,138,98,152,138,183;则这组数据的极差是()A. 138B. 183C. 90D. 935.在一次数学测验中,甲、乙、丙、丁四位同学的分数分别是90、、90、70,若这四个同学得分的众数与平均数恰好相等,则他们得分的中位数是()A. 100B. 90C. 80D. 706.甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:则这四人中成绩发挥最稳定的是( )A. 甲B. 乙C. 丙D. 丁7.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:则这50名学生这一周在校的平均体育锻炼时间是()A. 6.2小时B. 6.4小时C. 6.5小时D. 7小时8.某青年排球队12名队员的年龄情况如下:则12名队员的年龄()A. 众数是20岁,中位数是19岁B. 众数是19岁,中位数是19岁C. 众数是19岁,中位数是20.5岁D. 众数是19岁,中位数是20岁9.为了响应学校“书香校园”建设,阳光班的同学们积极捐书,其中宏志学习小组的同学捐书册数分别是:5,7,x,3,4,6.已知他们平均每人捐5本,则这组数据的方差是()A. B. 10 C. D.10.某班50名学生身高测量结果如下表:该班学生身高的众数和中位数分别是()A. 1.60,1.56B. 1.59,1.58C. 1.60,1.58D. 1.60,1.6011.已知样本x1,x2,x3,x4的平均数是2,则x1+3,x2+3,x3+3,x4+3的平均数为()A. 2B. 2.75C. 3D. 512.一名学生军训时连续射靶10次,命中环数分别为7,8,6,8,5,9,10,7,6,4.则这名学生射击环数的方差是()A. 3B. 2.9C. 2.8D. 2.7二、填空题13.用计算器计算平均数时,必须先清除________中的数值.14.一组数据:1,2,1,0,2,a,若它们的众数为1,则这组数据的中位数为________ .15.已知一组数据﹣3,x,﹣2,3,1,6的中位数为1,则其方差为________.16.一组数据x1,x2,…x n的平均数为,另一组数据y1,y2,…y n的平均数为,则第三组数据x1+y1,x2+y2,…x n+y n的平均数为________(用,表示)17.若一组数据3,3,4,x,8的平均数是4,则这组数据的中位数是________18.某班全体学生参加了一次“献爱心一日捐”活动,捐款人数与捐款额如图所示,根据图中所提供的信息,你认为这次捐款活动中捐款额的中位数是________元.19. 在市委宣传部举办的以“弘扬社会主义核心价值观”为主题的演讲比赛中,其中9位参赛选手的成绩如下:9.3;9.5;8.9;9.3;9.5;9.5;9.7;9.4;9.5,这组数据的众数是 ________.20.小颖使用计算器求30个数据的平均数时,错将其中一个数据15输入为105,那么由此求出的平均数与实际平均数的差是________21.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,已知新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是________.三、解答题22.某校九年级甲班学生中,有5人13岁,30人14岁,5人15岁,求这个班级学生的平均年龄.23.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了这15人某月的加工零件数如下:(1)写出这15人该月加工零件的平均数、中位数和众数;(2)生产部负责人要定出合理的每人每月生产定额,你认为应该定为多少件合适?24.为了解某学校初三男生1000米长跑,女生800米长跑的成绩情况,从该校初三学生中随机抽取了10名男生和10名女生进行测试,将所得的成绩分别制成如下的表1和图1,并根据男生成绩绘制成了不完整的频率分布直方图(图2).表1(1)根据表1,补全图片2;(2)根据图1,10名女生成绩的中位数是多少?众数是多少?(3)按规定,初三女生800米长跑成绩不超过3′19″就可以得满分.该校初三学生共490人,其中男生比女生少70人.如果该校初三女生全部参加800米长跑测试,请你估计可获得满分的人数约为多少?25.我市某中学七、八年级各选派10名选手参加学校举办的环保知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀,这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表(不完整)如下所示:(1)观察条形统计图,可以发现:八年级成绩的标准差________,七年级成绩的标准差(填“>”、“<”或“=”),表格中m=________,n=________;(2)计算七年级的平均分;(3)有人说七年级的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.参考答案一、选择题C C B C B B BD D C D A二、填空题13.统计存储器14.115.916.17.318.1519.9.520.321.小林三、解答题22.解:根据题意得:=14(岁),答:这个班级学生的平均年龄是14岁.23.解:(1)==260(件),中位数是:240件,众数是:240件;(2)240合适.24.解:(1)如图2所示:(2)∵10名女生的成绩分别是:3′10〞,3′10〞,3′10〞,3′16〞,3′21〞,3′21〞,3′27〞,3′33〞,3′43〞,3′49〞,∴这10名女生成绩的中位数是:(3′21〞+3′21〞)÷2=3′21〞,众数是:3′10〞;故答案为:3′21″;3′10″;(3)设女生有x人,男生有(x﹣70)人,由题意得:x+x﹣70=490,x=280,∵这10名同学有4名同学成绩达满分,∴估计该校女生的满分率为×100%=40%,∴280×40%=112(人).答:女生得满分的人数是112人25.(1)<;6;7.5(2)解:七年级成绩的平均分=(3×1+5×6+7×1+8×1+9×1+10×1)÷10=6.7(3)解:①八年级队平均分高于七年级队;②八年级队的成绩比七年级队稳定;③八年级队的成绩集中在中上游;所以支持八年级队成绩好人教八年级数学下册 第二十章 数据的分析 单元测试(含答案)一、相信你的选择1、 若数据8,4,,2x 的平均数是4,则这组数据的中位数和众数是( )A 、3和2B 、2和3C 、2和2D 、2和42、数学老师对小明在参加高考前5次数学模拟考试的成绩进行统计分析,判断小明的数学成绩是否稳定,于是老师需要知道小明这5次数学成绩的( ) A 、平均数或中位数 B 、方差或频率 C 、频数或众数 D 、方差或极差3、已知一组数据5,15,75,45,25,75,45,35,45,35,那么40是这组数据的( ) A 、平均数但不是中位数 B 、平均数也是中位数 C 、众数 D 、中位数但不是平均数4、小亮所在学习小组的同学们响应“为国争光,为奥运添彩”的号召,主动到附近的7个社区帮助爷爷奶奶们学习英语日常用语,他们记录的各社区参加其中一次活动的人数如下:32,26,28,31,32,32,33,那么这组数据的众数和中位数分别是( )A 、31,32B 、32,32C 、31,3D 、32,35、若54321,,,,x x x x x 的平均数为-x ,方差为2s ,则3,3,3,3,354321+++++x x x x x 的平均数和方差分别是 ( )A 、2+-x ,32+s B 、3+-x ,2s C 、-x ,32+s D 、-x ,2s6、已知一组数据1,2,,0,1--x 的平均数是0,那么这组数据的标准差( ) A 、2 B 、2 C 、4 D 、2-7、一组数据n x x x x ,,,,321 的极差是8,另一组数据12,,12,12,12321++++n x x x x 的极差是( )A 、8B 、9C 、16D 、178、某中学人数相等的甲、乙两班学生参加同一次数学测验,两班成绩的方差分别是2452=甲s ,1902=乙s ,那么成绩比较整齐的是( )A 、甲班B 、乙班C 、两班一样整齐D 、无法确定二、试试你的身手1、根据天气预报可知,我国某城市一年中的最高气温为C ︒37,最低气温是C ︒-8,那么这个城市一年中温度的极差为2、航天知识竞赛中,包括甲同学在内的6名同学的平均分为74分,其中甲同学考了89分,则除了甲以外的5名同学的平均分是 分.3、数据9,10,8,10,9,10,7,9的方差是________,标准差是_____.4、甲、乙两种产品进行对比试验,得知乙产品比甲产品的性能更稳定,如果甲、乙两种产品的方差分别是甲2s,乙2s ,则它们的大小关系是在15,5,16,16,28这组数据中,众数、中位数分别是6、甲、乙两人比赛飞镖,两人所得环数甲的方差是15,乙所得环数如下:0,1,5,9,10,那么,成绩比较稳定的是7、八年级上学期期中质量检测之后,甲、乙两班的数学成绩的统计情况如下表所示:(单位:分)从成绩的波动情况来看, 班学生的成绩波动较大. 8、若一个样本是3,3,1,,1,3--a ,它们的平均数-x 是a 的31,则这个样本的标准差是 三、挑战你的技能1、甲、乙两台编织机同时编织一种毛衣,在5天中,两台编织机每天出的合格品数量如下(单位:件):甲:10 , 8 , 7 , 7 ,8; 乙:9 , 8 , 7 , 7, 9.在这5天中,哪台编织机出合格品的波动较小?2、甲、乙两名学生进行射击练习,两人在相同条件下各射靶10次,将射击结果作统计分析(1)请你填上表中乙进行射击练习的相关数据;(2)根据你所学的统计知识,利用上面提供的数据评价甲、乙两人的射击水平.3、一次实习作业课中,甲、乙两组学生各自对学校旗杆进行了5次测量,所得数据如下表所示.现已算得乙组所测得数据的平均数为,00.12=-乙x ,方差002.02=乙s . (1)求甲组所测得数据的中位数与平均数;(2)问哪一组学生所测得的旗杆高度比较一致.四、拓广探究1、某电信局对计算机拨号上网用户提供三种付费方式供用户选择(每个用户只能选择其中一种付费方式):甲种方式是按实际用时付费,每小时付信息费4元,另加付电话费,每小时1.2元;乙种方式是包月制,每月付信息费100元,同时加付电话费每小时1.2元;丙种方式也是包月制,每月付信息费150元,但不必再付电话费.某用户为选择合适的付费方式,连续记录7天中每天的上网所花的时间(单位:分钟):1、A2、A3、B4、B5、B6、B7、D8、D 二、1、45℃2、713、1,14、乙甲22s s 〉 5、16,166、甲7、甲8、5.33 三、1、解:这20名学生成绩的众数是80分,中位数是70分,平均数是()()分72290780670360250201=⨯+⨯+⨯+⨯+⨯. 2、解:该用户一个月上网总时间约为:()h t 276030780602774354062=÷⨯++++++=。
新人教版八年级下册第20章 数据分析 单元测试试卷(A卷)(含答案)
新人教版八年级下册第20章 数据分析单元测试试卷(A 卷)(时间90分钟 满分100分)班级 学号 姓名 得分一、填空题(共14小题,每题2分,共28分)1.对于数据组3,3,2,3,6,3,6,3,2,4中,众数是_______;平均数是______;•极差是_______,中位数是______.2.数据3,5,4,2,5,1,3,1的方差是________.3.某学生7门学科考试成绩的总分是560分,其中3门学科的总分是234分,则另外4门学科成绩的平均分是_________.4.已知一组数据1、2、y 的平均数为4,那么y 的值是 .5.若样本x 1+1,x 2+1,…,x n +1的平均数为10,方差为2,则另一样本x 1+2,x 2+2,…,x n +2,的平均数为 ,方差为 .6.小张和小李去练习射击,第一轮10枪打完后两人的成绩如图所示,•通常新手的成绩不太稳定,那么根据图的信息,估计小张和小李两人中新手是________.7.某日天气预报说今天最高气温为8℃,气温的极差为10℃,则该日最低气温为______℃.8.一班级组织一批学生去春游,预计共需费用120元,后来又有2人参加进来,总费用不变,于是每人可以少分摊3元,原来参加春游的学生人数是 . 9.当五个整数从小到大排列后,其中位数是4,如果这组数据的唯一众数是6,那么这组数据可能的最大的和是___ __.10.八年级某班为了引导学生树立正确的消费观,随机调查了10名同学某日除三餐以外的零花钱情况,其统计图如下,据图可知:零花钱在3元以上(包括3元)的学生所占比例第6题1234567810第10题为 ,该班学生每日零花钱的平均数大约是 元. 11.为了调查某一段路的汽车流量,记录了30天中每天同一时段通过该路口的汽车辆数,其中有4天是284辆,4天是290辆,12天是312辆,10天是314辆,那么这30天该路口同一时段通过的汽车平均数是 . 12.小芳测得连续5天日最低气温并整理后得出下表:那么空缺的两个数据是 , .13.一养雨专业户为了估计池塘里鱼的条数,先随意捕上100条做上标记,然后放回湖里,过一段时间,待带标记的鱼完全混合于鱼群后,又捕捞了5次,记录如下表:由此估计池塘里大约有 条鱼.14.现有A 、B 两个班级,每个班级各有45名学生参加一次测试,每名参加者可获得0,1,2,3,4,5,6,7,8,9分这几种不同的分值中的一种.测试结果A 班的成绩如下表所示,B 班的成绩如右图所示.(1(2)若两班合计共有60人及格,问参加者最少 获______分才可以及格.二、选择题(共4小题,每题3分,共12分)15.某学校五个绿化小组一天植树的棵数如下:10,10,12,x ,8,如果这组数据的平均数与众数相等,那么这组数据的中位数是 ( )A.8 B.9 C.10 D.1216.某班50名学生的身高测量结果如下表:那么该班学生身高的众数和中位数分别是()A.1.60,1.56 B.1.59,1.58 C.1.60,1.58 D.1.60,1. 60 17.如果一组数据a1,a2,……,a n的方差是2,那么数据2a1,2a2,……,2a n 的方差是()A.2 B.4 C.6 D.818.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:(1)甲、乙两班学生成绩平均水平相等(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀)(3)甲班成绩的波动比乙班大,上述结论正确的是()A.①②③B.①②C.①③D.②③三、解答题(共60分)19.(5分)某校规定学生期末数学总评成绩由三部分构成:期末统考卷面成绩(占70%)、•平时测验成绩(占20%)、上课表现成绩(占10%),若学生董方的三部分得分依次是92分、80分、•84分,则她这学期期末数学总评成绩是多少?20.(5(1 (2)小明说,他所在年龄组的参赛人数占全体参赛人数的28%,你认为小明是哪个年龄组的选手?请说明理由. 21.(5分)某校八年级(1)班50名学生参加2008年通州市数学质量监控考试,(1)该班学生考试成绩的众数是 . (2)该班学生考试成绩的中位数是 . (3)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由. 22.(6分)当今,青少年视力水平的下降已引起全社会的关注,为了了解某校3000名学生的视力情况,从中抽取了一部分学生进行了一次抽样调查,利用所得数据,绘制出如下的直方图(长方形的高表示人数),根据图形,回答下列问题: (1)本次抽样调查共抽测了 名学生;(2)参加抽测学生的视力的众数在 内;(3)如果视力为4.9(包括4.9)以上为正常,估计该校学生视力正常的人数约为 .203040506023.(6分)为了了解某校2000名学生参加环保知识竞赛的成绩,从中抽取了部分学生的竞赛成绩(均为整数),整理后绘制成如下的频数分布直方图(如图8),请结合图形解答下列问题. (1) 指出这个问题中的总体.(2)求竞赛成绩在79.5~89.5这一小组的频率.(3) 如果竞赛成绩在90分以上(含90分)的同学可获得奖励,请估计全校约有多少人获得奖励.24.(6分)小红的奶奶开了一个金键牛奶销售店,主要经营“金键学生奶”、“金键酸牛奶”、“金键原味奶”,可奶奶经营不善,经常有品种的牛奶滞销(没卖完)或脱销(量不够),造成了浪费或亏损,细心的小红结合所学的统计知识帮奶奶统计了一个星期牛奶的销售情况,并绘制了下表:(1)计算各品种牛奶的日平均销售量,并说明哪种牛奶销量最高? (2)计算各品种牛奶的方差(保留两位小数),并比较哪种牛奶销量最稳定?(3)假如你是小红,你会对奶奶有哪些好的建议. 25.(6分)为了增强环境保护意识,6月5日“世界环境日”当天,在环保局工作人员指导下,若干名“环保小卫士”组成的“控制噪声污染”课题学习研究小组,抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB ),将调查的6(1)频数分布表中的a =________,b=________,c =_________;(2)补充完整频数分布直方图;(3)如果全市共有200个测量点,那么在这一时刻噪声声级小于75dB的测量点约有多少个?26.(6分)今年3月5日,花溪中学组织全体学生参加了“走出校门,服务社会”的活动.九年级一班高伟同学统计了该天本班学生打扫街道,去敬老院服务和到社区文艺演出的人数,并做了如下直方图和扇形统计图.请根据高伟同学所作的两个图形,解答:(1)九年级一班有多少名学生?(2)补全直方图的空缺部分.(3)若九年级有800名学生,估计该年级去敬老院的人数.为.(2)请在下图中用折线图描述此组数据.28.(8分)国家主管部门规定:从2008年6月1日起,各商家禁止向消费者免费提供一次性塑料购物袋.为了了解巴中市市民对此规定的看法,对本市年龄在16—65岁之间的居民,进行了400个随机访问抽样调查,并根据每个年龄段的抽查人数和该年龄段对此规定的支持人数绘制了下面的统计图.根据上图提供的信息回答下列问题:(1)被调查的居民中,人数最多的年龄段是 岁. (2)已知被调查的400人中有83%的人对此规定表示支持,请你求出31—40岁年龄段的满意人数,并补全图b .(3)比较21—30岁和41—50岁这两个年龄段对此规定的支持率的高低(四舍五入到1%,注:某年龄段的支持率100=⨯该年龄段支持人数该年龄段被调查人数%).参考答案一、填空题1.3,3.5,4,3 2.2.25 3.81.5分4.9 5.11,2 6.小李7.-2 8.8 9.2110.50%,2.8 11.306 12.4,2 13.1000 14.A,4二、选择题15.C 16.C 17.D 18.A三、解答题19.88.8分20.(1)众数是:14岁;中位数是:15岁;(2)16岁年龄组21.(1)88分;(2)86分;(3)略22.(1)150;(2)3.95-4.25;(3)600 23.(1)2000名学生参加环保知识竞赛的成绩;(2)0.25;(2)300人24.(1)x学生奶=3,x酸牛奶=80,x原味奶=40,金键酸牛奶销量高;(2)12.57,91.71,96.86,•金键学生奶销量最稳定;(3)建议学生奶平常尽量少进或不进,周末可进几瓶25.(1)8,12,0.3;(2)略;(3)60个26.(1)50人;(2)略;(3)160人27.(1)9.77,0.21;(2)略28.(1)21-30;(2)72,图略;(3)21-30岁支持率高。
人教版 八年级下册 第20章 数据的分析 单元训练(含答案)
人教版八年级下册第20章数据的分析培优训练一、选择题1. 体育课上测量立定跳远,其中一组六个人的成绩(单位:米)分别是:1.0,1.3,2.2,2.0,1.8,1.6 ,则这组数据的中位数是()A.2.1 B.1.6 C.1.8 D.1.72. 某班男同学身高情况如下表,则167 cm是()A.平均数B.众数但不是中位数C.中位数但不是众数D.众数也是中位数3. 某校七年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的()A.中位数B.众数C.平均数D.极差4. 某位老师为了解学生周末学习时间的情况,在他所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学习的平均时间是()A.4小时B.3小时C.2小时D.1小时5. 某外贸公司要出口一批食品罐头,标准质量为每听454克,现抽取10听样品进行检测,它们的质量与标准质量的差值(单位:克)如下:-10,+5,0,+5,0,0,-5,0,+5,+10.则可估计这批食品罐头质量的平均数为 ()A.453克B.454克C.455克D.456克6. 如果将一组数据中的每个数都减去5,那么所得的一组新数据 ()A.众数改变,方差改变B.众数不变,平均数改变C.中位数改变,方差不变D.中位数不变,平均数不变7. 某手表厂抽查了10只手表的日走时误差,数据如下表所示(单位:s):则这10只手表的平均日走时误差(单位:s)是()A.0B.0.6C.0.8D.1.18. 某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,19 4.现用一名身高为186 cm的队员换下场上身高为192 cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大二、填空题9. 数据2,2,3,4,5的中位数是________.10. 某校300名学生参加植树活动,要求每人植树2~5(包含2和5)棵,活动结束后随机抽查了20名学生每人的植树量,并分为四类:A类2棵、B类3棵、C 类4棵、D类5棵,将各类的人数绘制成如图所示的不完整的条形统计图.(1)D类学生有人;(2)估计这300名学生共植树棵.11. 某班为了解同学们一周在校参加体育锻炼的时间,随机调查了10名同学,得到如下数据:则这10名同学一周在校参加体育锻炼时间的平均数是小时.12. 学校进行广播体操比赛,如图是20位评委给某班的评分情况统计图,则该班的平均得分是分.13. 某班五个兴趣小组的人数分别为4,4,5,x,6.已知这组数据的平均数是5,则这组数据的中位数是.14. 在从小到大排列的五个数x,3,6,8,12中再加入一个数,若这六个数的中位数、平均数与原来五个数的中位数、平均数分别相等,则x的值为.15. 某班数学兴趣小组收集了本市4月份30天的日最高气温的数据,经过统计分析获得了两条信息和一个统计表(天数为正整数).信息一:4月份日最高气温的中位数是15.5 ℃;信息二:4月份日最高气温的唯一众数是17 ℃.4份日最高气温统计表根据以上信息得x,y,z的值分别为.三、解答题16. 为落实视力保护工作,某校组织七年级学生开展了视力保健活动.活动前随机测查了30名学生的视力,活动后再次测查这部分学生的视力.两次相关数据记录如下:活动前被测查学生视力数据:活动前被测查学生视力数据:4.04.14.14.24.24.34.34.44.44.44.54.54.64.64.64.74.74.74.74.84.84.84.84.84.94.94.95.05.05.1活动后被测查学生视力数据:4.04.24.34.44.44.54.54.64.64.64.74.74.74.74.84.84.84.84.84.84.84.94.94.94.94.95.05.05.15.1(注:每组数据包括左端值,不包括右端值)活动后被测查学生视力频数分布表根据以上信息回答下列问题:(1)填空:a=,b=,活动前被测查学生视力样本数据的中位数是,活动后被测查学生视力样本数据的众数是;(2)若视力在4.8及以上为达标,估计七年级600名学生活动后视力达标的人数有多少;(3)分析活动前后相关数据,从一个方面评价学校开展视力保健活动的效果.17. 有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的单价和质量如下表所示,商家用加权平均数来确定什锦糖的单价.(1)求该什锦糖的单价;(2)为了使什锦糖的单价每千克至少降低2元,商家计划在什锦糖中再加入甲、丙两种糖果共100千克,则最多可加入丙种糖果多少千克?18. 班主任张老师为了了解学生课堂发言情况,对前一天本班男、女生的发言次数进行了统计,并绘制成如图的频数分布折线图.(1)请根据上图,回答下列问题:①这个班共有______名学生,发言次数是5次的男生有____人、女生有____人;②男、女生发言次数的中位数分别是__次和__次;(2)通过张老师的鼓励,第二天的发言次数比前一天明显增加,全班发言次数变化的人数的扇形统计图如下图求第二天发言次数增加3次的学生人数和全班增加的发言总次数.人教版八年级下册第20章数据的分析培优训练-答案一、选择题1. 【答案】D2. 【答案】D3. 【答案】A4. 【答案】B[解析] 根据题意,得(1×1+2×2+4×3+2×4+1×5)÷10=3(时).即这10名学生周末学习的平均时间是3小时.5. 【答案】C[解析] 平均数是454+=454+1=455(克).6. 【答案】C7. 【答案】D8. 【答案】A[解析] 换人前,平均数为=188(cm),方差为×[(180-188)2+(184-188)2+(188-188)2+ (190-188)2+(192-188)2+(194-188)2]=;换人后,平均数为=187(cm),方差为×[(180-187)2+(184-187)2+(186-187)2+ (188-187)2+(190-187)2+(194-187)2]=.所以换人后,平均数变小,方差变小.故选A.二、填空题9. 【答案】3【解析】原数据已经按从小到大排列,且数据的个数是5个,所以中位数是第3个数据,即3.10. 【答案】(1)2(2)990[解析] (1)由条形统计图,知A,B,C三类的人数分别为4,8,6.因为20-(4+8+6)=2,所以D类学生有2人.(2)样本的平均数==3.3(棵),因为300×3.3=990(棵),所以估计300名学生共植树990棵.11. 【答案】6.612. 【答案】9.1[解析] 根据加权平均数公式,有=×(8×5+9×8+10×7)=×(40 +72+70)=×182=9.1(分).故答案为9.1.13. 【答案】5[解析] 由题意,得x=5×5-4-4-5-6=6,∴这一组数从小到大排列为4,4,5,6,6,∴这组数据的中位数是5.14. 【答案】1[解析] 从小到大排列的五个数x,3,6,8,12的中位数是6.∵再加入一个数,这六个数的中位数与原来五个数的中位数相等,∴加入的一个数是6.∵这六个数的平均数与原来五个数的平均数相等,∴(x+3+6+8+12)=(x+3+6+6+8+12),解得x=1.15. 【答案】1,1,6[解析] 因为4月份日最高气温的中位数是15.5 ℃,所以4月份日最高气温为11 ℃~15 ℃的总天数与日最高气温为16 ℃~20 ℃的总天数相等,即均是15天,所以x=15-(2+3+5+4)=1,且y+z=15-(3+2+3)=7.因为4月份日最高气温的唯一众数是17 ℃,所以z>5.因为天数为正整数,所以y≥1,所以y=1,z=6.即x,y,z的值分别为1,1,6.三、解答题16. 【答案】解:(1)a=30-(3+4+7+8+3)=5,b=30-(1+2+7+12+4)=4.活动前样本数据的第15,16个数是4.6,4.7,所以其中位数为=4.65.活动后出现次数最多的数为4.8,所以其众数为4.8.故答案为5,4,4.65,4.8.(2)活动后样本中视力达标的人数有16人,所以估计七年级600名学生活动后视力达标的人数有600×=320(人).(3)活动前中位数为4.65,活动后中位数为4.8,说明学生在做完视力保健活动后整体视力情况变好(答案合理即可).17. 【答案】解:(1)根据题意,得=22(元/千克).答:该什锦糖的单价是22元/千克.(2)设加入丙种糖果x千克,则加入甲种糖果(100-x)千克.根据题意,得≤22-2,解得x≤20.答:最多可加入丙种糖果20千克.18. 【答案】解:(1)①4025②4 5(2)发言次数增加3次的学生人数为:40×(1-20%-30%-40%)=4(人).全班增加的发言总次数为:40%×40×1+30%×40×2+4×3=16+24+12=52(次).。
【3套】人教版八年级下册 第20章数据的分析单元测试题-(含答案)
第4题图4元3元2元③②①人教版八年级下册 第20章数据的分析单元测试题-(含答案)一、选择题(本大题共分12小题,每小题2分共24分)1.某班七个兴趣小组人数分别为:3,3,4,4,5,5,6,则这组数据的中位数是() A. 2 B. 4 C. 4.5 D. 52.数据2、4、4、5、5、3、3、4的众数是()A. 2B. 3C. 4D. 53.已知样本x 1,x 2,x 3,x 4的平均数是2,则x 1+3,x 2+3,x 3+3,x 4+3的平均数是() A. 2 B. 2.75 C. 3 D. 54.学校食堂有2元,3元,4元三种价格的饭菜供师生选择(每人限购一份).如图是某月的销售情况统计图,则该校师生购买饭菜费用的平均数和众数是() A. 2.95元,3元 B. 3元,3元 C. 3元,4元 D. 2.95元,4元5.如果a 、b 、c 的中位数与众数都是5,平均数是4,且a ≤b ≤c ,那么a 可能是() A. 2 B. 3 C. 4 D. 56.已知甲、乙两组数据的平均数相等,若甲组数据的方差=0.055,乙组数据的方差=0.105,则()A.甲组数据比乙组数据波动大B. 乙组数据比甲组数据波动大C.甲组数据与乙组数据的波动一样大D. 甲、乙两组数据的数据波动不能比较 7.样本数据3,6,a ,4,2的平均数是4,则这个样本的方差是() A. 4 B.2 C. 3 D. 28.某同学5次上学途中所花的时间(单位:分钟)分别为x ,y ,10,11,9,已知这组数据的平均数为10,方差为2,则y x 的值为()A. 1B. 2C. 3D. 49.若样本x 1+1,x 2+1,x 3+1,…,x n +1的平均数为18,方差为2,则对于样本x 1+2,x 2+2,x 3+2,…,x n +2,下列结论正确的是()A.平均数为18,方差为2B.平均数为19,方差为3C.平均数为19,方差为2D.平均数为20,方差为410.小波同学将某班级毕业升学体育测试成绩(满分30分)统计整理,得到下表,则下C.该组数据的中位数是24分D.该组数据的极差是8分11.为了解某校计算机考试情况,抽取了50名学生的计算机考试进行统计,统计结果如下表所示,则50名学生计算机考试成绩的众数、中位数分别为()第18题图分数/分A.20,16B.16,20C.20,12D.16,12 12.如果将一组数据中的每一个数都乘以一个非零常数,那么该组数据的() A.平均数改变,方差不变 B.平均数改变,方差改变 C.平均数不变,方差改变 D.平均数不变,方差不变二、填空题(本大题共8小题,每小题3分,共24分)13.有10个数据的平均数为12,另有20个数据的平均数为15,那么所有这30个数据的平均数是.14.若x 1,x 2,x 3的平均数为7,则x 1+3,x 2+2,x 3+4的平均数为. 15.一组数据1,6,x ,5,9的平均数是5,那么这组数据的中位数是. 16.五个数1,2,4,5,a 的平均数是3,则a =,这五个数的方差为.17.若10个数的平均数是3,极差是4,则将这10个数都扩大10倍,则这组数据的平均数是,极差是.18.如图是某同学6次数学测验成绩统计表,则该同学6次成绩的中位数是.19. 已知数据3x 1,3x 2,3x 3,…,3x n 的方差为3,则一组新数据6x 1,6x 2,…,6x n 的方差是.20.已知样本99,101,102,x ,y (x ≤y )的平均数为100,方差为2,则x =,y =. 三、解答题(本大题共52分)21.计算题(每小题6分,共12分)(1)若1,2,3,a 的平均数是3;4,5,a ,b 的平均数是5.求:0,1,2,3,4,a ,b 的方差是多少?(2)有七个数由小到大依次排列,其平均数是38,如果这组数的前四位数的平均数是33,小时()736次甲乙后四个数的平均数是42. 求它们的中位数.22.(本小题10分)如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图.那么该班学生每周锻炼时间的中位数是多少?23.(本小题10分)如图是某中学乒乓球队队员年龄分布的条形图.⑴计算这些队员的平均年龄;⑵大多数队员的年龄是多少?⑶中间的队员的年龄是多少?24.(本小题10分)甲、乙两人在相同的条件下各射靶5次,每次射靶的成绩情况如图所示:(1)你根据图中的数据填写下表:(2)从平均数和方差相结合看,分析谁的成绩好些.25.(本小题10分)为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛,初中三个年级根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分为⑴ 请你填写下表:⑵ 请从以下两个不同的角度对三个年级的决赛成绩进行分析: ① 从平均数和众数相结合看(分析哪个年级成绩好些); ② 从平均数和中位数相结合看(分析哪个年级成绩好些)③ 如果在每个年级分别选出3人参加决赛,你认为哪个年级的实力更强一些?并说明理由.参考答案:一、1.B;2.C;3.D;4.A;5.A;6.B;7.D;8.D;9.C;10.B;11.A;12.B;二、13.14;14.10;15.5;16.3,2;17.30,40;18.75分;19.12;20.98,100;三、21. ⑴由=3 得a=6;由=5 得b=50,1,2,3,4,6,5的平均数为3,∴=4.⑶设七个数为a,b,c,d,e,f,g,a<b<c<d<e<f<g依题意得=38 ①,=33 ②,=42 ③,由①、②得e+f+g=7×38-33×4 ④,将④代入③得d=34.22.因为有40名学生,所以中位数应是从小到大排列后的第20、第21个数据的平均数.因为从图中可以看到锻炼时间是7小时的有3人;锻炼8小时的有16人,3+16=19人;锻炼9小时的有14人;所以,该班学生的每周锻炼时间中位数是9小时.23. ⑴这些队员平均年龄是:=15⑵大多数队员是15岁⑶中间的队员的年龄是15岁24. ⑴甲:6,6,0.4 乙:6,6,2.8⑵甲、乙成绩的平均数都是6,且<,所以,甲的成绩较为稳定,甲成绩比乙成绩要好些.25.⑴七年级众数是80;八年级中位数是86;九年级的平均数为85.5,众数为78.⑵①从平均数和众数相结合看,八年级的成绩好些.②从平均数和中位数相结合看,七年级成绩好些.⑶九年级.人教版八年级下册数学第20章数据的分析单元检测卷一、选择题1.今年3月份某周,我市每天的最高气温单位::,则这组数据的中位数与极差分别是A. B. C. D.2.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是A. 平均数B. 中位数C. 众数D. 方差3.某校八年级一班在两位同学中推荐一位同学参加学校短跑比赛,统计了他们平时10次成绩,经计算,他们的平均成绩一样,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的A. 最低分B. 众数C. 中位数D. 方差4.一个射击运动员连续射击5次,所得环数分别是,则这个运动员本次射击所得环数的标准差为A. 2B.C. 0D.5.在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的A. 众数B. 方差C. 平均数D. 中位数6.在本学期数学期中考中,某小组8名同学的成绩如下:90、103、105、105、105、115、140、140,则这组数据的众数为A. 105B. 90C. 140D. 507.10名学生的体重分别是单位:,这组数据的极差是A. 27B. 26C. 25D. 248.一位经销商计划进一批“运动鞋”,他到眉山的一所学校里对初二的100名男生的鞋号进行了调查,经销商最感兴趣的是这组鞋号的A. 中位数B. 平均数C. 方差D. 众数9.小颖随机抽样调查本班20名女同学所穿运动鞋尺码,并统计如表:尺码学校附近的商店经理根据表中决定本月多进尺码为的女式运动鞋,商店经理的这一决定应用了哪个统计知识A. 众数B. 中位数C. 平均数D. 方差二、填空题10.数据的中位数是______.11.数据:的众数为______.12.一组数据的众数是6,则这组数据的中位数是______.13.在学校艺术节文艺汇演中,甲、乙两个舞蹈队队员的身高的方差分别是,那么身高更整齐的是队填“甲”或“乙”.三、解答题14.数学老师布置10道选择题当堂测试,统计结果每人至少答对7道题,数学课代表对全班48名同学的答题情况绘制了条形统计图.请你补全统计图;若规定学生至少答对9道题为优秀,求这次测试的优秀率.15.星期天上午,茱萸湾动物园熊猫馆来了甲、乙两队游客,两队游客的年龄如下表所示:根据上述数据完成下表:根据前面的统计分析,回答下列问题:能代表甲队游客一般年龄的统计量是______ ;平均数能较好地反映乙队游客的年龄特征吗?为什么?16.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如表单位:环:根据表格中的数据,分别计算甲、乙的平均成绩;已知甲六次成绩的方差,试计算乙六次测试成绩的方差;根据、计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.17.在一组数据中,各数据与它们的平均数的差的绝对值的平均数,即叫做这组数据的“平均差”“平均差”也能描述一组数据的离散程度“平均差”越大说明数据的离散程度越大因为“平均差”的计算要比方差的计算要容易一点,所以有时人们也用它来代替方差来比较数据的离散程度极差、方差标准差、平均差都是反映数据离散程度的量.一水产养殖户李大爷要了解鱼塘中鱼的重量的离散程度,因为个头大小差异太大会出现“大鱼吃小鱼”的情况;为防止出现“大鱼吃小鱼”的情况,在能反映数据离散程度几个的量中某些值超标时就要捕捞;分开养殖或出售;他从两个鱼塘各随机捕捞10条鱼称得重量如下:单位:千克A鱼塘:3、5、5、5、7、7、5、5、5、3B鱼塘:4、4、5、6、6、5、6、6、4、4分别计算甲、乙两个鱼塘中抽取的样本的极差、方差、平均差;完成下面的表格:如果你是技术人员,你会建议李大爷注意哪个鱼塘的风险更大些?计算哪些量更能说明鱼重量的离散程度?18.某校要从八年级甲、乙两个班中各选取10名女同学组成礼仪队,选取的两个班女生的身高如下单位::甲班:168 167 170 165 168 166 171 168 167 170乙班:165 167 169 170 165 168 170 171 168 167补充完成下面的统计分析表:根据如表,请选择一个合适的统计量作为选择标准,说明哪一个班能被选取.【答案】1. C2. D3. D4. B5. D6. A7. B8. D9. A10. 211.12. 613. 甲14. 解:道,补全统计图如下:.答:这次测试的优秀率为.15. 15;;;6;平均数或中位数或众数16. 解:甲的平均成绩是:,乙的平均成绩是:;推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.17. 解:甲组数据中最大的值7,最小值3,故极差,,,;乙组数据中最大的值6,最小值4,故极差;,;,;根据的极差与方差可以得出A鱼塘风险更大极差与方差更能说明鱼重量的离散程度18. 解:甲班的方差;乙班的中位数为168;补全表格如下:选择方差做标准,甲班方差乙班方差,甲班可能被选取.人教版八年级下册第二十章数据的分析单元练习题(含答案)一、选择题1.某单位3月上旬中的1日至6日每天用水量的变化如图所示,那么这6天用水量的中位数是()A.31.5B.32C.32.5D.332.商厦信誉楼女鞋专柜试销一种新款女鞋,一个月内销售情况如表所示:经理最关心的是,哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是() A.平均数B.众数C.中位数D.方差3.我市从2017年1月1日起连续七天空气质量堪忧,PM2.5大于300时为严重污染,下表是这几天的PM2.5空气质量指数:则这组数据的中位数和平均数分别为()A.446,416C.451,406D.499,4164.为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民2016年4月份用电量的调查结果:那么关于这10户居民月用电量的说法错误的是()A.中位数是50B.众数是51C.平均数是46.8D.方差是425.2022年将在北京—张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运会,又举办冬季奥运会的城市,某校开设了冰球选修课,12名同学被分成甲、乙两组进行训练,他们的身高(单位:cm)如表所示:设两队队员身高的平均数依次为甲,乙,方差依次为,,下列关系中正确的是()A.甲=乙,<B.甲=乙,>C.甲<乙,<D.甲>乙,>6.某学习小组13名学生的一次英语听力测试成绩分布如下表所示(满分20分):这13名学生听力测试成绩的中位数是()B.17分C.18分D.19分7.已知a,b,c三数的平均数是4,且a,b,c,d四个数的平均数是5,则d的值为() A.4B.8C.12D.208.在“爱我济宁”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8,7,9,8,8乙:7,9,6,9,9则下列说法中错误的是()A.甲、乙得分的平均数都是8B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6D.甲得分的方差比乙得分的方差小二、填空题9.某中学篮球队12名队员的年龄情况如下:则这个队中,队员年龄的平均数是________.10.在庆元旦文体活动中,小东参加了飞镖比赛,共投飞镖五次,投中的环数分别为:5,10,6,x,9.若这组数据的平均数为8,则这组数据的中位数是________.11.2016年5月15日,是世界第二十六个助残日,这天某校50名教师为本区的特殊教育中心捐款的情况如下表:(单位:元)该校教师平均每人捐款约________元(精确到1元).12.某中学篮球队12名队员的年龄情况如下:则这个队中,队员年龄的平均数是________.13.实验中学规定学生学期的数学成绩满分为120分,其中平时成绩占20%,期中考试成绩占30%,期末考试成绩占50%,王玲的三项成绩依次是100分,90分,106分,那么王玲这学期的数学成绩为________分.14.一组数据按从小到大的顺序排列为1,2,3,x,4,5,若这组数据的平均数为3,则x的值是________.15.厦门市2014年中考体育考试中,某校九年级(3)班50人参加考试,具体的成绩与人数如下表,则该班的中考体育的平均成绩是________分.16.在植树节到来之际,某学校教师分为四个植树小组参加了“大美济宁”的植树节活动,其中三个小组植树的棵数分别为:8,10,12,另一个小组的植树棵数与它们中的一组相同,且这四个数据的众数与平均数相等,则这四个数据的中位数是________.三、解答题17.为了解2路公共汽车的运营情况,公交部门统计了某天2路公共汽车每个运行班次的载客量,得到如下表各项数据:(1)求出以上表格中a=________,b=________;(2)计算该2路公共汽车平均每班的载客量是多少?18.五位同学在一次考试中的得分分别是:18、73、78、90、100,考分为73的同学在平均分之上还是之下?你认为他在五人中属“中上”水平吗?19.某小区响应市政府号召,开展节约用水活动,效果显著.为了解某居民小区节约用水情况,随机对该小区居民户家庭用水情况作抽样调查,3月份较2月份的节水情况如下表所示(在每组的取值范围中,含最低值,不含最高值):(1)试估计该小区3月份较2月份节水量不低于1吨的户数占小区总户数的百分比;(2)已知该小区共有居民5 000户,若把每组中各个节水量值用该组的中间值(如0.2~0.6的中间值为0.4)来代替,请你估计该小区3月份较2月份共节水多少吨?20.抽样调查了是我市某校八年级学生为玉树灾区捐款情况其条形图和扇形统计图如下:(1)求该样本的容量;(2)在扇形统计图中,求该样本中捐款5元的圆心角度数;(3)若该校八年级学生有800人,据此样本求八年级捐款总数.21.有关部门准备对某居民小区的自来水管网系统进行改造,为此,需了解该小区的自来水用水的情况.该部门通过随机抽样,调查了其中的20户家庭,这20户家庭的月用水量见下表:求这20户家庭的户均月用水量.22.为掌握某轮渡码头今年内每天的客运量,在一周内作了详细统计如下表:(1)求这一周平均每天的客运量;(2)本周哪几天的客运量超过了平均客运量?答案解析1.【答案】A【解析】将6天的用水量排序后,找到位于中间的两数,求平均数即可求得中位数.解:观察条形统计图知6天的用水量分别为28,30,31,32,34,37,位于中间的两个数为31和32,故中位数为31.5升,故选A.2.【答案】B【解析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差是描述一组数据离散程度的统计量.鞋店经理最关心的是哪种型号的鞋销量最大,就是关心那种型号销的最多,故值得关注的是众数.由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故选B.3.【答案】B【解析】把1至7号的空气指数从小到大排列为:105、402、434、446、456、499、500,所以中位数是446,平均数:==406;故选B.4.【答案】D【解析】根据表格中的数据,求出平均数,中位数,众数,方差,即可做出判断.10户居民2016年4月份用电量为30,42,42,50,50,50,51,51,51,51,平均数为(30+42+42+50+50+50+51+51+51+51)=46.8,中位数为50;众数为51,方差为[(30-46.8)2+2×(42-46.8)2+3×(50-46.8)2+4×(51-46.8)2]=42.96.故选D.5.【答案】A【解析】先根据平均数的定义分别计算出甲组和乙组的平均数,然后根据方程公式计算出甲组和乙组的方差即可对各选项进行判断.=(176+177+175+176+177+175)=176(cm),甲=(178+175+170+174+183+176)=176(cm),乙=[2×(176-176)2+2×(175-176)2+2×(177-176)2]=,=[(178-176)2+(175-176)2+(170-176)2+(174-176)2+(183-176)2+(176-176)2]=15,所以甲=乙,<.故选A.6.【答案】B【解析】可得按从小到大的顺序排列后,第7个数据都是17分,所以中位数为17分.故选B.7.【答案】B【解析】只要运用求平均数公式:=即可列出关于d的方程,解出d即可.∵a,b,c三数的平均数是4,∴a+b+c=12,又a+b+c+d=20,故d=8.故选B.8.【答案】C【解析】分别求出甲、乙的平均数、众数、中位数及方差可逐一判断.A.甲==8,乙==8,故此选项正确;B.甲得分次数最多是8分,即众数为8分,乙得分最多的是9分,即众数为9分,故此选项正确;C.∵甲得分从小到大排列为:7、8、8、8、9,∴甲的中位数是8分;∵乙得分从小到大排列为:6、7、9、9、9,∴乙的中位数是9分;故此选项错误;D.∵=×[(8-8)2+(7-8)2+(9-8)2+(8-8)2+(8-8)2]=×2=0.4,=×[(7-8)2+(9-8)2+(6-8)2+(9-8)2+(9-8)2]=×8=1.6,∴<,故D正确;故选C.9.【答案】16【解析】在求n个数的平均数时,如果x1出现f1次,x2出现f2次,x3出现f3次,…,xk出现次(这里f1+f2+f3+…+fk=n),那么这n个数的平均数=.fk所以,队员年龄的平均数是=16.10.【答案】9【解析】先根据平均数的概念求出x的值,然后根据中位数的概念求解.由题意得,=8,解得:x=10,这组数据按照从小到大的顺序排列为:5,6,9,10,10,则中位数为:9.11.【答案】182【解析】由题意知,该校教师平均每人捐款数为(50×5+100×15+150×9+200×11+300×6+500×4)÷50=182元.12.【答案】16【解析】在求n个数的平均数时,如果x1出现f1次,x2出现f2次,x3出现f3次,…,xk出现次(这里f1+f2+f3+…+fk=n),那么这n个数的平均数=.fk所以,队员年龄的平均数是=16.13.【答案】100【解析】该生这学期的数学成绩是:=100.14.【答案】3【解析】根据算术平均数的定义列出算式求出x即可.根据题意可得=3,解得:x=3.15.【答案】23.6【解析】加权平均数:若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,w n,则(x1w1+x2w2+…+xn w n)÷(w1+w2+…+w n)叫做这n个数的加权平均数.所以,该班的中考体育的平均成绩是(25×24+24×10+22×10+20×6)÷50=(600+240+220+120)÷50=1180÷50=23.6(分),故该班的中考体育的平均成绩是23.6分.16.【答案】10【解析】设另一个小组的植树棵数为x,根据这四个数据的众数与平均数相等列出方程x=(x +8+10+12),求出x的值,再根据中位数的定义求解即可.设另一个小组的植树棵数为x,由题意得x=(x+8+10+12),解得x=10;将这组数据从小到大的顺序排列8,10,10,12,处于中间位置的是10,10,所以这组数据的中位数是(10+10)÷2=10.17.【答案】解:(1)a=31,b=51,故答案为31;51;(2)=43(人)答:该2路公共汽车平均每班的载客量是43人.【解析】(1)利用组中值的定义写出第2、3组的组中值即可得a和b的值;(2)利用组中值表示各组的平均数,然后根据加权平均数的计算方法求解.18.【答案】解:本组数据分别为:18、73、78、90、100,平均分为=71.8.中位数为78.所以考分为73的同学在平均分以上,但是他的分数在五人中倒数第二,不能算是“中等”水平.【解析】根据平均数的概念先求得平均分,然后分析比较.19.【答案】解:(1)3月份较2月份节水量不低于1吨的用户数为35+30+10=75,又样本总量为5+20+75=100(户),故所求的百分比为=75%,答:3月份较2月份节水量不低于1吨的户数占小区总户数的百分比为75%;(2)节水量各组的中间值依次为0.4,0.8,1.2,1.6,2.0.故抽样的100户总节水量约为0.4×5+0.8×20+1.2×35+1.6×30+2.0×10=128(吨),所以全小区居民户的总节水量约为128×=6 400(吨),答:该小区居民户3月份较2月份共节水约6 400吨.【解析】(1)由题意可知:节水在1.0~1.4吨的用户为35户,节水在1.4~1.8吨的用户为30户,节水在1.8~2.2吨的用户为10户,则该小区3月份较2月份节水量不低于1吨的户数为30+35+10=75户,又样本总量为5+20+75=100(户),故该小区3月份较2月份节水量不低于1吨的户数占小区总户数的百分为=75%;(2)由题意可知:节水量各组的中间值依次为0.4,0.8,1.2,1.6,2.0.故抽样的100户总节水量约为0.4×5+0.8×20+1.2×35+1.6×30+2.0×10=128(吨),则每户的平均节水量为128÷100=1.28吨,则5000户共节水5 000×1.28=6 400吨.20.【答案】解:(1)15÷30%=50(人),答:该样本的容量是50;(2)30%×360°=108°;(3)×800=9.5×800=7 600元.【解析】(1)样本的容量为;(2)捐款5元的人数所占的圆心角度数=捐款5元的人数所占的百分比×360°;(3)先算出50人捐款的平均数,再算八年级捐款总数.21.【答案】解:这20户家庭的户均月用水量是:==15.5(m3).【解析】在求n个数的平均数时,如果x1出现f1次,x2出现f2次,x3出现f3次,…,xk出现次(这里f1+f2+f3+…+fk=n),那么这n个数的平均数=.fk22.【答案】解:(1)平均数为≈13.5∴平均每天的客运量为13.5万人;(2)由(1)所求的平均数及表格可确定星期一、六、日的客运量超过了平均客运量.答:平均每天的客运量为13.5万人;本周星期一、六、日的客运量超过了平均客运量.【解析】(1)根据平均客运量=,可求出平均客运量.(2)由(1)及表格可直接得出.。
人教版数学八年级下册 第20章 数据的分析 单元练习卷 含答案
第20章数据的分析一.选择题(共8小题)1.下列说法正确的是()A.数据3,4,4,7,3的众数是4B.数据0,1,2,5,a的中位数是2C.一组数据的众数和中位数不可能相等D.数据0,5,﹣7,﹣5,7的中位数和平均数都是02.已知某5个数的和是a,另6个数的和是b,则这11个数的平均数是()A.B.C.D.3.有甲、乙两个箱子,其中甲箱内有98颗球,分别标记号码1~98,且号码为不重复的整数,乙箱内没有球.已知小育从甲箱内拿出49颗球放入乙箱后,乙箱内球的号码的中位数为40.若此时甲箱内有a颗球的号码小于40,有b颗球的号码大于40,则关于a、b 之值,下列何者正确?()A.a=16 B.a=24 C.b=24 D.b=344.某青年排球队12名队员的年龄情况如表:年龄18 19 20 21 22人数 1 4 3 2 2则这个队队员年龄的众数和中位数是()A.19,20 B.19,19 C.19,20.5 D.20,195.在一家三口人中,每两个人的平均年龄加上余下一人的年龄分别得到47、61、60,那么这三个人中最大年龄与最小年龄的差是()A.28 B.27 C.26 D.256.立定跳远是体育中考选考项目之一,体育课上老师记录了某同学的一组立定跳远成绩如表:成绩(m) 2.3 2.4 2.5 2.4 2.4 则下列关于这组数据的说法,正确的是()A.众数是2.3 B.平均数是2.4C.中位数是2.5 D.方差是0.017.一般具有统计功能的计算器可以直接求出()A.平均数和标准差B.方差和标准差C.众数和方差D.平均数和方差8.13名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前6名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的()A.方差B.众数C.平均数D.中位数二.填空题(共7小题)9.已知一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数是.10.小明本学期平时测验,期中考试和期末考试的数学成绩分别是135分、135分、122分.如果这3项成绩分别按30%、30%、40%的比例计算,那么小明本学期的数学平均分是.11.某同学用计算器求30个数据的平均数时,错将其中的一个数据105输入成15,则由此求出的平均数与实际平均数的差是.12.已知一组数据2,6,5,2,4,则这组数据的中位数是.13.5个正整数,中位数是4,唯一的众数是6,则这5个数和的最大值为.14.检查5个篮球的质量,把超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查结果如下表,则最接近标准质量的是号篮球,这次测试结果的极差是g.篮球编号 1 2 3 4 5+4 +7 ﹣3 ﹣8 +9 与标准质量的差(克)15.甲、乙两人各进行10次射击比赛,平均成绩均为9环,方差分别是:S甲2=2,S乙2=4,则射击成绩较稳定的是(选填“甲”或“乙”).三.解答题(共8小题)16.下表是某班5名同学某次数学测试成绩.根据信息完成下表,并回答问题.五人中分数最高的是谁?分数最低的是谁?谁的分数与全班平均分最接近?姓名王芳刘兵张昕李聪江文成绩89 84与全班平均分之差﹣1 +2 0 ﹣217.下面的表格是李刚同学一学期数学成绩的记录,根据表格提供的信息回答下面的问题考试类别平时期中考试期末考试第一单元第二单元第三单元第四单元成绩88 86 90 92 90 96(1)李刚同学6次成绩的极差是.(2)李刚同学6次成绩的中位数是.(3)李刚同学平时成绩的平均数是.(4)如果用下图的权重给李刚打分,他应该得多少分?(满分100分,写出解题过程)18.学生的平时作业、期中考试、期末考试三项成绩分别按2:3:5的比例计入学期总评成绩.小明、小亮、小红的平时作业、期中考试、期末考试的数学成绩如下表,计算这学期谁的数学总评成绩最高?平时成绩期中成绩期末成绩小明96 94 90小亮90 96 93小红90 90 9619.自1996年起,我国确定每年3月份最后一周的星期一,为全国中小学生“安全教育日”.2018年3月26日是第二十三个全国中小学生安全教育日.某中学八年级开展了交通安全为主题的演讲比赛.其中两名参赛选手的各项得分如表:项目演讲内容演讲技巧仪表形象甲95 90 85乙90 95 90 如果规定:演讲内容、演讲技巧、仪表形象按6:3:1计算成绩,那么甲、乙两人的成绩谁更高?20.为了解学生参加户外活动的情况,和谐中学对学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(1)求被抽样调查的学生有多少人?并补全条形统计图;(2)每天户外活动时间的中位数是小时?(3)该校共有1850名学生,请估计该校每天户外活动时间超过1小时的学生有多少人?21.国家规定,“中小学生每天在校体育锻炼时间不小于1小时”,某地区就“每天在校体育锻炼时间”的问题随机调查了若干名中学生,根据调查结果制作如下统计图(不完整).其中分组情况:A组:时间小于0.5小时;B组:时间大于等于0.5小时且小于1小时;C组:时间大于等于1小时且小于1.5小时;D组:时间大于等于1.5小时.根据以上信息,回答下列问题:(1)A组的人数是人,并补全条形统计图;(2)本次调查数据的中位数落在组;(3)根据统计数据估计该地区25000名中学生中,达到国家规定的每天在校体育锻炼时间的人数约有人.22.某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下:17 18 16 13 24 15 28 26 18 1922 17 16 19 32 30 16 14 15 2615 32 23 17 15 15 28 28 16 19频数分布表组别一二三四五六七16≤x<19 19≤x<22 22≤x<25 25≤x<28 28≤x<31 31≤x<34 销售额13≤x<16频数7 9 3 a 2 b 2 数据分析表平均数众数中位数20.3 c18请根据以上信息解答下列问题:(1)填空:a=,b=,c=;(2)若将月销售额不低于25万元确定为销售目标,则有位营业员拿不到奖励;(3)若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.23.在学校组织的科学素养竞赛中,每班参加比赛的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为90分,80分,70分,60分,学校将八年级一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩在70分及其以上的人数有人;(2)补全下表中空缺的三个统计量:平均数(分)中位数(分)众数(分)一班77.6 80二班90(3)请根据上述图表对这次竞赛成绩进行分析,写出两个结论.参考答案一.选择题(共8小题)1.D.2.B.3.D.4.A.5.A.6.B.7.A.8.D.二.填空题(共7小题)9.4.10.129.8.11.﹣3.12.4.13.21.14.3;17.15.甲三.解答题(共8小题)16.完成表格得姓名王芳刘兵张昕李聪江文成绩89 92 90 84 88与全班平﹣1 +2 0 ﹣6 ﹣2均分之差故答案为分数最高的是刘兵,分数最低的是李聪,张昕的分数与全班平均分最接近.17.(1)最大值是96分,最小是86分,因而极差是96﹣86=10分,故答案是:10分;(2)成绩从大到小排列为96,92,90,90,88,86,则中位数是:=90分,故答案是:90分;(3)=89分,故答案是:89分;(4)89×10%+90×30%+96×60%=93.5分.答:李刚的总评分应该是93.5分.18.小明数学总评成绩:96×+94×+90×=92.4,小亮数学总评成绩:90×+96×+93×=93.3,小红数学总评成绩:90×+90×+96×=93,∵93.3>93>92.4,∴小亮成绩最高.答:这学期小亮的数学总评成绩最高.19.甲的得分为=92.5(分),乙的得分为=91.5(分),∵92.5>91.5,∴甲的成绩更高.20.(1)由条形统计图和扇形统计图可得,0.5小时的有100人占被调查总人数的20%,故被调查的人数有:100÷20%=500,1小时的人数有:500﹣100﹣200﹣80=120,即被调查的学生有500人,补全的条形统计图如下图所示,(2)由(1)可知被调查学生500人,由条形统计图可得,中位数是1小时,故答案为:1;(3)由题意可得,该校每天户外活动时间超过1小时的学生数为:=740人,即该校每天户外活动时间超过1小时的学生有740人.21.(1)由统计图可得,A组人数为:60÷24%﹣60﹣120﹣20=50,故答案为:50,补全的条形统计图如右图所示,(2)由补全的条形统计图可得,中位数落在C组,故答案为:C;(3)由题意可得,该地区25 000名中学生中,达到国家规定的每天在校体育锻炼时间的人数约有:25000×(48%+8%)=14000(人),故答案为:14000.22.(1)在22≤x<25范围内的数据有3个,在28≤x<31范围内的数据有4个,15出现的次数最大,则众数为15;故答案为:3,4,15;(2)月销售额不低于25万元为后面三组数据,即有8位营业员获得奖励,则拿不到奖励的有22人;故答案为:22;(3)想让一半左右的营业员都能达到销售目标,我认为月销售额定为18万合适.因为中位数为18,即大于18与小于18的人数一样多,所以月销售额定为18万,有一半左右的营业员能达到销售目标.23.(1)一班参赛人数为:6+12+2+5=25(人),∵两班参赛人数相同,∴二班成绩在70分以上(包括70分)的人数为25×84%=21人;(2)平均数:90×44%+80×4%+70×36%+60×16%=77.6(分);中位数:70(分);众数:80(分).填表如下:平均数(分)中位数(分)众数(分)一班77.6 80 80二班77.6 70 90 (3)①平均数相同的情况下,二班的成绩更好一些.②请一班的同学加强基础知识训练,争取更好的成绩.故答案为:21;80,77.6,70.。
人教版八年级数学下册第20章数据的分析单元测试题含答案
第二十章数据的分析一、选择题(每小题5分,共35分)1.李华根据演讲比赛中九位评委所给的分数制作了如下表格:平均数中位数众数方差8.5分8.3分8.1分0.15如果要去掉一个最高分和一个最低分,则表中数据一定不发生变化的是( )A.平均数 B.众数C.方差 D.中位数2.某校参加校园青春健身操比赛的16名运动员的身高如下表:身高(cm)172173175176人数(人)444 4则该校16名运动员身高的平均数和中位数分别是( )A.173 cm,173 cm B.174 cm,174 cmC.173 cm,174 cm D.174 cm,175 cm图20-Z-13.若干名工人某天生产同一种零件,将生产的零件数整理成条形统计图,如图20-Z-1所示.设他们生产的零件数的平均数为a个,中位数为b个,众数为c个,则( ) A.b>c>a B.c>a>bC.a>b>c D.b>a>c4.某村引进甲、乙两种水稻良种,各选6块条件相同的试验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为550 千克/亩,方差分别为s甲2=141.7,s乙2=433.3,则产量稳定、适合推广的品种为( )A.甲、乙均可 B.甲C.乙 D.无法确定5.若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x 的值为( )A.1 B.6 C.1或6 D.5或66.100名学生进行20秒钟跳绳测试,测试成绩统计如下表:跳绳次数x 20<x≤3030<x≤4040<x≤5050<x≤6060<x≤70x>70人数5213312326 则这次测试成绩的中位数m满足( )A.40<m≤50 B.50<m≤60C.60<m≤70 D.m>707.某校四个绿化小组一天植树的棵数如下:10,x,10,8.已知这组数据的众数与平均数相等,则这组数据的中位数是( )A.8 B.9C.10 D.12二、填空题(每小题5分,共25分)8.某中学随机抽查了50名学生,了解他们一周的课外阅读时间,结果如下表所示:时间(时)4567人数102015 5则这50名学生一周的平均课外阅读时间是________小时.9.在射击比赛中,某运动员的6次射击成绩(单位:环)为7,8,10,8,9,6.计算这组数据的方差为________.10.商店想调查哪种品牌的空调销售量大,用________来描述较好,想知道总体盈利的情况用________来描述较好;某同学的身高在全班57人中排名第29,则他的身高值可看作是全班同学身高值的________.(填“中位数”“众数”或“平均数”)11.如图20-Z-2是甲、乙两人10次射击成绩的条形统计图,则甲、乙两人成绩比较稳定的是________.图20-Z-212.一组数据2,3,x,y,12中,唯一众数是12,平均数是6,这组数据的中位数是________.三、解答题(共40分)13.(8分)某公司招聘人才,对应聘者分别进行阅读、思维和表达能力三项测试,其中甲、乙两人的成绩(单位:分)如下表:项目阅读思维表达能力人员甲938673乙958179根据实际需要,公司将阅读、思维和表达能力三项测试得分按3∶5∶2的比例确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?14.(10分)在一次数学考试中,从某班随机抽取的10名学生得分(单位:分)如下:75,85,90,90,95,85,95,95,100,98.(1)求这10名学生得分的众数、中位数和平均数;(2)若该班共有40名学生,估计此次考试的平均成绩约为多少.15.(10分)某中学对全校学生60秒跳绳的次数进行了统计,全校学生60秒跳绳的平均次数是100次,某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如图20-Z-3所示(每个分组包括左端点,不包括右端点).(1)该班学生60秒跳绳的平均次数至少是多少?是否超过全校平均次数?(2)该班一个学生说:“我的跳绳成绩在我班是中位数.”请你给出该生跳绳成绩所在的范围.图20-Z-316.(12分)在上学期的几次测试中,小张和小王的几次数学成绩(单位:分)如下表:平时成绩期中成绩期末成绩小张828591小王848986两人都说自己的数学成绩更好.请你想一想:(1)小张可能是根据什么来判断的?小王可能是根据什么来判断的?(2)你能根据小张的想法设计一种方案使小张的成绩比小王的高吗?写出你的方案.详解详析1.D2.B [解析] 这组数据按照从小到大的顺序排列为172,172,172,172,173,173,173,173,175,175,175,175,176,176,176,176,则平均数为(172×4+173×4+175×4+176×4)÷16=174(cm), 中位数为(173+175)÷2=174(cm).3.D [解析] 从条形统计图可知,生产4个零件的有4人,生产5个零件的有3人,生产6个零件的有3人,所以其平均数a =4×4+5×3+6×34+3+3=4.9(个),中位数b =5+52=5(个),众数c =4个,而5>4.9>4,所以b >a >c .4.B5.C [解析] ∵一组数据2,3,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等,∴这组数据可能是2,3,4,5,6或1,2,3,4,5,∴x =1或6.6.B7.C [解析] 当x =8时,没有众数,不合题意,舍去.当众数为10时,根据题意,得10+10+x +84=10,解得x =12,将这组数据按从小到大的顺序排列为8,10,10,12,处于中间位置的是10,10,所以这组数据的中位数是(10+10)÷2=10.故选C.8.5.3 [解析] 该组数据的平均数=150(4×10+5×20+6×15+7×5)=150×265=5.3.9.5310.众数 平均数 中位数 11.乙 [解析] 通过观察乙的成绩较整齐,波动较小. 12.313.解:∵x 甲=93×3+86×5+73×23+5+2=85.5(分),x 乙=95×3+81×5+79×23+5+2=84.8(分),∴x 乙<x 甲,∴甲将被录用.14.解:(1)数据由小到大排列为75,85,85,90,90,95,95,95,98,100, 所以这10名学生得分的众数为95分,中位数为90+952=92.5(分),平均数为 (75+85+85+90+90+95+95+95+98+100)=90.8(分).(2)估计此次考试的平均成绩约为90.8分.15.解:(1)该班学生60秒跳绳的平均次数至少是(60×4+80×13+100×19+120×7+140×5+160×2)÷50=100.8(次).因为100.8>100,所以超过全校平均次数.(2)这个学生的跳绳成绩在该班是中位数,由4+13+19=36,可知该生跳绳成绩一定在100~120次范围内.16.解:(1)小张可能是根据加权平均数来判断的,小王可能是根据算术平均数来判断的. (2)参考方案:平时成绩、期中成绩、期末成绩所占的百分比分别为30%,30%,40%,这样小张的综合成绩就是86.5分,小王的综合成绩就是86.3分.。
人教版初中数学八年级下册《第20章 数据的分析》单元测试卷(含答案解析
人教新版八年级下学期《第20章数据的分析》单元测试卷一.选择题(共10小题)1.若一组数据3、4、5、x、6、7的平均数是5,则x的值是()A.4B.5C.6D.72.一组数据2,3,5,7,8的平均数是()A.2B.3C.4D.53.某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行考核(考核的满分均为100分),三个方面的重要性之比依次为3:5:2.小王经过考核后所得的分数依次为90、88、83分,那么小王的最后得分是()A.87B.87.5C.87.6D.884.某商场为了解产品A的销售情况,在上个月的销售记录中,随机抽取了5天A产品的销售记录,其售价x(元/件)与对应销量y(件)的全部数据如下表:则这5天中,A产品平均每件的售价为()A.100元B.95元C.98元D.97.5元5.用计算器计算数据13.49,13.53,14.07,13.51,13.84,13.98,14.67,14.80,14.61,14.60,14.41,14.31,14.38,14.02,14.17的平均数约为()A.14.15B.14.16C.14.17D.14.206.已知甲、乙两班的学生人数相同,如图为两班某次数学小考成绩的盒状图,若甲班、乙班学生小考成绩的中位数分别为a、b;甲班、乙班中小考成绩超过80分的学生人数分别为c、d,则下列a、b、c、d的大小关系,何者正确?()A .a >b ,c >dB .a >b ,c <dC .a <b ,c >dD .a <b ,c <d7.若一组数据4,1,7,x ,5的平均数为4,则这组数据的中位数为( )A .7B .5C .4D .38.近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):1~3月份我省这七个地市邮政快递业务量的中位数是( )A .319.79万件 B.332.68万件 C .338.87万件 D .416.01万件9.受央视《朗读者》节目的启发的影响,某校七年级2班近期准备组织一次朗诵活动,语文老师调查了全班学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是( )A .2,1B .1,1.5C .1,2 D.1,1 10.某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:则这15双鞋的尺码组成的一组数据中,众数和中位数分别为( )A .24.5,24.5B .24.5,24C .24,24D .23.5,24二.填空题(共15小题)11.睡眠是评价人类健康水平的一项重要指标,充足的睡眠是青少年健康成长的必要条件之一,小强同学通过问卷调查的方式了解到本班三位同学某天的睡眠时间分别为7.8小时,8.6小时,8.8小时,则这三位同学该天的平均睡眠时间是.12.在校园歌手大赛中,参赛歌手的成绩为5位评委所给分数的平均分.各位评委给某位歌手的分数分别是92,93,88,87,90,则这位歌手的成绩是.13.某学习小组共有学生5人,在一次数学测验中,有2人得85分,2人得90分,1人得70分,该学习小组的平均分为分.14.某水果店销售11元,18元,24元三种价格的水果,根据水果店一个月这三种水果销售量的统计图(如图),可计算出该店当月销售出水果的平均价格是元.15.数据5,5,4,2,3,7,6的中位数是.16.五名工人每天生产零件数分别是:5,7,8,5,10,则这组数据的中位数是.17.某公司有10名工作人员,他们的月工资情况如表,根据表中信息,该公司工作人员的月工资的众数是.18.一组数据2,3,3,1,5的众数是.19.一组数据10,10,9,8,x的平均数是9,则这列数据的极差是.20.下表是我市某一天在不同时段测得的气温情况则这一天气温的极差是 ℃.21.样本数据1,2,3,4,5.则这个样本的方差是 .22.甲、乙两名同学的5次射击训练成绩(单位:环)如下表.比较甲、乙这5次射击成绩的方差S 甲2,S 乙2,结果为:S 甲2 S 乙2.(选填“>”“=”或“<“)23.用科学记算器求得271,315,263,289,300,277,286,293,297,280的平均数为 ,标准差为 .(精确到0.1)24.(1)用计算器进行统计计算时,样本数据输入完后,求标准差应按键 ;(2)数据9.9、9.8、10.1、10.4、9.8的方差是 .(结果保留两个有效数字)25.某鞋厂调查了商场一个月内不同尺码男鞋的销量,在平均数、中位数、众数和方差等数个统计量中,该鞋厂最关注的是 .三.解答题(共5小题)26.一位同学进行五次投实心球的练习,每次投出的成绩如表:求该同学这五次投实心球的平均成绩.27.某公司内设四个部门,2015年各部门人数及相应的每人所创年利润如表所示,求该公司2015年平均每人所创年利润.28.下表是随机抽取的某公司部分员工的月收入资料.(1)请计算以上样本的平均数和中位数;(2)甲乙两人分别用样本平均数和中位数来估计推断公司全体员工月收入水平,请你写出甲乙两人的推断结论;(3)指出谁的推断比较科学合理,能真实地反映公司全体员工月收入水平,并说出另一个人的推断依据不能真实反映公司全体员工月收入水平的原因.29.近年来,共享单车逐渐成为高校学生喜爱的“绿色出行”方式之一,自2016年国庆后,许多高校均投放了使用手机支付就可随取随用的共享单车.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表.(1)这天部分出行学生使用共享单车次数的中位数是,众数是,该中位数的意义是;(2)这天部分出行学生平均每人使用共享单车约多少次?(结果保留整数)(3)若该校某天有1500名学生出行,请你估计这天使用共享单车次数在3次以上(含3次)的学生有多少人?30.截止到2012年5月31日,“中国飞人”刘翔在国际男子110米栏比赛中,共7次突破13秒关卡.成绩分别是(单位:秒):12.97 12.87 12.91 12.88 12.93 12.92 12.95(1)求这7个成绩的中位数、极差;(2)求这7个成绩的平均数(精确到0.01秒).人教新版八年级下学期《第20章数据的分析》单元测试卷参考答案与试题解析一.选择题(共10小题)1.若一组数据3、4、5、x、6、7的平均数是5,则x的值是()A.4B.5C.6D.7【分析】根据平均数的定义计算即可;【解答】解:由题意(3+4+5+x+6+7)=5,解得x=5,故选:B.【点评】本题考查平均数的定义,解题的关键是根据平均数的定义构建方程解决问题,属于中考基础题.2.一组数据2,3,5,7,8的平均数是()A.2B.3C.4D.5【分析】根据平均数的定义计算.【解答】解:数据2,3,5,7,8的平均数==5.故选:D.【点评】本题考查了平均数:平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.3.某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行考核(考核的满分均为100分),三个方面的重要性之比依次为3:5:2.小王经过考核后所得的分数依次为90、88、83分,那么小王的最后得分是()A.87B.87.5C.87.6D.88【分析】将三个方面考核后所得的分数分别乘上它们的权重,再相加,即可得到最后得分.【解答】解:小王的最后得分=90×+88×+83×=27+44+16.6=87.6(分),故选:C.【点评】本题主要考查了加权平均数,数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.4.某商场为了解产品A的销售情况,在上个月的销售记录中,随机抽取了5天A产品的销售记录,其售价x(元/件)与对应销量y(件)的全部数据如下表:则这5天中,A产品平均每件的售价为()A.100元B.95元C.98元D.97.5元【分析】根据加权平均数列式计算可得.【解答】解:由表可知,这5天中,A产品平均每件的售价为=98(元/件),故选:C.【点评】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义及其计算公式.5.用计算器计算数据13.49,13.53,14.07,13.51,13.84,13.98,14.67,14.80,14.61,14.60,14.41,14.31,14.38,14.02,14.17的平均数约为()A.14.15B.14.16C.14.17D.14.20【分析】本题要求同学们,熟练应用计算器.【解答】解:借助计算器,先按MOOE按2再按1,会出现一竖,然后把你要求平均数的数字输进去,好了之后按AC键,再按shift再按1,然后按5,就会出现平均数的数值.故选:B.【点评】本题要求同学们能熟练应用计算器,会用科学记算器进行计算.6.已知甲、乙两班的学生人数相同,如图为两班某次数学小考成绩的盒状图,若甲班、乙班学生小考成绩的中位数分别为a、b;甲班、乙班中小考成绩超过80分的学生人数分别为c、d,则下列a、b、c、d的大小关系,何者正确?()A.a>b,c>d B.a>b,c<d C.a<b,c>d D.a<b,c<d 【分析】根据中位数的定义和成绩分布进行判断.【解答】解:根据盒状图得到a>b,c>d.故选:A.【点评】本题考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为()A.7B.5C.4D.3【分析】先根据平均数为4求出x的值,然后根据中位数的概念求解.【解答】解:∵数据4,1,7,x,5的平均数为4,∴=4,解得:x=3,则将数据重新排列为1、3、4、5、7,所以这组数据的中位数为4,故选:C.【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.8.近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):1~3月份我省这七个地市邮政快递业务量的中位数是()A.319.79万件B.332.68万件C.338.87万件D.416.01万件【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:首先按从小到大排列数据:302.34,319.79,332.68,338.87,416.01,725.86,3303.78由于这组数据有奇数个,中间的数据是338.87所以这组数据的中位数是338.87故选:C.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.9.受央视《朗读者》节目的启发的影响,某校七年级2班近期准备组织一次朗诵活动,语文老师调查了全班学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()A.2,1B.1,1.5C.1,2D.1,1【分析】根据表格中的数据可知七年级2班有30人,从而可以得到全班学生平均每天阅读时间的中位数和众数,本题得以解决.【解答】解:由表格可得,全班学生平均每天阅读时间的中位数和众数分别是1、1.5,故选:B.【点评】本题考查众数、加权平均数、中位数,解答本题的关键是明确题意,会求一组数据的众数和中位数.10.某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:则这15双鞋的尺码组成的一组数据中,众数和中位数分别为()A.24.5,24.5B.24.5,24C.24,24D.23.5,24【分析】利用众数和中位数的定义求解.【解答】解:这组数据中,众数为24.5,中位数为24.5.故选:A.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.二.填空题(共15小题)11.睡眠是评价人类健康水平的一项重要指标,充足的睡眠是青少年健康成长的必要条件之一,小强同学通过问卷调查的方式了解到本班三位同学某天的睡眠时间分别为7.8小时,8.6小时,8.8小时,则这三位同学该天的平均睡眠时间是8.4小时.【分析】求出已知三个数据的平均数即可.【解答】解:根据题意得:(7.8+8.6+8.8)÷3=8.4小时,则这三位同学该天的平均睡眠时间是8.4小时,故答案为:8.4小时【点评】此题考查了算术平均数,熟练掌握算术平均数的定义是解本题的关键.12.在校园歌手大赛中,参赛歌手的成绩为5位评委所给分数的平均分.各位评委给某位歌手的分数分别是92,93,88,87,90,则这位歌手的成绩是90.【分析】根据算术平均数的计算公式,把这5个分数加起来,再除以5,即可得出答案.【解答】解:这位参赛选手在这次比赛中获得的平均分为:(92+93+88+87+90)÷5=90(分);故答案为:90.【点评】此题考查了平均数的求法,平均数是指在一组数据中所有数据之和再除以数据的个数,熟记平均数的公式是解决本题的关键.13.某学习小组共有学生5人,在一次数学测验中,有2人得85分,2人得90分,1人得70分,该学习小组的平均分为84分.【分析】根据加权平均数的定义列出算式求解即可.【解答】解:(85×2+90×2+70)÷(2+2+1)=(170+180+70)÷5=420÷5=84(分).答:该学习小组的平均分为84分.故答案为:84.【点评】本题考查的是加权平均数的求法.本题易出现的错误是求85,90,70这三个数的平均数,对平均数的理解不正确.14.某水果店销售11元,18元,24元三种价格的水果,根据水果店一个月这三种水果销售量的统计图(如图),可计算出该店当月销售出水果的平均价格是15.3元.【分析】根据加权平均数的计算方法,分别用单价乘以相应的百分比,计算即可得解.【解答】解:该店当月销售出水果的平均价格是11×60%+18×15%+24×25%=15.3(元),故答案为:15.3.【点评】本题考查扇形统计图及加权平均数,解题的关键是掌握扇形统计图直接反映部分占总体的百分比大小及加权平均数的计算公式.15.数据5,5,4,2,3,7,6的中位数是5.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:从小到大排列此数据为:2、3、4、5、5、6、7,一共7个数据,其中5处在第4位为中位数.故答案为:5.【点评】考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.16.五名工人每天生产零件数分别是:5,7,8,5,10,则这组数据的中位数是7.【分析】根据将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数可得答案.【解答】解:把数据从小到大排列:5,5,7,8,10,中位数为7,故答案为:7.【点评】此题主要考查了中位数,关键是掌握中位数定义.17.某公司有10名工作人员,他们的月工资情况如表,根据表中信息,该公司工作人员的月工资的众数是0.6万元.【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:由表可知0.6万元出现次数最多,有4次,所以该公司工作人员的月工资的众数是0.6万元,故答案为:0.6万元.【点评】本题主要考查众数,解题的关键是掌握众数的定义:众数是指一组数据中出现次数最多的数据.18.一组数据2,3,3,1,5的众数是3.【分析】根据众数的定义求解.【解答】解:数据2,3,3,1,5的众数为3.故答案为3.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.19.一组数据10,10,9,8,x的平均数是9,则这列数据的极差是2.【分析】先根据平均数求出x,再根据极差定义可得答案.【解答】解:由题意知=9,解得:x=8,∴这列数据的极差是10﹣8=2,故答案为:2.【点评】本题主要考查平均数和极差,熟练掌握平均数的计算得出x的值是解题的关键.20.下表是我市某一天在不同时段测得的气温情况则这一天气温的极差是9℃.【分析】根据极差的定义即极差就是这组数中最大值与最小值的差,即可得出答案.【解答】解:这组数据的最大值是34℃,最小值是25℃,则极差是34﹣25=9(℃).故答案为:9.【点评】此题考查了极差,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.注意:极差的单位与原数据单位一致.21.样本数据1,2,3,4,5.则这个样本的方差是2.【分析】先平均数的公式计算出平均数,再根据方差的公式计算即可.【解答】解:∵1、2、3、4、5的平均数是(1+2+3+4+5)÷5=3,∴这个样本方差为s2=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=2;故答案为:2.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.22.甲、乙两名同学的5次射击训练成绩(单位:环)如下表.比较甲、乙这5次射击成绩的方差S甲2,S乙2,结果为:S甲2<S乙2.(选填“>”“=”或“<“)【分析】首先求出各组数据的平均数,再利用方差公式计算得出答案.【解答】解:=(7+8+9+8+8)=8,=(6+10+9+7+8)=8,=[(7﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]=0.4;=[(6﹣8)2+(10﹣8)2+(9﹣8)2+(7﹣8)2+(8﹣8)2]=2;则S甲2<S乙2.故答案为:<.【点评】此题主要考查了方差,正确掌握方差计算公式是解题关键.23.用科学记算器求得271,315,263,289,300,277,286,293,297,280的平均数为287.1,标准差为14.4.(精确到0.1)【分析】根据平均数、标准差的概念计算.方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],标准差是方差的算术平方根.【解答】解:由题意知,数据的平均数=(271+315+263+289+300+277+286+293+297+280)=287.1方差S2=[(271﹣287.1)2+(315﹣287.1)2+(263﹣287.1)2+(289﹣287.1)2+(300﹣287.1)2+(277﹣287.1)2+(286﹣287.1)2+(293﹣287.1)2+(297﹣287.1)2+(280﹣287.1)2]=207.4标准差为≈14.4.故填287.1,14.4.【点评】本题考查了平均数,方差和标准差的概念.标准差是方差的算术平方根.24.(1)用计算器进行统计计算时,样本数据输入完后,求标准差应按键2ndF;(2)数据9.9、9.8、10.1、10.4、9.8的方差是0.052.(结果保留两个有效数字)【分析】(1)计算器按键顺序可知按2ndF;(2)先计算出数据的平均数,再计算方差,一般地设n个数据,x1,x2,…x n的平均数为,=(x1+x2+…+x n),则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n ﹣)2].【解答】解:(1)计算器按键顺序可知按2ndF;(2)平均数=(9.9+9.8+10.1+10.4+9.8)=10,方差S2=[(9.9﹣10)2+(9.8﹣10)2+(10.1﹣10)2+(10.4﹣10)2+(9.8﹣10)2]=0.052.故填2ndF,0.052.【点评】本题考查计算器按键顺序和方差计算方法.一般地设n个数据,x1,x2,…x n 的平均数为,=(x1+x2+…+x n),则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].25.某鞋厂调查了商场一个月内不同尺码男鞋的销量,在平均数、中位数、众数和方差等数个统计量中,该鞋厂最关注的是众数.【分析】鞋厂最感兴趣的是各种鞋号的鞋的销售量,特别是销售量最多的即这组数据的众数.【解答】解:由于众数是数据中出现最多的数,故鞋厂最感兴趣的销售量最多的鞋号即这组数据的众数.故答案为:众数.【点评】本题主要考查了学生对统计量的意义的理解与运用,要求学生对对统计量进行合理的选择和恰当的运用,比较简单.三.解答题(共5小题)26.一位同学进行五次投实心球的练习,每次投出的成绩如表:求该同学这五次投实心球的平均成绩.【分析】平均数是指在一组数据中所有数据之和再除以数据的个数.【解答】解:该同学这五次投实心球的平均成绩为:=10.4.故该同学这五次投实心球的平均成绩为10.4m.【点评】此题考查了平均数,解题的关键是掌握平均数的计算公式.27.某公司内设四个部门,2015年各部门人数及相应的每人所创年利润如表所示,求该公司2015年平均每人所创年利润.【分析】利用加权平均数的计算公式计算即可.【解答】解:该公司2015年平均每人所创年利润为:=21,答:该公司2015年平均每人所创年利润为21万元.【点评】本题考查的是加权平均数的计算,掌握加权平均数的计算公式是解题的关键.28.下表是随机抽取的某公司部分员工的月收入资料.(1)请计算以上样本的平均数和中位数;(2)甲乙两人分别用样本平均数和中位数来估计推断公司全体员工月收入水平,请你写出甲乙两人的推断结论;(3)指出谁的推断比较科学合理,能真实地反映公司全体员工月收入水平,并说出另一个人的推断依据不能真实反映公司全体员工月收入水平的原因.【分析】(1)要求平均数只要求出各个数据之和再除以数据个数即可;对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可;(2)甲从员工平均工资水平的角度推断公司员工月收入,乙从员工中间工资水平的角度推断公司员工的收入;(3)推断的合理性取决于数据的极差、某些数据的集中程度等因素.【解答】解:(1)样本的平均数为:=6150(元);这组数据共有26个,第13、14个数据分别是3400、3000,所以样本的中位数为:=3200(元).(2)甲:由样本平均数6150元,估计公司全体员工月平均收入大约为6150元;乙:由样本中位数为3200元,估计公司全体员工约有一半的月收入超过3200元,约有一半的月收入不足3200元.(3)乙的推断比较科学合理.由题意知样本中的26名员工,只有3名员工的收入在6150元以上,原因是该样本数据极差较大,所以平均数不能真实的反映实际情况.【点评】本题考查了计算平均数和中位数,并用中位数和平均数说明具体问题.题目难度不大,有的问题的答案不唯一.29.近年来,共享单车逐渐成为高校学生喜爱的“绿色出行”方式之一,自2016年国庆后,许多高校均投放了使用手机支付就可随取随用的共享单车.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表.(1)这天部分出行学生使用共享单车次数的中位数是3,众数是3,该中位数的意义是表示这部分出行学生这天约有一半使用共享单车的次数在3次以上(或3次);(2)这天部分出行学生平均每人使用共享单车约多少次?(结果保留整数)(3)若该校某天有1500名学生出行,请你估计这天使用共享单车次数在3次以上(含3次)的学生有多少人?【分析】(1)根据中位数和众数的定义求解可得;(2)根据加权平均数的公式列式计算即可;(3)用总人数乘以样本中使用共享单车次数在3次以上(含3次)的学生所占比例即可得.【解答】解:(1)∵总人数为11+15+23+28+18+5=100,∴中位数为第50、51个数据的平均数,即中位数为=3次,众数为3次,其中中位数表示这部分出行学生这天约有一半使用共享单车的次数在3次以上(或3次),故答案为:3、3、表示这部分出行学生这天约有一半使用共享单车的次数在3次以上(或3次);(2)=≈2(次),答:这天部分出行学生平均每人使用共享单车约2次;(3)1500×=765(人),答:估计这天使用共享单车次数在3次以上(含3次)的学生有765人.【点评】本题考查了中位数、众数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.30.截止到2012年5月31日,“中国飞人”刘翔在国际男子110米栏比赛中,共7次突破13秒关卡.成绩分别是(单位:秒):12.97 12.87 12.91 12.88 12.93 12.92 12.95(1)求这7个成绩的中位数、极差;(2)求这7个成绩的平均数(精确到0.01秒).【分析】(1)根据中位数的定义:把数据从小到大排列,位置处于中间的数就是中位数;极差=最大数﹣最小数即可得到答案;(2)根据平均数的计算方法:把所有数据加起来再除以数据的个数即可计算出答案.【解答】解:(1)将7次个成绩从小到大排列为:12.87,12.88,12.91,12.92,12.93,12.95,12.97,位置处于中间的是12.92秒,故这7个成绩的中位数12.92秒;极差:12.97﹣12.87=0.1(秒);(2)这7个成绩的平均成绩:(12.97+12.87+12.91+12.88+12.93+12.92+12.95)÷7≈12.92(秒).【点评】此题主要考查了极差、中位数、平均数,关键是熟练掌握其计算方法.。
人教版八年级下册数学《第20章 数据的分析》单元测试卷 试题试卷 含答案解析
人教版八年级下册数学《第20章数据的分析》单元测试卷一、选择题(共8小题,满分24分,每小题3分)1.比赛中“去掉一个最高分,去掉一个最低分”后,一定不会发生变化的统计量是()A.平均数B.众数C.中位数D.极差2.一组数据5、2、8、2、4,这组数据的中位数和众数分别是()A.2,2B.3,2C.2,4D.4,23.甲、乙、丙、丁四位同学五次数学测验成绩统计如下表,如果从这四位同学中,选出一位同学参加数学竞赛,那么应选()甲乙丙丁平均分90959590方差50425042A.甲B.乙C.丙D.丁4.某班同学抛携实心球的成绩统计表如下,则该成绩的众数是()成绩(分)678910频数16131416 A.10B.16C.9D.145.一组数据40,37,x,64的平均数是53,则x的值是()A.67B.69C.71D.726.甲、乙两人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为:S甲22=0.52,则成绩最稳定的是()=0.58,S乙A.甲B.乙C.甲和乙一样D.无法判定7.在方差计算公式s2=[(x1﹣15)2+(x2﹣15)2+…+(x20﹣15)2]中,可以看出15表示这组数据的()A.众数B.平均数C.中位数D.方差8.某公司计划招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,成绩如表:候选人甲乙丙丁测试成绩(百分制)面试86929083笔试90838392公司决定将面试与笔试成绩按6:4的比例计算个人总分,总分最高者将被录用,则公司将录用()A.甲B.乙C.丙D.丁二、填空题(共7小题,满分28分,每小题4分)9.在统计学中,样本的方差可以近似地反映总体的.(填写“集中趋势”、“波动大小”、“最大值”、“平均值”)10.已知某实验区甲、乙品种水稻的平均产量相等.且甲、乙品种水稻产量的方差分别为S甲2=79.6,S乙2=68.5.由此可知:在该地区种水稻更具有推广价值.11.已知一组数据2,2,8,x,7,4的中位数为5,则x的值是.12.一组数据3,5,3,x的众数只有一个,则x的值不能为.13.已知一组数据从小到大排列为:﹣1,0,4,x,6,15,且这组数据的中位数是5,那么这组数据的众数是.14.已知一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数是.15.小华统计了自己过去五个学期期末考试数学成绩,分别为87,84,90,89,95,这组数据的方差分别为.三、解答题(共6小题,满分48分)16.(6分)甲、乙两人在5次打靶测试中命中的环数如下:甲:8,8,7,8,9乙:5,9,7,10,9(1)填写下表:平均数众数中位数方差甲880.4乙9 3.2(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差.(填“变大”、“变小”或“不变”).17.(6分)从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下:(单位:cm)甲:9、10、11、12、7、13、10、8、12、8;乙:8、13、12、11、10、12、7、7、9、11;问:(1)哪种农作物的苗长得比较高?(2)哪种农作物的苗长得比较整齐?18.(6分)某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩计算了甲成绩的平均数和方差(见小宇的作业).第1次第2次第3次第4次第5次甲成绩94746乙成绩757a7;(1)求a和乙的方差S乙(2)请你从平均数和方差的角度分析,谁将被选中.19.(10分)至善中学七年一班期中考试数学成绩平均分为84.75,该班小明的数学成绩为92分,把92与84.75的差叫做小明数学成绩的离均差,即小明数学成绩的离均差为+7.25.(1)该班小丽的数学成绩为82分,求小丽数学成绩的离均差.(2)已知该班第一组8名同学数学成绩的离均差分别为:+10.25,﹣8.75,+31.25,+15.25,﹣3.75,﹣12.75,﹣10.75,﹣32.75.①求这组同学数学成绩的最高分和最低分;②求这组同学数学成绩的平均分;③若该组数学成绩最低的同学达到及格的72分,则该组数学成绩的平均分是否达到或超过班平均分?超过或低于多少分?20.(10分)促进青少年健康成长是实施“健康中国”战略的重要内容.为了引导学生积极参与体育运动,某校举办了一分钟跳绳比赛,据统计,所有学生一分钟的跳绳数不少于100次,现随机抽取了部分学生一分钟跳绳的次数进行调查统计,并根据成绩分布情况,将抽取的全部成绩分成A、B、C、D四组,并绘制了如下统计图表:等级次数频数A100≤x<1204B120≤x<14012C140≤x<16014D x≥160m请结合上述信息完成下列问题:(1)m=,n=;(2)上述样本数据的中位数落在组;(3)若A组学生一分钟跳绳的平均次数为110次,B组学生一分钟跳绳的平均次数为130次,C组学生一分钟跳绳的平均次数为150次,D组学生一分钟跳绳的平均次数为190次,请你估计该校学生一分钟跳绳的平均次数是多少?21.(10分)表格是小明一学期数学成绩的记录,根据表格提供的信息回答下面的问题.考试类别平时期中考试期末考试第一单元第二单元第三单元第四单元成绩889290869096(1)小明6次成绩的众数是分;中位数是分;(2)计算小明平时成绩的方差;(3)按照学校规定,本学期的综合成绩的权重如图所示,请你求出小明本学期的综合成绩,要写出解题过程.(注意:①平时成绩用四次成绩的平均数;②每次考试满分都是100分).参考答案一、选择题(共8小题,满分24分,每小题3分)1.C2.D3.B4.A5.C6.B7.B8.B二、填空题(共7小题,满分28分,每小题4分)9.波动大小.10.乙11.5.5.12.5.13.6.14.4.15.13.2.三、解答题(共6小题,满分48分)16.解:(1)∵8出现了3次,出现的次数最多,∴甲的众数为8,乙的平均数=(5+9+7+10+9)=8,把这些数从小到大排列,则乙的中位数为9.故填表如下:平均数众数中位数方差甲8880.4乙899 3.2故答案为:8,8,9;(2)因为他们的平均数相等,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛;(3)如果乙再射击1次,命中8环,平均数不变,根据方差公式可得乙的射击成绩的方差变小;故答案为:变小.17.解:(1)=(9+10+11+12+7+13+10+8+12+8)=10cm,=(8+13+12+11+10+12+7+7+9+11)=10cm.可见,两种农作物一样高均为10cm;2=[(9﹣10)2+(10﹣10)2+(11﹣10)2+(12﹣10)2+(7﹣10)2+(13(2)∵S甲﹣10)2+(10﹣10)2+(8﹣10)2+(12﹣10)2+(8﹣10)2]=3.6cm2;S乙2=[(8﹣10)2+(13﹣10)2+(12﹣10)2+(11﹣10)2+(10﹣10)2+(12﹣10)2+(7﹣10)2+(7﹣10)2+(9﹣10)2+(11﹣10)2]=4.2cm2.∴甲的方差为3.6cm2,乙的方差为4.2cm2.所以甲更整齐.18.解:(1)∵乙=,∴a=4,S乙==1.6;(2)因为两人成绩的平均水平(平均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中.19.解:(1)82﹣84.75=﹣2.75,答:小丽数学成绩的离均差为﹣2.75;(2)①最高分为84.75+31.25=116(分),最低分为84.75﹣32.75=52(分),答:最高分为116分,最低分为52分;②10.25﹣8.75+31.25+15.25﹣3.75﹣12.75﹣10.75﹣32.75=﹣12,﹣12÷8+84.75=83.25(分),答:这组同学的平均分是83.25分;③该组最低分是52分,若达到72分,则增加20分,(﹣12+20)÷8=1,1+83.25=84.25(分),84.75﹣84.25=0.5(分),答:该组数学成绩的平均分没有达到班平均分,低0.5分.20.解:(1)调查总人数为:4÷10%=40(人),∴m=40﹣4﹣12﹣14=10(人),n=1﹣10%﹣25%﹣35%=30%,故答案为:10;30%;(2)由题意可知,样本数据的中位数落在C组,故答案为:C;(3)×(4×110+12×130+14×150+10×190)=×6000=150(次),答:估计该校学生一分钟跳绳的平均次数是150次.21.解:(1)∵90出现了2次,其余分数只有1次,∴6次成绩的众数为90分;排列如下:86,88,90,90,92,96,∵(90+90)÷2=90,∴6次成绩的中位数为90分;故答案为:90,90;(2)∵=(86+88+90+92)=89(分),∴S2=[(86﹣89)2+(88﹣89)2+(90﹣89)2+(92﹣89)2]=×(9+1+1+9)=5(分2);(3)根据题意得:89×10%+90×30%+96×60%=8.9+27+57.6=93.5(分),则小明本学期的综合成绩为93.5分.。
2018年人教版八年级数学初二下册第二十章数据的分析单元测试题含答案
八年级(下)数学第二十章测试题班级____姓名_____得分_____一.选择题(本大题共12个小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是满足题目要求的,请把其代号填在答题栏中相应题号的下面)。
A. 10,10B. 10, 12.5C. 11,12.5D. 11,102.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为()A.4,5 B.5,4 C.4,4 D.5,53.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的().A.众数B.方差C.平均数D.中位数4.人数相等的甲.乙两班学生参加了同一次数学测验,班平均分和方差分别为 =82分, 82分, 245分 190分那么成绩较为整齐的是A.甲班B.乙班C.两班一样整齐D.无法确定5.某电视台举办的青年歌手电视大奖赛上,六位评委给3号选手的评分如下:90,96, 91,96,95,94,这组数据的中位数是A.95B.94C.94.5D.966、数据按从小到大排列为1,2,4,x,6,9,这组数据的中位数为5,那么这组数据的众数是A.4B.5C.5.5D.67.某车间对生产的零件进行抽样调查,在10天中,该车间生产的零件次品数如下(单位:个):0,3,0,1,2,1,4,2,1,3,在这10天中,该车间生产的零件次品数的A.中位数是2B.平均数是1C.众数是1D.以上均不正确8.从鱼塘捕获同时放养的草鱼240条,从中任选8条称得每条鱼的质量分别为1.5,1.6,1.4,1.3,1.5,1.2,1.7,1.8(单位:千克),那么可估计这240条鱼的总质量大约为A. 300千克B.360千克C.36千克D.30千克9.一个射手连续射靶22次,其中三次射中10环,7次射中9环,9次射中8环,3次射中7环,则射中环数的中位数和众数分别为A.8,9B.8,8C.8.5,8D.8.5,910.若样+1,+1,…, +1的平均数为10,方差为2,则对于样本,x2+2,…, x n+2,下列结论正确的是A.平均数为10,方差为2B.平均数为11,方差为3C.平均数为11,方差为2D.平均数为12,方差为411.已知甲、乙两组数据平均数都是5,甲组数据的方差=,乙组数据的方差=下列结论正确的是A.甲组数据比一组数据的波动大B.乙组数据比甲组数据的波动大C.甲组数据和乙组数据的波动一样大D.甲组数据和乙组数据的波动不能比较12.一组数据共分6个小组,其中一个小组的数据占整个数据组的20%,那么这个小组在扇形统计图中所对应的圆心角的度数是A. 30B. 45C. 60D.90二.填空题(本大题共5个小题,每小题3分,共15分。
2018-2019学年人教版八年级数学下第20章数据的分析质量评估试卷(含答案)
2018-2019 学年人教版八年级数学下第 20 章数据的分析质量评估试卷 (含 答案)[时间:90 分钟 分值:120 分] 一、选择题(每小题 4 分,共 32 分) 1.学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛, 全班同学的比赛结果统计如下表: 得分 人数 得分的众数和中位数分别是( A.70,70 C.70,80 60 7 ) 70 12 80 10 90 8 100 3B.80,80 D.80,702.某球员参加一场篮球比赛,比赛分 4 节进行,该球员每节的得分如图 1 所示, 则该球员平均每节的得分为( )图1 A.7 分 C.9 分 B.8 分 D.10 分3.甲、乙、丙、丁四名同学在一次投掷实心球的训练中,在相同条件下各投掷 10 次,他们成绩的平均数 x 与方差 s2 如下表: 甲 乙 丙 丁平均数 x /m 方差 s211.1 1.111.1 1.210.9 1.310.9 1.4 )若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择的是( A.甲 C.丙 B.乙 D.丁4.在一次数学答题比赛中,五位同学答对题目的个数分别为 7,5,3,5,10,则关于 这组数据的说法不正确的是( A.众数是 5 C.平均数是 6 ) B.中位数是 5 D.方差是 3.6 )5.已知一组数据 92,94,98,91,95 的中位数为 a,方差为 b,则 a+b=( A.98 C.100 B.99 D.1026.下表是某公司员工月收入的资料: 月收入/ 元 人数 45 000 18 000 10 000 5 500 5 000 3 400 3 300 1 000 1 1 1 3 6 1 ) 11 1能够反映该公司全体员工月收入水平的统计量是( A.平均数和众数 C.中位数和众数 B.平均数和中位数 D.平均数和方差7.教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两 人在相同条件下各打了 5 发子弹,命中环数如下. 甲:9,8,7,7,9;乙:10,8,9,7,6. 所以应该选( A.甲 C.甲、乙都可以 ) B.乙 D.无法确定8.图 2 为某校九年级男子立定跳远成绩的统计图,从左到右各分数段的人数之比为 1∶2∶5∶6∶4,第四组的频数是 12.有下面的 4 个结论:图2 ①一共测试了 36 名男生的成绩;②男子立定跳远成绩的中位数分布在 1.8~2.0 组;③男子立定跳远成绩的平均数不超过 2.2;④如果男子立定跳远成绩低于 1.85 m 为不合格,那么不合格人数为 6 人. 其中结论正确的是( A.①③ C.②③ ) B.①④ D.②④二、填空题(每小题 5 分,共 30 分) 9.某班中考数学成绩如下:100 分者 7 人,90 分者 14 人,80 分者 17 人,70 分 者 8 人,60 分者 3 人,50 分者 1 人,那么全班中考数学成绩的平均分为 中位数为 ,众数为 . ,10.为从甲、乙两名射击运动员中选出一人参加竞标赛,特统计了他们最近 102 次射击训练的成绩,其中,他们射击的平均成绩为 8.9 环,方差分别是 s甲 =0.8,s2 乙=13,从稳定性的角度来看,的成绩更稳定.(填“甲”或“乙”)11. 某校规定学生的数学学期综合成绩是由平时、 期中和期末三项成绩按 3∶3∶ 4 的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是 90 分、90 分和 85 分,则他本学期数学学期综合成绩是 12.样本数据 1,2,3,4,5 的方差是 . 分.13.某班体育委员对本班学生一周锻炼时间(单位:h)进行了统计,绘制了如图 3 所示的折线统计图,则该班学生一周锻炼时间的中位数是 h.图3 14.某校五个绿化小组一天的植树棵数为:10,10,12,x,8.已知这组数据的平均数 是 10,那么这组数据的方差是 三、解答题(共 58 分) 15.(12 分)老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(如 图 4)和不完整的扇形图(如图 5),其中条形图被墨迹遮盖了一部分. (1)求条形图中被遮盖的数,并写出册数的中位数; (2)随后又补查了另外几人,得知最少的读了 6 册,将其与之前的数据合并后,发 现册数的中位数没有改变,则最多补查了 人. .16.(14 分)中考体育测试前,某区教育局为了了解选报引体向上的初三男生的成 绩情况,随机抽测了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的 成绩绘成了下面两幅不完整的统计图:请你根据图中的信息,解答下列问题: (1)扇形统计图中 a= %,并补全条形统计图. 个、 个.(2)在这次抽测中, 测试成绩的众数和中位数分别是(3)该区体育中考选报引体向上的男生共有 1 800 人,如果体育中考引体向上达 6 个以上(含 6 个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的 有多少名?17.(16 分)某学校开展“文明礼仪”演讲比赛,八(1)班、八(2)班派出的 5 名选 手的比赛成绩如图 8 所示.图8 (1)根据上图,完成表格. 平均数 八(1)班 八(2)班 75 75 中位数 _______ 70 方差 _______ 160(2)结合两班选手成绩的平均数和方差,分析两个班级参加比赛的选手的成绩.(3)如果在每班参加比赛的选手中分别选出 3 人参加决赛, 从平均分看, 你认为哪 个班的实力更强一些?并说明理由.18.(16 分)某校举行了“文明在我身边”摄影比赛.已知每幅参赛作品的成绩记 为 x 分(60≤x≤100).校方从 600 幅参赛作品中随机抽取了部分参赛作品,统计了它 们的成绩,并绘制了如下的统计表和如图 9 所示的频数分布直方图. “文明在我身边”摄影比赛成绩统计表 分数段 60≤x<70 70≤x<80 80≤x<90 90≤x≤100 频数 18 17 a b 频率 0.36 c 0.24 0.06图9 根据以上信息,解答下列问题: (1)统计表中,c= (2)补全频数分布直方图. (3)若 80 分以上(含 80 分)的作品将被组织展评,试估计全校被展评的作品数量. ;样本成绩的中位数落在分数段 中.参考答案第二十章质量评估试卷 1.C 2.B 3.A 4.D 5.C 6.C 7.A 8.A 9.82.2 分 80 分 80 分 10.甲 11.88 12.2 13.11 14.1.6 15.(1)条形图中被遮盖的数是 9,中位数为 5. (2)3 16.(1)25 图略 (2)5 5 (3)估计该区体育中考选报引体向上的男生能获得满分的同学有 810 名. 17.(1)75 70 (2)两个班的平均数相同,八(1)班的方差小,则八(1)班选手的成绩总体上较稳定 (答案不唯一,合理即可). (3)八(2)班的实力更强一些,理由略. 18.(1)0.34 70≤x<80 (2)略 (3)估计全校被展评的作品数量是 180 幅.。
2018年初中数学八年级下学期单元考试20章分析(含答案)
19.有两组数据:甲:3,������,7,������;乙:������ 2,6,������ 2,10,若甲组数据的平均数为4,乙组数据的平均数为9,求 ������、������的值,如果把这两组数据合并,问合并后的8个数据的平均数、众数、中位数各是多少?
22.一家鞋店对上一周某品牌女鞋的销量统计如下: 22 22.5 23 23.5 24 尺码(厘米) 1 2 5 11 7 销量(双) 在该店决定本周进货时,你认为影响鞋店决策的统计量是什么?你对鞋店有何建议? 24.5 3 25 1
∘
D.5
2.已知数据������1 ,������2 ,…,������������ 的平均数是2,方差是3,则一组新数据������1 + 8,������2 + 8,…,������������ + 8的平均数和方差分 别是( ) A.10,3 B.10,11 C.2,3 D.2,11 3.一般具有统计功能的计算器可以直接求出( ) A.平均数和标准差 C.众数和方差
8.某同学使用计算器求15个数据的平均数时,错将一个数据15输成105,那么由此求出的平均数与实际平均数的 差是( ) A.6.5 B.6 C.0.5 D.−6
9.某篮球队13名队员的年龄如表: 第 1 页,共 4 页
… … … … ○ … … … … 内 … … … … ○ … … … … 装 … … … … ○ … … … … 订 … … … … ○ … … … … 线 … … … … ○ … … … …
������ ,最低气温为−1
∘
������ ,则该天气温的极差是________
∘
������ .
B.方差和标准差 D.平均数和方差
13.在“创建国家环境保护模范城市”活动中,某班各小组制止了不文明行为的人数分别为:80,76,70,60,76, 70,76.则这组数据的众数是________. 14.(1)用计算器进行统计计算时,样本数据输入完后,求标准差应按键________;14. (2)数据9.9、9.8、10.1、10.4、9.8的方差是________. (结果保留两个有效数字) 15.若一组数据:−1、������、6的极差是9,则������的值为________. 16.某中学八年级2班学生为地震灾区举行了一次募捐活动,有37名同学捐了5元,2位同学捐了50元,还有一位 同学捐了100元.你认为这40个同学捐款的平均数、中位数、众数,用哪一个来代表他们每人捐款的一般数额比 较好呢?________. 三、解答题(共 9 小题 ,每小题 8 分 ,共 72 分 ) 17.求数据:85,80,75,85,100的方差.
2018年初中数学八年级下学期单元考试20章数据的分析 含答案
第1页,共4页2018年初中数学八年级下学期单元考试20章 数据的分析一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分 )1.一组数据2,0,−2,1,3的平均数是( ) A.2 B.1.5 C.1 D.0.82.一般具有统计功能的计算器可以直接求出( ) A.平均数和标准差 B.方差和标准差 C.众数和方差 D.平均数和方差3.为了解某班学生每天使用零花钱的使用情况,张华随机调查了15名同学,结果如下表: 关于这名同学每天使用的零花钱,下列说法正确的是( ) A.众数是5元 B.平均数是2.5元 C.极差是4元 D.中位数是3元4.已知一组数据:20、30、40、50、50、50、60、70、80,其中平均数、中位数、众数的大小关系是( )A.平均数>中位数>众数B.平均数<中位数<众数C.中位数<众数<平均数D.平均数=中位数=众数5.某同学使用计算器求15个数据的平均数时,错将一个数据15输成105,那么由此求出的平均数与实际平均数的差是( ) A.6.5 B.6 C.0.5 D.−66.某学习小组对20名男生60秒跳绳的成绩进行统计,其结果如下表所示:这20个数据的平均数和众数分别是( )A.140,3B.140.5,140C.140,135D.46.83,1407.某小学为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,20.对于这组数据,下列说法错误的是( ) A.平均数是15 B.众数是10C.中位数是17D.方差是4438.某创业团队有研发、管理和操作三个小组,各组的日工资和人数如下表: 现从管理组分别抽调人到研发组和操作组,调整后与调整前相比,下列说法中正确的有( ) ①平均日工资增大 ②日工资的方差减小②日工资的中位数不变 ④日工资的众数不变. A.1个 B.2个 C.3个 D.4个9.我县今年4月某地6天的最高气温如下(单位∘C ):32,29,30,32,30,32.则这个地区最高气温的众数和中位数分别是 ( ) A.30,32 B.32,30 C.32,31 D.32,3210.某中学“一元捐助”活动中,六年级捐款如下:(单位:元)888,868,688,886,868,668,那么这组数据的众数,中位数,平均数分别为( ) A.868,868,868 B.868,868,811 C.886,868,866 D.868,886,811二、填空题(共 6 小题 ,每小题 3 分 ,共 18 分 )11.数据x ,6,4,0,1,7,5的极差为10,则x =________.12.跳远训练时,甲、乙两同学在相同条件下各跳10次,统计得到他们的平均成绩都是5.68米,甲的方差为0.3,乙的方差为0.4,那么成绩较为稳定的是________.(填“甲”或“乙”)13.一组数据2、5、10、6、13、7、14、4的极差为________.14.用计算器求方差的一般步骤是: ①使计算器进入________状态; ②依次输入各数据;③按求________的功能键,即可得出结果.15.某商店销售同一品牌的型号分别为35,36,37,38,39的女式凉鞋,调查销售情况,其销量分别8%,14%,34%,29%和15%,你认为应该多进________型号的鞋,商店经理最关注的是这组数据的________(填“众数”“中位数”或“平均数”).16.一组数据3,x ,0,−1,−3的平均数是1,则这组数据中x 等于________.第2页,共4页三、解答题(共 9 小题 ,每小题 8 分 ,共72 分 )17.有甲、乙、丙、丁四个数,已知甲、乙、丙三个数的平均数是32,丁是44,这四个数的平均数是多少.18.某商场家电销售部有营业员20名,为了调动营业员的积极性,决定实行目标管理,即确定一个月的销售额目标,根据目标完成情况对营业员进行适当的奖惩.为此,商场统计了这20名营业员在某月的销售额,数据如下:(单位:万元)25 26 21 17 28 26 20 25 26 30 20 21 20 26 30 25 21 19 28 26某商场家电销售部有营业员20名,为了调动营业员的积极性,决定实行目标管理,即确定一个月的销售额目标,根据目标完成情况对营业员进行适当的奖惩.为此,商场统计了这20名营业员在某月的销售额,数据如下:(单位:万元)25 26 21 17 28 26 20 25 26 30 20 21 2026 30 25 21 19 28 26(1)上述数据中,众数是________万元,中位数是________万元,平均数是________万元;(2)如果将众数作为月销售额目标,能否让至少一半的营业员都能达到目标?请说明理由.19.博才中学要从甲、乙两名同学中选拔一名同学代表学校参加“华罗庚金杯”数学竞赛活动.这两位活动同学最近四次的数学测验成绩如下表:(单位:分) (1)根据表中数据,分别求出甲、乙两名同学这四次数学测验成绩的平均分.(2)经计算,甲、乙两位同学这四次数学测验成绩的方差分别为S 甲2=62.5,S 乙2=14.5,你认为哪位同学的成绩较稳定?请说明理由.20.甲、乙两人在5次打吧测试中命中的环数如下: 甲:8,8,8,8,9 乙:5,9,7,10,9甲、乙两人在5次打靶测试中命中的环数如下: 甲:8,8,8,8,9 乙:5,9,7,10,9 (1)填写下表(3)如果乙再射击1此,命中8环,那么乙的射击成绩的方差________(填“变大”“变小”或“不变”)21.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每天生产定额,统计了15人某天的加工零件个数: (1)求出这15人该天加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人每天加工零件数定为9件,你认为这个定额是否合理,为什么?22.甲、乙两人在5次打靶测试中命中的环数如下: 甲:8,8,7,8,9 乙:5,9,7,10,9 (1)填写下表:……○………………○…………__________班级:___________考(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差________.(填“变大”、“变小”或“不变”).23.为迎接“城运会”,某射击集训队在一个月的集训中,对甲、乙两名运动员进行了10次测试,成绩如图所示:(1)根据下图所提供的信息完成表格;(2)如果你是教练,会选择哪位运动员参加比赛?请说明理由.24.某校初三学生开展跳绳活动,每班派5名学生参加,按团体总分排列名次,在规定时间内每人跳100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛成绩.经统计发现两班5名学生跳绳的总个数相等.此时有学生建议,可以通过考查数据中的其它信息作为参考.请你回答下列问题:(1)填写下表中所缺的数据.(2)根据以上信息,你认为应该把团体第一名的奖状给哪一个班?简述理由.25.某班实行小组量化考核制.为了了解同学们的学习情况,王老师对甲、乙两个小组连续六周的综合评价得分进行了统计,并将得到数据制成如下的统计表:(1)请根据表中的数据计算甲组与乙组的平均数、中位数、方差.(注:方差的计算结果精确到0.1)(2)请你分别对甲、乙两个小组连续六周的学习情况作出简要评价.答案1.D2.A3.D第3页,共4页第4……………………4.D 5.B 6.B 7.C 8.A 9.C 10.B11.[ "10或−3" ] 12.[ “甲” ] 13.[ "12" ]14.[ "rmMODE“, ”S x 2" ] 15.[ "37“, ”众数" ] 16.[ "6" ]17.解:(32×3+44)÷4 =(96+44)÷4 =140÷4 =35.所以这四个数的平均数是35. 18.[ "26“, ”25“, ”24" ]19.解:(1)x 甲=14(75+70+85+90)=80,x 乙=14(75+78+85+82)=80,(2)∵S 甲2=62.5,S 乙2=14.5, ∴S 甲2>S 乙2,∴乙的成绩稳定,因为甲的方差大于乙的方差. 20.[ "8“, ”8“, ”8“, ”变小" ] 21.解:(1)平均数是:18×1+16×1+10×3+8×5+7×3+5×215=9(件),中位数是:8件,众数是:8件;(2)不合理,因为这个数值,大部分工人完不成,不利于调动工人的积极性. 22.[ "8“, ”8“, ”9" ][ “变小” ]23.解:(1)由甲图可知,6环出现了5次,为众数;由乙图可知,其十次射击环数依次为:4、5、7、6、8、7、8、8、8、9, 平均数为:(4+5+7+6+8+7+8+8+8+9)÷10=7(环), 由于8环出现了4次,故众数为:8环.方差为:110[(4−7)2+(5−7)2+(7−7)2+(6−7)2+(8−7)2+(7−7)2+(8−7)2+(8−7)2+(8−7)2+(9−7)2]=2.2(环2)(2)答案不唯一.。
人教版八年级下册二十章《数据分析》单元测试卷
第二十章《数据分析》单元测试卷(检测范围:全章综合 时间:90分钟)一、选择题.1.数据5,7,8,8,9的众数是( ).A.5B.7C.8D.92.已知一组数据:-3,6,2,-1,0,4则这组数据的中位数是( ).A.1B. 34 C. 0 D.2 3.某中学数学兴趣小组12名成员的年龄情况如下:则这个小组成员年龄的平均数是( ).A. 15B. 13C. 13.5D. 144.已知3,5,7,x1,x ?的平均数是7,那么x 1,x 2的平均数为( ).A.20B.10C. 15D.45.数学老师对黄华的8次单元考试成绩进行统计分析,要判断黄华的数学成绩是否稳定,老师需要知道黄华这8次数学成绩的( )A. 平均数B.中位数C. 众数D.方差6.为了解某班学生每天使用零花钱的情况,随机调查了15名同学,结果如下表:下列说法正确的是( ).A.众数是5元B. 平均数是 2.5元C. 极差是4元D.中位数是3元7.在某校“我的中国梦”演讲比赛中,有9名学生参加比赛,他们决赛的最终成绩各不相同,其中的一名学生要想知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的 ( ).A. 众数B. 方差C. 平均数D. 中位数8.某市测得一周PM2.5的日均值(单位:微克/立方米)如下:31,30,34,35,36,34,31,对这组数据下列说法正确的是( ).A. 众数是 35B. 中位数是 34C. 平均数是 35D. 方差是 69.为了比较甲乙两种水稻苗谁出苗更整齐,每种苗各随机抽取50株,分别量出每株长度,发现两组苗的平均长度一样,甲、乙的方差分别是3.5、10.9,则下列说法正确的是( ).A. 甲苗出苗更整齐B. 乙苗出苗更整齐C. 甲、乙出苗一样整齐D. 无法确定甲、乙出苗谁更整齐10. 八(一)班班长统计去年1~8 月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ).A. 极差是47B. 众数是42C. 中位数是58D.每月阅读数量超过40的有4个月二、填空题.11. 一组数据:10,5,15,5,20,则这组数据的平均数是,中位数是.12.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9.这5个数据的众数是.13.学校以德智体三项成绩来计算学生的平均成绩,三项成绩的比例依次为1:3:1,小明德智体三项成绩分别为96分,95分,94分,则小明的平均成绩为分.14.一组数据1,4,6,x的中位数和平均数相等,则x的值是.15.某校抽样调查了七年级学生每天体育锻炼时间,整理数据后制成了如下所示的频数分布表:则这个样本的中位数在第组.16.已知一组数据:-1,x,0,1,-2的平均数是0,那么这组数据的方差是.17.10名九年级学生的体重分别是41,48,50,53,49,50,53,67,51,53(单位:kg).这组数据的极差是.18.某校对甲、乙两名跳高运动员的近期跳高成绩进行统计分析,结果如下:甲x=1.69m,x=1.69m,甲2S=0.0006,乙2S=0.0315,则这两名运动员中的的成绩更稳定.乙19.某校开展“节约每一滴水”活动,为了了解开展活动一个月以来节约月水的情况,从八年级的400名同学中选取20名同学统计了各自家庭一个月节约用水情况.见下表:请你估计这400名同学的家庭一个月节约用水的总量大约是.20.已知一组数据:x1,x2,x3,...,x n的平均数是2,方差是5,则另一组数据:3x1,3x2,3x3,...3x n 的方差是.三、解答题.21.某公司欲招聘一名工作人员,对甲、乙两位应聘者进行面试和笔试,他们的成绩(百分制)如下表所示.若公司分别赋予面试成绩和笔试成绩6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?22.甲、乙两位运动员进行射击比赛,各射击了10次,每次命中环数如下:甲:8,6,7,8,9,10,6,5,4,7乙:7,9,8,5,6,7,7,6,7,8(1)甲、乙运动员的平均成绩分别是多少?(2)这十次比赛成绩的方差分别是多少?(3)试分析这两名运动员的射击成绩.23.某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定量,统计了15人某月的销售量,如下表所示:(1)求这15位营销人员该月销售量的平均数、中位数和众数;(2)假设销售部负责人把每位营销人员的月销售量定为320件,你认为是否合理?为什么?如不合理,请你制定一个较为合理的月销售定量,并说明理由·24.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲,乙射击成绩的方差甲2S,乙2S哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选参赛更合适.25.甲、乙两校参加市教育局举办的初中生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.甲校成绩统计表图1 图2(1)请将甲校成绩统计表和图2的统计图补充完整;(2)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.26.某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分,80分,90分,100分,并根据统计数据绘制了如下不完整的统计图表:乙校成绩计表:(1)在图①中,“80分”所在扇形圆心角度数为.(2)请你将图②补充完整;(3)求乙校成绩的平均分;(4)经计算得甲2S=135,乙2S=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.四.思维发散,挑战自我.(选做)27.已知A组数据下:0,1,-2,-1,0,-1,3.(1)求A组数据的平均数;(2)从A组数据中选取5个数据,记这5个数据为B组数据.要求B组数据满足两个条件:①它的平均数与A组数据的平均数相等;②它的方差比A组数据的方差大.你选取的B组数据是.(写出具体解答步骤)。
2018年人教版八年级下《第20章数据的分析》单元评价检测试卷含解析
单元评价检测(五)(第二十章)(45分钟 100分)一、选择题(每小题5分,共35分)1.某市测得一周PM2.5的日均值如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是 ( )A.50和50B.50和40C.40和50D.40和40【解析】选A.从小到大排列此数据为:37,40,40,50,50,50,75,数据50出现了三次最多,所以50为众数;50处在第4位是中位数.2.某次歌唱比赛,最后三名选手的成绩统计如下:测试成绩测试项目王飞李真林杨唱功989580音乐常识8090100综合知识8090100若唱功、音乐常识、综合知识按6∶3∶1的加权平均分排出冠军、亚军、季军,则冠军、亚军、季军分别是 ( )A.王飞、李真、林杨B.王飞、林杨、李真C.李真、王飞、林杨D.李真、林杨、王飞【解析】选C.王飞:=90.8(分);李真:=93(分);林杨:=88(分).3.(2017·安顺中考)如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图.那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是 ( )导学号42684334A.16,10.5B.8,9C.16,8.5D.8,8.5【解析】选B.众数是一组数据中出现次数最多的数,即8;而将这组数据从小到大的顺序排列后,处于中间位置的那个数,由中位数的定义可知,这组数据的中位数是9.4.(2017·青岛中考)小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是 ( )A.众数是6吨B.平均数是5吨C.中位数是5吨D.方差是【解析】选C.这组数据是4,6,3,5,6,6,按照由小到大的顺序排列为3,4,5,6,6,6,其中位数是5.5.5.(2017·广安中考)关于2,6,1,10,6的这组数据,下列说法正确的是 ( )A.这组数据的众数是6B.这组数据的中位数是1C.这组数据的平均数是6D.这组数据的方差是10【解析】选A.∵在这组数据中,数据6出现了两次,次数最多,∴这组数据的众数是6,故A项正确;∵数据按照从小到大的顺序排列为:1,2,6,6,10,∴这组数据的中位数为6,故B项错误;∵=(1+2+6+6+10)=5,∴这组数据的平均数是5,故C项错误;∵s2=[(1-5)2+(2-5)2+(6-5)2+(6-5)2+(10-5)2]=10.4,∴这组数据的方差是10.4,故D项错误.6.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选 ( )甲乙丙丁平均数80858580方差42425459A.甲B.乙C.丙D.丁【解题指南】此题有两个要求:①成绩较好,②状态稳定.于是应选平均数大、方差小的同学参赛.【解析】选B.由于乙的方差较小、平均数较大,故选乙.7.已知:一组数据x1,x2,x3,x4,x5的平均数是2,方差是,那么另一组数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数和方差分别是 ( )导学号42684335 A.2, B.2,1C.4,D.4,3【解析】选D.∵x1,x2,…,x5的平均数是2,则x1+x2+…+x5=2×5=10.∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数是:'=[(3x1-2)+(3x2-2)+(3x3-2)+(3x4-2)+(3x5-2)]=[3×(x1+x2+…+x5)-10]=4,s'2=×[(3x1-2-4)2+(3x2-2-4)2+…+(3x5-2-4)2]=×[(3x1-6)2+…+(3x5-6)2]=9×[(x1-2)2+(x2-2)2+…+(x5-2)2]=3.二、填空题(每小题5分,共25分)8.一组数据1,4,6,x的中位数和平均数相等,则x的值是__________.【解析】根据题意得,=或=或=,解得x=-1或3或9.答案:-1或3或99.商店某天销售了11件衬衫,其领口尺寸统计如下表:领口尺寸(单位:cm)3839404142件数14312则这11件衬衫领口尺寸的众数是__________cm,中位数是__________cm.【解析】同一尺寸最多的是39cm,共有4件,所以,众数是39cm,11件衬衫按照尺寸从小到大排列,第6件的尺寸是40cm,所以中位数是40cm.答案:39 4010.已知三个不相等的正整数的平均数、中位数都是3,则这三个数分别为__________或__________.【解析】因为这三个不相等的正整数的中位数是3,设这三个正整数为a,3,b(a<3<b);其平均数是3,有(a+b+3)=3,即a+b=6.且a,b为正整数,故a可取1,2,分别求得b的值为5,4.故这三个数分别为1,3,5或2,3,4.答案:1,3,5 2,3,4(或2,3,4 1,3,5)11.物理老师布置了10道选择题作为课堂练习,如图是全班解题情况的统计,平均每个学生约做对了________道题;做对题数的中位数为________;众数为________.导学号42684336【解析】=≈9;第23,24个数都是9,因此中位数是9;众数是8和10.答案:9 9 8和1012.甲、乙两班举行电脑汉字输入速度比赛,参加学生每分钟输入汉字的个数经统计计算后填入下表:班级人数中位数方差平均字数甲55149191135乙55151110135某同学根据上表分析得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀);③甲班的成绩的波动情况比乙班的成绩的波动大.上述结论正确的是__________(填序号).【解析】从表中可知,平均字数都是135,①正确;甲班的中位数是149,乙班的中位数是151,比甲班的多,而两班的人数都为55,说明乙班的优秀人数多于甲班的,②正确;甲班的方差大于乙班的,说明甲班的波动情况大,所以③也正确.答案:①②③三、解答题(共40分)13.(13分)某中学九年级一班全体同学参加了一次捐款活动,该班同学捐款情况的部分统计图如图所示:(1)求该班的总人数.(2)将条形图补充完整,并写出捐款总额的众数.(3)该班平均每人捐款多少元?【解析】(1)=50(人).该班总人数为50人.(2)捐款10元的人数:50-9-14-7-4=16,图形补充如图所示,众数是10.(3)(5×9+10×16+15×14+20×7+25×4)=×655=13.1(元),因此,该班平均每人捐款13.1元.14.(13分)某初中学校欲向高一级学校推荐一名学生,根据规定的推荐程序:首先由本年级200名学生民主投票,每人只能推荐一人(不设弃权票),选出了票数最多的甲、乙、丙三人.投票结果统计如图一:导学号42684337其次,对三名候选人进行了笔试和面试两项测试.各项成绩如下表所示:测试成绩/分测试项目甲乙丙笔试929095面试859580图二是某同学根据上表绘制的一个不完整的条形图.请你根据以上信息解答下列问题:(1)补全图一和图二.(2)请计算每名候选人的得票数.(3)若每名候选人得一票记1分,投票、笔试、面试三项得分按照2∶5∶3的比确定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?【解析】(1)(2)甲的票数是:200×34%=68(票),乙的票数是:200×30%=60(票),丙的票数是:200×28%=56(票).(3)甲的平均成绩:==85.1,乙的平均成绩:==85.5,丙的平均成绩:==82.7,∵乙的平均成绩最高,∴应该录取乙.15.(14分)某班实行小组量化考核制,为了了解同学们的学习情况,王老师对甲、乙两个小组连续六周的综合评价得分进行了统计,并将得到的数据制成如下的统计表:周次一二三四五六组别甲组121516141413乙组91410171618 (1)请根据上表中的数据完成下表.(注:方差的计算结果精确到0.1)平均数中位数方差甲组乙组(2)根据综合评价得分统计表中的数据,请在图中画出甲、乙两组综合评价得分的折线统计图.(3)由折线统计图中的信息,请分别对甲、乙两个小组连续六周的学习情况进行简要评价.【解析】(1)填表如下:平均数中位数方差甲组1414 1.7乙组141511.7(2)如图:(3)从折线图可以看出:甲组成绩相对稳定,但进步不大,且略有下降趋势;乙组成绩不够稳定,但进步较快,呈上升趋势.【变式训练】(2017·北京中考)某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.导学号42684338收集数据 从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲 78 86 74 81 75 76 87 70 75 9075 79 81 70 74 80 86 69 83 77乙 93 73 88 81 72 81 94 83 77 8380 81 70 81 73 78 82 80 70 40整理、描述数据 按如下分数段整理、描述这两组样本数据:(说明:成绩80分及以上为生产技能优秀,70-79分为生产技能良好,60-69分为生产技能合格,60分以下为生产技能不合格)分析数据 两组样本数据的平均数、中位数、众数如下表所示:部门平均数中位数众数甲78.377.575乙7880.581得出结论:a.估计乙部门生产技能优秀的员工人数为________;b.可以推断出________部门员工的生产技能水平较高,理由为________.(至少从两个不同的角度说明推断的合理性)【解析】按如下分数段整理数据:a.估计乙部门生产技能优秀的员工人数为400×=240(人);b.答案不唯一,言之有理即可.可以推断出甲部门员工的生产技能水平较高,理由如下:①甲部门生产技能测试中,测试成绩的平均数较高,表示甲部门生产技能水平较高;②甲部门生产技能测试中,没有生产技能不合格的员工.可以推断出乙部门员工的生产技能水平较高,理由如下:①乙部门生产技能测试中,测试成绩的中位数较高,表示乙部门生产技能水平优秀的员工较多;②乙部门生产技能测试中,测试成绩的众数较高,表示乙部门生产技能水平较高.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版八年级下册第20章 数据分析
单元测试试卷(A 卷)
(时间90分钟 满分100分)
班级 学号 姓名 得分
一、填空题(共14小题,每题2分,共28分)
1.对于数据组3,3,2,3,6,3,6,3,2,4中,众数是_______;平均数是______;•极差是_______,中位数是______.
2.数据3,5,4,2,5,1,3,1的方差是________.
3.某学生7门学科考试成绩的总分是560分,其中3门学科的总分是234分,则另外4门学科成绩的平均分是_________.
4.已知一组数据1、2、y 的平均数为4,那么y 的值是 .
5.若样本x 1+1,x 2+1,…,x n +1的平均数为10,方差为2,则另一样本x 1+2,x 2+2,…,x n +2,的平均数为 ,方差为 . 6.小张和小李去练习射击,第一轮10枪打完后两人的成绩如图所示,•通常新手的成绩不太稳定,那么根据图的信息,估计小张和小李两人中新手是________.
7.某日天气预报说今天最高气温为8℃,气温的极差为10℃,则该日最低气温为______℃. 8.一班级组织一批学生去春游,预计共需费用120元,后来又有2人参加进来,总费用不变,于是每人可以少分摊3元,原来参加春游的学生人数是 .
第6题
9.当五个整数从小到大
排列后,其中位数是4,如果这组数据的唯一众数是6,那么这组数据可能的最大的和是___ __.
10.八年级某班为了引导学生树立正确的消费观,随机调查了10名同学某日除三餐以外的
零花钱情况,其统计图如下,据图可知:零花钱在3元以上(包括3元)的学生所占比例为 ,该班学生每日零花钱的平均数大约是 元.
11.为了调查某一段路的汽车流量,记录了30天中每天同一时段通过该路口的汽车辆数,
其中有4天是284辆,4天是
290辆,12天是312辆,10天是314辆,那么这30天该路口同一时段通过的汽车平均数是 . 12.小芳测得连续5天日最低气温并整理后得出下表:
那么空缺的两个数据是 , .
13.一养雨专业户为了估计池塘里鱼的条数,先随意捕上100条做上标记,然后放回湖里,
过一段时间,待带标记的鱼完全混合于鱼群后,又捕捞了5次,记录如下表:
1
2
3
4
5
6
7
8
9 10
第10题
由此估计池塘里大约有 条鱼.
14.现有A 、B 两个班级,每个班级各有45名学生参加一次测试,每名参加者可获得0,1,
2,3,4,5,6,7,8,9分这几种不同的分值中的一种.测试结果A 班的成绩如下表所示,B 班的成绩如右图所示.
(1)由观察可知,______班的方差较大; (2)若两班合计共有60人及格,问参加者最少
获______分才可以及格.
二、选择题(共4小题,每题3分,共12分)
15.某学校五个绿化小组一天植树的棵数如下:10,10,12,x ,8,如果这组数据的平均数
与众数相等,那么这组数据的中位数是 ( ) A .8 B .9 C .10 D .12 16.某班50名学生的身高测量结果如下表:
那么该班学生身高的众数和中位数分别是 ( )
A.1.60,1.56 B.1.59,1.58 C.1.60,1.58 D.1.60,1. 60
17.如果一组数据a1,a2,……,a n的方差是2,那么数据2a1,2a2,……,2a n的方差是()A.2 B.4 C.6 D.8
18.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:
某同学分析上表后得出如下结论:
(1)甲、乙两班学生成绩平均水平相等(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀)(3)甲班成绩的波动比乙班大,上述结论正确的是()A.①②③B.①②C.①③D.②③
三、解答题(共60分)
19.(5分)某校规定学生期末数学总评成绩由三部分构成:期末统考卷面成绩(占70%)、•平时测验成绩(占20%)、上课表现成绩(占10%),若学生董方的三部分得分依次是92分、80分、•84分,则她这学期期末数学总评成绩是多少?
20.(5
(1 (2)小明说,他所在年龄组的参赛人数占全体参赛人数的28%,你认为小明是哪个年龄
组的选手?请说明理由. 21.(5分)某校八年级(1)班50名学生参加2017年通州市数学质量调研考试,全班学生
(1)该班学生考试成绩的众数是
. (2)该班学生考试成绩的中位数是 .
(3)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.
22.(6分)当今,青少年视力水平的下降已引起
全社会的关注,为了了解某校3000名学生的视力情况,从中抽取了一部分学生进行了一次抽样调查,利用所得数据,绘制出如下的直方图(长方形的高表示人数),根据图形,
回答下列问题: (1)本次抽样调查共抽测了 名学生; (2)参加抽测学生的视力的众数在 内; (3)如果视力为4.9(包括4.9)以上为正常,
估计该校学生视力正常的人数约为 .
2030405060
23.(6分)为了了解某校2000名学生参加环保知识竞赛的成绩,从中抽取了部分学生的竞
赛成绩(均为整数),整理后绘制成如下的频数分布直方图(如图8),请结合图形解答下列问题. (1) 指出这个问题中的总体.
(2)求竞赛成绩在79.5~89.5这一小组的频率.
(3) 如果竞赛成绩在90分以上(含90分)的同学可获得奖励,请估计全校约有多少人获得奖励.
24.(6分)小红的奶奶开了一个金键牛奶销售店,主要经营“金键学生奶”、“金键酸牛奶”、
“金键原味奶”,可奶奶经营不善,经常有品种的牛奶滞销(没卖完)或脱销(量不够),造成了浪费或亏损,细心的小红结合所学的统计知识帮奶奶统计了一个星期牛奶的销售情况,并绘制了下表:
(1)计算各品种牛奶的日平均销售量,并说明哪种牛奶销量最高? (2)计算各品种牛奶的方差(保留两位小数),并比较哪种牛奶销量最稳定?
(3)假如你是小红,你会对奶奶有哪些好的建议.
6
25.(6分)为了增强环境保护意识,6月5日“世界环境日”当天,在环保局工作人员指导下,若干名“环保小卫士”组成的“控制噪声污染”课题学习研究小组,抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB),将调查的数据进行处理(设所测数据是正整数),得频数分布表如下:
根据表中提供的信息解答下列问题:
(1)频数分布表中的a =________,b=________,c =_________;
(2)补充完整频数分布直方图;
(3)如果全市共有200个测量点,那么在这一时刻噪声声级小于75dB的测量点约有多少个?
26.(6分)今年3月5日,花溪中学组织全体学生参加了“走出校门,服务社会”的活动.九年级一班高伟同学统计了该天本班学生打扫街道,去敬老院服务和到社区文艺演出的人数,并做了如下直方图和扇形统计图.请根据高伟同学所作的两个图形,解答:
(1)九年级一班有多少名学生?
(2)补全直方图的空缺部分.
(3)若九年级有800名学生,估计该年级去敬老院的人数.
(1)请你根据以上成绩数据,求出该组数据的众数为,极差为.(2)请在下图中用折线图描述此组数据.
28.(8分)国家主管部门规定:从2008年6月1日起,各商家禁止向消费者免费提供一次
性塑料购物袋.为了了解巴中市市民对此规定的看法,对本市年龄在16—65岁之间的居民,进行了400个随机访问抽样调查,并根据每个年龄段的抽查人数和该年龄段对此规定的支持人数绘制了下面的统计图.
根据上图提供的信息回答下列问题:
(1)被调查的居民中,人数最多的年龄段是 岁.
(2)已知被调查的400人中有83%的人对此规定表示支持,请你求出31—40岁年龄段的满意人数,并补全图b .
(3)比较21—30岁和41—50岁这两个年龄段对此规定的支持率的高低(四舍五入到1%,注:某年龄段的支持率100=
⨯该年龄段支持人数该年龄段被调查人数%).
参考答案
一、填空题
1.3,3.5,4,3 2.2.25 3.81.5分4.9 5.11,2 6.小李7.-2 8.8 9.21 10.50%,2.8 11.306 12.4,2 13.1000 14.A,4
二、选择题
15.C 16.C 17.D 18.A
三、解答题
19.88.8分20.(1)众数是:14岁;中位数是:15岁;(2)16岁年龄组21.(1)88分;(2)86分;(3)略22.(1)150;(2)3.95-4.25;(3)600 23.(1)2000名学生参加
环保知识竞赛的成绩;(2)0.25;(2)300人24.(1)x学生奶=3,x酸牛奶=80,x原味奶=40,金键酸牛奶销量高;(2)12.57,91.71,96.86,•金键学生奶销量最稳定;(3)建议学生奶平常尽量少进或不进,周末可进几瓶25.(1)8,12,0.3;(2)略;(3)60个26.(1)50人;(2)略;(3)160人27.(1)9.77,0.21;(2)略28.(1)21-30;(2)72,图略;(3)21-30岁支持率高。