AskelandPhuleNotes-14. Polymer Structures

合集下载

高分子化学中英文对照

高分子化学中英文对照

05. 高分子化学高分子物质coiling type polymer聚合与高分子化学反应9双烯单体,二烯单体diene monomer10极性单体polar monomer11非极性单体non polar monomer12共轭单体conjugated monomer13非共轭单体non conjugated monomer14活化单体activated monomer15官能单体functional monomer16大分子单体macromer, macromonomer17环状单体cyclic monomer18共聚单体comonomer19聚合[反应]polymerization20均聚反应homopolymerizationoligomerization低聚反应,21齐聚反应 (曾用名)22调聚反应telomerization23自发聚合spontaneous polymerization 24预聚合prepolymerization25后聚合post polymerization26再聚合repolymerization27铸塑聚合, 浇铸聚合cast polymerization28链[式]聚合chain polymerization29烯类聚合,乙烯基聚合vinyl polymerization30双烯[类]聚合diene polymerization31加[成]聚[合]addition polymerization32自由基聚合,游离基聚合 (曾用名)free radical polymerization, radical polymerization33控制自由基聚合,可控自由基聚合controlled radical polymerization,CRP 34活性自由基聚合living radical polymerization35原子转移自由基聚合atom transfer radical polymerization,ATRP36反向原子转移自由基聚合reverse atom transfer radicalpolymerization, RATRP37可逆加成断裂链转移reversible addition fragmentation chaintransfer,RAFT38氮氧[自由基]调控聚合nitroxide mediated polymerization39稳定自由基聚合stable free radical polymerization,FRP 40自由基异构化聚合free radical isomerizationpolymerization41自由基开环聚合radical ring opening polymerization42氧化还原聚合redox polymerizationdead end polymerization无活性端聚合,43死端聚合 (曾用名)44光[致]聚合photo polymerization45光引发聚合light initiated polymerization46光敏聚合photosensitized polymerization47四中心聚合four center polymerization48电荷转移聚合charge transfer polymerization49辐射引发聚合radiation initiated polymerization50热聚合thermal polymerization51电解聚合electrolytic polymerization52等离子体聚合plasma polymerization53易位聚合metathesis polymerization开环易位聚合ring opening metathesis polymerization,54ROMP55精密聚合precision polymerization56环化聚合cyclopolymerization57拓扑化学聚合topochemical polymerization58平衡聚合equilibrium polymerization59离子[型]聚合ionic polymerization60辐射离子聚合radiation ion polymerization61离子对聚合ion pair polymerization 62正离子聚合,阳离子聚合cationic polymerization63碳正离子聚合carbenium ionpolymerization,carbocationicpolymerization64假正离子聚合pseudo cationic polymerization65假正离子活[性]聚合pseudo cationic living polymerization 66活性正离子聚合living cationic polymerization67负离子聚合,阴离子聚合anionic polymerization68碳负离子聚合carbanionic polymerization69活性负离子聚合living anionic polymerization70负离子环化聚合anionic cyclopolymerization71负离子电化学聚合anionic electrochemical polymerization 72负离子异构化聚合anionic isomerization polymerization 73烯丙基聚合allylic polymerization74活[性]聚合living polymerization75两性离子聚合zwitterion polymerization76齐格勒-纳塔聚合Ziegler Natta polymerization77配位聚合coordination polymerization78配位离子聚合coordinated ionic polymerization79配位负离子聚合coordinated anionic polymerization 80配位正离子聚合coordinated cationic polymerization 81插入聚合insertion polymerization82定向聚合,立构规整聚合stereoregular polymerization, stereospecific polymerization83有规立构聚合tactic polymerization84全同立构聚合isospecific polymerization85不对称诱导聚合asymmetric induction polymerization86不对称选择性聚合asymmetric selective polymerization87不对称立体选择性聚合asymmetric stereoselectivepolymerization88对映[体]不对称聚合enantioasymmetric polymerization89对映[体]对称聚合enantiosymmetric polymerization90异构化聚合isomerization polymerization91氢转移聚合hydrogen transfer polymerization92基团转移聚合group transfer polymerization,GTP93消除聚合elimination polymerization94模板聚合matrix polymerization,templatepolymerization95插层聚合intercalation polymerization96无催化聚合uncatalyzed polymerization97开环聚合ring opening polymerization98活性开环聚合living ring opening polymerization 99不死的聚合immortal polymerization100酶聚合作用enzymatic polymerization101聚加成反应,逐步加成聚合 (曾用名)polyaddition102偶联聚合coupling polymerization103序列聚合sequential polymerization104闪发聚合,俗称暴聚flash polymerization105氧化聚合oxidative polymerization106氧化偶联聚合oxidative coupling polymerization 107逐步[增长]聚合step growth polymerization108缩聚反应condensation polymerization,polycondensation109酯交换型聚合transesterification typepolymerization,ester exchange polycondensation110自催化缩聚autocatalytic polycondensation111均相聚合homogeneous polymerization112非均相聚合heterogeneous polymerization113相转化聚合phase inversion polymerization 本体聚合bulk polymerization, mass 114polymerization115固相聚合solid phase polymerization气相聚合gaseous polymerization,116gas phase polymerization117吸附聚合adsorption polymerization118溶液聚合solution polymerization119沉淀聚合precipitation polymerization120淤浆聚合slurry polymerization121悬浮聚合suspension polymerization反相悬浮聚合reversed phase suspension 122polymerization珠状聚合bead polymerization, pearl 123polymerization124分散聚合dispersion polymerization125反相分散聚合inverse dispersion polymerization126种子聚合seeding polymerization127乳液聚合emulsion polymerization128无乳化剂乳液聚合emulsifier free emulsion polymerization 129反相乳液聚合inverse emulsion polymerization130微乳液聚合micro emulsion polymerization131连续聚合continuous polymerization132半连续聚合semicontinuous polymerization133分批聚合,间歇聚合batch polymerization134原位聚合in situ polymerization135均相缩聚homopolycondensation136活化缩聚activated polycondensation137熔融缩聚melt phase polycondensation138固相缩聚solid phase polycondensation139体型缩聚three dimensional polycondensation 140界面聚合interfacial polymerization141界面缩聚interfacial polycondensation142环加成聚合cycloaddition polymerization143环烯聚合cycloalkene polymerization144环硅氧烷聚合cyclosiloxane polymerization145引发剂initiator146引发剂活性activity of initiator147聚合催化剂polymerization catalyst148自由基引发剂radical initiator149偶氮[类]引发剂azo type initiator1502,2′偶氮二异丁腈2,2'- azobisisobutyronitrile, AIBN151过氧化苯甲酰benzoyl peroxide, BPO152过硫酸盐引发剂persulphate initiator153复合引发体系complex initiation system154氧化还原引发剂redox initiator电荷转移复合物,charge transfer complex, CTC155电荷转移络合物156聚合加速剂,聚合促进剂polymerization accelerator157光敏引发剂photoinitiator双官能引发剂bifunctional initiator, difunctional 158initiator159三官能引发剂trifunctional initiator160大分子引发剂macroinitiator161引发-转移剂initiator transfer agent, inifer引发-转移-终止剂initiator transfer agent terminator, 162iniferter163光引发转移终止剂photoiniferter164热引发转移终止剂thermoiniferter165正离子催化剂cationic catalyst166正离子引发剂cationic initiator167负离子引发剂ionioic initiator168共引发剂coinitiator169烷基锂引发剂alkyllithium initiator170负离子自由基引发剂anion radical initiator171烯醇钠引发剂alfin initiator172齐格勒-纳塔催化剂Ziegler Natta catalyst173过渡金属催化剂transition metal catalyst174双组分催化剂bicomponent catalyst175后过渡金属催化剂late transition metal catalyst176金属络合物催化剂metal complex catalyst177[二]茂金属催化剂metallocene catalyst178甲基铝氧烷methylaluminoxane, MAObimetallic μ-oxo alkoxides catalyst μ氧桥双金属烷氧化物催179化剂180双金属催化剂bimetallic catalyst181桥基茂金属bridged metallocene182限定几何构型茂金属催化constrained geometry metallocene剂catalyst183均相茂金属催化剂homogeneous metallocene catalyst184链引发chain initiation185热引发thermal initiation186染料敏化光引发dye sensitized phtoinitiation187电荷转移引发charge transfer initiation188诱导期induction period189引发剂效率initiator efficiency190诱导分解induced decomposition191再引发reinitiation192链增长chain growth, chain propagation193增长链端propagating chain end194活性种reactive species195活性中心active center196持续自由基persistent radical197聚合最高温度ceilling temperature of polymerization 198链终止chain termination199双分子终止bimolecular termination200初级自由基终止primary radical termination201扩散控制终止diffusion controlled termination202歧化终止disproportionation termination203偶合终止coupling termination204单分子终止unimolecular termination205自发终止spontaneous termination206终止剂terminator207链终止剂chain terminating agent208假终止pseudotermination209自发终止self termination210自由基捕获剂radical scavenger211旋转光闸法rotating sector method212自由基寿命free radical lifetime213凝胶效应gel effect214自动加速效应autoacceleration effect215链转移chain transfer216链转移剂chain transfer agent217尾咬转移backbitting transfer退化链转移degradation (degradative) chain 218transfer219加成断裂链转移[反应]addition fragmentation chain transfer 220链转移常数chain transfer constantretardation①缓聚作用221②延迟作用222阻聚作用inhibition223缓聚剂retarder224缓聚剂,阻滞剂retarding agent225阻聚剂inhibitor226封端[反应]end capping227端基terminal group228聚合动力学polymerization kinetics229聚合热力学polymerization thermodynamics 230聚合热heat of polymerization231共聚合[反应]copolymerization232二元共聚合binary copolymerization233三元共聚合ternary copolymerization234竞聚率reactivity ratio235自由基共聚合radical copolymerization236离子共聚合ionic copolymerization237无规共聚合random copolymerization238理想共聚合ideal copolymerization239交替共聚合alternating copolymerization240恒[组]分共聚合azeotropic copolymerization 241接枝共聚合graft copolymerization242嵌段共聚合block copolymerization243开环共聚合ring opening copolymerization 244共聚合方程copolymerization equation245共缩聚copolycondensation246逐步共聚合step copolymerization247同种增长homopropagation248自增长self propagation249交叉增长cross propagation250前末端基效应penultimate effect251交叉终止cross termination252Q值Q value253e值e value254Q,e概念Q, e scheme255序列长度分布sequence length distribution 256侧基反应reaction of pendant group257扩链剂,链增长剂chain extender258交联crosslinking259化学交联chemical crosslinking260自交联self crosslinking261光交联photocrosslinking262交联度degree of crosslinking263硫化vulcanization264固化curing265硫[黄]硫化sulfur vulcanization266促进硫化accelerated sulfur vulcanization 267过氧化物交联peroxide crosslinking268无规交联random crosslinking269交联密度crosslinking density270交联指数crosslinking index271解聚depolymerization272①降解②退化degradation273链断裂chain breaking274解聚酶depolymerase275细菌降解bacterial degradation276生物降解biodegradation277化学降解chemical degradation278辐射降解radiation degradation279断链降解chain scission degradation高分子物理化学与高分子物理8无规度,无规立构度atacticity9嵌段block10规整嵌段regular block11非规整嵌段irregular block12立构嵌段stereoblock13有规立构嵌段isotactic block14无规立构嵌段atactic block15单体单元monomeric unit16二单元组diad17三单元组triad18四单元组tetrad19五单元组pentad20无规线团random coil21自由连接链freely-jointed chain 22自由旋转链freely-rotating chain 23蠕虫状链worm-like chain24柔性链flexible chain25链柔性chain flexibility26刚性链rigid chain27棒状链rodlike chain28链刚性chain rigidity29聚集aggregation30聚集体aggregate31凝聚、聚集coalescence32链缠结chain entanglement33凝聚缠结cohesional entanglement34物理缠结physical entanglement35拓扑缠结topological entanglement36凝聚相condensed phase37凝聚态condensed state38凝聚过程condensing process39临界聚集浓度critical aggregation concentration 40线团-球粒转换coil-globule transition41受限链confined chain42受限态confined state43物理交联physical crosslinking44统计线团statistical coil45等效链equivalent chain46统计链段statistical segment47链段chain segment48链构象chain conformation49无规线团模型random coil model50无规行走模型random walk model51自避随机行走模型self avoiding walk model52卷曲构象coiled conformation53高斯链Gaussian chain54无扰尺寸unperturbed dimension55扰动尺寸perturbed dimension56热力学等效球thermodynamically equivalent sphere 57近程分子内相互作用short-range intramolecular interaction 58远程分子内相互作用long-range intramolecular interaction 59链间相互作用interchain interaction60链间距interchain spacing61长程有序long range order62近程有序short range order63回转半径radius of gyration64末端间矢量end-to-end vector65链末端chain end66末端距end-to-end distance67无扰末端距unperturbed end-to-end distance68均方根末端距root-mean-square end-to-end distance 69伸直长度contour length70相关长度persistence length71主链;链骨架chain backbone72支链branch chain73链支化chain branching74短支链short-chain branch75长支链long-chain branch76支化系数branching index77支化密度branching density78支化度degree of branching79交联度degree of crosslinking80网络network81网络密度network density82溶胀swelling83平衡溶胀equilibrium swelling84分子组装,分子组合molecular assembly85自组装self assembly86微凝胶microgel87凝胶点gel point88可逆[性]凝胶reversible gel89溶胶-凝胶转化sol-gel transformation90临界胶束浓度critical micelle concentration,CMC91组成非均一性constitutional heterogenity,compositional heterogenity92摩尔质量平均molar mass average又称“分子量平均”93数均分子量number-average molecular weight,number-average molar mass94重均分子量weight-average molecular weight,weight-average molar mass95Z均分子量Z(Zaverage)-average molecular weight,Z-molar mass96黏均分子量viscosity-average molecular weight,viscosity-average molar mass97表观摩尔质量apparent molar mass98表观分子量apparent molecular weight99聚合度degree of polymerization100动力学链长kinetic chain length101单分散性monodispersity102临界分子量critical molecular weight103分子量分布molecular weight distribution,MWD104多分散性指数polydispersity index,PID105平均聚合度average degree of polymerization106质量分布函数mass distribution function107数量分布函数number distribution function108重量分布函数weight distribution function109舒尔茨-齐姆分布Schulz-Zimm distribution110最概然分布most probable distribution 曾用名“最可几分布”111对数正态分布logarithmic normal distribution 又称“对数正则分布”112聚合物溶液polymer solution113聚合物-溶剂相互作用polymer-solvent interaction114溶剂热力学性质thermodynamic quality of solvent115均方末端距mean square end to end distance116均方旋转半径mean square radius of gyration117θ温度theta temperature118θ态theta state119θ溶剂theta solvent120良溶剂good solvent121不良溶剂poor solvent122位力系数Virial coefficient曾用名“维里系数”。

AskelandPhuleNotes-12. Structures and Properties of Ceramics

AskelandPhuleNotes-12. Structures and Properties of Ceramics

8
9
Example 12.1 Design of a Method to Determine AISI Number
An unalloyed steel tool used for machining aluminum automobile wheels has been found to work well, but the purchase records have been lost and you do not know the steel’s composition. The microstructure of the steel is tempered martensite, and assume that you cannot estimate the composition of the steel from the structure. Design a treatment that may help determine the steel’s carbon content.
3
Chapter Outline (Continued)
12.7 Specialty Steels
12.8 Surface Treatments 12.9 Weldability of Steel 12.10 Stainless Steels 12.11 Cast Irons
4
7
Figure 12.3 Electron micrographs of (a) pearlite, (b) bainite, and (c) tempered martensite, illustrating the differences in cementite size and shape among these three microconstituents ( 7500). (From The Making, Shaping, and Treating of Steel, 10th Ed. Courtesy of the Association of Iron and Steel Engineers.)

高分子化学词汇中英文对照表

高分子化学词汇中英文对照表
单体
Monomer
单体单元
Monomer Unit
单体液滴
Monomer Droplet
天然高分子
Natural Polymer
邻位基团效应
Neighboring Group Effect
交联型聚合物
Network Structure Polymer
非理想共聚
Non-ideal Copolymerization
Half-life
杂链聚合物
Hetero-chain Polymer
高密度聚乙烯
High Density Polyethylene HDPE
高抗冲聚苯乙烯
High Impact Polystyrene, HIPS
均相成核
Homogenous Nucleation
均聚物
Homopolymer
均聚合
Homopolymerization
悬浮聚合
Suspension Polymerization
增溶胶束
Swollen Micelle
间规立构
Syndiotactic
间规度
Syndiotacticity
间规聚苯乙烯
Syndiotactic Polystyrene
合成高分子
Synthetic Polymer
遥爪聚合物
Telechelic Polymer
配位聚合
Coordination Polymerization
共聚物
Copolymer
共聚合
Copolymerization
共聚组成
Copolymer Composition
偶合终止
Coupling Termination

高分子化学词汇手册Polymer和高分子化学名词解释

高分子化学词汇手册Polymer和高分子化学名词解释

高分子化学词汇手册Polymer分类:移动互联.数据源及分类研究2007.3.28 09:41 作者:kimberye | 评论:1 | 阅读:11371 高分子macromolecule, polymer 又称“大分子”。

2 超高分子supra polymer3 天然高分子natural polymer4 无机高分子inorganic polymer5 有机高分子organic polymer6 无机-有机高分子inorganic organic polymer7 金属有机聚合物organometallic polymer8 元素高分子element polymer9 高聚物high polymer10 聚合物polymer11 低聚物oligomer 曾用名“齐聚物”。

12 二聚体dimer13 三聚体trimer14 调聚物telomer15 预聚物prepolymer16 均聚物homopolymer17 无规聚合物random polymer18 无规卷曲聚合物random coiling polymer19 头-头聚合物head-to-head polymer20 头-尾聚合物head-to-tail polymer21 尾-尾聚合物tail-to-tail polymer22 反式有规聚合物transtactic polymer23 顺式有规聚合物cistactic polymer24 规整聚合物regular polymer25 非规整聚合物irregular polymer26 无规立构聚合物atactic polymer27 全同立构聚合物isotactic polymer 又称“等规聚合物”。

28 间同立构聚合物syndiotactic polymer 又称“间规聚合物”。

29 杂同立构聚合物heterotactic polymer 又称“异规聚合物”。

30 有规立构聚合物stereoregular polymer, tactic polymer 又称“有规聚合物”。

Unit 14 Bulk Polymerization

Unit 14 Bulk Polymerization

UNIT 14 Bulk PolymerizationBulk polymerization traditionally has been defined as the formation of polymer from pure, undiluted monomers. Incidental amounts of solvents and small amounts of catalysts, promoters, and chain-transfer agents may also be present according to the classical definition. This definition, however, serves little practical purpose. It includes a wide variety of polymers and polymerization schemes that have little in common, particularly from the viewpoint of reactor design. The modern gas-phase process for polyethylene satisfies the classical definition, yet is a far cry from the methyl methacrylate and styrene polymerization which remain single-phase throughout the polymerization and are more typically thought of as being bulk. ®A common feature of most bulk polymerization and other processes not traditionally classified as such is the need to process fluids of very high viscosity. The high viscosity results from the presence of, dissolved polymer in a continuous liquid phase. Significant concentrations of a high molecular-weight polymer typically increase fluid viscosities by 104 or more compared to the unreacted monomers. This suggests classifying a polymerization as bulk whenever a substantial concentration of polymer occurs in the continuous phase. Although this definition encompasses a wide variety of polymerization mechanisms, it leads to unifying concepts in reactor design. The design engineer must confront the polymer in its most intractable form, i. e. , as a high viscosity solution or polymer melt.The revised definition makes no sharp distinction between bulk and solution polymerizations and thus reflects industrial practice. Several so-called bulk processes for polystyrene and ABS® use 5%~15% solvent as a processing aid and chain-transfer agent. Few successful processes have used the very large amounts of solvent needed to avoid high viscosities in the continuous phase, although this approach is sometimes used for laboratory preparations.Bulk polymerizations often exhibit a second, discontinuous phase. They frequently exhibit high exothermicity, but this is more characteristic of the reaction mechanism than of bulk polymerization as such. Bulk polymerizations of the free-radical variety are most common, although several commercially important condensation processes satisfy the revised definition of a bulk polymerization.In all bulk polymerizations, highly viscous polymer solutions and melts are handled. This fact tends to govern the process design and to a lesser extent, the process economics. Suitably robust equipment has been developed for the various processing steps, including stirred-tank and tubular reactors, flash devolatilizers, extruder reactors, and extruder devolatilizers. Equipment costs are high based on working volume, but the volumetric efficiency of bulk polymerizations is also high. If a polymer can be made in bulk, manufacturing economics will most likely favor this approach. ®It is tempting to suggest that polymer processes will gradually evolve toward bulk.® Recently, the suspension process for impact polystyrene has been supplanted by the bulk process, and the emulsion process for ABS may similarly be replaced. However, the modern gas-phase process for polyethylene appears to represent an opposite trend. It seems that polymerization technology tends to eliminate solvents and suspending fluids other than the monomers themselves. When the monomer is a solvent for the polymer, bulk processes as described in this article are chosen. When the monomer is not a solvent, suspension and slurry processes like those for polyethylene and polypropylene are employed. Hence, it is worthwhile avoiding a highly viscouscontinuous phase, but not at the price of introducing extraneous material. ®14单元本体聚合本体聚合一向被定义为从纯粹的形成聚合物,稀释单体。

英文翻译

英文翻译

威兰胶,拉姆珊胶和酰基化结冷胶的结构及其流变性在高温下,天然结冷胶(高酰基结冷胶)比商品化结冷胶(脱酰基结冷胶)更易呈现出双螺旋结构,但天然结冷胶相对于脱乙酰化结冷胶而言,其胶体更脆弱,更有弹性,在成胶性和加热融化性方面无热滞后现象,乙酰化结冷胶其乙酰化位置位于双螺旋结构末端,这样的结构可以阻止相互之间发生聚合。

甘油基位于螺旋结构的核心处,修饰其几何结构,在脱去甘油取代基的过程中,无序有序之间的转化变得清楚,要求的温度也偏低。

最终在完全脱酰基聚合物状态下发生第二次转化。

通过两种转化的重要性和残留的甘油酸酯的比例的比较,得出从高酰基到非酰基的几何结构转化需要有六个无酰基基团的连续重复性单体。

威兰胶和拉姆珊胶共混后的双螺旋结构在温度高于100度时是稳定的单糖和非单糖支链分别有其规则结构,都有类似于黄原胶的弱胶特点。

然而纯胶是当螺旋结构分离又再结合时形成的。

(威兰胶溶解于二甲亚砜,加水,或先加热再冷却脱酰基拉姆珊胶的水溶液)我们对这种现象的解释是两种聚合物的天然结构是完整的双螺旋,沿着整条链精确地对称。

这些完整结构的分离会产生十字交叉网,通过跟别的短缺链与一个或更多个链交叉。

引言糖链或作为附属物的非碳水化合物的存在使多糖的物理性质从根本上发生改变。

例如,纤维素的化学性质被广泛应用于将聚合物由不溶的天然状态转变为可溶的物质,这种物质有广泛的工业应用。

在一定的条件下,饱和液体通过静电排斥使纤维结构不稳定,溶解性是关于它的介绍。

笼统的说,化学取代会促进溶解,因为它形成物理障碍浓缩包裹多糖链,有助于溶解状态下的构造熵。

自然发生的取代当然也是这样进行的。

例如,葡甘聚糖(Nishinari et al., 1992)由β-D-葡萄糖和β-D-甘露糖通过1-4- diequatorially(如在纤维素中)组成的。

被低浓度的醋酸盐取代物(每17个糖里有一个乙酰基)这些取代基的脱掉使聚合物链交联形成胶结构例如刺槐豆胶,塔拉胶和瓜尔豆胶,α - D -半乳糖的不规则空间结构的单糖链通过1-6键连接到甘露骨架的甘露糖剩余的合适部分。

PREPARATION OF POLYMER SOLUTION

PREPARATION OF POLYMER SOLUTION

专利名称:PREPARATION OF POLYMER SOLUTION 发明人:SATO EIJI,YABUKI JUJI申请号:JP20979484申请日:19841008公开号:JPH0552850B2公开日:19930806专利内容由知识产权出版社提供摘要:PURPOSE:To obtain a polymer solution having a low content of bubbles within a short time, by deaerating a polymer and its solvent separately in a specified atmosphere of a reduced pressure and dissolving the former in the latter by mixing. CONSTITUTION:A polymer such as PE or polycaproamide is fed to a deaeration tank 1 and a solvent therefore is fed to a deaeration tank 2. The polymer and the solvent in the tanks 1 and 2 and a dissolution tank 3 are deaerated by decreasing the pressures in the tanks to a pressure which is at most three times as high as the vapor pressure of the solvent at a predetermined deaeration temperature by means of a vacuum pump 5. The polymer and the solvent in this atmosphere of reduced pressure are transferred to the tank 3 and mixed and dissolved by agitation. EFFECT:A polymer solution which has excellent curability and can give a molding excellent in mechanical properties and uniformity can be obtained.申请人:ASAHI CHEMICAL IND更多信息请下载全文后查看。

聚酰氨基胺树状大分子简写

聚酰氨基胺树状大分子简写

聚酰氨基胺树状大分子简写
聚酰氨基胺树状大分子是一种高分子材料,具有较好的物理、化学性质和生物相容性,在医学、电子、能源等领域具有广泛的应用前景。

本文将简要介绍聚酰氨基胺树状大分子的简写及其优势。

聚酰氨基胺树状大分子简写为PAMAM,它是一种由聚合物基础单元构建成的三维分子结构。

这种大分子材料由多个分枝单元和一个中心单元组成,分枝单元上负载着大量的反应基团,这使得PAMAM分子具有高反应活性和分子识别能力。

PAMAM大分子材料有着广泛的应用。

在医学领域,PAMAM可以用作药物载体,通过改变材料的结构和表面性质来实现药物的释放和靶向治疗。

在电子领域,PAMAM可以用于构建电容器等电子元件,并能够提高元件的性能和稳定性。

在能源领域,PAMAM可以作为太阳能电池等设备的关键材料,提高设备的效率和寿命。

PAMAM材料作为一种功能性大分子材料,具有许多优势。

首先,PAMAM分子的结构和性质可以通过化学修饰来调节,从而实现特定的应用需求。

其次,PAMAM具有良好的溶解性和热稳定性,能够在不同的溶剂和环境下保持稳定。

此外,PAMAM大分子材料还具有良好的生物相容性,可以在医学领域中被安全应用。

总之,聚酰氨基胺树状大分子是一种具有广泛应用前景的高分子材料。

它的简写为PAMAM,由多个分枝单元和一个中心单元构成。

PAMAM 分子具有高反应活性和分子识别能力,可以用于医学、电子、能源等领域。

此外,PAMAM大分子材料还具有优良的物理、化学性质和生物
相容性,具有在不同领域应用的潜力和优势。

高分子量苯乙烯-马来酸酐共聚物-2023标准

高分子量苯乙烯-马来酸酐共聚物-2023标准

高分子量苯乙烯-马来酸酐共聚物1范围本文件规定了高分子量苯乙烯-马来酸酐共聚物的术语和定义、基本要求、技术要求、试验方法、检验规则、标志、包装、运输、贮存和质量承诺。

本文件适用于高分子量苯乙烯-马来酸酐共聚物。

2规范性引用文件下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。

其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB/T1033.1塑料非泡沫塑料密度的测定第1部分:浸渍法、液体比重瓶法和滴定法GB/T3682热塑性塑料熔体质量流动速率和熔体体积流动速率的测定GB/T10535水处理剂水解聚马来酸酐GB/T27843化学品聚合物低分子量组分含量测定凝胶渗透色谱法(GPC)GB/T39151工业用苯乙烯ASTM D570Standard Test Method for Water Absorption of Plastics(塑料吸水性试验方法)ASTM D3644Standard Test Method For Acid Number Of Styrene-Maleic Anhydride Resins(苯乙烯-马来酸酐树脂酸值的标准试验方法)VDA277Determination of Organic Emission of Non-metallic materials from vehicles Interior(汽车内饰用非金属材料有机化合物排放量的测定)PV3900Components in Passenger Compartment-Odor Test(汽车驾驶室内部的构件气味试验)3术语和定义下列术语和定义适用于本文件。

3.1苯乙烯-马来酸酐共聚物styrene-maleic anhydride copolymers一种通过连续本体聚合工艺生产的苯乙烯和马来酸酐的无规共聚物。

4分类产品按性能可分为:a)相容剂苯乙烯-马来酸酐共聚物(SMA-700);b)尼龙扩链剂苯乙烯-马来酸酐共聚物(SMA-725)。

羧基 树枝状 大分子 种类

羧基 树枝状 大分子 种类

羧基树枝状大分子种类全文共四篇示例,供读者参考第一篇示例:羧基树枝状大分子是一种具有羧基官能团和树枝状结构的大分子化合物,其种类繁多,具有广泛的应用领域。

羧基是一种含有COOH官能团的化合物,树枝状结构是指分子中有多个支链或支枝,这种结构可以增加分子的分子量和表面积,从而改变其物理和化学性质,增强其性能。

羧基树枝状大分子种类繁多,常见的有聚乙烯醇酸(PVA)、聚丙烯酸(PAA)、聚甲基丙烯酸(PMMA)等。

这些大分子化合物在水处理、医药、化妆品、油漆、涂料等领域有着重要的应用。

羧基树枝状大分子在水处理领域有着广泛的应用。

PAA和PVA等羧基树枝状大分子被用作净水剂和废水处理剂,能够有效去除水中的杂质和污染物,改善水质,保护环境。

这些大分子化合物还可以用作水凝胶材料,具有优良的吸水性能,可用于水土保持、植物种植和土壤修复等方面。

羧基树枝状大分子在医药领域也有着重要的应用。

PMMA是一种常用的人工关节材料,可以用于修复关节损伤和骨折。

PAA等羧基树枝状大分子还被用于制备缓释药物,可以控制药物的释放速度和剂量,提高药物的疗效和安全性。

羧基树枝状大分子是一类功能性大分子化合物,具有多种优良性能和广泛应用领域。

随着科学技术的不断进步和发展,相信羧基树枝状大分子在未来将会有着更广阔的发展前景,为人类社会做出更大的贡献。

第二篇示例:羧基是一类化合物中常见的官能团之一,其化学结构中含有一个碳原子与一个氧原子相连,并且这个氧原子与一个氢原子相连,另外还与一个含氧的基团相连。

而树枝状大分子则是一种由大量重复单元结构组成的高分子化合物,具有分子量大、分子结构多样化等特点。

在有机化学中,羧基与树枝状大分子常常相结合,形成一类特殊的化合物。

本文将主要介绍羧基树枝状大分子的种类及其应用领域。

一、羧基树枝状大分子的种类1. 聚丙烯酸聚丙烯酸是一种具有树枝状结构的羧基聚合物,其分子结构中包含了大量的羧基官能团。

聚丙烯酸具有较高的分子量和良好的分散性,可用作分散剂和增稠剂,并广泛应用于涂料、胶粘剂等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12
Example 14.1 Formation of a Barium Titanate Formulation
We want to make 1000 kilograms of BaTiO3 ceramic from BaCO3 and TiO2. How much barium carbonate and titanium dioxide should be ball milled and calcined? Example 14.1 SOLUTION Even though the actual formation of BaTiO3 involves many different intermediate phases, we can write the final reaction as: BaCO3(s) + TiO2(s) BaTiO3(s) + CO2(g) Molecular weights are: BaCO3: 137(Ba) + 12 (C) + (3 16(O)) = 197 g/mol TiO2: 48(Ti) + (2 16) = 80 g/mol BaTiO3: 137(Ba) + 48(Ti) + (3 16(O)) = 233 g/mol CO2: 12(C) + 2 16(O) = 44 g/mol 13
Figure 14.2 Schematic of the jaw, rotary, crushing rollers, and hammermill crushing equipment and ball mill (grinding) equipment. (Jaw, rotary, crushing, and hammermill: Source: From Principles of Ceramics Processing, Second Edition, by J.S. Reed, p. 314, Figs. 171 and 17-2. Copyright © 1995 John Wiley & Sons, Inc. Reprinted by permission. Ball mill grinding: Source: From Modern Ceramic Engineering, by D.W. Richerson, p. 387, Fig. 9-3. Copyright © 1992 Marcel Dekker, Inc.)
©2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning ™ is a trademark used herein under license.
16
Figure 14.3 Different techniques for processing of advanced ceramics.
The Science and Engineering of Materials, 4th ed
Donald R. Askeland – Pradeep P. Phulé
Chapter 14 – Ceramic Materials
1
Objectives of Chapter 14
To examine the synthesis, processing, and applications of ceramic materials. Recapitulate processing and applications of inorganic glasses and glass-ceramics.
14
Section 14.4 Powder Processing
Powder metallurgy - Powder processing routes used for converting metal and alloy powders into useful shapes. Reaction bonding - A ceramic processing technique by which a shape is made using one material that is later converted into a ceramic material by reaction with a gas. Tape casting - A process for making thin sheets of ceramics using a ceramic slurry consisting of binders, plasticizers, etc. The slurry is cast with the help of a blade onto a plastic substrate. Injection molding - A processing technique in which a thermoplastic mass (loaded with ceramic powder) is mixed in an extruder-like setup and then injected into a die to form complex parts. In the case of ceramics, the thermoplastic is burnt off. 15
10
©2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning ™ is a trademark used herein under license.
11
Figure 14.1 Typical steps encountered in the processing of ceramics.
17
Figure 14.4 (c) Different diffusion mechanisms involved in sintering. The grain boundary and bulk diffusion (1, 2 and 5) to the neck contribute to densification. Evaporation-condensation (4) and surface diffusion (3) do not contribute to densification. (Source: From Physical Ceramics: Principles for Ceramic Science and Engineering, by Y.M. Chiang, D. Birnie, and W.D. Kingery, Fig. 5-40. Copyright © 1997 John Wiley & Sons, Inc. This material is used by permission of John Wiley & Sons, Inc.)
2
Chapter Outline
Applications of Ceramics Properties of Ceramics Synthesis of Ceramic Powders Powder Processing Characteristics of Sintered Ceramics 14.6 Inorganic Glasses 14.1 14.2 14.3 14.4 14.5
4
Section 14.1 Applications of Ceramics
Ceramics are used in a wide range of technologies such as refractories, spark plugs, dielectrics in capacitors, sensors, abrasives, magnetic recording media, etc. The space shuttle makes use of ~25,000 reusable, lightweight, highly porous ceramic tiles that protect the aluminum frame from the heat generated during reentry into the Earth’s atmosphere.
5
6
Table 14-1 (Continued)
7
Section 14.2 Properties of Ceramics
8
9
Section 14.3 Synthesis of Ceramic Powders
Slip casting - Forming a hollow ceramic part by introducing a pourable slurry into a mold. Green ceramic - A ceramic that has been shaped into a desired form but has not yet been sintered. Leaching - A process in which acids or alkalis are used to dissolve a mineral, conducted typically to get the metal or mineral of interest in solution. Calcination - Heating of chemicals to decompose and or react with different chemicals; used in traditional synthesis of ceramics.
Figure 14.4 (a) Uniaxial powder compaction showing the die-punch assembly during different stages. Typically, for small parts these stages are completed in less than a minute. (Source: From Materials and Processes in Manufacturing, Eighth Edition, by E.P. DeGarmo, J.T. Black, and R.A. Koshe, Fig. 16-4. Copyright © 1997 Prentice Hall. Reprinted by permission Pearson Education, Inc.) (b) Microstructure of a barium magnesium tantalate (BMT) ceramic prepared using compaction and sintering. (Courtesy Heather Shivey.)
相关文档
最新文档