数学必修三知识点

合集下载

高中数学必修三知识点大全

高中数学必修三知识点大全

知識點串講必修三第一章:演算法1. 1.1 演算法得概念1、演算法(algorithm)一詞源於算術(algorism),即算術方法,是指一個由已知推求未知得運算過程。

後來,人們把它推廣到一般,把進行某一工作得方法和步驟稱為演算法。

廣義地說,演算法就是做某一件事得步驟或程式。

2、任意給定一個大於1得整數n,試設計一個程式或步驟對n是否為質數做出判定。

解析:根據質數得定義判斷解:演算法如下:第一步:判斷n是否等於2,若n=2,則n是質數;若n>2,則執行第二步。

第二步:依次從2至(n-1)檢驗是不是n得因數,即整除n得數,若有這樣得數,則n不是質數;若沒有這樣得數,則n是質數。

3、一個人帶三隻狼和三隻羚羊過河,只有一條船,同船可以容納一個人和兩隻動物.沒有人在得時候,如果狼得數量不少於羚羊得數量,狼就會吃掉羚羊.請設計過河得演算法。

解:演算法或步驟如下:S1 人帶兩隻狼過河;S2 人自己返回;S3 人帶一隻羚羊過河;S4 人帶兩隻狼返回;S5 人帶兩隻羚羊過河;S6 人自己返回;S7 人帶兩隻狼過河;S8 人自己返回;S9 人帶一隻狼過河.1.1.2程式框圖(1得流程圖得首末兩端必須是起止框。

(2表示資料得輸入或結果得輸出,它可用在演算法中得任何需要輸入、輸出得位置。

(3(4判斷框一般有一個入口和兩個出口,有時也有多個出口,它是惟一得具有兩個或兩個以上出口得符號,在只有兩個出口得情形中,通常都分成“是”與“否”(也可用“Y ”與“N ”)兩個分支。

2、順序結構:順序結構描述得是是最簡單得演算法結構,語句與語句之間,框與框之間是按從上到下得順序進行得。

3、已知一個三角形得三邊分別為2、3、4,利用海倫公式設計一個演算法,求出它得面積,並畫出演算法得程式框圖。

演算法分析:這是一個簡單得問題,只需先算出p 得值,再將它代入公式,最後輸出結果,只用順序結構就能夠表達出演算法。

解:程式框圖:24、條件結構:根據條件選擇執行不同指令得控制結構。

高中数学必修三知识点归纳

高中数学必修三知识点归纳

一、函数与方程1. 函数的概念:函数是一种特殊的关系,它将一个数集(定义域)中的每个元素都对应到另一个数集(值域)中的一个唯一元素。

2. 函数的表示方法:函数可以用表达式、表格、图像等方式表示。

3. 函数的性质:单调性、奇偶性、周期性、有界性等。

4. 函数的运算:函数的加法、减法、乘法、除法等运算。

5. 函数的复合:两个或多个函数的复合运算。

6. 函数的反函数:如果一个函数的输入和输出可以互换,那么这个函数就是其自身的反函数。

7. 函数的极限:当自变量无限接近某个值时,函数值无限接近的值。

8. 函数的连续性:如果一个函数在某一点的极限存在,那么这个函数在这一点就是连续的。

9. 函数的导数:描述函数变化率的概念,可以用来研究函数的增减性、极值、凹凸性等性质。

10. 函数的积分:描述函数积累效果的概念,可以用来计算面积、体积等。

11. 一元二次方程:形如ax²+bx+c=0的方程,其中a≠0。

12. 一元二次方程的解法:因式分解法、配方法、公式法、求根公式等。

13. 一元二次方程的应用:求最值、求解实际问题等。

14. 一元一次不等式:形如ax+b>c或ax+b<c的不等式,其中a≠0。

15. 一元一次不等式的解法:移项、消去系数、求根等。

16. 一元一次不等式的应用:求解实际问题等。

二、数列与数学归纳法1. 数列的概念:数列是按照一定顺序排列的一组数。

2. 数列的性质:单调性、有界性、收敛性等。

3. 等差数列:每一项与前一项之差相等的数列。

4. 等比数列:每一项与前一项之比相等的数列。

5. 等差数列的性质:求和公式、通项公式等。

6. 等比数列的性质:求和公式、通项公式等。

7. 数学归纳法:通过证明一个命题对某个自然数成立,然后证明它对下一个自然数也成立,从而证明对所有自然数都成立的方法。

三、立体几何与空间向量1. 立体几何的基本概念:点、线、面、体等。

2. 空间直线与平面的位置关系:平行、垂直、相交等。

高中数学必修三知识点

高中数学必修三知识点

高中数学必修三知识点引言高中数学必修三通常包括概率统计、数列、算法、复数等重要数学领域,这些知识点对于培养学生的逻辑思维和解决问题的能力至关重要。

一、概率与统计1.1 随机事件与概率概念:随机事件的定义、概率的计算方法。

1.2 概率的性质总结:概率的基本性质,如非负性、规范性、加法法则。

1.3 条件概率与独立事件定义:条件概率的概念、独立事件的判断。

1.4 统计初步指标:均值、中位数、众数、方差、标准差的计算与意义。

1.5 统计图类型:条形图、直方图、饼图的绘制与解读。

二、数列2.1 等差数列公式:等差数列的通项公式、求和公式。

2.2 等比数列公式:等比数列的通项公式、求和公式。

2.3 数列的极限概念:数列极限的定义、无穷等比数列的极限。

2.4 数列的应用案例:数列在实际问题中的应用,如分期付款、人口增长模型。

三、算法3.1 算法的概念定义:算法的定义、特征。

3.2 程序框图绘制:程序框图的绘制方法,如顺序结构、条件结构、循环结构。

3.3 算法案例分析:常见算法问题的解决步骤,如排序、查找。

四、复数4.1 复数的概念定义:复数的定义、实部与虚部。

4.2 复数的运算规则:复数的四则运算、共轭复数、复数的模。

4.3 复数的几何意义解释:复数与复平面的关系、复数的代数表示与几何意义。

4.4 复数的应用案例:复数在电气工程、流体力学等领域的应用。

五、解析几何5.1 坐标系介绍:直角坐标系、极坐标系的基本概念。

5.2 直线的方程形式:直线的点斜式、斜截式、一般式。

5.3 圆的方程形式:圆的标准方程、一般方程。

5.4 圆锥曲线类型:椭圆、双曲线、抛物线的方程和性质。

六、逻辑推理6.1 逻辑与推理概念:逻辑推理的定义、演绎推理与归纳推理。

6.2 逻辑语句分析:逻辑语句的真假判断、逻辑运算。

6.3 推理方法总结:直接证明、间接证明、反证法的应用。

七、推理与证明7.1 推理的概念定义:推理的定义、日常生活中的推理应用。

初中数学必修三知识点总结

初中数学必修三知识点总结

初中数学必修三知识点总结一、实数与代数式1.1 实数- 实数的定义及分类:有理数和无理数。

- 实数的性质:相等、不等、大小比较。

- 实数的运算:加、减、乘、除、乘方、开方。

1.2 代数式- 代数式的定义:用字母和数字表示的式子。

- 代数式的分类:单项式、多项式、分式。

- 代数式的运算:加、减、乘、除、乘方、开方。

二、方程与不等式2.1 方程- 方程的定义:含有未知数的等式。

- 方程的分类:一元一次方程、一元二次方程、二元一次方程、多元方程。

- 方程的解法:代入法、移项法、因式分解法、公式法。

2.2 不等式- 不等式的定义:表示不相等关系的式子。

- 不等式的性质:加、减、乘、除、乘方、开方。

- 不等式的解法:同向相加、反向相减、乘除法、绝对值法。

三、函数与图形3.1 函数- 函数的定义:表示两个变量之间关系的式子。

- 函数的性质:单调性、奇偶性、周期性。

- 函数的图像:直线、抛物线、指数函数、对数函数。

3.2 图形- 点、线、面的基本性质和运算。

- 三角形、四边形、圆的基本性质和运算。

- 几何图形的证明:全等、相似、相交、平行。

四、统计与概率4.1 统计- 数据的收集、整理、描述、分析。

- 平均数、中位数、众数、方差、标准差。

4.2 概率- 概率的定义:事件发生的可能性。

- 概率的计算:古典概型、条件概率、独立事件。

五、综合与应用5.1 数学建模- 用数学语言和工具描述现实问题。

- 建立数学模型,求解问题。

5.2 数学竞赛- 初等数学竞赛题型和解题方法。

- 国内外数学竞赛介绍。

5.3 数学文化- 数学历史、数学家和数学著作。

- 数学在科技、经济、社会中的应用。

以上就是初中数学必修三的知识点总结,希望对大家有所帮助。

高二数学高考必修三知识点

高二数学高考必修三知识点

高二数学高考必修三知识点一、立体几何1. 点、线、面概念在立体几何中,点是最基本的概念,它没有长度、面积和体积,只有位置之分。

线是由无数个点连成的,具有长度但没有面积和体积。

面是由无数个线围成的,具有面积但没有体积。

2. 平行和垂直关系平行线是指不相交的两条直线在平面上永远也不会相交,它们具有相同的斜率。

垂直线是指两条直线相交时,相交角为90度,它们的斜率互为相反数。

3. 基本立体形状常见的基本立体形状包括球体、立方体、长方体、棱柱、棱锥和圆锥等。

这些形状具有特定的表面积和体积公式,掌握它们的计算方法对于解决与立体几何相关的题目十分重要。

二、函数与方程1. 一次函数一次函数是指具有形式为 y = kx + b 的函数,其中 k 和 b 是常数,k 表示直线的斜率,b 表示直线与 y 轴的截距。

掌握一次函数的性质和图像特征,能够解决与直线相关的问题。

2. 二次函数二次函数是指具有形式为 y = ax^2 + bx + c 的函数,其中 a、b 和 c 是常数,a 不为零。

二次函数的图像通常是抛物线,掌握它的性质和图像特征,能够解决与抛物线相关的问题。

3. 方程与不等式方程是指包含未知数的等式,解方程的过程就是求出使得等式成立的未知数的值。

不等式是指包含不等号的式子,解不等式的过程就是求出使得不等式成立的未知数的取值范围。

三、概率与统计1. 概率的基本概念概率是指某种事件发生的可能性大小,常用0到1之间的数值表示。

概率的计算方法包括古典概率、几何概率和条件概率等,通过掌握这些方法可以解决与概率相关的问题。

2. 统计的基本概念统计是指收集、整理、分析和解释数据的过程,统计学可以帮助我们归纳总结数据的规律,作出合理的推断和预测。

掌握统计学的基本方法和概念,能够解决与数据分析相关的问题。

3. 抽样与推断统计抽样是指从总体中选取一部分样本进行观察和测量,通过对样本数据的分析得出对总体的推断。

推断统计是指基于样本数据进行总体参数估计和假设检验等统计推断的过程。

高考数学必修三知识点大全总结

高考数学必修三知识点大全总结

高考数学必修三知识点大全总结一、数列与数学归纳法1.数列的概念:数列是由按照一定顺序排列的数构成的序列。

2.等差数列与等差数列的通项公式:等差数列是指数之间差值相等的数列,通项公式为an=a1+(n-1)d。

3.等比数列与等比数列的通项公式:等比数列是指数之间比值相等的数列,通项公式为an=a1*q^(n-1)。

4. Fibonacci数列:每一项数等于前两项之和的数列,通项公式为f1=1,f2=1,fn=fn-1+fn-25.通项公式的求解过程:利用已知的数列的第一项和公差或公比,推导出通项公式。

6.数学归纳法:数学归纳法是指通过验证数学命题对第一项成立,并且推导出对n+1项成立,从而推导出对所有自然数成立。

二、函数与导数1.函数的定义与性质:函数是一种对应关系,每一个自变量都对应唯一的一个因变量。

2. 一次函数与一次函数的性质:一次函数是指由一次幂组成的函数,表达式为y=kx+b,k代表斜率,b代表截距。

3. 二次函数与二次函数的性质:二次函数是指由x的二次幂组成的函数,表达式为y=ax^2+bx+c,a>0。

4.导数的定义与性质:导数是函数变化的速率,也是函数在其中一点的切线斜率。

5.导函数的求解方法:利用导数的定义和性质,通过求导的各种规则,求解导函数。

6.利用导函数解决实际问题:通过求解导函数,并结合问题的意义,解决实际问题。

三、三角函数1.三角函数的基本关系:三角函数包括正弦函数、余弦函数、正切函数等,它们之间存在一些基本的关系。

2.三角函数的图像与性质:正弦函数与余弦函数的图像是周期函数,在0到2π的区间内交替上下波动。

3.三角函数的基本公式:包括和差公式、倍角公式、半角公式等,用来简化三角函数的运算。

4.三角函数在解三角形中的应用:通过利用三角函数的性质,解决三角形的各种问题。

四、统计与概率1.统计的概念与基本统计量:统计是指对大量数据进行收集、整理、分析和解释的过程;基本统计量包括平均数、中位数、众数、标准差等。

高中数学必修三知识点归纳

高中数学必修三知识点归纳

高中数学必修三知识点归纳一、函数与方程1. 函数的定义与性质- 函数是一个或多个变量间的依赖关系。

- 定义域、值域、图像、奇偶性、单调性等。

2. 一元二次函数- 基本形式:f(x) = ax² + bx + c (a≠0)- 参数a、b、c对函数图像的影响- 顶点坐标、对称轴- 判别式和根的关系- 单调性、最大值最小值- 图像的平移、伸缩、翻转3. 幂函数、指数函数和对数函数- 幂函数:f(x) = x^a (a为实数,a≠0)- 指数函数:f(x) = a^x (a > 0, a ≠ 1)- 对数函数:f(x) = loga(x) (a > 0, a ≠ 1)- 特性和性质- 图像和变化规律4. 三角函数和三角方程- 正弦函数、余弦函数、正切函数、余切函数的定义- 周期和振幅- 正弦定理、余弦定理和正切定理- 三角方程的解法和应用二、数列与数学归纳法1. 数列的概念和性质- 数列是按照一定规律排列的一组数。

- 等差数列、等比数列、等差数列的前n项和- 通项公式、递推公式- 数列图像的性质2. 数列的极限- 数列趋于无穷的极限- 数列的收敛与发散- 等差数列、等比数列的极限- 极限的运算性质3. 数学归纳法- 数学归纳法的基本原理- 数学归纳法的应用三、数学推理与证明1. 几何证明方法- 直接证明、间接证明、反证法、数学归纳法- 常见几何定理的证明2. 合理推理方法- 演绎推理、归纳推理、直觉推理、假设-验证法 - 合理推理的特点和要求3. 几何证明- 平行线证明- 三角形的证明- 圆的证明。

高考必备数学必修三知识点

高考必备数学必修三知识点

高考必备数学必修三知识点高考是学生人生中的一次重要考试,而数学作为其中的一科,对于很多学生来说可能是最具挑战性的科目之一。

在数学考试中,必修三是一个重要的模块,其中包含了很多基础的数学知识点。

下面是高考必备数学必修三知识点的总结。

一、集合及其运算1. 集合的表示方法:描述法、集合列举法、元素属于集合的表示方法等。

2. 集合间的关系:包含关系、相等关系、不相等关系等。

3. 集合的运算:并集、交集、差集、补集等。

4. 集合的运算律:交换律、结合律、分配律等。

二、函数的概念与性质1. 函数的定义:函数是一个对应关系,每个自变量对应一个唯一的函数值。

2. 函数的表示方法:显式表示、隐式表示、图像表示等。

3. 奇函数与偶函数的性质:关于原点对称的函数为奇函数,关于y轴对称的函数为偶函数。

4. 初等函数的性质:常值函数、一次函数、幂函数、指数函数、对数函数等。

三、三角函数及其应用1. 各角的度数与弧度的关系:一周角对应的弧长为2π,弧度与角度的换算关系等。

2. 三角函数的定义与性质:正弦函数、余弦函数、正切函数等的定义和性质。

3. 三角函数的图像与性质:根据单位圆的定义绘制各个三角函数的图像,掌握周期、增减性等性质。

4. 三角函数的应用:解三角形、解直角三角形、求角度等。

在备战高考数学作为必修三的考试中,掌握这三个知识点是非常重要的。

只有熟练掌握了集合及其运算、函数的概念与性质以及三角函数及其应用,才能在考试中应对各种题型。

这些知识点的掌握需要通过大量的练习来巩固,可以通过做相关的习题来提高自己的理解和运用能力。

另外,在学习过程中可以结合教科书、辅导资料以及老师的指导进行系统学习和深入理解。

高考数学作为一门综合性的科目,除了基本的概念和运算方法外,还需要注重解题的能力和应用的能力。

在备考过程中要多进行真题和模拟题的练习,提高自己的解题速度和思维能力。

总结而言,高考必备数学必修三知识点的掌握对于高考数学成绩的提升是非常重要的。

高中数学必修三知识点

高中数学必修三知识点

高中数学必修三知识点高中数学必修三涵盖了算法初步、统计和概率这三个重要的部分,每个部分都有其独特的知识点和应用。

一、算法初步算法是解决问题的一系列明确的步骤,具有有限性、确定性、可行性等特点。

1、算法的概念算法是指按照一定规则解决某一类问题的明确和有限的步骤。

2、程序框图程序框图也叫流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。

基本的程序框有终端框(起止框)、输入、输出框、处理框(执行框)和判断框。

3、三种基本逻辑结构顺序结构:是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的。

条件结构:根据条件是否成立而选择不同的流向。

循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构。

循环结构又分为当型(while 型)和直到型(until 型)。

4、基本算法语句输入语句:INPUT “提示内容”;变量。

输出语句:PRINT “提示内容”;表达式。

赋值语句:变量=表达式。

条件语句:IF THEN ELSE 语句和 IF THEN 语句。

循环语句:当型循环(WHILE 语句)和直到型循环(UNTIL 语句)。

算法在计算机科学和日常生活中都有广泛的应用,例如计算机程序的编写、解决实际问题的步骤规划等。

二、统计统计是研究如何收集、整理、分析数据以及由数据得出结论的科学。

1、随机抽样简单随机抽样:包括抽签法和随机数法,总体中的个体数量较少时适用。

系统抽样:将总体平均分成若干部分,然后按照一定的规则,从每一部分抽取一个个体。

分层抽样:将总体分成若干层,然后从各层中独立地抽取一定数量的个体。

2、用样本估计总体频率分布表和频率分布直方图:能清楚地显示数据的分布情况。

众数、中位数、平均数:众数是一组数据中出现次数最多的数据;中位数是将数据从小到大或从大到小排列,位于中间位置的数(如果数据个数是奇数),或者中间两个数的平均数(如果数据个数是偶数);平均数则是所有数据的总和除以数据的个数。

数学必修三知识点总结

数学必修三知识点总结

数学必修三知识点总结一、函数的概念与性质1. 函数的定义:描述变量间依赖关系的一种数学表达方式。

2. 函数的表示方法:符号表示法、图像表示法、表格表示法。

3. 函数的性质:单调性、奇偶性、周期性、有界性。

4. 函数的基本运算:加法、减法、乘法、除法、复合函数。

二、指数与对数1. 指数函数:定义、图像、性质。

2. 对数函数:对数的定义、对数的运算法则、对数函数的图像与性质。

3. 指数与对数的关系:换底公式、指数与对数的互化。

4. 指数方程和对数方程的解法。

三、三角函数1. 三角函数的定义:正弦、余弦、正切函数的定义及其图像。

2. 三角函数的基本关系:和差公式、倍角公式、半角公式。

3. 三角函数的性质:奇偶性、单调性、周期性。

4. 三角方程的解法。

四、平面向量1. 向量的概念:物理背景、基本运算(加法、数乘、数量积)。

2. 向量的几何表示与线性运算。

3. 向量的坐标表示与向量方程。

4. 向量的应用:速度、加速度、力的合成与分解。

五、数列1. 数列的概念:定义、通项公式。

2. 等差数列与等比数列:定义、通项公式、求和公式。

3. 数列的极限:极限的概念、性质、计算方法。

4. 数列的应用:级数、递推关系、数学归纳法。

六、解析几何1. 平面直角坐标系:点的坐标、距离公式、斜率公式。

2. 直线的方程:点斜式、两点式、一般式。

3. 圆的方程:标准方程、一般方程。

4. 圆锥曲线:椭圆、双曲线、抛物线的方程与性质。

七、概率与统计1. 随机事件与概率:事件的定义、概率的计算。

2. 随机变量及其分布:离散型与连续型随机变量、概率分布。

3. 统计量:平均数、中位数、众数、方差、标准差。

4. 抽样与估计:抽样方法、总体参数的点估计与区间估计。

八、数学归纳法1. 数学归纳法的原理与步骤。

2. 证明方法:直接证明、反证法。

3. 应用:证明等式、不等式、数列的性质。

九、复数1. 复数的概念:实部、虚部、模、辐角。

2. 复数的运算:加法、减法、乘法、除法。

高中数学必修三知识点总结与例题精讲

高中数学必修三知识点总结与例题精讲

一:随机事件的概率(1)必然事件: 在条件S下, 一定会发生的事件, 叫相对于条件S的必然事件(certain event ), 简称必然事件.(2)不可能事件:在条件S 下 , 一定不会发生的事件, 叫相对于条件S 的不可能事件(impossible event ), 简称不可能事件.(3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件.(4)随机事件:在条件S 下可能发生也可能不发生的事件, 叫相对于条件S 的随机事件(random event ) , 简称随机事件;确定事件和随机事件统称为事件, 用A,B,C, ⋯表示.(5)频数与频率:在相同的条件S 下重复n 次试验, 观察某一事件 A 是否出现, 称n 次试验中事件 A 出现的次数n a 为事件A出现的频数(frequency );称事件A出现的比例 f n(A)= n A n为事件 A 出现的频率(relative frequency ); 对于给定的随机事件A, 如果随着试验次数的增加 , 事件 A 发生的频率 f n(A) 稳定在某个常数上, 把这个常数记作P(A), 称为事件 A 的概率( probability ).(6)频率与概率的区别与联系:随机事件的频率, 指此事件发生的次数n与试验总次数nAn A 的比值n ,它具有一定的稳定性, 总在某个常数附近摆动, 且随着试验次数的不断增多, 这种摆动幅度越来越小.我们把这个常数叫做随机事件的概率, 概率从数量上反映了随机事件发生的可能性的大小.频率在大量重复试验的前提下可以近似地作为这个事件的概率.频率是概率的近似值,随着试验次数的增加, 频率会越来越接近概率. 在实际问题中, 通常事件的概率未知, 常用频率作为它的估计值.频率本身是随机的, 在试验前不能确定. 做同样次数的重复实验得到事件的频率会不同.概率是一个确定的数, 是客观存在的, 与每次试验无关. 比如 , 一个硬币是质地均匀的, 则掷硬币出现正面朝上的概率就是0.5, 与做多少次实验无关.例 1 为了估计水库中的鱼的尾数, 可以使用以下的方法, 先从水库中捕出一定数量的鱼, 例如 2 000 尾, 给每尾鱼作上记号, 不影响其存活, 然后放回水库. 经过适当的时间, 让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼, 例如500 尾, 查看其中有记号的鱼, 设有40 尾.试根据上述数据, 估计水库内鱼的尾数.分析:学生先思考, 然后交流讨论, 教师指导,这实际上是概率问题, 即 2 000 尾鱼在水库中占所有鱼的百分比, 特别是500 尾中带记号的有40 尾 , 就说明捕出一定数量的鱼中带记号的概率为40500 , 问题可解 .解:设水库中鱼的尾数为n,A={ 带有记号的鱼}, 则有P(A)= 2000n.①因P(A)≈ 40 500,②由①②得2000n 40500, 解得n≈25000.所以估计水库中约有鱼25 000 尾.二:概率的意义1、 概率是对随机事件发生的可能性的描述,概率越大随机事件发生的可能性越大,概率越小随机事件发生的可能性就越小。

最全高中数学必修三知识点总结归纳(经典版)

最全高中数学必修三知识点总结归纳(经典版)

最全高中数学必修三知识点总结归纳(经典版)必修三知识点总结归纳(经典版)第一章算法初步1.1.1 算法的概念算法是指可以用计算机来解决的某一类问题的程序或步骤,必须是明确和有效的,而且能够在有限步之内完成。

算法具有有限性、确定性、顺序性与正确性、不唯一性和普遍性等特点。

1.1.2 程序框图程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。

一个程序框图包括起止框、输入、输出框、处理框和判断框等部分,需要掌握各个图形的形状、作用及使用规则。

算法的三种基本逻辑结构是顺序结构、条件结构和循环结构。

顺序结构是最简单的算法结构,由若干个依次执行的处理步骤组成,是任何一个算法都离不开的一种基本算法结构。

循环语句循环结构可以通过循环语句来实现。

在程序设计语言中,一般有两种循环结构:当型(WHILE型)和直到型(UNTIL 型),对应于程序框图中的两种循环结构。

下面分别介绍这两种语句结构。

1.WHILE语句WHILE语句的一般格式如下:WHILE 条件循环体WEND当计算机遇到WHILE语句时,先判断条件的真假。

如果条件符合,就执行WHILE与XXX之间的循环体。

然后再检查上述条件,如果条件仍符合,再次执行循环体,这个过程反复进行,直到某一次条件不符合为止。

这时,计算机将不执行循环体,直接跳到WEND语句后,接着执行XXX之后的语句。

因此,当型循环有时也称为“前测试型”循环。

2.UNTIL语句UNTIL语句的一般格式如下:DO循环体LOOP UNTIL 条件当计算机执行该语句时,先执行一次循环体,然后进行条件的判断。

如果条件不满足,继续返回执行循环体,然后再进行条件的判断,这个过程反复进行,直到某一次条件满足时,不再执行循环体,跳到LOOP UNTIL语句后执行其他语句。

因此,直到型循环又称为“后测试型”循环。

注意,是先执行循环体后进行条件判断的循环语句。

辗转相除法与更相减损术1.辗转相除法辗转相除法,也叫欧几里德算法,用于求最大公约数。

高中数学必修三:知识点

高中数学必修三:知识点

必修3:知识点一:算法初步 1:算法的概念(1)算法概念:通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成. (2)算法的特点:①有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的. ②确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果。

③顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题. ④不唯一性:求解某一个问题的解法不一定是唯一的,但是答案是唯一的。

⑤普遍性:很多具体的问题,都可以设计合理的算法去解决。

2: 程序框图(1)程序框图基本概念:①程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。

一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。

学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。

2、框图一般按从上到下、从左到右的方向画。

3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。

判断框具有超过一个退出点的唯一符号。

4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,5、在图形符号内描述的语言要非常简练清楚。

3:算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。

(1)顺序结构:顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来, 按顺序执行算法步骤。

如在示意图中,A 框和B 框是依次执行的,只有在 执行完A 框指定的操作后,才能接着执行B 框所指定的操作。

(2)条件结构:条件结构是指在算法中通过对条件的判断根据条件是否成立而选择不同流向的 算法结构。

高中数学必修三知识点归纳

高中数学必修三知识点归纳

高中数学必修三知识点归纳高中数学必修三是数学学科中的重要课程之一,此课程内容涉及到数学的基本知识和概念,对于学生打下数学基础至关重要。

下面将对高中数学必修三的知识点做一个简单的归纳和总结,以便同学们更好地掌握和理解这些内容。

一、函数与导数1. 函数的基本概念:函数是一种对应关系,通俗地说,就是输入一个值,函数就会按照某种规律输出一个值。

函数常用符号表示为 y=f(x),其中x为自变量,y为因变量。

2. 函数的性质:函数可以是线性的、二次函数、三角函数等多种形式,每种函数都有自己的特点和性质,比如奇偶性、周期性等。

3. 导数的概念:导数可以理解为函数在某一点的瞬时变化率,也就是函数曲线在该点的切线斜率。

导数常用符号表示为 f'(x) 或 dy/dx。

4. 导数的计算:导数的计算通常使用极限的概念,求导的方法有很多种,比如用导数定义法、求导法则、复合函数求导法等。

二、三角函数与概率统计1. 三角函数的概念:三角函数是数学中的一类周期函数,包括正弦函数、余弦函数、正切函数等,它们在三角学和物理学中都有广泛的应用。

2. 三角函数的性质:三角函数具有周期性、奇偶性等性质,掌握这些性质对于解决相关问题非常重要。

3. 概率的基本概念:概率是描述随机事件发生可能性的数学工具,通常用概率值在0到1之间表示,0表示不可能事件,1表示必然事件。

4. 概率的计算:概率计算方法包括古典概型、几何概型、条件概率等,掌握这些计算方法可以有效解决概率统计中的问题。

三、数列与函数的应用1. 数列的概念:数列是按照一定规律排列的一组数的有序集合,数列中的每个数称为这个数列的项。

2. 数列的性质:数列可以是等差数列、等比数列等,每种数列都有其特殊的性质和求和公式。

3. 函数的应用:函数在现实生活中有着广泛的应用,比如利用函数模型解决实际问题、函数图像分析等。

4. 数学模型的建立:数列和函数可以用来建立数学模型,通过建立和分析数学模型,可以更好地解决实际问题。

高中数学必修三知识点(通用5篇)

高中数学必修三知识点(通用5篇)

高中数学必修三知识点〔通用5篇〕高中数学必修三知识点〔通用5篇〕高中数学必修三知识点篇1一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合中元素的三个特性:1.元素确实定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,一样的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此断定两个集合是否一样,仅需比较它们的元素是否一样,不需考察排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1.用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描绘法。

注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N_或N+整数集Z有理数集Q实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A 的元素,就说a属于集合A记作a∈A,相反,a不属于集合A 记作a?A列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描绘法:将集合中的元素的公共属性描绘出来,写在大括号内表示集合的方法。

用确定的条件表示某些对象是否属于这个集合的方法。

①语言描绘法:例:{不是直角三角形的三角形}②数学式子描绘法:例:不等式x-3》2的解集是{x?Rx-3》2}或{x x-3》2}4、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{x x2=-5}二、集合间的根本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分。

(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系(5≥5,且5≤5,那么5=5)实例:设A={x x2-1=0}B={-1,1}“元素一样”结论:对于两个集合A与B,假设集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A 的元素,我们就说集合A等于集合B,即:A=B①任何一个集合是它本身的子集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修3知识点第一章算法初步
1.1.1算法的概念
1、算法概念:
2. 算法的特点:(1) (2) (3) (4) (5) 1.1.2程序框图
(一)构成程序框的图形符号及其作用
条件P是否成立而选择执行A框或B框。

无论P条件是否成立,只能执行A框或B框之一,不可能同时执行A框和B框,也不可能A框、B框都不执行。

一个判断结构可以有多个判断框。

3、循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。

1.2.1输入、输出语句和赋值语句
1、输入语句
一般格式
2
3
(1)赋值语句的一般格式
(2(3)赋值语句中的“=”称作赋值号,与数学中的等号的意义是不同的。

赋值号的左右两边不能对换,它将赋值号右边的表达式的值赋给赋值号左边的变量;(4)赋值语句左边只能是变量名字,而不是表达式,右边表达式可以是一个数据、常量或算式;(5)对于一个变量可以多次赋值。

1.2.2条件语句
1、条件语句的一般格式:IF语句的一般格式为图1,对应的程序框图为图2。

图1 图2
IF语句的最简单格式为图3,对应的程序框图为图4。

1.2.3循环语句
循环结构是由循环语句来实现的。

(1)while语句的一般格式是
(图3)
(2)2、DO 语句
DO 语句的一般格式是 对应的程序框图是
1.3.1辗转相除法与更相减损术
1、辗转相除法。

用较大的数除以较小的数所得的余数和较小的数构成新的一对数,继续做上面的除法,直到大数被小数除尽,这个较小的数就是最大公约数。

2、更相减损术。

以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数。

继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数。

例、用辗转相除法求210与162的最大公约数,并用更相减损术检验
1.3.2秦九韶算法与排序
1、秦九韶算法概念:f(x)=a n x n +a n-1x n-1+….+a 1x+a 0求值问题
f(x)=a n x n +a n-1x n-1+….+a 1x+a 0=( a n x n-1+a n-1x n-2+….+a 1)x+a 0 =(( a n x n-2+a n-1x n-3+….+a 2)x+a 1)x+a 0
=......=(...( a n x+a n-1)x+a n-2)x+...+a 1)x+a 0
求多项式的值时,首先计算最内层括号内依次多项式的值,即v 1=a n x+a n-1
然后由内向外逐层计算一次多项式的值,即v 2=v 1x+a n-2 v 3=v 2x+a n-3 ...... v n =v n-1x+a 0 这样,把n 次多项式的求值问题转化成求n 个一次多项式的值的问题。

1.3.3进位制
(1)以k 为基数的k 进制换算为十进制:1
10
110()110...n
n n n k n n a a a a a k a k
a k a k ---=++
+
(2)十进制换算为k 进制:除以k 取余,倒序排列 例、(1)把二进制数110011化为十进制数 (2)把89化为二进制数
第二章 统计
2.1.1简单随机抽样
1.总体: 样本 :
个体: 样本容量:
2.简单随机抽样:
3.简单随机抽样常用的方法:(1) ⑵
4.抽签法的适用范围为 随机数法的适用范围为 2.1.2系统抽样
1.系统抽样(等距抽样或机械抽样):当总体元素个数很大时,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本。

2、系统抽样的适用范围为(1) (2) 2.1.3分层抽样
1.分层抽样:当总体由明显差异的几部分组成时,将总体中各个个体按某种特征分层,在各层中按层在总体中所占比例进行简单随机抽样或系统抽样。

三种抽样方法的区别和联系:
2.2.1用样本的频率分布估计总体的分布 1、列频率分布表,画频率分布直方图:
(1)计算极差(2)决定组数和组距(3)决定分点(4)列频率分布表(5)画频率分布直方图 2、茎叶图
2.2.2用样本的数字特征估计总体的数字特征
1、平均值:n
x x x x n
+++= 21
2、.样本标准差:n
x x x x x x s s n 2
22212
)()()(-++-+-==
3、(1)如果把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变 (2)如果把一组数据中的每一个数据乘以一个共同的常数k ,标准差变为原来的k 倍 2.3.2两个变量的线性相关
1、概念:(1)回归直线方程:y a b x ∧


=+(2)回归系数:1
2
21
n
i i i n
i
i x y nx y
b x nx

==∑-=
∑-,a y b x ∧

=-
2.应用直线回归的注意事项:回归分析前,最好先作出散点图;
第三章 概 率
3.1.1 —3.1.2随机事件的概率及概率的意义 1、基本概念:
(1)必然事件: (2)不可能事件:
(3)确定事件: (4)随机事件: (5)事件:
(6)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事
件A 出现的次数nA 为事件A 出现的频数;称事件A 出现的比例fn(A)=n n A
为事件A 出现的频率:
对于给定的随机事件A ,在n 次重复进行的实验中,时间A 发生的频率,当n 很大时,总是在某个常数附近摆动,随着n 的增加,摆动幅度越来越小,这时就把这个常数叫做事件A 的概率 (7)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA 与试验总次数n 的比值
n n A
,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度
越来越小。

我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。

频率在大量重复试验的前提下可以近似地作为这个事件的概率 3.1.3 概率的基本性质 1、基本概念:
(2)若A ∩B 为不可能事件,即A ∩B=ф,即不可能同时发生的两个事件,那么称事件A 与事件B
互斥;
(3)若A ∩B 为不可能事件,A ∪B 为必然事件,即不能同时发生且必有一个发生的两个事件,那
么称事件A 与事件B 互为对立事件;
概率加法公式:当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B) 2、概率的基本性质:
1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; 2)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);
3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);
4)互斥事件与对立事件的区别与联系,互斥事件是指事件A 与事件B 在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A 发生且事件B 不发生;(2)事件A 不发生且事件B 发生;(3)事件A 与事件B 同时不发生,而对立事件是指事件A 与事件B 有且仅有一个发生,其包括两种情形;(1)事件A 发生B 不发生;(2)事件B 发生事件A 不发生,对立事件互斥事
件的特殊情形。

3.2.1 —3.2.2古典概型及随机数的产生
1、基本事件:
2、基本事件的特点:(1)
(2) 1、(1)古典概型的使用条件:(1)
(2)
(2)古典概型的解题步骤; ①求出总的基本事件数;
②求出事件A 所包含的基本事件数,然后利用公式P (A )=总的基本事件个数包含的基本事件数A
3.3.1—3.3.2几何概型
基本概念:(1)几何概率模型:
(2)几何概型的概率公式:
(3)几何概型的特点:(1) (2)。

相关文档
最新文档