高二数学必修三知识点总结范文合集最新
数学必修三知识点总结
![数学必修三知识点总结](https://img.taocdn.com/s3/m/cd64017a974bcf84b9d528ea81c758f5f61f29dd.png)
数学必修三知识点总结一、算法初步。
1. 算法的概念。
- 算法通常是指按照一定规则解决某一类问题的明确和有限的步骤。
- 算法的特点:有限性(步骤有限)、确定性(每一步都有确切定义)、顺序性(步骤有先后顺序)、可行性(每一步都能有效执行)、不唯一性(解决问题的算法不唯一)。
2. 程序框图。
- 程序框图的基本图形符号:- 终端框(起止框):表示一个算法的起始和结束。
- 输入、输出框:用来表示数据的输入或结果的输出。
- 处理框(执行框):赋值、计算等操作。
- 判断框:判断某一条件是否成立,成立时在出口处标明“是”或“Y”,不成立时标明“否”或“N”。
- 流程线:连接程序框,表示算法步骤的执行顺序。
- 三种基本逻辑结构:- 顺序结构:是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的。
- 条件结构:根据条件是否成立有不同的流向。
- 循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况。
有当型循环(先判断条件,满足条件执行循环体)和直到型循环(先执行一次循环体,再判断条件)。
3. 基本算法语句。
- 输入语句:`INPUT“提示内容”;变量`,用于向程序中输入数据。
- 输出语句:`PRINT“提示内容”;表达式`,用于输出程序的运行结果。
- 赋值语句:变量 = 表达式,将表达式的值赋给变量。
- 条件语句:- `IF - THEN`语句(单分支条件语句):- 格式:`IF 条件 THEN`。
语句体。
- 当条件满足时执行语句体。
- `IF - THEN - ELSE`语句(双分支条件语句):- 格式:`IF 条件 THEN`。
语句体1。
`ELSE`.语句体2。
- 当条件满足时执行语句体1,不满足时执行语句体2。
- 循环语句:- `FOR`循环语句:- 格式:`FOR 循环变量=初值 TO 终值 STEP 步长`。
循环体。
`NEXT 循环变量`。
- 用于已知循环次数的循环结构。
高二必修三数学知识点归纳
![高二必修三数学知识点归纳](https://img.taocdn.com/s3/m/874a11cf7d1cfad6195f312b3169a4517723e58d.png)
高二必修三数学知识点归纳1.高二必修三数学知识点归纳篇一(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。
(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。
我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。
频率在大量重复试验的`前提下可以近似地作为这个事件的概率2.高二必修三数学知识点归纳篇二直线方程:1.点斜式:y-y0=k(x-x0)(x0,y0)是直线所通过的已知点的坐标,k是直线的已知斜率。
x是自变量,直线上任意一点的横坐标;y是因变量,直线上任意一点的纵坐标。
2.斜截式:y=kx+b直线的斜截式方程:y=kx+b,其中k是直线的斜率,b是直线在y轴上的截距。
该方程叫做直线的斜截式方程,简称斜截式。
此斜截式类似于一次函数的表达式。
3.两点式;(y-y1)/(y2-y1)=(x-x1)/(x2-x1)如果x1=x2,y1=y2,那么两点就重合了,相当于只有一个已知点了,这样不能确定一条直线。
如果x1=x2,y1y2,那么此直线就是垂直于X轴的一条直线,其方程为x=x1,不能表示成上面的一般式。
如果x1x2,但y1=y2,那么此直线就是垂直于Y轴的一条直线,其方程为y=y1,也不能表示成上面的一般式。
高中数学必修三知识点(5篇)
![高中数学必修三知识点(5篇)](https://img.taocdn.com/s3/m/60317edefbb069dc5022aaea998fcc22bcd143d2.png)
高中数学必修三知识点(5篇)高中数学必修三学问点篇1一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合中元素的三个特性:1.元素确实定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是公平的,没有先后挨次,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列挨次是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1.用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。
留意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N_或N+整数集Z有理数集Q实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A 列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-32的解集是{x?Rx-32}或{x x-32}4、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{x x2=-5}二、集合间的基本关系1.“包含”关系—子集留意:有两种可能(1)A是B的一部分。
(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB 或BA2.“相等”关系(5≥5,且5≤5,则5=5)实例:设A={x x2-1=0}B={-1,1}“元素相同”结论:对于两个集合A与B,假如集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B①任何一个集合是它本身的子集。
数学必修三重点知识点总结
![数学必修三重点知识点总结](https://img.taocdn.com/s3/m/e00a2a1fdf80d4d8d15abe23482fb4daa58d1d26.png)
数学必修三重点知识点总结数学必修三重点知识点总结在现实学习生活中,是不是听到知识点,就立刻清醒了?知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。
为了帮助大家掌握重要知识点,以下是小编收集整理的数学必修三重点知识点总结,欢迎阅读与收藏。
数学必修三重点知识点总结1一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1.用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。
注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N_或N+整数集Z有理数集Q实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A 列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x?Rx-3>2}或{xx-3>2}4、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{xx2=-5}二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
高二数学必修三重点知识点归纳
![高二数学必修三重点知识点归纳](https://img.taocdn.com/s3/m/1bc3b927c381e53a580216fc700abb68a982ad9c.png)
高二数学必修三重点知识点归纳1.高二数学必修三重点知识点归纳篇一(一)导数第一定义设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有增量△x(x0+△x也在该邻域内)时,相应地函数取得增量△y=f(x0+△x)-f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f'(x0),即导数第一定义(二)导数第二定义设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有变化△x(x-x0也在该邻域内)时,相应地函数变化△y=f(x)-f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f'(x0),即导数第二定义(三)导函数与导数如果函数y=f(x)在开区间I内每一点都可导,就称函数f(x)在区间I内可导。
这时函数y=f(x)对于区间I内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y',f'(x),dy/dx,df(x)/dx。
导函数简称导数。
(四)单调性及其应用1.利用导数研究多项式函数单调性的一般步骤(1)求f(x)(2)确定f(x)在(a,b)内符号(3)若f(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数2.用导数求多项式函数单调区间的一般步骤(1)求f(x)(2)f(x)>0的解集与定义域的交集的对应区间为增区间;f(x)<0的解集与定义域的交集的对应区间为减区间2.高二数学必修三重点知识点归纳篇二空间中的平行关系1、直线与平面平行(核心)定义:直线和平面没有公共点判定:不在一个平面内的一条直线和平面内的一条直线平行,则该直线平行于此平面(由线线平行得出)性质:一条直线和一个平面平行,经过这条直线的平面和这个平面相交,则这条直线就和两平面的交线平行2、平面与平面平行定义:两个平面没有公共点判定:一个平面内有两条相交直线平行于另一个平面,则这两个平面平行性质:两个平面平行,则其中一个平面内的直线平行于另一个平面;如果两个平行平面同时与第三个平面相交,那么它们的交线平行。
新人教版高中数学必修三知识点总结(详细)
![新人教版高中数学必修三知识点总结(详细)](https://img.taocdn.com/s3/m/d92263da50e79b89680203d8ce2f0066f53364c9.png)
新人教版高中数学必修三知识点总结(详
细)
本文旨在总结新人教版高中数学必修三的主要知识点,帮助学生复和掌握这一课程内容。
一、函数基本性质
1. 定义:函数是一个有输入和输出的对应关系。
2. 定义域和值域:函数的定义域是所有可能的输入值集合,值域是所有可能的输出值集合。
3. 图像与映射:函数可以通过图像表示,其中横坐标表示输入值,纵坐标表示输出值。
4. 奇偶性:函数可以根据输入值和输出值的奇偶性进行分类。
二、三角函数
1. 正弦函数:表示角的正弦值与其对边与斜边的比值。
2. 余弦函数:表示角的余弦值与其邻边与斜边的比值。
3. 正切函数:表示角的正切值与其对边与邻边的比值。
4. 幅角和周期:三角函数的图像在一定区间内呈周期性重复。
5. 三角函数的性质:包括奇偶性、单调性、增减性等。
6. 三角函数的简化:通过三角恒等式将复杂的三角函数化简为简单形式。
三、三角恒等式
1. 倍角公式:表示角的两倍与原角之间的关系。
2. 和差公式:表示两个角的和与差与它们的三角函数值之间的关系。
3. 积化和差公式:表示两个角的积与和与差与它们的三角函数值之间的关系。
4. 和差化积公式:表示两个角的和与差与它们的三角函数值之间的关系。
以上是新人教版高中数学必修三的主要知识点总结,通过复习和掌握这些知识,学生将能够更好地理解和应用数学。
希望本文对大家有所帮助!。
(完整版)人教版高中数学必修3各章知识点总结,推荐文档
![(完整版)人教版高中数学必修3各章知识点总结,推荐文档](https://img.taocdn.com/s3/m/504415d55727a5e9856a61f7.png)
高中数学必修3知识点第一章算法初步i.i.i 算法的概念算法的特点:(i)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的^(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题^(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法^(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.1.1.2 程序框图1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。
(二)构成程序框的图形符号及其作用学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。
2、框图一般按从上到下、从左到右的方向画。
3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。
判断框具有超过一个退出点的唯一符号。
4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。
5、在图形符号内描述的语言要非常简练清楚。
(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若1个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。
顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。
高二数学必修3知识点总结
![高二数学必修3知识点总结](https://img.taocdn.com/s3/m/51552480d4bbfd0a79563c1ec5da50e2524dd186.png)
高二数学必修3知识点总结高二数学必修3知识点包括平面向量、解析几何、立体几何和概率统计。
本文将对这些知识点进行总结和归纳,以帮助同学们更好地理解和掌握这些知识。
一、平面向量1. 向量的基本概念:矢量、向量的模、单位向量、零向量等。
2. 向量的表示法:坐标表示法、位置矢量表示法和线段表示法。
3. 向量的运算:向量的相等、加法、减法、数乘等运算。
4. 向量的数量积:数量积的定义、性质和计算方法。
5. 向量的向量积:向量积的定义、性质和计算方法。
6. 向量的混合积:混合积的定义、性质和计算方法。
二、解析几何1. 坐标表示方法:直角坐标系、点的坐标、向量的坐标等。
2. 直线的方程:点斜式、一般式、两点式等。
3. 平面的方程:点法式、一般式等。
4. 直线与直线的位置关系:相交、平行、重合等。
5. 直线与平面的位置关系:相交、平行、垂直等。
6. 平面与平面的位置关系:相交、平行、垂直等。
三、立体几何1. 空间几何体的基本概念:点、线、面、体等。
2. 平行线、平面、垂直线、垂直平面等的性质。
3. 球的性质:球面、球心、半径、切线等。
4. 圆锥、圆台的性质:侧面、底面、母线等。
5. 空间坐标系:直角坐标系、柱面坐标系等。
6. 空间几何体的体积和表面积的计算方法。
四、概率统计1. 随机事件的基本概念:样本空间、随机事件、必然事件、不可能事件等。
2. 事件的关系:包含关系、互斥关系、对立关系等。
3. 概率的基本性质和计算方法:古典概型、排列组合等。
4. 条件概率和乘法定理:条件概率的概念、乘法定理的应用等。
5. 全概率公式和贝叶斯定理:全概率公式的定义和应用、贝叶斯定理的定义和应用等。
6. 随机变量和概率分布:离散随机变量、连续随机变量、概率分布等。
以上为高二数学必修3知识点的总结。
希望本文能帮助同学们巩固和复习这些知识,提升数学学习的效果。
最后,祝大家在数学学习中取得好成绩!。
必修3数学知识点总结
![必修3数学知识点总结](https://img.taocdn.com/s3/m/97758a8b250c844769eae009581b6bd97f19bc38.png)
必修3数学知识点总结必修3数学课程是高中数学教育中的重要组成部分,它涵盖了多个数学领域的基础知识点。
以下是对必修3数学知识点的总结:1. 概率与统计- 随机事件:理解随机事件的概率,包括必然事件、不可能事件和随机事件。
- 概率的计算:掌握概率的加法和乘法规则,以及条件概率的概念。
- 统计学基础:学习数据的收集、整理和分析方法,包括频率分布表、直方图和条形图。
- 样本与总体:理解样本数据与总体数据的关系,以及如何从样本估计总体。
2. 复数- 复数的定义:复数是实数和虚数的组合,形式为a+bi,其中a和b是实数,i是虚数单位。
- 复数的运算:学习复数的加法、减法、乘法和除法。
- 复数的几何表示:复数可以在复平面上表示,理解复数的模和辐角。
3. 算法初步- 算法的概念:算法是解决问题的一系列有序步骤。
- 程序框图:学习如何使用流程图来表示算法。
- 算法的逻辑结构:理解顺序结构、选择结构和循环结构。
4. 逻辑- 命题逻辑:学习如何表达和判断命题的真假。
- 逻辑推理:掌握演绎推理和归纳推理的方法。
5. 导数与微分- 导数的概念:导数是函数在某一点的瞬时变化率。
- 导数的计算:掌握基本导数公式,如常数、幂函数、三角函数和指数函数的导数。
- 微分:理解微分的概念,以及微分在实际问题中的应用。
6. 积分- 定积分:学习如何计算定积分,理解其在物理和工程中的应用。
- 不定积分:掌握不定积分的计算方法,包括换元积分法和分部积分法。
7. 函数模型- 函数的模型:理解函数在描述现实世界问题中的作用。
- 函数的应用:学习如何选择合适的函数模型来解决实际问题。
8. 空间几何- 空间直线与平面:学习空间中直线与平面的位置关系。
- 空间几何体:理解空间几何体的性质,如多面体和旋转体。
9. 解析几何- 坐标系:掌握如何在坐标系中表示点和图形。
- 曲线方程:学习如何从几何图形中推导出曲线的方程。
通过这些知识点的学习,学生能够建立扎实的数学基础,为进一步的数学学习打下良好的基础。
高二数学必修第三册知识点
![高二数学必修第三册知识点](https://img.taocdn.com/s3/m/e5664f7766ec102de2bd960590c69ec3d5bbdb2d.png)
高二数学必修第三册知识点一、平面向量1. 平面向量的概念和表示方法2. 平面向量的加法和减法3. 平面向量的数量积和向量积4. 平面向量的线性运算5. 平面向量的模长和单位向量6. 平面向量的共线性和垂直性判定7. 平面向量的应用:平面几何和力学中的力分解等二、三角函数1. 弧度制和角度制2. 三角函数的基本性质和公式3. 三角函数的图像和性质4. 三角函数的诱导公式和倍角公式5. 三角函数的和差化积公式和积化和差公式6. 三角函数的倒数关系和秩序关系7. 三角函数在实际问题中的应用:海伦公式,三角函数在计算机图形学中的应用等三、数列与数学归纳法1. 等差数列和等比数列的概念和性质2. 数列的通项公式和前n项和公式3. 递推数列的概念和性质4. 数学归纳法的基本原理和应用5. 数列在实际问题中的应用:经济学中的收入与支出问题,物理学中的速度和加速度问题等四、概率与统计1. 随机事件、样本空间和事件的概念2. 概率的基本性质和计算方法3. 条件概率和独立事件的概念和计算4. 全概率公式和贝叶斯公式的应用5. 随机变量的概念和性质6. 离散型随机变量和连续型随机变量的概念和分布7. 统计参数和抽样分布的概念和应用五、平面解析几何1. 二维坐标系和点、直线、圆的表示方法2. 直线的斜率和截距的计算3. 直线的方程:点斜式、两点式和一般式4. 直线的性质:与坐标轴的交点、相交关系、平行关系等5. 圆的方程:标准方程、一般方程和参数方程6. 圆的性质:与坐标轴的交点、相交关系、切线和法线的斜率等六、立体几何1. 空间几何体的概念和表示方法2. 立体几何体的面积和体积的计算公式3. 平行四边形体积的计算公式和性质4. 圆锥、圆柱和圆球的性质和计算5. 空间中的直线和平面的位置关系6. 空间中的直线和平面的交点和交线的计算七、数学证明方法1. 数学证明的基本方法和过程2. 直接证明法和间接证明法的应用3. 数学归纳法和反证法的应用4. 数学证明中的常用逻辑连接词和推理方法这篇文章主要介绍了高二数学必修第三册的知识点,包括平面向量、三角函数、数列与数学归纳法、概率与统计、平面解析几何、立体几何以及数学证明方法等内容。
人教版高二年级数学必修三知识点
![人教版高二年级数学必修三知识点](https://img.taocdn.com/s3/m/fce077b0be1e650e53ea99d6.png)
1.高二年級數學必修三知識點1.機械振動:機械振動是指物體在平衡位置附近所做的往復運動.2.回復力:回復力是指振動物體所受到的指向平衡位置的力,是由作用效果來命名的.回復力的作用效果總是將物體拉回平衡位置,從而使物體圍繞平衡位置做週期性的往復運動。
回復力是由振動物體所受力的合力(如彈簧振子)沿振動方向的分力(如單擺)提供的,這就是回復力的來源。
3.平衡位置:平衡位置是指物體在振動中所受的回復力為零的位置,此時振子未必一定處於平衡狀態.比如單擺經過平衡位置時,雖然回復力為零,但合外力並不為零,還有向心力.4.描述振動的物理量:①位移總是相對於平衡位置而言的,方向總是由平衡位置指向振子所在的位置—總是背離平衡位置向外;②振幅是物體離開平衡位置的距離,它描述的是振動的強弱,振幅是標量;③頻率是單位時間內完成全振動的次數;④相位用來描述振子振動的步調。
如果振動的振動情況完全相反,則振動步調相反,為反相位.5.簡諧運動:A、簡諧運動的回復力和位移的變化規律;B、單擺的週期。
由本身性質決定的週期叫固有週期,與擺球的品質、振幅(振動的總能量)無關。
6.簡諧運動的運算式和圖象:x=Asin(ωt+φ0)簡諧運動的圖象描述的是一個質點做簡諧運動時,在不同時刻的位移,因而振動圖象反映了振子的運動規律(注意:振動圖象不是運動軌跡)。
由振動圖象還可以確定振子某時刻的振動方向.7.簡諧運動的能量:不計摩擦和空氣阻力的振動是理想化的振動,此時系統只有重力或彈力做功,機械能守恆。
振動的能量和振幅有關,振幅越大,振動的能量越大。
2.高二年級數學必修三知識點(1)演算法概念:在數學上,現代意義上的演算法通常是指可以用電腦來解決的`某一類問題是程式或步驟,這些程式或步驟必須是明確和有效的,而且能夠在有限步之內完成.(2)演算法的特點:①有限性:一個演算法的步驟序列是有限的,必須在有限操作之後停止,不能是無限的.②確定性:演算法中的每一步應該是確定的並且能有效地執行且得到確定的結果,而不應當是模棱兩可.③順序性與正確性:演算法從初始步驟開始,分為若干明確的步驟,每一個步驟只能有一個確定的後繼步驟,前一步是後一步的前提,只有執行完前一步才能進行下一步,並且每一步都準確無誤,才能完成問題.④不性:求解某一個問題的解法不一定是的,對於一個問題可以有不同的演算法.⑤普遍性:很多具體的問題,都可以設計合理的演算法去解決,如心算、計算器計算都要經過有限、事先設計好的步驟加以解決.3.高二年級數學必修三知識點古典概型(1)古典概型的使用條件:試驗結果的有限性和所有結果的等可能性。
高中数学必修三知识点总结(优选3篇)
![高中数学必修三知识点总结(优选3篇)](https://img.taocdn.com/s3/m/87a47e2059fafab069dc5022aaea998fcd224059.png)
高中数学必修三知识点总结第1篇1.一些基本概念:(1)向量:既有大小,又有方向的量。
(2)数量:只有大小,没有方向的量。
(3)有向线段的三要素:起点、方向、长度。
(4)零向量:长度为0的向量。
(5)单位向量:长度等于1个单位的向量。
(6)平行向量(共线向量):方向相同或相反的非零向量。
※零向量与任一向量平行。
(7)相等向量:长度相等且方向相同的向量。
2.向量加法运算:⑴三角形法则的特点:首尾相连。
⑵平行四边形法则的特点:共起点高中数学必修三知识点总结第2篇一、高中数学函数的有关概念1.高中数学函数函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于函数A中的任意一个数x,在函数B中都有确定的数f(x)和它对应,那么就称f:A →B为从函数A到函数B的一个函数。
记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的函数{f(x)|x∈A}叫做函数的值域。
注意:函数定义域:能使函数式有意义的实数x的函数称为函数的定义域。
求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的。
那么,它的定义域是使各部分都有意义的x的值组成的函数。
(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义。
相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)2.高中数学函数值域:先考虑其定义域(1)观察法(2)配方法(3)代换法3.函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的函数C,叫做函数y=f(x),(x∈A)的图象。
2023年高考数学必修三知识点总结人教版高考数学必修三考点汇总
![2023年高考数学必修三知识点总结人教版高考数学必修三考点汇总](https://img.taocdn.com/s3/m/e932c85d59fafab069dc5022aaea998fcc22400e.png)
高考数学必修三知识点总结人教版高考数学必修三考点篇一自变量某和因变量y有如下关系:y=k某+b则此时称y是某的一次函数。
特别地,当b=0时,y是某的正比例函数。
即:y=k某(k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的某的变化值成正比例,比值为k即:y=k某+b(k为任意不为零的实数b取任何实数)2.当某=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像,一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与某轴和y轴的交点)2.性质:(1)在一次函数上的任意一点p(某,y),都满足等式:y=k某+b。
(2)一次函数与y轴交点的坐标总是(0,b),与某轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随某的增大而增大;当k当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=o时,直线通过原点o(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点a(某1,y1);b(某2,y2),请确定过点a、b的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=k某+b。
(2)因为在一次函数上的任意一点p(某,y),都满足等式y=k某+b。
所以可以列出2个方程:y1=k某1+b……①和y2=k某2+b……②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
高中数学必修3知识点总结篇二高中数学(文)包含5本必修、2本选修,(理)包含5本必修、3本选修,每学期学某某两本书。
必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。
高二数学第三册知识点汇总
![高二数学第三册知识点汇总](https://img.taocdn.com/s3/m/1f2b47506fdb6f1aff00bed5b9f3f90f76c64d0a.png)
高二数学第三册知识点汇总高二数学第三册是学习数学的重要阶段,其中包括了许多重要的知识点。
在本文中,将对这些知识点进行汇总和总结,以便加深对这些知识的理解和掌握。
一、导数与微分导数与微分是数学分析的重要内容,它们是研究函数变化率的工具。
在高二数学第三册中,我们学习了导数的概念、性质及其计算方法。
导数的定义是某一函数在一点的切线斜率,通常用f'(x)表示。
导数的计算方法包括了常用函数的求导法则,如幂函数求导法则、指数函数求导法则、对数函数求导法则等。
此外,还有一些基本的求导公式,如和差积商法则和复合函数求导法则。
微分是导数的应用之一,它是微积分中的一个重要概念。
微分的计算方法与求导密切相关,通常用dx表示一个无穷小的自变量的变化量,而dy表示函数值的变化量。
微分在近似计算、极值问题等方面有广泛的应用。
二、数列与函数在高二数学第三册中,我们还学习了数列与函数的相关知识。
数列是按照一定顺序排列的一组数,它是数学研究的基础之一。
在数列的研究中,我们学习了等差数列和等比数列的性质与应用,掌握了求和公式和通项公式。
函数是数学中一个非常重要的概念,它描述了变量之间的关系。
在高二数学第三册中,我们学习了函数的定义、性质与应用。
其中,我们重点学习了一次函数、二次函数、指数函数、对数函数等函数的图像与性质,掌握了它们的变换与求值方法。
三、空间与向量空间与向量是高二数学第三册中的另一个重要内容。
在空间几何中,我们学习了三维坐标系及其性质,掌握了直线和平面的参数方程与一般方程的转换方法。
此外,我们还学习了向量的概念、性质与运算规则,包括向量的线性组合、数量积与向量积等。
四、概率与统计概率与统计是数学中的一个重要分支,它研究了随机事件的规律性。
在高二数学第三册中,我们学习了概率的基本概念与性质,包括古典概型、条件概率、事件独立性等。
我们还学习了一些常见的概率分布,如二项分布、正态分布等。
统计学是概率论的一个重要应用领域,它研究如何收集、整理、分析和解释数据。
高二数学必修三知识要点
![高二数学必修三知识要点](https://img.taocdn.com/s3/m/c3855ac7caaedd3383c4d3ac.png)
高二数学必修三知识要点【篇一】高二数学必修三知识要点(一)基本概念必然事件确定事件1、事件不可能事件不确定事件(随机事件)2、什么叫概率?表示一个事件发生可能性的大小,记为P(事件名称)=a;练习一:判断下列事件的类型(1)今天是星期二,明天是星期三;(2)掷一枚质地均匀的正方体骰子,得到点数7;(3)买彩票中了500万大奖;(4)抛两枚硬币都是正面朝上;(5)从一副洗好的*牌中(54张)中抽出红桃A。
(二)预测随机事件的概率1、步骤:(1)找出所有机会均等的结果,作为概率的分母注:不能仅凭主观判断,而应利用列举法、树状图、列表法等方法找。
(2)明确关注结果,作为分子2、用列表法或树状图分析复杂情况下机会均等结果【篇二】高二数学必修三知识要点一、随机事件主要掌握好(三四五)(1)事件的三种运算:并(和)、交(积)、差;注意差A-B可以表示成A与B的逆的积。
(2)四种运算律:交换律、结合律、分配律、德莫根律。
(3)事件的五种关系:包含、相等、互斥(互不相容)、对立、相互独立。
二、概率定义(1)统计定义:频率稳定在一个数附近,这个数称为事件的概率;(2)古典定义:要求样本空间只有有限个基本事件,每个基本事件出现的可能性相等,则事件A所含基本事件个数与样本空间所含基本事件个数的比称为事件的古典概率;(3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,事件A 看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算;(4)公理化定义:满足三条公理的任何从样本空间的子集集合到[0,1]的映射。
三、概率性质与公式(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A 与B互不相容,则P(A+B)=P(A)+P(B);(2)差:P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则P(A-B)=P(A)-P(B);(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B);(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;如果一个事件B可以在多种情形(原因)A1,A2,....,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公,则将较小的数和余数构成新的一对数,继续上面的除法,直到大数被小数除尽,则这时的除数就是原来两个数的公约数.3.更相减损术是一种求两数公约数的方法.其基本过程是:对于给定的两数,用较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等为止,则这个数就是所求的公约数.4.秦九韶算法是一种用于计算一元二次多项式的值的方法.5.常用的排序方法是直接插入排序和冒泡排序.6.进位制是人们为了计数和运算方便而约定的记数系统.“满进一”,就是k进制,进制的基数是k.7.将进制的数化为十进制数的方法是:先将进制数写成用各位上的数字与k的幂的乘积之和的形式,再按照十进制数的运算规则计算出结果.8.将十进制数化为进制数的方法是:除k取余法.即用k连续去除该十进制数或所得的商,直到商为零为止,然后把每次所得的余数倒着排成一个数就是相应的进制数.。
高中数学必修3知识点总结
![高中数学必修3知识点总结](https://img.taocdn.com/s3/m/debf1254974bcf84b9d528ea81c758f5f71f296e.png)
高中数学必修3知识点总结高中数学必修3是高中数学的一门重要课程,其中包含了许多基础而又必不可少的数学知识点。
下面将对高中数学必修3中的知识点进行总结,以便同学们对该门课程的内容有更清晰的了解。
1. 函数和方程- 函数的概念:函数是一种对应关系,它将一个集合的每个元素唯一地对应到另一个集合的元素上。
- 函数的表示:函数通常用公式或者图像来表示,常见的函数包括线性函数、二次函数、指数函数等。
- 方程的解法:解方程是数学中常见的问题,通过化简、代入、换元等方法可以求得方程的解。
2. 三角函数- 三角函数的定义:正弦函数、余弦函数、正切函数等是最基本的三角函数,它们在直角三角形和单位圆中有重要的几何意义。
- 三角函数的性质:三角函数具有周期性、奇偶性等特点,它们之间有一些重要的恒等关系如和差化积、倍角公式等。
- 三角函数的应用:在数学、物理、工程等领域,三角函数有广泛的应用,如波动、振动、电路等问题均可用三角函数来描述和求解。
3. 统计与概率- 统计学的基本概念:平均值、中位数、众数等是统计学中常见的概念,它们用来描述数据的集中趋势和分散程度。
- 概率的计算:概率是描述事件发生可能性的数字,通过频率、几何概型、公式等方法可以计算和判断概率。
- 抽样调查与推论统计:通过抽样和数据分析,可以对整体进行推论,判断某一现象是否具有普遍性。
4. 空间几何- 点、线、面、体的关系:点是空间中的一个位置,线是由无数点连结而成,面是由无数线连结而成,而体则是由无数面连接而成。
- 空间几何的测量:长度、面积、体积是空间几何中的重要测量指标,通过公式和计算方法可以求得各种图形的测量结果。
- 空间几何的应用:在建筑、工程、地理等领域,空间几何有着广泛的应用,如房屋设计、地形测量、容器容积计算等。
通过对高中数学必修3中的知识点进行总结,我们不仅可以更好地理解和掌握这门课程,也可以在日常生活和学习中更好地应用数学知识,提高解决问题的能力和效率。
数学必修三知识点总结与复习范文
![数学必修三知识点总结与复习范文](https://img.taocdn.com/s3/m/9cd2954be97101f69e3143323968011ca300f7b2.png)
数学必修三知识点总结与复习范文首先,空间几何与立体几何是数学必修三中的重要内容。
在空间几何中,我们需要掌握立体的名称、性质和刻画方法,如球、锥、柱、棱柱、棱锥等。
通过研究这些立体的性质,我们能够更好地理解空间几何的规律和特点。
在学习立体的刻画方法时,我们需要掌握投影的概念和方法,以及投影的性质和运用。
在解题过程中,我们还需要通过绘图来辅助思考和理解。
此外,我们还需要学习立体几何的相交关系和位置关系,如平行关系、垂直关系、共面关系等。
通过学习和研究这些知识,我们能够培养和发展我们的几何思维能力。
其次,解三角形是数学必修三中的另一个重要内容。
在解三角形的过程中,我们需要运用三角函数和三角恒等式来推导和证明各种三角关系。
在研究三角形的内角和外角时,我们需要掌握内外角的性质和运用。
在解题过程中,我们还需要掌握解三角形的一般步骤和方法,如辅助线法、相似三角形法、正弦定理、余弦定理、正切定理等。
通过研究和解决三角形相关的问题,我们能够培养和发展我们的推理和证明能力。
再次,平面向量是数学必修三中的另一个重要内容。
在学习平面向量的基本概念时,我们需要掌握向量的定义、运算和性质。
在研究平面向量的相等和共线关系时,我们需要运用向量的性质和运算来进行推导和证明。
在解题过程中,我们还需要掌握求向量的模、方向和分解的方法和技巧。
通过学习和研究平面向量相关的知识,我们能够培养和发展我们的代数思维能力。
此外,数列和等比数列是数学必修三中的另一个重要内容。
在学习数列和等比数列的定义和性质时,我们需要掌握数列和等比数列的概念、公式和特点。
在研究数列和等比数列的通项和求和时,我们需要掌握推导和证明的方法和技巧。
在解题过程中,我们还需要掌握数列和等比数列的递推公式和递推关系,以及求和的方法和技巧。
通过学习和研究数列和等比数列相关的知识,我们能够培养和发展我们的数学推理和计算能力。
最后,函数和射线方程是数学必修三中的另一个重要内容。
在学习函数和射线方程的基本概念时,我们需要掌握函数和射线方程的定义、性质和运用。
高二数学必修三知识点总结
![高二数学必修三知识点总结](https://img.taocdn.com/s3/m/3835008450e79b89680203d8ce2f0066f5336431.png)
高二数学必修三知识点总结高二数学必修三知识点总结在平凡的学习生活中,不管我们学什么,都需要掌握一些知识点,知识点也可以理解为考试时会涉及到的知识,也就是大纲的分支。
还在为没有系统的知识点而发愁吗?以下是小编整理的高二数学必修三知识点总结,欢迎阅读,希望大家能够喜欢。
高二数学必修三知识点总结11.辗转相除法是用于求公约数的一种方法,这种算法由欧几里得在公元前年左右首先提出,因而又叫欧几里得算法.2.所谓辗转相法,就是对于给定的两个数,用较大的数除以较小的数.若余数不为零,则将较小的数和余数构成新的一对数,继续上面的除法,直到大数被小数除尽,则这时的除数就是原来两个数的公约数.3.更相减损术是一种求两数公约数的方法.其基本过程是:对于给定的两数,用较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等为止,则这个数就是所求的公约数.4.秦九韶算法是一种用于计算一元二次多项式的值的方法.5.常用的排序方法是直接插入排序和冒泡排序.6.进位制是人们为了计数和运算方便而约定的记数系统.“满进一”,就是k进制,进制的基数是k.7.将进制的数化为十进制数的方法是:先将进制数写成用各位上的数字与k的幂的乘积之和的形式,再按照十进制数的运算规则计算出结果.8.将十进制数化为进制数的方法是:除k取余法.即用k连续去除该十进制数或所得的商,直到商为零为止,然后把每次所得的余数倒着排成一个数就是相应的进制数.高二数学必修三知识点总结2一、学习目标:知识与技能:理解直线与平面、平面与平面平行的'性质定理的含义,并会应用性质解决问题过程与方法:能应用文字语言、符号语言、图形语言准确地描述直线与平面、平面与平面的性质定理情感态度与价值观:通过自主学习、主动参与、积极探究的学习过程,激发学生学习数学的自信心和积极性,培养学生良好的思维习惯,渗透化归与转化的数学思想,体会事物之间相互转化和理论联系实际的辩证唯物主义思想方法二、学习重、难点学习重点:直线与平面、平面与平面平行的性质及其应用学习难点:将空间问题转化为平面问题的方法,三、学法指导及要求:1、限定45分钟完成,注意逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。
高二必修三数学知识点总结
![高二必修三数学知识点总结](https://img.taocdn.com/s3/m/6bcb4e8edbef5ef7ba0d4a7302768e9951e76e04.png)
高二必修三数学知识点总结1.高二必修三数学知识点总结复合函数定义域若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f[g(x)]的定义域是D={x|x∈A,且g(x)∈B}综合考虑各部分的x的取值范围,取他们的交集。
求函数的定义域主要应考虑以下几点:⑴当为整式或奇次根式时,R的值域;⑵当为偶次根式时,被开方数不小于0(即≥0);⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;⑷当为指数式时,对零指数幂或负整数指数幂,底不为0。
⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。
⑹分段函数的定义域是各段上自变量的取值集合的并集。
⑺由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求⑻对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。
⑼对数函数的真数必须大于零,底数大于零且不等于1。
⑽三角函数中的切割函数要注意对角变量的限制。
复合函数常见题型(ⅰ)已知f(x)定义域为A,求f[g(x)]的定义域:实质是已知g(x)的范围为A,以此求出x的范围。
(ⅱ)已知f[g(x)]定义域为B,求f(x)的定义域:实质是已知x的范围为B,以此求出g(x)的范围。
(ⅲ)已知f[g(x)]定义域为C,求f[h(x)]的定义域:实质是已知x的范围为C,以此先求出g(x)的范围(即f(x)的定义域);然后将其作为h(x)的范围,以此再求出x的范围。
2.高二必修三数学知识点总结1.抛物线是轴对称图形。
对称轴为直线x=-b/2a。
对称轴与抛物线的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P(-b/2a,(4ac-b )/4a)当-b/2a=0时,P在y轴上;当Δ=b -4ac=0时,P在x 轴上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学必修三知识点总结范文合集最新高二数学知识点总结(一)【一】(一)基本概念必然事件确定事件1、事件不可能事件不确定事件(随机事件)2、什么叫概率?表示一个事件发生可能性的大小,记为P(事件名称)=a;练习一:判断下列事件的类型(1)今天是星期二,明天是星期三;(2)掷一枚质地均匀的正方体骰子,得到点数7;(3)买彩票中了500万大奖;(4)抛两枚硬币都是正面朝上;(5)从一副洗好的牌中(54张)中抽出红桃A。
(二)预测随机事件的概率1、步骤:(1)找出所有机会均等的结果,作为概率的分母注:不能仅凭主观判断,而应利用列举法、树状图、列表法等方法找。
(2)明确关注结果,作为分子2、用列表法或树状图分析复杂情况下机会均等结果【二】一、随机事件主要掌握好(三四五)(1)事件的三种运算:并(和)、交(积)、差;注意差A-B可以表示成A与B 的逆的积。
(2)四种运算律:交换律、结合律、分配律、德莫根律。
(3)事件的五种关系:包含、相等、互斥(互不相容)、对立、相互独立。
二、概率定义(1)统计定义:频率稳定在一个数附近,这个数称为事件的概率;(2)古典定义:要求样本空间只有有限个基本事件,每个基本事件出现的可能性相等,则事件A所含基本事件个数与样本空间所含基本事件个数的比称为事件的古典概率;(3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,事件A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算;(4)公理化定义:满足三条公理的任何从样本空间的子集集合到[0,1]的映射。
三、概率性质与公式(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B);(2)差:P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则P(A-B)=P(A)-P(B);(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B);(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;如果一个事件B可以在多种情形(原因)A1,A2,....,An下发生,则用全概率公式求B对于给定的两个数,用较大的数除以较小的数.若余数不为零,则将较小的数和余数构成新的一对数,继续上面的除法,直到大数被小数除尽,则这时的除数就是原来两个数的公约数.3.更相减损术是一种求两数公约数的方法.其基本过程是:对于给定的两数,用较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等为止,则这个数就是所求的公约数.4.秦九韶算法是一种用于计算一元二次多项式的值的方法.5.常用的排序方法是直接插入排序和冒泡排序.6.进位制是人们为了计数和运算方便而约定的记数系统.“满进一”,就是k进制,进制的基数是k.7.将进制的数化为十进制数的方法是:先将进制数写成用各位上的数字与k 的幂的乘积之和的形式,再按照十进制数的运算规则计算出结果.8.将十进制数化为进制数的方法是:除k取余法.即用k连续去除该十进制数或所得的商,直到商为零为止,然后把每次所得的余数倒着排成一个数就是相应的进制数.高二数学知识点总结(二)第一章算法初步算法的概念算法的特点(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.程序框图1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括以下几部分:1.表示相应操作的程序框;2.带箭头的流程线;3.程序框外4.必要文字说明。
(二)构成程序框的图形符号及其作用画程序框图的规则如下:1、使用标准的图形符号。
2、框图一般按从上到下、从左到右的方向画。
3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。
判断框具有超过一个退出点的唯一符号。
4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。
5、在图形符号内描述的语言要非常简练清楚。
(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。
顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。
如在示意图中,A框和B框是依次执行的,只有在执行完A框指定的操作后,才能接着执行B框所指定的操作。
2、条件结构:条件结构是指在算法中通过对条件的判断根据条件是否成立而选择不同流向的算法结构。
条件P是否成立而选择执行A框或B框。
无论P条件是否成立,只能执行A框或B框之一,不可能同时执行A框和B框,也不可能A框、B框都不执行。
一个判断结构可以有多个判断框。
3、循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。
循环结构又称重复结构。
循环结构可细分为两类:(1)一类是当型循环结构如下左图所示,它的功能是当给定的条件P成立时,执行A框,A框执行完毕后,再判断条件P是否成立,如果仍然成立,再执行A框,如此反复执行A 框,直到某一次条件P不成立为止,此时不再执行A框,离开循环结构。
(2)另一类是直到型循环结构如下右图所示,它的功能是先执行,然后判断给定的条件P是否成立,如果P仍然不成立,则继续执行A框,直到某一次给定的条件P成立为止,此时不再执行A框,离开循环结构。
当型循环结构直到型循环结构输入、输出语句和赋值语句赋值语句(1)赋值语句的一般格式(2)赋值语句的作用是将表达式所代表的值赋给变量;(3)赋值语句中的“=”称作赋值号,与数学中的等号的意义是不同的。
赋值号的左右两边不能对换,它将赋值号右边的表达式的值赋给赋值号左边的变量;(4)赋值语句左边只能是变量名字,而不是表达式,右边表达式可以是一个数据、常量或算式;(5)对于一个变量可以多次赋值。
注意:①赋值号左边只能是变量名字,而不能是表达式。
如:2=X是错误的。
②赋值号左右不能对换。
如“A=B”“B=A”的含义运行结果是不同的。
③不能利用赋值语句进行代数式的演算。
(如化简、因式分解、解方程等)④赋值号“=”与数学中的等号意义不同。
注意:在IF—THEN—ELSE语句中,“条件”表示判断的条件,“语句1”表示满足条件时执行的操作内容;“语句2”表示不满足条件时执行的操作内容;ENDIF 表示条件语句的结束。
计算机在执行时,首先对IF后的条件进行判断,如果条件符合,则执行THEN后面的语句1;若条件不符合,则执行ELSE后面的语句2 第二章统计简单随机抽样1.总体和样本:1.研究对象的全体叫做总体.2.每个研究对象叫做个体.3.总体中个体的总数叫做总体容量.4.样本容量:一般从总体中随机抽取一部分:研究,我们称它为样本.其中个体的个数称为样本容量.2.简单随机抽样:从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。
特点:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。
简单随机抽样是其它各种抽样形式的基础。
通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
3.简单随机抽样常用的方法:(1)抽签法;⑵随机数表法;⑶计算机模拟法;⑷使用统计软件直接抽取。
4.抽签法:(1)给调查对象群体中的每一个对象编号;(2)准备抽签的工具,实施抽签(3)对样本中的每一个个体进行测量或调查5.随机数表法系统抽样把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。
第一个样本采用简单随机抽样的办法抽取。
K(抽样距离)=N(总体规模)/n(样本规模)分层抽样先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。
两种方法:(1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取样本的方法。
(2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。
如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。
2.2.2用样本的数字特征估计总体的数字特征1、平均值:2、.样本标准差:4.(1)如果把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变(2)如果把一组数据中的每一个数据乘以一个共同的常数k,标准差变为原来的k倍2.3.2两个变量的线性相关1、概念:(1)回归直线方程(2)回归系数2.回归直线方程的应用(1)描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存的数量关系(2)利用回归方程进行预测;把预报因子(即自变量x)代入回归方程对预报量(即因变量Y)进行估计,即可得到个体Y值的容许区间。
第三章概率随机事件的概率及概率的意义1、基本概念:(1)必然事件:在某种条件下,一定会发生的事件,叫做必然事件;(2)不可能事件:在某种条件下,一定不会发生的事件,叫做不可能事件;(3)随机事件:在某种条件下可能发生也可能不发生的事件,叫做随机事件;(4)基本事件:试验中不能再分的最简单的随机事件,其他事件可以用它们来描绘,这样的时间叫基本事件;(5)基本事件空间:所有基本事件构成的集合,叫做基本事件空间,用大写希腊字母Ω表示;(5)频数、频率:在相同的条件下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数为事件A出现的频数;称事件A出现的比例为事件A出现的频率;(6)概率:在n次重复进行的试验中,时间A发生的频率m\n,当n很大时,总是在某个常熟附近摆动,随着n的增加,摆动幅度越来越小,这时就把这个常熟叫做事件A的概率,记作P(A),0≤P(A)≤1;概率的基本性质1.必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;2.当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);3.若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B);4.互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;(2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生,而对立事件是指事件A与事件B有且仅有一个发生,其包括两种情形;(1)事件A发生B 不发生;(2)事件B发生事件A不发生,对立事件互斥事件的特殊情形。