磁敏传感技术41663-PPT文档资料
合集下载
磁敏式传感器.课件
06
磁敏式传感器的发展趋势与展望
新材料的应用
高磁导率材料
01
利用具有高磁导率的材料,提高磁敏式传感器的灵敏度和响应
速度。
稀有金属材料
02
采用稀有金属材料,如稀土元素,以改良传感器的性能和稳定
性。
复合材料
03
通过将不同材料的优点结合,开发出具有优异性能的复合磁敏
材料。
新工艺的研发
薄膜工艺
利用薄膜工艺制备超薄、高灵敏度的磁敏元件, 提高传感器的精度和稳定性。
磁通元件
利用磁通效应,将磁场变化转化为 电压变化,从而检测磁场强度。
信号处理电路
01
02
03
放大器
将磁敏元件输出的微弱信 号进行放大,提高信号的 信噪比。
滤波器
对信号进行滤波处理,去 除噪声干扰,提高信号的 稳定性。
调制解调器
将磁敏元件输出的模拟信 号转换为数字信号,便于 后续处理。
输出装置
显示器
位置检测
位置检测概述
位置检测是控制系统中不可或缺的一环,磁 敏式传感器可用于位置检测。
位置检测原理
磁敏式传感器通过检测磁场的变化,判断物 体的位置和运动轨迹。
位置检测应用
在机器人、自动化生产线、医疗器械等领域 ,位置检测的应用越来越广泛。
位置检测优缺点
磁敏式传感器具有非接触、精度高等优点, 但也存在对环境磁场干扰敏锐等缺点。
具有较高的灵敏度。
线性输出
磁敏式传感器的输出信号与磁 场强度成线性关系,使得测量 结果更为准确可靠。
稳定性好
经过特殊工艺处理,磁敏式传 感器具有较好的温度特性和长 期稳定性。
抗干扰能力强
由于磁场不易受到电场、温度 等因素的干扰,因此磁敏式传 感器在复杂环境下仍能保持较
第4章 磁敏传感器-PPT课件
0
得
RL
Ro0
1
2019/7/5
传感器原理及应用
第4章 磁敏传感器
3、采用恒压源和输入回路串联电阻 4、采用温度补偿元件(如热敏电阻、电阻丝等)
2019/7/5
传感器原理及应用
第4章 磁敏传感器
2019/7/5
传感器原理及应用
第4章 磁敏传感器
霍尔元件不等位电势 U 0的温度补偿
B=0 欧姆表
2019/7/5
传感器原理及应用
第4章 磁敏传感器
(4)基本特性
UH= KH I B
直线性:指霍尔器件的输出电势UH分别和基本参数
I、U、B之间呈线性关系。
灵敏度KH:
乘积灵敏度:
霍尔元件的输出电压要由磁感应强度B和控制电流
I的乘积来确定,表示霍尔电势UH与两者乘积之间的比
值,通常以mV/(mA·0.1T)。
简单、测量精度差、 受外界干扰大
IC VH
I
B
2019/7/5
传感器原理及应用
第4章 磁敏传感器
(2)导线贯穿磁芯法
导磁铁芯
环形铁芯集中磁力线, 提高电流测量精度
(3)绕线法
I
通电导线
• 该电场产生的电场力fE 阻止电子继续偏转。
当fEfl 时,电荷积累 平达 衡到 。
fl e(vB) fEeE
2019/7/5
传感器原理及应用
第4章 磁敏传感器
fle(vB )fEeE
EvBU bHEvBUHbvB
Inebd
U HB bn Ie B dR HId BK H IBRH
2019/7/5
传感器原理及应用
第七章磁敏传感器-PPT文档资料
3.额定控制电流Ic
霍尔元件在空气中升温 T10C
时所通过的控制电流称为额定控制电流Ic。
4.不平衡电势U0(不等位电势) 在额定控制电流Ic 之下,不加磁场时,霍尔电极间的开路
电势差称为不平衡电势,单位为mV。它是由于两个输出电极不在 同
一个等位面上造成的。产生的原因主要有材料电阻率的不均匀,基 片宽度和厚度不一致及电极与基片间的接触位置不对称或接触不良
磁敏传感器的工作原理是基于霍尔效应和磁阻效应。
7.1 霍尔效应
霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的 物理效应。
一长为L、宽为b、厚为d的半导 体薄片,被置于磁感应强度为B的磁
场中(平面与磁场垂直),在与磁 场方向正交的两边通以控制电流
I,则在半导体另外两边将产生一个 大小与控制电流I和磁感应强度B 乘积成正比的电势UH,且UH=KHIB, 其中KH为霍尔元件的灵敏度。这种
为横向磁阻效应。若外加磁场与外加电场平行,称为纵向磁阻效应。
横向比纵向磁阻效应大。设没有磁场时的电阻率为 0,施加电场时
的电阻率为H,则横向磁阻效应的大小可用横向磁阻系数 来M t表示:
7.3 霍尔元件
Mt H0B20 0B 2
7.3.1 霍尔元件工作原理 霍尔效应是导体中自由电荷受洛仑兹力作用而产生的。以n型半
霍尔电压UH与元件的尺寸有关。d 愈小,KH 愈大,霍尔灵敏度 愈高,所以霍尔元件的厚度都比较薄,但d太小,会使元件的输入、 输出电阻增加。
8
KH为霍尔元件的灵敏度,这时,霍尔电势表示为:
UH KHIB
KH表示在单位电流,单位磁场作用下,开路的霍尔电势输出 值。即霍尔元件灵敏度(乘积灵敏度)。它与元件的厚度成反比, 降低厚度d,可以提高灵敏度。但在考虑提高灵敏度的同时,必须 兼顾元件的强度和内阻。
霍尔元件在空气中升温 T10C
时所通过的控制电流称为额定控制电流Ic。
4.不平衡电势U0(不等位电势) 在额定控制电流Ic 之下,不加磁场时,霍尔电极间的开路
电势差称为不平衡电势,单位为mV。它是由于两个输出电极不在 同
一个等位面上造成的。产生的原因主要有材料电阻率的不均匀,基 片宽度和厚度不一致及电极与基片间的接触位置不对称或接触不良
磁敏传感器的工作原理是基于霍尔效应和磁阻效应。
7.1 霍尔效应
霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的 物理效应。
一长为L、宽为b、厚为d的半导 体薄片,被置于磁感应强度为B的磁
场中(平面与磁场垂直),在与磁 场方向正交的两边通以控制电流
I,则在半导体另外两边将产生一个 大小与控制电流I和磁感应强度B 乘积成正比的电势UH,且UH=KHIB, 其中KH为霍尔元件的灵敏度。这种
为横向磁阻效应。若外加磁场与外加电场平行,称为纵向磁阻效应。
横向比纵向磁阻效应大。设没有磁场时的电阻率为 0,施加电场时
的电阻率为H,则横向磁阻效应的大小可用横向磁阻系数 来M t表示:
7.3 霍尔元件
Mt H0B20 0B 2
7.3.1 霍尔元件工作原理 霍尔效应是导体中自由电荷受洛仑兹力作用而产生的。以n型半
霍尔电压UH与元件的尺寸有关。d 愈小,KH 愈大,霍尔灵敏度 愈高,所以霍尔元件的厚度都比较薄,但d太小,会使元件的输入、 输出电阻增加。
8
KH为霍尔元件的灵敏度,这时,霍尔电势表示为:
UH KHIB
KH表示在单位电流,单位磁场作用下,开路的霍尔电势输出 值。即霍尔元件灵敏度(乘积灵敏度)。它与元件的厚度成反比, 降低厚度d,可以提高灵敏度。但在考虑提高灵敏度的同时,必须 兼顾元件的强度和内阻。
磁敏传感器PPT课件
通常采用预极化方法或辅助磁场方法来建立质子宏观 磁矩,以增强信号幅度。
具体作法是:用圆柱形玻璃容器装满水样品或含氢质子液 体,作为灵敏元件,在容器周围绕上极化线圈和测量线 圈或共用一个线圈,使线圈轴向垂直于外磁场T方向。
在垂直于外磁场方向加一极化场H(该场强约为外磁场 的200倍)。在极化场作用下,容器内水中质子磁矩沿 极化场方向排列,形成宏观磁矩,如下图所示。
磁敏传感器的种类
▪质子旋进式磁敏传感器 ▪光泵式磁敏传感器 ▪SQUID(超导量子干涉器)磁敏传感器 ▪磁通门式磁敏传感器 ▪感应式磁敏传感器 ▪半导体磁敏传感器
霍尔器件、磁敏二极管、磁敏三极管、磁敏电阻
▪机械式磁敏传感器 ▪光纤式磁敏传感器
第一节 质子旋进式磁敏传感器
质子旋进式磁敏传感器是利用质子在外磁场 中的旋进现象,根据磁共振原理研制成功的。
二、磁场的测量与旋进信号
在核磁共振中,共振信号的幅度与被测磁场T3/2成正比。
当被测磁场很弱时,信号幅度大大衰减。对微弱的被测 磁场,用一般的核磁共振检测方法是接收不到旋进信号 的。为了测得质子磁矩M绕外磁场的旋进频率 f 信号, 必须采取特殊方法: 使沿外磁场方向排列的质子磁矩,在极化场的激励下,建立 质子宏观磁矩,并使其方向于外磁场方向垂直或接近垂直
在自由旋进的过程中,磁矩M的横向分量以t2(横向弛 豫时间)为时间常数并随时间逐渐趋近于零;在测量 线圈中所接收的感应信号,也是以t2为时间常数按指数 规律衰减的。
y
υ
感应信号衰减示意图
M衰减示意图
t2
M
x
t ω=γ T
质子旋进式磁敏传感器的组成
核心:500cc左右有机玻璃容器,在容器外面绕以数百匝
dM y dt
具体作法是:用圆柱形玻璃容器装满水样品或含氢质子液 体,作为灵敏元件,在容器周围绕上极化线圈和测量线 圈或共用一个线圈,使线圈轴向垂直于外磁场T方向。
在垂直于外磁场方向加一极化场H(该场强约为外磁场 的200倍)。在极化场作用下,容器内水中质子磁矩沿 极化场方向排列,形成宏观磁矩,如下图所示。
磁敏传感器的种类
▪质子旋进式磁敏传感器 ▪光泵式磁敏传感器 ▪SQUID(超导量子干涉器)磁敏传感器 ▪磁通门式磁敏传感器 ▪感应式磁敏传感器 ▪半导体磁敏传感器
霍尔器件、磁敏二极管、磁敏三极管、磁敏电阻
▪机械式磁敏传感器 ▪光纤式磁敏传感器
第一节 质子旋进式磁敏传感器
质子旋进式磁敏传感器是利用质子在外磁场 中的旋进现象,根据磁共振原理研制成功的。
二、磁场的测量与旋进信号
在核磁共振中,共振信号的幅度与被测磁场T3/2成正比。
当被测磁场很弱时,信号幅度大大衰减。对微弱的被测 磁场,用一般的核磁共振检测方法是接收不到旋进信号 的。为了测得质子磁矩M绕外磁场的旋进频率 f 信号, 必须采取特殊方法: 使沿外磁场方向排列的质子磁矩,在极化场的激励下,建立 质子宏观磁矩,并使其方向于外磁场方向垂直或接近垂直
在自由旋进的过程中,磁矩M的横向分量以t2(横向弛 豫时间)为时间常数并随时间逐渐趋近于零;在测量 线圈中所接收的感应信号,也是以t2为时间常数按指数 规律衰减的。
y
υ
感应信号衰减示意图
M衰减示意图
t2
M
x
t ω=γ T
质子旋进式磁敏传感器的组成
核心:500cc左右有机玻璃容器,在容器外面绕以数百匝
dM y dt
磁敏传感器(讲)课件
磁通门技术
总结词
磁通门技术利用铁磁材料的磁化强度随磁场强度变化的特点 来检测磁场。
详细描述
铁磁材料在磁场中被磁化后,其磁化强度随磁场强度的变化 而变化。通过测量铁磁材料的磁化强度,可以间接地检测磁 场。磁通门技术具有较高的灵敏度和线性度,因此在高精度 磁场测量中得到广泛应用。
隧道效应
总结词
隧道效应是利用电子在两个金属间通过隧道穿透的原理来检测磁场。
磁敏传感器容易受到噪声干扰 ,如电磁干扰、电源波动等, 影响测量精度。
成本较高
相对于一些其他传感器,磁敏 传感器的制造成本较高。
稳定性不足
磁敏传感器的稳定性有待提高 ,需要定期校准和维护。
改进方向
温度补偿技术
研究和发展温度补偿技术,以减小温 度对磁敏传感器的影响。
噪声抑制技术
采用先进的信号处理技术,抑制噪声 干扰,提高测量精度。
常工作。
汽车电子
用于检测车辆的磁场变化,如 发动机点火、车轮转速等,提 高车辆的安全性和稳定性。
环保监测
用于检测环境中的磁场变化, 如气体泄漏、地下水污染等,
保障环境和人类健康。
02
磁敏传感器的原理
霍尔效应
总结词
霍尔效应是磁敏传感器中最常用的一种效应,利用半导体材料在磁场中导电时 产生的电动势来检测磁场。
通过检测磁性材料的磁性特征,可以 判断材料的种类、磁性状态等,用于 材料科学、冶金等领域。
电流测量
直流电流检测
磁敏传感器可以检测直流电流的大小,常用于电源管理、电机控制等领域。
交流电流检测
通过检测交流电产生的磁场,磁敏传感器能够测量交流电流的幅值和频率,广泛应用于电力系统和自 动化控制领域。
位置和角度检测
磁敏传感器_图文
磁敏传感器_图文.pptx
第五章 磁敏传感器及应用技术
教学目的:
1、了解磁敏传感器的作用、分类和使用方 法; 2、熟悉常用磁敏传感器的特点及应用范围; 4、掌握常用磁敏传感器的工作原理及使用 方法; 5、学会正确选用磁敏传感器的方法。
第五章 磁敏传感器及应用技术
教学重点:
1、磁敏传感器特点与选用; 2、磁敏传感器原理及接口电路设计方法。
教学难点:
1、磁敏传感器工作原理; 2、磁敏传感器应用电路分析与设计方法。
教学方法:
1、引导文教学法 2、引探教学法 3、头脑风暴法
第五章 磁敏传感器及应用技术
问题思考:
1、磁敏传感器的作用是什么? 2、常用的磁敏传感器有哪些种?各自的原
理是什么? 3、何为磁阻效应?何为霍尔效应? 4、磁敏传感器的原理是什么?其应用场合
(2)开关型霍尔传感器 开关型霍尔传感器由稳压器、霍尔元件、 差分放大器,斯密特触发器和输出级组 成,它输出数字量
图中,Bnp为工作点“开”的磁感应强度,BRP为释放点 “关”的磁感应强度。当外加的磁感应强度超过动作点 Bnp时,传感器输出低电平,当磁感应强度降到动作点 Bnp以下时,传感器输出电平不变,一直要降到释放点 BRP时,传感器才由低电平跃变为高电平。Bnp与BRP之间 的滞后使开关动作更为可靠。
第二节 磁敏传感器工作原理
二、霍尔传感器
(4)霍尔传感器的恒压驱动
第二节 磁敏传感器工作原理
(5)霍尔传感器的恒流驱动
第二节 磁敏传感器工作原理
(6)霍尔传感器应用常用接口电路
第二节 磁敏传感器工作原理
(7)霍尔传感器应用集锦
第二节 磁敏传感器工作原理
二、磁敏电阻
1.磁阻效应与巨磁阻效应 磁阻效应:物质在磁场中电阻发生变化的现象。 巨磁阻效应:指磁性材料的电阻率在有外磁场作用时较 之无外磁场作用时存在巨大变化的现象。 2.磁敏电阻分类 是一种基于磁阻效应而制作的电阻体。它在外施磁场的作 用下(包括磁场强度及方向变化)能够改变自身的阻值。
第五章 磁敏传感器及应用技术
教学目的:
1、了解磁敏传感器的作用、分类和使用方 法; 2、熟悉常用磁敏传感器的特点及应用范围; 4、掌握常用磁敏传感器的工作原理及使用 方法; 5、学会正确选用磁敏传感器的方法。
第五章 磁敏传感器及应用技术
教学重点:
1、磁敏传感器特点与选用; 2、磁敏传感器原理及接口电路设计方法。
教学难点:
1、磁敏传感器工作原理; 2、磁敏传感器应用电路分析与设计方法。
教学方法:
1、引导文教学法 2、引探教学法 3、头脑风暴法
第五章 磁敏传感器及应用技术
问题思考:
1、磁敏传感器的作用是什么? 2、常用的磁敏传感器有哪些种?各自的原
理是什么? 3、何为磁阻效应?何为霍尔效应? 4、磁敏传感器的原理是什么?其应用场合
(2)开关型霍尔传感器 开关型霍尔传感器由稳压器、霍尔元件、 差分放大器,斯密特触发器和输出级组 成,它输出数字量
图中,Bnp为工作点“开”的磁感应强度,BRP为释放点 “关”的磁感应强度。当外加的磁感应强度超过动作点 Bnp时,传感器输出低电平,当磁感应强度降到动作点 Bnp以下时,传感器输出电平不变,一直要降到释放点 BRP时,传感器才由低电平跃变为高电平。Bnp与BRP之间 的滞后使开关动作更为可靠。
第二节 磁敏传感器工作原理
二、霍尔传感器
(4)霍尔传感器的恒压驱动
第二节 磁敏传感器工作原理
(5)霍尔传感器的恒流驱动
第二节 磁敏传感器工作原理
(6)霍尔传感器应用常用接口电路
第二节 磁敏传感器工作原理
(7)霍尔传感器应用集锦
第二节 磁敏传感器工作原理
二、磁敏电阻
1.磁阻效应与巨磁阻效应 磁阻效应:物质在磁场中电阻发生变化的现象。 巨磁阻效应:指磁性材料的电阻率在有外磁场作用时较 之无外磁场作用时存在巨大变化的现象。 2.磁敏电阻分类 是一种基于磁阻效应而制作的电阻体。它在外施磁场的作 用下(包括磁场强度及方向变化)能够改变自身的阻值。
《磁敏传感器》PPT课件 (2)
纸币
Vout
3
N
S
(a)
图2
(b)
03
10
B(KGS)
ΔRB/R0|B=3kGs≥2.5倍
第四章 磁敏传感器
• 半导体磁敏电阻工作原理:
B FL
⊖⊕
B
d
⊖
⊕
⊖
⊕
⊖
⊕
⊖ FHall ⊕
I
I
I
VHall
Fm = -q v B
EH= j B / n q = RH j B
VH = RH I B / d μ = RH σ
• 磁敏电阻传感器是利用薄膜化的磁电阻敏感元 件非接触地将与磁场变化相关的多种运动形式转 化为电信号输出,形成的各种各样传感器:
•
半导体磁电阻材料
•低维功能磁电阻材料
•
•
(GMR)
各向异性磁电阻薄膜材料
(AMR)
巨磁电阻 薄膜材料
第四章 磁敏传感器
三、磁敏电阻器件的特性:
⑴ 永磁体与MR元件非接触,无触点; ⑵ 无磨损,无接触电噪声; ⑶ 电性能寿命无限; ⑷ 纯电阻元件,响应速度从静态到10-9秒,反响迅
H(Oe)
第四章 磁敏传感器
三、自旋阀磁电阻薄膜
Fe/Cu/Fe 薄膜
衬底
磁场
电流
第四章 磁敏传感器
第四章 磁敏传感器
四、多层膜磁电阻薄膜
(Fe/Cu)30 膜
Fe
Cu
衬底
磁场
电流
第四章 磁敏传感器
第四章 磁敏传感器
五、颗粒膜
Ag80Co20 薄膜
:Co 颗粒
衬底
电流 磁场
第四章 磁敏传感器
磁敏传感器PPT课件
RH
1 ne
霍尔系数,材料确定后为常数
kH
RH d
灵敏度系数
对于导体,霍尔系数一般较小,故霍耳元件一般用半导体制作,
且愈小(薄),灵敏度愈高
物理现象观察
霍尔效应
霍尔式传感器的特点
转换率低 受温度影响比较大 结构简单,体积小,坚固 频响范围宽 易微型化和集成化
霍尔元件的构造及测量电路
红色引线:电流端引线 绿色引线:霍尔输出端引线
普通直流电动机使 用的电刷和换向器
无刷电动机在电动自行车上的应用
电动自行车
无刷电动机
可充电电池组
无刷直流电动机的外转子采用高性能钕铁硼稀土永磁材 料;三个霍尔位置传感器产生六个状态编码信号,控制逆 变桥各功率管通断,使三相内定子线圈与外转子之间产生 连续转矩,具有效率高、无火花、可靠性强等特点。
光驱用的无刷电动机内部结构
它不需要辅助电源就能把被测对象的机械量 转换成易于测量的电信号, 是有源传感器。由 于它输出功率大且性能稳定, 具有一定的工作 带宽(10~1000 Hz), 所以得到普遍应用。
工作原理和结构类型
根据电磁感应定律,线圈两端的感应电动势
ed Wd
dtΒιβλιοθήκη dtW——线圈匝数;
——线圈包含的磁通量
若线圈相对磁场运动为速度v或者角速度w时,e=-WBlv或者e=-WBSw, 式中
第六章 磁电式传感器
通过磁电作用将被测量(振动、位移、转速 等)转换成电信号的一种传感器。
磁电感应式传感器:导体和磁场间相
分 对运动
类
霍尔式传感器:半导体在磁场中的电磁
效应(霍尔效应)而输出电动势
磁电感应式传感器又称磁电式传感器, 是利用 电磁感应原理将被测量(如振动、位移、转 速等)转换成电信号的一种传感器。
磁敏传感器PPT课件
l b
形状效应系数 磁敏元件的长度
磁敏元件的宽度△
这种由于磁敏元件的几何尺寸变化而引起的磁阻 大小变化的现象,叫形状效应。
.
32
磁阻元件是利用半导体的磁阻效应和形状效应研制 而成。
(1)长方形磁阻元件
其长度L大于宽度b,在两端部制成电极,构成两端器件
.
33
在电场和磁场相互垂直得固体中电子的运动
.
UB、IB——磁场为B时, 磁敏二极管两端流过的 电压和电流
.
11
3.温度补偿及提高灵敏度的措施
①互补式电路
温度特性曲线
.
12
②差分式电路
.
13
③全桥式电路
要求:灵敏度高
用交流电源或脉冲电压源
.
14
二.磁敏三极管的工作原理和主要特性
1.结构和原理 电路符号:
结构:
.
15
工作原理:
a.无磁场: 集电极电流小,基极电流大
⑥工作电压 3V ~ 几十V
.
20
3.温度补偿及提高灵敏度的措施 ①负温度系数管
用正温度系数普通硅三极管
.
21
②正温度系数管(3BCM)
.
22
③选择特性一致,磁性相反
差分式补偿电路
.
23
三﹑磁敏管的应用
漏磁探伤仪的原理如图:
a.钢棒被磁化局部表面时,若无缺陷,探头附近没有泄漏磁通, 无信息输出 b.缺陷处的泄漏磁通将作用于探头上,使其产生输出信号
b.加正向磁场 洛仑兹力,基极电流加大, 集电极电流更小
c.加反向磁场 洛仑兹力,集电极电流加大
.
16
2.磁敏三极管主要特性 ①伏安特性
.
形状效应系数 磁敏元件的长度
磁敏元件的宽度△
这种由于磁敏元件的几何尺寸变化而引起的磁阻 大小变化的现象,叫形状效应。
.
32
磁阻元件是利用半导体的磁阻效应和形状效应研制 而成。
(1)长方形磁阻元件
其长度L大于宽度b,在两端部制成电极,构成两端器件
.
33
在电场和磁场相互垂直得固体中电子的运动
.
UB、IB——磁场为B时, 磁敏二极管两端流过的 电压和电流
.
11
3.温度补偿及提高灵敏度的措施
①互补式电路
温度特性曲线
.
12
②差分式电路
.
13
③全桥式电路
要求:灵敏度高
用交流电源或脉冲电压源
.
14
二.磁敏三极管的工作原理和主要特性
1.结构和原理 电路符号:
结构:
.
15
工作原理:
a.无磁场: 集电极电流小,基极电流大
⑥工作电压 3V ~ 几十V
.
20
3.温度补偿及提高灵敏度的措施 ①负温度系数管
用正温度系数普通硅三极管
.
21
②正温度系数管(3BCM)
.
22
③选择特性一致,磁性相反
差分式补偿电路
.
23
三﹑磁敏管的应用
漏磁探伤仪的原理如图:
a.钢棒被磁化局部表面时,若无缺陷,探头附近没有泄漏磁通, 无信息输出 b.缺陷处的泄漏磁通将作用于探头上,使其产生输出信号
b.加正向磁场 洛仑兹力,基极电流加大, 集电极电流更小
c.加反向磁场 洛仑兹力,集电极电流加大
.
16
2.磁敏三极管主要特性 ①伏安特性
.
《磁敏传感器介绍》课件
磁敏传感器在工厂自动化、机器人技术和生 产线控制中起到关键作用。
2 汽车行业
用于车辆导航、制动系统、空调系统和倒车 雷达等汽车应用中。
3 医疗设备
4 消费电子
应用于MRI机器、心脏起搏器和血液测量等医 疗设备中。
用于智能手机、平板电脑和游戏手柄等消费 电子产品中。
磁敏传感器的性能评价指标
1 灵敏度
磁敏传感器的分类和类型
磁电传感器
利用磁电效应将磁场转换为电信号,如霍尔传感器和磁电电流传感器。
磁阻传感器
根据磁场的磁阻变化来测量磁场强度,如磁阻式位置传感器和磁阻角度传感器。
磁感应传感器
利用磁感应效应测量磁场强度和方向,如磁感应式位置传感器和磁感应式角度传感器。
磁敏传感器的应用领域
1 工业自动化
磁敏传感器介绍
欢迎来到《磁敏传感器介绍》PPT课件。本课程将为您详细介绍磁敏传感器的 定义、原理和应用领域,以及评价指标和创新技术。让我们一起探索这个引 人入胜的领域!
磁敏传感器的定义和原理
磁敏传感器是一种能够检测和测量磁场强度和磁场变化的设备。它们基于磁敏效应工作,如霍尔效应、磁电效 应和磁致伸缩效应。这些传感器在广泛的应用中发挥着关键的作用。
3
低功耗
优化电路设计和材料选择以降低功耗。
磁敏传感器的创新技术
量子磁敏传感器
利用量子效应实现更高灵敏度和 更低功耗的磁敏传感器。
人工智能应用
结合人工智能算法分析传感器数 据,提高复杂环境下的性能。
物联网集成
将磁敏传感器与物联网技术相结 合,实现智能化和远程监测。
总结和展望
通过本课程,我们了解了磁敏传感器的定义、原理、分类、应用领域、性能 评价指标以及创新技术。未来,随着技术的不断发展,磁敏传感器将在更多 领域发挥关键作用,带来更多惊喜和突破。
磁敏传感器讲PPT课件
设霍尔元件为N型半导体,其长度为l,宽度为b,厚度为 d。又设电子以均匀的速度v运动,则在垂直方向施加的磁感应 强度B的作用下,空穴受到洛仑兹力
fL qvB q—电子电量(1.62×10-19C); v—载流子运动速度。
.
11
根据右手螺旋定则,电子运动方向向上偏移,则在上端产生 电子积聚,下端失去电子产生正电荷积聚。从而形成电场。
17
I
B
V
R E
IH R3 VH
霍尔元件的基本电路
控制电流I;
霍耳电势VH; 控制电压V;
输出电阻R2; 输入电阻R1; 霍耳负载电阻R3; 霍耳电流IH。
图中控制电流I由电源E供给,R为调节电阻,保证器件内所 需控制电流I。霍耳输出端接负载R3,R3可是一般电阻或 放大器的输入电阻、或表头内阻等。磁场B垂直通过霍耳 器件,在磁场与控制电流作用下,由负载上获得电压。
VH=KHBI KH——Hall元件灵敏度,表示霍耳电势VH与磁感应强 度B和控制电流I乘积之间的比值,mV/(mA·KGs)。因为
霍耳元件的输出电压要由两个输入量的乘积来确定, 故又称为乘积灵敏度。
.
21
若控制电流值固定,则: VH=KBB
KB——磁场灵敏度,通常以额定电流为标准。磁场灵敏 度等于霍耳元件通以额定电流时每单位磁感应强度对应 的霍耳电势值。常用于磁场测量等情况。
VH= KH I B cosθ
.
15
设 KH=RH / d VH= KH I B
KH—霍尔元件灵敏度。它与材料的物理性质和几何尺寸有关, 它决定霍尔电势的强弱。
若磁感应强度B的方向与霍尔元件的平面法线夹角为θ时, 霍耳电势应为:
VH= KH I B cosθ
fL qvB q—电子电量(1.62×10-19C); v—载流子运动速度。
.
11
根据右手螺旋定则,电子运动方向向上偏移,则在上端产生 电子积聚,下端失去电子产生正电荷积聚。从而形成电场。
17
I
B
V
R E
IH R3 VH
霍尔元件的基本电路
控制电流I;
霍耳电势VH; 控制电压V;
输出电阻R2; 输入电阻R1; 霍耳负载电阻R3; 霍耳电流IH。
图中控制电流I由电源E供给,R为调节电阻,保证器件内所 需控制电流I。霍耳输出端接负载R3,R3可是一般电阻或 放大器的输入电阻、或表头内阻等。磁场B垂直通过霍耳 器件,在磁场与控制电流作用下,由负载上获得电压。
VH=KHBI KH——Hall元件灵敏度,表示霍耳电势VH与磁感应强 度B和控制电流I乘积之间的比值,mV/(mA·KGs)。因为
霍耳元件的输出电压要由两个输入量的乘积来确定, 故又称为乘积灵敏度。
.
21
若控制电流值固定,则: VH=KBB
KB——磁场灵敏度,通常以额定电流为标准。磁场灵敏 度等于霍耳元件通以额定电流时每单位磁感应强度对应 的霍耳电势值。常用于磁场测量等情况。
VH= KH I B cosθ
.
15
设 KH=RH / d VH= KH I B
KH—霍尔元件灵敏度。它与材料的物理性质和几何尺寸有关, 它决定霍尔电势的强弱。
若磁感应强度B的方向与霍尔元件的平面法线夹角为θ时, 霍耳电势应为:
VH= KH I B cosθ
工学磁电磁敏式传感器PPT课件
这一数值是很可观的,需要进行温度补 偿。
热磁分流器补偿:
热磁分流器由具有很大负温度系数的 特殊磁性材料做成。
在正常工作温度下已将空气隙磁通分 掉一小部分。当温度升高时,热磁分流器 的磁导率显著下降,经分流掉的磁通占总 磁通的比例较正常工作温度下显著降低, 从而保持空气隙的工作磁通不随温度变化, 维持传感器灵敏度为常数。
件上的有效磁感应强度是其法线方向(与薄片垂直的方向)的分量,即Bcos,这时的霍尔
电势为
UH =KHIBcos
2. 工作原理
霍尔效应是物质中的运动电荷受磁场中洛仑兹(Lorentz)力作用而产生的一种特性。
霍尔元件(设为N 型半导体)置于磁场B中,当通以电流I 时,运动电荷(载流子电子)受磁场中洛仑 兹力fL 的作用,向垂直于B 和电流I的方向偏移,其方向符合右手螺旋定律,即运动电荷(电子)有向 某一端积聚的现象,使霍尔元件一端面产生负电荷积聚,另一端面则为正电荷积聚。由于电荷聚积, 产生静电场,该静电场对运动电荷(电子)的作用力fE 与洛仑兹力fL方向相反,阻止其偏转,当二力 相等时,电荷积累达到动态平衡,此时的静电场即为霍尔电场,在电荷积聚的两面上产生的电势称为 霍尔电势。
种传感器。
4、磁电式传感器只用于测量
,可以直接测量振动物体的线
速度或旋转体的角速度,加入积分或者微分电路后,可以测量位移和
加速度。
§6.2 霍尔式传感器
霍尔传感器是利用霍尔效应实现磁电转换的一种传感器。 1879年美国物理学家霍尔(E.H.Hall)首先在金属材料中发现了霍尔效应, 但由于 金属材料的霍尔效应太弱而没有得到应用。随着半导体技术的发展, 开始用半导体材料 制成霍尔元件, 由于它的霍尔效应显著而得到应用和发展。 优点:灵敏度高、线性度好、稳定性高、体积小、重量轻、寿命长、安装方便、功 耗小、频率高(可达1MHz)、耐高温、耐震动、不怕灰尘、油污、水汽及盐雾等的污 染或腐蚀。 已广泛应用于非电量测量、自动控制、计算机装置和现代军事技术等各个领域。
磁敏传感器概要课件
详细描述
当电流通过一个导体时,如果有一个外部磁场作用在导体上,那么导体的电阻值 会产生变化。利用这个电阻值的变化可以测量外部磁场的大小和方向。磁阻传感 器具有较高的灵敏度和响应速度。
磁致伸缩效应
总结词
磁致伸缩效应是磁敏传感器另一种重要的技术原理,它利用磁场改变材料的长度和体积,从而检测磁场强度和方 向。
以满足不同应用场景的需求。
通过技术创新和规模化生产,实 现成本与性能的最佳平衡,是磁
敏传感器发展的关键。
标准化与互操作性
为了提高磁敏传感器的市场竞争 力,需要制定统一的标准和规范 ,促进产品的互换性和互操作性
。
标准化有助于提高产品质量、降 低生产成本、促进产业升级和技
术创新。
建立磁敏传感器的标准体系,推 动产业协同发展,是未来发展的
随着物联网技术的发展,磁敏 传感器在智能家居、智慧城市 等领域的应用前景广阔。
磁敏传感器在新能源领域的应 用,如风力发电、太阳能逆变 器等,具有巨大的市场潜力。
成本与性能的平衡
降低磁敏传感器的成本是市场推 广的关键,需要优化生产工艺和
降低材料成本。
在追求低成本的同时,需要保证 传感器的性能稳定性和可靠性,
PART 04
磁敏传感器的发展趋势与 挑战
பைடு நூலகம்
技术创新与突破
磁敏传感器技术不断进步,新型材料和工艺的应用提高了传感器的灵敏度和可靠性 。
集成化与微型化成为磁敏传感器的发展趋势,有助于降低成本、减小体积和重量。
磁敏传感器与其他传感器的集成,实现多参数测量,提高了测量精度和可靠性。
应用领域的拓展
磁敏传感器在智能制造、机器 人、航空航天、医疗等领域的 应用逐渐增多。
详细描述
当电流通过一个导体时,如果有一个外部磁场作用在导体上,那么导体的电阻值 会产生变化。利用这个电阻值的变化可以测量外部磁场的大小和方向。磁阻传感 器具有较高的灵敏度和响应速度。
磁致伸缩效应
总结词
磁致伸缩效应是磁敏传感器另一种重要的技术原理,它利用磁场改变材料的长度和体积,从而检测磁场强度和方 向。
以满足不同应用场景的需求。
通过技术创新和规模化生产,实 现成本与性能的最佳平衡,是磁
敏传感器发展的关键。
标准化与互操作性
为了提高磁敏传感器的市场竞争 力,需要制定统一的标准和规范 ,促进产品的互换性和互操作性
。
标准化有助于提高产品质量、降 低生产成本、促进产业升级和技
术创新。
建立磁敏传感器的标准体系,推 动产业协同发展,是未来发展的
随着物联网技术的发展,磁敏 传感器在智能家居、智慧城市 等领域的应用前景广阔。
磁敏传感器在新能源领域的应 用,如风力发电、太阳能逆变 器等,具有巨大的市场潜力。
成本与性能的平衡
降低磁敏传感器的成本是市场推 广的关键,需要优化生产工艺和
降低材料成本。
在追求低成本的同时,需要保证 传感器的性能稳定性和可靠性,
PART 04
磁敏传感器的发展趋势与 挑战
பைடு நூலகம்
技术创新与突破
磁敏传感器技术不断进步,新型材料和工艺的应用提高了传感器的灵敏度和可靠性 。
集成化与微型化成为磁敏传感器的发展趋势,有助于降低成本、减小体积和重量。
磁敏传感器与其他传感器的集成,实现多参数测量,提高了测量精度和可靠性。
应用领域的拓展
磁敏传感器在智能制造、机器 人、航空航天、医疗等领域的 应用逐渐增多。
详细描述
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
L 2 K ( B ) 1 f b 0
L 为形状效应系数。 f b 长方形磁阻器件只有在L(长度)<b(宽度)的条件下,才表现 出较高的灵敏度。把L<b的扁平器件串联起来,就会得到零磁 场电阻值较大、灵敏度较高的磁阻器件。
• 磁敏传感器主要有磁敏电阻、磁敏二极管、磁敏三极管和 霍尔式磁敏传感器。
6.1 磁敏电阻器
磁敏电阻器(Magnetic Resistance )是基于磁阻效应的磁敏元件 ,也称 MR 元件。磁敏电阻的应用范围比较广,可以利用它制成磁场探测仪、 位移和角度检测器、安培计以及磁敏交流放大器等。 一、磁阻效应 若给通以电流的金属或半导体材料的薄片加以与电流垂直或平行的 外磁场,则其电阻值就增加。称此种现象为磁致电阻变化效应,简称为 磁阻效应。
第六章 磁敏传感器
• 磁敏传感器是基于磁电转换原理的传感器。早在1856年和 1879年就发现了磁阻效应和霍尔效应,但作为实用的磁敏 传感器则产生于半导体材料发现之后。60年代初,西门子 公司研制出第一个实用的磁敏元件;1966年又 度高的磁敏二极管;1974年美国韦冈德发明了双稳态磁性 元件。目前上述磁敏元件已得到广泛的应用。
各种形状的磁敏电阻,其磁阻与 磁感应强度的关系如右图所示。由图 可见,圆盘形样品的磁阻最大。 磁敏电阻的灵敏度一般是非线性 的,且受温度影响较大;因此,使用 磁敏电阻时.必须首先了解如下图所 示的持性曲线。然后,确定温度补偿 方案。 磁阻元件的电阻值与磁场的极性无
关,它只随磁场强度的增加而增加 磁阻元件的温度特性不好,在应用 时,一般都要设计温度补偿电路。
I I
B L
B
b
(a) (b) 几何磁阻效应
二、磁敏电阻的结构
磁敏电阻通常使用两种方法来制作: 一种是在较长的元件片上用真空镀膜方法制成,如图(a)所示的许多短路电 极(光栅状)的元件; 另一种是由InSb和NiSb构成的共晶式半导体(在拉制 InSb单晶时,加入1% 的Ni,可得InSb和NiSb的共晶材料)磁敏电阻。这种共晶里,NiSb呈具有一 定排列方向的针状晶体,它的导电性好,针的直径在1m左右,长约100m, 许多这样的针横向排列,代替了金属条起短路霍尔电压的作用。由于InSb的 温度特性不佳,往往在材料中加人一些N型碲或硒,形成掺杂的共晶,但灵敏 度要损失一些。在结晶制作过程中有方向性地析出金属而制成磁敏电阻,如 上图(b)所示。 除此之外,还有圆盘形,中心和边缘处各有一电极,如上图(c)所示。磁敏 电阻大多制成圆盘结构。
2 2 ( 1 0 . 273 B ) B 0
式中 ρB — 磁感应强度为B时的电阻率; ρ0 — 零磁场下的电阻率; μ — 电子迁移率; B — 磁感应强度。 当电阻率变化为Δρ=ρB -ρ0时,则电阻率的相对变化为: Δρ/ρ0 = 0.273μ2B2 = Kμ2B2 由此可知,磁场一定时电子迁移率越高的材料(如InSb、InAs 和NiSb等半导体材料),其磁阻效应越明显。
图(a)为器件长宽比l/w>>l的纵长方形片,由于电子运动 偏向一侧,必然产生霍尔效应,当霍尔电场EH对电子施加的电场 力fE和磁场对电子施加的洛伦兹力fL平衡时,电子运动轨迹就不再 继续偏移,所以片内中段电子运动方向和长度l的方向平行,只有 两端才是倾斜的。这种情况电子运动路径增加得并不显著,电阻 增加得也不多。 图(b)是在L>b长方形磁阻材料上 面制作许多平行等间距的金属条 (即短路栅格),以短路霍尔电 势,这种栅格磁阻器件如图(b) 所示,就相当于许多扁条状磁阻 串联。所以栅格磁阻器件既增加 了零磁场电阻值、又提高了磁阻 器件的灵敏度。实验表明,对于 InSb材料,当B=1T时,电阻可增 大10倍(因为来不及形成较大的霍 尔电场EH)。
在外加磁场作用下,某些载流子受到的洛伦兹力比霍尔电场作 用力大时,它的运动轨迹就偏向洛伦兹力的方向;这些载流子 从一个电极流到另一个电极所通过的路径就要比无磁场时的路 径长些,因此增加了电阻率。 当温度恒定时,在磁场内,磁阻与磁感应强度 B 的平方成 正比。如果器件只是在电子参与导电的简单情况下,理论推导 出来的磁阻效应方程为
磁敏电阻器的应用:
1. 作控制元件 可将磁敏电阻用于交流变换器、频率变换器、功率电压变换器、 磁通密度电压变换器和位移电压变换器等电路中作控制元件。 2.作计量元件 可将磁敏电阻用于磁场强度测量、位移测量、频率测量和功率因 数测量等诸多方面。 3.作开关电路 在接近开关、磁卡文字识别和磁电编码器等方面。 4.作运算器 可用磁敏电阻在乘法器、除法器、平方器、开平方器、立方器和 开立方器等方面使用。 5.作模拟元件 可在非线性模拟、平方模拟、立方模拟、三次代数式模拟和负阻 抗模拟等方面使用。
磁敏电阻的应用
根据铁磁 物体对地磁的 扰动,可检测 车辆的存在, 可用于包括自 动开门,路况 监测,停车场 检测,车辆位 置监测,红绿 灯控制等。
锑化铟(InSb)磁阻传感器在磁性油墨鉴伪点钞机中的应用
InSb伪币检测传感器安装在光磁电伪币检测机上,其工作过程如上 图所示,电路原理图如下图所示。 当纸币上的磁性油墨 没有进入位置1时,设输出 变化为零,如果进入位置1, 由于R2电阻增大,则输出 变化为0.3mV左右;如果进 入位置3时,则仍为0;如 果进入位置4,则为-0.3mV, 如果进入位置5,则仍为0, 就这样产生输出特性,经 过放大、比较、脉冲展宽、 显示,就能检测伪币,达 到理想效果。
当材料中仅存在一种载流子时磁阻效应几乎可以忽略, 此时霍耳效应更为强烈。若在电子和空穴都存在的材料(如 InSb)中,则磁阻效应很强。 磁阻效应还与磁敏电阻的形状、尺寸密切相关。这种与 磁敏电阻形状、尺寸有关的磁阻效应称为磁阻效应的几何磁 阻效应。若考虑其形状的影响。电阻率的相对变化与磁感应 强度和迁移率的关系可表达为