基于高性能单片机的功率直流开关电源的设计
基于单片机的开关电源的设计

调整端1的电流极小,所以流过R1和RW的电流几乎相等(几mA电流)。通过改变电位器RW的阻值就能改变输出电压UO。此外为了保证LM317的输出功率及正常工作,还需要添加散热片,二极管D5的作用是防止输出短路。
由上面的介绍中可知,只要改变管脚1的电压,就可以实现输出可调。电位器RW固定在一个值后,通过单片机预置电压,经过D/A转化和运算放大器的电压放大达到对控制端的电压预置。所以由1脚作为控制电压的输入端,接控制部分电路。
调压原理:
D6
32
LW317
1R1D5
UIC Uo
C1Co
C2RW
图2.3 稳压调压电路原理说明图
图2.3为稳压调压电路原理说明图。LM317的2脚于1脚之间的电压恒定为恒定值1.25V,所以由固定电阻R1(应小于240Ω)与电位器RW组成取样分压电路,同时也可以作为调节输出电压,输出电压如(1)式。
图2.1 基于单片机控制的数控直流电源系统原理图
其基本工作原理为:电压通过键盘预置后由单片机控制并调节输出电压,输出电压经过A/D采样校正后送数码管显示。
基于单片机的数字控制直流电源的制作需要考虑以下两个问题:一是制作成本及工艺。在现在的商业化中,产品的成本和工艺往往是倍受重视的,它直接决定了产品的销售和发展;二是电源的输出功率以及精确度。在很多实验和领域中都需要用到精确度很高的电源,另外在民用上也需要可调节的电源。在下面的方案设计中将主要对两种数控直流电源作详细介绍和论证。
使用LM317可调稳压器作为主要的稳压器件,一方面可以降低制作成本,另一方面使得电路的设计更简单,更使用。但和开关电源相比,线性电源的效率较低,这是由于调整管相当于一个电阻,电流流过电阻时会发热,所以工作在线性状态下的调整管,一般会产生大量的热,导致效率不高。这是线性稳压电源的一个最主要的一个缺点,调整管在发热的同时会给系统带来热噪声影响。另外,采用调整管的电源,其电源功耗都较小。当然在实际应用中可以加入扩流电路使得电源的输出功率有所提高,可以为小功率电器及设备提供可靠的电源。同时可以通过使用温度传感器校正由于调整管的发热导致的电压偏差,使得电压输出与预置电压相符合。
基于单片机控制的开关电源及其设计

基于单片机控制的开关电源及其设计单片机控制的开关电源是一种高效率、高稳定性的电源系统,常用于电子设备中。
本文将介绍基于单片机控制的开关电源的原理、设计步骤以及相关注意事项。
一、原理1.1开关电源的工作原理开关电源的核心部分是一个开关管,它通过不断开闭来调整输出电压和电流。
当开关管关断时,电源输入端的电压会通过变压器产生瞬态电流,这个电流被蓄能电容器存储在电容中。
当开关管打开时,储存在电容中的能量被释放,通过滤波电感得到稳定的电压输出。
1.2单片机控制开关电源的工作原理在单片机控制的开关电源中,单片机通过控制开关管的开闭状态来调整输出电压和电流。
单片机能够实时监测电源的输入和输出情况,并根据设定的参数进行调整。
同时,单片机还可以实现一些保护功能,如过压、过流、过温等保护。
二、设计步骤2.1确定需求首先要确定开关电源的功率需求、输入电压范围和输出电压范围。
根据需求选择合适的开关管和变压器等元器件。
2.2定义控制策略根据开关电源的工作原理以及需求,确定单片机的控制策略。
可以采用PWM(脉宽调制)控制方法来控制开关管的开闭时间,以实现对输出电压的调节。
2.3确定单片机和外围电路选择合适的单片机控制器,并设计相应的外围电路,包括ADC(模拟数字转换)模块、PWM输出模块、电流传感器等。
2.4编写软件程序根据控制策略,编写单片机的控制程序,并完成软件的调试和优化。
2.5PCB设计与制造根据电路原理图设计PCB布局,并制造相关的电路板。
2.6装配与测试完成PCB板的焊接与装配,进行电源的测试和调试。
三、注意事项3.1安全性开关电源具有高电压、高电流的特点,因此在设计和使用过程中要注意安全性。
应采用合适的绝缘措施,保证电源与其他电路之间的隔离。
3.2效率和稳定性开关电源的效率和稳定性是设计过程中需要考虑的重要因素。
应合理选择元器件,控制开关管的导通和关断时间,以提高电源的效率和稳定性。
3.3EMC(电磁兼容)设计开关电源由于工作频率较高,容易产生电磁干扰。
基于单片机的数控直流稳压电源设计

基于单片机的数控直流稳压电源设计一、概述随着科技的飞速发展,电子设备在我们的日常生活和工业生产中扮演着越来越重要的角色。
这些设备的稳定运行离不开一个关键的组件——电源。
在各种电源类型中,直流稳压电源因其输出电压稳定、负载调整率好、效率高等优点,被广泛应用于各种电子设备和精密仪器中。
传统的直流稳压电源通常采用模拟电路设计,但这种方法存在着电路复杂、稳定性差、调整困难等问题。
为了解决这些问题,本文提出了一种基于单片机的数控直流稳压电源设计方案。
本设计采用单片机作为控制核心,通过编程实现对电源输出电压的精确控制和调整。
相比于传统的模拟电路设计,基于单片机的数控直流稳压电源具有以下优点:单片机具有强大的计算和处理能力,能够实现复杂的控制算法,从而提高电源的稳定性和精度单片机可以通过软件编程实现各种功能,具有很强的灵活性和可扩展性单片机的使用可以大大简化电路设计,降低成本,提高系统的可靠性。
本文将详细介绍基于单片机的数控直流稳压电源的设计原理、硬件电路和软件程序。
我们将介绍电源的设计原理和基本组成,包括单片机控制模块、电源模块、显示模块等我们将详细介绍硬件电路的设计和实现,包括电源电路、单片机接口电路、显示电路等我们将介绍软件程序的设计和实现,包括主程序、控制算法、显示程序等。
1. 数控直流稳压电源的应用背景与意义随着科技的快速发展,电力电子技术广泛应用于各个行业和领域,直流稳压电源作为其中的关键组成部分,其性能的稳定性和可靠性直接影响着整个系统的运行效果。
传统的直流稳压电源多采用模拟电路实现,其调节精度、稳定性以及智能化程度相对较低,难以满足现代电子设备对电源的高性能要求。
开发一种高性能、智能化的数控直流稳压电源具有重要意义。
数控直流稳压电源通过引入单片机控制技术,实现了对电源输出电压和电流的精确控制。
它可以根据实际需求,通过编程灵活调整输出电压和电流的大小,提高了电源的适应性和灵活性。
同时,数控直流稳压电源还具备过流、过压、过热等多重保护功能,有效提高了电源的安全性和可靠性。
基于单片机控制的开关电源的设计

基于单片机控制的开关电源的设计开关电源是一种常见的电源供应器,其基本原理是通过开关器件(如MOSFET、IGBT等)的开关行为来实现电源的稳定输出。
在单片机控制下,可以实现更精确的电压和电流调节,从而提高功率转换效率和供电稳定性。
本文将详细介绍基于单片机控制的开关电源的设计。
首先,我们需要选择合适的单片机。
在选择单片机时,应考虑其性能、成本和易用性。
常用的单片机有PIC、AVR、STM32等,可以根据实际需求选择最适合的单片机类型。
接下来,进行开关电源的电路设计。
开关电源的基本电路包括输入滤波电路、整流电路、开关器件、输出滤波电路和反馈控制电路。
输入滤波电路的作用是滤除输入电源中的高频噪声,以保证电源的稳定性。
整流电路用于将交流输入转换为直流电压。
开关器件是开关电源的关键部分,通过控制开关器件的开关状态,可以实现电源的输出调节。
输出滤波电路用于滤波输出的脉动电压,以获得稳定的直流电压输出。
反馈控制电路用于监测输出电压,并通过单片机进行调节。
在设计过程中,要考虑电路的稳定性和效率。
一方面,电路应具有足够的稳定性以保证电源输出的精度和稳定性。
另一方面,电路应具有较高的功率转换效率,以减少功耗和热量产生。
根据设计要求,可以选择合适的电路元件,如电感、电容、二极管等,以提高电路的稳定性和效率。
在单片机控制下,可以实现电源的自动调节和保护功能。
通过单片机的输入输出引脚连接到开关器件的驱动电路,可以实现开关器件的开关控制。
通过单片机的AD转换功能,可以实时监测电源的输出电压,并通过PID控制算法进行调节,从而实现电源输出的精确控制。
此外,可以通过单片机的IO口连接各种传感器,如温度传感器和过流保护电路,实现对电源工作状态的实时监测和保护功能。
在程序设计方面,可以利用单片机的中断和定时器功能来实现电源的调节和保护。
通过中断,可以实现对输入电压的过压和欠压保护,以防止电源工作在不正常的电压范围内。
通过定时器,可以实现对输出电流的过流保护,以避免电源损坏或者对负载产生过大的影响。
基于单片机控制的开关电源及其设计

基于单片机控制的开关电源及其设计
开关电源是一种广泛应用于电子设备中的电源,它具有高效率、稳定
性好、体积小等优点。
基于单片机控制的开关电源则是在传统开关电源的
基础上结合了单片机的控制功能,可以实现更精确、智能的控制。
首先,输入滤波模块用于滤除输入电源中的高频噪声,以保证后续电
路正常工作。
整流滤波模块则将输入电源的交流信号经过整流后变为直流
信号,并进行滤波以减小波动。
接下来,开关变换模块是整个开关电源的关键。
该模块中包含了主要
的开关电源拓扑结构,如Buck、Boost、Buck-Boost等。
通过开关元件的
开关动作,实现电源输入电压到输出电压的变换。
在设计中,需要考虑开
关频率、开关管的选择以及辅助器件的设计。
输出滤波和稳压控制模块用于进一步滤除开关变换模块输出电压中的
高频噪声,并稳定输出电压。
可以使用电容、电感等元件来实现滤波功能,并通过反馈控制实现稳压功能。
最后,单片机控制模块通过采集输入电压、输出电压等信号,实时监
控电源的工作状态,并根据需要进行调节。
比如,可以通过PWM信号控制
开关元件的开关频率,从而实现输出电压的调节。
同时,单片机还可以实
现过压、过流、过温等保护功能,提高开关电源的安全性和可靠性。
总结起来,基于单片机控制的开关电源通过单片机的控制功能,实现
了对开关电源的精确控制。
在设计中需要注重滤波和稳压控制模块的性能
选择和设计,同时合理选择开关变换模块的拓扑结构和开关元件,以确保
开关电源的效率和稳定性。
基于STM32可调压DC—DC电源设计

基于STM32可调压DC—DC电源设计作者:李志鹏李琳琳周丹丹来源:《电子技术与软件工程》2017年第07期摘要相对于传统的线性稳压电源,开关电源具有效率高、输出功率大、体积小、重量轻、成本低等优点。
随着电子元器件工艺的进步和新型元件的出现,开关电源的优势在不断的放大。
DC-DC(直流转直流)是开关电源中一个重要的研究方向,本文以Sepic变换电路为基础,以目前ARM新型高速单片机STM32为控制核心,设计了一种智能DC-DC可调压电源设计。
可以广泛用于智能手机,平板,智能机器人等集成度较高的电子设备。
【关键词】STM32 DC-DC电源 Sepic变换电路1 Sepic变换电路原理Sepic变换电路是6中基本的DC-DC开关电源拓扑结构之一,其特点为:既可以升压,也可以降压,输入电压与输出电压同极性。
如图1,左端为输入电压Vin,右端为输出平均电压Vout。
在一个周期内,当开关V闭合,电源为电感L1充电,同时耦合电容C1经开关V为电感L2充电,续流二极管D1截止,此时,输出端滤波电容C2维持负载两端的电压;当开关V断开,电感L2经续流二极管为负载供电,同时,电感L1释放能量为耦合电容C1充电,在同一个时刻电容C1、续流二极管D1为负载供电,在断开情况下流过续流二极管D1的电流iD为电感L1、电感L2流过电流之和。
输出平均电压Vout可由下列关系式得到:式中,ton为开关每次接通的时间,toff为开关每次关断的时间。
由上式可以看出,只要控制好一个周期内开通与关断的时间,就可以设置该电源为升压型或降压型。
开关电源的核心是对开关的开通和关断时间的控制,一般选用全控型器件作为开关器件如绝缘栅双极型晶体管(IGBT)等。
续流二极管采用肖特基二极管可以降低导通压降,提高转换效率。
在开关周期T恒定,通过改变脉冲宽度ton来改变占空比,这种方式称为脉冲宽度调制(PWM),用来实现对电压幅值频率的控制。
2 基于STM32的PID控制原理本文选用STM32f103为例进行讲解。
基于51单片机控制的开关电源设计

基于51单片机控制的开关电源设计一、引言开关电源是一种将交流电转换为直流电的电子设备,广泛应用于各个领域。
本文将以基于51单片机控制的开关电源设计为题,介绍设计的原理和实现过程。
二、设计原理开关电源的设计主要包括输入电路、滤波电路、变压器、整流电路、滤波电路、稳压电路以及控制电路。
其中,控制电路起到控制和调节输出电压的作用。
在本设计中,我们采用了51单片机作为控制电路的核心,通过编程控制电路的开关状态,实现对输出电压的精准调节。
三、设计过程1. 输入电路的设计:输入电路主要用于将交流电转换为直流电,并对电压进行稳压处理。
我们选择了整流桥和滤波电容作为输入电路的核心元件,通过整流和滤波,将交流电转换为平稳的直流电。
2. 变压器的设计:变压器是开关电源的重要组成部分,用于提高或降低输入电压的大小。
我们根据实际需求选择合适的变压器,使得输出电压与输入电压之间满足所需的关系。
3. 整流电路的设计:整流电路用于将输入电压转换为脉冲电压,我们选择了二极管桥整流电路,通过将输入电压进行整流,得到脉冲电压。
4. 控制电路的设计:控制电路是整个开关电源设计中最关键的部分,我们选择了51单片机作为控制电路的核心。
通过编程,我们可以控制开关管的开关状态,从而实现对输出电压的调节和稳定。
5. 输出电路的设计:输出电路主要用于输出稳定的直流电压。
我们选择了稳压电路和滤波电容作为输出电路的核心元件,通过稳压和滤波,得到稳定的输出电压。
四、实现效果通过以上的设计过程,我们成功实现了基于51单片机控制的开关电源。
通过编程控制,我们可以实现对输出电压的精确调节和稳定控制。
该开关电源具有输出电压稳定、效率高、响应速度快等特点,适用于各种电子设备的供电需求。
五、总结本文以基于51单片机控制的开关电源设计为题,介绍了设计的原理和实现过程。
通过该设计,我们可以实现对输出电压的精确调节和稳定控制,满足各种电子设备的供电需求。
希望本文能为读者提供有关开关电源设计的参考和借鉴,同时也希望读者能够通过自己的努力和创新,设计出更加高效和稳定的开关电源。
基于单片机控制的开关电源的设计

基于单片机控制的开关电源的设计开关电源是一种将输入的电能转化为所需输出电能的电源,它具有效率高、体积小、重量轻、可靠性高等特点,被广泛应用于各种电子设备中。
本文将介绍一种基于单片机控制的开关电源的设计。
一、设计原理开关电源的核心是DC-DC变换器,其输入端接受交流电源,通过整流滤波电路将交流电源转化为直流电源,并经过DC-DC变换器将直流电源转化为所需输出电压。
此外,为了实现对输出电压的控制和保护功能,需要使用单片机进行控制和监测。
1.输入电路输入电路由输入滤波电路和整流电路组成。
输入滤波电路主要是为了去除交流电源中的高频干扰,通常采用电容和电感组成的滤波网络。
整流电路将交流电源转换为直流电源,常见的整流电路有整流桥和二极管整流电路。
2.DC-DC变换器DC-DC变换器是开关电源的核心部分,它将输入的直流电源转变为所需的输出电压。
常见的DC-DC变换器有:(1)Buck变换器:输出电压小于输入电压;(2)Boost变换器:输出电压大于输入电压;(3)Buck-Boost变换器:输出电压可大于也可小于输入电压。
3.控制电路为了实现对输出电压的控制和监测,需要使用单片机进行控制。
单片机可以通过PWM技术控制开关管的导通和断开,从而控制开关电源输出电压的大小。
同时,单片机还可以监测输出电压的大小,并进行保护控制,如过压保护、欠压保护、过流保护等。
二、设计步骤以下是基于单片机控制的开关电源的设计步骤:1.确定输入电压范围和输出电压要求,并选择合适的DC-DC变换器电路。
2.根据输入电压和输出电压要求,计算所需的滤波电容和电感值,并选择合适的元器件。
3.根据DC-DC变换器电路的控制方式,设计开关管的驱动电路。
常见的驱动方式有:反馈控制、定时控制、电流控制等。
4. 选择合适的单片机,并进行引脚分配。
常见的单片机有:ATmega8、STM32等。
5.编写单片机程序,实现对输出电压的控制和监测。
程序中需要包含PWM控制部分、过压保护部分、欠压保护部分、过流保护部分等。
基于单片机控制的开关电源的设计

基于单片机控制的开关电源的设计开关电源是一种电力转换装置,其工作原理是将输入的电能转换为高频交流电能,经过变压、整流、滤波等处理,输出稳定的直流电压给负载。
它具有体积小、效率高、输出稳定等优点,在各种电子设备中广泛应用。
本文的设计目标是基于单片机控制的开关电源,通过软件程序实现开关电源的控制和保护功能。
下面将从硬件设计和软件设计两方面介绍基于单片机控制的开关电源的设计过程。
硬件设计:1.选择单片机:根据需要选择适合的单片机,常用的有8051系列、AVR系列、PIC系列等。
选择时要考虑单片机的性能、IO口数量、工作电压等参数。
2.电源输入:选择合适的变压器和整流滤波电路,将输入交流电转换为直流电,供给开关电源的PWM控制电路和负载。
3.开关电源的PWM控制电路:使用单片机的PWM输出控制开关电源的工作周期和占空比,从而控制输出电压的大小。
可以使用单片机的IO口连接到MOSFET等开关元件,通过调节IO口的电平和频率来控制开关电源的输出电压。
4.电路保护:为了保护开关电源和负载不受损坏,需要添加过压保护、过流保护、过温保护等电路。
可以使用电压比较器、电流检测芯片等进行监测和保护。
软件设计:1.初始化:在程序运行开始时,对单片机的IO口、定时器等进行初始化设置。
2.输入检测:通过外部引脚读取输入电压和电流的大小,判断是否超出范围。
如果超出范围,则进行相应的保护措施,如关闭开关电源输出。
3.控制算法:根据输入电压和目标输出电压,通过控制占空比调整输出电压的大小。
可以使用PID控制算法等来实现精确控制。
4.输出控制:使用单片机的PWM输出控制开关电源的开关状态和工作周期。
根据控制算法计算的合适占空比,将其作为PWM的占空比输出。
同时,通过监测输出电压和电流的大小,进行闭环控制,使输出电压保持稳定。
5.保护机制:实现过压保护、过流保护、过温保护等功能。
当检测到异常情况时,及时关闭开关电源输出,避免负载和开关电源的损坏。
基于单片机控制的开关电源设计

基于单片机控制的开关电源设计引言许多科学实验都离不开电,并且在这些实验中经常会对通电时间、电压高低、电流大小以及动态指标有着特殊的要求。
因此,如果实验电源不仅具有良好的输出质量而且还具有多功能以及一定的智能化,那么就省去了许多不精确的人为操作,取而代之的是精确的微机控制,而我们所要做的就是在实验开始前对一些参数进行预设。
这将会给各个领域中的实验研究带来不同程度的便捷与高效。
因此,直流电源今后的发展目标之一就是不仅要在性能上做到效率高、噪声低、高次谐波低、既节能又不干扰环境,还要在功能上力求实现数控化、多功能化与智能化。
本文所介绍的就是一个数控可调电源,这是一个高性能的直流稳压电源。
由于在该电源中引入了单片机控制,故该电源还具有一定的智能化,可实现变压,显示输出电压、电流,预置输出电压值等功能。
本文中研究的单片机控制的线性电源,可以通过键盘预置期望输出电压值,模/数转换器对输出电压进行采样并显示在数码管上。
该系统还采用了温度传感器对输出电压进行校正,使得输出电压更稳定精确度也更高。
并且该系统可以给芯片提供+12V,+5V及-12V的工作电压。
由单片机控制的数控电源主要由三部分所构成,主要是电源电路,控制电路和校正电路。
以LM317三端电压可调器来调节电压,其具有输出电压稳定,可调范围较大,但其缺点是输出的电流较小,所以在设计的时候还加入了扩展电流电路。
课题来源及意义电源技术是一种应用功率半导体器件,综合电力变换技术、现代电子技术、自动控制技术的多学科的边缘交叉技术。
随着科学技术的发展,电源技术又与现代控制理论、材料科学、电机工程、微电子技术等许多领域密切相关。
目前电源技术已逐步发展成为一门多学科互相渗透的综合性技术学科。
他对现代通讯、电子仪器、计算机、工业自动化、电力工程、国防及某些高新技术提供高质量、高效率、高可靠性的电源起着关键作用。
我国的电子仪器以及机电一体化仪器中,开关稳压电源还不能得到十分广泛的普及及使用。
基于单片机控制的开关电源设计

基于单片机控制的开关电源设计随着电子技术的快速发展,电源技术也在不断演进。
目前,基于单片机控制的开关电源设计成为了一种趋势。
本文将从开关电源的概念、工作原理、单片机的选择、开关电源的设计要点等方面进行讨论。
开关电源是一种能够将交流电转换为稳定直流电的电源装置。
与传统的线性电源相比,开关电源具有高效率、体积小、重量轻以及可调节性强的特点。
基于单片机控制的开关电源设计,通过单片机的智能控制和精确调节,可以实现更加稳定和精确的电源输出。
首先,我们来了解一下开关电源的工作原理。
开关电源主要由输入滤波电路、整流电路、变换电路和输出电路四部分组成。
其中,输入滤波电路用于滤除电源输入的杂波干扰,整流电路将交流电转换为直流电,变换电路通过变换器件(如MOSFET、继电器)来调节输出电压和电流,输出电路将变换后的电源输出给负载。
在基于单片机控制的开关电源设计中,单片机是一个重要的组成部分。
选择合适的单片机,可以更好地满足设计需求。
在选择单片机时,需要考虑以下几个方面:性能、接口和IO数量、编程方式、工作频率、功耗和成本等。
根据具体的设计要求,选择性能合适、接口丰富的单片机是非常重要的。
接下来,我们将介绍一些开关电源设计的要点。
首先是开关电源的稳压和稳流控制。
通过单片机控制,可以实现对输出电压和电流的精确调节,保证稳定的输出。
同时,还需要注意开关电源的过流、过压、过温等保护功能的设计,以避免电源损坏和负载设备受损。
此外,还需要考虑开关电源的高效率设计,以减少功耗和热量产生,提高电源的使用寿命。
此外,开关电源的电磁兼容性和故障诊断能力也需要进行充分考虑。
最后,我们还需要关注一些细节问题,如电路调试和信号处理等。
在电路调试中,需要通过实际测量和观察数据来分析和确认电路的工作状态,进一步优化和调整电路性能。
信号处理可以使用单片机的AD转换功能来采集和处理信号,实现对电源工作状态的监测和控制。
综上所述,基于单片机控制的开关电源设计是一项重要而有挑战的工作。
基于单片机的开关电源设计与实现

基于单片机的开关电源设计与实现1.引言开关电源是一种将输入直流或交流电转换为稳定输出的电源系统。
它具有高效率、小体积、轻重量等特点,被广泛应用于电子设备和工业领域。
本文旨在介绍基于单片机的开关电源设计与实现,包括原理、设计步骤以及实际搭建过程。
2.基本原理开关电源的基本原理是通过快速开关元件(如MO SF ET)控制输入电压的开关时间,将输入电压转换成高频脉冲信号,并通过滤波电路得到稳定的输出电压。
而单片机作为开关电源的智能控制核心,通过调节开关元件的开关频率和占空比,实现对输出电压的精确调节。
3.设计步骤3.1选择开关元件和滤波电路在设计开关电源时,首先需要选取合适的开关元件和滤波电路。
开关元件应具有低导通压降和快速开关速度,常用的有MO SF ET和I G BT。
滤波电路可采用LC滤波或者P I滤波,用于去除高频脉冲信号中的杂波。
3.2确定控制策略通过单片机控制开关元件的开关频率和占空比,可以实现对输出电压的调节。
控制策略可以采用开环控制或闭环控制,其中闭环控制更加精确稳定。
根据具体的需求和应用场景选择合适的控制策略。
3.3编写控制程序使用单片机的开发工具,编写控制程序并烧录到单片机中。
程序应包括对开关元件的开关频率和占空比的控制,以及保护功能的实现。
根据具体需要,还可以添加过温保护、过流保护等功能。
3.4搭建电路并测试按照设计方案,搭建开关电源的电路,并连接单片机及其他所需的外围电路。
在搭建完成后,进行电路的功能测试。
通过实验验证电路的性能是否符合设计要求,如输出电压的稳定性、响应速度等。
4.实现案例以设计一个12V输出、电流可调节的开关电源为例,使用单片机控制开关频率和占空比。
具体实现步骤如下:1.选择合适的M OS FE T开关元件,并设计电路以实现12V输出。
2.通过脉宽调制(PW M)控制单片机的输出端口,调节开关频率。
3.使用反馈电路和AD C模块实现对输出电流的检测和调节,实现电流可调节功能。
基于单片机的开关电源设计

开关电源是利用现代电力电子技术,控制开关管开通和关断的之间比率,维持稳定输出电压的一种电源,具有高效率、体积小的特点。从上世纪90年代以来开关电源相继进入各种电子、电器设备领域,计算机、程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源。开关电源向着高频化、模块化和智能化方向发展
图2.1.1开关电源工作原理图
串联式开关电源输出电压滤波电路
大多数开关电源输出都是直流电压,因此,一般开关电源的输出电路都带有整流滤波电路。图2.1.2是带有整流滤波功能的串联式开关电源工作原理图。
图2.1.2带有整流滤波功能的串联式开关电源工作原理图
图2.1.2中由一个整流二极管和一个LC滤波电路组成。其中L是储能滤波电感,它的作用是在控制开关K接通期间Ton限制大电流通过,防止输入电压Ui直接加到负载R上,对负载R进行电压冲击,同时对流过电感的电流iL转化成磁能进行能量存储,然后在控制开关K关断期间Toff把磁能转化成电流iL继续向负载R提供能量输出;C是储能滤波电容,它的作用是在控制开关K接通期间Ton把流过储能电感L的部分电流转化成电荷进行存储,然后在控制开关K关断期间Toff把电荷转化成电流继续向负载R提供能量输出;D是整流二极管,主要功能是续流作用,故称它为续流二极管,其作用是在控制开关关断期间Toff,给储能滤波电感L释放能量提供电流通路。在控制开关关断期间Toff,储能电感L将产生反电动势,流过储能电感L的电流iL由反电动势eL的正极流出,通过负载R,再经过续流二极管D的正极,然后从续流二极管D的负极流出,最后回到反电动势eL的负极。
基于单片机的智能大功率直流电源设计

基于单片机的智能大功率直流电源设计
引言
在大功率直流电源中,主电路一般采用晶闸管三相全控桥式整流电路,其关键在于如何准确、可靠、稳定地控制晶闸管的导通角。
目前,大功率直流电源现场应用中最为普遍的控制方式大都采用KC 或KJ 系列小规模集成电路,即采用三相锯齿波信号和直流控制信号相比较获得的移相信号。
然而,三相锯齿波信号的斜率、占空比、幅度等与每相的器件参数密切相关,并且比较信号中小的干扰可能造成较大的相移误差,因而电路的可靠性和自动平衡能力较差。
利用单片机作为控制电路,根据三相全控桥触发脉冲之间的逻辑关系,直接产生六相高度均衡的触发脉冲,可以克服KC、KJ 系列电路均衡性差的缺点。
但是,由于现场系统工作在强电干扰比较严重的场合,为了减小干扰可能引起程序运行紊乱,造成系统失控而引起主电路器件的损坏;另外,为了增强系统的功能,加强人机对话能力,实现显示、打印、命令输入、循环检测、过压过流保护以及软件PI 调节器等功能,必须采用双CPU 并行工作。
但双CPU 并行工作既增加了系统的复杂性,又降低了系统的可靠性和实用性。
为了克服上述局限性,利用8098 单片机作主控单元,并充分利用WATCHDOG 的抗干扰性能,采用以锁相环(PLL)为基本控制原理的通用触发板作中间界面,构成一种智能化的电厂大功率直流后备电源。
1 系统工作原理
现以电力系统对电池进行强充、浮充为例,说明系统的工作原理。
根据现场要求,系统共设有7 种工作方式,见1)手动方式(M)
系统工作在开环状态,利用8098 的PWM 口,经滤波后输出一个0~5V。
基于高性能单片机的功率直流开关电源的设计

基于高性能单片机的功率直流开关电源的设计1 引言直流稳压电源已广泛地应用于许多工业领域中。
在工业生产中(如电焊、电镀或直流电机的调速等),需要用到大量的电压可调的直流电源,他们一般都要求有可以方便的调节电压输出的直流供电电源。
目前,由于开关电源[1]效率高,小型化等优点,传统的线性稳压电源、晶闸管稳压电源逐步被直流开关稳压电源所取代。
开关电源主要的控制方式是采用脉宽调制集成电路输出PWM 脉冲,采用模拟PID调节器进行脉宽调制,这种控制方式,存在一定的误差,而且电路比较复杂[2]。
本文设计了一种以ST 公司的高性能单片机μpsd3354 为控制核心的输出电压大范围连续可调的功率开关电源,由单片机直接产生PWM 波,对开关电源的主电路执行数字控制,电路简单,功能强大[3]。
2 功率直流电源系统原理与整体设计2.1 系统原理本功率直流电源系统由开关电源的主电路和控制电路两部分组成,主电路主要处理电能,控制电路主要处理电信号,采用负反馈构成一个自动控制系统。
开关电源采用PWM 控制方式,通过给定量和反馈量的比较得到偏差,并通过数字PID 调节器控制PWM 输出,从而控制开关电源的输出。
其中,PID调节和PWM 输出都由单片机系统采用软件控制。
2.2 系统整体设计系统硬件部分由输入输出整流滤波电路、功率变换部分、驱动电路、单片机系统和辅助电路等几部分组成。
图1为单片机控制功率直流电源结构框图。
图1 单片机控制功率电源结构框图从图1中可以看到,50Hz、220V的交流电经电网滤波器消除来自电网的干扰,然后进入到输入整流滤波器进行整流滤波,变换成直流电压信号。
该直流信号通过功率变换电路转化成高频交流信号,高频交流信号再经输出整流滤波电路转化成直流电压输出[1]。
控制电路采用PWM脉宽调制方式,由单片机产生的脉宽可调的PWM控制信号经驱动电路处理后,驱动功率变换电路工作。
利用单片机高速ADC转换通道定时采集输出电压,并与期望值比较,根据其误差进行PID调节。
基于单片机的数控直流可调开关电源设计

2.1.3
方案一:采用BUCK降压电路,BUCK降压电路是指输出电压小于输出入电压的单管不隔离的DC-DC变换电路,驱动电压采用PWM脉宽调制信号,通过控制开关管的导通与关断时间来控制输出电压。常见于电子电路中,由于其以开关变换原理为理论根底,其转换效率很高,到达80%,但是其开关噪声较大。
【Key words】Isolate the push-pull Switching power supplySCM PID
1
1.1
随着电子技术的高速开展,电子设备与人们的工作、生活的关系变得日益密切。所有的电子设备都离不开电源,电源的质量与性能的上下直接影响到整个系统的优劣与可靠性。开关电源由于其体积小、重量低、效率高、可靠性强渐渐成为当前电子设备供电电源的首选,成为当前电源开展的一大热门方向[1]。
2.1系统总体框图
2.2
2.2.1
方案一:采用单端正激式开关拓扑,单端正激式开关电源比较常见,目前来说技术比较成熟,构造较简单紧凑。输出电压的瞬态控制特性相对来说比较好,相对于反激开关电源在控制开关处于断开期间才由储能电感和储能电容提供,正激开关电源在变变压器原边导通时副边感应出对应电压输出到负载,能量由变压器直接传递,带负载能力来说相对较强,输出电压纹波较小[3]。但由于是单端的拓扑,且开关管上承受的电压较高,容易烧管,因此单端正激式开关电源多用于100-200W的场合。
【关键字】隔离推挽开关电源单片机PID
Design of DC adjustable switching power supply based on single chip microputer
Abstract
China is a large energy country and energy consumption, with the popularity of energy-saving emission reduction, low-carbon concept of life put forward, how people pay more attention to how energy. Reliable performance and high efficiency switching power supply has bee a hot topic today.Switching power supply in today's society has a pivotal position, because of its small size, light weight, high efficiency, so small to the phone charger, large TV can see it in the shadow. In the personal puter, munications equipment, military fields, instrumentation has been a large application. Under the huge market demand, how to make the switching power supply under the control of C to achieve high precision and efficiency has bee a popular research.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于高性能单片机的功率直流开关电源的设计
摘要:本文基于高性能单片机设计了数字控制的功率直流开关电源。
首先介绍了该电源的原理及整体设计方案,其次介绍了部分关键电路的硬件设计,采用软件方式来实现功率直流电源的数字控制,给出了主程序及部分关键部分的程序流程图。
该电源具有输出电压连续可调、精度高、电路简单、操作灵活等优点。
关键词:开关电源;数字控制
Abstract:Based on the design of a number of high-performance MCU control of the power of DC switching power supply. First introduced the power of principle and the overall design scheme, introduced the Second Circuit key part of the hardware design, software methods used to achieve power direct current power of digital control, given the main program and some key part of the process flow chartThe continuous power supply with adjustable output voltage, high precision, simple circuit, the advantages of flexible operation.
Keyword:Switching Power SupplyDigital Control
1 引言
直流稳压电源已广泛地应用于许多工业领域中。
在工业生产中(如电焊、电镀或直流电机的调速等),需要用到大量的电压可调的直流电源,他们一般都要求有可以方便的调节电压输出的直流供电电源。
目前,由于开关电源[1]效率高,小型化等优点,传统的线性稳压电源、晶闸管稳压电源逐步被直流开关稳压电源所取代。
开关电源主要的控制方式是采用脉宽调制集成电路输出PWM 脉冲,采用模拟PID调节器进行脉宽调制,这种控制方式,存在一定的误差,而且电路比较复杂[2]。
本文设计了一种以ST 公司的高性能单片机靝sd3354 为控制核心的输出电压大范围连续
可调的功率开关电源,由单片机直接产生PWM 波,对开关电源的主电路执行数字控制,电路简单,功能强大[3]。
2 功率直流电源系统原理与整体设计
2.1 系统原理
本功率直流电源系统由开关电源的主电路和控制电路两部分组成,主电路主要处理电能,控制电路主要处理电信号,采用负反馈构成一个自动控制系统。
开关电源采用PWM 控制方式,通过给定量和反馈量的比较得到偏差,并通过数字PID 调节器控制PWM 输出,从而控制开关电源的输出。
其中,PID调节和PWM 输出都由单片机系统采用软件控制。
2.2 系统整体设计
系统硬件部分由输入输出整流滤波电路、功率变换部分、驱动电路、单片机系统和辅助电路等几部分组成。
图1为单片机控制功率直流电源结构框图。
图1 单片机控制功率电源结构框图
从图1中可以看到,50Hz、220V的交流电经电网滤波器消除来自电网的干扰,然后进入到输入整流滤波器进行整流滤波,变换成直流电压信号。
该直流信号通过功率变换电路转化成高频交流信号,高频交流信号再经输出整流滤波电路转化成直流电压输出[1]。
控制电路采用PWM脉宽调制方式,由单片机产生的脉宽可调的PWM控制信号经驱动电路处理后,驱动功率变换电路工作。
利用单片机高速ADC转换通道定时采集输出电压,并与期望值比较,根据其误差进行PID调节。
电压采集电路实现了直流电压V0的采集,并使其与A/D转换器的模拟输入电压范围匹配,在开关电源发生过压、过流和短路故障时,保护电路对电源和负载起保护作用。
辅助电源为控制电路、驱动电路等提供直流电源。
3. 开关电源主电路设计
开关电源主电路是用来完成DC-AC-DC 的转换,系统主电路采用全桥型DC-DC 变换器,如图2 所示。
本系统采用的功率开关器件是EUPEC 公司的BSM 50GB120DN2 系列的IGBT 模块,每个模块是一个半桥结构,故在全桥系统中,需要两个模块。
每个模块内嵌入一个快速续流二极管。
图2 功率直流电源主电路图
4. 控制电路硬件设计
4.1 控制电路结构框图
功率直流电源的控制电路采用ST 公司的靝sd3354 单片机为核心。
控制电路主要完成如下功能:电压采集、A/D 转换、闭环调节、PWM 信号产生,IGBT 驱动与保护、键盘输入和输出电压显示等功能。
控制电路主要包括:单片机系统、电压采集电路、IGBT驱动电路和键盘、显示电路等。
结构框图如图3 所示。
系统通过PWM 输出控制功率转换开关的导通与关断时间,完成对输出电压的稳定控制,通过A/ D 转换完成对开关电源输出电压的采样,同时采用电压闭环控制,开关电源工作时,根据期望值与电压反馈值的偏差,由单片机实现对PWM 占空比进行PID 调节。
图3 控制电路结构图
4.2 IGBT 驱动电路设计
为了精确控制开关电路的电压输出,本系统采用脉宽调制方式调节开关管的工作状态。
根据电压控制算法(可采用改进的PID 控制算法)设置单片机产生不同占空比的方波信号,经过光电耦合器控制开关器件,调整电路输出设定的电压值。
要使IGBT 正常工作,合适的驱动是至关重要的。
驱动电路的任务是将控制电路发出的信号转换为加在电力电子器件控制端和公共端之间、可以使其开通或关断的信号。
同时驱动电路通常还具有电气隔离及电力电子器件的保护等功能。
本系统采用富士
电机公司的EXB系列的EXB841 型集成驱动器对IGBT 进行驱动[4]。
4.3 传感器输入通道与A/D 转换
系统通过电压传感器采集电压信号,经过A/D 转换被单片机接收。
本系统采用CHV 系列霍尔电压传感器采集电压,采用靝sd3354 单片机内部的A/D转换器进行模数转换,线路连接简单,精度最大为5mV。
基本能满足控制要求。
4.4 键盘和显示电路
功率直流电源的键盘和显示电路部分都装在操作面板上,由单片机控制。
本系统采用自制4×4 矩阵键盘,以单片机的PB4~PB7 做输出线,PB0~PB3 做输入线。
显示部分采用动态数码显示,以专用的数码管显示驱动芯片MAX7219进行驱动。
4.5 其他辅助电路
为了使功率直流电源能够可靠、安全的工作。
电源系统中还有一些辅助电路,过热、过流和短路保护等。
另外,还设有辅助电源部分,提供系统所需电源。
5. 系统软件设计
系统软件主要由主程序和中断服务程序组成,主要用来实现以下功能:键盘扫描、数码显示、A/D 转换、数字PID 调节和PWM 波形产生等。
键盘扫描和数码显示这里不作介绍,本设计主要是采用软件方式来实现功率直流电源的数字控制。
5.1 主程序设计
本系统主程序流程图如图4所示。
主流程在完成各种变量和I/O初始化后,可以输入期望电压值并存入寄存器,当按下启动按钮后,启动电源系统,这里设定启动时,使PWM输出占空比为最小值,即0.1%。
启动后,调用A/D转换子程序并读入键值,将反馈电压值与给定电压值相比较后,调用PID调节运算,更新驱动波形的占空比,然后调用PWM产生子程序输出PWM信号,并通过显示子程序显示输出电压。
图4 主程序流程图图5 PID调节子程序流程图
5.2 A/D转换部分子程序
直接利用单片机10位ADC口,A/D转换部分程序比较简单,程序只要完成如下功能:选择模拟输入通道,并预制分频数;配置控制寄存器ACON;读取A/D转换后的数值,返还ADTA0、ADTA1中的数据。
5.3 PID调节子程序
PID调节由单片机来实现,单片机对给定信号与反馈信号相减得到的误差来计算调整量,用以控制开关的占空比。
算法中,做了一点修正,当偏差与积分符号相反时,积分清零。
因为若符号相反,说明积分项起了反作用,故把积分项清零[5]。
PID 控制流程图如图5所示,参数KP、KI、KD在调试过程中设定。
6. 结束语
本系统将开关电源与单片机系统结合起来,设计了一种输出电压连续可调的功率开关电源。
该电源精度高,电路简单,操作灵活,具有良好的应用前景。
单片机控制直流电源符合电力电子新技术产品向“四化”方向发展的要求,即应用技术的高频化、硬件结构的模块化、软件控制的数字化、产品性能的绿色化。