角平分线性质练习题
专题07 角的平分线性质(专题测试)(解析版)
专题07 角的平分线性质专题测试学校:___________姓名:___________班级:___________考号:___________一、选择题(共12小题,每题4分,共计48分)1.(2018春 榆林市期末)如图,AD 是ABC V 的角平分线,DF AB ⊥,垂足为F ,DE DG =,ADG V 和AED V 的面积分别为60和35,则EDF V 的面积为( )A.25B.5.5C.7.5D.12.5【答案】D【详解】如图,过点D 作DH AC ⊥于H ,AD Q 是ABC V的角平分线,DF AB ⊥, DF DH ∴=,在Rt ADF V 和Rt ADH V 中,AD AD DF DH=⎧⎨=⎩, Rt ADF V ∴≌()Rt ADH HL V ,Rt ADF Rt ADH S S ∴=V V ,在Rt DEF V 和Rt DGH V 中,DE DG DF DH =⎧⎨=⎩Rt DEF ∴V ≌()Rt DGH HL V ,Rt DEF Rt DGH S S ∴=V V ,ADG QV 和AED V 的面积分别为60和35,Rt DEF Rt DGH 35S 60S ∴+=-V V ,Rt DEF S ∴V =12.5,故选D .【名师点睛】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,熟记掌握相关性质、正确添加辅助线构造出全等三角形是解题的关键.2.(2018春 天津市期中)如图,△ABC 的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将△ABC 分为三个三角形,则S △ABO :S △BCO :S △CAO 等于( )A .1:1:1B .1:2:3C .2:3:4D .3:4:5【答案】C【详解】 本题主要考查三角形的角平分线。
三角形三条角平分线的交点为三角形的内心,即本题中O 点为△ABC 的内心,则O 点到△ABC 三边的距离相等,设距离为r ,有S △ABO = 12×AB×r,S △BCO = 12×BC×r,S △CAO = 12×CA×r,所以S △ABO :S △BCO :S △CAO =AB:BC:CA=20:30:40=2:3:4.故答案选C.【名师点睛】本题考查的知识点是三角形的角平分线中线和高,解题的关键是熟练的掌握三角形的角平分线中线和高.3.(2017春 商丘市期中)如图,△ABC 中,AD 为△ABC 的角平分线,BE 为△ABC 的高,∠C=70°,∠ABC=48°,那么∠3是( )A .59°B .60°C .56°D .22°【答案】A【详解】 在△ABC 中,∠C =70°,∠ABC =48°,则∠CAB =62°,又AD 为△ABC 的角平分线,∠1=∠2=62°÷2=31°又在△AEF 中,BE 为△ABC 的高∴∠EFA =90°−∠1=59°∴∠3=∠EFA =59°4.(2018出 南阳市期末)如图,∠AOB 是平角,∠AOC=50°,∠BOD =60°,OM 平分∠BOD ,ON 平分∠AOC ,则∠MON 的度数是( )A.135°B.155°C.125°D.145°【答案】C【详解】 解:∵∠AOC+∠COD+∠BOD=180°,∴∠COD=180°-∠AOC-∠COD=70°,∵OM 、ON 分别是∠AOC 、∠BOD 的平分线,∴∠MOC=12∠AOC=25°,∠DON=12∠BOD=30°,∴∠MON=∠MOC+∠COD+∠DON=125°,故选:C .【名师点睛】本题考查角度计算,解题的关键是熟练利用角分线的性质,本题属于基础题型.5.(2018春 徐州市期末)如图,在Rt △ABC 中,∠C=90°,∠A=30°,BD 是∠ABC 的平分线,AD=20,则BC 的长是 ( )A.20 C.30 D.10 【答案】D【详解】在Rt △ABC 中 由于∠A=30°,因此∠ABC=60°;因为BD 是∠ABC 的角平分中线,所以∠ABD=∠DBC=30°,因此三角形ADB 为等腰三角形,BD=AD=20在直角三角形DCB 中,DC=12BD 根据勾股定理,BD²=DC²+BC²=(12BD)²+BC²,所以BC=10故选:D【名师点睛】本题考核知识点:角平分线、等腰三角形、直角三角形.解题关键点:熟记直角三角形性质、等腰三角形性质.6.(2018春 信阳市期末)如图,在▱ABCD 中,已知AD 15cm =,AB 10cm =,AE 平分BAD ∠交BC 于点E ,则CE 长是( )A.8cmB.5cmC.9cmD.4cm【答案】B【详解】解:Q四边形ABCD是平行四边形,AD BC,∴==,//AD BC cm15∠交BC于点E,AEQ平分BAD∴∠=∠,DAE EABQ,//AD BC∴∠=∠,DAE AEB∴∠=∠,EAB AEB∴==,10AB BE cm()∴=-=-=.EC BC BE cm15105故选:B.【名师点睛】=是解题关键.此题主要考查了平行四边形的性质以及角平分线的定义,正确得出AB BE7.(2018春商丘市期末)如图,已知点O在直线AB上,∠COE=90°,OD平分∠AOE,∠COD=25°,则∠BOD的度数为()A.100° B.115° C.65° D.130°【答案】B【解析】∵∠COE=90°,∠COD=25°,∴∠DOE=90°﹣25°=65°,∵OD平分∠AOE,∴∠AOD=∠DOE=65°,∴∠BOD=180°﹣∠AOD=115°,故选:B.8.(2018春芜湖市期末)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过F作DE∥BC,交AB 于点D,交AC于点E.若BD=4,DE=7,则线段EC的长为()A.3B.4C.3.5D.2【答案】A【详解】∵∠ABC和∠ACB的平分线相交于点F,∴∠DBF=∠FBC,∠ECF=∠BCF,∵DF∥BC,交AB于点D,交AC于点E.∴∠DFB=∠DBF,∠CFE=∠BCF,∴BD=DF=4,FE=CE,∴CE=DE-DF=7-4=3.故选A.【名师点睛】此题主要考查学生对等腰三角形的判定与性质平行线段性质的理解和掌握,关键利用两直线平行内错角相等.9.(2018春石家庄市期末)如图,直线AB、CD相交于点O,OE平分∠AOD,若∠BOC=70°,则∠COE的度数是()A.110°B.120°C.135°D.145°【答案】D【详解】∵∠BOC=70°,∴∠AOD=∠BOC=70°.∴∠AOC=180°﹣70°=110°,∵OE平分∠AOD,∴∠AOE=12∠AOD=12×70°=35°.∴∠COE=∠AOC+∠AOE=110°+35°=145°,故选:D.【名师点睛】此题考查角的计算,角的平分线是中考命题的热点,常与其他几何知识综合考查.10.(2018春西安市期末)如图,AB∥CD,BC平分∠ABD,∠1=50°,则∠2的度数是()A.50o B.60o C.70o D.80o【答案】D【详解】∵AB∥CD∴∠ABC=∠1=50°,∠ABD+∠BDC=180°,∵BC平分∠ABD,∴∠ABD=2∠ABC=100°,∴∠BDC=180°-∠ABD=80°,∴∠2=∠BDC=80°.故选:D.【名师点睛】本题考查的是平行,熟练掌握平行的性质和角平分线的性质是解题的关键.11.(2018春恩施市期末)长方形如图折叠,D点折叠到D′的位置,已知∠D′FC=40°,则∠EFC=()A.120°B.110°C.105°D.115°【答案】B【详解】根据翻折不变性得出,∠DFE=∠EFD′,∵∠D′FC=40°,∠DFE+∠EFD′+∠D′FC=180°,∴2∠EFD′=180°-40°=140°,∴∠EFD′=70°,∴∠EFC=∠EFD′+∠D′FC=70°+40°=110°.故选:B.【名师点睛】此题考查了角的计算和翻折变化,掌握长方形的性质和翻折不变性是解题的关键.12.(2019春周口市期末)已知∠BOC=60°,OF平分∠BOC.若AO⊥BO,OE平分∠AOC,则∠EOF的度数是( )A.45°B.15°C.30°或60°D.45°或15°【答案】A【详解】如图1,由AO⊥BO,得∠AOB=90°,由角的和差,得∠AOC=∠AOB+∠BOC=150°,∵OE平分∠AOC,OF平分∠BOC,∴∠COE=12∠AOC=12×150°=75°,∠COF=12∠BOC=12×60°=30°,由角的和差,得∠EOF=∠COE-∠COF=75°-30°=45°;如图2,由AO ⊥BO ,得∠AOB =90°,由角的和差,得∠AOC =∠AOB -∠BOC =30°,∵OE 平分∠AOC ,OF 平分∠BOC ,∴∠COE =12∠AOC =12×30°=15°,∠COF =12∠BOC =12×60°=30°, 由角的和差,得∠EOF =∠COE +∠COF =15°+30°=45°,故选A.【名师点睛】本题考查了垂线,利用了垂线的定义,角平分线的定义,角的和差,正确地进行分类讨论、准确画出图形是解题的关键.二、填空题(共5小题,每小题4分,共计20分)13.(2018春 常州市期中)如图,在△ABC 中,AF 平分∠BAC ,AC 的垂直平分线交BC 于点E ,∠B=70°,∠FAE=19°,则∠C=______度.【答案】24【详解】∵DE 是AC 的垂直平分线,∴EA=EC ,∠EAC=∠C,∴∠FAC=∠FAE+∠EAC=19°+∠EAC ,∵AF 平分∠BAC ,∴∠FAB=∠FAC.在△ABC中,∠B+∠C+∠BAC=180°所以70°+∠C+2∠FAC=180°,∴70°+∠EAC+2×(19°+∠EAC)=180° ,∴∠C=∠EAC=24°,故本题正确答案为24.【名师点睛】本题主要考查角平分线和垂直平分线的性质、三角形内角和等于180度的应用、角的概念及其计算. 14.(2016春西安市期末)如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=130°,∠C=30°,则∠DAE的度数是__________.【答案】5°【详解】∵AD⊥BC,∠C=30°,∴∠CAD=90°-30°=60°,∵AE是△ABC的角平分线,∠BAC=130°,∴∠CAE=12∠BAC=12×130°=65°,∴∠DAE=∠CAE-∠CAD=65°-60°=5°.故答案为:5°.【名师点睛】本题考查了三角形的内角和定理,三角形的角平分线,高线的定义,准确识图,找出各角度之间的关系并求出度数是解题的关键.15.(2017春扬州市期末)如图,AB、CD相交于点O,OE是∠AOC的平分线,∠BOD=70°,∠EOF=65°,则∠AOF的度数为______°.【答案】30°【解析】∵∠AOC 与∠BOD 是对顶角,∠BOD=70°,∴∠AOC=70°,∵OE 平分∠AOC ,∴∠AOE=12∠AOC=35°, ∴∠AOF=∠EOF-∠AOE=65°-35°=30°,故答案为:30°.16.(2018春 德州市期中)如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,S △ABC =7,DE=2,AB=4,则AC 的长是______.【答案】3.【解析】解:如图,过点D 作DF ⊥AC 于F .∵AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB ,∴DE=DF .由图可知,S △ABC =S △ABD +S △ACD ,∴12×4×2+12×AC×2=7,解得:AC=3.故答案为:3.17.(2018春 广安市期末)如图所示,在ABC V 中,90C o ∠=,BE 平分ABC ∠,ED AB ⊥于D ,若6AC cm =,则AE DE +=________.【答案】6cm【详解】∵BE 平分∠ABC ,ED ⊥AB ,∠C=90°,∴DE=CE ,∴AE+DE=AE+CE=AC=6cm .故答案为:6cm.【名师点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.三、解答题(共4小题,每小题8分,共计32分)18.(2018春河源市期末)如图,AC、BD相交于点O,∠A=∠ABC,∠DBC=∠D,BD平分∠ABC,点E在BC 的延长线上。
【初中数学】人教版八年级上册第1课时 角的平分线的性质(练习题)
人教版八年级上册第1课时角的平分线的性质(348) 1.如图,已知∠1=∠2,BA<BC,P为BN上的一点,PF⊥BC于点F,PA=PC.求证:∠PCB+∠BAP=180∘2.证明命题“角的平分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,∠AOC=∠BOC,点P在OC上,. 求证:.请你补全已知和求证,并写出证明过程.3.如图,已知AD//BC,∠D=90∘.(1)如图①,若∠DAB的平分线与∠CBA的平分线交于点P,CD经过点P.试问:P是线段CD的中点吗?为什么?(2)如图②,如果P是DC的中点,BP平分∠ABC,∠CPB=35∘,求∠PAD的度数4.如图OP是∠AOB的平分线,点P到OA的距离为3,N是OB上的任意一点,则线段PN的取值范围为()A.PN<3B.PN>3C.PN≥3D.PN≤35.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE等于()A.2cmB.3cmC.4cmD.5cm6.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC的长为()A.3B.4C.6D.57.如图,在△ABC中,∠C=90∘,AD平分∠BAC,过点D作DE⊥AB于点E,测得BC=9,BE=3,则△BDE的周长是.8.如图,在△ABC中,两条外角平分线交于点P,PM⊥AC交AC的延长线于点M.若PM=6cm,则点P到AB的距离为.9.如图,已知AB//CD,O是∠BAC与∠ACD的平分线的交点.OE⊥AC于点E,OE=2,则AB与CD之间的距离为.10.如图,已知点B,D分别在∠DAB的两边上,C为∠DAB的内部的一点,且AB=AD,DC=BC,CE⊥AD交AD的延长线于点E,CF⊥AB交AB的延长线于点F.试判断CE与CF是否相等,并说明理由.11.如图,利用尺规作∠AOB的平分线OC,其作法如下:①以O为圆心,任意长为半径画弧,分别交OA,OB于点D,E;DE的长为半径画弧,两弧在∠AOB的内部交于点②分别以D,E为圆心,以大于12C;③画射线OC,则OC就是∠AOB的平分线.这样作图的原理是一种三角形全等的判定方法,这种判定方法是()A.SSSB.SASC.ASAD.AAS12.如图,OP为∠AOB的平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,则下列结论错误的是()A.PC=PDB.∠CPD=∠DOPC.∠CPO=∠DPOD.OC=OD13.求证:直角三角形的两锐角互余14.如图,在△ABC中,∠C=90∘,∠CAB=50∘,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB,AC于点E,F;EF的长为半径画弧,两弧相交于点G;②分别以点E,F为圆心,大于12③作射线AG,交BC边于点D.则∠ADC的度数为()A.40∘B.55∘C.65∘D.75∘15.如图,AB∥CD,以点A为圆心,小于AC长为半径画圆弧,分别交AB,AC于E,EF的长为半径画圆弧,两条圆弧交于点G,F两点,再分别以E,F为圆心,大于12作射线AG交CD于点H.若∠C=140∘,则∠AHC的大小是()A.20∘B.25∘C.30∘D.40∘参考答案1.【答案】:证明:如图,过点P 作PE ⊥BA 交BA 的延长线于点E . ∵∠1=∠2,PF ⊥BC 于点F ,∴PE =PF ,∠PEA =∠PFC =90∘.在Rt △PEA 与Rt △PFC 中,PA =PC ,PE =PF ,∴Rt △PEA ≌Rt △PFC(HL ),∴∠PAE =∠PCB .∵∠PAE +∠BAP =180∘,∴∠PCB +∠BAP =180∘.2.【答案】:解:PD ⊥OA ,PE ⊥OB ,垂足分别为D,E 求证:PD =PE证明:∵PD ⊥OA ,PE ⊥OB ,∴∠PDO =∠PEO =90∘.在△PDO 和△PEO 中,{∠PDO =∠PEO ,∠AOC =∠BOC ,OP =OP.∴△PDO ≌△PEO(AAS ),∴PD =PE .3(1)【答案】解:P 是线段CD 的中点.理由如下: 如图,过点P 作PE ⊥AB 于点E .∵AD//BC ,∠D =90∘,∴∠C =180∘−∠D =90∘,即PC ⊥BC .∵∠DAB 的平分线与∠CBA 的平分线交于点P ,∴PD =PE ,PC =PE ,∴PC=PD,∴P是线段CD的中点.(2)【答案】解:如图,过点P作PE⊥AB于点E.∵AD//BC,∠D=90∘,∴∠C=180∘−∠D=90∘,即PC⊥BC.在△PBE与△PBC中,{∠PEB=∠C,∠PBE=∠PBC,PB=PB.∴△PBE≌△PBC(AAS),∴∠EPB=∠CPB=35∘,PE=PC.∵PC=PD,∴PD=PE.在Rt△PAD与Rt△PAE中,{PA=PA,PD=PE∴Rt△PAD≌Rt△PAE(HL),∴∠APD=∠APE.∵∠APD+∠APE=180∘−2×35∘=110∘,∴∠APD=55∘,∴∠PAD=90∘−∠APD=35∘.4.【答案】:C【解析】:作PM⊥OB于点M.∵OP是∠AOB的平分线,PE⊥OA,PM⊥OB,∴PM=PE=3,∴PN≥3. 故选 C5.【答案】:B【解析】:因为BE平分∠ABC,∠ACB=90°,DE⊥AB于点D,所以DE=EC,AE+DE=AE+EC=AC=3cm.故选 B.6.【答案】:A【解析】:如图,过点D作DF⊥AC于点F.∵AD是△ABC中∠BAC的平分线,DE⊥AB,∴DE=DF=2.由图可知S△ABC=S△ABD+S△ACD,即12×4×2+12AC×2=7,解得AC=3.故选A.7.【答案】:12【解析】:解:∵∠C=90∘,∴AC⊥CD.∵AD平分∠BAC,DE⊥AB,∴DE=CD.∵BC=9,BE=3,∴△BDE的周长=BE+BD+DE=BE+BD+CD=BE+BC=3+9=12.8.【答案】:6cm【解析】:如图,过点P作PN⊥BC于点N,PQ⊥AB,交AB的延长线于点Q.∵PB,PC分别是∠ABC与∠ACB的外角平分线,PM⊥AC,∴PN=PM,PQ=PN,∴PQ=PM.∵PM=6cm,∴PQ=6cm,即点P到AB的距离为6cm.9.【答案】:4【解析】:如图,过点O作MN,使MN⊥AB于M,交CD于N.∵AB//CD,∴MN⊥CD.∵AO是∠BAC的平分线,OM⊥AB,OE⊥AC,OE=2,∴OM=OE=2.∵CO是∠ACD的平分线,OE⊥AC,ON⊥CD,∴ON=OE=2,∴MN=OM+ON=4,即AB与CD之间的距离是4.10.【答案】:解:CE=CF.理由:∵AD=AB,DC=BC,AC=AC,∴△ACD≌△ACB,∴∠DAC=∠BAC,∴AC为∠EAF的平分线.∵CE⊥AE,CF⊥AF,∴CE=CF(角平分线上的点到角两边的距离相等).11.【答案】:A12.【答案】:B【解析】:∵OP为∠AOB的平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,∴PC=PD,故A项正确.在Rt△OCP与Rt△ODP中,∵OP=OP,PC=PD,∴Rt△OCP≌Rt△ODP,∴∠CPO=∠DPO,OC=OD,故C,D两项正确.不能得出∠CPD=∠DOP,故B项错误.故选B13.【答案】:已知:在△ABC中,∠C=90∘.求证:∠A+∠B=90∘.证明:∵∠A+∠B+∠C=180∘,而∠C=90∘,∴∠A+∠B=90∘,即∠A与∠B互余.14.【答案】:C【解析】:根据作图方法可得AG是∠CAB的平分线,∵∠CAB=50∘,∠CAB=25∘,∴∠CAD=12∵∠C=90∘,∴∠CDA=90∘−25∘=65∘.故选C.15.【答案】:A【解析】:解:由题意可得AH平分∠CAB.∵AB∥CD,∴∠C+∠CAB=180∘,∠HAB=∠AHC.∵∠ACD=140∘,∴∠CAB=40∘.∵AH平分∠CAB,∴∠HAB=20∘,∴∠AHC=20∘.。
角的平分线的性质测试题
第十二章全等三角形12.3 角的平分线的性质一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6 cm,则△DEB 的周长是A.6 cm B.4 cm C.10 cm D.以上都不对【答案】A2.如图,∠1=∠2,PD⊥OA,PE⊥OB,垂足分别为D,E,下列结论错误的是A.PD=PE B.OD=OE C.∠DPO=∠EPO D.PD=OP【答案】D【解析】根据角平分线的性质可得:PD=PE,根据题意HL判定定理可得:Rt△POE≌Rt△POD,则OD=OE,∠DPO=∠EPO.故选D.学*科网3.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,CD=3,则点D到AB的距离是A.1 B.2 C.3 D.4 【答案】C【解析】如图,作DE⊥AB于E,∵AD是∠BAC的平分线,∠C=90°,DE⊥AB,∴DE=CD=3.故选C.学*科网4.用尺规作图法已知角∠AOB的平分线的步骤如下:①以点O为圆心,任意长为半径作弧,交OB于点D,交OA于点E;②分别以点D,E为圆心,以大于12DE的长为半径作弧,两弧在∠AOB的内部相交于点C;③作射线OC.则射线OC为∠AOB的平分线.由上述作法可得△OCD≌△OCE的依据是A.SAS B.ASA C.AAS D.SSS【答案】D二、填空题:请将答案填在题中横线上.5.如图,△ABC中,∠ABC与∠ACB的角平分线相交于点D,过D点的直线EF∥BC且交AB于E、交AC于F,已知AB=7 cm,AC=5 cm,BC=6 cm,则△AEF的周长为__________cm.【答案】126.如图,AD∥BC,BP平分∠ABC,AP平分∠BAD,PE⊥AB,PE=2,则两平行线AD、BC之间的距离为__________.【答案】4【解析】如图,过点P作MN⊥AD,∵AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,PE⊥AB于点E,∴AP⊥BP,PN⊥BC,∴PM=PE=2,PE=PN=2,∴MN=2+2=4.故答案为:4.学*科网三、解答题:解答应写出文字说明、证明过程或演算步骤.7.如图,在△ABC中,∠B=40°,∠C=80°,按要求完成下列各题:(1)作△ABC的角平分线AE;(2)根据你所画的图形求∠DAE的度数.【解析】(1)如图,AE为所作.(2)∵∠B=40°,∠C=80°,∴∠BAC=180°-40°-80°=60°,∵AE平分∠BAC,∴∠BAE=12∠BAC=30°.学*科网8.已知:如图,△ABC的角平分线BE、CF相交于点P.求证:点P在∠A的平分线上.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为() A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是()A.x=y B.ax+1=ay-1C.ax=-ay D.3-ax=3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为()A.100元B.105元C.110元D.120元8.如果一个角的余角是50°,那么这个角的补角的度数是()A.130°B.40°C.90°D.140°9.如图,C,D是线段AB上的两点,点E是AC的中点,点F是BD的中点,EF=m,CD =n,则AB的长是()A.m-n B.m+nC.2m-n D.2m+n10.下列结论:①若a+b+c=0,且abc≠0,则a+c2b=-12;②若a+b+c=0,且a≠0,则x=1一定是方程ax+b+c=0的解;③若a +b +c =0,且abc ≠0,则abc >0; ④若|a |>|b |,则a -ba +b>0. 其中正确的结论是( ) A .①②③ B .①②④ C .②③④D .①②③④二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________.12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________. 14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =12∠AOB ,则射线OC 是∠AOB 的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个. 16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a △b =a ·b -2a -b +1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n 条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分) 19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1. 22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.日期9月1日9月2日9月3日9月4日9月5日9月6日9月7日电表读123130137145153159165 数/度该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF 是∠AOE 的平分线,所以∠AOE =2∠EOF =2(90°-α)=180°-2α.所以∠BOE =180°-∠AOE =180°-(180°-2α)=2α.所以∠BOE =2∠COF .(2)∠BOE =2∠COF 仍成立.理由:设∠AOC =β,则∠AOE =90°-β,又因为OF 是∠AOE 的平分线,所以∠AOF =90°-β2.所以∠BOE =180°-∠AOE =180°-(90°-β)=90°+β,∠COF =∠AOF +∠AOC =90°-β2+β=12(90°+β).所以∠BOE =2∠COF .25.解:(1)0.5x ;(0.65x -15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a 度.根据题意,得0.65a -15=0.55a ,解得a =150.答:该用户10月用电150度.26.解:(1)130(2)若点C 在原点右边,则点C 表示的数为100÷(3+1)=25; 若点C 在原点左边,则点C 表示的数为-[100÷(3-1)]=-50. 故点C 表示的数为-50或25.(3)设从出发到同时运动到点D 经过的时间为t s ,则6t -4t =130, 解得t =65.65×4=260,260+30=290,所以点D 表示的数为-290.(4)ON -AQ 的值不变.设运动时间为m s,则PO=100+8m,AQ=4m. 由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.。
2019-2020学年八年级上学期数学专题12.3 角平分线的性质(测试)(解析版)
专题12.3角平分线的性质(测试)一、单选题1.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,若BD=2CD,点D到AB的距离为4,则BC的长是()A.4 B.8 C.12 D.16【答案】C【解析】解:如图,过D作DE⊥AB于E,∵∠C=90°,∴CD⊥AC,∵AD平分∠BAC,∴CD=DE,∵D到AB的距离等于4,∴CD=DE=4,又∵BD=2CD,∴BD=8,∴BC=4+8=12,故选:C.2.如图,图中直线表示三条相互交叉的路,现要建一个货运中转站,要求它到三条公路的距离相等,则选择的地址有()A.4处B.3处C.2处D.1处【答案】A【解析】解:∵△ABC 内角平分线的交点到三角形三边的距离相等, ∴△ABC 内角平分线的交点满足条件; 如图:点P 是△ABC 两条外角平分线的交点, 过点P 作PE ⊥AB ,PD ⊥BC ,PF ⊥AC , ∴PE=PF ,PF=PD , ∴PE=PF=PD ,∴点P 到△ABC 的三边的距离相等,∴△ABC 两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个; 综上,到三条公路的距离相等的点有4个, ∴可供选择的地址有4个. 故选:A .3.如图,在ABC ∆中,90C ∠=︒,10AB =,AD 是ABC ∆的一条角平分线.若3CD =,则ABD ∆的面积为( )A .3B .10C .12D .15【答案】D【解析】解:如图,作DE ⊥AB 于E ,∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DE=CD=3.∴△ABD的面积为12×3×10=15.故选:D.4.△ABC中,AB=7,BC=24,AC=25.在△ABC内有一点P到各边的距离相等,则这个距离为()A.1 B.2 C.3 D.4【答案】C【解析】解:∵△ABC中,AB=7,BC=24,AC=25,∴AB2+BC2=72+242=252=AC2,∴∠ABC=90°,连接AP,BP,CP.设PE=PF=PG=xS△ABC=12×AB×CB=84,S△ABC=12AB×x+12AC×x+12BC×x=12(AB+BC+AC)•x=12×56x=28x,则28x=84,x=3.故选:C.5.如图,OP平分∠AOB,点C,D分别在射线OA,OB上,添加下列条件,不能判定△POC≌△POD的是()A .OC =ODB .∠CPO =∠DPOC .PC =PD D .PC ⊥OA ,PD ⊥OB【答案】C【解析】∵OP 是∠AOB 的平分线, ∴∠AOP =∠BOP ,而OP 是公共边,A 、添加OC =OD 可以利用“SAS ”判定△POC ≌△POD ,B 、添加∠OPC =∠OPD 可以利用“ASA ”判定△POC ≌△POD , C 、添加PC =PD 符合“边边角”,不能判定△POC ≌△POD , D 、添加PC ⊥OA ,PD ⊥OB 可以利用“AAS ”判定△POC ≌△POD , 故选:C .6.如图,已知ABC ∆的面积为28cm ,BP 为ABC ∠的平分线,AP BP ⊥于点P ,则PBC ∆的面积为( ).A .23.5cmB .23.9cmC .24cmD .24.2cm【答案】C【解析】延长AP 交BC 的延长线于点E , ∵AP 垂直PB 且PB 平分ABC ∠, ∴ABP EBP ∠=∠.又BP BP =,90APB BPE ∠=∠=︒, ∴()ABP EBP ASA ∆≅∆. ∴BAP BEP S S ∆∆=,AP PE =. ∴APC PCE S S ∆∆=.设ACE S m ∆=,∴8ABE ABC ACE S S S m ∆∆∆=+=+,∴284cm 211222PBC ABE ACE S S S m m ∆∆∆+-==-=.7.如图,在ABC ∆中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,若32BC =,且:9:7BD CD =,则点D 到AB 边的距离为( ).A .18B .16C .14D .12【答案】C【解析】过点D 作DE AB ⊥于点E , ∵AD 平分BAC ∠,∴DC DE =.又:9:7BD CD =且32BC =,∴18BD =,14CD =. 即14DE =.即点D 到AB 边的距离为14. 故选C8.如图所示,P 是BAC ∠的平分线上一点,PM AB ⊥于点M ,PN AC ⊥于点N .有下列结论:①PM PN =;②AM AN =;③APM ∆与APN ∆面积相等;④90PAN APM ∠+∠=︒,其中正确结论的个数是( )A .1B .2C .3D .4【答案】D【解析】由角平分线性质可知①是正确的;可证()Rt Rt AMP ANP HL ∆≅∆,∴AM=AN,APM APN S S ∆∆=,可得②③是正确的;由()Rt Rt AMP ANP HL ∆≅∆可得∠APM=∠APN ,由∠APN+∠PAN=90°可得∠PAN+∠APM=90°,可知④是正确的,故选D.9.如图,在ABC ∆中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,DE AB ⊥于点E ,下列结论中正确的个数是( ).①AD 平分CDE ∠:②BAC BDE ∠=∠;③DE 平分ADB ∠;④AB AC BE =+. A .3个 B .2个C .1个D .4个【答案】A【解析】因为DE AB ⊥,所以90AED ∠=︒.又AD 是CAB ∠的角平分线,AC CD ⊥,由角平分线的性质得DC DE =,又AD AD =,故ACD AED ∆≅∆,所以ADC ADE ∠=∠,故①成立;在Rt ABC ∆中,90C ∠=︒,故90BAC B ∠+∠=︒,在Rt BDE ∆中,90B EDB ∠+∠=︒,因此BAC B B EDB ∠+∠=∠+∠,即BAC BDE ∠=∠,故②成立;∵ACD AED ∆≅∆,故AC AE =,因此AB AE EB AC BE =+=+,④成立; 当60B ∠=︒时,30EDB ∠=︒,75ADE ∠=︒,显然EDB ADE ∠≠∠,故③不成立.10.作∠AOB 的角平分线的作图过程如下,用下面的三角形全等判定法则解释其作图原理,最为恰当的是( )A.SAS B.ASA C.AAS D.SSS【答案】D【解析】连接CD、CE,根据作图步骤知OD=OE、CD=CE、OC=OC所以根据SSS可判定△OCE≌△OCD,所以∠BOC=∠AOC,OC平分∠AOB故用尺规作图画∠AOB的角平分线OC,作图依据是SSS,故选:D.11.如图,点P在∠MON的角平分线上,A、B分别在∠MON的边OM、ON上,若OB=3,S△OPB=6,则线段AP的长不可能是()A.3 B.4 C.5 D.6【答案】A【解析】作PC⊥OM于C,PD⊥ON于D,如图所示:∵点P在∠MON的角平分线上,∴PC=PD,∵S△OPB=12OB⋅PD=6,OB=3,∴PD=4,∴线段AP的长不可能是3,故选:A.12.如图,在△ABC中,∠C=90°,AC=BC,AB=4cm,AD平分∠BAC交BC于点D,DE⊥AB于点E,则以下结论:①AD平分∠CDE;②DE平分∠BDA;③AE-BE=BD;④△BDE周长是4cm.其中正确的有()A.4个B.3个C.2个D.1个【答案】B【解析】解:∵DE⊥AB,∴∠DEA=∠DEB=90°,∵AD平分∠CAB,∴∠CAD=∠BAD,∵∠C=90°,∠CDA+∠C+∠CAD=180°,∠DEA+∠BAD+∠EDA=180°,∴∠CDA=∠EDA,∴①正确;∵在△ABC中,∠C=90°,AC=BC,∴∠CAB=∠B=45°,∵∠C=∠DEA=∠DEB=90°,∴∠CDE=360°-90°-45°-90°=135°,∠BDE=180°-90°-45°=45°,∵∠CDA=∠EDA,∴∠CDA=∠EDA=11352︒⨯=67.5°≠45°,∴∠EDA≠∠BDE,∴DE不平分∠BDA,∴②错误;∵AD平分∠CAB,∠C=90°,DE⊥AB,∴CD=DE,由勾股定理得:AC=AE,∴AE=AC=BC , ∵∠B=∠BDE=45°, ∴BE=DE=CD ,∴AE-BE=BC-CD=BD ,∴③正确;△BDE 周长是BE+DE+BD=BE+CD+BD=BC+BE=AE+BE=AB=4cm ,∴④正确; 即正确的个数是3, 故选:B .13.如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F .若S △ABC =28,DE =4,AB =8,则AC 长是( )A .8B .7C .6D .5【答案】C【解析】解:∵AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 交AC 于点F , ∴DF =DE =4.又∵S △ABC =S △ABD +S △ACD ,AB =8,112884422AC ∴=⨯⨯+⨯⨯,∴AC =6. 故选:C .14.如图,在△ABC 中,∠C =90°,∠B =30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中:①AD 是∠BAC 的平分线;②∠ADC =60°;③点D 在AB 的中垂线上;④△ABD 边AB 上的高等于DC.其中正确的个数是( )A.1 B.2 C.3 D.4【答案】D【解析】①根据作图的过程可知,AD是∠BAC的平分线.故①正确;②∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠CAD=∠BAD=12∠CAB=30°,∴∠ADC=90°-∠2=60°,即∠ADC=60°.故②正确;③∵∠BAD =∠B=30°,∴AD=BD,∴点D在AB的中垂线上.故③正确;④角平分线上的一点到线段两端点的距离相等, 因此判断出△ABD边AB上的高等于DC.故④正确.综上所述,正确的结论是:①②③④,共有4个.故选D.15.如图,BP平分∠ABC,D为BP上一点,E,F分别在BA,BC上,且满足DE=DF,若∠BED=140°,则∠BFD的度数是()A.40°B.50°C.60°D.70°【答案】A【解析】作DG ⊥AB 于G ,DH ⊥BC 于H ,∵D 是∠ABC 平分线上一点,DG ⊥AB ,DH ⊥BC ,∴DH=DG ,在Rt △DEG 和Rt △DFH 中,DG DH DE DF⎧⎨⎩== ∴Rt △DEG ≌Rt △DFH (HL ),∴∠DEG=∠DFH ,又∠DEG+∠BED=180°,∴∠BFD+∠BED=180°,∴∠BFD 的度数=180°-140°=40°,故选:A .16.如图,在四边形ABDC 中,∠B =∠D =90°,∠BAC 与∠ACD 的平分线交于点O ,且点O 在线段BD 上,BD =4,则点O 到边AC 的距离是( )A .1B .1.5C .2D .3【答案】C 【解析】解:过O 作OE ⊥AC 于E ,∵∠B =∠D =90°,∠BAC 与∠ACD 的平分线交于点O ,∴OB =OE =OD ,∵BD =4,∴OB =OE =OD =2,∴点O到边AC的距离是2,故选:C.二、填空题17.如图,以O为圆心,适当长为半径画弧,交横轴于点M,交纵轴于点N,再分别以点M、N为圆心,大于12MN的长为半径画弧,两弧交于点P.若点P到横轴和纵轴的距离分别为2a-1、a+2,则a=_____.【答案】3【解析】根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,故2a-1=a+2,整理得:a =3,18.如图所示,AB//CD,O为∠A、∠C的平分线的交点O,OE⊥AC于E,且OE=2,则AB与CD之间的距离等于_______.【答案】4【解析】解:过点O作OF⊥AB于F,作OG⊥CD于G,∵O为∠BAC、∠DCA的平分线的交点,OE⊥AC,∴OE=OF,OE=OG,∴OE=OF=OG=2,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠EOF+∠EOG=(180°−∠BAC)+(180°−∠ACD)=180°,∴E、O、G三点共线,∴AB与CD之间的距离=OF+OG=2+2=4.故答案为:4.19.如图,在Rt△ABC中,∠C=90°,以A为圆心,任意长为半径画弧,分别交AC,AB于点M,N;再分别以M,N为圆心,以大于12MN的长为半径画弧,两弧交于点G;作射线AG交BC于点D,若CD=2,BD=2.5,P为AB上一动点,则PD的最小值为_____.【答案】2【解析】解:由作法得AD平分∠BAC,∴点D到AB的距离等于DC=2,∴PD的最小值为2.故答案为2.20.Rt△ABC中,∠C是直角,O是角平分线的交点,AC=3,BC=4,AB=5,O到三边的距离r=______.【答案】1【解析】解:∵Rt△ABC中,∠C是直角,O是角平分线的交点,AC=3,BC=4,AB=5,∴S△ABC=12AC•BC=12(AC+BC+AB)•r,∴3×4=(3+4+5)×r,解得:r=1.故答案为:1.三、解答题21.按下列要求画图并填空:(1)过点B画出直线AC的垂线,交直线AC于点D,那么点B到直线AC的距离是线段的长.(2)用直尺和圆规作出∠ACB的平分线,若角平分线上有一点P到边AC的距离是3cm,通过你的测量,点P到边BC的距离是cm(保留作图痕迹).【答案】(1)见解析;(2)见解析.【解析】(1)如图所示:点B到直线AC的距离是线段BE的长.(2) 如图所示:点P到边BC的距离是3cm.22.在△ABC中,∠B=20°,∠ACB=110°,AE平分∠BAC,AD⊥BD于点D,求∠EAD的度数.【答案】45°【解析】∵在△ABC中,∠B=20°,∠ACB=110°,∴∠BAC=180°﹣20°﹣110°=50°.∵AE平分∠BAC,∴∠BAE=12∠BAC=25°,∴∠AEC=∠B+∠BAE=20°+25°=45°.∵AD⊥BC,∴∠D =90°,∴∠EAD =90°﹣∠AED =90°﹣45°=45°.23.如图,△ABC 中,∠C=90°,DE ⊥AB 于点E ,F 在AC 上且BE=FC,BD=FD ,求证:AD 是∠BAC 的平分线。
角平分线的性质定理和判定经典习题
角平分线的性质定理和判1.已知:在等腰Rt △ABC 中,AC=BC ,∠C=90°, AD 平分∠BAC ,DE ⊥AB 于点E ,AB=15cm , (1)求证:BD+DE=AC . (2)求△DBE 的周长.2. 如图,∠B=∠C=90°,M 是BC 中点, DM 平分∠ADC ,求证:AM 平分∠DAB .3. 如图,已知△ABC 的周长是22,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D , 且OD=3,△ABC 的面积是多少?4.已知:如图所示,CD ⊥AB 于点D ,BE ⊥AC 于点E ,BE 、CD 交于点O ,且AO 平分∠BAC ,求证:OB=OC .5. 如图,已知∠1=∠2,P 为BN 上的一点, PF ⊥BC 于F ,PA=PC , 求证:∠PCB+∠BAP=180º21NPF CBA7.已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)若连接AM,则AM是否平分∠BAD?请你证明你的结论;(2)线段DM与AM有怎样的位置关系?请说明理由.(3)CD、AB、AD间有什么关系?直接写出结果8.如图,△ABC中,P是角平分线AD,BE的交点.求证:点P在∠C的平分线上.9.如图,在△ABC中,BD为∠ABC的平分线,DE⊥AB于点E,且DE=2cm,AB=9cm,BC=6cm,求△ABC的面积.9.如图,D、E、F分别是△ABC的三条边上的点,CE=BF,△DCE和△DBF的面积相等.求证:AD平分∠BAC.10.已知,如图,CE⊥AB,BD⊥AC,∠B=∠C,BF=CF。
求证:AF为∠BAC的平分线。
11.已知:AD 是△ABC 角平分线,DE ⊥AB , DF ⊥AC ,垂足分别是E 、F ,BD =CD , 证:∠B =∠C.12.如图,已知在△ABC 中,90C ∠=, 点D 是斜边AB 的中点,2AB BC =,DE AB ⊥ 交AC 于E .求证:BE 平分ABC ∠.13.如图,∠B =∠C =90°,M 是BC 的中点,DM 平分∠ADC ,求证:AM 平分∠DAB .14.如图,在∠AOB 的两边OA ,OB 上分别取OM=ON , OD=OE ,DN 和EM 相交于点C . 求证:点C 在∠AOB 的平分线上.BDEAFCDEB。
角的平分线的性质同步练习含答案解析
角的平分线的性质同步练习含答案解析一、填空题1.如图,∠B=∠D=90゜,依照角平分线性质填空:(1)若∠1=∠2,则______=______.(2)若∠3=∠4,则______=______.2.如图,BD是∠ABC的平分线,DE⊥AB于E,DF⊥BC于F,AB=12,BC=15,S△ABD =36,则S△BCD=______.3.如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分成三个三角形,则S△ABO :S△BCO:S△CAO等于______.4.如图,AD是△ABC的角平分线,若AB=2AC.则S△ABD :S△ACD=______.二、选择题5.如图,已知点P、D、E分别在OC、OA、OB上,下列推理:①∵OC平分∠AOB,∴PD=PE;②∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE;③∵PD⊥OA,PE⊥OB,∴PD=PE;其中正确的个数有()A.0个B.1个C.2个D.3个6.如图△ABC中,∠ACB=90゜,AD平分∠BAC交BC于D,DE垂直AB于E,若DE=1.5cm,BD=3cm,则BC=()A.3cm B.7.5cm C.6cm D.4.5cm7.在△ABC中,∠C=90゜,AD平分∠BAC交BC于D,BD:DC=3:2,点D到AB的距离为6,则BC 长为()A.10 B.20 C.15 D.258.如图,在△ABC中,∠B、∠C的角平分线交于点0,OD⊥AB于D,OE⊥AC于E,则OD与OE的大小关系是()A.OD>OE B.OD<OE C.OD=OE D.不能确定三、解答题9.如图,△ABC中,∠C=90゜,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BE=CF,求证:(1)DE=DC;(2)BD=DF.10.如图,四边形ABCD中,AB=AD,CB=CD,点P是AC上一点,PE⊥BC于E,PF⊥CD于F,求证:PE=PF.11.已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.12.如图,BD是∠ABC的平分线,DE⊥AB于E,S=90,AB=18,BC=12,求DE的长.△ABC13.如图.已知在△ABC中,∠A、∠B的角平分线交于点O,过O作OP⊥BC于P,OQ⊥AC于Q,OR ⊥AB于R,AB=7,BC=8,AC=9.(1)求BP、CQ、AR的长.(2)若BO的延长线交AC于E,CO的延长线交AB于F,若∠A=60゜,求证:OE=OF.《12.3 角的平分线的性质》参考答案与试题解析一、填空题1.如图,∠B=∠D=90゜,依照角平分线性质填空:(1)若∠1=∠2,则BC = DC .(2)若∠3=∠4,则AB = AD .【考点】角平分线的性质.【分析】(1)依照角平分线性质推出即可;(2)依照角平分线性质推出即可.【解答】解:(1)∵∠B=∠D=90°,∴AB⊥BC,AD⊥DC,∵∠1=∠2,∴BC=CD,故答案为:BC,DC.(2)∵AB⊥BC,AD⊥DC,∵∠3=∠4,∴AB=AD,故答案为:AB,AD.【点评】本题考查了角平分线性质的应用,注意:角平分线上的点到角两边距离相等.2.如图,BD是∠ABC的平分线,DE⊥AB于E,DF⊥BC于F,AB=12,BC=15,S△ABD =36,则S△BCD= 45 .【考点】角平分线的性质.【分析】第一依照△ABD的面积运算出DE的长,再依照角平分线上的点到角两边的距离相等可得DE=DF,然后运算出DF的长,再利用三角形的面积公式运算出△BCD的面积即可.【解答】解:∵S△ABD=36,∴•AB•ED=36,×12×ED=36,解得:DE=6,∵BD是∠ABC的平分线,DE⊥AB于E,DF⊥BC于F,∴DE=DF,∴DF=6,∵BC=15,∴S△BCD=•CB•DF=×15×6=45,故答案为:45.【点评】此题要紧考查了角平分线的性质,关键是把握角平分线上的点到角两边的距离相等.3.如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分成三个三角形,则S△ABO :S△BCO:S△CAO等于2:3:4 .【考点】角平分线的性质;三角形的面积.【专题】常规题型.【分析】由角平分线的性质可得,点O到三角形三边的距离相等,即三个三角形的AB、BC、CA的高相等,利用面积公式即可求解.【解答】解:过点O 作OD ⊥AC 于D ,OE ⊥AB 于E ,OF ⊥BC 于F ,∵O 是三角形三条角平分线的交点,∴OD=OE=OF ,∵AB=20,BC=30,AC=40,∴S △ABO :S △BCO :S △CAO =2:3:4.故答案为:2:3:4.【点评】此题要紧考查角平分线的性质和三角形面积的求法,难度不大,作辅助线专门关键.4.如图,AD 是△ABC 的角平分线,若AB=2AC .则S △ABD :S △ACD = 2 .【考点】角平分线的性质.【分析】过D 作DM ⊥AC 于M ,DN ⊥AB 于N ,依照角平分线性质得出DM=DN ,依照三角形面积公式求出即可.【解答】解:过D 作DM ⊥AC 于M ,DN ⊥AB 于N ,∵AD 是△ABC 的角平分线,∴DM=DN ,∴S △ABD :S △ACD =(AB ×DN ):(AC ×DM )=AB :AC=2AC :AC=2,故答案为:2.【点评】本题考查了角平分线性质的应用,注意:角平分线上的点到角两边的距离相等.二、选择题5.如图,已知点P、D、E分别在OC、OA、OB上,下列推理:①∵OC平分∠AOB,∴PD=PE;②∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE;③∵PD⊥OA,PE⊥OB,∴PD=PE;其中正确的个数有()A.0个B.1个C.2个D.3个【考点】角平分线的性质.【分析】直截了当依照角平分线的性质进行解答即可.【解答】解:∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE.故选B.【点评】本题考查的是角平分线的性质,即角平分线上的点到角两边的距离相等.6.如图△ABC中,∠ACB=90゜,AD平分∠BAC交BC于D,DE垂直AB于E,若DE=1.5cm,BD=3cm,则BC=()A.3cm B.7.5cm C.6cm D.4.5cm【考点】角平分线的性质.【分析】依照角平分线的性质得出CD长,代入BC=BD+DC求出即可.【解答】解:∵∠ACB=90°,∴AC⊥BC,∵DE⊥AB,AD平分∠BAC,∴DE=DC=1.5cm,∵BD=3cm,∴BC=BD+DC=3cm+1.5cm=4.5cm,故选D.【点评】本题考查了角平分线性质的应用,注意:角平分线上的点到角两边的距离相等.7.在△ABC中,∠C=90゜,AD平分∠BAC交BC于D,BD:DC=3:2,点D到AB的距离为6,则BC 长为()A.10 B.20 C.15 D.25【考点】角平分线的性质.【分析】过点D作DE⊥AB于E,依照角平分线上的点到角的两边的距离相等可得DC=DE,然后求出BD的长,再依照BC=BD+DE代入数据进行运算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵点D到AB的距离为6,∴DE=6,∵∠C=90°,AD平分∠BAC交BC于D,∴DC=DE=6,∵BD:DC=3:2,∴BD=×3=9,∴BC=BD+DE=9+6=15.故选C.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.8.如图,在△ABC中,∠B、∠C的角平分线交于点0,OD⊥AB于D,OE⊥AC于E,则OD与OE的大小关系是()A.OD>OE B.OD<OE C.OD=OE D.不能确定【考点】角平分线的性质.【分析】依照三角形的角平分线相交于一点,连接AO,则AO平分∠BAC,然后依照角平分线上的点到角的两边的距离相等解答.【解答】解:如图,连接AO,∵∠B、∠C的角平分线交于点0,∴AO平分∠BAC,∵OD⊥AB,OE⊥AC,∴OD=OE.故选C.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,依照三角形的角平分线相交于一点作辅助线并判定出AO平分∠BAC是解题的关键.三、解答题9.如图,△ABC中,∠C=90゜,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BE=CF,求证:(1)DE=DC;(2)BD=DF.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】(1)依照角平分线上的点到角的两边的距离相等证明即可;(2)利用“边角边”证明△BDE和△FDC全等,再依照全等三角形对应边相等证明即可.【解答】证明:(1)∵∠C=90°,AD是∠BAC的平分线,DE⊥AB,∴DE=DC;(2)在△BDE和△FDC中,,∴△BDE≌△FDC(SAS),∴BD=DF.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,是基础题,熟记性质是解题的关键.10.如图,四边形ABCD中,AB=AD,CB=CD,点P是AC上一点,PE⊥BC于E,PF⊥CD于F,求证:PE=PF.【考点】全等三角形的判定与性质;角平分线的性质.【专题】证明题.【分析】依照“SSS”可得到△ABC≌△ADC,则∠BCA=∠DCA,再利用角平分线的性质即可得到结论.【解答】证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,∵PE⊥BC于E,PF⊥CD于F,∴PE=PF.【点评】本题考查了全等三角形的判定与性质:三边都对应相等的两三角形全等;全等三角形的对应边相等,对应角相等.角平分线的性质:角的平分线上的点到角的两边的距离相等.11.已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】依照角平分线的性质以及已知条件证得△ABD≌△CBD(SAS),然后由全等三角形的对应角相等推知∠ADB=∠CDB;再由垂直的性质和全等三角形的判定定理AAS判定△PMD≌△PND,最后依照全等三角形的对应边相等推知PM=PN.【解答】证明:在△ABD和△CBD中,AB=BC(已知),∠ABD=∠CBD(角平分线的性质),BD=BD(公共边),∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB(全等三角形的对应角相等);∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°;又∵PD=PD(公共边),∴△PMD≌△PND(AAS),∴PM=PN(全等三角形的对应边相等).【点评】本题考查了角平分线的性质、全等三角形的判定与性质.由已知证明△ABD≌△CBD是解决的关键.12.如图,BD是∠ABC的平分线,DE⊥AB于E,S=90,AB=18,BC=12,求DE的长.△ABC【考点】角平分线的性质.【分析】过点D作DF⊥BC于F,依照角平分线上的点到角的两边的距离相等可得DE=DF,然后依照三角形的面积列出方程求解即可.【解答】解:如图,过点D作DF⊥BC于F,∵BD是∠ABC的平分线,DE⊥AB,∴DE=DF,=AB•DE+BC•DF=90,∴S△ABC即×18•DE+×12•DE=90,解得DE=6.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,三角形的面积,熟记性质并作出辅助线是解题的关键.13.如图.已知在△ABC中,∠A、∠B的角平分线交于点O,过O作OP⊥BC于P,OQ⊥AC于Q,OR ⊥AB于R,AB=7,BC=8,AC=9.(1)求BP、CQ、AR的长.(2)若BO的延长线交AC于E,CO的延长线交AB于F,若∠A=60゜,求证:OE=OF.【考点】角平分线的性质;全等三角形的判定与性质.【分析】(1)依照角平分线性质得出OR=OQ=OP,依照勾股定理起床AR=AQ,CQ=CP,BR=BP,得出方程组,求出即可;(2)过O作OM⊥AC于肘,ON⊥AB于N,求出OM=ON,证出△FON≌△EOM即可.【解答】解:连接AO,OB,OC,∵OP⊥BC,OQ⊥AC,OR⊥AB,∠A、∠B的角平分线交于点O,∴OR=OQ,OR=OP,∴由勾股定理得:AR2=OA2﹣OR2,AQ2=AO2﹣OQ2,∴AR=AQ,同理BR=BP,CQ=CP,即O在∠ACB角平分线上,设BP=BR=x,CP=CQ=y,AQ=AR=z,则x=3,y=5,z=4,∴BP=3,CQ=5,AR=4.(2)过O作OM⊥AC于M,ON⊥AB于N,∵O在∠A的平分线,∴OM=ON,∠ANO=∠AMO=90°,∵∠A=60°,∴∠NOM=120°,∵O在∠ACB、∠ABC的角平分线上,∴∠EBC+∠FCB=(∠ABC+∠ACB)=×(180°﹣∠A)=60°,∴∠FON=∠EOM,在△FON和△EOM中∴△FON≌△EOM,∴OE=OF.【点评】本题考查了角平分线性质和全等三角形的性质和判定的应用,注意:角平分线上的点到角两边的距离相等.。
角平分线的性质练习题
角平分线的性质练习题一、选择题1. 在三角形ABC中,BD是角B的平分线,若AB=5,BC=7,AC=6,那么BD的长度为:A. 4B. 6C. 8D. 无法确定2. 如果角平分线将三角形分成两个面积相等的部分,那么这两个部分的底边分别是:A. 相等B. 不相等C. 一个底边是另一个的两倍D. 底边长度无法确定3. 在三角形ABC中,角A的平分线与BC相交于点D,若AD=4,AC=8,那么AB的长度可能是:A. 6B. 8C. 10D. 12二、填空题4. 在三角形ABC中,如果角A的平分线将BC分为BD和DC两段,BD=DC,那么三角形ABD与三角形ACD的面积之比为________。
5. 若角平分线定理告诉我们,在三角形ABC中,如果BD是角B的平分线,则AB:AC=______:______。
6. 在三角形ABC中,如果角A的平分线与BC相交于点D,且AD垂直于BC,那么角B和角C的度数之和为________。
三、简答题7. 描述角平分线定理的内容,并给出一个应用此定理的几何问题。
8. 解释为什么在三角形中,角平分线可以将对边分成的两段长度与相邻两边成比例。
四、计算题9. 在三角形ABC中,已知角A的平分线AD与BC相交于点D,且BD=3,DC=4,AB=6,求AC的长度。
10. 在三角形ABC中,角B的平分线BE与AC相交于点E,已知AE=4,EC=6,AB=5,求BC的长度。
五、证明题11. 证明:在三角形ABC中,如果BD是角B的平分线,那么AB/AC = BD/DC。
12. 证明:如果点D在三角形ABC的边BC上,且AD是角A的平分线,那么三角形ABD与三角形ACD的面积相等。
六、综合题13. 在三角形ABC中,已知角A的平分线AD与BC相交于点D,且AD=2,BD=3,DC=4,AB=5,求BC的长度,并证明你的结论。
14. 给定三角形ABC,其中角A的平分线AD与BC相交于点D,角B的平分线BE与AC相交于点E。
七年级数学下册《第十二章全等三角形-角的平分线的性质》练习题
七年级数学下册《第十二章全等三角形-角的平分线的性质》练习题(含答案解析)学校:___________姓名:___________班级:___________一、填空题1.如图,点C 在AOB ∠的平分线上,CD OA ⊥于点D ,且1CD =,如果E 是射线OB 上一点,那么CE 长度的最小值是______.2.如图,点P 在AOB ∠内,因为PM OA ⊥,PN OB ⊥,垂足分别是M 、N ,PM PN =,所以OP 平分AOB ∠,理由是______.3.如图,ABC 的三边AB ,BC ,CA 的长分别是10,15,20,其三条角平分线相交于点O ,连接OA ,OB ,OC ,将ABC 分成三个三角形,则::ABO BCO CAO S S S 等于__________.4.如图所示,点O 在一块直角三角板ABC 上(其中30ABC ∠=︒),OM AB ⊥于点M ,ON BC ⊥于点N ,若OM ON =,则ABO ∠=_________度.5.如图,BE、CF都是ABC的角平分线,且110∠=︒,则ABDC∠=___________.二、单选题6.如图,OB平分∠AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F与O点都不重合,连接ED、EF若添加下列条件中的某一个.就能使DOE≅FOE,你认为要添加的那个条件是()A.OD=OE B.OE=OF C.∠ODE =∠OED D.∠ODE=∠OFE<,将ABC以点A为中心逆时针旋转得到ADE,点D在BC边上,DE交7.如图,在ABC∆中,AB AC∠=∠,其中所有正确结论的AC于点F.下列结论:∠AFE DFC△△;∠DA平分BDE∠;∠CDF BAD序号是()A.∠∠B.∠∠C.∠∠D.∠∠∠8.如图,三条公路两两相交,现计划在∠ABC中内部修建一个探照灯,要求探照灯的位置到这三条公路的距离都相等,则探照灯位置是∠ABC()的交点.A.三条角平分线B.三条中线C .三条高的交点D .三条垂直平分线9.如图,Rt∠ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,AB =10,S △ABD =15,则CD 的长为( )A .2B .3C .4D .5三、解答题10.已知40AOB ∠=︒.(1)用直尺和圆规作出AOB ∠的平分线OD (不写作法,但保留作图痕迹,写出结论);(2)已知AOB ∠与BOC ∠互为补角,画出符合条件的所有可能的图形,并求出COD ∠的度数.11.如图,在由边长为1的小正方形组成的正方形网格中,一段圆弧经过网格的格点A 、B 、C .(1)请完成如下操作:∠以点O 为原点,竖直和水平方向所在的直线为坐标轴,小正方形的边长为单位长,建立平面直角坐标系; ∠用直尺和圆规画出该圆弧所在圆的圆心D 的位置,不写作法,保留作图痕迹,并连接AD 、CD .(2)请在(1)的基础上,解答下列问题:∠写出点的坐标:C ______、D ______;∠D 的半径为______(结果保留根号);∠若扇形DAC 是一个圆锥的侧面展开图,则该圆锥的底面积为______(结果保留π);∠若点E 的坐标为()7,0,试判断直线EC 与D 的位置关系,并说明理由.12.如图,已知AOC BOC ∠=∠,点P 在OC 上,PD OA ⊥,PE OB ⊥,垂足分别为D ,E .求证:OPD OPE ≌.13.如图,∠ABC 中,∠ACB =90°,AB =10,BC =6,若点P 从点A 出发,以每秒1个单位长度的速度沿折线A -C -B -A 运动,设运动时间为t 秒(t >0).(1)若点P 在AC 上,且满足P A =PB 时,求此时t 的值;(2)若点P 恰好在∠BAC 的平分线上,求t 的值.14.如图,在∠ABC 中,AD 是它的角平分线,且BD =CD ,DE ∠AB ,DF ∠AC ,垂足分别为E 、F ,求证:AB =AC参考答案:1.1【分析】过点C 作CE ∠OB 于点E ,根据角平分线的性质解答即可.【详解】解:过点C 作CE ∠OB 于点E ,∠点C 在∠AOB 的平分线上,CD ∠OA 于点D ,且CD =1,∠CE =CD =1,即CE 长度的最小值是1,故答案为:1.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.2.角的内部到角两边距离相等的点在角的角平分线上【分析】根据角平分线判定定理即可得到结果.【详解】解:∠PM∠OA ,PN∠OB ,PM=PN∠OP 平分∠AOB (在角的内部,到角的两边距离相等的点在这个角的平分线上)故答案为:角的内部到角两边距离相等的点在角的角平分线上.【点睛】本题考查角平分线判定定理,掌握角平分线判定定理的内容是解题的关键.3.2:3:4【分析】过点O 分别向三边作垂线段,通过角平分线的性质得到三条垂线段长度相等,再通过面积比等于底边长度之比得到答案.【详解】解:过点O 分别向BC 、BA 、AC 作垂线段交于D 、E 、F 三点.∠CO 、BO 、AO 分别平分、、ACB CBA BAC ∠∠∠∠OD OE OF == ∠12ABO SAB OE =,12△BCO S BC OD =,12△CAO S AC OF = ∠::::10:15:202:3:4ABO BCO CAO S S S AB BC AC ===故答案为:2:3:4【点睛】本题考查了角平分线的性质,往三角形的三边作垂线段并得到面积之比等于底之比是解题关键.4.15【分析】根据ON BC ⊥,OM AB ⊥,OM ON =判断OB 是ABC ∠的角平分线,即可求解.【详解】解:由题意,ON BC ⊥,OM AB ⊥,OM ON =,即点O 到BC 、AB 的距离相等,∠ OB 是ABC ∠的角平分线,∠ 30ABC ∠=︒, ∠1152ABO ABC ∠=∠=︒. 故答案为:15.【点睛】本题考查角平分线的定义及判定,熟练掌握“到一个角的两边距离相等的点在这个角的平分线上”是解题的关键.5.40°##40度【分析】根据三角形的内角和定理以及角平分线的定义,列出算式计算即可.【详解】解:∠BE 、CF 都是∠ABC 的角平分线,∠∠A =180°−(∠ABC +∠ACB ),=180°−2(∠DBC +∠BCD )∠∠BDC =180°−(∠DBC +∠BCD ),∠∠A =180°−2(180°−∠BDC )∠∠BDC =90°+12∠A ,∠∠A =2(110°−90°)=40°.【点睛】本题考查的是三角形内角和定理和角平分线的定义,用已知角表示出所求的角是解题的关键.6.D【分析】根据OB 平分∠AOC 得∠AOB =∠BOC ,又因为OE 是公共边,根据全等三角形的判断即可得出结果.【详解】解:∠OB 平分∠AOC∠∠AOB =∠BOC当∠DOE ∠∠FOE 时,可得以下结论:OD =OF ,DE =EF ,∠ODE =∠OFE ,∠OED =∠OEF .A 答案中OD 与OE 不是∠DOE ∠∠FOE 的对应边,A 不正确;B 答案中OE 与OF 不是∠DOE ∠∠FOE 的对应边,B 不正确;C 答案中,∠ODE 与∠OED 不是∠DOE ∠∠FOE 的对应角,C 不正确;D 答案中,若∠ODE =∠OFE ,在∠DOE 和∠FOE 中,DOE FOE OE OEODE OFE =⎧⎪=⎨⎪=⎩∠∠∠∠ ∠∠DOE ∠∠FOE (AAS )∠D 答案正确.故选:D .【点睛】本题考查三角形全等的判断,理解全等图形中边和角的对应关系是解题的关键.7.D【分析】根据旋转的性质可得对应角相等,对应边相等,进而逐项分析判断即可求解.【详解】解:∠将ABC 以点A 为中心逆时针旋转得到ADE ,∠ADE ABC ≌,E C ∴∠=∠,AFE DFC ∠=∠,∴AFE DFC △△,故∠正确;ADE ABC ≌,AB AD ∴=,ABD ADB ∴∠=∠,ADE ABC ∠=∠,ADB ADE ∴∠=∠,∴DA 平分BDE ∠,故∠正确;ADE ABC ≌,BAC DAE ∴∠=∠,BAD CAE ∴∠=∠,AFE DFC△△,CAE CDF∴∠=∠,CDF BAD∠=∠∴,故∠正确故选D【点睛】本题考查了性质的性质,等边对等角,相似三角形的性质判定与性质,全等三角形的性质,掌握以上知识是解题的关键.8.A【分析】根据角平分线的性质即可得到探照灯的位置在角平分线的交点处,即可得到结论.【详解】解:∠探照灯的位置到这三条公路的距离都相等,∠探照灯位置是∠ABC的三条角平分线上,故选:A.【点睛】此题考查了角平分线的性质,数据角平分线的性质定理是解题的关键.9.B【分析】过点D作DE∠AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后利用∠ABD 的面积列式计算即可得解.【详解】解:如图,过点D作DE∠AB于E,∠∠C=90°,AD平分∠BAC,∠DE=CD,∠S△ABD=12AB•DE=12×10•DE=15,解得:DE=3,∠CD=3.故选:B.【点睛】本题考查了三角形的面积和角平分线的性质,能熟记角平分线上的点到角两边的距离相等是解此题的关键.10.(1)见解析(2)图见解析,60°或120°【分析】(1 )根据角平分线的定义作出图形即可;(2)分两种情形,分别画出图形求解即可.(1)解:如图,射线OD即为所求.(2)解:如图,∠BOC与∠AOB、∠BOC'与∠AOB都互为补角,∠∠AOB=40°,且OD平分∠AOB,∠∠BOC=140°,∠BOC'=140°,∠AOD=∠BOD=12∠AOB=20°,当射线OA在∠BOC的外侧时,∠COD=∠BOC+∠BOD=140°+20°=160°;当射线OA在∠BOC'内部时,∠C'OD=∠BOC'-∠BOD=140°-20°=120°.综上,∠COD的度数为60°或120°.【点睛】本题考查作图 复杂作图,角平分线的定义,补角的定义等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.11.(1)答案见详解(2)∠62(,);20(,);∠∠54π;∠相切,理由见详解 【分析】(1)∠根据叙述,利用正方形的网格即可作出坐标轴;∠利用过三点的圆可得圆心为圆上任意两条弦的垂直平分线的交点,即可得到D .(2)∠利用(1)中所作的坐标系,即可表示出点的坐标;∠在Rt OAD 中,利用勾股定理即可求得半径长;∠理由直角三角形全等可证得∠ADC =90°,则可求得AC 的长度,AC 的长就是圆锥的底面圆的周长,在利用圆的周长公式即可求得答案;∠利用勾股定理逆定理证明DCE 为直角三角形即可证得DC CE ⊥,从而即可得出结论.(1)∠如图,建立平面直角坐标系;∠利用过三点的圆可得圆心为圆上任意两条弦的垂直平分线的交点,即可得到D ,如图所示:(2)∠根据平面直角坐标系可得C (6,2);D (2,0);故答案为:C (6,2);D (2,0);∠在Rt AOD △中,90AOD ∠=︒,4AO =,2OD =,AD =故答案为:∠由∠得AD =在Rt DCF △中,90DFC ∠=︒,4DF =,2CF =,DC ∴在Rt AOD △和Rt DFC 中,AD DC OA DF=⎧⎨=⎩, ()Rt AOD Rt DFC HL ≅,DAO CDF ∴∠=∠,90DAO ADO ∠+∠=︒,90CDF ADO ∴∠+∠=︒,18090ADC ADO CDF ∴∠=︒-∠-∠=︒,AC ∴==,由2r π=,解得r =2254S r πππ∴===⎝⎭, ∴该圆锥的底面积为54π, 故答案为:54π. ∠直线EC 与D 相切,由图可知,在Rt CEF 中,90CFE ∠=︒,1EF =,2CF =,22222125CE EF CF ∴=+=+=,又由∠得DC =2220DC ==,2220525DC CE +=+=,22525DE ==,222DC CE DE ∴+=,∴DCE 为直角三角形,90DCE ∠=︒,DC CE ∴⊥,∴直线EC 与D 相切.【点睛】本题考查了不共线的三点确定圆心的方法、直线与圆相切的判定、根据平面直角坐标系写出点的坐标、勾股定理和圆锥的侧面展开图的弧长即为圆锥的底面圆的周长,垂径定理,圆锥的计算,正确求出弧长是难点.12.见解析【分析】根据角平分线的性质得PD PE =,再用HL 证明OPD OPE ≌.【详解】证明:∠AOC BOC ∠=∠,∠OC 为AOB ∠的角平分线,又∠点P 在OC 上,PD OA ⊥,PE OB ⊥,∠PD PE =,90PDO PEO ∠=∠=︒,又∠PO PO =(公共边),∠()HL OPD OPE ≌.【点睛】本题考查角平分线的性质,全等三角形的判定,利用合适的条件证明三角形全等是本题的关键. 13.(1)254 (2)323【分析】(1)连接PB ,在Rt ∠ABC 中,根据勾股定理得AC =6,由于AP =PB =t ,则PC =8-t ,在Rt ∠PCB 中,根据勾股定理得222PC BC PB +=,进行计算即可得;(2)由题意得,PC =t -8 , PB =14-t ,过点P 作PE ∠AB ,由于AP 平分∠BAC ,且∠ACB =90°得PC =PE ,根据HL 得Rt ∠ACP ∠Rt ∠AEP ,即可得AC =AE =8, BE =2,在 Rt ∠PEB 中,根据勾股定理得222PE BE PB +=,进行计算即可得.(1)解:如图所示,连接PB ,∠在Rt ∠ABC 中,AB =10,BC =6,∠8AC =由于AP =PB =t ,则PC =8-t ,在Rt ∠PCB 中,根据勾股定理得:222PC BC PB +=222(8)6t t -+= 解得254t =, 即此时t 的值为254. (2)解:由题意得,PC =t -8 , PB =14-t ,如图所示,过点P 作PE ∠AB ,由于AP 平分∠BAC ,且∠ACB =90°,∠ PC =PE ,在Rt ∠ACP 与Rt ∠AEP 中,PC PE AP AP =⎧⎨=⎩∠Rt ∠ACP ∠Rt ∠AEP (HL ),∠AC =AE =8, BE =2,在 Rt ∠PEB 中,根据勾股定理得,222PE BE PB +=,222(8)2(14)t t -+=- 解得:323t =, ∠当点P 在∠BAC 的平分线上时,t 的值为323. 【点睛】本题考查了勾股定理,角平分线的性质,全等三角形的判定和性质,解题的关键是掌握这些知识点.14.证明见解析【分析】根据角平分线的性质得到DE=DF,证明Rt∠BDE≅Rt∠CDF(HL),根据全等三角形的性质得到结论.【详解】证明:∠AD是∠ABC的角平分线又∠DE∠AB于E,DF∠AC于F∠DE=DF,∠BED=∠CFD=90°又∠BD=CD∠Rt∠BED∠Rt∠CFD(HL)∠∠B=∠C∠AB=AC.【点睛】本题考查全等三角形的性质和判定,角平分线的性质,解题的关键是掌握这些性质定理进行证明.。
角平分线的性质练习题
角平分线的性质练习题角平分线是几何学中一个重要的概念,它在解决各种几何问题中起着重要的作用。
本文将通过一些练习题来探讨角平分线的性质。
练习题一:已知在△ABC中,角A的平分线交边BC于点D,证明AD是角A 的平分线。
解析:首先,我们可以利用角平分线的定义来解决这个问题。
角A的平分线是将角A分成两个相等的角的线段。
假设角BAD和角CAD是角A的平分线所分出的两个角,我们需要证明这两个角是相等的。
根据角平分线的定义,我们可以得出以下两个等式:∠BAD = ∠CAD (角平分线的定义)∠BAD + ∠CAD = ∠BAC (角的和等于整个角)将第一个等式代入第二个等式中,得到:∠CAD + ∠CAD = ∠BAC化简得:2∠CAD = ∠BAC由于∠CAD和∠BAD是同一个角的两个平分角,所以它们是相等的。
因此,AD是角A的平分线。
练习题二:已知在△ABC中,角A的平分线交边BC于点D,且AD=DC,证明△ABC是等腰三角形。
解析:要证明△ABC是等腰三角形,我们需要证明边AB和边AC的长度相等。
由于AD是角A的平分线,所以∠BAD = ∠CAD。
又已知AD=DC,所以△ADC 是一个等腰三角形。
根据等腰三角形的性质,我们可以得出以下结论:∠ADC = ∠ACD (等腰三角形的底角相等)由于∠BAD = ∠CAD,所以∠ADC = ∠ACD。
结合以上两个等式,我们可以得出:∠ADC = ∠ACD = ∠BAD = ∠CAD根据角的和等于整个角的性质,我们可以得到:∠ADC + ∠ACD + ∠BAD + ∠CAD = 180°将上述等式代入,得到:2∠ADC + 2∠ACD = 180°化简得:∠ADC + ∠ACD = 90°由于∠ADC和∠ACD是等腰三角形△ADC的两个底角,它们的和等于90°。
根据等腰三角形的性质,我们可以得出∠DAC = 90°。
角平分线的性质专项练习(含解析)
角平分线的性质专项练习一、单选题知识点一:角平分线的有关证明1.在Rt ABC 中,90B ︒∠=,AD 平分BAC ∠,交BC 于点D ,DE AC ⊥,垂足为点E ,若3BD =,则DE 的长为( )A .3B .32C .2D .62.如图,在△ABC 中,AB =6,BC =5,AC =4,AD 平分∠BAC 交BC 于点D ,在AB 上截取AE =AC ,则△BDE 的周长为( )A .8B .7C .6D .53.如图,在ABC 中,90,C AD ∠=平分,BAC DE AB ∠⊥于点,E 给出下列结论.CD ED =①;,AC BE AB +=② ③BDE BAC ∠=∠, DA ④平分CDE ∠,::BDE ACD S S AB AC =⑤其中正确的有( )个A .5B .4C .3D .2知识点二:角平分线的性质定理4.如图,在Rt ABC ∆中,90B =∠,以点A 为圆心,适当长为半径画弧,分别交AB AC 、于点,D E ,再分别以点D E 、为圆心,大于12DE 为半径画弧,两弧交于点F ,作射线AF 交边BC 于点1,4BG AC ==,则ACG ∆的面积是( )A .1B .32C .2D .525.如图,在△ABC 中,AB =AC ,AD 是中线,DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,则下列四个结论中:①AB 上任一点与AC 上任一点到D 的距离相等;②AD 上任一点到AB ,AC 的距离相等;③∠BDE =∠CDF ;④∠1=∠2;其中正确的有( )A .1个B .2个C .3个D .4个6.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD =8,则点P 到BC 的距离是( )A .8B .6C .4D .27.如图,已知在四边形ABCD 中,90BCD ∠=︒,BD 平分ABC ∠,6AB =,9BC =,4CD =,则四边形ABCD 的面积是( )A.24 B.30 C.36 D.42知识点三:角平分线判定定理=,则()8.如图,AC AD=,BC BDA.CD垂直平分AD B.AB垂直平分CDC.CD平分ACB∠D.以上结论均不对9.如图,已知AB∥CD,PE⊥AB,PF⊥BD,PG⊥CD,垂足分别E、F、G,且PF=PG=PE,则∠BPD=().A.60°B.70°C.80°D.90°10.如图所示,若DE⊥AB,DF⊥AC,则对于∠1和∠2的大小关系下列说法正确的是()A.一定相等B.一定不相等C.当BD=CD时相等D.当DE=DF时相等11.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A .线段CD 的中点B .OA 与OB 的中垂线的交点C .OA 与CD 的中垂线的交点 D .CD 与∠AOB 的平分线的交点知识点四:角平分线性质的实际应用12.如图,在ABC ∆中,90︒∠=C ,8AC =,13DC AD =,BD 平分ABC ∠,则点D 到AB 的距离等于( )A .4B .3C .2D .113.如图,Rt △ABC 中,∠C=90°,AD 平分∠BAC ,交BC 于点D ,若AB=14,S △ABD=14,则CD=( )A .4B .3C .2D .114.如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,S △ABC =7,DE =2,AB =4,则AC 长是( )A .6B .5C .4D .3知识点五:尺规作图-角平分线15.尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP ≌的根据是( )A .SASB .ASAC .AASD .SSS16.如图,在ABC ∆中,,40AC BC A =∠=︒,观察图中尺规作图的痕迹,可知BCG ∠的度数为()A .40︒B .45︒C .50︒D .60︒17.如图1,已知ABC ∠,用尺规作它的角平分线.如图2,步骤如下,第一步:以B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ;第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在ABC ∠内部交于点P ;第三步:画射线BP .射线BP 即为所求.下列正确的是( )A .a ,b 均无限制B .0a >,12b DE >的长C .a 有最小限制,b 无限制D .0a ≥,12b DE <的长18.如图,观察图中尺规作图痕迹,下列说法错误的是( )A .OE 是AOB ∠的平分线B .OC OD =C .点C,D 到OE 的距离不相等D .AOE BOE ∠=∠二、填空题 知识点一:角平分线的有关证明19.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是_____.20.如图,在平面直角坐标系xOy 中,点A 、B 分别在x 轴的正半轴、y 轴的正半轴上移动,点M 在第二象限,且MA 平分∠BAO ,做射线MB ,若∠1=∠2,则∠M 的度数是_______。
专题07_角平分线的性质(专题测试)(解析版)
专题07 角平分线的性质(满分:100分 时间:90分钟)班级_________ 姓名_________ 学号_________ 分数_________一、单选题(共12小题,每小题4分,共计48分)1.(2020·兰州市期末)如图,OP 平分MON ∠,PA ON ⊥,PB OM ⊥,垂足分别为A 、B ,若3PA =,则PB =( )A .2B .3C .1.5D .2.5【答案】B【详解】 ∵OP 平分MON ∠,PA ON ⊥,PB OM ⊥,∴P A=PB ,∵3PA =,∴PB=3,故选:B .2.(2020·防城港市期中)如图,直线AC ∥BD ,AO 、BO 分别是∠BAC 、∠ABD 的平分线,那么∠BAO 与∠ABO 之间的大小关系一定为( )A .互余B .相等C .互补D .不等【答案】A【解析】 试题解析:∵AC ∥BD ,∴∠CAB+∠ABD=180°,∵AO 、BO 分别是∠BAC 、∠ABD 的平分线,∴∠CAB=2∠OAB ,∠ABD=2∠ABO ,∴∠OAB+∠ABO=90°,∴∠AOB=90°,∴OA⊥OB,故选A.3.(2020·商洛市期末)如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,FG平分∠EFD交AB 于点G,若∠BEF=70°,则∠AGF的度数为()A.35°B.45°C.55°D.65°【答案】C【详解】解:证明:∵AB∥CD,∴∠EGF=∠DFG,∵FG平分∠DEF,∴∠EFG=∠DFG,∴∠EFG=∠EGF,∵∠BEF=70°,∴∠AGF=∠EFG=12(180°﹣70°)=55°,故选:C.4.(2020·济南市期末)如图,在△ABC中,AC=5,BC=12,AB=13,AD是角平分线,DE⊥AB,垂足为E,则△BDE的周长为()A.17 B.18 C.20 D.25【答案】C【详解】解:∵AD是∠BAC的平分线,∠C=90°,DE⊥AB,∴ED=CD ,在Rt △ADE 和△RtADC 中,CD ED AD AD =⎧⎨=⎩, ∴Rt △ADE ≌Rt △ADC (HL ),∴AC=AE ,∴△BDE 的周长=BE+BD+ED=AB-AC+BC=(13-5)+12=20.故选:C .5.(2020·铁岭市期末)如图,已知∠AOB ,以点O 为圆心,任意长为半径画弧,交OA 于点C ,交OB 于点D ,再分别以C ,D 为圆心,以大于12CD 长为半径画弧,两弧交于点F ,作射线OF ,点P 为OF 上一点,PE ⊥OB ,垂足为点E ,若PE =5,则点P 到OA 的距离为( )A .5B .4C .3D .5【答案】A【详解】 过点P 作PT ⊥OA 于T .由作图可知,OF 平分∠AOB ,∵PT ⊥OA ,PE ⊥OB ,∴PT =PE =5,故选:A .6.(2020·株洲市期末)如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC的三条中线的交点B.△ABC三边的中垂线的交点C.△ABC三条角平分线的交点D.△ABC三条高所在直线的交点.【答案】C【详解】解:∵凉亭到草坪三条边的距离相等,∴凉亭选择△ABC三条角平分线的交点.故选:C.7.(2020·云浮市期末)如图,∠1=∠2,PD⊥OA,PE⊥OB,垂足分别为D,E,下列结论错误的是()A.PD=PE B.OD=OE C.∠DPO=∠EPO D.PD=OP【答案】D【详解】∵∠1=∠2,PD⊥OA,PE⊥OB,∴PD=PE,∵OP=OP,∴Rt△POE≌Rt△POD(HL),∴OD=OE,∠DPO=∠EPO.∴A、B、C正确,D错误,故选D8.(2020·枣庄市期中)如图,△ABC中,AC=BC,∠C=90°,AD平分∠CAB交BC于D,DE⊥AB于点E,且AC=6cm,则DE+BD等于()A .5cmB .4cmC .6cmD .7cm【答案】C【详解】 ∵∠C=90°,AD 平分∠CAB 交BC 于D ,DE ⊥AB ,∴CD=DE ,∴DE+BD=CD+BD=BC ,∵AC=BC ,∴DE+BD=AC=6cm .故选:C .9.(2020·济宁市期中)如图,△ABC 的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将△ABC 分为三个三角形,则S △ABO :S △BCO :S △CAO 等于( )A .1:1:1B .1:2:3C .2:3:4D .3:4:5【答案】C【详解】 ∵O 是△ABC 三条角平分线的交点,AB ,BC ,CA 长分别是20,30,40,∴△△△::=::20:30:402:3:4ABO OBC CAO S S S AB BC AC ==.故答案选C .10.(2020·酒泉市期末)如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F .若S △ABC =28,DE =4,AB =8,则AC 长是( )A .8B .7C .6D .5【答案】C【详解】 解:∵AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 交AC 于点F ,∴DF =DE =4.又∵S △ABC =S △ABD +S △ACD ,AB =8,112884422AC ∴=⨯⨯+⨯⨯, ∴AC =6.故选C .11.(2020·泰安市期末)如图,△ABC 是等边三角形,AQ =PQ ,PR ⊥AB 于点R ,PS ⊥AC 于点S ,PR =PS .下列结论:①点P 在∠A 的角平分线上;②AS =AR ;③QP ∥AR ;④△BRP ≌△QSP .其中,正确的有( )A .1个B .2个C .3个D .4个【答案】D【解析】∵△ABC 是等边三角形,PR ⊥AB ,PS ⊥AC ,且PR =PS ,∴P 在∠A 的平分线上,故①正确; 由①可知,PB =PC ,∠B =∠C ,PS =PR ,∴△BPR ≌△CPS ,∴AS =AR ,故②正确;∵AQ =PQ ,∴∠PQC =2∠P AC =60°=∠BAC ,∴PQ ∥AR ,故③正确;由③得,△PQC 是等边三角形,∴△PQS ≌△PCS ,又由②可知,④△BRP ≌△QSP ,故④也正确,∵①②③④都正确,故选D .12.(2020·毕节市期末)如图,在△ABC 中,∠C =90°,以点B 为圆心,以适当长为半径画弧交AB 、BC 于P 、Q 两点,再分别以点P ,Q 为圆心,大于12PQ 的长为半径画弧,两弧相交于点N ,射线BN 交AC 于点D .若AB =10,AC =8,则CD 的长是( )A .2B .2.4C .3D .4【答案】C【详解】 解:如图所示,作DE ⊥AB 于E ,∵10890AB AC C ∠︒=,=,= ,∴6BC = ,由基本尺规作图可知,BD 是△ABC 的角平分线,∵∠C =90°,DE ⊥AB ,∴可设DE DC x == ,∴1122ABD SAB DE AD BC =⨯⨯=⨯⨯, 即11108622x x ⨯⨯=⨯⨯(﹣), 解得3x = ,即3CD = ,故选C .二、填空题(共5小题,每小题5分,共计20分)13.(2020·赣州市期末)如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,S △ABC =7,DE =2,AB =4,则AC 的长是_____.【答案】3【详解】解:如图,过点D 作DF ⊥AC 于F ,∵AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB ,∴DE =DF ,由图可知,S △ABC =S △ABD +S △ACD ,12×4×2+12×AC×2=7, 解得:AC =3.故答案为:3.14.(2020·株洲市期末)如图,//AB CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD=8,则点P 到BC 的距离是_________.【答案】4【详解】如图,过点P 作PQ BC ⊥于点Q ,则PQ 即为所求,//AB CD ,AD AB ⊥,AD CD ∴⊥,BP 和CP 分别平分ABC ∠和DCB ∠,,PQ AP PQ DP ∴==,8AD AP DP =+=,28PQ ∴=,解得4PQ =,即点P 到BC 的距离是4,故答案为:4.15.(2020·眉山市期末)如图所示,已知△ABC 的面积是36,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD=4,则△ABC 的周长是_____.【答案】18【详解】如图,过点O 作OE ⊥AB 于E ,作OF ⊥AC 于F ,∵OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC ,∴OE =OF =OD =4,∵S △ABC =()2222OE AB OF AC OD BC OE AB AC BC ⋅⋅⋅++=⋅++=2·△ABC 的周长, ∴△ABC 的周长=36÷2=18, 故答案为18.16.(2020·成都市期末)如图,在ABC ∆中,CD 平分ACB ∠交AB 于D ,DE//BC ,交AC 于E ,若60ACB ︒∠=,则EDC ∠=____.【答案】30°【详解】∵CD平分∠ACB,∠ACB=60°,∴∠∠DCB=12∠ACB=30°,∵DE//BC,∴∠EDC=∠DCB=30°,故填30°.17.(2020·南京市期末)如图,在Rt△ABC中,已知∠C=90°,∠CAB与∠CBA的平分线交于点G,分别与CB、CA边交于点D、E,GF⊥AB,垂足为点F,若AC=6,CD=2,则GF=______【答案】3 2【详解】解:过G作GM⊥AC于M,GN⊥BC于N,连接CG,∵GF⊥AB,∠CAB与∠CBA的平分线交于点G,∴GM=GM=GF,在Rt△ABC中,∠C=90°,∴S△ACD=12AC•CD=12AC•GM+12CD•GN,∴6×2=6•GM+2×GN,∴GM=32,∴GF=32,故答案为3 2三、解答题(共4小题,每小题8分,共计32分)18.(2020·南京市期中)如图,已知∠ABC+∠C=180°,BD平分∠ABC,AE与BD相交于点F,∠EFD=∠D,求证:AE∥BC.【答案】见解析.【详解】证明:∵∠ABC+∠C=180°,∴AB∥CD,∴∠ABD=∠D,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠D=∠DBC,∵∠EFD=∠D,∴∠DBC=∠EFD,∴AE∥BC.19.(2020涟源市期末)如图,AE∥CF,∠A=∠C.(1)若∠1=35°,求∠2的度数;(2)判断AD与BC的位置关系,并说明理由;(3)若AD平分∠BDF,试说明BC平分∠DBE.【答案】(1)∠2=145°;(2)BC∥AD,证明见解析;(3)见解析【详解】(1)∵AE ∥CF ,∴∠BDC=∠1=35°,又∵∠2+∠BDC=180°,∴∠2=180°-∠BDC=180°-35°=145°;(2)BC ∥AD .理由:∵AE ∥CF ,∴∠A+∠ADC=180°,又∵∠A=∠C ,∴∠C+∠ADC=180°,∴BC ∥AD .(3)∵AE ∥CF ,∴∠BDF=∠DBE .∵BC ∥AD ,∴∠ADB=∠DBC .∵AD 平分∠BDF ,∴∠ADB=12∠BDF ,∴∠DBC=12∠EBD . ∴BC 平分∠DBE .20.(2018·乌鲁木齐市期末)如图,O 为直线AB 上一点,OD 平分AOC ∠,90DOE ∠=︒.(1)若50AOC ∠=︒,求COE ∠和∠BOE 的度数;(2)猜想:OE 是否平分BOC ∠?请直接写出你猜想的结论.【答案】(1)∠COE =65°,∠BOE =65°;(2)OE 平分∠BOC ,理由见解析.【详解】(1)∵OD 平分∠AOC ,∴∠COD =∠AOD =11502522AOC ∠=⨯︒=︒. ∵∠DOE =90°,∴∠COE =∠DOE -∠COD =90°-25°=65°,∴∠BOE =180°-∠AOD -∠DOE =180°-25°-90°=65°;(2)结论:OE 平分∠BOC .理由如下:设2AOC α∠=.∵OD 平分AOC ∠,2AOC α∠=,∴12AOD COD AOC α∠=∠=∠=. 又∵90DOE ∠=︒,∴90COE DOE COD α∠=∠-∠=︒-.又∵1801809090BOE DOE AOD αα∠=︒-∠-∠=︒-︒-=︒-,∴COE BOE ∠=∠,即OE 平分BOC ∠.21.(2017·郑州市期中)如图,在Rt ABC 中,∠C =90º,BD 是Rt ABC 的一条角一平分线,点O 、E 、F 分别在BD 、BC 、AC 上,且四边形OECF 是正方形,(1)求证:点O 在∠BAC 的平分线上;(2)若AC =5,BC =12,求OE 的长【答案】(1)证明见解析;(2)2.【详解】解:(1)过点O 作OM ⊥AB 于点M∵正方形OECF∴OE =EC =CF =OF ,OE ⊥BC 于E ,OF ⊥AC 于F∵BD 平分∠ABC ,OM ⊥AB 于M ,OE ⊥BC 于E∴OM =OE =OF∵OM ⊥AB 于M , OE ⊥BC 于E∴∠AMO =90°,∠AFO =90°∵OM OF AO AO =⎧⎨=⎩∴Rt △AMO ≌Rt △AFO∴∠MA0=∠FAO∴点O 在∠BAC 的平分线上(2)∵Rt △ABC 中,∠C =90°,AC =5,BC =12∴AB =13∴BE =BM ,AM =AF又BE =BC -CE ,AF =AC -CF ,而CE =CF =OE∴BE =12-OE ,AF =5-OE∴BM+AM=AB即BE+AF=1312-OE+5-OE=13 解得OE=2。
角平分线初二练习题
角平分线初二练习题
在初二数学中,角平分线是一个十分重要的概念。
通过角平分线的性质,我们可以解决许多与角度相关的问题。
下面,我将为大家提供一些角平分线的初二练习题,帮助大家加深对该概念的理解。
练习题一:角平分线的性质
1. 若角的两条平分线相交于原角的顶点,则相交点在原角的内部还是外部?
2. 若角的两条平分线相交于原角的顶点,则相交点分别和原角的两边构成什么关系?
练习题二:角平分线的应用
1. 作一个三角形ABC,其中∠BAC=60°,角平分线AD具有什么性质?
2. 如果一条直线AB与角的两条边AC和AD相交于点A,且
AB=AC+AD,那么∠CAD的度数是多少?
练习题三:角平分线的证明
1. 请证明:角平分线所构成的两个小角度相等。
2. 请证明:若角的两条平分线相交于原角的顶点,且相交点在原角的内部,则原角的度数必须大于90°。
练习题四:角平分线的计算
1. 在一个等边三角形中,求角平分线的长度。
2. 已知∠A的度数为120°,且角平分线AD=6cm,求AB的长度。
以上是一些角平分线的练习题,如果你对这个概念还不太熟悉,可以尝试解答这些问题来加深理解。
角平分线对于解决各种与角度有关的问题都非常有用,因此掌握好这个概念对于初二数学的学习至关重要。
注意:在完成这些练习题的过程中,如果需要计算角度或长度,请使用相应的计算公式,并标明计算步骤。
同时,尽量给出合理的解题思路和解释,便于他人理解。
通过持续的练习和思考,相信大家对角平分线的理解会越来越深入。
加油!。
角平分线的性质精练
6.角平分线的性质 基础训练1.如图△ABC 中,∠ACB=90度.AD 平分∠BAC 交BC 于D ,DE 垂直AB 于E ,若DE=1.5cm ,BD=3cm,则BC=( ).A. 3cmB. 7.5cmC. 6cmD. 4.5cm 2.如图,BD 是∠ABC 的平分线,D E ⊥AB 于E ,DF ⊥BC 于F ,AB=12,BC=15,S △ABD =36,则DE 的长是_____ , S △BCD =___ __3.在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D ,BD:DC=3:2,点D 到AB 的距离为6,则BC 长为( ). A10 B.20 C.15 D.254.如图,A B ∥CD ,点P 到AB,BC,CD 距离都相等,则∠P=-----5.如图,△ABC 中,∠C=90°,AD 是∠BAC 的角平分线,DE ⊥AB于E ,F 在AC 上,且BE=CF ,求证:BD=DF6.如图,四边形ABCD 中,AB=AD ,CB=CD ,点P 是对角线上AC 上一点,PE ⊥BC 于E ,PF ⊥CD 于F ,求证:PE=PF 。
7.如图,在△ABC ,∠C=90°,AC=BC ,AD 是∠BAC 的平分线,DE ⊥AB ,垂足为E ,若AB=10cm ,求△DBE 的周长。
8.如图DB=CD ,BF ⊥AC 于F ,CE ⊥AB 于E.求证:点D 在 BAC 的平分线上。
9.已知:如图,点D.B 分别在∠A 的两边上,点C 是∠A 内一点,有AB=AD ,BC=DC ,CE ⊥AD 于E ,CF ⊥AB 于F ,求证:CE=CA.ADPCBADECBADFECB第1题图第2题图第4题图A D F ECB A D PF E CBA DECBADFECB ADFECB能力训练 10.如图所示,BD 是∠ABC 的平分线,AB=BC ,点P 在BD 上,P M ⊥AD ,P N ⊥CD ,垂足分别为M 、N.求证:P M=PN11.如图,PB ,PC 分别是△ABC 的外角平分线,它们相交于点P ,求证:点P 在∠A 的平分线上.12.如图,D 、E 、F 分别是△ABC 的三边上的点,CE=BF ,且S △DCE =S △DBF ,求证:AD 平分∠BAC13. 如图,△ABE 中,∠AEB=90°,AE=BE ,BC 平分∠ABE 交AE 于C ,AD ⊥BC 于D ,连DE , (1)求证:BC=2AD ;(2)求证:AB=AE+CE ; (3)求证: ∠EDB=45°综合训练14.如图,在平面直角坐标系中,点B 的坐标是(-1,0),点C 的坐标是(1,0),点D 为y 轴上一点,点A 为第二象限内一动点,且∠BAC=2∠BDO ,过D 作DM ⊥AC 于M. (1)求证: ∠ABD=∠ACD ; (2)若点E 在BA 延长线上,求证:AD 平分∠CAE ;ADP M N CB A PCBADFECB A D E CBABMF D12PM NA B ECHD(3)当A 点运动时,AMABAD 的值是否发生变化?若不变,求其值,若变化,请说明理由。
专题06 角平分线的性质与判定(五大类型)(题型专练)(原卷版)
专题06角平分线的性质与判定(五大类型)【题型1 角平分线的作法及应用】【题型2 角平分线性质的应用】【题型3 角平分线的性质与全等】【题型4 角平分线的判定】【题型5 角平分线的判定与性质综合】【题型1 角平分线的作法及应用】1.如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.2.如图,l1、l2交于A点,请确定M点,使它到l1、l2的距离相等.(用直尺和圆规)【题型2 角平分线性质的应用】3.(2022春•本溪期中)如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=3,AB=8,则△ABD的面积是()A.24B.12C.15D.10 4.(2022秋•澄迈县期中)如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,DE=4,BC=9,则BE的长为()A.6B.5C.4D.3 5.(2023•城厢区校级模拟)如图,OP平分∠MON,点A在射线OP上,AB ⊥ON于点B,若OA=5,OB=4,则点A到射线OM的距离为.6.(2023春•通道县期中)如图,在Rt△ABC中,∠A=90°,BD平分∠ABC=12,BC=8,则AD=.交AC于点D,S△BDC7.(2023•门头沟区二模)如图,在△ABC中,CD是AB边上的高线,∠ABC 的平分线交CD于E,当BC=4,△BCE的面积为2时,DE的长为.8.(2022秋•大丰区期末)如图,地块△ABC中,边AB=40m,AC=30m,其中绿化带AD是该三角形地块的角平分线.若地块△ABD的面积为320m2,则地块△ACD的面积为m2.9.(2023•开福区校级一模)如图,BO平分∠ABC,OD⊥BC于点D,点E为射线BA上一动点,若OD=6,则OE的最小值为.10.(2022秋•藁城区期末)在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点E,F;再分别以点E,F为圆心,大于的长为半径画弧,两弧交于点P,作射线AP交BC于点D.若CD=6,则点D到AB的距离是.11.(2022秋•交口县期末)如图,AC平分∠BAD,∠B+∠D=180°,CE⊥AD 于点E,AD=18cm,AB=11cm,那么DE的长度为cm.12.(2022秋•雨花区期末)如图所示,AC平分∠BAD,∠B+∠D=180°,CE ⊥AD于点E,AD=10cm,AB=7cm,那么DE的长度为cm.13.(2022秋•新华区校级期末)如图,已知OC平分∠AOB,P是OC上一点,PH⊥OB于点H,Q是射线OA上的一个动点,若PH=5,则PQ长的最小值为.14.(2022秋•云梦县期末)如图,已知△ABC的周长是22,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是.15.(2022秋•和田市校级期末)如图,在△ABC中,∠BAC=90°,AD⊥BC 于点D,AE平分∠DAC.(1)当∠B=50°时,求∠AEC的度数.(2)DE=2,AC=6,求△ACE的面积.16.(2022秋•肇源县期末)如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB,如果DE=5cm,∠CAD=32°,求CD的长度及∠B的度数.17.(2023春•禅城区校级月考)如图,已知△ABC中,∠B=40°,∠C=76°,AD是△ABC的角平分线,DE⊥AB于E点.(1)求∠EDA的度数;.(2)若AB=20,AC=16,DE=6,求S△ABC【题型3 角平分线的性质与全等】18.如图,四边形ABCD中,∠B=∠C=90°,E是BC的中点,DE平分∠ADC.(1)求证:AE平分∠BAD;(2)判断AB、CD、AD之间的数量关系,并证明;(3)若AD=10,CB=8,求S.△ADE19.在△ABC中,已知∠A=90°,AB=AC,BD平分∠ABC,DE⊥BC于E,请解答下列问题:(1)若AD=2cm,则D点到BC边的距离是.(2)若BC=7cm,则△CDE的周长为.(3)连接AE,试判断线段AE与BD的位置关系,并说明理由.20.如图,已知△ABC中,∠C=90°,AD平分∠BAC交BC于D,DE⊥AB 于E,点F在AC上,且BD=FD,求证:AE﹣BE=AF.21.如图,DE⊥AB于E,DF⊥AC于F,AD平分∠BAC,若BE=CF,探索AB+AC 与AE的数量关系,并证明之.22.已知:如图,AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=DC.(1)BE与DF是否相等?请说明理由.(2)若DF=1,AD=3,求AB的长.【题型4 角平分线的判定】23.(2022•南京模拟)如图,在△ABC中,∠ABC=60°,∠ACB=40°,点P为∠ABC、∠ACB的角平分线的交点.(1)∠BPC的度数是.(2)请问点P是否在∠BAC的角平分线上?请说明理由.(3)证明:AB=PC.24.(2023春•西安月考)如图,OC是∠AOB内的一条射线,D是OC上一点,过点D作DE⊥OA于点E,DF⊥OB于点F,已知OE=OF,求证:OC是∠AOB的平分线.25.如图,△ABC的外角∠MBC,∠NCB的平分线交于P,求证:点P在∠BAC的平分线上.26.如图,D、E、F分别是△ABC的三条边上的点,CE=BF,△DCE和△DBF 的面积相等.求证:AD平分∠BAC.27.如图,△ABC中,∠B的平分线与∠C的外角的平分线交于P点,PD⊥AC 于D,PH⊥BA于H,(1)若点P到直线BA的距离是5cm,求点P到直线BC的距离;(2)求证:点P在∠HAC的平分线上.【题型5 角平分线的判定与性质综合】28.已知:如图,在Rt△ABC中,∠C=90°,D是AC上一点,DE⊥AB于E,且DE=DC.(1)求证:BD平分∠ABC;(2)若∠A=36°,求∠DBC的度数.29.(2022秋•秦淮区期末)如图,在△ABC中,∠ACB、∠ABC的平分线l1、l2相交于点O.(1)求证:点O在∠BAC的平分线上;(2)连接OA,若AB=AC=5,BO=4,AO=2,则点O到三角形三条边的距离是.30.(2022秋•利川市期末)如图,四边形ABCD中,∠B=∠C=90°,点E 为BC的中点,且AE平分∠BAD.(1)求证:DE平分∠ADC;(2)求证:AB+CD=AD.31.如图,在△ABC中,D,E分别为BC,AC边上一点,连接AD,DE,BE,过点E向AB作垂线,交BA的延长线于点F.已知AE平分∠DAF.BE平分∠ABC,2AB=3AD.(1)求证:DE平分∠ADC;(2)若AD=3,CD=7,且S△ABE =,求S△ADC.32.如图,四边形ABDC中,∠D=∠ABD=90°,点O为BD的中点,且OA 平分∠BAC.(1)求证:OC平分∠ACD;(2)求证:OA⊥OC;(3)求证:AB+CD=AC.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 分层练习, 评价自我活动四 做一做 练习一:判断:(1)OP 是∠AOB 的平分线,则PE=PF ( )(2)PE ⊥OA 于E ,PF ⊥OB 于F 则PE=PF ( )(3)在∠AOB 的平分线上任取一点Q ,点Q 到OA 的距离等于3cm,则点Q 到OB 距离等于3cm ( ) 练习二判断:1、若PE=PF ,则OP 是∠AOB 的平分线。
( )2、若PE ⊥OA 于E ,PF ⊥OB 于F ,则OP 是∠AOB 的平分线。
( )3、已知Q 到OA 的距离等于3cm, 且Q 到OB 距离等于3cm ,则Q 在∠AOB 的平分线上( )练习三如图,△ABC 的角平分线BM 、CN 相交于点P 。
(1)求证:点P 到三边AB 、BC 、CA 的距离相等 。
(2)点P 在角A 的平分线上吗? (3)三角形的三条角平分线有什么关系呢?5 课堂反思,强化思想 活动五 想一想(1)这节课我们帮助别人解决了什么问题?你是怎么做到的? (2)你感悟到了什么?6 布置作业,指导学习1、必做题:教材:第2题。
2、选做题:教材:第3题。
板书设计角平分线的性质 角平分线的判定∵ PA=PB ∵ OP 平分∠AOB , 又∵ PA ⊥OA ,PB ⊥OB 又∵ PA ⊥OA, PB ⊥OB ∴ OP 平分∠AOB ∴ PA=PB到角的两边距离相等的点在角的平分线上. 角平分线上的点到角的两边距离相等测试目标:探索并掌握角平分线性质11.3角平分线性质(1)一、选择题 1.如图,OP 平分∠AOB ,PC ⊥OA ,PD ⊥OB ,垂足分别是C 、D .下列结论中错误的是 ( ) A .PC = PD B .OC = OD C .∠CPO = ∠DPO D .OC = PC 2.如图,△ABC 中,∠C = 90°,AC = BC,AD 是∠BAC 的平分线,D E ⊥AB 于E ,若AC = 10cm ,则△DBE 的周长等于( )A .10cmB .8cmC .6cmD .9cm 二、填空题3.角平分线的性质定理:角平分线上的点_____________________________.ABC DOPEDCB4.⑴如图,已知∠1 =∠2,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,则DE ____DF .⑵已知DE ⊥AB ,DF ⊥AC ,垂足分别 为E 、F ,且DE = DF ,则∠1_____∠2.三、解答题5.如图,点D 、B 分别在∠A 的两边上,C 是∠A 一点,AB = AD ,BC = CD,CE ⊥AD 于E ,CF ⊥AF 于F . 求证:CE = CF6.已知:如图,在△ABC 中,∠A =90°,AB = AC , BD 平分∠ABC . 求证:BC = AB + AD测试目标:探索并掌握角平分线性质11.3角平分线性质(2)一、选择题1.到三角形三条边的距离都相等的点是这个三角形的( ) A .三条中线的交点B .三条高的交点C .三条边的垂直平分线的交点D .三条角平分线的交点2. 如图所示,表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( ) A.1处 B.2处 C.3处D.4处21ABCDEFFA B EC DD B A C二、填空题3.角的部_____________________________的点,在这个角的平分线上.4.如图,点P到∠AOB两边的距离相等,若∠POB=30°,则∠AOB=_____度.5.已知:有一块三角形空地,若想在空地中找到一个点,使这个点到三边的距离相等,试找出该点.(保留画图痕迹)6.已知,如图,BP是△ABC的外角平分线,点P在∠BAC的角平分线上.求证:CP是△ABC 的外角平分线.角的平分线性质的正确应用“角平分线上的点到角两边的距离相等”的应用例1 如图,AC平分∠BAD,CD=CB,AB>AD,CE⊥AB于E,CF⊥AD于F.求证:∠CBA+∠ADC=180°.小结:涉及到角平分线有关的问题,要想到角平分线性质的应用,应用注意步骤的完整性.不要漏点关键的步骤:如CE⊥AB,CF⊥AD,垂足分别是E,F不能漏掉.例 2 如图,在△ABC,∠C=90°,AD是∠ABC的角平分线,DE⊥AB.垂足为 E.DE=EB.求证:AC+CD=AB.小结:本题主要通过利用角平分线的性质以及直角三角形全等的有关知识进行证明的.解决问题时应灵活应用角平分线的性质.二、“到角的两边的距离相等的点在角平分线上”的应用例3 如图,△ABC外角∠MAC与∠NCA的平分线相交于点P,PD⊥BM于D,PF⊥BN于F.求证:BP为∠ABC的平分线.小结:本题角平分线性质和判定的综合应用,应注意辅助线的添加的方法.角的平分线性质及应用其明(1)性质定理:在角的平分线上的点到这个角的两边的距离相等;(2)性质定理的逆定理:到一个角的两边的距离相等的点在这个角的平分线上.例1.三角形到三边的距离相等的点是()的交点.(A)三条中线(B)三条高(C)三条角平分线(D)以上均不对.例2.如图1,△ABC的角平分线BM、CN相交于点P,试问:P到AB、BC、CA的距离相等吗?例3.如图2,△ABC中,∠C=900,AD平分∠BAC,BD=4,,则D到AB的距离是.例4.如图3,△ABC中,∠B、∠C的角平分线相交于O,下面结论中正确的是().(A)∠1>∠2(B)∠1=∠2(C)∠1<∠2(D)不能确定.例5.如图4,在△ABC中,∠A=900,BD是角平分线,若AD=m,BC=n,求△BDC的面积.BDACE图2AB CO1 2AB CDEMACBPNFE 图1图3例6.如图4,在△ABC中,∠A=900,AC=AB,BD平分∠BAC,DE⊥BC,BC=8,求△BED的周长..例7.如图5,△ABC中,∠A=900,点D在BC上,DE⊥AB于E,且AE=EB,DE=DC,求∠B的度数.角平分线典型案例精析庆社题1 已知:如图CD⊥AB于D,BE⊥AC于E,且CD、BE相交于O点.求证:(1)当 ∠1= ∠2时,OB=OC;(2)当OB=OC时,∠ 1= ∠2.【点评】利用角平分性质定理或判定定理时,一定要注意垂直的条件.题2 已知:如图∠ 1= ∠2,BC⊥AC于C,BD⊥AD于D,连结CD交AB于E求证:AB垂直平分CD.【点评】用了角平分线性质定理,可代替用全等三角形得到的结论,简化证明过程.1AB CDE2图5题3 已知:如图AD 为△ABC 的角平分线,DE ⊥AC 于E ,DF ⊥AB 于F ,EF 交AD 于M,求证:MF=ME.【点评】在已知条件中,有角平分线,可以在角平分线上任取一点向两边作垂线,构造全等三角形.角平分线(同步测控) 一、选择题1. 2007课改)Rt 90ABC C BAC ∠∠在△中,=,的角平分线AD 交BC 于 点D ,2CD =,则点D 到AB 的距离是( )A .1B .2C .3D .42. (2007义乌课改) 如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E .已知PE =3,则点P 到AB 的距离是( ) A .3 B .4 C .5 D .63. (2007课改)到三角形三条边的距离都相等的点是这个三角形的( )A.三条中线的交点 B.三条高的交点 C.三条边的垂直平分线的交点 D.三条角平分线的交点4. (2006 贵港课改)已知:如图,AD 是ABC △的角平分线,且:3:2AB AC =,则ABD △与ACD △的面积之比为( ) A.3:2B.3:2C.2:3D.2:3 5. (2005 )如图,OP 平分∠AOB ,PC ⊥OA 于C ,PD ⊥OB 于D ,则PC 与PD 的大小 关系是( ) A.PC PD > B.PC PD = C.PC PD < D.不能确定6.一个角的平分线的尺规作图的理论依据是( )A .SASB 。
SSSC 。
ASAD 。
AAS7. 如图所示,三条公路两两相交,交点分别为A 、B 、C ,现计划修一个油库,要求到三条公路的距离都相等,可供选择的地址有几处( )A.1 B.2 C.3 D.4DACB ABCDA BP DCOAB CD E F 8. (2008潍坊)如图, Rt △ABC 中,AB ⊥AC ,AD ⊥BC ,BE 平分∠ABC ,交A D 于E ,EF ∥AC ,下列结论一定成立的是( )A.AB =BFB.AE =EDC.AD =DCD.∠ABE =∠DFE ,二、填空题9. (2006 课改)如图,在ABC △中,90C ∠=,AD 平分CAB ∠,8cm 5cm BC BD ==,,那么D 点到直线AB 的距离是 cm .10. (2006 课改)如图所示,A ,B 是4×5网格中的格点,网格中的每个小正方形的边长都是1.请在图中清晰标出使以A ,B ,C为顶点的三角形是等腰三角形的所有格点C的位置.11如图2,P 是∠AOB 的平分线上一点. PC ⊥AO 于C ,PD ⊥OB 于D , 写出图中一组相等的线段 .(只需写出一组即可)12在ABC △中∠BAC 和∠ABC 的平分线相交于P ,若P 到AB 的距离为10,则它到边AC 和BC 的距离和为 .13.在ABC △中,70C ∠=,∠A 和∠B 的平分线相交于点P ,则∠BPA= 。
14(2008年双柏县)如图,点P 在AOB ∠的平分线上,若使AOP BOP △≌△,则需添加的一个条件是 (只写一个即可,不添加辅助线):三,证明题15. 已知,如图3,D 是的角与外角的平分线BD 与CD 的交点,过D 作DE//BC ,交AB 于E ,交AC 于F 。
试确定EF 、EB 、FC 的关系。
ABC BAAB PO图316.已知:如图4-1,在△ABC 中,∠C =2∠B ,∠1=∠2.求证:AB =AC +CD .17如图2-1,AD ∥BC ,点E 在线段AB 上,∠ADE =∠CDE ,∠DCE =∠ECB .求证:CD =AD +BC .10.如图,∠1=∠2,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E ,下列结论错误的是( ) A 、PD =PE B 、OD =OE C 、∠DPO =∠EPO D 、PD =ODB 等级DCBA 12图4-1ADB CE 图2-111.如图,AB=AD ,∠ABC=∠ADC=90°,则下列结论:①∠3=∠4;•②∠1=∠2;③∠5=∠6;④AC 垂直且平分BD ,其中正确的有( )A .①②③④B .①②③C .①③D .①③④2DCBA3514612.如图,三条公路两两交于点A 、B 、C ,现要修一个货物中转站,要求到三条公路距离相等,则可供选择的地址有( )A .一处B .二处C .三处D .四处CBA13.△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D ,且BD :CD=3:2,BC=15cm ,•则点D 到AB 的距离是__________.14.如图,已知点D 是△ABC 中AC 边一点,点E 在AB 延长线上,且△ABC•≌△DBE ,∠BDA=∠A .若∠A :∠C=5:3,则∠DBE 的度数是( ) A .100° B .80° C .60° D .120°DCBAE15.如图,已知△ABC 中,∠C=90°,E 是AB 的中点,D 在∠B 的平分线上,且DE ⊥AB ,则( )A.BD <AEB.BC=AEC.BC <AED.以上都不对16.如图,AB=AD ,∠ABC=∠ADC=90°,则下列结论:①∠3=∠4;②∠1=∠2;③∠5=∠6;④AC 垂直且平分BD ,其中正确的有( )A.①②③④B.①②③C.①③D.①③④17.已知:如图⑷,P是∠AOB的平分线上的一点,PC⊥OA于C,PD⊥OB于D,写出图中一组相等的线段(只需写出一组即可).18.如图,AB∥CD,AP、CP分别平分∠BAC和∠ACD,PE⊥AC于E,且PE=•2cm,则AB与CD之间的距离是___________.PDCBAE19.用直尺和圆规平分已知角的依据是______________.20.到三角形三边的距离相等的点是三角形()A.三条边上的高的交点B.三个角平分线的交点C.三边上的中线的交点D.以上结论都不对C等级21.如图△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6㎝,则△DEB的周长为()A、4㎝B、6㎝C、10㎝D、不能确定22.如图,MP⊥NP,MQ为△MNP的角平分线,MT=MP,连接TQ,则下列结论中不正确的是()A、TQ=PQB、∠MQT=∠MQPC、∠QTN=90°D、∠NQT=∠MQT23.如图,AD 是∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,且DB =DC ,求证:BE =CF 。