《创新设计》2017届高考数学(文)二轮复习(江苏专用)课件+Word版训练专题五 解析几何 第1讲
《创新设计》2017高考数学文二轮复习江苏专用+版训练专题五 解析几何第2讲
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
高考定位 圆锥曲线中的基本问题一般以椭圆、双曲线的定 义、标准方程、几何性质等作为考查的重点,多为填空题. 椭圆有关知识为B级要求,双曲线的有关知识为A级要求.
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
真题感悟
解析 双曲线 x2-y2=1 的渐近线为 x±y=0,直线 x-y+1
=0 与渐近线 x-y=0 平行,故两平行线的距离 d=
|1-0| 12+12
= 22.由点 P 到直线 x-y+1=0 的距离大于 c 恒成立,得
c≤
22,故
c
的最大值为
2 2.
答案
2 2
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
解析 (1)由双曲线定义|PF2-PF1|=2a,∵PF1=3,∴P 在左 支上,∵a=3,∴PF2-PF1=6,∴PF2=9. (2)∵方程m2x+2 n-3my2-2 n=1 表示双曲线, ∴(m2+n)·(3m2-n)>0, 解得-m2<n<3m2,由双曲线性质,知 c2=(m2+n)+(3m2-n) =4m2(其中 c 是半焦距),∴焦距 2c=2×2|m|=4,解得|m|=1, ∴-1<n<3. 答案 (1)9 (2)(-1,3)
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
热点一 圆锥曲线的定义和标准方程 【例 1】 (1)(2016·天津卷改编)已知双曲线ax22-by22=1(a>0,
b>0)的焦距为 2 5,且双曲线的一条渐近线与直线 2x+y =0 垂直,则双曲线的方程为________. (2)(2016·北京卷改编)已知双曲线ax22-by22=1(a>0,b>0) 的一条渐近线为 2x+y=0,一个焦点为( 5,0),则 a= ________;b=________.
创新设计(江苏专用)2017届高考数学二轮复习 解答题 第一周 星期日 40分附加题部分 理
星期日 (40分附加题部分)2017年____月____日选做部分请同学从下面所给的四题中选定两题作答1.选修4-1:几何证明选讲如图,圆O 的直径AB =10,C 为圆上一点,BC =6,过点C 作圆O 的切线l ,AD ⊥l 于点D ,且交圆O 于点E ,求DE 的长.解 因为圆O 的直径为AB ,C 为圆上一点,所以∠ACB =90°,AC =AB 2-BC 2=102-62=8.因为直线l 为圆O 的切线,所以∠DCA =∠CBA .又AD ⊥l ,所以Rt △ABC ∽Rt △ACD ,所以AB AC =AC AD =BC DC.又因为AB =10,BC =6,AC =8, 所以AD =AC 2AB =325,DC =AC ·BC AB =245. 由DC 2=DE ·DA 得DE =DC 2DA =⎝ ⎛⎭⎪⎫2452325=185. 2.选修4-2:矩阵与变换设二阶矩阵A ,B 满足A -1=⎣⎢⎡⎦⎥⎤1 23 4,(BA )-1=⎣⎢⎡⎦⎥⎤1 00 1,求B -1. 解 设B -1=⎣⎢⎡⎦⎥⎤ab c d ,因为(BA )-1=A -1B -1, 所以⎣⎢⎡⎦⎥⎤1 00 1=⎣⎢⎡⎦⎥⎤1 23 4⎣⎢⎡⎦⎥⎤a b c d ,即⎩⎪⎨⎪⎧a +2c =1,b +2d =0,3a +4c =0,3b +4d =1,解得⎩⎪⎨⎪⎧a =-2,b =1,c =32,d =-12,所以B -1=⎣⎢⎢⎡⎦⎥⎥⎤-2 132 -12. 3.选修4-4:坐标系与参数方程在极坐标系中,已知曲线C :ρ=2sin θ,过极点O 的直线l 与曲线C 交于A ,B 两点,且AB =3,求直线l 的方程.解 设直线l 的方程为θ=θ0(ρ∈R ),A (0,0),B (ρ1,θ0),则AB =|ρ1-0|=|2sin θ0|.又AB =3,故sin θ0=±32. 解得θ0=π3+2k π或θ0=-π3+2k π,k ∈Z . 所以直线l 的方程为θ=π3或θ=2π3(ρ∈R ). 4.选修4-5:不等式选讲已知a ≥0,b ≥0,求证:a 6+b 6≥ab (a 4+b 4).证明 ∵a 6+b 6-ab (a 4+b 4)=a 5(a -b )-(a -b )b 5=(a -b )(a 5-b 5)=(a -b )2(a 4+a 3b +a 2b 2+ab 3+b 4).又a ≥0,b ≥0,所以a 6+b 6-ab (a 4+b 4)≥0,即a 6+b 6≥ab (a 4+b 4).必做部分1.某校高一、高二两个年级进行乒乓球对抗赛,每个年级选出3名学生组成代表队,比赛规则是:①按“单打、双打、单打”顺序进行三盘比赛;②代表队中每名队员至少参加一盘比赛,但不能参加两盘单打比赛.若每盘比赛中高一、高二获胜的概率分别为37,47. (1)按比赛规则,高一年级代表队可以派出多少种不同的出场阵容?(2)若单打获胜得2分,双打获胜得3分,求高一年级得分ξ的概率分布列和数学期望. 解 (1)先安排参加单打的队员有A 23种方法,再安排参加双打的队员有C 12种方法, 所以,高一年级代表队出场共有A 23C 12=12种不同的阵容.(2)ξ的取值可能是0,2,3,4,5,7. P (ξ=0)=64343,P (ξ=2)=96343,P (ξ=3)=48343, P (ξ=4)=36343,P (ξ=5)=72343,P (ξ=7)=27343. ξ的概率分布列为所以E (ξ)=0×64343+2×96343+3×48343+4×36343+5×72343+7×27343=3. 2.已知抛物线C :x 2=2py (p >0)过点(2,1),直线l 过点P (0,-1)与抛物线C 交于A ,B 两点.点A 关于y 轴的对称点为A ′,连接A ′B .(1)求抛物线C 的标准方程;(2)问直线A ′B 是否过定点?若是,求出定点坐标;若不是,请说明理由.解 (1)将点(2,1)代入抛物线C 的方程得p =2,所以抛物线C 的标准方程为x 2=4y .(2)设直线l 的方程为y =kx -1,又设A (x 1,y 1),B (x 2,y 2),则A ′(-x 1,y 1),由⎩⎪⎨⎪⎧y =14x 2,y =kx -1得x 2-4kx +4=0,则Δ=16k 2-16>0,x 1·x 2=4,x 1+x 2=4k ,所以k A ′B =y 2-y 1x 2-(-x 1)=x 224-x 214x 1+x 2=x 2-x 14, 于是直线A ′B 的方程为y -x 224=x 2-x 14(x -x 2), 所以y =x 2-x 14(x -x 2)+x 224=x 2-x 14x +1, 当x =0时,y =1,所以直线A ′B 过定点(0,1).。
创新设计江苏专用2017届高考数学二轮复习上篇专题整合突破专题三数列教师用书理201703160282
专题三 数列教师用书 理第1讲 等差数列、等比数列的基本问题高考定位 高考对本内容的考查主要有:(1)数列的概念是A 级要求,了解数列、数列的项、通项公式、前n 项和等概念,一般不会单独考查;(2)等差数列、等比数列是两种重要且特殊的数列,要求都是C 级.真 题 感 悟1.(2016·江苏卷)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________.解析 设等差数列{a n }公差为d ,由题意可得:⎩⎪⎨⎪⎧a 1+(a 1+d )2=-3,5a 1+5×42d =10,解得⎩⎪⎨⎪⎧a 1=-4,d =3, 则a 9=a 1+8d =-4+8×3=20. 答案 202.(2015·江苏卷)设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.解析 ∵a 1=1,a n +1-a n =n +1,∴a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n ,将以上n -1个式子相加得a n -a 1=2+3+…+n =(2+n )(n -1)2,即a n =n (n +1)2,令b n =1a n,故b n =2n (n +1)=2⎣⎢⎡⎦⎥⎤1n -1n +1,故S 10=b 1+b 2+…+b 10 =2⎣⎢⎡⎦⎥⎤1-12+12-13+…+110-111=2011.答案20113.(2010·江苏卷)函数y =x 2(x >0)的图象在点(a k ,a 2k )处的切线与x 轴交点的横坐标为a k +1,k 为正整数,a 1=16,则a 1+a 3+a 5=________.解析 在点(a k ,a 2k )处的切线方程为:y -a 2k =2a k (x -a k ),当y =0时,解得x =a k2,所以a k +1=a k2,故{a n }是a 1=16,q =12的等比数列,即a n =16×⎝ ⎛⎭⎪⎫12n -1,∴a 1+a 3+a 5=16+4+1=21.答案 214.(2013·江苏卷)在正项等比数列{a n }中,a 5=12,a 6+a 7=3.则满足a 1+a 2+…+a n >a 1a 2…a n的最大正整数n 的值为________.解析 设数列{a n }的公比为q (q >0),由已知条件得12q +12q 2=3,即q 2+q -6=0,解得q =2,或q =-3(舍去),a n =a 5q n -5=12×2n -5=2n -6,a 1+a 2+…+a n =132(2n -1), a 1a 2…a n =2-52-42-3…2n -6=2n 2-11n2, 由a 1+a 2+…+a n >a 1a 2…a n ,可知2n -5-2-5>2n (n -11)2,由2n -5-2-5>2n (n -11)2,可求得n 的最大值为12,而当n =13时,28-2-5<213,所以n 的最大值为12.答案 12考 点 整 合1.等差数列(1)通项公式:a n =a 1+(n -1)d , (2)求和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d ,(3)性质:①若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m +a n =a p +a q ; ②a n =a m +(n -m )d ;③S m ,S 2m -S m ,S 3m -S 2m ,…,成等差数列. 2.等比数列(1)通项公式:a n =a 1qn -1(q ≠0);(2)求和公式:q =1,S n =na 1;q ≠1,S n =a 1(1-q n )1-q =a 1-a n q1-q;(3)性质:①若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m ·a n =a p ·a q ; ②a n =a m ·qn -m;③S m ,S 2m -S m ,S 3m -S 2m ,…,(S m ≠0)成等比数列. 3.求通项公式的常见类型(1)观察法:利用递推关系写出前几项,根据前几项的特点观察、归纳、猜想出a n 的表达式,然后用数学归纳法证明.(2)利用前n 项和与通项的关系a n =⎩⎪⎨⎪⎧S 1 (n =1),S n -S n -1 (n ≥2).(3)公式法:利用等差(比)数列求通项公式.(4)累加法:在已知数列{a n }中,满足a n +1=a n +f (n ),把原递推公式转化为a n +1-a n =f (n ),再利用累加法(逐差相加法)求解.(5)叠乘法:在已知数列{a n }中,满足a n +1=f (n )a n ,把原递推公式转化为a n +1a n=f (n ),再利用叠乘法(逐商相乘法)求解.(6)构造等比数列法:在已知数列{a n }中,满足a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0)先用待定系数法把原递推公式转化为a n +1-t =p (a n -t ),其中t =q1-p ,再利用换元法转化为等比数列求解.热点一 等差、等比数列的基本运算【例1】 (1)(2016·全国Ⅰ卷改编)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=________.(2)(2016·连云港调研)在等差数列{a n }中,a 5=3,a 6=-2,则a 3+a 4+…+a 8=________. (3)(2015·湖南卷)设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.解析 (1)由等差数列性质,知S 9=9(a 1+a 9)2=9×2a 52=9a 5=27,得a 5=3,而a 10=8,因此公差d =a 10-a 510-5=1,∴a 100=a 10+90d =98.(2)根据等差数列性质计算.因为{a n }是等差数列,所以a 3+a 4+…+a 8=3(a 5+a 6)=3. (3)由3S 1,2S 2,S 3成等差数列知,4S 2=3S 1+S 3,可得a 3=3a 2,∴公比q =3,故等比数列通项a n =a 1qn -1=3n -1.答案 (1)98 (2)3 (3)3n -1探究提高 (1)等差、等比数列的基本运算是利用通项公式、求和公式求解首项a 1和公差d (公比q ),在列方程组求解时,要注意整体计算,以减少计算量.(2)在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.【训练1】 (1)(2014·江苏卷)在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________.(2)(2016·北京东城区模拟)设等比数列{a n }的前n 项和为S n ,若S m -1=5,S m =-11,S m +1=21,则m 等于________.(3)(2015·潍坊模拟)在等比数列{a n }中,公比q =2,前87项和S 87=140,则a 3+a 6+a 9+…+a 87=________.解析 (1)因为a 8=a 2q 6,a 6=a 2q 4,a 4=a 2q 2,所以由a 8=a 6+2a 4得a 2q 6=a 2q 4+2a 2q 2,消去a 2q 2,得到关于q 2的一元二次方程(q 2)2-q 2-2=0,解得q 2=2,a 6=a 2q 4=1×22=4. (2)由已知得S m -S m -1=a m =-16,S m +1-S m =a m +1=32,故公比q =-2,又S m =a 1-a m q1-q=-11,故a 1=-1, 又a m =a 1qm -1=-16,代入可求得m =5.(3)法一 a 3+a 6+a 9+…+a 87=a 3(1+q 3+q 6+…+q 84)=a 1q 2·1-(q 3)291-q3=q 21+q +q 2·a 1(1-q 87)1-q =47×140=80. 法二 设b 1=a 1+a 4+a 7+…+a 85,b 2=a 2+a 5+a 8+…+a 86,b 3=a 3+a 6+a 9+…+a 87, 因为b 1q =b 2,b 2q =b 3,且b 1+b 2+b 3=140, 所以b 1(1+q +q 2)=140,而1+q +q 2=7, 所以b 1=20,b 3=q 2b 1=4×20=80. 答案 (1)4 (2)5 (3)80热点二 等差、等比数列的判定与证明【例2】 (2016·南师附中月考)已知数列{a n }的前n 项和为S n ,a 1=14,且S n =S n -1+a n -1+12(n ∈N *,且n ≥2),数列{b n }满足:b 1=-1194,且3b n -b n -1=n (n ≥2,且n ∈N *).(1)求数列{a n }的通项公式; (2)求证:数列{b n -a n }为等比数列.(1)解 由S n =S n -1+a n -1+12,得S n -S n -1=a n -1+12,即a n -a n -1=12(n ∈N *,n ≥2),则数列{a n }是以12为公差的等差数列,又a 1=14,∴a n =a 1+(n -1)d =12n -14.(2)证明 ∵3b n -b n -1=n (n ≥2), ∴b n =13b n -1+13n (n ≥2),∴b n -a n =13b n -1+13n -12n +14=13b n -1-16n +14=13⎝⎛⎭⎪⎫b n -1-12n +34(n ≥2).b n -1-a n -1=b n -1-12(n -1)+14=b n -1-12n +34(n ≥2),∴b n -a n =13(b n -1-a n -1)(n ≥2),∵b 1-a 1=-30≠0,∴b n -a n b n -1-a n -1=13(n ≥2).∴数列{b n -a n }是以-30为首项,13为公比的等比数列.探究提高 判断和证明数列是等差(比)数列的两种方法 (1)定义法:对于n ≥1的任意自然数,验证a n +1-a n ⎝ ⎛⎭⎪⎫或a n +1a n 为同一常数.(2)中项公式法:①若2a n =a n -1+a n +1(n ∈N *,n ≥2),则{a n }为等差数列;②若a 2n =a n -1·a n +1(n ∈N *,n ≥2),则{a n }为等比数列.【训练2】 已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数. (1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由. (1)证明 由题设,a n a n +1=λS n -1,① 知a n +1a n +2=λS n +1-1,② ②-①得:a n +1(a n +2-a n )=λa n +1. ∵a n +1≠0,∴a n +2-a n =λ.(2)解 由题设可求a 2=λ-1,∴a 3=λ+1, 令2a 2=a 1+a 3,解得λ=4,故a n +2-a n =4.由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3; {a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1. 所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列. 热点三 求数列的通项[微题型1] 由S n 与a n 的关系求a n【例3-1】 (1)已知数列{a n }的前n 项和为S n ,且满足a n +2S n ·S n -1=0(n ≥2,n ∈N *),a 1=12.求数列{a n }的通项公式. (2)(2016·岳阳二模节选)设数列{a n }的前n 项和为S n ,已知a 1=1,a 2=2,且a n +2=3S n -S n+1+3, n ∈N *.证明:a n +2=3a n ;并求a n .解 (1)由a n +2S n ·S n -1=0(n ≥2,n ∈N *), 得S n -S n -1+2S n ·S n -1=0,所以1S n -1S n -1=2(n ≥2,n ∈N *),故⎩⎨⎧⎭⎬⎫1S n 是等差数列.又1S 1=2,所以1S n=2n ,故S n =12n ,a n =S n -S n -1=12n -12(n -1)=-12n (n -1)(n ≥2,n ∈N *),所以a n=⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.(2)由条件,对任意n ∈N *,有a n +2=3S n -S n +1+3, 因而对任意n ∈N *,n ≥2,有a n +1=3S n -1-S n +3. 两式相减,得a n +2-a n +1=3a n -a n +1, 即a n +2=3a n ,n ≥2.又a 1=1,a 2=2,所以a 3=3S 1-S 2+3=3a 1-(a 1+a 2)+3=3a 1, 故对一切n ∈N *,a n +2=3a n . 又∵a n ≠0,所以a n +2a n=3.于是数列{a 2n -1}是首项a 1=1,公比为3的等比数列;数列{a 2n }是首项a 2=2,公比为3的等比数列.因此a 2n -1=3n -1,a 2n =2×3n -1.∴a n=⎩⎪⎨⎪⎧3n -12,n 为奇数,2×3n -22,n 为偶数.探究提高 给出S n 与a n 的递推关系求a n ,常用思路是:一是利用S n -S n -1=a n (n ≥2)转化为a n 的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n .[微题型2] 已知a n 与a n +1的递推关系式求a n【例3-2】 (1)在数列{a n }中,a 1=1,a n +1=⎝ ⎛⎭⎪⎫1+1n a n +n +12n ,求数列{a n }的通项公式;(2)已知正项数列{a n }满足a 1=1,(n +2)a 2n +1-(n +1)a 2n +a n a n +1=0,求通项a n ; (3)已知a 1=4,a n +1=2a n2a n +1,求通项a n .解 (1)由已知得a 1=1,且a n +1n +1=a n n +12n, ∴a 22=a 11+121,a 33=a 22+122,…,a n n =a n -1n -1+12n -1, ∴a n n =1+12+122+…+12n -1=2-12n -1(n ≥2). ∴a n =2n -n2n -1(n ≥2),又a 1=1适合上式,∴a n =2n -n2n -1.(2)由(n +2)a 2n +1-(n +1)a 2n +a n a n +1=0,得(n +2)⎝ ⎛⎭⎪⎫a n +1a n 2+a n +1a n =n +1,所以a n +1a n =n +1n +2.又a 1=1,则a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1 =nn +1·n -1n ·…·23·1=2n +1. 故数列{a n }的通项公式a n =2n +1. (3)∵a n +1=2a n 2a n +1,两边取倒数得1a n +1=12a n +1,设b n =1a n ,则b n +1=12b n +1,则b n +1-2=12(b n-2),∴b n +1-2b n -2=12,故{b n -2}是以b 1-2=1a 1-2=-74为首项,12为公比的等比数列.∴b n -2=⎝ ⎛⎭⎪⎫-74⎝ ⎛⎭⎪⎫12n -1,即1a n -2=⎝ ⎛⎭⎪⎫-74⎝ ⎛⎭⎪⎫12n -1,得a n =2n +12n +2-7.探究提高 (1)形如b n +1-b n =f (n ),其中f (n )=k 或多项式(一般不高于三次),用累加法即可求得数列的通项公式;(2)形如a n +1=a n ·f (n ),可用累乘法;(3)形如a n +1=pa n +q (p ≠1,q ≠0),可构造一个新的等比数列;(4)形如a n +1=qa n +q n (q 为常数,且q ≠0,q ≠±1),解决方法是在递推公式两边同除以qn +1.【训练3】 (1)设数列{a n }的前n 项和为S n ,已知a 1=1,2S n n =a n +1-13n 2-n -23,n ∈N *.①求a 2的值;②求数列{a n }的通项公式.(2)已知正项数列{a n }的前n 项和为S n ,且a 1=1,S n +1+S n =a 2n +1,数列{b n }满足b n ·b n +1=3a n ,且b 1=1.求数列{a n }、{b n }的通项公式.解 (1)①依题意,2S 1=a 2-13-1-23,又S 1=a 1=1,所以a 2=4.②当n ≥2时,2S n =na n +1-13n 3-n 2-23n ,2S n -1=(n -1)a n -13(n -1)3-(n -1)2-23(n -1),以上两式相减得,2a n =na n +1-(n -1)a n -13(3n 2-3n +1)-(2n -1)-23.整理得(n +1)a n =na n +1-n (n +1), 即a n +1n +1-a n n =1,又a 22-a 11=1, 故数列⎩⎨⎧⎭⎬⎫a n n 是首项为a 11=1,公差为1的等差数列,所以a nn =1+(n -1)×1=n ,所以a n =n 2.(2)∵S n +1+S n =a 2n +1,①S n +S n -1=a 2n (n ≥2),②①-②得a n +1+a n =a 2n +1-a 2n , ∴(a n +1+a n )(a n +1-a n -1)=0, ∵a n +1>0,a n >0,∴a n +1+a n ≠0, ∴a n +1-a n =1(n ≥2),又由S 2+S 1=a 22,得2a 1+a 2=a 22,即a 22-a 2-2=0, ∴a 2=2,a 2=-1(舍去),∴{a n }是以1为首项,1为公差的等差数列, ∴a n =n .又b n ·b n +1=3a n =3n,③b n -1b n =3n -1(n ≥2),④③④得b n +1b n -1=3(n ≥2), 又由b 1=1,可求b 2=3.故b 1,b 3,…,b 2n -1是首项为1,公比为3的等比数列;b 2,b 4,…,b 2n 是首项为3,公比为3的等比数列. ∴b 2n -1=3n -1,b 2n =3·3n -1=3n.∴b n=⎩⎪⎨⎪⎧3n -12,n 为奇数,3n2,n 为偶数.1.在等差(比)数列中,a 1,d (q ),n ,a n ,S n 五个量中知道其中任意三个,就可以求出其他两个.解这类问题时,一般是转化为首项a 1和公差d (公比q )这两个基本量的有关运算.2.等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.3.应用关系式a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2时,一定要注意分n =1,n ≥2两种情况,在求出结果后,看看这两种情况能否整合在一起.一、填空题1.(2015·南通模拟)在等差数列{a n }中,a 1+3a 3+a 15=10,则a 5的值为________. 解析 设数列{a n }的公差为d ,∵a 1+a 15=2a 8,∴2a 8+3a 3=10,∴2(a 5+3d )+3(a 5-2d )=10,∴5a 5=10,∴a 5=2. 答案 22.在等比数列{a n }中,已知a 1+a 3=8,a 5+a 7=4,则a 9+a 11+a 13+a 15=________. 解析 设等比数列{a n }的公比为q ,由已知,得⎩⎪⎨⎪⎧a 1+a 1q 2=8,a 1q 4+a 1q 6=4,解得q 4=12. 又a 9+a 11=a 1q 8+a 3q 8=(a 1+a 3)q 8=8×⎝ ⎛⎭⎪⎫122=2, a 13+a 15=a 1q 12+a 3q 12=(a 1+a 3)q 12=8×⎝ ⎛⎭⎪⎫123=1, 所以a 9+a 11+a 13+a 15=2+1=3. 答案 33.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.解析 根据题意知a 7+a 8+a 9=3a 8>0,即a 8>0.又a 8+a 9=a 7+a 10<0,∴a 9<0,∴当n =8时,{a n }的前n 项和最大. 答案 84.等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n 等于________. 解析 由a 2,a 4,a 8成等比数列,得a 24=a 2a 8, 即(a 1+6)2=(a 1+2)(a 1+14),∴a 1=2. ∴S n =2n +n (n -1)2×2=2n +n 2-n =n (n +1). 答案 n (n +1)5.(2016·宿迁调研)设各项都是正数的等比数列{a n },S n 为前n 项和,且S 10=10,S 30=70,那么S 40等于________.解析 依题意,数列S 10,S 20-S 10,S 30-S 20,S 40-S 30成等比数列,因此有(S 20-S 10)2=S 10(S 30-S 20),即(S 20-10)2=10(70-S 20),故S 20=-20或S 20=30.又S 20>0,因此S 20=30,S 20-S 10=20,S 30-S 20=40,则S 40=S 30+(S 30-S 20)2S 20-S 10=70+40220=150.答案 1506.若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q =________.解析 由题意知:a +b =p ,ab =q ,∵p >0,q >0,∴a >0,b >0.在a ,b ,-2这三个数的6种排序中,成等差数列的情况有a ,b ,-2;b ,a ,-2;-2,a ,b ;-2,b ,a ;成等比数列的情况有:a ,-2,b ;b ,-2,a .∴⎩⎪⎨⎪⎧ab =4,2b =a -2或⎩⎪⎨⎪⎧ab =4,2a =b -2 解之得:⎩⎪⎨⎪⎧a =4,b =1或⎩⎪⎨⎪⎧a =1,b =4.∴p =5,q =4,∴p +q =9. 答案 97.(2016·全国Ⅰ卷)设等比数列满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为__________.解析 设等比数列{a n }的公比为q ,∴⎩⎪⎨⎪⎧a 1+a 3=10,a 2+a 4=5⇒⎩⎪⎨⎪⎧a 1+a 1q 2=10,a 1q +a 1q 3=5, 解得⎩⎪⎨⎪⎧a 1=8,q =12,∴a 1a 2…a n =⎝ ⎛⎭⎪⎫12(-3)+(-2)+…+(n -4)=⎝ ⎛⎭⎪⎫1212n (n -7)=⎝ ⎛⎭⎪⎫1212⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫n -722-494, 当n =3或4时,12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫n -722-494取到最小值-6, 此时⎝ ⎛⎭⎪⎫1212⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫n -722-494取到最大值26,所以a 1a 2…a n 的最大值为64. 答案 648.等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为________. 解析 设数列{a n }的首项和公差分别为a 1,d ,则⎩⎪⎨⎪⎧10a 1+45d =0,15a 1+105d =25,⎩⎪⎨⎪⎧a 1=-3,d =23,则nS n =n ⎣⎢⎡⎦⎥⎤-3n +n (n -1)3=n 33-103n 2. 设函数f (x )=x 33-103x 2,则f ′(x )=x 2-203x ,当x ∈⎝⎛⎭⎪⎫0,203时,f ′(x )<0; 当x ∈⎝⎛⎭⎪⎫203,+∞时,f ′(x )>0,所以函数f (x )min =f ⎝ ⎛⎭⎪⎫203,但6<203<7,且f (6)=-48,f (7)=-49,因为-48>-49,所以最小值为-49. 答案 -49 二、解答题9.(2016·全国Ⅲ卷)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.(1)证明 由题意得a 1=S 1=1+λa 1,故λ≠1,a 1=11-λ,a 1≠0. 由S n =1+λa n ,S n +1=1+λa n +1, 得a n +1=λa n +1-λa n ,即a n +1(λ-1)=λa n ,由a 1≠0,λ≠0得a n ≠0, 所以a n +1a n =λλ-1. 因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1. (2)解 由(1)得S n =1-⎝ ⎛⎭⎪⎫λλ-1n. 由S 5=3132得1-⎝ ⎛⎭⎪⎫λλ-15=3132,即⎝ ⎛⎭⎪⎫λλ-15=132.解得λ=-1.10.已知数列{a n }满足a 1=1,a n +1=3a n +1,(1)证明{a n +12}是等比数列,并求{a n }的通项公式;(2)证明1a 1+1a 2+…+1a n <32.证明 (1)由a n +1=3a n +1, 得a n +1+12=3⎝⎛⎭⎪⎫a n +12.又a 1+12=32,所以{a n +12}是首项为32,公比为3的等比数列.a n +12=3n2,因此{a n }的通项公式为a n =3n-12.(2)由(1)知1a n =23n -1.因为当n ≥1时,3n-1≥2×3n -1,所以13n -1≤12×3n -1.于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32⎝ ⎛⎭⎪⎫1-13<32.所以1a 1+1a 2+…+1a n <32.11.数列{a n }的前n 项和为S n ,a 1=1,且对任意正整数n ,点(a n +1,S n )在直线2x +y -2=0上.(1)求数列{a n }的通项公式;(2)是否存在实数λ,使得数列⎩⎨⎧⎭⎬⎫S n +λn +λ2n 为等差数列?若存在,求出λ的值;若不存在,请说明理由.解 (1)由题意,可得2a n +1+S n -2=0.① 当n ≥2时,2a n +S n -1-2=0.② ①-②,得2a n +1-2a n +a n =0,所以a n +1a n =12(n ≥2). 因为a 1=1,2a 2+a 1=2,所以a 2=12.所以{a n }是首项为1,公比为12的等比数列.所以数列{a n }的通项公式为a n =⎝ ⎛⎭⎪⎫12n -1.(2)由(1)知,S n =1-12n1-12=2-12n -1.若⎩⎨⎧⎭⎬⎫S n +λn +λ2n 为等差数列,则S 1+λ+λ2,S 2+2λ+λ22,S 3+3λ+λ23成等差数列,则2⎝ ⎛⎭⎪⎫S 2+9λ4=S 1+3λ2+S 3+25λ8,即2⎝ ⎛⎭⎪⎫32+9λ4=1+3λ2+74+25λ8, 解得λ=2.又λ=2时,S n +2n +22n =2n +2,显然{2n +2}成等差数列,故存在实数λ=2, 使得数列{S n +λn +λ2n }成等差数列.第2讲 数列的综合应用高考定位 高考对本内容的考查主要有:(1)通过适当的代数变形后,转化为等差数列或等比数列的问题;(2)求数列的前n 项和的几种方法;(3)数列与函数、不等式、数论等知识结合的综合问题.题型一般为解答题,且为压轴题.真 题 感 悟(2016·江苏卷)记U ={1,2,…,100}.对数列{a n }(n ∈N *)和U 的子集T ,若T =∅,定义S T =0;若T ={t 1,t 2,…,t k },定义S T =at 1+at 2+…+at k .例如:T ={1,3,66}时,S T =a 1+a 3+a 66.现设{a n }(n ∈N *)是公比为3的等比数列,且当T ={2,4}时,S T =30. (1)求数列{a n }的通项公式;(2)对任意正整数k (1≤k ≤100),若T ⊆{1,2,…,k },求证:S T <a k +1; (3)设C ⊆U ,D ⊆U ,S C ≥S D ,求证:S C +S C ∩D ≥2S D . (1)解 当T ={2,4}时,S T =a 2+a 4=a 2+9a 2=30, ∴a 2=3,a 1=a 23=1,故a n =a 1qn -1=3n -1.(2)证明 对任意正整数k (1≤k ≤100). 由于T ⊆{1,2,…,k },则S T ≤a 1+a 2+a 3+…+a k =1+3+32+…+3k -1=3k-12<3k =a k +1.因此,S T <a k +1.(3)证明 设A =∁C (C ∩D ),B =∁D (C ∩D ), 则A ∩B =∅,S C =S A +S C ∩D ,S D =S B +S C ∩D ,S C +S C ∩D -2S D =S A -2S B ,∴S C +S C ∩D ≥2S D 等价于S A ≥2S B . 由条件S C ≥S D 可得S A ≥S B . ①若B =∅,则S B =0, 所以S A ≥2S B 成立,②若B ≠∅,由S A ≥S B 可知A ≠∅,设A 中的最大元素为I ,B 中的最大元素为m , 若m ≥I +1,则由(2)得S A <S I +1≤a m ≤S B ,矛盾. 又∵A ∩B =∅,∴I ≠m ,∴I ≥m +1, ∴S B ≤a 1+a 2+…+a m =1+3+32+…+3m -1<a m +12≤a I 2≤S A2,即S A >2S B 成立. 综上所述,S A ≥2S B .故S C +S C ∩D ≥2S D 成立.考 点 整 合1.数列求和常用方法(1)分组转化求和:把数列的每一项拆成两项(或多项),再重新组合成两个(或多个)简单的数列,最后分别求和.(2)错位相减法:适用于各项由一个等差数列和一个等比数列对应项的乘积组成的数列.把S n =a 1+a 2+…+a n 两边同乘以相应等比数列的公比q ,得到qS n =a 1q +a 2q +…+a n q ,两式错位相减即可求出S n .(3)裂项相消法:即将数列的通项分成两个式子的代数差的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如⎩⎨⎧⎭⎬⎫c a n a n +1(其中{a n }是各项均不为零的等差数列,c 为常数)的数列.2.数列中的不等式问题主要有证明数列不等式、比较大小或恒成立问题,解决方法如下: (1)利用数列(或函数)的单调性;(2)放缩法:①先求和后放缩;②先放缩后求和,包括放缩后成等差(或等比)数列再求和,或者放缩后成等差比数列再求和,或者放缩后裂项相消法求和.热点一 数列求和与不等式的结合问题【例1】 (2016·泰州调研)已知数列{a n }和{b n }满足a 1a 2a 3…a n =(2)b n (n ∈N *).若{a n }为等比数列,且a 1=2,b 3=6+b 2. (1)求a n 与b n ;(2)设c n =1a n -1b n(n ∈N *).记数列{c n }的前n 项和为S n .①求S n ;②求正整数k ,使得对任意n ∈N *均有S k ≥S n . 解 (1)由题意a 1a 2a 3…a n =(2)b n ,b 3-b 2=6, 知a 3=(2)b 3-b 2=8.又由a 1=2,得公比q =2(q =-2舍去), 所以数列{a n }的通项为a n =2n(n ∈N *). 所以,a 1a 2a 3…a n =2n (n +1)2=(2)n (n +1).故数列{b n }的通项为b n =n (n +1)(n ∈N *). (2)①由(1)知c n =1a n -1b n =12n -⎝ ⎛⎭⎪⎫1n -1n +1(n ∈N *), 所以S n =1n +1-12n (n ∈N *). ②因为c 1=0,c 2>0,c 3>0,c 4>0; 当n ≥5时,c n =1n (n +1)⎣⎢⎡⎦⎥⎤n (n +1)2n-1, 而n (n +1)2n-(n +1)(n +2)2n +1=(n +1)(n -2)2n +1>0,得n (n +1)2n≤5·(5+1)25<1,所以,当n ≥5时,c n <0.综上,对任意n ∈N *,恒有S 4≥S n ,故k =4.探究提高 (1)以数列为背景的不等式恒成立问题,多与数列求和相联系,最后利用数列或数列对应函数的单调性求解.(2)以数列为背景的不等式证明问题,多与数列求和有关,常利用放缩法或单调性法证明.(3)当已知数列关系式时,需要知道其范围时,可借助数列的单调性,即比较相邻两项的大小即可.【训练1】 (2016·洛阳二模)已知数列{a n }中,a 2=2,S n 是其前n 项和,且S n =na n2.(1)求数列{a n }的通项公式;(2)若正项数列{b n }满足a n =log 2⎝ ⎛⎭⎪⎫b n 22,设数列⎩⎨⎧⎭⎬⎫a n b n 的前n 项和为T n ,求使得n +12-T n >30成立的正整数n 的最小值. 解 (1)令n =1,得a 1=0. 当n ≥2时,a n =S n -S n -1=na n 2-(n -1)a n -12.可得(n -2)a n =(n -1)a n -1,当n ≥3时,a n a n -1=n -1n -2, 所以a n =a n a n -1×a n -1a n -2×…×a 3a 2×a 2=2(n -1), 显然当n =1,2时,满足上式.所以a n =2(n -1).(2)因为a n =log 2⎝ ⎛⎭⎪⎫b n 22,所以2(n -1)=log 2⎝ ⎛⎭⎪⎫b n 22=log 2b 2n -log 24=2log 2b n -2,即2n =2log 2b n ,∴b n =2n,a nb n =2(n -1)2n =n -12n -1, 所以T n =020+121+222+323+…+n -12n -1,12T n =021+122+223+…+n -22n -1+n -12n , 作差得12T n =12+122+…+12n -1-n -12n =1-12n -1-n -12n =1-n +12n .∴T n =2-n +12n -1.所以n +12-T n=2n -1>30,当n ≥6时,不等式恒成立,所以正整数n 的最小值为6. 热点二 有关数列中计算的综合问题【例2】 (2016·镇江期末)已知数列{a n }的各项都为自然数,前n 项和为S n ,且存在整数λ,使得对任意正整数n 都有S n =(1+λ)a n -λ恒成立.(1)求λ的值,使得数列{a n }为等差数列,并求数列{a n }的通项公式;(2)若数列{a n }为等比数列,此时存在正整数k ,当1≤k <j 时,有∑i =kja i =2 016,求k .解 (1)法一 因为S n =(1+λ)a n -λ,① 所以S n +1=(1+λ)a n +1-λ,② 由②-①得λa n +1=(1+λ)a n ,③ 当λ=0时,a n =0,数列{a n }是等差数列.当λ≠0时,a 1=(1+λ)a 1-λ,a 1=1,且a n +1-a n =1λa n ,④ 要使数列{a n }是等差数列,则④式右边1λa n 为常数,即a n +1-a n 为常数,④式左边a n +1-a n =0,a n =0,与a 1=1矛盾.综上可得,当λ=0时,数列{a n }为等差数列,且a n =0. 法二 若数列{a n }是等差数列,必有2a 2=a 1+a 3, 当λ=0时,a 1=a 2=a 3=0,满足2a 2=a 1+a 3, 此时S n =a n ,则S n +1=a n +1,故a n =0,当λ≠0时,a 1=1,a 2=1+1λ,a 3=⎝ ⎛⎭⎪⎫1+1λ2,由2a 2=a 1+a 3,得2⎝ ⎛⎭⎪⎫1+1λ=1+⎝ ⎛⎭⎪⎫1+1λ2,该方程无解,综上可得,当λ=0时,数列{a n }为等差数列,其中a n =0. (2)由(1)可得,当λ=0时,数列{a n }不是等比数列, 当λ=-1时,由①得S n =1,则a 1=S 1=1,a n =S n -S n -1=0(n ≥2),不是等比数列.当λ≠0,且λ≠-1时,得a n +1a n =1+1λ,{a n }为公比为1+1λ的等比数列, 又对任意n ,a n ∈N ,则q =1+1λ∈N ,故仅有λ=1,q =2时,满足题意, 又由(1)得a 1=1,故a n =2n -1.因为∑i =k ja i =2k -1(2j -k +1-1)2-1=2 016,所以2k -1(2j -k +1-1)=2 016=25×32×7,由题意j -k +1≥2,2j -k +1-1为大于1的奇数,所以2k -1=25,k =6,则2j -5-1=32×7,2j -5=64,j =11,故仅存在k =6时,j =11,∑i =kja i =2 016.探究提高 此类问题看似简单,实际复杂,思维量和计算量较大,难度较高.【训练2】 (2011·江苏卷)设M 为部分正整数组成的集合,数列{a n }的首项a 1=1,前n 项的和为S n ,已知对任意的整数k ∈M ,当整数n >k 时,S n +k +S n -k =2(S n +S k )都成立. (1)设M ={1},a 2=2,求a 5的值; (2)设M ={3,4},求数列{a n }的通项公式.解 (1)由题设知,当n ≥2时,S n +1+S n -1=2(S n +S 1),即(S n +1-S n )-(S n -S n -1)=2S 1,从而a n +1-a n =2a 1=2.又a 2=2,故当n ≥2时,a n =a 2+2(n -2)=2n -2.所以a 5的值为8.(2)由题设知,当k ∈M ={3,4}且n >k 时,S n +k +S n -k =2S n +2S k 且S n +1+k +S n +1-k =2S n +1+2S k ,两式相减得a n +1+k +a n +1-k =2a n +1,即a n +1+k -a n +1=a n +1-a n +1-k ,所以当n ≥8时,a n -6,a n -3,a n ,a n +3,a n +6成等差数列,且a n -6,a n -2,a n +2,a n +6也成等差数列.从而当n ≥8时,2a n =a n +3+a n -3=a n +6+a n -6,(*)且a n +6+a n -6=a n +2+a n -2.所以当n ≥8时,2a n =a n +2+a n -2,即a n +2-a n =a n -a n -2.于是当n ≥9时,a n -3,a n -1,a n +1,a n +3成等差数列,从而a n +3+a n -3=a n +1+a n -1,故由(*)式知2a n =a n +1+a n -1,即a n +1-a n =a n -a n -1.当n ≥9时,设d =a n -a n -1.当2≤m ≤8时,m +6≥8,从而由(*)式知2a m +6=a m +a m +12,故2a m +7=a m +1+a m +13.从而2(a m +7-a m +6)=a m +1-a m +(a m +13-a m +12),于是a m +1-a m =2d -d =d .因此,a n +1-a n =d 对任意n ≥2都成立.又由S n +k +S n -k -2S n =2S k (k ∈{3,4})可知,(S n +k -S n )-(S n -S n -k )=2S k ,故9d =2S 3且16d =2S 4.解得a 4=72d ,从而a 2=32d ,a 3=52d ,又由S 3=92d =a 1+a 2+a 3,故a 1=d2.因此,数列{a n }为等差数列,由a 1=1知d =2,所以数列{a n }的通项公式为a n =2n -1. 热点三 有关数列中证明的综合问题【例3】 (2016·南通、扬州、泰州调研)已知数列{a n },{b n }均为各项都不相等的数列,S n 为{a n }的前n 项和,a n +1b n =S n +1(n ∈N *). (1)若a 1=1,b n =n2,求a 4的值;(2)若{a n }是公比为q 的等比数列,求证:存在实数λ,使得{b n +λ}为等比数列; (3)若{a n }的各项都不为零,{b n }是公差为d 的等差数列,求证:a 2,a 3,…,a n ,…成等差数列的充要条件是d =12.(1)解 由a 1=1,b n =n2知a 2=4,a 3=6,a 4=8.(2)证明 因为a n +1b n =S n +1,① 所以当n ≥2时,a n b n -1=S n -1+1,②由①-②得,当n ≥2时,a n +1b n -a n b n -1=a n ,③ 由③得,当n ≥2时,b n =a n a n +1b n -1+a n a n +1=1q b n -1+1q, 所以b n +11-q =1q ⎝ ⎛⎭⎪⎫b n -1+11-q .又因为b n +11-q≠0(否则{b n }为常数数列与题意不符), 所以存在实数λ=11-q ,使得{b n +λ}为等比数列.(3)证明 因为{b n }为公差为d 的等差数列,所以由③得,当n ≥2时,a n +1b n -a n (b n -d )=a n , 即(a n +1-a n )b n =(1-d )a n ,因为{a n },{b n }各项均不相等,所以a n +1-a n ≠0,1-d ≠0, 所以当n ≥2时,b n 1-d =a na n +1-a n ,④当n ≥3时,b n -11-d =a n -1a n -a n -1,⑤由④-⑤得,当n ≥3时,a na n +1-a n-a n -1a n -a n -1=b n -b n -11-d =d1-d,⑥先证充分性,即由d =12证明a 2,a 3,…,a n ,…成等差数列.因为d =12,由⑥得a n a n +1-a n -a n -1a n -a n -1=1,所以当n ≥3时,a na n +1-a n=1+a n -1a n -a n -1=a na n -a n -1,又a n ≠0,所以a n +1-a n =a n -a n -1, 即a 2,a 3,…,a n ,…成等差数列.再证必要性,即由a 2,a 3,…,a n ,…成等差数列证明d =12.因为a 2,a 3,…,a n ,…成等差数列, 所以当n ≥3时,a n +1-a n =a n -a n -1, 所以由⑥得a na n +1-a n-a n -1a n -a n -1=a n a n -a n -1-a n -1a n -a n -1=1=d1-d,解得d =12.所以a 2,a 3,…,a n ,…成等差数列的充要条件是a =12.探究提高 分析已知条件和求解目标,确定最终解决问题需要首先求解的中间问题,如为求和需要先求出通项、为求出通项需要先求出首项和公差(公比)证明数列为等差或等比数列需要先证任意两项的差或比值为定值,证明充要条件需要证明充分性与必要性等,确定解题的逻辑次序.【训练3】 (2014·江苏卷)设数列{a n }的前n 项和为S n .若对任意的正整数n ,总存在正整数m ,使得S n =a m ,则称{a n }是“H 数列”.(1)若数列{a n }的前n 项和S n =2n (n ∈N *),证明:{a n }是“H 数列”;(2)设{a n }是等差数列,其首项a 1=1,公差d <0.若{a n }是“H 数列”,求d 的值; (3)证明:对任意的等差数列{a n },总存在两个“H 数列”{b n }和{c n },使得a n =b n +c n (n ∈N *)成立.(1)证明 由已知,当n ≥1时,a n +1=S n +1-S n =2n +1-2n =2n.于是对任意的正整数n ,总存在正整数m =n +1,使得S n =2n=a m .所以{a n }是“H 数列”.(2)解 由已知,得S 2=2a 1+d =2+d .因为{a n }是“H 数列”,所以存在正整数m ,使得S 2=a m ,即2+d =1+(m -1)d ,于是(m -2)d =1.因为d <0,所以m -2<0,故m =1.从而d =-1. 当d =-1时,a n =2-n ,S n =n (3-n )2是小于2的整数,n ∈N *,于是对任意的正整数n ,总存在正整数m =2-S n =2-n (3-n )2,使得S n =2-m =a m ,所以{a n }是“H 数列”.因此d的值为-1.(3)证明 设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d =na 1+(n -1)(d -a 1)(n ∈N *). 令b n =na 1,c n =(n -1)(d -a 1),则a n =b n +c n (n ∈N *). 下证{b n }是“H 数列”. 设{b n }的前n 项和为T n ,则T n =n (n +1)2a 1(n ∈N *),于是对任意的正整数n ,总存在正整数m =n (n +1)2,使得T n =b m ,所以{b n }是“H 数列”.同理可证{c n }也是“H 数列”.所以,对任意的等差数列{a n },总存在两个“H 数列”{b n }和{c n },使得a n =b n +c n (n ∈N *)成立. 热点四 数列中的探索性问题【例4】 设数列{a n }的前n 项积为T n ,已知对∀n ,m ∈N *,当n >m 时,总有T nT m=T n -m ·q (n -m )m(q>0是常数).(1)求证:数列{a n }是等比数列;(2)设正整数k ,m ,n (k <m <n )成等差数列,试比较T n ·T k 和(T m )2的大小,并说明理由; (3)探究:命题p :“对∀n ,m ∈N *,当n >m 时,总有T n T m=T n -m ·q(n -m )m(q >0是常数)”是命题t :“数列{a n }是公比为q (q >0)的等比数列”的充要条件吗?若是,请给出证明;若不是,请说明理由.(1)证明 设m =1,则有T nT 1=T n -1·qn -1,因为T i ≠0(i ∈N *),所以有T nT n -1=a 1·q n -1,即a n =a 1·q n -1,所以当n ≥2时a na n -1=q , 所以数列{a n }是等比数列.(2)解 当q =1时,a n =a 1(n ∈N *),所以T n =a n 1,所以T n ·T k =a n 1·a k 1=a n +k 1=a 2m 1=T 2m ,当q ≠1时,a n =a 1·qn -1,T n =a 1·a 2…a n =a n 1·q1+2+…+(n -1)=a n1·qn (n -1)2,所以T n ·T k =a n1·qn (n -1)2·a k1·qk (k -1)2=a n +k1·qn 2-n +k 2-k2,T 2m =a 2m1·q m (m -1).因为n +k =2m 且k <m<n ,所以a n +k1=a 2m 1,n 2+k 2-n -k 2=n 2+k 22-m >⎝ ⎛⎭⎪⎫n +k 22-m =m 2-m ,所以若q >1,则T n ·Tk>T 2m ;若q <1,则T n ·T k <T 2m .(3)解 由(1)知,充分性成立;必要性:若数列{a n }成等比数列,则a n =a 1·qn -1,所以当q ≠1时,T n =a n1·qn (n -1)2,则T n T m =a n 1·qn (n -1)2a m 1·qm (m -1)2=a n -m 1·q n 2-n -m 2+m 2=a n -m 1·q (n -m )(n +m -1)2,T n -m ·q (n-m )m=a n -m1·q(n -m )(n -m -1)2·q(n -m )·m=a n -m1·q(n -m )(n -m -1)+2(n -m )m2=a n -m1·q(n -m )(n +m -1)2.所以,“对∀n ,m ∈N *,当n >m 时总有T n T m=T n -m ·q (n -m )m成立;同理可证当q =1时也成立.所以命题p 是命题t 的充要条件.探究提高 数列中的比较大小与其它比较大小的方法类似,也是差比法或商比法.另外探索充要条件要从充分性、必要性两个方面判断与寻找.【训练4】 (2016·南京调研)已知等差数列{a n }的前n 项和为S n ,且2a 5-a 3=13,S 4=16. (1)求数列{a n }的前n 项和S n ;(2)设T n =∑i =1n(-1)ia i ,若对一切正整数n ,不等式λT n <[a n +1+(-1)n +1a n ]·2n -1恒成立,求实数λ的取值范围;(3)是否存在正整数m ,n (n >m >2),使得S 2,S m -S 2,S n -S m 成等比数列?若存在,求出所有的m ,n ;若不存在,请说明理由. 解 (1)设数列{a n }的公差为d . 因为2a 5-a 3=13,S 4=16,所以⎩⎪⎨⎪⎧2(a 1+4d )-(a 1+2d )=13,4a 1+6d =16,解得a 1=1,d =2,所以a n =2n -1,S n =n 2.(2)①当n 为偶数时,设n =2k ,k ∈N *,则T 2k =(a 2-a 1)+(a 4-a 3)+…+(a 2k -a 2k -1)=2k , 代入不等式λT n <[a n +1+(-1)n +1a n ]·2n -1得λ·2k <4k,从而λ<4k2k.设f(k)=4k2k ,则f(k+1)-f(k)=4k+12(k+1)-4k2k=4k(3k-1)2k(k+1).因为k∈N*,所以f(k+1)-f(k)>0,所以f(k)是递增的,所以f(k)min=2,所以λ<2.②当n为奇数时,设n=2k-1,k∈N*,则T2k-1=T2k-(-1)2k a2k=2k-(4k-1)=1-2k,代入不等式λT n<[a n+1+(-1)n+1a n]·2n-1,得λ·(1-2k)<(2k-1)4k,从而λ>-4k.因为k∈N*,所以-4k的最大值为-4,所以λ>-4.综上所述,λ的取值范围为(-4,2).(3)假设存在正整数m,n(n>m>2),使得S2,S m-S2,S n-S m成等比数列,则(S m-S2)2=S2·(S n-S m),即(m2-4)2=4(n2-m2),所以4n2=(m2-2)2+12,即4n2-(m2-2)2=12,即(2n-m2+2)(2n+m2-2)=12.因为n>m>2,所以n≥4,m≥3,所以2n+m2-2≥15.因为2n-m2+2是整数,所以等式(2n-m2+2)(2n+m2-2)=12不成立,故不存在正整数m,n(n>m>2),使得S2,S m-S2,S n-S m成等比数列.1.数列与不等式综合问题(1)如果是证明不等式,常转化为数列和的最值问题,同时要注意比较法、放缩法、基本不等式的应用;(2)如果是解不等式,注意因式分解的应用.2.数列与函数的综合问题(1)函数条件的转化:直接利用函数与数列的对应关系,把函数解析式中的自变量x换为n即可.(2)数列向函数的转化:可将数列中的问题转化为函数问题,但要注意函数定义域.3.数列中的探索性问题处理探索性问题的一般方法是:假设题中的数学对象存在或结论成立或其中的一部分结论成立,然后在这个前提下进行逻辑推理.若由此导出矛盾,则否定假设,否则,给出肯定结论,其中反证法在解题中起着重要的作用.还可以根据已知条件建立恒等式,利用等式恒成立的条件求解.一、填空题1.(2015·全国Ⅱ卷)设S n是数列{a n}的前n项和,且a1=-1,a n+1=S n S n+1,则S n=____________.解析 由题意,得S 1=a 1=-1,又由a n +1=S n S n +1,得S n +1-S n =S n S n +1,所以S n ≠0,所以S n +1-S nS n S n +1=1,即1S n +1-1S n=-1,故数列⎩⎨⎧⎭⎬⎫1S n 是以1S 1=-1为首项,-1为公差的等差数列,得1S n=-1-(n -1)=-n ,所以S n =-1n.答案 -1n2.(2012·江苏卷改编)各项均为正数的等比数列{a n }满足a 1a 7=4,a 6=8,若函数f (x )=a 1x+a 2x 2+a 3x 3+…+a 10x 10的导数为f ′(x ),则f ′⎝ ⎛⎭⎪⎫12=________.解析 因为各项均为正数的等比数列{a n }满足a 1a 7=4,a 6=8,所以a 4=2,q =2,故a n =2n -3,又f ′(x )=a 1+2a 2x +3a 3x 2+…+10a 10x 9,所以f ′⎝ ⎛⎭⎪⎫12=2-2+2×2-2+3×2-2+…+10×2-2=2-2×10×112=554.答案5543.已知数列{a n }满足a 1=0,a 2=1,a n +2=3a n +1-2a n ,则{a n }的前n 项和S n =________. 解析 ∵a n +2=3a n +1-2a n ,∴a n +2-a n +1=2(a n +1-a n ), ∴a n +2-a n +1a n +1-a n=2,∴数列{a n +1-a n }是以1为首项,2为公比的等比数列, ∴a n +1-a n =2n -1,∴a 2-a 1=20,a 3-a 2=21,a 4-a 3=22,…,a n -a n -1=2n -2,∴a n -a 1=20+21+…+2n -2=1-2n -11-2=2n -1-1,∴a n =2n -1-1,∴S n =(20+21+…+2n -1)-n =1-2n1-2-n =2n-n -1.答案 2n-n -14.(2015·南京、盐城模拟)已知等比数列{a n }的首项为43,公比为-13,其前n 项和为S n ,若A ≤S n -1S n≤B 对n ∈N *恒成立,则B -A 的最小值为________.解析 依题意得S n =43⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-13n 1-⎝ ⎛⎭⎪⎫-13=1-⎝ ⎛⎭⎪⎫-13n ,当n 为奇数时,S n =1+⎝ ⎛⎭⎪⎫13n∈⎝ ⎛⎦⎥⎤1,43; 当n 为偶数时,S n =1-⎝ ⎛⎭⎪⎫13n∈⎣⎢⎡⎭⎪⎫89,1. 由函数y =x -1x 在(0,+∞)上是增函数得S n -1S n 的取值范围是⎣⎢⎡⎭⎪⎫-1772,0∪⎝ ⎛⎦⎥⎤0,712,因此有A ≤-1772,B ≥712,B -A ≥712+1772=5972,即B -A 的最小值是5972.答案59725.数列{a n }的通项a n =n 2⎝⎛⎭⎪⎫cos 2n π3-sin2n π3,其前n 项和为S n ,则S 30为________.解析 因为a n =n 2⎝⎛⎭⎪⎫cos2n π3-sin 2n π3=n 2cos 2n π3, 由于cos 2n π3以3为周期,且cos 2π3=-12,cos 4π3=-12,cos 6π3=1,所以S 30=(a 1+a 2+a 3)+(a 4+a 5+a 6)+…+(a 28+a 29+a 30)=⎝ ⎛⎭⎪⎫-12+222+32+⎝ ⎛⎭⎪⎫-42+522+62+…+⎝ ⎛⎭⎪⎫-282+2922+302 =∑k =110⎣⎢⎡⎦⎥⎤-(3k -2)2+(3k -1)22+(3k )2 =∑k =110⎝⎛⎭⎪⎫9k -52=470.答案 470 二、解答题6.数列{a n }满足a n =2a n -1+2n+1(n ∈N *,n ≥2),a 3=27. (1)求a 1,a 2的值;(2)是否存在一个实数t ,使得b n =12n (a n +t )(n ∈N *),且数列{b n }为等差数列?若存在,求出实数t ;若不存在,请说明理由; (3)求数列{a n }的前n 项和S n .。
《创新设计》2017届高考数学(理)二轮复习(江苏专用)教师word文档 专题二
第1讲 三角函数的图象与性质高考定位 高考对本内容的考查主要有:三角函数的有关知识大部分是B 级要求,只有函数y =A sin(ωx +φ)的图象与性质是A 级要求;试题类型可能是填空题,同时在解答题中也有考查,经常与向量综合考查,构成低档题.真 题 感 悟1.(2013·江苏卷)函数y =3sin ⎝⎛⎭⎪⎫2x +π4的最小正周期为________.解析 利用函数y =A sin(ωx +φ)的周期公式求解.函数y =3sin ⎝ ⎛⎭⎪⎫2x +π4的最小正周期为T =2π2=π. 答案 π2.(2011·江苏卷)函数f (x )=A sin(ωx +φ),(A ,ω,φ是常数,A >0,ω>0)的部分图象如图所示,则f (0)=________. 解析 因为由图象可知振幅A =2,T 4=7π12-π3=π4, 所以周期T =π=2πω,解得ω=2,将⎝ ⎛⎭⎪⎫7π12,-2代入f (x )=2sin(2x +φ),解得一个符合的φ=π3,从而y =2sin ⎝ ⎛⎭⎪⎫2x +π3,∴f (0)=62.答案 623.(2014·江苏卷)已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图象有一个横坐标为π3的交点,则φ的值是________.解析 根据题意,将x =π3代入可得cos π3=sin ⎝ ⎛⎭⎪⎫2×π3+φ,即sin ⎝ ⎛⎭⎪⎫2π3+φ=12,∴2π3+φ=2k π+π6或23π+φ=2k π+56π(k ∈Z ). 又∵φ∈[0,π),∴φ=π6. 答案 π64.(2015·浙江卷)函数f (x )=sin 2x +sin x cos x +1的最小正周期是________,单调递减区间是________. 解析 f (x )=1-cos 2x 2+12sin 2x +1=22sin ⎝⎛⎭⎪⎫2x -π4+32,∴T =2π2=π,由π2+2k π≤2x -π4≤3π2+2k π,k ∈Z ,解得:3π8+k π≤x ≤7π8+k π,k ∈Z , ∴单调递减区间是⎣⎢⎡⎦⎥⎤3π8+k π,7π8+k π,k ∈Z . 答案 π ⎣⎢⎡⎦⎥⎤38π+k π,78π+k π(k ∈Z ) 考 点 整 合1.常用三种函数的易误性质2.三角函数的常用结论(1)y=A sin(ωx+φ),当φ=kπ(k∈Z)时为奇函数;当φ=kπ+π2(k∈Z)时为偶函数;对称轴方程可由ωx+φ=kπ+π2(k∈Z)求得.(2)y=A cos(ωx+φ),当φ=kπ+π2(k∈Z)时为奇函数;当φ=kπ(k∈Z)时为偶函数;对称轴方程可由ωx+φ=kπ(k∈Z)求得.(3)y=A tan(ωx+φ),当φ=kπ(k∈Z)时为奇函数.3.三角函数的两种常见变换热点一三角函数的图象【例1】 (1)(2016·无锡高三期末)将函数f (x )=2sin 2x 的图象上每一点向右平移π6个单位,得函数y =g (x )的图象,则g (x )=________.(2)(2016·南京调研)如图,它是函数f (x )=A sin(ωx +φ)(A >0,ω>0,φ∈[0,2π))图象的一部分,则f (0)的值为________.解析 (1)将f (x )=2sin 2x 的图象向右平移π6个单位得到g (x )=2sin 2⎝ ⎛⎭⎪⎫x -π6=2sin ⎝ ⎛⎭⎪⎫2x -π3的图象.(2)由函数图象得A =3,2πω=2[3-(-1)]=8,解得ω=π4,所以f (x )=3sin ⎝ ⎛⎭⎪⎫π4x +φ,又因为(3,0)为函数f (x )=3sin ⎝ ⎛⎭⎪⎫π4x +φ的一个下降零点,所以π4×3+φ=(2k +1)π(k ∈Z ),解得φ=π4+2k π(k ∈Z ),又因为φ∈(0,π),所以φ=π4, 所以f (x )=3sin ⎝ ⎛⎭⎪⎫π4x +π4,则f (0)=3sin π4=322.答案 (1)2sin ⎝⎛⎭⎪⎫2x -π3 (2)322探究提高 (1)对于三角函数图象的平移变换问题,其平移变换规则是“左加、右减”,并且在变换过程中只变换其自变量x ,如果x 的系数不是1,则需把x 的系数提取后再确定平移的单位和方向.(2)已知图象求函数y =A sin ()ωx +φ(A >0,ω>0)的解析式时,常用的方法是待定系数法.由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置.【训练1】 (1)(2015·苏北四市模拟)函数y =A sin(ωx +φ)(ω>0,|φ|<π2,x ∈R )的部分图象如图所示,则函数表达式为________.(2)(2015·苏、锡、常、镇调研)函数f (x )=A sin (ωx +φ)(A ,ω,φ为常数,A >0,ω>0,0<φ<π)的图象如图所示,则f ⎝ ⎛⎭⎪⎫π3的值为________.解析 (1)由图象知T2=6-(-2)=8,∴T =16,A =4. ∴ω=2πT =2π16=π8. ∴y =4sin ⎝ ⎛⎭⎪⎫π8x +φ,把点(6,0)代入得: π8×6+φ=0, 得φ=-3π4.∴y =4sin ⎝ ⎛⎭⎪⎫π8x -3π4,又∵|φ|<π2. ∴y =-4sin ⎝ ⎛⎭⎪⎫π8x +π4.(2)根据图象可知,A =2,3T 4=11π12-π6,所以周期T =π,由ω=2πT =2. 又函数过点⎝ ⎛⎭⎪⎫π6,2,所以有sin ⎝ ⎛⎭⎪⎫2×π6+φ=1,而0<φ<π,所以φ=π6,则f (x )=2sin ⎝⎛⎭⎪⎫2x +π6,因此f ⎝ ⎛⎭⎪⎫π3=2sin ⎝ ⎛⎭⎪⎫2π3+π6=1. 答案 (1)y =-4sin ⎝ ⎛⎭⎪⎫π8x +π4 (2)1热点二 三角函数的性质[微题型1] 三角函数的性质及其应用【例2-1】 (1)(2015·湖南卷)已知ω>0,在函数y =2sin ωx 与y =2cos ωx 的图象的交点中,距离最短的两个交点的距离为23,则ω=________.(2)设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3=-f ⎝ ⎛⎭⎪⎫π6,则f (x )的最小正周期为________.(3)(2016·苏北四市调研)将函数f (x )=sin(2x +φ)(0<φ<π)的图象上所有点向右平移π6个单位后得到的图象关于原点对称,则φ等于________. 解析 (1)由⎩⎨⎧y =2sin ωx ,y =2cos ωx 得sin ωx =cos ωx ,∴tan ωx =1,ωx =k π+π4 (k ∈Z ). ∵ω>0,∴x =k πω+π4ω(k ∈Z ). 设距离最短的两个交点分别为(x 1,y 1),(x 2,y 2),不妨取x 1=π4ω,x 2=5π4ω,则|x 2-x 1|=⎪⎪⎪⎪⎪⎪5π4ω-π4ω=πω. 又结合图形知|y 2-y 1|=⎪⎪⎪⎪⎪⎪2×⎝ ⎛⎭⎪⎫-22-2×22=22,且(x 1,y 1)与(x 2,y 2)间的距离为23, ∴(x 2-x 1)2+(y 2-y 1)2=(23)2, ∴⎝ ⎛⎭⎪⎫πω2+(22)2=12,∴ω=π2.(2)由f (x )在⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,得T 2≥π2-π6,即T ≥2π3;因为f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3,所以f (x )的一条对称轴为x =π2+2π32=7π12;又因为f ⎝ ⎛⎭⎪⎫π2=-f ⎝ ⎛⎭⎪⎫π6,所以f (x )的一个对称中心的横坐标为π2+π62=π3.所以14T =7π12-π3=π4,即T =π.(3)将函数f (x )=sin(2x +φ)的图象向右平移π6后得到y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+φ=sin ⎝ ⎛⎭⎪⎫2x -π3+φ的图象,因为该函数是奇函数,且0<φ<π,所以φ=π3.答案 (1)π2 (2)π (3)π3探究提高 此类题属于三角函数性质的逆用,解题的关键是借助于三角函数的图象与性质列出含参数的不等式,再根据参数范围求解.或者,也可以取选项中的特殊值验证.[微题型2] 三角函数图象与性质的综合应用【例2-2】 (2016·苏、锡、常、镇调研)设函数f (x )=sin 2ωx +23sin ωx ·cos ωx -cos 2ωx +λ(x ∈R )的图象关于直线x =π对称,其中ω,λ为常数,且ω∈⎝ ⎛⎭⎪⎫12,1.(1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点⎝ ⎛⎭⎪⎫π4,0,求函数f (x )在x ∈⎣⎢⎡⎦⎥⎤0,π2上的值域.解 (1)因为f (x )=sin 2ωx +23sin ωx ·cos ωx -cos 2ωx +λ=-cos 2ωx +3sin 2ωx +λ=2sin ⎝ ⎛⎭⎪⎫2ωx -π6+λ,由直线x =π是y =f (x )图象的一条对称轴,可得sin ⎝⎛⎭⎪⎫2ωπ-π6=±1,所以2ωπ-π6=k π+π2(k ∈Z ),即ω=k 2+13(k ∈Z ).又ω∈⎝ ⎛⎭⎪⎫12,1,k ∈Z ,所以k =1,故ω=56.所以f (x )的最小正周期是6π5.(2)由y =f (x )的图象过点⎝ ⎛⎭⎪⎫π4,0,得f ⎝ ⎛⎭⎪⎫π4=0,即λ=-2sin ⎝ ⎛⎭⎪⎫56×π2-π6=-2sin π4=-2,即λ=- 2.故f (x )=2sin ⎝ ⎛⎭⎪⎫53x -π6-2,∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴53x -π6∈⎣⎢⎡⎦⎥⎤-π6,2π3,∴函数f (x )的值域为[-1-2,2-2].探究提高 求三角函数最值的两条思路:(1)将问题化为y =A sin(ωx +φ)+B 的形式,结合三角函数的性质或图象求解;(2)将问题化为关于sin x 或cos x 的二次函数的形式,借助二次函数的性质或图象求解.【训练2】 已知函数f (x )=cos ⎝ ⎛⎭⎪⎫2x -π3+sin 2x -cos 2x .(1)求函数f (x )的最小正周期及其图象的对称轴方程; (2)设函数g (x )=[f (x )]2+f (x ),求g (x )的值域. 解 (1)f (x )=12cos 2x +32sin 2x -cos 2x =sin ⎝⎛⎭⎪⎫2x -π6.则f (x )的最小正周期为π, 由2x -π6=k π+π2(k ∈Z ), 得x =k π2+π3(k ∈Z ),所以函数图象的对称轴方程为x =k π2+π3(k ∈Z ).(2)g (x )=[f (x )]2+f (x )=sin 2⎝ ⎛⎭⎪⎫2x -π6+sin ⎝⎛⎭⎪⎫2x -π6=⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫2x -π6+122-14.当sin ⎝ ⎛⎭⎪⎫2x -π6=-12时,g (x )取得最小值-14,当sin ⎝ ⎛⎭⎪⎫2x -π6=1时,g (x )取得最大值2,所以g (x )的值域为⎣⎢⎡⎦⎥⎤-14,2.1.已知函数y =A sin(ωx +φ)+B (A >0,ω>0)的图象求解析式 (1)A =y max -y min 2,B =y max +y min 2. (2)由函数的周期T 求ω,ω=2πT . (3)利用“五点法”中相对应的特殊点求φ. 2.运用整体换元法求解单调区间与对称性类比y =sin x 的性质,只需将y =A sin(ωx +φ)中的“ωx +φ”看成y =sin x 中的“x ”,采用整体代入求解.(1)令ωx +φ=k π+π2(k ∈Z ),可求得对称轴方程; (2)令ωx +φ=k π(k ∈Z ),可求得对称中心的横坐标;(3)将ωx +φ看作整体,可求得y =A sin(ωx +φ)的单调区间,注意ω的符号. 3.函数y =A sin(ωx +φ)+B 的性质及应用的求解思路第一步:先借助三角恒等变换及相应三角函数公式把待求函数化成y =A sin(ωx +φ)+B (一角一函数)的形式;第二步:把“ωx +φ”视为一个整体,借助复合函数性质求y =A sin(ωx +φ)+B 的单调性及奇偶性、最值、对称性等问题.一、填空题1.(2016·山东卷改编)函数f (x )=(3sin x +cos x )(3cos x -sin x )的最小正周期是________.解析 ∵f (x )=2sin x cos x +3(cos 2x -sin 2x )=sin 2x +3cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π3,∴T =π. 答案 π2.(2016·南通月考)已知函数f (x )=2sin (2x +φ)(|φ|<π)的部分图象如图所示,则f (0)=________.解析 由图可得sin ⎝ ⎛⎭⎪⎫2π3+φ=1,而|φ|<π,所以φ=-π6. 故f (0)=2sin ⎝ ⎛⎭⎪⎫-π6=-1.答案 -13.(2016·北京卷改编)将函数y =sin ⎝ ⎛⎭⎪⎫2x -π3图象上的点P ⎝ ⎛⎭⎪⎫π4,t 向左平移s (s >0)个单位长度得到点P ′.若P ′位于函数y =sin 2x 的图象上,则t =________,s 的最小值为________.解析 点P ⎝ ⎛⎭⎪⎫π4,t 在函数y =sin ⎝ ⎛⎭⎪⎫2x -π3图象上,则t =sin ⎝⎛⎭⎪⎫2×π4-π3=sin π6=12.又由题意得y =sin ⎣⎢⎡⎦⎥⎤2(x +s )-π3=sin 2x ,故s =π6+k π,k ∈Z ,所以s 的最小值为π6. 答案 12 π64.函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则将y =f (x )的图象向右平移π6个单位后,得到的图象的解析式为_______.解析 由图象知A =1,34T =11π12-π6=3π4,T =π, ∴ω=2,由sin ⎝ ⎛⎭⎪⎫2×π6+φ=1,|φ|<π2得π3+φ=π2⇒φ=π6⇒f (x )=sin ⎝⎛⎭⎪⎫2x +π6,则图象向右平移π6个单位后得到的图象的解析式为y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+π6=sin ⎝ ⎛⎭⎪⎫2x -π6.答案 y =sin ⎝⎛⎭⎪⎫2x -π65.(2015·苏北四市调研)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫2ωx -π4(ω>0)的最大值与最小正周期相同,则函数f (x )在[-1,1]上的单调递增区间为________.解析 因为函数f (x )的最大值为2,所以最小正周期T =2=2π2ω,解得ω=π2,所以f (x )=2sin ⎝⎛⎭⎪⎫πx -π4,当2k π-π2≤πx -π4≤2k π+π2,k ∈Z ,即2k -14≤x ≤2k +34,k ∈Z 时,函数f (x )单调递增,所以函数f (x )在x ∈[-1,1]上的单调递增区间是⎣⎢⎡⎦⎥⎤-14,34.答案 ⎣⎢⎡⎦⎥⎤-14,346.(2016·南京、盐城模拟)已知函数f (x )=sin(ωx +φ)(ω>0,0<φ<π)的图象关于直线x =π3对称,且f ⎝ ⎛⎭⎪⎫7π12=0,则ω取最小值时,φ的值为________.解析 由7π12-π3=π4≥14×2πω,解得ω≥2,故ω的最小值为2. 此时sin ⎝ ⎛⎭⎪⎫2×7π12+φ=0, 即sin ⎝ ⎛⎭⎪⎫π6+φ=0,又0<φ<π,所以φ=5π6. 答案5π67.已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是________.解析 由2k π+π2≤ωx +π4≤2k π+32π,k ∈Z 且ω>0, 得1ω⎝ ⎛⎭⎪⎫2k π+π4≤x ≤1ω⎝ ⎛⎭⎪⎫2k π+54π,k ∈Z . 取k =0,得π4ω≤x ≤5π4ω,又f (x )在⎝ ⎛⎭⎪⎫π2,π上单调递减,∴π4ω≤π2,且π≤5π4ω,解之得12≤ω≤54. 答案 ⎣⎢⎡⎦⎥⎤12,548.(2016·泰州模拟)若将函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4的图象向右平移φ个单位,所得图象关于y 轴对称,则φ的最小正值是________. 解析 f (x )=sin ⎝⎛⎭⎪⎫2x +π4――→右平移φg (x )=sin ⎣⎢⎡⎦⎥⎤2(x -φ)+π4=sin ⎝ ⎛⎭⎪⎫2x +π4-2φ,关于y 轴对称,即函数g (x )为偶函数,则π4-2φ=k π+π2(k ∈Z ),∴φ=-k2π-π8(k ∈Z ), 显然,k =-1时,φ有最小正值π2-π8=3π8. 答案 3π8 二、解答题9.已知函数f (x )=2sin ⎝⎛⎭⎪⎫2x +π4.(1)求函数y =f (x )的最小正周期及单调递增区间; (2)若f ⎝⎛⎭⎪⎫x 0-π8=-65,求f (x 0)的值.解 (1)T =2π2=π,由-π2+2k π≤2x +π4≤π2+2k π(k ∈Z ), 得-38π+k π≤x ≤π8+k π(k ∈Z ),所以单调递增区间为⎣⎢⎡⎦⎥⎤-38π+k π,18π+k π,k ∈Z . (2)f ⎝ ⎛⎭⎪⎫x 0-π8=-65,即sin 2x 0=-35,∴cos 2x 0=±45,∴f (x 0)=2sin ⎝ ⎛⎭⎪⎫2x 0+π4=2(sin 2x 0+cos 2x 0)=25或-725.10.(2016·苏州调研)已知函数f (x )=4sin 3x cos x -2sin x cos x -12cos 4x . (1)求函数f (x )的最小正周期及单调递增区间; (2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,π4上的最大值和最小值.解 f (x )=2sin x cos x ()2sin 2x -1-12cos 4x =-sin 2x cos 2x -12cos 4x =-12sin 4x -12cos 4x =-22sin ⎝⎛⎭⎪⎫4x +π4.(1)函数f (x )的最小正周期T =2π4=π2. 令2k π+π2≤4x +π4≤2k π+3π2,k ∈Z , 得k π2+π16≤x ≤k π2+5π16,k ∈Z .所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π2+π16,k π2+5π16,k ∈Z .(2)因为0≤x ≤π4,所以π4≤4x +π4≤5π4. 此时-22≤sin ⎝⎛⎭⎪⎫4x +π4≤1,所以-22≤-22sin ⎝ ⎛⎭⎪⎫4x +π4≤12,即-22≤f (x )≤12.所以f (x )在区间⎣⎢⎡⎦⎥⎤0,π4上的最大值和最小值分别为12,-22.11.设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3+33sin 2x -33cos 2x .(1)求f (x )的最小正周期及其图象的对称轴方程;(2)将函数f (x )的图象向右平移π3个单位长度,得到函数g (x )的图象,求g (x )在区间⎣⎢⎡⎦⎥⎤-π6,π3上的值域.解 (1)f (x )=12sin 2x +32cos 2x -33cos 2x =12sin 2x +36cos 2x =33sin ⎝ ⎛⎭⎪⎫2x +π6.所以f (x )的最小正周期为T =2π2=π. 令2x +π6=k π+π2(k ∈Z ), 得对称轴方程为x =k π2+π6(k ∈Z ), (2)将函数f (x )的图象向右平移π3个单位长度,得到函数g (x )=33sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π3+π6=-33cos 2x 的图象,即g (x )=-33cos 2x .当x ∈⎣⎢⎡⎦⎥⎤-π6,π3时,2x ∈⎣⎢⎡⎦⎥⎤-π3,2π3,可得cos 2x ∈⎣⎢⎡⎦⎥⎤-12,1,所以-33cos 2x ∈⎣⎢⎡⎦⎥⎤-33,36,即函数g (x )在区间⎣⎢⎡⎦⎥⎤-π6,π3上的值域是⎣⎢⎡⎦⎥⎤-33,36.第2讲 三角恒等变换与解三角形高考定位 高考对本内容的考查主要有:(1)两角和(差)的正弦、余弦及正切是C 级要求,二倍角的正弦、余弦及正切是B 级要求,应用时要适当选择公式,灵活应用.试题类型可能是填空题,同时在解答题中也是必考题,经常与向量综合考查,构成中档题;(2)正弦定理和余弦定理以及解三角形问题是B 级要求,主要考查:①边和角的计算;②三角形形状的判断;③面积的计算;④有关的范围问题.由于此内容应用性较强,与实际问题结合起来进行命题将是今后高考的一个关注点,不可轻视.真 题 感 悟(2016·江苏卷)在△ABC 中,AC =6,cos B =45,C =π4. (1)求AB 的长; (2)cos ⎝⎛⎭⎪⎫A -π6的值.解 (1)由cos B =45,得sin B =1-cos 2B =35. 又∵C =π4,AC =6,由正弦定理, 得AC sin B =AB sin π4,即635=AB22⇒AB =5 2.(2)由(1)得:sin B =35,cos B =45,sin C =cos C =22,则sin A =sin(B +C )=sin B cos C +cos B sin C =7210, cos A =-cos(B +C )=-(cos B cos C -sin B sin C )=-210, 则cos ⎝⎛⎭⎪⎫A -π6=cos A cos π6+sin A sin π6=72-620.考 点 整 合1.三角函数公式(1)同角关系:sin 2α+cos 2α=1,sin αcos α=tan α.(2)诱导公式:对于“k π2±α,k ∈Z 的三角函数值”与“α角的三角函数值”的关系可按下面口诀记忆:奇变偶不变,符号看象限. (3)两角和与差的正弦、余弦、正切公式: sin(α±β)=sin αcos β±cos αsin β; cos(α±β)=cos αcos β∓sin αsin β; tan(α±β)=tan α±tan β1∓tan αtan β.(4)二倍角公式:sin 2α=2sin αcos α,cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.2.正、余弦定理、三角形面积公式(1)a sin A =b sin B =c sin C =a +b +c sin A +sin B +sin C =2R (R 为△ABC 外接圆的半径).变形:a =2R sin A ,b =2R sin B ,c =2R sin C ;sin A =a 2R ,sin B =b 2R ,sin C =c2R ;a ∶b ∶c =sin A ∶sin B ∶sin C .(2)a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C ; 推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab ; 变形:b 2+c 2-a 2=2bc cos A ,a 2+c 2-b 2=2ac cos B ,a 2+b 2-c 2=2ab cos C . (3)S △ABC =12ab sin C =12ac sin B =12bc sin A.热点一 三角恒等变换及应用【例1】 (1)(2015·重庆卷改编)若tan α=2tan π5,则cos ⎝⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=________.(2)已知α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=35,则cos ⎝⎛⎭⎪⎫2α-π6=________.(3)(2016·苏北四市模拟)已知cos ⎝ ⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α=-14,α∈⎝ ⎛⎭⎪⎫π3,π2.则sin2α=________.解析 (1)cos ⎝ ⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝ ⎛⎭⎪⎫π2+α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝⎛⎭⎪⎫α+π5sin ⎝ ⎛⎭⎪⎫α-π5=sin αcos π5+cos αsin π5sin α·cos π5-cos αsin π5=tan αtan π5+1tan αtan π5-1=2+12-1=3.(2)∵α为锐角,cos ⎝ ⎛⎭⎪⎫α+π6=35>0,∴α+π6为锐角,∴sin ⎝⎛⎭⎪⎫α+π6=45,则sin ⎝ ⎛⎭⎪⎫2α+π3=2sin ⎝ ⎛⎭⎪⎫α+π6cos ⎝ ⎛⎭⎪⎫α+π6=2×45×35=2425,又cos ⎝ ⎛⎭⎪⎫2α-π6=sin ⎝ ⎛⎭⎪⎫2α+π3,∴cos ⎝ ⎛⎭⎪⎫2α-π6=2425.(3)cos ⎝ ⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α=cos ⎝ ⎛⎭⎪⎫π6+α·sin ⎝ ⎛⎭⎪⎫π6+α =12sin ⎝ ⎛⎭⎪⎫2α+π3=-14,即sin ⎝ ⎛⎭⎪⎫2α+π3=-12.∵α∈⎝ ⎛⎭⎪⎫π3,π2,∴2α+π3∈⎝ ⎛⎭⎪⎫π,4π3,∴cos ⎝ ⎛⎭⎪⎫2α+π3=-32,∴sin 2α=sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2α+π3-π3=sin ⎝ ⎛⎭⎪⎫2α+π3cos π3-cos ⎝ ⎛⎭⎪⎫2α+π3sin π3=12.答案 (1)3 (2)2425 (3)12探究提高 1.解决三角函数的化简求值问题的关键是把“所求角”用“已知角”表示(1)当已知角有两个时,“所求角”一般表示为“两个已知角”的和或差的形式; (2)当“已知角”有一个时,此时应着眼于“所求角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.2.求角问题要注意角的范围,要根据已知条件将所求角的范围尽量缩小,避免产生增解.【训练1】 (1)已知sin 2α=23,则cos 2⎝⎛⎭⎪⎫α+π4=________.(2)(2016·南京、盐城模拟)sin(π-α)=-53且α∈⎝ ⎛⎭⎪⎫π,3π2,则sin ⎝ ⎛⎭⎪⎫π2+α2=________.(3)(2015·江苏卷)已知tan α=-2,tan(α+β)=17,则tan β的值为________. 解析 (1)法一 cos 2⎝ ⎛⎭⎪⎫α+π4=12⎣⎢⎡⎦⎥⎤1+cos ⎝ ⎛⎭⎪⎫2α+π2=12(1-sin 2α)=16.法二 cos ⎝⎛⎭⎪⎫α+π4=22cos α-22sin α.所以cos 2⎝ ⎛⎭⎪⎫α+π4=12(cos α-sin α)2=12(1-2sin αcos α)=12(1-sin 2α)=16.(2)sin(π-α)=sin α=-53,又α∈⎝ ⎛⎭⎪⎫π,3π2,∴cos α=-1-sin 2α=-1-⎝ ⎛⎭⎪⎫-532=-23. 由cos α=2cos 2α2-1,α2∈⎝ ⎛⎭⎪⎫π2,3π4,得cos α2=-cos α+12=-66.所以sin ⎝ ⎛⎭⎪⎫π2+α2=cos α2=-66.(3)∵tan α=-2,∴tan(α+β)=tan α+tan β1-tan αtan β=-2+tan β1+2tan β=17,解得tan β=3.答案 (1)16 (2)-66 (3)3 热点二 正、余弦定理的应用[微题型1] 三角形基本量的求解【例2-1】 (1)(2016·全国Ⅱ卷)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A =45,cos C =513,a =1,则b =________.(2)(2016·四川卷)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a +cos Bb =sin Cc .①证明:sin A sin B =sin C ; ②若b 2+c 2-a 2=65bc ,求tan B .(1)解析 在△ABC 中由cos A =45,cos C =513,可得sin A =35,sin C =1213,sin B =sin(A +C )=sin A cos C +cos A ·sin C =6365,由正弦定理得b =a sin B sin A =2113. 答案 2113(2)①证明 根据正弦定理,可设a sin A =b sin B =csin C =k (k >0),则a =k sin A ,b =k sin B ,c =k sin C .代入cos A a +cos B b =sin Cc 中,有 cos A k sin A +cos B k sin B =sin Ck sin C ,变形可得sin A sin B =sin A cos B +cos A sin B =sin(A +B ).在△ABC 中,由A +B +C =π,有sin(A +B )=sin(π-C )=sin C .所以sin A sin B =sin C .②解 由已知,b 2+c 2-a 2=65bc ,根据余弦定理,有cos A =b 2+c 2-a 22bc =35. 所以sin A =1-cos 2A =45.由(1),sin A sin B =sin A cos B +cos A sin B , 所以45sin B =45cos B +35sin B . 故tan B =sin Bcos B=4.探究提高 1.解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则考虑两个定理都有可能用到.2.关于解三角形问题,一般要用到三角形的内角和定理,正弦、余弦定理及有关三角形的性质,常见的三角恒等变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”. [微题型2] 求解三角形中的最值问题【例2-2】 (2016·苏、锡、常、镇调研)已知a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,且a cos C +3a sin C -b -c =0. (1)求A ;(2)若a =2,求△ABC 面积的最大值.解 (1)由a cos C +3a sin C -b -c =0及正弦定理得 sin A cos C +3sin A sin C -sin B -sin C =0. 因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0. 易知sin C ≠0,所以3sin A -cos A =1, 所以sin ⎝⎛⎭⎪⎫A -π6=12.又0<A <π,所以A =π3.(2)法一 由(1)得B +C =2π3⇒C =2π3-B ⎝ ⎛⎭⎪⎫0<B <2π3,由正弦定理得a sin A =b sin B=c sin C =2sin π3=43,所以b =43sin B ,c =43sin C . 所以S △ABC =12bc sin A =12×43sin B ×43sin C ·sin π3=433sin B ·sin C =433·sin B ·sin ⎝ ⎛⎭⎪⎫2π3-B =433⎝ ⎛⎭⎪⎫32sin B cos B +12sin 2B =sin 2B -33cos 2B +33=233sin ⎝ ⎛⎭⎪⎫2B -π6+33. 易知-π6<2B -π6<7π6,故当2B -π6=π2,即B =π3时,S △ABC 取得最大值,最大值为233+33= 3. 法二 由(1)知A =π3,又a =2,由余弦定理得22=b 2+c 2-2bc cos π3,即b 2+c 2-bc =4⇒bc +4=b 2+c 2≥2bc ⇒bc ≤4,当且仅当b =c =2时,等号成立. 所以S △ABC =12bc sin A =12×32bc ≤34×4=3,即当b =c =2时,S △ABC 取得最大值,最大值为 3.探究提高 求解三角形中的最值问题常用如下方法:(1)将要求的量转化为某一角的三角函数,借助于三角函数的值域求最值.(2)将要求的量转化为边的形式,借助于基本不等式求最值. [微题型3] 求解三角形中的实际问题【例2-3】 (2016·无锡高三期末)在一个直角边长为10 m 的等腰直角三角形ABC 的草地上,铺设一个也是等腰直角三角形PQR 的花地,要求P ,Q ,R 三点分别在△ABC 的三条边上,且要使△PQR 的面积最小,现有两种设计方案: 方案一:直角顶点Q 在斜边AB 上,R ,P 分别在直角边AC ,BC 上; 方案二:直角顶点Q 在直角边BC 上,R ,P 分别在直角边AC ,斜边AB 上.请问应选用哪一种方案?并说明理由.方案一 方案二解 应选方案二,理由如下:方案一:过点Q 作QM ⊥AC 于点M ,作QN ⊥BC 于点N , 因为△PQR 为等腰直角三角形,且QP =QR , ∠MQR =∠NQP ,∠RMQ =∠PNQ =90°,所以△RMQ ≌△PNQ ,所以QM =QN ,所以Q 为AB 的中点,M ,N 分别为AC ,BC 的中点, 则QM =QN =5 m , 设∠RQM =α,则RQ =5cos α,α∈[0°,45°], 所以S △PQR =12×RQ 2=252cos 2α.所以当cos 2α=1,即α=0°时,S △PQR 取得最小值252 m 2.方案二:设CQ =x ,∠RQC =β,β∈[0°,90°), 在△RCQ 中,RQ =xcos β,在△BPQ 中,∠PQB =90°-β, 所以QP sin B =BQ sin ∠BPQ ,即x 22cos β=10-xsin (45°+β).化简得xcos β=10-x sin β+cos β,解得x =10cos βsin β+2cos β,所以S △PQR =12×RQ 2=50(sin β+2cos β)2,因为(sin β+2cos β)2≤5,所以S △PQR 的最小值为10 m 2.综上,应选用方案二.探究提高 应用解三角形知识解决实际问题需要下列四步:(1)分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词、术语,如坡度、仰角、俯角、视角、方位角等;(2)根据题意画出示意图,并将已知条件在图形中标出;(3)将所求问题归结到一个或几个三角形中,通过合理运用正、余弦定理等有关知识正确求解;(4)检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.【训练2】 (2016·浙江卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B . (1)证明:A =2B ;(2)若△ABC 的面积S =a 24,求角A 的大小.(1)证明 由正弦定理得sin B +sin C =2sin A cos B ,故2sin A cos B =sin B +sin(A +B )=sin B +sin A cos B +cos A sin B , 于是sin B =sin(A -B ).又A ,B ∈(0,π),故0<A -B <π,所以B =π-(A -B )或B =A -B , 因此A =π(舍去)或A =2B ,所以A =2B . (2)解 由S =a 24得12ab sin C =a 24, 故有sin B sin C =12sin 2B =sin B cos B ,因sin B ≠0,得sin C =cos B .又B ,C ∈(0,π), 所以C =π2±B .当B +C =π2时,A =π2; 当C -B =π2时,A =π4. 综上,A =π2或A =π4.1.对于三角函数的求值,需关注:(1)寻求角与角关系的特殊性,化非特殊角为特殊角,熟练准确地应用公式;(2)注意切化弦、异角化同角、异名化同名、角的变换等常规技巧的运用;(3)对于条件求值问题,要认真寻找条件和结论的关系,寻找解题的突破口,对于很难入手的问题,可利用分析法.2.三角形中判断边、角关系的具体方法:(1)通过正弦定理实施边角转换;(2)通过余弦定理实施边角转换;(3)通过三角变换找出角之间的关系;(4)通过三角函数值符号的判断以及正、余弦函数的有界性进行讨论;(5)若涉及两个(或两个以上)三角形,这时需作出这些三角形,先解条件多的三角形,再逐步求出其他三角形的边和角,其中往往用到三角形内角和定理,有时需设出未知量,从几个三角形中列出方程(组)求解.3.解答与三角形面积有关的问题时,如已知某一内角的大小或三角函数值,就选择S=12ab sin C来求面积,再利用正弦定理或余弦定理求出所需的边或角.一、填空题1.已知α∈R,sin α+2cos α=102,则tan 2α=________.解析∵sin α+2cos α=10 2,∴sin2α+4sin α·cos α+4cos2α=52.用降幂公式化简得4sin 2α=-3cos 2α,∴tan 2α=sin 2αcos 2α=-34.答案-3 42.(2016·泰州调研)已知锐角△ABC的内角A、B、C的对边分别为a、b、c,23cos2A +cos 2A=0,a=7,c=6,则b=________.解析化简23cos2A+cos 2A=0,得23cos2A+2cos2A-1=0,又角A为锐角,解得cos A =15,由a 2=b 2+c 2-2bc cos A ,得b =5. 答案 53.(2016·全国Ⅲ卷改编)在△ABC 中,B =π4,BC 边上的高等于13BC ,则cos A =________.解析 设BC 边上的高AD 交BC 于点D ,由题意B =π4,BD =13BC ,DC =23BC ,tan ∠BAD =1,tan ∠CAD =2,tan A =1+21-1×2=-3,所以cos A =-1010.答案 -10104.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是________.解析 c 2=(a -b )2+6,即c 2=a 2+b 2-2ab +6①. ∵C =π3,由余弦定理得c 2=a 2+b 2-ab ②,由①和②得 ab =6,∴S △ABC =12ab sin C =12×6×32=332. 答案3325.(2012·江苏卷)设α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=45,则sin ⎝ ⎛⎭⎪⎫2α+π12的值为________.解析 ∵α为锐角且cos ⎝ ⎛⎭⎪⎫α+π6=45,∴α+π6∈⎝ ⎛⎭⎪⎫π6,2π3,∴sin ⎝ ⎛⎭⎪⎫α+π6=35.∴sin ⎝ ⎛⎭⎪⎫2α+π12=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α+π6-π4=sin 2⎝ ⎛⎭⎪⎫α+π6cos π4-cos 2⎝ ⎛⎭⎪⎫α+π6sin π4=2sin ⎝ ⎛⎭⎪⎫α+π6cos ⎝ ⎛⎭⎪⎫α+π6-22⎣⎢⎡⎦⎥⎤2cos 2⎝⎛⎭⎪⎫α+π6-1=2×35×45-22⎣⎢⎡⎦⎥⎤2×⎝ ⎛⎭⎪⎫452-1=12225-7250=17250. 答案172506.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为315,b -c =2,cos A =-14,则a 的值为________. 解析 ∵cos A =-14,0<A <π,∴sin A =154, S △ABC =12bc sin A =12bc ×154=315,∴bc =24,又b -c =2,∴b 2-2bc +c 2=4,b 2+c 2=52,由余弦定理得, a 2=b 2+c 2-2bc cos A =52-2×24×⎝ ⎛⎭⎪⎫-14=64,∴a =8.答案 87.(2010·江苏卷)在锐角三角形ABC 中,A 、B 、C 的对边分别为a 、b 、c ,b a +ab =6cos C ,则tan C tan A +tan Ctan B =________.解析 b a +a b =6cos C ⇒6ab cos C =a 2+b 2,6ab ·a 2+b 2-c 22ab =a 2+b 2,a 2+b 2=3c 22.tan C tan A +tan C tan B =sin C cos C ·cos B sin A +sin B cos A sin A sin B=sin C cos C ·sin (A +B )sin A sin B =1cos C ·sin 2Csin A sin B , 由正弦定理得:上式=1cos C ·c 2ab =4.答案 48.(2014·江苏卷)若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是________.解析 ∵sin A +2sin B =2sin C .由正弦定理可得a +2b =2c ,即c =a +2b2, cos C =a 2+b 2-c 22ab =a 2+b 2-⎝⎛⎭⎪⎫a +2b 222ab=3a 2+2b 2-22ab 8ab ≥26ab -22ab 8ab =6-24,当且仅当3a 2=2b 2即a b =23时等号成立.∴cos C 的最小值为6-24. 答案6-24二、解答题9.(2016·北京卷)在△ABC 中,a 2+c 2=b 2+2ac . (1)求角B 的大小;(2)求2cos A +cos C 的最大值.解 (1)由a 2+c 2=b 2+2ac 得a 2+c 2-b 2=2ac . 由余弦定理得cos B =a 2+c 2-b 22ac =2ac 2ac =22. 又0<B <π,所以B =π4.(2)A +C =π-B =π-π4=3π4,所以 C =3π4-A ,0<A <3π4.所以2cos A +cos C =2cos A +cos ⎝ ⎛⎭⎪⎫3π4-A=2cos A +cos 3π4cos A +sin 3π4sin A =2cos A -22cos A +22sin A =22sin A +22cos A =sin ⎝⎛⎭⎪⎫A +π4,∵0<A<3π4,∴π4<A+π4<π,故当A+π4=π2,即A=π4时,2cos A+cos C取得最大值为1.10.在△ABC中,角A,B,C对应的边分别是a,b,c.已知cos 2A-3cos(B+C)=1.(1)求角A的大小;(2)若△ABC的面积S=53,b=5,求sin B sin C的值.解(1)由cos 2A-3cos(B+C)=1,得2cos2A+3cos A-2=0,即(2cos A-1)(cos A+2)=0,解得cos A=12或cos A=-2(舍去),因为0<A<π,所以A=π3.(2)由S=12bc sin A=12bc·32=34bc=53,得bc=20,又b=5,知c=4,由余弦定理得a2=b2+c2-2bc cos A=25+16-20=21,故a=21.又由正弦定理得sin B sin C=ba sin A·ca sin A=bca2sin 2A=2021×34=57.11.(2013·江苏卷)如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50 m/min.在甲出发2 min后,乙从A乘缆车到B,在B 处停留1 min后,再从B匀速步行到C.假设缆车匀速直线运行的速度为130 m/min,山路AC长为1 260 m,经测量,cos A=1213,cos C=35.(1)求索道AB的长;(2)问:乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?解(1)在△ABC中,因为cos A=1213,cos C=35,所以sin A=513,sin C=45.从而sin B =sin[π-(A +C )]=sin(A +C )=sin A cos C +cos A sin C =513×35+1213×45=6365.由正弦定理AB sin C =ACsin B ,得 AB =AC sin B ·sin C =1 2606365×45=1 040(m).所以索道AB 的长为1 040 m.(2)设乙出发t min 后,甲、乙两游客距离为d ,此时,甲行走了(100+50t )m ,乙距离A 处130t m , 所以由余弦定理得d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×1213 =200(37t 2-70t +50),因0≤t ≤1 040130,即0≤t ≤8, 故当t =3537(min)时,甲、乙两游客距离最短. (3)由正弦定理BC sin A =ACsin B , 得BC =AC sin B ·sin A =1 2606365×513=500(m). 乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710 m 才能到达C . 设乙步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得1 25043≤v ≤62514,所以为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在⎣⎢⎡⎦⎥⎤1 25043,62514(单位:m/min)范围内. 第3讲 平面向量高考定位 平面向量这部分内容在高考中的要求大部分都为B 级,只有平面向量的应用为A 级要求,平面向量的数量积为C 级要求.主要考查:(1)平面向量的基本定理及基本运算,多以熟知的平面图形为背景进行考查,填空题难度中档; (2)平面向量的数量积,以填空题为主,难度低;(3)向量作为工具,还常与三角函数、解三角形、不等式、解析几何结合,以解答题形式出现.真 题 感 悟1.(2015·江苏卷)已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________.解析 ∵a =(2,1),b =(1,-2),∴m a +n b =(2m +n ,m -2n )=(9,-8),即⎩⎨⎧2m +n =9,m -2n =-8, 解得⎩⎨⎧m =2,n =5,故m -n =2-5=-3.答案 -32.(2011·江苏卷)已知e 1,e 2是夹角为23π的两个单位向量,a =e 1-2e 2,b =k e 1+e 2,若a·b =0,则k 的值为________.解析 因为e 1,e 2是夹角为23π的两个单位向量,所以e 1·e 2=||e 1||e 2cos 〈e 1,e 2〉=cos 2π3=-12,又a·b =0,所以(e 1-2e 2)·(k e 1+e 2)=0, 即k -12-2+(-2k )⎝ ⎛⎭⎪⎫-12=0,解得k =54. 答案 543.(2013·江苏卷)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.解析 如图,DE→=DB →+BE →=12AB →+23BC →=12AB →+23(AC →-AB →)= -16AB →+23AC →,则λ1=-16,λ2=23,λ1+λ2=12. 答案 124.(2016·江苏卷)如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,BA→·CA →=4,BF →·CF →=-1,则BE →·CE →的值是________.解析 设AB →=a ,AC →=b ,则BA →·CA →=(-a )·(-b )=a ·b =4. 又∵D 为BC 中点,E ,F 为AD 的两个三等分点, 则AD→=12(AB →+AC →)=12a +12b , AF→=23AD →=13a +13b .AE→=13AD →=16a +16b , BF→=BA →+AF →=-a +13a +13b =-23a +13b , CF→=CA →+AF →=-b +13a +13b =13a -23b ,则BF→·CF →=⎝ ⎛⎭⎪⎫-23a +13b ⎝ ⎛⎭⎪⎫13a -23b = -29a 2-29b 2+59a ·b =-29(a 2+b 2)+59×4=-1. 可得a 2+b 2=292.又BE→=BA →+AE →=-a +16a +16b =-56a +16b . CE→=CA →+AE →=-b +16a +16b =16a -56b ,则BE →·CE →=⎝ ⎛⎭⎪⎫-56a +16b ⎝ ⎛⎭⎪⎫16a -56b =-536(a 2+b 2)+2636a ·b =-536×292+2636×4=78.答案 78考 点 整 合1.平面向量的两个重要定理(1)向量共线定理:向量a (a ≠0)与b 共线当且仅当存在唯一实数λ,使b =λa . (2)平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中e 1,e 2是一组基底.2.平面向量的两个充要条件若两个非零向量a =(x 1,y 1),b =(x 2,y 2),则(1)a ∥b ⇔a =λb ⇔x 1y 2-x 2y 1=0. (2)a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0. 3.平面向量的三个性质(1)若a =(x ,y ),则|a |=a ·a =x 2+y 2. (2)若A (x 1,y 1),B (x 2,y 2),则 |AB →|=(x 2-x 1)2+(y 2-y 1)2. (3)若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角, 则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22.4.平面向量的三个锦囊(1)向量共线的充要条件:O 为平面上一点,则A ,B ,P 三点共线的充要条件是OP →=λ1OA →+λ2OB →(其中λ1+λ2=1). (2)三角形中线向量公式:若P 为△OAB 的边AB 的中点,则向量OP →与向量OA →,OB →的关系是OP→=12(OA →+OB →). (3)三角形重心坐标的求法:G 为△ABC 的重心⇔GA →+GB →+GC →=0⇔G ⎝ ⎛⎭⎪⎫x A +x B +x C 3,y A +y B +y C 3.热点一 平面向量的有关运算 [微题型1] 平面向量的线性运算【例1-1】 (1)(2016·南通调研)在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C 、D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值范围是________.(2)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF .若AE→·AF →=1,则λ的值为________.解析 (1) 依题意,设BO→=λBC →,其中1<λ<43,则有AO →=AB →+BO →=AB →+λBC →=AB→+λ(AC →-AB →)=(1-λ)AB →+λAC →.又AO →=xAB →+(1+x )AC →,且AB →、AC →不共线,于是有x =1-λ∈⎝ ⎛⎭⎪⎫-13,0,即x 的取值范围是⎝ ⎛⎭⎪⎫-13,0.(2)法一 如图,AE →=AB →+BE →=AB →+13BC →,AF→=AD →+DF →=AD →+1λDC →=BC →+1λAB →,所以AE→·AF → =⎝ ⎛⎭⎪⎫AB →+13BC →·⎝ ⎛⎭⎪⎫BC →+1λAB →=⎝ ⎛⎭⎪⎫1+13λAB →·BC →+1λAB →2+13BC →2=⎝ ⎛⎭⎪⎫1+13λ×2×2×cos120°+4λ+43=1,解得λ=2.法二 建立如图所示平面直角坐标系.由题意知: A (0,1),C (0,-1),B (-3,0), D (3,0).由BC =3BE ,DC =λDF ,可求点E ,F 的坐标分别为E ⎝ ⎛⎭⎪⎫-233,-13, F ⎝ ⎛⎭⎪⎫3⎝⎛⎭⎪⎫1-1λ,-1λ, ∴AE →·AF →=⎝ ⎛⎭⎪⎫-233,-43·⎝ ⎛⎭⎪⎫3⎝ ⎛⎭⎪⎫1-1λ,-1λ-1 =-2⎝ ⎛⎭⎪⎫1-1λ+43⎝ ⎛⎭⎪⎫1+1λ=1,解得λ=2.答案 (1)⎝ ⎛⎭⎪⎫-13,0 (2)2探究提高 用平面向量基本定理解决此类问题的关键是先选择一组基底,并运用平面向量的基本定理将条件和结论表示成基底的线性组合,再通过对比已知等式求解.[微题型2] 平面向量的坐标运算【例1-2】 (1)(2016·全国Ⅱ卷改编)已知向量a =(1,m ),b =(3,-2),且(a +b )⊥b ,则m =________.(2)(2016·全国Ⅲ卷改编)已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC =________.解析 (1)由题知a +b =(4,m -2),因为(a +b )⊥b ,所以(a +b )·b =0, 即4×3+(-2)×(m -2)=0,解之得m =8. (2)|BA →|=1,|BC →|=1,cos ∠ABC =BA →·BC →|BA →|·|BC →|=32,则∠ABC =30°. 答案 (1)8 (2)30°探究提高 若向量以坐标形式呈现时,则用向量的坐标形式运算;若向量不是以坐标形式呈现,则可建系将之转化为坐标形式,再用向量的坐标运算求解更简捷. [微题型3] 平面向量数量积的运算【例1-3】 (1)(2016·连云港调研)若a ,b ,c 均为单位向量,且a ·b =0,(a -c )·(b -c )≤0,则|a +b -c |的最大值为________.(2)(2016·佛山二模)在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°,动点E 和F 分别在线段BC 和DC 上,且BE →=λBC →,DF →=19λDC →,则AE →·AF→的最小值为________.解析 (1)设a =(1,0),b =(0,1),c =(x ,y ),则x 2+y 2=1,a -c =(1-x ,-y ),b -c =(-x ,1-y ),则(a -c )·(b -c )=(1-x )(-x )+(-y )(1-y )=x 2+y 2-x -y =1-x -y ≤0, 即x +y ≥1.又a +b -c =(1-x ,1-y ),∴|a +b -c |=(1-x )2+(1-y )2=(x -1)2+(y -1)2.①法一 如图.c =(x ,y )对应点在AB ︵上,而①式的几何意义为P 点到AB ︵上点的距离,其最大值为1. 法二 |a +b -c |=(x -1)2+(y -1)2 =x 2+y 2-2x -2y +2=3+2(-x -y )=3-2(x +y ),∵x +y ≥1,∴|a +b -c |≤3-2=1,最大值为1.(2)法一 在梯形ABCD 中,AB =2,BC =1,∠ABC =60°,可得DC =1,AE →=AB→+λBC →,AF →=AD →+19λDC →, ∴AE →·AF →=(AB →+λBC →)·(AD →+19λDC →)=AB →·AD →+AB →·19λDC →+λBC →·AD→+λBC →·19λDC→=2×1×cos 60°+2×19λ+λ×1×cos 60°+λ·19λ×cos 120°=29λ+λ2+1718≥229λ·λ2+1718=2918,当且仅当29λ=λ2,即λ=23时,取得最小值为2918. 法二 以点A 为坐标原点,AB 所在的直线为x 轴建立平面直角坐标系,则B (2,0),C ⎝ ⎛⎭⎪⎫32,32,D ⎝ ⎛⎭⎪⎫12,32.又BE →=λBC →,DF →=19λDC →,则E ⎝ ⎛⎭⎪⎫2-12λ,32λ,F ⎝ ⎛⎭⎪⎫12+19λ,32,λ>0,所以AE →·AF →=⎝ ⎛⎭⎪⎫2-12λ⎝ ⎛⎭⎪⎫12+19λ+34λ=1718+29λ+12λ≥1718+229λ·12λ=2918,λ>0,当且仅当29λ=12λ,即λ=23时取等号, 故AE→·AF →的最小值为2918. 答案 (1)1 (2)2918探究提高 (1)①数量积的计算通常有三种方法:数量积的定义,坐标运算,数量积的几何意义,特别要注意向量坐标法的运用;②可以利用数量积求向量的模和夹角,向量要分解成题中模和夹角已知的向量进行计算;③在用|a |=a 2求向量的。
《创新设计》2017届高考数学(文)二轮复习(全国通用)教师Word文档 专题一至专题三
第1讲 函数图象与性质及函数与方程高考定位 1.以分段函数、二次函数、指数函数、对数函数为载体,考查函数的定义域、最值与值域、奇偶性、单调性;2.利用图象研究函数性质、方程及不等式的解,综合性强;3.以基本初等函数为依托,考查函数与方程的关系、函数零点存在性定理.数形结合思想是高考考查函数零点或方程的根的基本方式.真 题 感 悟1.(2016·北京卷)下列函数中,在区间(-1,1)上为减函数的是( ) A.y =11-xB.y =cos xC.y =ln(x +1)D.y =2-x解析 y =11-x与y =ln(x +1)在区间(-1,1)上为增函数;y =cos x 在区间(-1,1)上不是单调函数;y =2-x=⎝ ⎛⎭⎪⎫12x在(-1,1)上单调递减.答案 D2.(2016·全国Ⅰ卷)函数y =2x 2-e |x |在[-2,2]上的图象大致为( )解析 令f (x )=2x 2-e |x |(-2≤x ≤2),则f (x )是偶函数,又f (2)=8-e 2∈(0,1),故排除A ,B ;当x >0时,令g (x )=2x 2-e x ,则g ′(x )=4x -e x ,而当x ∈⎝ ⎛⎭⎪⎫0,14时,g ′(x )<14×4-e 0=0,因此g (x )在⎝ ⎛⎭⎪⎫0,14上单调递减,排除C ,故选D.答案 D3.(2016·全国Ⅱ卷)下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( ) A.y =xB.y =lg xC.y =2xD.y =1x解析 函数y =10lg x 的定义域为{x |x >0},值域为{y |y >0},所以与其定义域和值域分别相同的函数为y =1x,故选D. 答案 D4.(2016·四川卷)若函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f ⎝ ⎛⎭⎪⎫-52+f (2)=________.解析 ∵f (x )周期为2,且为奇函数,已知(0,1)内f (x )=4x ,则可大致画出(-1,1)内图象如图,∴f (0)=0, ∴f ⎝ ⎛⎭⎪⎫-52+f (2) =-f ⎝ ⎛⎭⎪⎫52+f (2)=-f ⎝ ⎛⎭⎪⎫12+f (0)=-2+0=-2.答案 -2考 点 整 合1.函数的性质 (1)单调性①用来比较大小,求函数最值,解不等式和证明方程根的唯一性.②常见判定方法:(ⅰ)定义法:取值、作差、变形、定号,其中变形是关键,常用的方法有:通分、配方、因式分解;(ⅱ)图象法;(ⅲ)复合函数的单调性遵循“同增异减”的原则;(ⅳ)导数法.(2)奇偶性:①若f (x )是偶函数,那么f (x )=f (-x );②若f (x )是奇函数,0在其定义域内,则f (0)=0;③奇函数在关于原点对称的区间内有相同的单调性,偶函数在关于原点对称的区间内有相反的单调性.(3)周期性:常见结论有:①若y =f (x )对x ∈R ,f (x +a )=f (x -a )或f (x -2a )=f (x )(a >0)恒成立,则y =f (x )是周期为2a 的周期函数;②若y =f (x )是偶函数,其图象又关于直线x =a 对称,则f (x )是周期为2|a |的周期函数;③若y =f (x )是奇函数,其图象又关于直线x =a 对称,则f (x )是周期为4|a |的周期函数;④若f (x +a )=-f (x )⎝ ⎛⎭⎪⎫或f (x +a )=1f (x ),则y =f (x )是周期为2|a |的周期函数. 2.函数的图象(1)对于函数的图象要会作图、识图和用图,作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换和对称变换. (2)在研究函数性质特别是单调性、最值、零点时,要注意结合其图象研究. 3.指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图象和性质,分0<a <1,a >1两种情况,着重关注函数图象中两种情况的公共性质. 4.函数的零点问题(1)函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点的横坐标.(2)确定函数零点的常用方法:①直接解方程法;②利用零点存在性定理;③数形结合,利用两个函数图象的交点求解.热点一 函数性质的应用[微题型1] 单一考查函数的奇偶性、单调性、对称性【例1-1】 (1)设函数f (x )=ln(1+x )-ln(1-x ),则f (x )是( ) A.奇函数,且在(0,1)上是增函数 B.奇函数,且在(0,1)上是减函数 C.偶函数,且在(0,1)上是增函数 D.偶函数,且在(0,1)上是减函数(2)(2015·全国Ⅰ卷)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. (3)(2016·北京卷)函数f (x )=xx -1(x ≥2)的最大值为________. 解析 (1)易知函数定义域为(-1,1),f (-x )=ln(1-x )-ln(1+x )=-f (x ),故函数f(x)为奇函数,又f(x)=ln 1+x1-x =ln⎝⎛⎭⎪⎫-1-2x-1,由复合函数单调性判断方法知,f(x)在(0,1)上是增函数,故选A.(2)f(x)为偶函数,则ln(x+a+x2)为奇函数,所以ln(x+a+x2)+ln(-x+a+x2)=0,即ln(a+x2-x2)=0,∴a=1.(3)f(x)=xx-1=1+1x-1,所以f(x)在[2,+∞)上单调递减,则f(x)最大值为f(2)=22-1=2.答案(1)A(2)1(3)2探究提高牢记函数的奇偶性、单调性的定义以及求函数定义域的基本条件,这是解决函数性质问题的关键点.[微题型2]综合考查函数的奇偶性、单调性、周期性【例1-2】(1)(2016·天津二模)已知定义在R上的函数f(x)=2|x-m|-1(m为实数)为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为() A.a<b<c B.c<a<bC.a<c<bD.c<b<a(2)(2016·广州4月模拟)若函数f(x)=2|x-a|(a∈R)满足f(1+x)=f(1-x),且f(x)在[m,+∞)上单调递增,则实数m的最小值等于________.解析(1)由函数f(x)=2|x-m|-1为偶函数,得m=0,所以f(x)=2|x|-1,当x>0时,f(x)为增函数,log0.53=-log23,∴log25>|-log23|>0,∴b=f(log25)>a=f(log0.53)>c=f(2m)=f(0),故选B.(2)∵f(1+x)=f(1-x),∴f(x)的对称轴为x=1,∴a=1,f(x)=2|x-1|,∴f(x)的增区间为[1,+∞),∵[m,+∞)⊆[1,+∞),∴m≥1.∴m的最小值为1.答案(1)B(2)1探究提高函数的性质主要是函数的奇偶性、单调性和周期性以及函数图象的对称性,在解题中根据问题的条件通过变换函数的解析式或者已知的函数关系,推证函数的性质,根据函数的性质解决问题.【训练1】 (1)(2016·山东卷)已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x ),当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12.则f (6)=( )A.-2B.-1C.0D.2(2)已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (log 2a )+f (log 12a )≤2f (1),则实数a 的取值范围是________.解析 (1)当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12,即f (x )=f (x +1),∴T =1,∴f (6)=f (1).当x <0时,f (x )=x 3-1且-1≤x ≤1,f (-x )=-f (x ), ∴f (6)=f (1)=-f (-1)=-[(-1)3-1]=2,故选D. (2)由题意知a >0,又log 12a =-log 2a .∵f (x )是R 上的偶函数, ∴f (log 2a )=f (-log 2a )=f (log 12a ).∵f (log 2a )+f (log 12a )≤2f (1),∴2f (log 2a )≤2f (1),即f (log 2a )≤f (1). 又∵f (x )在[0,+∞)上递增.∴|log 2a |≤1,即-1≤log 2a ≤1,∴a ∈⎣⎢⎡⎦⎥⎤12,2.答案 (1)D (2)⎣⎢⎡⎦⎥⎤12,2热点二 函数图象与性质的融合问题 [微题型1] 函数图象的识别【例2-1】 (1)函数y =x ln|x ||x |的图象可能是()(2)函数f (x )=⎝ ⎛⎭⎪⎫1x -x sin x 的大致图象为()解析 (1)法一 函数y =x ln|x ||x |的图象过点(e ,1),排除C ,D ;函数y =x ln|x ||x |的图象过点(-e ,-1),排除A ,选B.法二 由已知,设f (x )=x ln|x ||x |,定义域为{x |x ≠0}.则f (-x )=-f (x ),故函数f (x )为奇函数,排除A ,C ;当x >0时,f (x )=ln x 在(0,+∞)上为增函数,排除D ,故选B.(2)由y 1=1x -x 为奇函数,y 2=sin x 为奇函数,可得函数f (x )=⎝ ⎛⎭⎪⎫1x -x sin x 为偶函数,因此排除C 、D.又当x =π2时,y 1<0,y 2>0,f ⎝ ⎛⎭⎪⎫π2<0,因此选B.答案 (1)B (2)B探究提高 根据函数的解析式判断函数的图象,要从定义域、值域、单调性、奇偶性等方面入手,结合给出的函数图象进行全面分析,有时也可结合特殊的函数值进行辅助推断,这是解决函数图象判断类试题的基本方法. [微题型2] 函数图象的应用【例2-2】 (1)(2016·全国Ⅱ卷)已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3|与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1mx i =( )A.0B.mC.2mD.4m(2)已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A.c >a >b B.c >b >a C.a >c >bD.b >a >c解析 (1)由题f (x )=f (2-x )关于x =1对称,函数y =|x 2-2x -3|的图象也关于x =1对称,两函数的交点成对出现,因此根据图象的特征可得∑i =1mx i =m ,故选B.(2)由于函数f (x )的图象向左平移1个单位后得到的图象关于y 轴对称,故函数y =f (x )的图象本身关于直线x =1对称,所以a =f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,等价于函数f (x )在(1,+∞)上单调递减,所以b >a >c .选D.答案 (1)B (2)D探究提高 (1)运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.(2)在运用函数图象时要避免只看表象不联系其本质,透过函数的图象要看到它所反映的函数的性质,并以此为依据进行分析、推断,才是正确的做法. 【训练2】 (1)函数y =x 33x -1的图象大致是()(2)(2015·全国Ⅰ卷)设函数y =f (x )的图象与y =2x +a 的图象关于直线y =-x 对称,且f (-2)+f (-4)=1,则a 等于( ) A.-1B.1C.2D.4解析 (1)由3x -1≠0得x ≠0,∴函数y =x 33x -1的定义域为{x |x ≠0},可排除A ;当x =-1时,y =(-1)313-1=32>0,可排除B ;当x =2时,y =1,当x =4时,y =45,但从D 中函数图象可以看出函数在(0,+∞)上是单调递增函数,两者矛盾,可排除D.故选C.(2)设f (x )上任意一点为(x ,y )关于y =-x 的对称点为(-y ,-x ),将(-y ,-x )代入y =2x +a ,所以y =a -log 2(-x ),由f (-2)+f (-4)=1,得a -1+a -2=1,2a =4,a =2. 答案 (1)C (2)C热点三 函数的零点与方程根的问题 [微题型1] 函数零点的判断【例3-1】 (1)函数f (x )=2x +x 3-2在区间(0,1)内的零点个数是( ) A.0B.1C.2D.3(2)函数f (x )=⎩⎨⎧ln x -x 2+2x ,x >0,4x +1,x ≤0的零点个数是________.解析 (1)法一 函数f (x )=2x +x 3-2在区间(0,1)内的零点个数即函数y 1=2x -2与y 2=-x 3的图象在区间(0,1)内的交点个数.作图(图略),可知在(0,+∞)内最多有一个交点,故排除C ,D 项;当x =0时,y 1=-1<y 2=0,当x =1时,y 1=0>y 2=-1,因此在区间(0,1)内一定会有一个交点,所以A 项错误.选B. 法二 因为f (0)=1+0-2=-1,f (1)=2+13-2=1,所以f (0)·f (1)<0.又函数f (x )在(0,1)内单调递增,所以f (x )在(0,1)内的零点个数是1. (2)当x >0时,作函数y =ln x 和y =x 2-2x 的图象,由图知,当x >0时,f (x )有两个零点;当x ≤0时,由f (x )=0得x =-14,综上,f (x )有三个零点. 答案 (1)B (2)3探究提高 函数零点(即方程的根)的确定问题,常见的有①函数零点值大致存在区间的确定;②零点个数的确定;③两函数图象交点的横坐标或有几个交点的确定.解决这类问题的常用方法有解方程法、利用零点存在的判定或数形结合法,尤其是求解含有绝对值、分式、指数、对数、三角函数式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解. [微题型2] 由函数的零点(或方程的根)求参数【例3-2】 (1)(2016·山东卷)已知函数f (x )=⎩⎨⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________.(2)已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( ) A.⎝ ⎛⎭⎪⎫0,12 B.⎝ ⎛⎭⎪⎫12,1 C.(1,2)D.(2,+∞)解析 (1)如图,当x ≤m 时,f (x )=|x |. 当x >m 时,f (x )=x 2-2mx +4m , 在(m ,+∞)为增函数.若存在实数b ,使方程f (x )=b 有三个不同的根, 则m 2-2m ·m +4m <|m |.又m >0,∴m 2-3m >0,解得m >3.(2)由f (x )=g (x ),∴|x -2|+1=kx ,即|x -2|=kx -1,所以原题等价于函数y =|x -2|与y =kx -1的图象有2个不同交点. 如图:∴y =kx -1在直线y =x -1与y =12x -1之间, ∴12<k <1,故选B. 答案 (1)(3,+∞) (2)B探究提高 利用函数零点的情况求参数值或取值范围的方法 (1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.【训练3】 (1)已知二次函数f (x )=x 2-bx +a 的部分图象如图所示,则函数g (x )=e x +f ′(x )的零点所在的区间是( ) A.(-1,0) B.(0,1) C.(1,2)D.(2,3)(2)(2016·海淀二模)设函数f (x )=⎩⎨⎧2x-a ,x <1,4(x -a )(x -2a ),x ≥1.①若a =1,则f (x )的最小值为________;②若f (x )恰有2个零点,则实数a 的取值范围是________.解析 (1)由函数f (x )的图象可知,0<f (0)=a <1,f (1)=1-b +a =0,所以1<b <2.又f ′(x )=2x -b ,所以g (x )=e x +2x -b ,所以g ′(x )=e x +2>0,即g (x )在R 上单调递增,又g (0)=1-b <0,g (1)=e +2-b >0,根据函数的零点存在性定理可知,函数g (x )的零点所在的区间是(0,1),故选B.(2)①当a =1时,f (x )=⎩⎨⎧2x-1,x <1,4(x -1)(x -2),x ≥1.当x <1时,f (x )=2x -1∈(-1,1),当x ≥1时,f (x )=4(x 2-3x +2)=4⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x -322-14≥-1,∴f (x )min =-1.②由于f (x )恰有2个零点,分两种情况讨论: 当f (x )=2x -a ,x <1没有零点时,a ≥2或a ≤0.当a ≥2时,f (x )=4(x -a )(x -2a ),x ≥1时,有2个零点; 当a ≤0时,f (x )=4(x -a )(x -2a ),x ≥1时无零点. 因此a ≥2满足题意.当f (x )=2x -a ,x <1有一个零点时, 0<a <2.f (x )=4(x -a )(x -2a ),x ≥1有一个零点,此时a <1, 2a ≥1,因此12≤a <1.综上知实数a 的取值范围是⎩⎨⎧⎭⎬⎫a |12≤a <1或a ≥2.答案 (1)B (2)①-1 ②⎣⎢⎡⎭⎪⎫12,1∪[2,+∞)1.解决函数问题忽视函数的定义域或求错函数的定义域,如求函数f (x )=1x ln x 的定义域时,只考虑x >0,忽视ln x ≠0的限制.2.如果一个奇函数f (x )在原点处有意义,即f (0)有意义,那么一定有f (0)=0.3.奇函数在两个对称的区间上有相同的单调性,偶函数在两个对称的区间上有相反的单调性.4.三招破解指数、对数、幂函数值的大小比较.(1)底数相同,指数不同的幂用指数函数的单调性进行比较; (2)底数相同,真数不同的对数值用对数函数的单调性比较;(3)底数不同、指数也不同,或底数不同,真数也不同的两个数,常引入中间量或结合图象比较大小.5.对于给定的函数不能直接求解或画出图形,常会通过分解转化为两个函数图象,然后数形结合,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.一、选择题1.(2016·沈阳模拟)下列函数中,既是奇函数,又在区间(-1,1)上单调递减的函数是( ) A.f (x )=sin x B.f (x )=2cos x +1 C.f (x )=2x-1D.f (x )=ln 1-x1+x解析 由函数f (x )为奇函数排除B 、C ,又f (x )=sin x 在(-1,1)上单调递增,排除A ,故选D. 答案 D2.(2015·全国Ⅱ卷)设函数f (x )=⎩⎨⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( ) A.3B.6C.9D.12解析 因为-2<1,log 212>log 28=3>1,所以f (-2)=1+log 2[2-(-2)]=1+log 24=3,f (log 212)=2log 212-1=2log 212×2-1=12×12=6,故f (-2)+f (log 212)=3+6=9,故选C. 答案 C3.(2016·浙江卷)函数y =sin x 2的图象是( )解析 ∵y =sin x 2为偶函数,其图象关于y 轴对称,排除A 、C.又当x 2=π2,即x =±π2时,y max =1,排除B ,故选D.答案 D4.设函数f (x )=ln(1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围是( ) A.⎝ ⎛⎭⎪⎫13,1 B.⎝ ⎛⎭⎪⎫-∞,13∪(1,+∞) C.⎝ ⎛⎭⎪⎫-13,13D.⎝ ⎛⎭⎪⎫-∞,-13∪⎝ ⎛⎭⎪⎫13,+∞ 解析 由f (x )=ln(1+|x |)-11+x 2,知f (x )为R 上的偶函数,于是f (x )>f (2x -1)即为f (|x |)>f (|2x -1|).当x >0时,f (x )=ln(1+x )-11+x 2,所以f (x )为[0,+∞)上的增函数,则由f (|x |)>f (|2x -1|)得|x |>|2x -1|,平方得3x 2-4x +1<0,解得13<x <1,故选A. 答案 A5.(2015·全国Ⅱ卷)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )解析 当点P 沿着边BC 运动,即0≤x ≤π4时,在Rt △POB 中,|PB |=|OB |tan ∠POB =tan x ,在Rt △P AB 中,|P A |=|AB |2+|PB |2=4+tan 2x ,则f (x )=|P A |+|PB |=4+tan 2x +tan x ,它不是关于x 的一次函数,图象不是线段,故排除A 和C ; 当点P 与点C 重合,即x =π4时,由以上得f ⎝ ⎛⎭⎪⎫π4=4+tan 2π4+tan π4=5+1,又当点P 与边CD 的中点重合,即x =π2时,△P AO 与△PBO 是全等的腰长为1的等腰直角三角形,故f ⎝ ⎛⎭⎪⎫π2=|P A |+|PB |=2+2=22,知f ⎝ ⎛⎭⎪⎫π2<f ⎝ ⎛⎭⎪⎫π4,故又可排除D.综上,选B. 答案 B 二、填空题6.(2016·成都二诊)若函数f (x )=⎩⎨⎧-x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________. 解析 由题意f (x )的图象如图,则⎩⎨⎧a >1,3+log a 2≥4,∴1<a ≤2. 答案 (1,2]7.设奇函数y =f (x )(x ∈R ),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈⎣⎢⎡⎦⎥⎤0,12时,f (x )=-x 2,则f (3)+f ⎝ ⎛⎭⎪⎫-32的值等于________.解析 根据对任意t ∈R 都有f (t )=f (1-t )可得f (-t )=f (1+t ),即f (t +1)=-f (t ),进而得到f (t +2)=-f (t +1)=-[-f (t )]=f (t ),得函数y =f (x )的一个周期为2,故f (3)=f (1)=f (0+1)=-f (0)=0,f ⎝ ⎛⎭⎪⎫-32=f ⎝ ⎛⎭⎪⎫12=-14.所以f (3)+f ⎝ ⎛⎭⎪⎫-32=0+⎝ ⎛⎭⎪⎫-14=-14.答案 -148.已知函数f (x )=⎩⎨⎧x -[x ],x ≥0,f (x +1),x <0,其中[x ]表示不超过x 的最大整数.若直线y =k (x +1)(k >0)与函数y =f (x )的图象恰有三个不同的交点,则实数k 的取值范围是________.解析 根据[x ]表示的意义可知,当0≤x <1时,f (x )=x ,当1≤x <2时,f (x )=x -1,当2≤x <3时,f (x )=x -2,以此类推,当k ≤x <k +1时,f (x )=x -k ,k ∈Z ,当-1≤x <0时,f (x )=x +1,作出函数f (x )的图象如图,直线y =k (x +1)过点(-1,0),当直线经过点(3,1)时恰有三个交点,当直线经过点(2,1)时恰好有两个交点,在这两条直线之间时有三个交点,故k ∈⎣⎢⎡⎭⎪⎫14,13.答案 ⎣⎢⎡⎭⎪⎫14,13三、解答题9.已知函数f (x )=mx 2-2x +1有且仅有一个正实数的零点,求实数m 的取值范围. 解 当m =0时,f (x )=-2x +1,它显然有一个为正实数的零点.当m ≠0时,函数f (x )=mx 2-2x +1的图象是抛物线,且与y 轴的交点为(0,1),由f (x )有且仅有一个正实数的零点,则得:①⎩⎪⎨⎪⎧x =1m >0,Δ=0或②x =1m <0,解①,得m=1:解②,得m <0.综上所述,m 的取值范围是(-∞,0]∪{1}.10.已知函数f (x )=x 2-2ln x ,h (x )=x 2-x +a . (1)求函数f (x )的极值;(2)设函数k (x )=f (x )-h (x ),若函数k (x )在[1,3]上恰有两个不同零点,求实数a 的取值范围.解 (1)函数f (x )的定义域为(0,+∞),令f ′(x )=2x -2x =0,得x =1. 当x ∈(0,1)时,f ′(x )<0,当x ∈(1,+∞)时,f ′(x )>0, 所以函数f (x )在x =1处取得极小值为1,无极大值. (2)k (x )=f (x )-h (x )=x -2ln x -a (x >0),所以k ′(x )=1-2x ,令k ′(x )>0,得x >2,所以k (x )在[1,2)上单调递减,在(2,3]上单调递增,所以当x =2时,函数k (x )取得最小值,k (2)=2-2ln 2-a , 因为函数k (x )=f (x )-h (x )在区间[1,3]上恰有两个不同零点. 即有k (x )在[1,2)和(2,3]内各有一个零点,所以⎩⎨⎧k (1)≥0,k (2)<0,k (3)≥0,即有⎩⎨⎧1-a ≥0,2-2ln 2-a <0,3-2ln 3-a ≥0,解得2-2ln 2<a ≤3-2ln 3.所以实数a 的取值范围为(2-2ln 2,3-2ln 3]. 11.已知函数f (x )=e x -m -x ,其中m 为常数.(1)若对任意x ∈R 有f (x )≥0成立,求m 的取值范围; (2)当m >1时,判断f (x )在[0,2m ]上零点的个数,并说明理由. 解 (1)f ′(x )=e x -m -1,令f ′(x )=0,得x =m .故当x ∈(-∞,m )时,e x -m <1,f ′(x )<0,f (x )单调递减; 当x ∈(m ,+∞)时,e x -m >1,f ′(x )>0,f (x )单调递增. ∴当x =m 时,f (m )为极小值,也是最小值. 令f (m )=1-m ≥0,得m ≤1,即若对任意x ∈R 有f (x )≥0成立,则m 的取值范围是(-∞,1].(2)由(1)知f (x )在[0,2m ]上至多有两个零点,当m >1时,f (m )=1-m <0.∵f (0)=e -m >0,f (0)f (m )<0,∴f (x )在(0,m )上有一个零点.∵f (2m )=e m -2m ,令g (m )=e m -2m , ∵当m >1时,g ′(m )=e m -2>0, ∴g (m )在(1,+∞)上单调递增, ∴g (m )>g (1)=e -2>0,即f (2m )>0.∴f (m )·f (2m )<0,∴f (x )在(m ,2m )上有一个零点. ∴故f (x )在[0,2m ]上有两个零点.第2讲 不等式问题高考定位 1.利用不等式性质比较大小,不等式的求解,利用基本不等式求最值及线性规划问题是高考的热点,主要以选择题、填空题为主;2.但在解答题中,特别是在解析几何中求最值、范围问题或在解决导数问题时常利用不等式进行求解,难度较大.真 题 感 悟1.(2016·全国Ⅰ卷)若a >b >0,0<c <1,则( ) A.log a c <log b c B.log c a <log c b C.a c <b cD.c a >c b解析 取a =4,b =2,c =12,逐一验证可得B 正确. 答案 B2.(2015·湖南卷)若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( ) A. 2B.2C.2 2D.4解析 由1a +2b =ab ,知a >0,b >0,由于1a +2b ≥22ab ,当且仅当b =2a 时取等号.∴ab ≥22ab,∴ab ≥2 2.故选C. 答案 C3.(2015·陕西卷)设f (x )=ln x ,0<a <b ,若p =f (ab ),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A.q =r <pB.q =r >pC.p =r <qD.p =r >q解析 ∵0<a <b ,∴a +b2>ab , 又∵f (x )=ln x 在(0,+∞)上为增函数, 故f ⎝⎛⎭⎪⎫a +b 2>f (ab ),即q >p . 又r =12(f (a )+f (b ))=12(ln a +ln b )=ln(ab )12=f (ab )=p . 故p =r <q .选C. 答案 C4.(2016·全国Ⅱ卷)若x ,y 满足约束条件⎩⎨⎧x -y +1≥0,x +y -3≥0,x -3≤0,则z =x -2y 的最小值为________.解析 画出可行域,数形结合可知目标函数的最小值在直线x =3与直线x -y +1=0的交点(3,4)处取得,代入目标函数z =x -2y 得到最小值为-5. 答案 -5考 点 整 合1.简单分式不等式的解法(1)f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0); (2)f (x )g (x )≥0(≤0)⇔f (x )g (x )≥0(≤0)且g (x )≠0. 2.(1)解含有参数的一元二次不等式,要注意对参数的取值进行讨论:①对二次项系数与0的大小进行讨论;②在转化为标准形式的一元二次不等式后,对判别式与0的大小进行讨论;③当判别式大于0,但两根的大小不确定时,对两根的大小进行讨论. (2)四个常用结论①ax 2+bx +c >0(a ≠0)恒成立的条件是⎩⎨⎧a >0,Δ<0.②ax 2+bx +c <0(a ≠0)恒成立的条件是⎩⎨⎧a <0,Δ<0.③a >f (x )恒成立⇔a >f (x )max . ④a <f (x )恒成立⇔a <f (x )min . 3.利用基本不等式求最值已知x ,y ∈R +,则(1)若x +y =S (和为定值),则当x =y 时,积xy 取得最大值S 24⎝ ⎛⎭⎪⎫xy ≤⎝ ⎛⎭⎪⎫x +y 22=S 24;(2)若xy =P (积为定值),则当x =y 时,和x +y 取得最小值2P (x +y ≥2xy =2P ).4.二元一次不等式(组)和简单的线性规划(1)线性规划问题的有关概念:线性约束条件、线性目标函数、可行域、最优解等. (2)解不含实际背景的线性规划问题的一般步骤:①画出可行域;②根据线性目标函数的几何意义确定其取得最优解的点;③求出目标函数的最大值或者最小值. 5.不等式的证明不等式的证明要注意和不等式的性质结合起来,常用的方法有:比较法、作差法、作商法(要注意讨论分母)、分析法、综合法、反证法,还要结合放缩和换元的技巧.热点一 利用基本不等式求最值 [微题型1] 基本不等式的简单应用【例1-1】 (1)已知向量a =(3,-2),b =(x ,y -1),且a ∥b ,若x ,y 均为正数,则3x +2y 的最小值是( ) A.53 B.83C.8D.24(2)已知正项等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n 的最小值为________.解析(1)∵a∥b,∴3(y-1)+2x=0,即2x+3y=3.∵x>0,y>0,∴3x+2y=⎝⎛⎭⎪⎫3x+2y·13(2x+3y)=13⎝⎛⎭⎪⎫6+6+9yx+4xy≥13(12+2×6)=8.当且仅当3y=2x时取等号.(2)设正项等比数列{a n}的公比为q,则q>0,∵a7=a6+2a5,∴a5q2=a5q+2a5,∴q2-q-2=0,解得q=2或q=-1(舍去). ∴a m·a n=a1·2m-1·a1·2n-1=4a1,平方得2m+n-2=16=24,∴m+n=6,∴1m+4n=16⎝⎛⎭⎪⎫1m+4n(m+n)=16⎝⎛⎭⎪⎫5+nm+4mn≥16(5+4)=3 2,当且仅当nm=4mn,即n=2m,亦即m=2,n=4时取等号.答案(1)C(2)3 2探究提高在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.[微题型2]带有约束条件的基本不等式问题【例1-2】(1)已知两个正数x,y满足x+4y+5=xy,则xy取最小值时,x,y 的值分别为()A.5,5B.10,52 C.10,5 D.10,10(2)(2016·郑州模拟)设x,y为实数,若4x2+y2+xy=1,则2x+y的最大值是________.解析(1)∵x>0,y>0,∴x+4y+5=xy≥24xy+5,即xy-4xy-5≥0,可求xy≥25.当且仅当x=4y时取等号,即x=10,y=5 2.(2)∵4x2+y2+xy=1,∴(2x+y)2-3xy=1,即(2x+y)2-32·2xy=1,∴(2x+y)2-32·⎝⎛⎭⎪⎫2x+y22≤1,解之得(2x+y)2≤85,即2x+y≤2105.等号当且仅当2x=y>0,即x=1010,y=105时成立.答案(1)B(2)210 5探究提高在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,或对约束条件中的一部分利用基本不等式,构造不等式进行求解.【训练1】(1)(2016·广州模拟)若正实数x,y满足x+y+1=xy,则x+2y的最小值是()A.3B.5C.7D.8(2)(2015·山东卷)定义运算“⊗”:x⊗y=x2-y2xy(x,y∈R,xy≠0),当x>0,y>0时,x⊗y+(2y)⊗x的最小值为________.解析(1)由x+y+1=xy,得y=x+1x-1,又y>0,x>0,∴x>1.∴x+2y=x+2×x+1x-1=x+2×⎝⎛⎭⎪⎫1+2x-1=x+2+4x-1=3+(x-1)+4x-1≥3+4=7,当且仅当x=3时取“=”.(2)由题意,得x⊗y+(2y)⊗x=x2-y2xy+(2y)2-x22yx=x2+2y22xy≥2x2·2y22xy=2,当且仅当x=2y时取等号. 答案(1)C(2) 2热点二 含参不等式恒成立问题 [微题型1] 分离参数法解决恒成立问题【例2-1】 (1)关于x 的不等式x +4x -1-a 2+2a >0对x ∈(0,+∞)恒成立,则实数a 的取值范围为________.(2)已知x >0,y >0,x +y +3=xy ,且不等式(x +y )2-a (x +y )+1≥0恒成立,则实数a 的取值范围是________.解析 (1)设f (x )=x +4x ,因为x >0,所以f (x )=x +4x ≥2x ·4x =4,当且仅当x =2时取等号.又关于x 的不等式x +4x -1-a 2+2a >0对x ∈(0,+∞)恒成立,所以a 2-2a +1<4,解得-1<a <3,所以实数a 的取值范围为(-1,3).(2)要使(x +y )2-a (x +y )+1≥0恒成立,则有(x +y )2+1≥a (x +y ),由于x >0,y >0,即a ≤(x +y )+1x +y恒成立. 由x +y +3=xy ,得x +y +3=xy ≤⎝⎛⎭⎪⎫x +y 22, 即(x +y )2-4(x +y )-12≥0,解得x +y ≥6或x +y ≤-2(舍去).设t =x +y ,则t ≥6,(x +y )+1x +y=t +1t .设f (t )=t +1t ,则在t ≥6时,f (t )单调递增,所以f (t )=t +1t 的最小值为6+16=376,所以a ≤376,即实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,376. 答案 (1)(-1,3) (2)⎝ ⎛⎦⎥⎤-∞,376探究提高 一是转化法,即通过分离参数法,先转化为f (a )≥g (x )(或f (a )≤g (x ))对∀x ∈D 恒成立,再转化为f (a )≥g (x )max (或f (a )≤g (x )min ); 二是求最值法,即求函数g (x )在区间D 上的最大值(或最小值)问题. [微题型2] 函数法解决恒成立问题【例2-2】 (1)已知f (x )=x 2-2ax +2,当x ∈[-1,+∞)时,f (x )≥a 恒成立,则a 的取值范围为________.(2)已知二次函数f (x )=ax 2+x +1对x ∈[0,2]恒有f (x )>0.则实数a 的取值范围为________.解析 (1)法一 f (x )=(x -a )2+2-a 2,此二次函数图象的对称轴为x =a ,①当a ∈(-∞,-1)时,结合图象知,f (x )在[-1,+∞)上单调递增,f (x )min =f (-1)=2a +3.要使f (x )≥a 恒成立,只需f (x )min ≥a , 即2a +3≥a ,解得-3≤a <-1;②当a ∈[-1,+∞)时,f (x )min =f (a )=2-a 2, 由2-a 2≥a ,解得-2≤a ≤1.∴-1≤a ≤1. 综上所述,所求a 的取值范围为[-3,1].法二 设g (x )=f (x )-a ,则g (x )=x 2-2ax +2-a ≥0在[-1,+∞)上恒成立, 即Δ=4a 2-4(2-a )≤0或⎩⎨⎧Δ>0,a <-1,g (-1)≥0,解得-3≤a ≤1.(2)法一 函数法.若a >0,则对称轴x =-12a <0, 故f (x )在[0,2]上为增函数,且f (0)=1, 因此在x ∈[0,2]上恒有f (x )>0成立. 若a <0,则应有f (2)>0,即4a +3>0, ∴a >-34.∴-34<a <0.综上所述,a 的取值范围是⎝ ⎛⎭⎪⎫-34,0∪(0,+∞).法二 分离参数法.当x =0时,f (x )=1>0成立.当x ≠0时,ax 2+x +1>0变为a >-1x 2-1x ,令g (x )=-1x 2-1x ⎝ ⎛⎭⎪⎫1x ≥12.∴当1x ≥12时,g (x )∈⎝ ⎛⎦⎥⎤-∞,-34.∵a >-1x 2-1x ,∴a >-34.又∵a ≠0,∴a 的取值范围是⎝ ⎛⎭⎪⎫-34,0∪(0,+∞).答案 (1)[-3,1] (2)⎝ ⎛⎭⎪⎫-34,0∪(0,+∞)探究提高 参数不易分离的恒成立问题,特别是与二次函数有关的恒成立问题的求解,常用的方法是借助函数图象根的分布,转化为求函数在区间上的最值或值域问题.【训练2】 若不等式x 2-ax +1≥0对于一切a ∈[-2,2]恒成立,则x 的取值范围是________.解析 因为a ∈[-2,2],可把原式看作关于a 的一次函数, 即g (a )=-xa +x 2+1≥0,由题意可知⎩⎨⎧g (-2)=x 2+2x +1≥0,g (2)=x 2-2x +1≥0,解之得x ∈R . 答案 R热点三 简单的线性规划问题[微题型1] 已知线性约束条件,求目标函数最值【例3-1】 (2016·全国Ⅲ卷)设x ,y 满足约束条件⎩⎨⎧2x -y +1≥0,x -2y -1≤0,x ≤1,则z =2x +3y-5的最小值为________.解析 可行域为一个三角形ABC 及其内部,其中A (1,0),B (-1,-1),C (1,3),直线z =2x +3y -5过点B 时取最小值-10. 答案 -10探究提高 线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得. [微题型2] 线性规划中的含参问题【例3-2】 (1)(2016·成都诊断)变量x ,y 满足约束条件⎩⎨⎧x +y ≥0,x -2y +2≥0,mx -y ≤0.若z =2x-y 的最大值为2,则实数m 等于( ) A.-2B.-1C.1D.2(2)(2015·山东卷)已知x ,y 满足约束条件⎩⎨⎧x -y ≥0,x +y ≤2,y ≥0,若z =ax +y 的最大值为4,则a =( ) A.3 B.2 C.-2D.-3解析 (1)由图形知A ⎝ ⎛⎭⎪⎫-23,23,B ⎝ ⎛⎭⎪⎫22m -1,2m 2m -1,O (0,0).只有在B 点处取最大值2, ∴2=42m -1-2m2m -1.∴m =1.(2)不等式组表示的平面区域如图阴影部分所示.易知A (2,0),由⎩⎨⎧x -y =0,x +y =2,得B (1,1). 由z =ax +y ,得y =-ax +z .∴当a =-2或-3时,z =ax +y 在O (0,0)处取得最大值,最大值为z max =0,不满足题意,排除C ,D ;当a =2或3时,z =ax +y 在A (2,0)处取得最大值,∴2a =4,∴a =2,排除A ,故选B. 答案 (1)C (2)B探究提高 对于线性规划中的参数问题,需注意:(1)当最值是已知时,目标函数中的参数往往与直线斜率有关,解题时应充分利用斜率这一特征加以转化.(2)当目标函数与最值都是已知,且约束条件中含有参数时,因为平面区域是变动的,所以要抓住目标函数及最值已知这一突破口,先确定最优解,然后变动参数范围,使得这样的最优解在该区域内即可.【训练3】 (1)(2016·江苏卷)已知实数x ,y 满足⎩⎨⎧x -2y +4≥02x +y -2≥0,3x -y -3≤0则x 2+y 2的取值范围是________.(2)已知x ,y 满足⎩⎨⎧y ≥x ,y ≤-x +2,x ≥a ,且目标函数z =2x +y 的最小值为1,则实数a 的值是( ) A.34B.12C.13D.14解析 (1)已知不等式组所表示的平面区域如图中阴影部分所示,则(x ,y )为阴影部分内的动点,x 2+y 2表示原点到可行域内的点的距离的平方. 解方程组⎩⎨⎧3x -y -3=0,x -2y +4=0,得A (2,3).由图可知(x 2+y 2)min =⎝ ⎛⎭⎪⎫|-2|22+122=45, (x 2+y 2)max =|OA |2=22+32=13.(2)依题意,不等式组所表示的可行域如图所示(阴影部分),观察图象可知,当目标函数z =2x +y 过点B (a ,a )时,z min =2a +a =3a ;因为目标函数z =2x +y 的最小值为1,所以3a =1,解得a =13,故选C. 答案 (1)⎣⎢⎡⎦⎥⎤45,13 (2)C1.多次使用基本不等式的注意事项当多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且要注意取等号的条件的一致性,否则就会出错,因此在利用基本不等式处理问题时,列出等号成立的条件不仅是解题的必要步骤,也是检验转换是否有误的一种方法.2.基本不等式除了在客观题考查外,在解答题的关键步骤中也往往起到“巧解”的作用,但往往需先变换形式才能应用.3.解决线性规划问题首先要作出可行域,再注意目标函数表示的几何意义,数形结合找到目标函数达到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决.4.解答不等式与导数、数列的综合问题时,不等式作为一种工具常起到关键的作用,往往涉及到不等式的证明方法(如比较法、分析法、综合法、放缩法、换元法等).在求解过程中,要以数学思想方法为思维依据,并结合导数、数列的相关知识解题,在复习中通过解此类问题,体会每道题中所蕴含的思想方法及规律,逐步提高自己的逻辑推理能力.一、选择题1.(2016·全国Ⅲ卷)已知a=243,b=323,c=2513,则()A.b<a<cB.a<b<cC.b<c<aD.c<a<b解析a=243=316,b=323=39,c=2513=325,所以b<a<c.答案 A2.(2016·浙江卷)已知a,b>0且a≠1,b≠1,若log a b>1,则()A.(a-1)(b-1)<0B.(a-1)(a-b)>0C.(b-1)(b-a)<0D.(b-1)(b-a)>0解析由a,b>0且a≠1,b≠1,及log a b>1=log a a可得:当a>1时,b>a>1,当0<a<1时,0<b<a<1,代入验证只有D满足题意.答案 D3.(2016·太原模拟)若点A(m,n)在第一象限,且在直线x3+y4=1上,则mn的最大值是()A.3B.4C.7D.12解析 因为点A (m ,n )在第一象限,且在直线x 3+y 4=1上,所以m ,n ∈R +,且m3+n 4=1,所以m 3·n 4≤(m 3+n 42)2⎝ ⎛⎭⎪⎫当且仅当m 3=n 4=12,即m =32,n =2时,取“=”,所以m 3·n 4≤⎝ ⎛⎭⎪⎫122=14,即mn ≤3,所以mn 的最大值为3. 答案 A4.已知当x <0时,2x 2-mx +1>0恒成立,则m 的取值范围为( ) A.[22,+∞)B.(-∞,22]C.(-22,+∞)D.(-∞,-22)解析 由2x 2-mx +1>0,得mx <2x 2+1, 因为x <0,所以m >2x 2+1x =2x +1x .而2x +1x =-⎣⎢⎡⎦⎥⎤(-2x )+1(-x )≤ -2(-2x )×1(-x )=-2 2.当且仅当-2x =-1x ,即x =-22时取等号, 所以m >-2 2. 答案 C5.(2016·唐山模拟)已知函数f (x )=⎩⎨⎧x 2+2x ,x ≥0,x 2-2x ,x <0,若f (-a )+f (a )≤2f (1),则实数a的取值范围是( ) A.[0,1] B.[-1,0] C.[-1,1]D.[-1,0]解析 f (-a )+f (a )≤2f (1)⇔⎩⎨⎧a ≥0,(-a )2-2×(-a )+a 2+2a ≤2×3或 ⎩⎨⎧a <0,(-a )2+2×(-a )+a 2-2a ≤2×3即⎩⎨⎧a ≥0,a 2+2a -3≤0或⎩⎨⎧a <0,a 2-2a -3≤0, 解得0≤a ≤1,或-1≤a <0.故-1≤a ≤1. 答案 C 二、填空题6.设目标函数z =x +y ,其中实数x ,y 满足⎩⎨⎧x +2y ≥0,x -y ≤0,0≤y ≤k .若z 的最大值为12,则z的最小值为________.解析 作出不等式组所表示的可行域如图所示,平移直线x+y =0,显然当直线过点A (k ,k )时,目标函数z =x +y 取得最大值,且最大值为k +k =12,则k =6,直线过点B 时目标函数z =x +y 取得最小值,点B 为直线x +2y =0与y =6的交点,即B (-12,6),所以z min =-12+6=-6. 答案 -67.(2016·合肥二模)当a >0且a ≠1时,函数f (x )=log a (x -1)+1的图象恒过点A ,若点A 在直线mx -y +n =0上,则4m +2n 的最小值为________. 解析 函数f (x )的图象恒过点A (2,1),∴2m -1+n =0,即2m +n =1, ∴4m +2n ≥24m ·2n =222m +n =22,当且仅当2m =n =12时等号成立. 答案 2 28.(2016·全国Ⅰ卷)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时,生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.解析 设生产A 产品x 件,B 产品y 件,根据所耗费的材料要求、工时要求等其他限制条件,得线性约束条件为⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ≥0,x ∈N *,y ≥0,y ∈N*目标函数z =2 100x +900y .作出可行域为图中阴影部分(包括边界)内的参数点,顶点为(60,100),(0,200),(0,0),(90,0),在(60,100)处取得最大值,z max =2 100×60+900×100=216 000(元). 答案 216 000 三、解答题9.已知f (t )=log 2t ,t ∈[2,8],对于f (t )值域内的所有实数m ,不等式x 2+mx +4>2m +4x 恒成立,求x 的取值范围.解 易知f (t )∈⎣⎢⎡⎦⎥⎤12,3,由题意,令g (m )=(x -2)m +x 2-4x +4=(x -2)m +(x -2)2>0对∀m ∈⎣⎢⎡⎦⎥⎤12,3恒成立.所以只需⎩⎪⎨⎪⎧g ⎝ ⎛⎭⎪⎫12>0,g (3)>0即可,即⎩⎪⎨⎪⎧12(x -2)+(x -2)2>0,3(x -2)+(x -2)2>0⇒x >2或x <-1. 故x 的取值范围是(-∞,-1)∪(2,+∞). 10.已知函数f (x )=2xx 2+6. (1)若f (x )>k 的解集为{x |x <-3,或x >-2},求k 的值; (2)对任意x >0,f (x )≤t 恒成立,求t 的取值范围. 解 (1)f (x )>k ⇔kx 2-2x +6k <0.由已知{x |x <-3,或x >-2}是其解集,得kx 2-2x +6k =0的两根是-3,-2. 由根与系数的关系可知(-2)+(-3)=2k ,即k =-25.(2)因为x >0,f (x )=2x x 2+6=2x +6x≤226=66,当且仅当x =6时取等号.由已知。
《创新设计》2017届高考数学(理)二轮复习(江苏专用)Word版训练 专题一 函数与导数、不等式 第3讲
一、填空题1.(2016·苏州调研)函数f (x )=12x 2-ln x 的单调递减区间为________.解析 由题意知,函数的定义域为(0,+∞),又由f ′(x )=x -1x ≤0,解得0<x ≤1,所以函数f (x )的单调递减区间为(0,1].答案 (0,1]2.已知函数f (x )=4ln x +ax 2-6x +b (a ,b 为常数),且x =2为f (x )的一个极值点,则a 的值为________.解析 由题意知,函数f (x )的定义域为(0,+∞),∵f ′(x )=4x +2ax -6,∴f ′(2)=2+4a -6=0,即a =1.答案 13.已知函数f (x )=12mx 2+ln x -2x 在定义域内是增函数,则实数m 的取值范围是____________.解析 f ′(x )=mx +1x -2≥0对一切x >0恒成立,∴m ≥-⎝ ⎛⎭⎪⎫1x 2+2x . 令g (x )=-⎝ ⎛⎭⎪⎫1x 2+2x ,则当1x =1时,函数g (x )取最大值1.故m ≥1. 答案 [1,+∞)4.已知函数f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极大值10,则a b 的值为________.解析 由题意知f ′(x )=3x 2+2ax +b ,f ′(1)=0,f (1)=10,即⎩⎨⎧3+2a +b =0,1+a +b -a 2-7a =10,解得⎩⎨⎧a =-2,b =1或 ⎩⎨⎧a =-6,b =9,经检验⎩⎨⎧a =-6,b =9满足题意,故a b =-23. 答案 -235.若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是________.解析 由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(1,+∞)上单调递增⇔f ′(x )=k-1x ≥0在(1,+∞)上恒成立,由于k ≥1x ,而0<1x <1,所以k ≥1.即k 的取值范围为[1,+∞).答案 [1,+∞)6.(2016·泰州期末)函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围是________.解析 f ′(x )=3x 2-3a =3(x 2-a ).当a ≤0时,f ′(x )>0,∴f (x )在(0,1)内单调递增,无最小值.当a >0时,f ′(x )=3(x -a )(x +a ).当x ∈(-∞,-a )和(a ,+∞)时,f (x )单调递增;当x ∈(-a ,a )时,f (x )单调递减, 所以当a <1,即0<a <1时,f (x )在(0,1)内有最小值.答案 (0,1)7.已知函数f (x )=13x 3+ax 2+3x +1有两个极值点,则实数a 的取值范围是________.解析 f ′(x )=x 2+2ax +3.由题意知方程f ′(x )=0有两个不相等的实数根,所以Δ=4a 2-12>0,解得a >3或a <- 3.答案 (-∞,-3)∪(3,+∞)8.(2016·北京卷)设函数f (x )=⎩⎨⎧x 3-3x ,x ≤a ,-2x ,x >a .(1)若a =0,则f (x )的最大值为________;(2)若f (x )无最大值,则实数a 的取值范围是________.解析 (1)当a =0时,f (x )=⎩⎨⎧x 3-3x ,x ≤0,-2x ,x >0.若x ≤0,f ′(x )=3x 2-3=3(x 2-1).由f ′(x )>0得x <-1,由f ′(x )<0得-1<x ≤0.∴f (x )在(-∞,-1)上单调递增,在(-1,0]上单调递减,∴f (x )最大值为f (-1)=2.若x >0,f (x )=-2x 单调递减,所以f (x )<f (0)=0.综上,f (x )最大值为2.(2)函数y =x 3-3x 与y =-2x 的图象如图.由(1)知,当a ≥-1时,f (x )取得最大值2.当a <-1时,y =-2x 在x >a 时无最大值.且-2a >2.所以a <-1.答案 (1)2 (2)(-∞,-1)二、解答题9.(2016·北京卷)设函数f (x )=x e a -x +bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y =(e -1)x +4.(1)求a ,b 的值;(2)求f (x )的单调区间.解 (1)f (x )的定义域为R .∵f ′(x )=e a -x -x e a -x +b =(1-x )e a -x +b .依题设,⎩⎨⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎨⎧2e a -2+2b =2e +2,-e a -2+b =e -1. 解得a =2,b =e.(2)由(1)知f (x )=x e 2-x +e x ,由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知,f ′(x )与1-x +e x -1同号.令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减; 当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增.故g (1)=1是g (x )在区间(-∞,+∞)上的最小值,从而g (x )>0,x ∈(-∞,+∞),综上可知,f ′(x )>0,x ∈(-∞,+∞).故f (x )的单调递增区间为(-∞,+∞).10.(2016·全国Ⅱ卷)(1)讨论函数f (x )=x -2x +2e x 的单调性,并证明当x >0时,(x -2)e x +x +2>0; (2)证明:当a ∈[0,1)时,函数g (x )=e x -ax -a x 2(x >0)有最小值.设g (x )的最小值为h (a ),求函数h (a )的值域.(1)解 f (x )的定义域为(-∞,-2)∪(-2,+∞).f ′(x )=(x -1)(x +2)e x -(x -2)e x (x +2)2=x 2e x(x +2)2≥0, 且仅当x =0时,f ′(x )=0,所以f (x )在(-∞,-2),(-2,+∞)单调递增.因此当x ∈(0,+∞)时,f (x )>f (0)=-1.所以(x -2)e x >-(x +2),即(x -2)e x +x +2>0.(2)证明 g ′(x )=(x -2)e x +a (x +2)x 3=x +2x 3(f (x )+a ). 由(1)知f (x )+a 单调递增,对任意a ∈[0,1),f (0)+a =a -1<0,f (2)+a =a ≥0. 因此,存在唯一x a ∈( 0,2],使得f (x a )+a =0,即g ′(x a )=0.当0<x <x a 时,f (x )+a <0,g ′(x )<0,g (x )单调递减;当x >x a 时,f (x )+a >0,g ′(x )>0,g (x )单调递增.因此g (x )在x =x a 处取得最小值,最小值为g (x a )=e xa -a (x a +1)xa=e xa +f (x a )(x a +1)x 2a=e xa x a +2. 于是h (a )=e xa x a +2,由⎝ ⎛⎭⎪⎫e x x +2′=(x +1)e x (x +2)2>0,e x x +2单调递增. 所以,由x a ∈(0,2],得12=e 00+2<h (a )=e xa x a +2≤e 22+2=e 24. 因为e x x +2单调递增,对任意λ∈⎝ ⎛⎦⎥⎤12,e 24,存在唯一的x a ∈(0,2],a =-f (x a )∈[0,1),使得h (a )=λ.所以h (a )的值域是⎝ ⎛⎦⎥⎤12,e 24.综上,当a ∈[0,1)时,g (x )有最小值h (a ),h (a )的值域是⎝ ⎛⎦⎥⎤12,e 24. 11.设函数f (x )=e x x 2-k ⎝ ⎛⎭⎪⎫2x +ln x (k 为常数,e =2.718 28…是自然对数的底数). (1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值范围.解 (1)函数y =f (x )的定义域为(0,+∞).f ′(x )=x 2e x -2x e x x 4-k ⎝ ⎛⎭⎪⎫-2x 2+1x =x e x -2e x x 3-k (x -2)x 2=(x -2)(e x -kx )x 3. 由k ≤0可得e x -kx >0,所以当x ∈(0,2)时,f ′(x )<0,函数y =f (x )单调递减,x ∈(2,+∞)时,f ′(x )>0,函数y =f (x )单调递增.所以f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞).(2)由(1)知,k ≤0时,函数f (x )在(0,2)内单调递减,故f (x )在(0,2)内不存在极值点;当k >0时,设函数g (x )=e x -kx ,x ∈[0,+∞).因为g ′(x )=e x -k =e x -e ln k ,当0<k ≤1时,当x ∈(0,2)时,g ′(x )=e x -k >0,y =g (x )单调递增.故f (x )在(0,2)内不存在两个极值点;当k >1时,得x ∈(0,ln k )时,g ′(x )<0,函数y =g (x )单调递减. x ∈(ln k ,+∞)时,g ′(x )>0,函数y =g (x )单调递增.所以函数y =g (x )的最小值为g (ln k )=k (1-ln k ).函数f (x )在(0,2)内存在两个极值点当且仅当⎩⎨⎧g (0)>0,g (ln k )<0,g (2)>0,0<ln k <2,解得e <k <e 22, 综上所述,函数f (x )在(0,2)内存在两个极值点时,k 的取值范围为⎝ ⎛⎭⎪⎫e ,e 22.。
创新设计(江苏专用)2017届高考数学二轮复习 下篇 考前增分指导一、二、三教书用书 理
下篇 考前增分指导一、二、三教书用书 理技巧——巧解填空题的5大妙招解填空题要求在“快速、准确”上下功夫,由于填空题不需要写出具体的推理、计算过程,因此要想“快速”解答填空题,则千万不可“小题大做”,而要达到“准确”,则必须合理灵活地运用恰当的方法,在“巧”字上下功夫.填空题的基本特点是:(1)具有考查目标集中、跨度大、知识覆盖面广、形式灵活、答案简短、明确、具体,不需要写出求解过程而只需要写出结论等特点;(2)填空题的结构往往是在正确的命题或断言中,抽出其中的一些内容留下空位,让考生独立填上,考查方法比较灵活;(3)从填写内容看,主要有两类:一类是定量填写型,要求考生填写数值、数集或数量关系.由于填空题缺少选项的信息,所以高考题中多数是以定量型问题出现;另一类是定性填写型,要求填写的是具有某种性质的对象或填写给定的数学对象的某种性质,如命题真假的判断等.方法一 直接法对于计算型的试题,多通过直接计算求得结果,这是解决填空题的基本方法.它是直接从题设出发,利用有关性质或结论,通过巧妙地变形,直接得到结果的方法.要善于透过现象抓本质,有意识地采取灵活、简捷的解法解决问题.【例1】 设F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,P 是C 上一点,若PF 1+PF 2=6a ,且△PF 1F 2的最小内角为30°,则C 的离心率为________. 解析 设P 点在双曲线右支上,由题意得⎩⎪⎨⎪⎧PF 1+PF 2=6a ,PF 1-PF 2=2a , 故PF 1=4a ,PF 2=2a ,则PF 2<F 1F 2, 得∠PF 1F 2=30°, 由2a sin 30°=4asin ∠PF 2F 1,得sin ∠PF 2F 1=1,∴∠PF 2F 1=90°,在Rt △PF 2F 1中,2c =(4a )2-(2a )2=23a , ∴e =c a= 3. 答案3探究提高 直接法是解决计算型填空题最常用的方法,在计算过程中,我们要根据题目的要求灵活处理,多角度思考问题,注意一些解题规律和解题技巧的灵活应用,将计算过程简化从而得到结果,这是快速准确地求解填空题的关键.【训练1】 (1)设θ为第二象限角,若tan ⎝ ⎛⎭⎪⎫θ+π4=12,则sin θ+cos θ=________. (2)如图,矩形ABCD 中,点E 为边CD 的中点.若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于________.解析 (1)∵tan ⎝⎛⎭⎪⎫θ+π4=12,∴tan θ=-13,即⎩⎪⎨⎪⎧3sin θ=-cos θ,sin 2θ+cos 2θ=1,又θ为第二象限角, 解得sin θ=1010,cos θ=-31010. ∴sin θ+cos θ=-105. (2)这是一道几何概型的概率问题,点Q 取自△ABE 内部的概率为12·|AB |·|AD ||AB |·|AD |=12.答案 (1)-105 (2)12方法二 特殊值法当填空题已知条件中含有某些不确定的量,但填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以从题中变化的不定量中选取符合条件的恰当特殊值(特殊函数、特殊角、特殊数列、特殊位置、特殊点、特殊方程、特殊模型等)进行处理,从而得出探求的结论.【例2】 (1)若f (x )=12 015x-1+a 是奇函数,则a =________. (2)如图所示,在平行四边形ABCD 中,AP ⊥BD ,垂足为P ,且AP =3,则AP →·AC →=________. 解析 (1)因为函数f (x )是奇函数,且1,-1是其定域内的值,所以f (-1)=-f (1),而f (1)=12 014+a ,f (-1)=12 015-1-1+a =a -2 0152 014.故a -2 0152 014=-⎝ ⎛⎭⎪⎫a +12 014,解得a =12.(2)把平行四边形ABCD 看成正方形,则点P 为对角线的交点,AC =6,则AP →·AC →=18. 答案 (1)12(2)18探究提高 求值或比较大小等问题的求解均可利用特殊值代入法,但要注意此种方法仅限于求解结论只有一种的填空题,对于开放性的问题或者有多种答案的填空题,则不能使用该种方法求解.【训练2】 如图,在△ABC 中,点M 是BC 的中点,过点M 的直线与直线AB 、AC 分别交于不同的两点P 、Q ,若AP →=λAB →,AQ →=μAC →,则1λ+1μ=________.解析 由题意可知,1λ+1μ的值与点P 、Q 的位置无关,而当直线PQ 与直线BC 重合时,则有λ=μ=1,所以1λ+1μ=2.答案 2方法三 图象分析法对于一些含有几何背景的填空题,若能数中思形,以形助数,通过数形结合,往往能迅速作出判断,简捷地解决问题,得出正确的结果.韦恩图、三角函数线、函数的图象及方程的曲线等,都是常用的图形.【例3】 (1)已知函数f (x )=⎩⎪⎨⎪⎧0,x ≤0,e x ,x >0,则使函数g (x )=f (x )+x -m 有零点的实数m 的取值范围是________.(2)已知函数f (x )=⎩⎪⎨⎪⎧|lg x |(0<x ≤10),-12x +6(x >10),若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是________.解析 (1)函数g (x )=f (x )+x -m 的零点就是方程f (x )+x =m 的根,作出h (x )=⎩⎪⎨⎪⎧x ,x ≤0,e x +x ,x >0的图象,观察它与直线y =m 的交点,可知当m ≤0或m >1时有交点,即函数g (x )=f (x )+x -m 有零点.(2)a ,b ,c 互不相等,不妨设a <b <c ,∵f (a )=f (b )=f (c ), 如图所示,由图象可知,0<a <1, 1<b <10,10<c <12.∵f (a )=f (b ),∴|lg a |=|lg b |. 即lg a =lg 1b ,a =1b.则ab =1.所以abc =c ∈(10,12).答案 (1)(-∞,0]∪(1,+∞) (2)(10,12)探究提高 图解法实质上就是数形结合的思想方法在解决填空题中的应用,利用图形的直观性并结合所学知识便可直接得到相应的结论,这也是高考命题的热点.准确运用此类方法的关键是正确把握各种式子与几何图形中的变量之间的对应关系,利用几何图形中的相关结论求出结果.【训练3】 设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c ,x ≤0,2,x >0.若f (-4)=f (0),f (-2)=-2,则函数y =g (x )=f (x )-x 的零点个数为________.解析 由f (-4)=f (0),得16-4b +c =c . 由f (-2)=-2,得4-2b +c =-2. 联立两方程解得b =4,c =2.于是,f (x )=⎩⎪⎨⎪⎧x 2+4x +2,x ≤0,2,x >0.在同一直角坐标系中,作出函数y =f (x )与函数y =x 的图象,知它们有3个交点,即函数g (x )有3个零点. 答案 3 方法四 构造法构造型填空题的求解,需要利用已知条件和结论的特殊性构造出新的数学模型,从而简化推理与计算过程,使较复杂的数学问题得到简捷的解决,它来源于对基础知识和基本方法的积累,需要从一般的方法原理中进行提炼概括,积极联想,横向类比,从曾经遇到过的类似问题中寻找灵感,构造出相应的函数、概率、几何等具体的数学模型,使问题快速解决.【例4】 如图,已知球O 的球面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.解析 如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径,所以|CD |=(2)2+(2)2+(2)2=2R ,所以R =62, 故球O 的体积V =4πR33=6π.答案6π探究提高 构造法实质上是化归与转化思想在解题中的应用,需要根据已知条件和所要解决的问题确定构造的方向,通过构造新的函数、不等式或数列等新的模型,从而转化为自己熟悉的问题.本题巧妙地构造出正方体,而球的直径恰好为正方体的体对角线,问题很容易得到解决.【训练4】 已知a =ln 12 013-12 013,b =ln 12 014-12 014,c =ln 12 015-12 015,则a ,b ,c 的大小关系为________.解析 令f (x )=ln x -x ,则f ′(x )=1x -1=1-xx(x >0).当0<x <1时,f ′(x )>0, 即函数f (x )在(0,1)上是增函数.∵1>12 013>12 014>12 015>0,∴a >b >c .答案 a >b >c 方法五 综合分析法对于开放性的填空题,应根据题设条件的特征综合运用所学知识进行观察、分析,从而得出正确的结论.【例5】 已知f (x )为定义在R 上的偶函数,当x ≥0时,有f (x +1)=-f (x ),且当x ∈[0,1)时,f (x )=log 2(x +1),给出下列命题:①f (2 013)+f (-2 014)的值为0;②函数f (x )在定义域上为周期是2的周期函数;③直线y =x 与函数f (x )的图象有1个交点;④函数f (x )的值域为(-1,1).其中正确的命题序号有________.解析 根据题意,可在同一坐标系中画出直线y =x 和函数f (x )的图象如下:根据图象可知①f(2 013)+f(-2 014)=0正确,②函数f(x)在定义域上不是周期函数,所以②不正确,③根据图象确实只有一个交点,所以正确,④根据图象,函数f(x)的值域是(-1,1),正确.答案①③④探究提高对于规律总结类与综合型的填空题,应从题设条件出发,通过逐步计算、分析总结探究其规律,对于多选型的问题更要注重分析推导的过程,以防多选或漏选.做好此类题目要深刻理解题意,捕捉题目中的隐含信息,通过联想、归纳、概括、抽象等多种手段获得结论.【训练5】定义在R上的函数f(x)是奇函数,且f(x)=f(2-x),在区间[1,2]上是减函数.关于函数f(x)有下列结论:①图象关于直线x=1对称;②最小正周期是2;③在区间[-2,-1]上是减函数;④在区间[-1,0]上是增函数.其中正确结论的序号是________(把所有正确结论的序号都填上).解析由f(x)=f(2-x)可知函数f(x)的图象关于直线x=1对称,故①正确;又函数f(x)为奇函数,其图象关于坐标原点对称,而图象又关于直线x=1对称,故函数f(x)必是一个周期函数,其最小正周期为4×(1-0)=4,故②不正确;因为奇函数在关于原点对称的两个区间上的单调性是相同的,且f(x)在区间[1,2]上是减函数,所以其在区间[-2,-1]上也是减函数,故③正确;④因为函数f(x)关于直线x=1对称,在区间[1,2]上是减函数,而函数在关于对称轴对称的两个区间上的单调性是相反的,故函数在区间[0,1]上为增函数,又由奇函数的性质,可得函数f(x)在区间[-1,0]上是增函数,故④正确.所以正确的结论有①③④.故填①③④.答案①③④1.解填空题的一般方法是直接法,除此以外,对于带有一般性命题的填空题可采用特例法,和图形、曲线等有关的命题可考虑数形结合法.解题时,常常需要几种方法综合使用,才能迅速得到正确的结果.2.解填空题不要求求解过程,从而结论是判断是否正确的唯一标准,因此解填空题时要注意如下几个方面:(1)要认真审题,明确要求,思维严谨、周密,计算有据、准确;(2)要尽量利用已知的定理、性质及已有的结论;(3)要重视对所求结果的检验.规范——解答题的6个解题模板及得分说明1.阅卷速度以秒计,规范答题少丢分高考阅卷评分标准非常细,按步骤、得分点给分,评阅分步骤、采“点”给分.关键步骤,有则给分,无则没分.所以考场答题应尽量按得分点、步骤规范书写.2.不求巧妙用通法,通性通法要强化高考评分细则只对主要解题方法,也是最基本的方法,给出详细得分标准,所以用常规方法往往与参考答案一致,比较容易抓住得分点.3.干净整洁保得分,简明扼要是关键若书写整洁,表达清楚,一定会得到合理或偏高的分数,若不规范可能就会吃亏.若写错需改正,只需划去,不要乱涂乱划,否则易丢分.4.狠抓基础保成绩,分步解决克难题(1)基础题争取得满分.涉及的定理、公式要准确,数学语言要规范,仔细计算,争取前3个解答题及选考不丢分.(2)压轴题争取多得分.第(Ⅰ)问一般难度不大,要保证得分,第(Ⅱ)问若不会,也要根据条件或第(Ⅰ)问的结论推出一些结论,可能就是得分点.模板1 三角问题b =3sin A sin B . (1)求角C ;(2)若S △ABC =3,求边c .解 (1)∵2sin 2C =3sin A sin B ,∴sin 2C =32sin A sin B ,由正弦定理得c 2=32ab ,∵a +b =3c ,∴a 2+b 2+2ab =3c 2, 由余弦定理得cos C =a 2+b 2-c 22ab =2c 2-2ab 2ab =3ab -2ab 2ab =12.∵C ∈(0,π),∴C =π3.(2)∵S △ABC =3,∴S △ABC =12ab sin C ,∵C =π3,∴ab =4,又c 2=32ab =6,∴c = 6.模板2 立体几何问题解题模板ABCD -A 1B 1C 1D 1是正方体,知F ,P 分别是AD ,DD 1(2分) 第一步 找线线:通过中位线、等腰三角形的中线或线面、面面关系【训练2】 如图,在三棱锥V -ABC 中,平面VAB ⊥平面ABC ,△VAB 为等边三角形,AC ⊥BC 且AC =BC =2,O ,M 分别为AB ,VA 的中点. (1)求证:VB ∥平面MOC ; (2)求证:平面MOC ⊥平面VAB ; (3)求三棱锥V -ABC 的体积.(1)证明 因为O ,M 分别为AB ,VA 的中点, 所以OM ∥VB ,又因为MO ⊂平面MOC ,VB ⊄平面MOC , 所以VB ∥平面MOC .(2)证明 因为AC =BC ,O 为AB 的中点,所以OC ⊥AB . 又因为平面VAB ⊥平面ABC ,且OC ⊂平面ABC ,所以OC ⊥平面VAB .又OC ⊂平面MOC ,所以平面MOC ⊥平面VAB . (3)解 在等腰直角三角形ACB 中,AC =BC =2,所以AB =2,OC =1, 所以等边三角形VAB 的面积S △VAB = 3.又因为OC ⊥平面VAB .所以三棱锥C -VAB 的体积等于13·OC ·S △VAB =33,又因为三棱锥V -ABC 的体积与三棱锥C-VAB 的体积相等,所以三棱锥V -ABC 的体积为33. 模板3 实际应用问题最小,并指明此时BC应为多长解题模板【训练3】如图,在C城周边已有两条公路l1,l2在点O处交汇.已知OC=(2+6)km,∠AOB =75°,∠AOC =45°,现规划在公路l 1,l 2上分别选择A ,B 两处为交汇点(异于点O )直接修建一条公路通过C 城.设OA =x km ,OB =y km.(1)求y 关于x 的函数关系式并指出它的定义域; (2)试确定点A ,B 的位置,使△OAB 的面积最小.解 (1)因为△AOC 的面积与△BOC 的面积之和等于△AOB 的面积,所以12x (2+6)sin 45°+12y (2+6)·sin 30°=12xy sin 75 °, 即22x (2+6)+12y (2+6) =6+24xy ,所以y =22xx -2(x >2). (2)△AOB 的面积S =12xy sin 75°=6+28xy=3+12×x 2x -2=3+12(x -2+4x -2+4)≥3+12×8=4(3+1). 当且仅当x =4时取等号,此时y =4 2.故OA =4 km ,OB =4 2 km 时,△OAB 面积的最小值为4(3+1) km 2.模板4 解析几何问题(Ⅰ)证明 设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ).将y =kx +b 代入9x 2+y 2=m 2得(k 2+9)x 2+2kbx +b 2-m 2=0,解此方程后易得:x 1+x 2=-2kbk 2+9,(3分) 故x M =x 1+x 22=-kb k 2+9,y M =kx M +b =9bk 2+9.(5分) 于是直线OM 的斜率k OM =y M x M =-9k,即k OM ·k =-9.所以直线OM 的斜率与l 的斜率的积是定值.(7分)①将直线方程与椭圆方程联立,化为一元二次方程形式得3分; ②利用求根公式表示出中点坐标得2分; ③求出斜率乘积为定值,得出结论得2分;第一步 先假定:假设结论成立. 第二步 再推理:以假设结论成立为条件,进行推理求解. 第三步 下结论:若推出合理结果,经验证成立则肯定假设;若推出矛盾则否定假设.【训练4】 如图,椭圆C :x 2a 2+y 2b2=1(a >b >0)的短轴长为2,点P 为上顶点,圆O :x 2+y 2=b 2将椭圆C 的长轴三等分,直线l :y =mx -45(m ≠0)与椭圆C 交于A ,B 两点,PA ,PB 与圆O 交于M ,N 两点. (1)求椭圆C 的方程; (2)求证△APB 为直角三角形;(3)设直线MN 的斜率为n ,求证mn为定值.(1)解 由已知⎩⎪⎨⎪⎧2b =2,2a =6b ,解得⎩⎪⎨⎪⎧a =3,b =1,所求椭圆方程为x 29+y 2=1.(2)证明 将y =mx -45代入椭圆方程整理得(9m 2+1)x 2-725mx -8125=0.设A (x 1,y 1),B (x 2,y 2),利用求根公式求解上述一元二次方程的根,则x 1+x 2=72m5(9m 2+1),x 1x 2=-8125(9m 2+1). 又P (0,1),∴PA →·PB →=(x 1,y 1-1)·(x 2,y 2-1) =x 1x 2+(y 1-1)(y 2-1)=x 1x 2+(mx 1-95)(mx 2-95)=(m 2+1)x 1x 2-95m (x 1+x 2)+8125=-81(m 2+1)25(9m 2+1)-648m 225(9m 2+1)+8125=0, 因此PA ⊥PB ,则△APB 为直角三角形.(3)证明 由(2)知直线MN 方程为y =nx ,代入x 2+y 2=1,得(n 2+1)x 2-1=0.设M (x 3,y 3),N (x 4,y 4),则⎩⎪⎨⎪⎧x 3+x 4=0,x 3x 4=-1n 2+1,y 1-1x 1=y 3-1x 3,① y 2-1x 2=y 4-1x 4.② 两式相加整理得2m -95·x 1+x 2x 1x 2=2n ,可求得m n =15.模板5 函数与导数问题【训练5】 (2016·苏、锡、常、镇调研)设函数f (x )=ln x +x,m ∈R . (1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3零点的个数;(3)若对任意b >a >0,f (b )-f (a )b -a<1恒成立,求m 的取值范围.解 (1)由题设,当m =e 时,f (x )=ln x +e x,则f ′(x )=x -ex2(x >0), ∴当x ∈(0,e),f ′(x )<0,f (x )在(0,e)上单调递减, 当x ∈(e ,+∞),f ′(x )>0,f (x )在(e ,+∞)上单调递增, ∴x =e 时,f (x )取得极小值f (e)=ln e +ee =2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增; 当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点. ∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图象(如图), 可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.(3)对任意的b >a >0,f (b )-f (a )b -a<1恒成立,等价于f (b )-b <f (a )-a 恒成立.(*) 设h (x )=f (x )-x =ln x +m x-x (x >0), ∴(*)等价于h (x )在(0,+∞)上单调递减. 由h ′(x )=1x -mx2-1≤0在(0,+∞)上恒成立,得m ≥-x 2+x =-⎝ ⎛⎭⎪⎫x -122+14(x >0)恒成立,∴m ≥14(对m =14,h ′(x )=0仅在x =12时成立),∴m 的取值范围是⎣⎢⎡⎭⎪⎫14,+∞. 模板6 数列问题【训练6】 已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100. (1)求数列{a n }的通项公式; (2)求数列{a n ·2a n }的前n 项和.解 (1)设等差数列{a n }的公差为d ,由已知得 ⎩⎪⎨⎪⎧2a 2+a 3+a 5=4a 1+8d =20,10a 1+10×92d =10a 1+45d =100, 解得⎩⎪⎨⎪⎧a 1=1,d =2.所以数列a n 的通项公式为a n =1+2(n -1)=2n -1. (2)由(1)可知a n ·2a n =(2n -1)·22n -1,所以S n =1×21+3×23+5×25+…+(2n -3)×22n -3+(2n -1)×22n -1,①4S n =1×23+3×25+5×27+…+(2n -3)×22n -1+(2n -1)×22n +1,②①-②得:-3S n =2+2×(23+25+…+22n -1)-(2n -1)×22n +1.∴S n =2+2×(23+25+…+22n -1)-(2n -1)×22n +1-3=2+2×8(1-4n -1)1-4-(2n -1)×22n +1-3=-6+2×8(1-4n -1)+(6n -3)×22n +19=109+(6n -5)·22n +19.回扣——回归教材,查缺补漏,清除得分障碍1.集合与常用逻辑用语1.集合的元素具有确定性、无序性和互异性,在解决有关集合的问题时,尤其要注意元素的互异性.[回扣问题1] 集合A ={a ,b ,c }中的三个元素分别表示某一个三角形的三边长度,那么这个三角形一定不是________.(填等腰三角形、锐角三角形、直角三角形、钝角三角形) 答案 等腰三角形2.描述法表示集合时,一定要理解好集合的含义——抓住集合的代表元素.如:{x |y =lg x }——函数的定义域;{y |y =lg x }——函数的值域;{(x ,y )|y =lg x }——函数图象上的点集. [回扣问题2] 集合A ={x |x +y =1},B ={(x ,y )|x -y =1},则A ∩B =________. 答案 ∅3.遇到A ∩B =∅时,你是否注意到“极端”情况:A =∅或B =∅;同样在应用条件A ∪B =B ⇔A ∩B =A ⇔A ⊆B 时,不要忽略A =∅的情况.[回扣问题3] 集合A ={x |ax -1=0},B ={x |x 2-3x +2=0},且A ∪B =B ,则实数a =________. 答案 0,1,124.对于含有n 个元素的有限集合M ,其子集、真子集、非空子集、非空真子集的个数依次为2n ,2n -1,2n -1,2n-2. [回扣问题4] 满足{1,2}M ⊆{1,2,3,4,5}的集合M 有________个.答案 75.注重数形结合在集合问题中的应用,列举法常借助Venn 图解题,描述法常借助数轴来运算,求解时要特别注意端点值.[回扣问题5] 已知全集I =R ,集合A ={x |y =1-x },集合B ={x |0≤x ≤2},则(∁I A )∪B 等于________. 答案 [0,+∞)6.“否命题”是对原命题“若p ,则q ”既否定其条件,又否定其结论;而“命题p 的否定”即:非p ,只是否定命题p 的结论.[回扣问题6] 已知实数a 、b ,若|a |+|b |=0,则a =b .该命题的否命题和命题的否定分别是____________________________________________________________. 答案 否命题:已知实数a 、b ,若|a |+|b |≠0,则a ≠b ; 命题的否定:已知实数a 、b ,若|a |+|b |=0,则a ≠b7.在否定条件或结论时,应把“且”改成“或”、“或”改成“且”. [回扣问题7] 若“x 2-3x -4>0,则x >4或x <-1”的否命题是_________. 答案 若x 2-3x -4≤0,则-1≤x ≤48.要弄清先后顺序:“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A .[回扣问题8] 设集合M ={1,2},N ={a 2},则“a =1”是“N ⊆M ”的________条件. 答案 充分不必要9.要注意全称命题的否定是特称命题(存在性命题),特称命题(存在性命题)的否定是全称命题.如对“a ,b 都是偶数”的否定应该是“a ,b 不都是偶数”,而不应该是“a ,b 都是奇数”.求参数范围时,常与补集思想联合应用,即体现了正难则反思想.[回扣问题9] 若存在a ∈[1,3],使得不等式ax 2+(a -2)x -2>0成立,则实数x 的取值范围是________________________________________________________.解析 原不等式即(x 2+x )a -2x -2>0,设f (a )=(x 2+x )a -2x -2.研究“任意a ∈[1,3],恒有f (a )≤0”.则⎩⎪⎨⎪⎧f (1)≤0,f (3)≤0,即⎩⎪⎨⎪⎧x 2-x -2≤0,3x 2+x -2≤0, 解得x ∈⎣⎢⎡⎦⎥⎤-1,23,则符合题设条件的实数x 的取值范围是(-∞,-1)∪⎝ ⎛⎭⎪⎫23,+∞.答案 (-∞,-1)∪⎝ ⎛⎭⎪⎫23,+∞ 10.复合命题真假的判断.“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“真假相反”. [回扣问题10] 在下列说法中:(1)“p 且q 为真”是“p 或q 为真”的充分不必要条件; (2)“p 且q 为假”是“p 或q 为真”的充分不必要条件; (3)“p 或q 为真”是“非p 为假”的必要不充分条件; (4)“非p 为真”是“p 且q 为假”的必要不充分条件. 其中正确的是________(填序号). 答案 (1)(3)2.函数与导数1. 函数是非空数集到非空数集的映射,作为一个映射,就必须满足映射的条件,“每元有象,且象唯一”只能一对一或者多对一,不能一对多.[回扣问题1] 若A ={1,2,3},B ={4,1},则从A 到B 的函数共有________个;其中以B 为值域的函数共有______个. 答案 8 62.求函数的定义域,关键是依据含自变量x 的代数式有意义来列出相应的不等式(组)求解,如开偶次方根,被开方数一定是非负数;对数式中的真数是正数;列不等式时,应列出所有的不等式,不应遗漏.若f (x )定义域为[a ,b ],复合函数f [g (x )]定义域由a ≤g (x )≤b 解出;若f [g (x )]定义域为[a ,b ],则f (x )定义域相当于x ∈[a ,b ]时g (x )的值域.[回扣问题2] 已知f (x )=-x 2+10x -9,g (x )=[f (x )]2+f (x 2)的定义域为________. 答案 [1,3]3.求函数解析式的主要方法:(1)代入法;(2)待定系数法;(3)换元(配凑)法;(4)解方程法等. [回扣问题3] 已知f (x )-4f (1x)=-15x ,则f (x )=________.答案 x +4x4.分段函数是在其定义域的不同子集上,分别用不同的式子来表示对应关系的函数,它是一个函数,而不是几个函数.[回扣问题4] 已知函数f (x )=⎩⎪⎨⎪⎧2x 3,x <0-tan x ,0≤x <π2,则f (f (π4))=________.答案 -2 5.函数的奇偶性f (x )是偶函数⇔f (-x )=f (x )=f (|x |); f (x )是奇函数⇔f (-x )=-f (x );定义域含0的奇函数满足f (0)=0;定义域关于原点对称是函数为奇函数或偶函数的必要不充分的条件;判断函数的奇偶性,先求定义域,再找f (x )与f (-x )的关系.[回扣问题5] 函数f (x )是定义域为R 的奇函数,当x >0时,f (x )=x (1+x )+1,求f (x )的解析式.答案 f (x )=⎩⎪⎨⎪⎧x (1+x )+1,x >00,x =0-x 2+x -1,x <06.函数的周期性由周期函数的定义“函数f (x )满足f (x )=f (a +x )(a >0),则f (x )是周期为a 的周期函数”得:①函数f (x )满足-f (x )=f (a +x ),则f (x )是周期为2a 的周期函数; ②若f (x +a )=1f (x )(a ≠0)成立,则T =2a ; ③若f (x +a )=-1f (x )(a ≠0)恒成立,则T =2a . [回扣问题6] 设f (x )是R 上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,则f (47.5)等于______. 答案 -0.5 7.函数的单调性①定义法:设x 1,x 2∈[a ,b ],x 1≠x 2那么 (x 1-x 2)[f (x 1)-f (x 2)]>0⇔f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在[a ,b ]上是增函数;(x 1-x 2)[f (x 1)-f (x 2)]<0⇔f (x 1)-f (x 2)x 1-x 2<0⇔f (x )在[a ,b ]上是减函数;②导数法:注意f ′(x )>0能推出f (x )为增函数,但反之不一定.如函数f (x )=x 3在 (-∞,+∞)上单调递增,但f ′(x )≥0;∴f ′(x )>0是f (x )为增函数的充分不必要条件. ③复合函数由同增异减的判定法则来判定.④求函数单调区间时,多个单调区间之间不能用符号“∪”和“或”连接,可用“和”连接,或用“,”隔开.单调区间必须是“区间”,而不能用集合或不等式代替. [回扣问题7] 函数f (x )=x 3-3x 的单调递增区间是________.答案 (-∞,-1),(1,+∞) 8.求函数最值(值域)常用的方法:(1)单调性法:适合于已知或能判断单调性的函数; (2)图象法:适合于已知或易作出图象的函数; (3)基本不等式法:特别适合于分式结构或两元的函数; (4)导数法:适合于可导函数; (5)换元法(特别注意新元的范围); (6)分离常数法:适合于一次分式;(7)有界函数法:适用于含有指、对数函数或正、余弦函数的式子.无论用什么方法求最值,都要考查“等号”是否成立,特别是基本不等式法,并且要优先考虑定义域. [回扣问题8] 函数y =2x2x +1(x ≥0)的值域为________.答案 ⎣⎢⎡⎭⎪⎫12,1 9.常见的图象变换 (1)平移变换①函数y =f (x +a )的图象是把函数y =f (x )的图象沿x 轴向左(a >0)或向右(a <0)平移|a |个单位得到的.②函数y =f (x )+a 的图象是把函数y =f (x )的图象沿y 轴向上(a >0)或向下(a <0)平移|a |个单位得到的. (2)伸缩变换①函数y =f (ax )(a >0)的图象是把函数y =f (x )的图象沿x 轴伸缩为原来的1a得到的.②函数y =af (x )(a >0)的图象是把函数y =f (x )的图象沿y 轴伸缩为原来的a 倍得到的. (3)对称变换①证明函数图象的对称性,即证图象上任意点关于对称中心(轴)的对称点仍在图象上; ②函数y =f (x )与y =-f (-x )的图象关于原点成中心对称;③函数y =f (x )与y =f (-x )的图象关于直线x =0(y 轴)对称;函数y =f (x )与函数y =-f (x )的图象关于直线y =0(x 轴)对称. [回扣问题9] 要得到y =lgx +310的图象,只需将y =lg x 的图象________.答案 向左平移3个单位,再向下平移1个单位 10.二次函数问题(1)处理二次函数的问题勿忘数形结合,二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向,二看对称轴与所给区间的相对位置关系.(2)二次函数解析式的三种形式: ①一般式:f (x )=ax 2+bx +c (a ≠0); ②顶点式:f (x )=a (x -h )2+k (a ≠0); ③零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0).(3)一元二次方程实根分布:先观察二次项系数、Δ与0的关系、对称轴与区间关系及有穷区间端点函数值符号,再根据上述特征画出草图.尤其注意若原题中没有指出是“二次”方程、函数或不等式,要考虑到二次项系数可能为零的情形.[回扣问题10] 若关于x 的方程ax 2-x +1=0至少有一个正根,则a 的范围为________. 答案 ⎝ ⎛⎦⎥⎤-∞,1411.指、对数函数 (1)对数运算性质已知a >0且a ≠1,b >0且b ≠1,M >0,N >0,m ,n ∈R . 则log a (MN )=log a M +log a N ,log a M N=log a M -log a N ,log a M n=n log a M , 对数换底公式:log a N =log b Nlog b a.推论:log am N n=n m log a N ;log a b =1log b a.(2)指数函数与对数函数的图象与性质可从定义域、值域、单调性、函数值的变化情况考虑,特别注意底数的取值对有关性质的影响,另外,指数函数y =a x的图象恒过定点(0,1),对数函数y =log a x 的图象恒过定点(1,0).[回扣问题11] 设a =log 36,b =log 510,c =log 714,则a ,b ,c 的大小关系是________. 答案 a >b >c 12.幂函数形如y =x α(α∈R )的函数为幂函数. (1)①若α=1,则y =x ,图象是直线.②当α=0时,y =x 0=1(x ≠0)图象是除点(0,1)外的直线.③当0<α<1时,图象过(0,0)与(1,1)两点,在第一象限内是上凸的. ④当α>1时,在第一象限内,图象是下凸的.(2)增减性:①当α>0时,在区间(0,+∞)上,函数y =x α是增函数,②当α<0时,在区间(0,+∞)上,函数y =x α是减函数.[回扣问题12] 函数f (x )=x 12-⎝ ⎛⎭⎪⎫12x的零点个数为________.答案 1 13.函数与方程(1)函数y =f (x )的零点就是方程f (x )=0的根,也是函数y =f (x )的图象与x 轴交点的横坐标.(2)y =f (x )在[a ,b ]上的图象是一条连续不断的曲线,且f (a )f (b )<0,那么f (x )在(a ,b )内至少有一个零点,即至少存在一个x 0∈(a ,b )使f (x 0)=0.这个x 0也就是方程f (x )=0的根.(3)用二分法求函数零点[回扣问题13] (判断题)函数f (x )=2x+3x 的零点所在的一个区间是(-1,0).( ) 答案 √14.导数的几何意义和物理意义(1)函数y =f (x )在点x 0处的导数的几何意义:函数y =f (x )在点x 0处的导数是曲线y =f (x )在P (x 0,f (x 0))处的切线的斜率f ′(x 0),相应的切线方程是y -y 0=f ′(x 0)(x -x 0). (2)v =s ′(t )表示t 时刻即时速度,a =v ′(t )表示t 时刻加速度. 注意:过某点的切线不一定只有一条.[回扣问题14] 已知函数f (x )=x 3-3x ,过点P (2,-6)作曲线y =f (x )的切线,则此切线的方程是________.答案 3x +y =0或24x -y -54=015.利用导数判断函数的单调性:设函数y =f (x )在某个区间内可导,如果f ′(x )>0,那么f (x )在该区间内为增函数;如果f ′(x )<0,那么f (x )在该区间内为减函数;如果在某个区间内恒有f ′(x )=0,那么f (x )在该区间内为常数.注意:如果已知f (x )为减函数求参数取值范围,那么不等式f ′(x )≤0恒成立,但要验证f ′(x )是否恒等于0.增函数亦如此.[回扣问题15] 函数f (x )=ax 3-x 2+x -5在R 上是增函数,则a 的取值范围是________. 解析 f (x )=ax 3-x 2+x -5的导数f ′(x )=3ax 2-2x +1.由f ′(x )=3ax 2-2x +1≥0,得⎩⎪⎨⎪⎧a >0,Δ=4-12a ≤0,解得a ≥13.a =13时,f ′(x )=(x -1)2≥0,且只有x =1时,f ′(x )=0,∴a =13符合题意.答案 ⎣⎢⎡⎭⎪⎫13,+∞16.导数为零的点并不一定是极值点,例如:函数f (x )=x 3,有f ′(0)=0,但x =0不是极值点.[回扣问题16] 函数f (x )=14x 4-13x 3的极值点是________.答案 x =13.三角函数与平面向量1.α终边与θ终边相同(α的终边在θ终边所在的射线上)⇔α=θ+2k π(k ∈Z ),注意:相等的角的终边一定相同,终边相同的角不一定相等.任意角的三角函数的定义:设α是任意一个角,P (x ,y )是α的终边上的任意一点(异于原点),它与原点的距离是r =x 2+y 2>0,那么sin α=y r ,cos α=x r,tan α=y x,(x ≠0),三角函数值只与角的大小有关,而与终边上点P 的位置无关. [回扣问题1] 已知角α的终边经过点P (3,-4),则sin α+cos α的值为______. 答案 -152.同角三角函数的基本关系式及诱导公式 (1)平方关系:sin 2α+cos 2α=1. (2)商数关系:tan α=sin αcos α.(3)诱导公式记忆口诀:奇变偶不变、符号看象限[回扣问题2] cos 4+tan ⎝ ⎛⎭⎪⎫-6+sin 21π的值为______. 答案22-333.三角函数的图象与性质(1)五点法作图(一个最高点,一个最低点,三个平衡位置点);(2)对称轴:y =sin x ,x =k π+π2,k ∈Z ;y =cos x ,x =k π,k ∈Z ;对称中心:y =sin x ,(k π,0),k ∈Z ;y =cos x ,⎝ ⎛⎭⎪⎫k π+π2,0,k ∈Z ,y =tan x ,⎝ ⎛⎭⎪⎫k π2,0,k ∈Z . (3)单调区间:y =sin x 的增区间:⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π(k ∈Z ),减区间:⎣⎢⎡⎦⎥⎤π2+2k π,3π2+2k π(k ∈Z ); y =cos x 的增区间:[-π+2k π,2k π](k ∈Z ),减区间:[2k π,π+2k π](k ∈Z );y =tan x 的增区间:⎝ ⎛⎭⎪⎫-π2+k π,π2+k π(k ∈Z ).(4)周期性与奇偶性:y =sin x 的最小正周期为2π,为奇函数;y =cos x 的最小正周期为2π,为偶函数;y =tan x 的最小正周期为π,为奇函数.[回扣问题3] 函数y =sin ⎝ ⎛⎭⎪⎫-2x +π3的递减区间是________.答案 ⎣⎢⎡⎦⎥⎤k π-π12,k π+512π(k ∈Z )4.两角和与差的正弦、余弦、正切公式及倍角公式 sin(α±β)=sin αcos β±cos αsin β――→令α=βsin 2α=2sin αcos α.cos(α±β)=cos αcos β∓sin αsin β――→令α=βcos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. tan(α±β)=tan α±tan β1∓tan αtan β.cos 2α=1+cos 2α2,sin 2α=1-cos 2α2,tan 2α=2 tan α 1-tan 2α. [回扣问题4] cos(π4+x )=35,17π12<x <7π4,则sin 2x -2sin 2x1-tan x =________.答案7255.在三角恒等变形中,注意常见的拆角、拼角技巧,如: α=(α+β)-β,2α=(α+β)+(α-β); α=12[(α+β)+(α-β)];α+π4=(α+β)-⎝ ⎛⎭⎪⎫β-π4, α=⎝⎛⎭⎪⎫α+π4-π4.。
创新设计(江苏专用)2017届高考数学二轮复习 上篇 专题整合突破 专题三 数列 第2讲 数列的
专题三 数列 第2讲 数列的综合应用练习 文一、填空题1.(2015·全国Ⅱ卷)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =____________.解析 由题意,得S 1=a 1=-1,又由a n +1=S n S n +1,得S n +1-S n =S n S n +1,所以S n ≠0,所以S n +1-S n S n S n +1=1,即1S n +1-1S n =-1,故数列⎩⎨⎧⎭⎬⎫1S n 是以1S 1=-1为首项,-1为公差的等差数列,得1S n =-1-(n -1)=-n ,所以S n =-1n.答案 -1n2.(2012·江苏卷改编)各项均为正数的等比数列{a n }满足a 1a 7=4,a 6=8,若函数f (x )=a 1x +a 2x 2+a 3x 3+…+a 10x 10的导数为f ′(x ),则f ′⎝ ⎛⎭⎪⎫12=________.解析 因为各项均为正数的等比数列{a n }满足a 1a 7=4,a 6=8,所以a 4=2,q =2,故a n =2n -3,又f ′(x )=a 1+2a 2x +3a 3x 2+…+10a 10x 9,所以f ′⎝ ⎛⎭⎪⎫12=2-2+2×2-2+3×2-2+…+10×2-2=2-2×10×112=554.答案5543.已知数列{a n }满足a 1=0,a 2=1,a n +2=3a n +1-2a n ,则{a n }的前n 项和S n =________. 解析 ∵a n +2=3a n +1-2a n ,∴a n +2-a n +1=2(a n +1-a n ), ∴a n +2-a n +1a n +1-a n=2,∴数列{a n +1-a n }是以1为首项,2为公比的等比数列, ∴a n +1-a n =2n -1,∴a 2-a 1=20,a 3-a 2=21,a 4-a 3=22,…,a n -a n -1=2n -2,∴a n -a 1=20+21+…+2n -2=1-2n -11-2=2n -1-1,∴a n =2n -1-1,∴S n =(20+21+…+2n -1)-n =1-2n1-2-n =2n-n -1.答案 2n-n -14.(2015·南京、盐城模拟)已知等比数列{a n }的首项为43,公比为-13,其前n 项和为S n ,若A ≤S n -1S n≤B 对n ∈N *恒成立,则B -A 的最小值为________.解析 依题意得S n =43⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-13n 1-⎝ ⎛⎭⎪⎫-13=1-⎝ ⎛⎭⎪⎫-13n ,当n 为奇数时,S n =1+⎝ ⎛⎭⎪⎫13n∈⎝ ⎛⎦⎥⎤1,43; 当n 为偶数时,S n =1-⎝ ⎛⎭⎪⎫13n∈⎣⎢⎡⎭⎪⎫89,1. 由函数y =x -1x 在(0,+∞)上是增函数得S n -1S n 的取值范围是⎣⎢⎡⎭⎪⎫-1772,0∪⎝ ⎛⎦⎥⎤0,712,因此有A ≤-1772,B ≥712,B -A ≥712+1772=5972,即B -A 的最小值是5972.答案59725.数列{a n }的通项a n =n 2⎝⎛⎭⎪⎫cos 2n π3-sin2n π3,其前n 项和为S n ,则S 30为________.解析 因为a n =n 2⎝⎛⎭⎪⎫cos2n π3-sin 2n π3=n 2cos 2n π3, 由于cos 2n π3以3为周期,且cos 2π3=-12,cos 4π3=-12,cos 6π3=1,所以S 30=(a 1+a 2+a 3)+(a 4+a 5+a 6)+…+(a 28+a 29+a 30)=⎝ ⎛⎭⎪⎫-12+222+32+⎝ ⎛⎭⎪⎫-42+522+62+…+⎝ ⎛⎭⎪⎫-282+2922+302 =∑k =110⎣⎢⎡⎦⎥⎤-(3k -2)2+(3k -1)22+(3k )2 =∑k =110⎝⎛⎭⎪⎫9k -52=470.答案 470 二、解答题6.数列{a n }满足a n =2a n -1+2n+1(n ∈N *,n ≥2),a 3=27. (1)求a 1,a 2的值;(2)是否存在一个实数t ,使得b n =12n (a n +t )(n ∈N *),且数列{b n }为等差数列?若存在,求出实数t ;若不存在,请说明理由; (3)求数列{a n }的前n 项和S n .解 (1)由a 3=27,得27=2a 2+23+1,∴a 2=9,∵9=2a 1+22+1,∴a 1=2. (2)假设存在实数t ,使得{b n }为等差数列,则2b n =b n -1+b n +1,(n ≥2且n ∈N *) ∴2×12n (a n +t )=12n -1(a n -1+t )+12n +1(a n +1+t ),∴4a n =4a n -1+a n +1+t , ∴4a n =4×a n -2n -12+2a n +2n +1+1+t ,∴t =1.即存在实数t =1,使得{b n }为等差数列. (3)由(1),(2)得b 1=32,b 2=52,∴b n =n +12,∴a n =⎝ ⎛⎭⎪⎫n +12·2n -1=(2n +1)2n -1-1,S n =(3×20-1)+(5×21-1)+(7×22-1)+…+[(2n +1)×2n -1-1]=3+5×2+7×22+…+(2n +1)×2n -1-n ,①∴2S n =3×2+5×22+7×23+…+(2n +1)×2n-2n ,② 由①-②得-S n =3+2×2+2×22+2×23+…+2×2n -1-(2n +1)×2n+n =1+2×1-2n1-2-(2n +1)×2n+n =(1-2n )×2n +n -1, ∴S n =(2n -1)×2n-n +1.7.(2012·江苏卷)已知各项均为正数的两个数列{a n }和{b n }满足:a n +1=a n +b n a 2n +b 2n,n ∈N *. (1)设b n +1=1+b n a n ,n ∈N *,求证:数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫⎝ ⎛⎭⎪⎫b n a n 2是等差数列; (2)设b n +1=2·b n a n,n ∈N *,且{a n }是等比数列,求a 1和b 1的值.(1)证明 由题设知a n +1=a n +b na 2n +b 2n=1+b n a n1+⎝ ⎛⎭⎪⎫b n a n 2=b n +11+⎝ ⎛⎭⎪⎫b n a n 2,所以b n +1a n +1=1+⎝ ⎛⎭⎪⎫b n a n 2,从而⎝ ⎛⎭⎪⎫b n +1a n +12-⎝ ⎛⎭⎪⎫b n a n 2=1(n ∈N *),所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫⎝ ⎛⎭⎪⎫b n a n 2是以1为公差的等差数列. (2)解 因为a n >0,b n >0, 所以(a n +b n )22≤a 2n +b 2n <(a n +b n )2,从而1<a n +1=a n +b na 2n +b 2n≤ 2.(*)设等比数列{a n }的公比为q ,由a n >0知q >0.下证q =1. 若q >1,则a 1=a 2q<a 2≤2,故当n >log q2a 1时,a n +1=a 1q n>2,与(*)矛盾;若0<q <1,则a 1=a 2q>a 2>1,故当n >log q 1a 1时,a n +1=a 1q n<1,与(*)矛盾.综上,q =1,故a n =a 1(n ∈N *), 所以1<a 1≤ 2. 又b n +1=2·b n a n=2a 1·b n (n ∈N *),所以{b n }是公比为2a 1的等比数列.若a 1≠2,则2a 1>1,于是b 1<b 2<b 3.又由a 1=a 1+b n a 21+b 2n得b n =a 1±a 212-a 21a 21-1(n ∈N *),所以b 1,b 2,b 3中至少有两项相同,矛盾,所以a 1=2,从而b n =a 1±a 212-a 21a 21-1= 2.所以a 1=b 1= 2.8.(2013·江苏卷)设{a n }是首项为a ,公差为d 的等差数列(d ≠0),S n 是其前n 项的和.记b n =nS nn 2+c,n ∈N *,其中c 为实数.(1)若c =0,且b 1,b 2,b 4成等比数列,证明:S nk =n 2S k (k ,n ∈N *); (2)若{b n }是等差数列,证明:c =0. 证明 由题设,S n =na +n (n -1)2d .(1)由c =0,得b n =S n n =a +n -12d .又b 1,b 2,b 4成等比数列,所以b 22=b 1b 4,即⎝ ⎛⎭⎪⎫a +d 22=a ⎝⎛⎭⎪⎫a +32d ,化简得d 2-2ad =0.因为d ≠0,所以d =2a . 因此,对于所有的m ∈N *,有S m =m 2a .从而对于所有的k ,n ∈N *,有S nk =(nk )2a =n 2k 2a =n 2S k . (2)设数列{b n }的公差为d 1,则b n =b 1+(n -1)d 1,即nS n n 2+c=b 1+(n -1)d 1,n ∈N *,代入S n 的表达式,整理得,对于所有的n ∈N *,有⎝⎛⎭⎪⎫d 1-12d n 3+(b 1-d 1-a +12d )n 2+cd 1n =c (d 1-b 1).令A =d 1-12d ,B =b 1-d 1-a +12d ,D =c (d 1-b 1),则对于所有的n ∈N *,有An 3+Bn 2+cd 1n=D .(*)在(*)式中分别取n =1,2,3,4,得A +B +cd 1=8A +4B +2cd 1=27A +9B +3cd 1=64A +16B +4cd 1,从而有⎩⎪⎨⎪⎧7A +3B +cd 1=0,①19A +5B +cd 1=0,②21A +5B +cd 1=0,③由②,③得A =0,cd 1=-5B ,代入方程①,得B =0,从而cd 1=0.即d 1-12d =0,b 1-d 1-a +12d =0,cd 1=0.若d 1=0,则由d 1-12d =0,得d =0,与题设矛盾,所以d 1≠0.又cd 1=0,所以c =0.9.(2016·盐城模拟)已知数列{a n }满足a 1=m ,a n +1=⎩⎪⎨⎪⎧2a n ,n =2k -1,a n +r ,n =2k (k ∈N *,r ∈R ),其前n 项和为S n .(1)当m 与r 满足什么关系时,对任意的n ∈N *,数列{a n }都满足a n +2=a n?(2)对任意实数m ,r ,是否存在实数p 与q ,使得{a 2n +1+p }与{a 2n +q }是同一个等比数列.若存在,请求出p ,q 满足的条件;若不存在,请说明理由;(3)当m =r =1时,若对任意的n ∈N *,都有S n ≥λa n ,求实数λ的最大值. 解 (1)由题意得a 1=m ,a 2=2a 1=2m ,a 3=a 2+r =2m +r , 由a 3=a 1,得m +r =0.当m +r =0时,因为a n +1=⎩⎪⎨⎪⎧2a n ,n =2k -1,a n -m ,n =2k (k ∈N *),所以a 1=a 3=…=m ,a 2=a 4=…=2m ,故对任意的n ∈N *,数列{a n }都满足a n +2=a n . 即当实数m ,r 满足m +r =0时,符合题意. (2)存在.依题意,a 2n +1=a 2n +r =2a 2n -1+r , 则a 2n +1+r =2(a 2n -1+r ), 因为a 1+r =m +r ,所以当m +r ≠0时,{a 2n +1+r }是等比数列,且a 2n +1+r =(a 1+r )2n=(m +r )2n. 为使{a 2n +1+p }是等比数列,则p =r .同理,当m +r ≠0时,a 2n +2r =(m +r )2n,{a 2n +2r }是等比数列,欲使{a 2n +q }是等比数列,则q =2r . 综上所述,①若m +r =0,则不存在实数p ,q ,使得{a 2n +1+p }与{a 2n +q }是等比数列;②若m +r ≠0,则当p ,q 满足q =2p =2r 时,{a 2n +1+p }与{a 2n +q }是同一个等比数列. (3)当m =r =1时,由(2)可得a 2n -1=2n-1,a 2n =2n +1-2,当n =2k 时,a n =a 2k =2k +1-2,S n =S 2k =(21+22+…+2k )+(22+23+…+2k +1)-3k=3(2k +1-k -2),所以S na n =3⎝ ⎛⎭⎪⎫1-k2k +1-2.令c k =k 2k +1-2,则c k +1-c k =k +12k +2-2-k2k +1-2=(1-k )2k +1-2(2k +2-2)(2k +1-2)<0, 所以S n a n ≥32,即λ≤32.当n =2k -1时,a n =a 2k -1=2k-1,S n =S 2k -a 2k =3(2k +1-k -2)-(2k +1-2)=2k +2-3k -4,所以S n a n =4-3k2k-1, 同理可得S n a n≥1,即λ≤1. 综上所述,实数λ的最大值为1.。
《创新设计》2017届高考数学(文)二轮复习(江苏专用)Word版训练+专题七+数学思想方法+第2讲
一、填空题1.等比数列{a n }中,a 3=7,前3项之和S 3=21,则公比q 的值是________. 解析 当公比q =1时,a 1=a 2=a 3=7,S 3=3a 1=21,符合要求.当q ≠1时,a 1q 2=7,a 1(1-q 3)1-q=21,解之得,q =-12或q =1(舍去).综上可知,q =1或-12.答案 1或-122.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)上任意一点P ,引与实轴平行的直线,交两渐近线于R ,Q 两点,则PR→·PQ →的值为________. 解析 当直线PQ 与x 轴重合时,|PR→|=|PQ →|=a . 答案 a 23.方程sin 2x +cos x +k =0有解,则k 的取值范围是________.解析 求k =-sin 2x -cos x 的值域.k =cos 2x -cos x -1=⎝ ⎛⎭⎪⎫cos x -122-54. 当cos x =12时,k min =-54,当cos x =-1时,k max =1,∴-54≤k ≤1.答案 ⎣⎢⎡⎦⎥⎤-54,1 4.若数列{a n }的前n 项和S n =3n -1,则它的通项公式a n =________.解析 当n ≥2时,a n =S n -S n -1=3n -1-(3n -1-1)=2×3n -1;当n =1时,a 1=S 1=2,也满足式子a n =2×3n -1, ∴数列{a n }的通项公式为a n =2×3n -1.答案 2×3n -15.已知a 为正常数,若不等式1+x ≥1+x 2-x 22a 对一切非负实数x 恒成立,则a 的最大值为________.解析 原不等式即x 22a ≥1+x 2-1+x (x ≥0),(*) 令1+x =t ,t ≥1,则x =t 2-1,所以(*)式可化为(t 2-1)22a ≥1+t 2-12-t =t 2-2t +12=(t -1)22对t ≥1恒成立, 所以(t +1)2a≥1对t ≥1恒成立, 又a 为正常数,所以a ≤[(t +1)2]min =4,故a 的最大值是4.答案 46.已知△ABC 和点M 满足MA→+MB →+MC →=0.若存在实数k 使得CA →+CB →=kCM →成立,则k 等于________.解析 ∵MA→+MB →+MC →=0, ∴M 为已知△ABC 的重心,取AB 的中点D ,∴CA →+CB →=2CD →=2×32CM →=3CM →, ∵CA→+CB →=kCM →,∴k =3. 答案 37.设F 1,F 2为椭圆x 29+y 24=1的两个焦点,P 为椭圆上一点.已知P ,F 1,F 2是一个直角三角形的三个顶点,且PF 1>PF 2,则PF 1PF 2的值为________. 解析 若∠PF 2F 1=90°,则PF 21=PF 22+F 1F 22,∵PF 1+PF 2=6,F 1F 2=25,解得PF 1=143,PF 2=43,∴PF 1PF 2=72. 若∠F 2PF 1=90°,则F 1F 22=PF 21+PF 22=PF 21+(6-PF 1)2,解得PF 1=4,PF 2=2,∴PF 1PF 2=2. 综上所述,PF 1PF 2=2或72. 答案 2或728.已知函数f (x )=ln x -14x +34x -1,g (x )=-x 2+2bx -4,若对任意的x 1∈(0,2),任意的x 2∈[1,2],不等式f (x 1)≥g (x 2)恒成立,则实数b 的取值范围是________. 解析 依题意,问题等价于f (x 1)min ≥g (x 2)max ,f (x )=ln x -14x +34x -1(x >0),所以f ′(x )=1x -14-34x 2=4x -x 2-34x 2.由f ′(x )>0,解得1<x <3,故函数f (x )单调递增区间是(1,3),同理得f (x )的单调递减区间是(0,1)和(3,+∞),故在区间(0,2)上,x =1是函数f (x )的极小值点,这个极小值点是唯一的,所以f (x 1)min =f (1)=-12.函数g (x 2)=-x 22+2bx 2-4,x 2∈[1,2].当b <1时,g (x 2)max =g (1)=2b -5;当1≤b ≤2时,g (x 2)max =g (b )=b 2-4;当b >2时,g (x 2)max =g (2)=4b -8.故问题等价于⎩⎪⎨⎪⎧b <1,-12≥2b -5或⎩⎪⎨⎪⎧1≤b ≤2,-12≥b 2-4或⎩⎪⎨⎪⎧b >2,-12≥4b -8. 解第一个不等式组得b <1,解第二个不等式组得1≤b ≤142,第三个不等式组无解.综上所述,b 的取值范围是⎝⎛⎦⎥⎤-∞,142. 答案 ⎝ ⎛⎦⎥⎤-∞,142二、解答题9.数列{a n }中,a 1=8,a 4=2,且满足a n +2-2a n +1+a n =0.(1)求数列的通项公式;(2)设S n =|a 1|+|a 2|+…+|a n |,求S n .解 (1)a n +2-2a n +1+a n =0,所以a n +2-a n +1=a n +1-a n ,所以{a n +1-a n }为常数列,所以{a n }是以a 1为首项的等差数列,设a n =a 1+(n -1)d ,a 4=a 1+3d ,所以d =2-83=-2,所以a n =10-2n .(2)因为a n =10-2n ,令a n =0,得n =5.当n >5时,a n <0;当n =5时,a n =0;当n <5时,a n >0.所以当n >5时,S n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 5-(a 6+a 7+…+a n )=T 5-(T n -T 5)=2T 5-T n =n 2-9n +40,T n =a 1+a 2+…+a n ,当n ≤5时,S n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =T n =9n -n 2.所以S n =⎩⎨⎧9n -n 2 (n ≤5),n 2-9n +40 (n >5).10.已知函数g (x )=ax x +1(a ∈R ),f (x )=ln(x +1)+g (x ). (1)若函数g (x )过点(1,1),求函数f (x )的图象在x =0处的切线方程;(2)判断函数f (x )的单调性.解 (1)因为函数g (x )过点(1,1),所以1=a 1+1,解得a =2,所以f (x )=ln(x +1)+2x x +1.由f ′(x )=1x +1+2(x +1)2=x +3(x +1)2,则f ′(0)=3,所以所求的切线的斜率为3.又f (0)=0,所以切点为(0,0),故所求的切线方程为y =3x .(2)因为f (x )=ln(x +1)+ax x +1(x >-1), 所以f ′(x )=1x +1+a (x +1)-ax (x +1)2=x +1+a (x +1)2. ①当a ≥0时,因为x >-1,所以f ′(x )>0,故f (x )在(-1,+∞)上单调递增;②当a <0时,由⎩⎨⎧f ′(x )<0,x >-1,得-1<x <-1-a , 故f (x )在(-1,-1-a )上单调递减;由⎩⎨⎧f ′(x )>0,x >-1,得x >-1-a , 故f (x )在(-1-a ,+∞)上单调递增.综上,当a ≥0时,函数f (x )在(-1,+∞)上单调递增;当a <0时,函数f (x )在(-1,-1-a )上单调递减,在(-1-a ,+∞)上单调递增.11.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点与抛物线y 2=43x 的焦点F 重合,且椭圆短轴的两个端点与点F 构成正三角形.(1)求椭圆的方程;(2)若过点(1,0)的直线l 与椭圆交于不同的两点P ,Q ,试问在x 轴上是否存在定点E (m ,0),使PE→·QE →恒为定值?若存在,求出E 的坐标,并求出这个定值;若不存在,请说明理由.解 (1)由题意,知抛物线的焦点为F (3,0),所以c =a 2-b 2= 3.因为椭圆短轴的两个端点与F 构成正三角形,所以b =3×33=1.可求得a =2,故椭圆的方程为x 24+y 2=1.(2)假设存在满足条件的点E ,当直线l 的斜率存在时设其斜率为k ,则l 的方程为y =k (x -1).由⎩⎪⎨⎪⎧x 24+y 2=1,y =k (x -1),得(4k 2+1)x 2-8k 2x +4k 2-4=0,设P (x 1,y 1),Q (x 2,y 2),解上述方程后易得:x 1+x 2=8k 24k 2+1,x 1x 2=4k 2-44k 2+1. 则PE →=(m -x 1,-y 1),QE →=(m -x 2,-y 2), 所以PE →·QE →=(m -x 1)(m -x 2)+y 1y 2=m 2-m (x 1+x 2)+x 1x 2+y 1y 2=m 2-m (x 1+x 2)+x 1x 2+k 2(x 1-1)(x 2-1)=m 2-8k 2m 4k 2+1+4k 2-44k 2+1+k 2⎝ ⎛⎭⎪⎫4k 2-44k 2+1-8k 24k 2+1+1 =(4m 2-8m +1)k 2+(m 2-4)4k 2+1=(4m 2-8m +1)⎝ ⎛⎭⎪⎫k 2+14+(m 2-4)-14(4m 2-8m +1)4k 2+1=14(4m 2-8m +1)+2m -1744k 2+1. 要使PE →·QE →为定值,令2m -174=0, 即m =178,此时PE →·QE →=3364.当直线l 的斜率不存在时,不妨取P ⎝ ⎛⎭⎪⎫1,32,Q ⎝⎛⎭⎪⎫1,-32, 由E ⎝ ⎛⎭⎪⎫178,0,可得PE →=⎝ ⎛⎭⎪⎫98,-32,QE →=⎝ ⎛⎭⎪⎫98,32, 所以PE →·QE →=8164-34=3364. 综上,存在点E ⎝ ⎛⎭⎪⎫178,0,使PE →·QE →为定值3364.。
《创新设计》2017届高考数学(文)二轮复习(全国通用)课件专题一函数与导数、不等式第5讲Word版含解析
=0,即当 x>1 时,f(x)<x-1.
(3)解 由(2)知,当 k=1 时,不存在 x0>1 满足题意. 当 k>1 时,对于 x>1,有 f(x)<x-1<k(x-1), 则 f(x)<k(x-1), 从而不存在 x0>1 满足题意. 当 k<1 时, 令 G(x)=f(x)-k(x-1),x∈(0,+∞), 则有 G′(x)=1x-x+1-k=-x2+(1x-k)x+1.
由 G′(x)=0 得,-x2+(1-k)x+1=0. 解得 x1=1-k- (21-k)2+4<0, x2=1-k+ (21-k)2+4>1. 当 x∈(1,x2)时,G′(x)>0, 故 G(x)在[1,x2)内单调递增. 从而当 x∈(1,x2)时,G(x)>G(1)=0, 即 f(x)>k(x-1).
第5讲 导数与不等式的证明、恒 成立及能成立问题
高考定位 在高考压轴题中,函数与不等式的交汇是考查热 点,常以含指数、对数函数为载体考查不等式的证明、比较 大小、范围等问题,以及不等式的恒成立与能成立问题.
真题感悟 (2016·全国Ⅱ卷)已知函数f(x)=(x+1)ln x-a(x-1). (1)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程; (2)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.
解 (1)f(x)的定义域为(0,+∞),当 a=4 时,f(x)=(x+1) ln x-4(x-1),f′(x)=ln x+1x-3,f′(1)=-2,f(1)=0,曲线 y=f(x)在(1,f(1))处的切线方程为 2x+y-2=0.
(2)当 x∈(1,+∞)时,f(x)>0 等价于 ln x-a(xx+-11)>0, 设 g(x)=ln x-a(xx+-11),则 g′(x)=1x-(x+2a1)2=x2+x2((x1+-1a))2x+1,g(1)=0. (ⅰ)当 a≤2,x∈(1,+∞)时,x2+2(1-a)x+1≥x2-2x+1>0, 故 g′(x)>0,g(x)在(1,+∞)单调递增,因此 g(x)>0;
《创新设计》2017届高考数学(文)二轮复习(江苏专用)Word版训练+专题一+函数与导数、不等式+第4讲
一、填空题1.曲线y =x e x +1在点(0,1)处的切线方程是________. 解析 y ′=e x +x e x =(x +1)e x ,y ′|x =0=1,∴所求切线方程为:x -y +1=0. 答案 x -y +1=02.(2016·洛阳模拟)曲线y =x ln x 在点(e ,e)处的切线与直线x +ay =1垂直,则实数a 的值为________.解析 依题意得y ′=1+ln x ,y ′|x =e =1+ln e =2,所以-1a ×2=-1,所以a=2. 答案 23.(2016·全国Ⅲ卷)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.解析 设x >0,则-x <0,f (-x )=ln x -3x ,又f (x )为偶函数,f (x )=ln x -3x ,f ′(x )=1x -3,f ′(1)=-2,切线方程为y =-2x -1. 答案 2x +y +1=04.已知f (x )=x 3+f ′⎝ ⎛⎭⎪⎫23x 2-x ,则f (x )的图象在点⎝ ⎛⎭⎪⎫23,f ⎝⎛⎭⎪⎫23处的切线斜率是________.解析 f ′(x )=3x 2+2f ′⎝ ⎛⎭⎪⎫23x -1,令x =23,可得f ′⎝ ⎛⎭⎪⎫23=3×⎝ ⎛⎭⎪⎫232+2f ′⎝ ⎛⎭⎪⎫23×23-1,解得f ′⎝ ⎛⎭⎪⎫23=-1,所以f (x )的图象在点⎝ ⎛⎭⎪⎫23,f ⎝⎛⎭⎪⎫23处的切线斜率是-1. 答案 -15.函数f (x )=13x 3-x 2-3x -1的图象与x 轴的交点个数是________.解析 f ′(x )=x 2-2x -3=(x +1)(x -3),函数f (x )在(-∞,-1)和(3,+∞)上是增函数,在(-1,3)上是减函数,由f (x )极小值=f (3)=-10<0,f (x )极大值=f (-1)=23>0知函数f (x )的图象与x 轴的交点个数为3. 答案 36.(2016·常州监测)关于x 的方程x 3-3x 2-a =0有三个不同的实数解,则实数a 的取值范围是________.解析 由题意知使函数f (x )=x 3-3x 2-a 的极大值大于0且极小值小于0即可,又f ′(x )=3x 2-6x =3x (x -2),令f ′(x )=0,得x 1=0,x 2=2.当x <0时,f ′(x )>0;当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0,所以当x =0时,f (x )取得极大值,即f (x )极大值=f (0)=-a ;当x =2时,f (x )取得极小值,即f (x )极小值=f (2)=-4-a ,所以⎩⎨⎧-a >0,-4-a <0,解得-4<a <0.答案 (-4,0)7.已知y =f (x )为R 上的可导函数,当x ≠0时,f ′(x )+f (x )x >0,若g (x )=f (x )+1x ,则函数g (x )的零点个数为________.解析 令h (x )=xf (x ),因为当x ≠0时,xf ′(x )+f (x )x >0,所以h ′(x )x >0,因此当x >0时,h ′(x )>0,当x <0时,h ′(x )<0,又h (0)=0,易知当x ≠0时,h (x )>0,又g (x )=h (x )+1x ,所以g (x )≠0,故函数g (x )的零点个数为0.答案 08.(2015·安徽卷)设x 3+ax +b =0,其中a ,b 均为实数,下列条件中,使得该三次方程仅有一个实根的是________(写出所有正确条件的编号). ①a =-3,b =-3;②a =-3,b =2;③a =-3,b >2; ④a =0,b =2;⑤a =1,b =2.解析 令f (x )=x 3+ax +b ,f ′(x )=3x 2+a ,当a ≥0时,f ′(x )≥0,f (x )单调递增,必有一个实根,④⑤正确;当a <0时,由于选项当中a =-3,∴只考虑a =-3这一种情况,f ′(x )=3x 2-3=3(x +1)(x -1),∴f (x )极大=f (-1)=-1+3+b =b +2,f (x )极小=f (1)=1-3+b =b -2,要使f (x )=0仅有一个实根,则需f (x )极大<0或f (x )极小>0,∴b <-2或b >2,①③正确,所有正确条件为①③④⑤. 答案 ①③④⑤ 二、解答题9.(2016·扬州质检)已知函数f (x )=2ln x -x 2+ax (a ∈R ). (1)当a =2时,求f (x )的图象在x =1处的切线方程;(2)若函数g (x )=f (x )-ax +m 在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点,求实数m 的取值范围.解 (1)当a =2时,f (x )=2ln x -x 2+2x , f ′(x )=2x -2x +2,切点坐标为(1,1),切线的斜率k =f ′(1)=2,则切线方程为y -1=2(x -1),即y =2x -1. (2)g (x )=2ln x -x 2+m ,则g ′(x )=2x -2x =-2(x +1)(x -1)x .因为x ∈⎣⎢⎡⎦⎥⎤1e ,e ,所以当g ′(x )=0时,x =1.当1e <x <1时,g ′(x )>0,此时函数单调递增; 当1<x <e 时,g ′(x )<0,此时函数单调递减. 故g (x )在x =1处取得极大值g (1)=m -1. 又g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2,g (e)=m +2-e 2,g (e)-g ⎝ ⎛⎭⎪⎫1e =4-e 2+1e 2<0,则g (e)<g ⎝ ⎛⎭⎪⎫1e ,所以g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最小值是g (e).g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点的条件是⎩⎪⎨⎪⎧g (1)=m -1>0,g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2≤0,解得1<m ≤2+1e 2, 所以实数m 的取值范围是⎝ ⎛⎦⎥⎤1,2+1e 2.10.(2015·江苏高考命题原创卷)已知函数f (x )=x 2-a ln x -1,函数F (x )=x -1x +1.(1)如果函数f (x )的图象上的每一点处的切线斜率都是正数,求实数a 的取值范围;(2)当a=2时,你认为函数y=f(x)x-1的图象与y=F(x)的图象有多少个公共点?请证明你的结论.解(1)∵f(x)=x2-a ln x-1的定义域为(0,+∞),函数f(x)的图象上的每一点处的切线斜率都是正数,∴f′(x)=2x-ax>0在(0,+∞)上恒成立.∴a<2x2在(0,+∞)上恒成立,∵y=2x2>0在(0,+∞)上恒成立,∴a≤0. ∴所求的a的取值范围为(-∞,0].(2)当a=2时,函数y=f(x)x-1的图象与y=F(x)的图象没有公共点.证明如下:当a=2时,y=f(x)x-1=x2-2ln x-1x-1,它的定义域为{x|x>0且x≠1},F(x)的定义域为[0,+∞).当x>0且x≠1时,由f(x)x-1=F(x)得x2-2ln x-x+2x-2=0.设h(x)=x2-2ln x-x+2x-2,则h′(x)=2x-2x-1+1x=(x-1)(2x x+2x+x+2)x.∴当0<x<1时,h′(x)<0,此时,h(x)单调递减;当x>1时,h′(x)>0,此时,h(x)单调递增.∴当x>0且x≠1时,h(x)>h(1)=0,即h(x)=0无实数根.∴当a=2,x>0且x≠1时,f(x)x-1=F(x)无实数根.∴当a=2时,函数y=f(x)x-1的图象与y=F(x)的图象没有公共点.11.(2016·全国Ⅰ卷)已知函数f(x)=(x-2)e x+a(x-1)2有两个零点.(1)求a的取值范围;(2)设x1,x2是f(x)的两个零点,证明:x1+x2<2.(1)解f′(x)=(x-1)e x+2a(x-1)=(x-1)(e x+2a).①设a=0,则f(x)=(x-2)e x,f(x)只有一个零点.②设a >0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0,所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.又f (1)=-e ,f (2)=a ,取b 满足b <0且b <ln a 2,则f (b )>a2(b -2)+a (b -1)2=a ⎝ ⎛⎭⎪⎫b 2-32b >0, 故f (x )存在两个零点.③设a <0,由f ′(x )=0得x =1或x =ln(-2a ).若a ≥-e2,则ln(-2a )≤1,故当x ∈(1,+∞)时,f ′(x )>0,因此f (x )在(1, +∞)上单调递增.又当x ≤1时,f (x )<0,所以f (x )不存在两个零点.若a <-e2,则ln(-2a )>1,故当x ∈(1,ln(-2a ))时,f ′(x )<0;当x ∈(ln(-2a ),+∞)时,f ′(x )>0,因此f (x )在(1,ln(-2a ))上单调递减,在(ln(-2a ),+∞)上单调递增.又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 综上,a 的取值范围为(0,+∞).(2)证明 不妨设x 1<x 2.由(1)知x 1∈(-∞,1),x 2∈(1,+∞),2-x 2∈(-∞,1),f (x )在(-∞,1)上单调递减,所以x 1+x 2<2等价于f (x 1)>f (2-x 2),即f (2-x 2)<0.由于f (2-x 2)=-x 2e2-x 2+a (x 2-1)2, 而f (x 2)=(x 2-2)·e x 2+a (x 2-1)2=0, 所以f (2-x 2)=-x 2e2-x 2-(x 2-2)e x 2.设g (x )=-x e 2-x -(x -2)e x ,则g ′(x )=(x -1)(e 2-x -e x ),所以当x >1时,g ′(x )<0,而g (1)=0,故当x >1时,g (x )<0,从而g (x 2)=f (2-x 2)<0,故x 1+x 2<2.。
《创新设计》2017届高考数学(文)二轮复习(江苏专用)解答题+第二周+星期二
星期二 (实际应用问题) 2017年____月____日如图,一块弓形薄铁片EMF ,点M 为EF ︵的中点,其所在圆O 的半径为4 dm(圆心O 在弓形EMF 内),∠EOF =2π3.将弓形薄铁片裁剪成尽可能大的矩形铁片ABCD (不计损耗),AD ∥EF ,且点A ,D 在EF ︵上,设∠AOD =2θ.(1)求矩形铁片ABCD 的面积S 关于θ的函数关系式;(2)当裁出的矩形铁片ABCD 面积最大时,求cos θ的值.解 (1)设矩形铁片的面积为S ,∠AOM =θ.当0<θ<π3时(如图1),AB =4cos θ+2,AD =2×4sin θ,S =AB ×AD =(4cos θ+2)(2×4sin θ)=16sin θ(2cos θ+1).当π3≤θ<π2时(如图2),AB =2×4cos θ,AD =2×4sin θ,故S =AB ×AD =64sin θcos θ=32sin 2θ.综上得,矩形铁片的面积S 关于θ的函数关系式为S =⎩⎪⎨⎪⎧16sin θ(2cos θ+1),0<θ<π3,32sin 2θ,π3≤θ<π2.(2)当0<θ<π3时,求导得 S ′=16[cos θ(2cos θ+1)+sin θ(-2sin θ)]=16(4cos 2θ+cos θ-2).令S ′=0,得cos θ=33-18.记区间⎝⎛⎭⎪⎫0,π3内余弦值等于33-18的角为θ0(唯一存在).列表:又当π3≤θ<2时,S =32sin 2θ在⎣⎢⎡⎦⎥⎤π3,π2上单调递减, 所以当θ=θ0即cos θ=33-18时,矩形的面积最大.。
创新设计(江苏专用)2017届高考数学二轮复习 上篇 专题整合突破 专题一 函数与导数、不等式
专题一 函数与导数、不等式 第2讲 不等式问题练习 理一、填空题1.(2015·苏州调研)已知f (x )=⎩⎪⎨⎪⎧x 2+x (x ≥0),-x 2+x (x <0),则不等式f (x 2-x +1)<12的解集是________.解析 依题意得,函数f (x )是R 上的增函数,且f (3)=12,因此不等式f (x 2-x +1)<12等价于x 2-x +1<3,即x 2-x -2<0,由此解得-1<x <2. 因此,不等式f (x 2-x +1)<12的解集是(-1,2). 答案 (-1,2)2.若点A (m ,n )在第一象限,且在直线x 3+y4=1上,则mn 的最大值是________.解析 因为点A (m ,n )在第一象限,且在直线x 3+y 4=1上,所以m ,n >0,且m 3+n4=1,所以m 3·n 4≤2342m n ⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝ ⎛⎭⎪⎫当且仅当m 3=n 4=12,即m =32,n =2时,取“=”,所以m 3·n 4≤⎝ ⎛⎭⎪⎫122=14,即mn ≤3,所以mn 的最大值为3. 答案 33.(2016·苏北四市模拟)已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≥0,x 2-2x ,x <0,若f (-a )+f (a )≤2f (1),则实数a 的取值范围是________. 解析 f (-a )+f (a )≤2f (1)⇔⎩⎪⎨⎪⎧a ≥0,(-a )2-2×(-a )+a 2+2a ≤2×3或 ⎩⎪⎨⎪⎧a <0,(-a )2+2×(-a )+a 2-2a ≤2×3 即⎩⎪⎨⎪⎧a ≥0,a 2+2a -3≤0或⎩⎪⎨⎪⎧a <0,a 2-2a -3≤0, 解得0≤a ≤1,或-1≤a <0. 故-1≤a ≤1. 答案 [-1,1]4.已知函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝ ⎛⎭⎪⎫13x ,x ≤0,那么不等式f (x )≥1的解集为________.解析 当x >0时,由log 3x ≥1可得x ≥3,当x ≤0时,由⎝ ⎛⎭⎪⎫13x≥1可得x ≤0,∴不等式f (x )≥1的解集为(-∞,0]∪[3,+∞).答案 (-∞,0]∪[3,+∞)5.(2016·南京、盐城模拟)若x ,y 满足不等式组⎩⎪⎨⎪⎧x +2y -2≥0,x -y +1≥0,3x +y -6≤0,则x 2+y 2的最小值是________.解析 不等式组所表示的平面区域如图阴影部分所示,x 2+y 2表示原点(0,0)到此区域内的点P (x ,y )的距离.显然该距离的最小值为原点到直线x +2y -2=0的距离. 故最小值为|0+0-2|12+22=255. 答案2556.已知当x <0时,2x 2-mx +1>0恒成立,则m 的取值范围为________. 解析 由2x 2-mx +1>0,得mx <2x 2+1, 因为x <0,所以m >2x 2+1x =2x +1x.而2x +1x =-⎣⎢⎡⎦⎥⎤(-2x )+1(-x )≤-2(-2x )×1(-x )=-2 2.当且仅当-2x =-1x ,即x =-22时取等号,所以m >-2 2. 答案 (-22,+∞)7.设目标函数z =x +y ,其中实数x ,y 满足⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,0≤y ≤k .若z 的最大值为12,则z 的最小值为________.解析 作出不等式组所表示的可行域如图阴影所示,平移直线x +y =0,显然当直线过点A (k ,k )时,目标函数z =x +y 取得最大值,且最大值为k +k =12,则k =6,直线过点B时目标函数z =x +y 取得最小值,点B 为直线x +2y =0与y =6的交点, 即B (-12,6),所以z min =-12+6=-6. 答案 -68.(2016·泰州调研)已知x >0,y >0,且2x +1y=1,若x +2y >m 2+2m 恒成立,则实数m的取值范围为________.解析 记t =x +2y ,由不等式恒成立可得m 2+2m <t min . 因为2x +1y =1,所以t =x +2y =(x +2y )⎝ ⎛⎭⎪⎫2x +1y =4+4y x+x y.而x >0,y >0,所以4y x +xy≥24y x ·x y =4(当且仅当4y x =xy,即x =2y 时取等号).所以t =4+4y x +xy≥4+4=8,即t min =8.故m 2+2m <8,即(m -2)(m +4)<0.解得-4<m <2. 答案 (-4,2) 二、解答题9.(2015·苏北四市调研)某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点O 为圆心的两个同心圆弧和延长后通过点O 的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为x 米,圆心角为θ(弧度).(1)求θ关于x 的函数关系式;(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为y ,求y 关于x 的函数关系式,并求出x 为何值时,y 取得最大值?解 (1)设扇环的圆心角为θ,则30=θ(10+x )+2(10-x ),所以θ=10+2x 10+x (0<x <10).(2)花坛的面积为12θ(102-x 2)=(5+x )(10-x )=-x 2+5x +50(0<x <10).装饰总费用为9θ(10+x )+8(10-x )=170+10x , 所以花坛的面积与装饰总费用的比y =-x 2+5x +50170+10x=-x 2-5x -5010(17+x ),令t =17+x ,则y =3910-110⎝⎛⎭⎪⎫t +324t ≤310,当且仅当t =18时取等号,此时x =1,θ=1211.答:当x =1时,花坛的面积与装饰总费用的比最大.10.已知函数f (x )=2xx 2+6. (1)若f (x )>k 的解集为{x |x <-3,或x >-2},求k 的值; (2)对任意x >0,f (x )≤t 恒成立,求t 的取值范围. 解 (1)f (x )>k ⇔kx 2-2x +6k <0.由已知{x |x <-3,或x >-2}是其解集,得kx 2-2x +6k =0的两根是-3,-2. 由根与系数的关系可知(-2)+(-3)=2k ,即k =-25.(2)因为x >0,f (x )=2x x 2+6=2x +6x≤226=66,当且仅当x =6时取等号.由已知f (x )≤t 对任意x >0恒成立,故t ≥66,即t 的取值范围是⎣⎢⎡⎭⎪⎫66,+∞. 11.(1)解关于x 的不等式x 2-2mx +m +1>0; (2)解关于x 的不等式ax 2-(2a +1)x +2<0.解 (1)原不等式对应方程的判别式Δ=(-2m )2-4(m +1)=4(m 2-m -1).当m 2-m -1>0,即m >1+52或m <1-52时,由于方程x 2-2mx +m +1=0的两根是m ±m 2-m -1,所以原不等式的解集是{x |x <m -m 2-m -1,或x >m +m 2-m -1};当Δ=0,即m =1±52时,不等式的解集为{x |x ∈R ,且x ≠m };当Δ<0,即1-52<m <1+52时,不等式的解集为R .综上,当m >1+52或m <1-52时,不等式的解集为{x |x <m -m 2-m -1,或x >m +m 2-m -1};当m =1±52时,不等式的解集为{x |x ∈R ,且x ≠m };当1-52<m <1+52时,不等式的解集为R .(2)原不等式可化为(ax -1)(x -2)<0.①当a >0时,原不等式可以化为a (x -2)⎝⎛⎭⎪⎫x -1a <0,根据不等式的性质,这个不等式等价于(x -2)·⎝ ⎛⎭⎪⎫x -1a <0.因为方程(x -2)⎝ ⎛⎭⎪⎫x -1a =0的两个根分别是2,1a,所以当0<a<12时,2<1a ,则原不等式的解集是⎩⎨⎧⎭⎬⎫x |2<x <1a ;当a =12时,原不等式的解集是∅;当a>12时,1a <2,则原不等式的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1a <x <2.②当a =0时,原不等式为-(x -2)<0,解得x >2,即原不等式的解集是{x |x >2}.③当a <0时,原不等式可以化为a (x -2)⎝⎛⎭⎪⎫x -1a <0,根据不等式的性质,这个不等式等价于(x -2)⎝ ⎛⎭⎪⎫x -1a >0,由于1a<2,故原不等式的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <1a或x >2.综上,当a =0时不等式解集为(2,+∞);当0<a <12时,不等式解集为⎝ ⎛⎭⎪⎫2,1a ;当a =12时,不等式解集为∅;当a >12时,不等式解集为⎝ ⎛⎭⎪⎫1a ,2;当a <0时,不等式解集为⎝ ⎛⎭⎪⎫-∞,1a ∪(2,+∞).。
《创新设计》2017届高考数学(文)二轮复习(江苏专用)Word版训练+专题五+解析几何+第2讲
一、填空题1.(2016·泰州模拟)在平面直角坐标系xOy中,双曲线x22-y2=1的实轴长为________.解析由双曲线方程可得a=2,则实轴长为2a=2 2. 答案2 22.(2016·苏、锡、常、镇、宿调研)在平面直角坐标系xOy中,已知方程x24-m-y22+m=1表示双曲线,则实数m的取值范围为________.解析由题意可得(4-m)(2+m)>0,解得-2<m<4.答案(-2,4)3.(2016·南京、盐城模拟)在平面直角坐标系xOy中,已知抛物线C的顶点在坐标原点,焦点在x轴上,若曲线C经过点P(1,3),则其焦点到准线的距离为________.解析设抛物线C的标准方程为y2=2px(p>0),代入点P(1,3)得9=2p,则y2=9x的焦点到准线的距离为p=9 2.答案9 24.(2010·江苏卷)在平面直角坐标系xOy中,已知双曲线x24-y212=1上一点M的横坐标是3,则点M到此双曲线的右焦点的距离为________.解析法一x=3代入x24-y212=1,y=±15,不妨设M(3,15),右焦点F(4,0).∴MF=1+15=4.法二由双曲线第二定义知,M到右焦点F的距离与M到右准线x=a2c=1的距离比为离心率e=ca=2,∴MF3-1=2,MF=4.答案 45.(2015·天津卷改编)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线过点(2,3) ,且双曲线的一个焦点在抛物线y 2=47x 的准线上,则双曲线的方程为________.解析 由题意可得b a =32,c =7,又c 2=7=a 2+b 2,解得a 2=4,b 2=3.故双曲线方程为x 24-y 23=1. 答案 x 24-y 23=16.(2016·全国Ⅰ卷改编)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为________.解析 法一 不妨设直线l 过椭圆的上顶点(0,b )和左焦点(-c ,0),b >0,c >0,则直线l 的方程为bx -cy +bc =0,由已知得bc b 2+c2=14×2b ,解得b 2=3c 2,又b 2=a 2-c 2,所以c 2a 2=14,即e 2=14,所以e =12(e =-12舍去).法二 不妨设直线l 过椭圆的上顶点(0,b )和左焦点(-c ,0),b >0,c >0,则直线l 的方程为bx -cy +bc =0,由已知得bc b 2+c2=14×2b ,所以bc a =14×2b ,所以e =c a =12. 答案 127.(2015·江苏五市模拟)已知椭圆x 29+y 2m =1(0<m <9),左、右焦点分别为F 1,F 2,过F 1的直线交椭圆与A ,B 两点,若AF 2+BF 2的最大值为10,则m 的值为________.解析 已知椭圆x 29+y 2m =1(0<m <9)中,a 2=9,b 2=m .AF 2+BF 2=4a -AB ≤10,∴AB ≥2,AB min =2b 2a =2m3=2,解得m =3. 答案 38.(2015·福建卷改编)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若AF +BF =4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是________.解析 左焦点F 0,连接F 0A ,F 0B ,则四边形AFBF 0为平行四边形.∵AF +BF =4, ∴AF +AF 0=4, ∴a =2.设M (0,b ),则4b 5≥45,∴1≤b <2. 离心率e =ca =c 2a 2=a 2-b 2a 2=4-b 24∈⎝⎛⎦⎥⎤0,32. 答案 ⎝ ⎛⎦⎥⎤0,32二、解答题9.(2016·南通调研)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a >b >0)过点A (2,1),离心率为32.(1)求椭圆的方程;(2)若直线l :y =kx +m (k ≠0)与椭圆相交于B ,C 两点(异于点A ),线段BC 被y 轴平分,且AB ⊥AC ,求直线l 的方程.解 (1)由条件知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为e =c a =32,所以b 2=a 2-c 2=14a 2.又点A (2,1)在椭圆x 2a 2+y 2b 2=1(a >b >0)上,所以4a 2+1b 2=1,解得⎩⎨⎧a 2=8,b 2=2.所以所求椭圆的方程为x 28+y 22=1.(2)将y =kx +m (k ≠0)代入椭圆方程,得x 2+4(kx +m )2-8=0, 整理得(1+4k 2)x 2+8mkx +4m 2-8=0.① 由线段BC 被y 轴平分,得x B +x C =-8mk1+4k 2=0, 因为k ≠0,所以m =0.因为当m =0时,B ,C 关于原点对称,设B (x ,kx ),C (-x ,-kx ), 由①得x 2=81+4k 2,又因为AB ⊥AC ,A (2,1), 所以AB→·AC →=(x -2)(-x -2)+(kx -1)(-kx -1) =5-(1+k 2)x 2=5-8(1+k 2)1+4k 2=0,所以k =±12.由于当k =12时,直线y =12x 过点A (2,1),故k =12不符合题意,舍去.所以此时直线l 的方程为y =-12x .10.(2015·安徽卷)设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),点O 为坐标原点,点A 的坐标为(a ,0),点B 的坐标为(0,b ),点M 在线段AB 上,满足BM =2MA ,直线OM 的斜率为510. (1)求E 的离心率e ;(2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程.解 (1)由题设条件知,点M 的坐标为⎝ ⎛⎭⎪⎫23a ,13b ,又k OM =510,从而b 2a =510, 进而得a =5b ,c =a 2-b 2=2b , 故e =c a =255.(2)由题设条件和(1)的计算结果可得,直线AB 的方程为x 5b +yb =1,点N 的坐标为⎝ ⎛⎭⎪⎫52b ,-12b .设点N 关于直线AB 的对称点S 的坐标为⎝ ⎛⎭⎪⎫x 1,72,则线段NS 的中点T 的坐标为⎝ ⎛⎭⎪⎫54b +x 12,-14b +74.又点T 在直线AB 上,且k NS ·k AB =-1,从而有⎩⎪⎨⎪⎧54b +x 125b+-14b +74b =1,72+12b x 1-52b= 5.解得b =3.所以a =35,故椭圆E 的方程为x 245+y 29=1.11.(2014·江苏卷)如图,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C . (1)若点C 的坐标为⎝ ⎛⎭⎪⎫43,13,且BF 2=2,求椭圆的方程;(2)若F 1C ⊥AB ,求椭圆离心率e 的值.解 设椭圆的焦距为2c ,则F 1(-c ,0),F 2(c ,0). (1)因为B (0,b ),所以BF 2=b 2+c 2=a . 又BF 2=2,故a = 2.因为点C ⎝ ⎛⎭⎪⎫43,13在椭圆上,所以169a 2+19b 2=1.解得b 2=1.故所求椭圆的方程为x 22+y 2=1.(2)因为B (0,b ),F 2(c ,0)在直线AB 上, 所以直线AB 的方程为x c +yb =1.解方程组⎩⎪⎨⎪⎧x c +y b =1,x 2a 2+y 2b 2=1,得⎩⎪⎨⎪⎧x 1=2a 2ca 2+c 2,y 1=b (c 2-a 2)a 2+c 2,⎩⎨⎧x 2=0,y 2=b .所以点A 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c2,b (c 2-a 2)a 2+c 2. 又AC 垂直于x 轴,由椭圆的对称性,可得点C 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c2,b (a 2-c 2)a 2+c 2. 因为直线F 1C 的斜率为b (a 2-c 2)a 2+c 2-02a 2c a 2+c 2-(-c )=b (a 2-c 2)3a 2c +c 3,直线AB 的斜率为-bc ,且F 1C ⊥AB ,所以b (a 2-c 2)3a 2c +c 3·⎝ ⎛⎭⎪⎫-b c =-1.又b 2=a 2-c 2,整理得a 2=5c 2.故e 2=15.因此e =55.。
《创新设计》2017届高考数学(文)二轮复习(江苏专用)Word版训练+专题一+函数与导数、不等式+第1讲
一、填空题1.(2016·南通调研)函数f (x )=ln x +1-x 的定义域为________.解析 要使函数f (x )=ln x +1-x 有意义,则⎩⎨⎧x >0,1-x ≥0,解得0<x ≤1,即函数定义域是(0,1]. 答案 (0,1]2.(2011·江苏卷)函数f (x )=log 5(2x +1)的单调增区间是________.解析 函数f (x )的定义域为⎝ ⎛⎭⎪⎫-12,+∞,令t =2x +1(t >0).因为y =log 5t 在t ∈(0,+∞)上为增函数,t =2x +1在⎝ ⎛⎭⎪⎫-12,+∞上为增函数,所以函数y =log 5(2x +1)的单调增区间为⎝ ⎛⎭⎪⎫-12,+∞.答案 ⎝ ⎛⎭⎪⎫-12,+∞3.(2016·苏州调研)函数f (x )=⎩⎨⎧2x,x ≤0,-x 2+1,x >0的值域为________.解析 当x ≤0时,y =2x ∈(0,1]; 当x >0时,y =-x 2+1∈(-∞,1). 综上, 该函数的值域为(-∞,1]. 答案 (-∞,1]4.(2016·江苏卷)定义在区间[0,3π]上的函数y =sin 2x 的图象与y =cos x 的图象的交点个数是________.解析 在区间[0,3π]上分别作出y =sin 2x 和y =cos x 的简图如下:由图象可得两图象有7个交点. 答案 75.(2012·江苏卷)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎨⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32,则a +3b 的值为________.解析 因为函数f (x )是周期为2的函数,所以f (-1)=f (1)⇒-a +1=b +22,又f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-12⇒12b +232=-12a +1,联立列成方程组解得a =2,b =-4,所以a +3b =2-12=-10. 答案 -106.已知函数f (x )=x 3+x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围是________.解析 f ′(x )=3x 2+1>0,∴f (x )在R 上为增函数.又f (x )为奇函数,由f (mx -2)+f (x )<0知,f (mx -2)<f (-x ).∴mx -2<-x ,即mx +x -2<0,令g (m )=mx +x -2,由m ∈[-2,2]知g (m )<0恒成立,可得⎩⎨⎧g (-2)=-x -2<0,g (2)=3x -2<0,∴-2<x <23.答案 ⎝ ⎛⎭⎪⎫-2,237.已知函数f (x )=⎩⎨⎧x -[x ],x ≥0,f (x +1),x <0,其中[x ]表示不超过x 的最大整数.若直线y=k (x +1)(k >0)与函数y =f (x )的图象恰有三个不同的交点,则实数k 的取值范围是________.解析 根据[x ]表示的意义可知,当0≤x <1时,f (x )=x ,当1≤x <2时,f (x )=x -1,当2≤x <3时,f (x )=x -2,以此类推,当k ≤x <k +1时,f (x )=x -k ,k ∈Z ,当-1≤x <0时,f (x )=x +1,作出函数f (x )的图象如图,直线y =k (x +1)过点(-1,0),当直线经过点(3,1)时恰有三个交点,当直线经过点(2,1)时恰好有两个交点,在这两条直线之间时有三个交点,故k ∈⎣⎢⎡⎭⎪⎫14,13.答案 ⎣⎢⎡⎭⎪⎫14,138.(2016·北京海淀区二模)设函数f (x )=⎩⎨⎧2x-a ,x <1,4(x -a )(x -2a ),x ≥1.(1)若a =1,则f (x )的最小值为________;(2)若f (x )恰有2个零点,则实数a 的取值范围是________.解析 (1)当a =1时,f (x )=⎩⎨⎧2x-1,x <1,4(x -1)(x -2),x ≥1.当x <1时,f (x )=2x -1∈(-1,1),当x ≥1时,f (x )=4(x 2-3x +2)=4⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x -322-14≥-1,∴f (x )min =-1.(2)由于f (x )恰有2个零点,分两种情况讨论: 当f (x )=2x -a ,x <1没有零点时,a ≥2或a ≤0.当a ≥2时,f (x )=4(x -a )(x -2a ),x ≥1时,有2个零点; 当a ≤0时,f (x )=4(x -a )(x -2a ),x ≥1时无零点. 因此a ≥2满足题意.当f (x )=2x -a ,x <1有一个零点时, 0<a <2.f (x )=4(x -a )(x -2a ),x ≥1有一个零点,此时a <1, 2a ≥1,因此12≤a <1.综上知实数a 的取值范围是⎩⎨⎧⎭⎬⎫a |12≤a <1或a ≥2.答案 (1)-1 (2)⎣⎢⎡⎭⎪⎫12,1∪[2,+∞)二、解答题9.已知函数f (x )=x 2-2ln x ,h (x )=x 2-x +a . (1)求函数f (x )的极值;(2)设函数k (x )=f (x )-h (x ),若函数k (x )在[1,3]上恰有两个不同零点,求实数a 的取值范围.解 (1)函数f (x )的定义域为(0,+∞),令f ′(x )=2x -2x =0,得x =1. 当x ∈(0,1)时,f ′(x )<0,当x ∈(1,+∞)时,f ′(x )>0, 所以函数f (x )在x =1处取得极小值为1,无极大值.(2)k (x )=f (x )-h (x )=x -2ln x -a (x >0), 所以k ′(x )=1-2x ,令k ′(x )>0,得x >2,所以k (x )在[1,2)上单调递减,在(2,3]上单调递增, 所以当x =2时,函数k (x )取得最小值,k (2)=2-2ln 2-a ,因为函数k (x )=f (x )-h (x )在区间[1,3]上恰有两个不同零点.即有k (x )在[1,2)和(2,3]内各有一个零点,所以⎩⎨⎧k (1)≥0,k (2)<0,k (3)≥0,即有⎩⎨⎧1-a ≥0,2-2ln 2-a <0,3-2ln 3-a ≥0,解得2-2ln 2<a ≤3-2ln 3.所以实数a 的取值范围为(2-2ln 2,3-2ln 3].10.(2012·江苏卷)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -120(1+k 2)x 2(k >0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由. 解 (1)令y =0,得kx -120(1+k 2)x 2=0, 由实际意义和题设条件知x >0,k >0, 故x =20k 1+k 2=20k +1k≤202=10, 当且仅当k =1时取等号. 所以炮的最大射程为10千米.(2)因为a >0,所以炮弹可击中目标⇔存在k >0,使3.2=ka -120(1+k 2)a 2成立⇔关于k 的方程a 2k 2-20ak +a 2+64=0有正根⇔判别式Δ=(-20a )2-4a 2(a 2+64)≥0⇔a ≤6. 所以当a 不超过6千米时,可击中目标.11.(2016·苏北四市调研)如图,OA 是南北方向的一条公路,OB 是北偏东45°方向的一条公路,某风景区的一段边界为曲线C .为方便游客观光,拟过曲线C 上某点P 分别修建与公路OA ,OB 垂直的两条道路PM ,PN ,且PM ,PN 的造价分别为5万元/百米、40万元/百米.建立如图所示的平面直角坐标系xOy ,则曲线C 符合函数模型y =x +42x 2(1≤x ≤9),设PM =x ,修建两条道路PM ,PN 的总造价为f (x )万元.题中所涉及长度单位均为百米.(1)求f (x )的解析式;(2)当x 为多少时,总造价f (x )最低?并求出最低造价.解 (1)在如题图所示的直角坐标系中,因为曲线C 的方程为y =x +42x 2(1≤x ≤9),PM =x ,所以点P 坐标为⎝ ⎛⎭⎪⎫x ,x +42x 2,直线OB 的方程为x -y =0,则点P 到直线x -y =0的距离为⎪⎪⎪⎪⎪⎪x -⎝⎛⎭⎪⎫x +42x 22=⎪⎪⎪⎪⎪⎪42x 22=4x 2,又PM 的造价为5万元/百米,PN 的造价为40万元/百米. 则两条道路总造价为f (x )=5x +40·4x 2=5⎝ ⎛⎭⎪⎫x +32x 2(1≤x ≤9). (2)因为f (x )=5⎝ ⎛⎭⎪⎫x +32x 2,所以f ′(x )=5⎝ ⎛⎭⎪⎫1-64x 3=5(x 3-64)x 3,令f ′(x )=0,解得x =4,列表如下:所以当x =4时,函数f (x )有最小值,且最小值为f (4)=5⎝ ⎭⎪⎫4+3242=30,即当x =4时,总造价最低,最低造价为30万元. (注:利用三次均值不等式得f (x )=5⎝ ⎛⎭⎪⎫x +32x 2=5⎝ ⎛⎭⎪⎫x 2+x 2+32x 2≥5×338=30,当且仅当x =4时,等号成立,同样正确.)。
《创新设计》2017届高考数学(文)二轮复习(江苏专用)解答题+第四周+星期六
星期六 (解答题综合练) 2017年____月____日1. 在△ABC 中,角A ,B 的对边分别为a ,b ,向量m =(cos A ,sin B ), n =(cos B ,sin A ).(1)若a cos A =b cos B ,求证:m ∥n ;(2)若m ⊥n ,a >b ,求tan A -B 2的值.(1)证明 因为a cos A =b cos B ,所以sin A cos A =sin B cos B ,所以m ∥n .(2)解 因为m ⊥n ,所以cos A cos B +sin A sin B =0,即cos(A -B )=0,因为a >b ,所以A >B ,又A ,B ∈(0,π),所以A -B ∈(0,π),则A -B =π2,所以tan A -B 2=tan π4=1.2.如图,在三棱锥P -ABC 中,∠P AC =∠BAC =90°,P A=PB ,点D ,F 分别为BC ,AB 的中点.(1)求证:直线DF ∥平面P AC ;(2)求证:PF ⊥AD .证明 (1)因为点D ,F 分别为BC ,AB 的中点,所以DF ∥AC ,又因为DF ⊄平面P AC ,AC ⊂平面P AC ,所以直线DF ∥平面P AC .(2)因为∠P AC =∠BAC =90°,所以AC ⊥AB ,AC ⊥AP ,又因为AB ∩AP =A ,所以AC ⊥平面P AB ,因为PF ⊂平面P AB ,所以AC ⊥PF ,因为P A =PB ,F 为AB 的中点,所以PF ⊥AB ,因为AC ∩AB =A ,所以PF ⊥平面ABC ,因为AD ⊂平面ABC ,所以AD ⊥PF .3.某商场对A 品牌的商品进行了市场调查,预计2015年从1月起前x 个月顾客对A 品牌的商品的需求总量P (x )件与月份x 的近似关系是:P (x )=12x (x +1)(41-2x )(x ≤12且x ∈N *).(1)写出第x 月的需求量f (x )的表达式;(2)若第x 月的销售量g (x )=⎩⎪⎨⎪⎧f (x )-21x ,1≤x <7且x ∈N *,x 2e x ⎝ ⎛⎭⎪⎫13x 2-10x +96,7≤x ≤12且x ∈N * (单位:件),每件利润q (x )元与月份x 的近似关系为:q (x )=10e x x ,问:该商场销售A 品牌商品,预计第几月的月利润达到最大值?月利润最大值是多少?(e 6≈403)解 (1)当x =1时,f (1)=P (1)=39.当x ≥2时,f (x )=P (x )-P (x -1)=12x (x +1)(41-2x )-12(x -1)x (43-2x )=3x (14-x ).由于x =1适合上式,∴f (x )=-3x 2+42x (x ≤12,x ∈N *).(2)设月利润为h (x ),h (x )=q (x )·g (x )=⎩⎪⎨⎪⎧30e x (7-x ),1≤x ≤7,x ∈N *,103x 3-100x 2+960x ,7≤x ≤12,x ∈N *, h ′(x )=⎩⎨⎧30e x (6-x ),1≤x <7,x ∈N *,10(x -8)(x -12),7≤x ≤12,x ∈N *, ∵当1≤x ≤6时,h ′(x )≥0,当6<x <7时,h ′(x )<0,∴当1≤x <7且x ∈N *时,h (x )max =30e 6≈12 090,∵当7≤x ≤8时,h ′(x )≥0,当8≤x ≤12时,h ′(x )≤0,∴当7≤x ≤12且x ∈N *时,h (x )max =h (8)≈2 987.综上,预计该商场第6个月的月利润达到最大,最大月利润约为12 090元.4.如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的上,下两个顶点为A ,B ,直线l :y =-2,点P 是椭圆上异于点A ,B 的任意一点,连接AP 并延长交直线l 于点N ,连接PB 并延长交直线l 于点M ,设AP 所在的直线的斜率为k 1,BP 所在的直线的斜率为k 2.若椭圆的离心率为32,且过点A (0,1).(1)求k 1·k 2的值;(2)求MN 的最小值;(3)随着点P 的变化,以MN 为直径的圆是否恒过定点?若过定点,求出该定点;如不过定点,请说明理由.解 (1)因为e =c a =32,b =1,a 2=b 2+c 2,解得a =2,所以椭圆C 的标准方程为x 24+y 2=1.设椭圆上点P (x 0,y 0),有x 204+y 20=1,所以k 1·k 2=y 0-1x 0·y 0+1x 0=y 20-1x 20=-14. (2)因为M ,N 在直线l :y =-2上,设M (x 1,-2),N (x 2,-2),由方程知x 24+y 2=1知,A (0,1),B (0,-1),所以k BM ·k AN =-2-(-1)x 1-0·-2-1x 2-0=3x 1x 2, 又由(1)知k AN ·k BM =k 1·k 2=-14,所以x 1x 2=-12,不妨设x 1<0,则x 2>0,则MN =|x 1-x 2|=x 2-x 1=x 2+12x 2≥2x 2·12x 2=43, 所以当且仅当x 2=-x 1=23时,MN 取得最小值4 3.(3)设M (x 1,-2),N (x 2,-2),则以MN 为直径的圆的方程为(x -x 1)(x -x 2)+(y +2)2=0,即x 2+(y +2)2-12-(x 1+x 2)x =0,若圆过定点,则有x =0,x 2+(y +2)2-12=0,解得x =0,y =-2±23,所以,无论点P 如何变化,以MN 为直径的圆恒过定点(0,-2±23).5.已知函数f (x )=-x 3+x 2,g (x )=a ln x ,a ∈R .(1)若对任意x ∈[1,e],都有g (x )≥-x 2+(a +2)x 恒成立,求a 的取值范围;(2)设F (x )=⎩⎨⎧f (x ),x <1,g (x ),x ≥1.若P 是曲线y =F (x )上异于原点O 的任意一点,在曲线y =F (x )上总存在另一点Q ,使得△POQ 中的∠POQ 为钝角,且PQ 的中点在y 轴上,求a 的取值范围.解 (1)由g (x )≥-x 2+(a +2)x ,得(x -ln x )a ≤x 2-2x .由于x ∈[1,e],ln x ≤1≤x ,且等号不能同时取得,所以ln x <x ,x -ln x >0.从而a ≤x 2-2x x -ln x 恒成立,a ≤⎝ ⎛⎭⎪⎫x 2-2x x -ln x min. 设t (x )=x 2-2x x -ln x ,x ∈[1,e].求导,得t ′(x )=(x -1)(x +2-2ln x )(x -ln x )2. x ∈[1,e],x -1≥0,ln x ≤1,x +2-2ln x >0,从而t ′(x )≥0,t (x )在[1,e]上为增函数.所以t (x )min =t (1)=-1,所以a 的取值范围是(-∞,-1].(2)F (x )=⎩⎨⎧-x 3+x 2,x <1,a ln x ,x ≥1.设P (t ,F (t ))为曲线y =F (x )上的任意一点.假设曲线y =F (x )上存在一点Q (-t ,F (-t )),使∠POQ 为钝角,则OP→·OQ →<0.①若t ≤-1,P (t ,-t 3+t 2),Q (-t ,a ln(-t )),OP →·OQ →=-t 2+a ln(-t )·(-t 3+t 2).由于OP→·OQ →<0恒成立,a (1-t )ln(-t )<1. 当t =-1时,a (1-t )ln(-t )<1恒成立.当t <-1时,a <1(1-t )ln (-t )恒成立. 由于1(1-t )ln (-t )>0,所以a ≤0. ②若-1<t <1,且t ≠0,P (t ,-t 3+t 2),Q (-t ,t 3+t 2),则OP →·OQ →=-t 2+(-t 3+t 2)·(t 3+t 2)<0,即t 4-t 2+1>0对-1<t <1,且t ≠0恒成立.③当t ≥1时,同①可得a ≤0.综上所述,a 的取值范围是(-∞,0].6.已知数列{a n }的前三项分别为a 1=5,a 2=6,a 3=8,且数列{a n }的前n 项和S n 满足S n +m =12(S 2n +S 2m )-(n -m )2,其中m ,n 为任意正整数.(1)求数列{a n }的通项公式及前n 项和S n ;(2)求满足S 2n -32a n +33=k 2的所有正整数k ,n . 解 (1)在等式S m +n =12(S 2n +S 2m )-(n -m )2中,分别令m =1,m =2,得S n +1=12(S 2n +S 2)-(n -1)2,①S n +2=12(S 2n +S 4)-(n -2)2,②②-①,得a n +2=2n -3+S 4-S 22.在等式S n +m =12(S 2n +S 2m )-(n -m 2)中,令n =1,m =2,得S 3=12(S 2+S 4)-1,由题设知,S 2=11,S 3=19,故S 4=29.所以a n +2=2n +6(n ∈N *),即a n =2n +2(n ≥3,n ∈N *).又a 2=6也适合上式,故a n =⎩⎨⎧5,n =1,2n +2,n ≥2.S n =⎩⎨⎧5, n =1,n 2+3n +1, n ≥2.即S n =n 2+3n +1,n ∈N *. (2)记S 2n -32a n +33=k 2(*). n =1时,无正整数k 满足等式(*).n ≥2时,等式(*)即为(n 2+3n +1)2-3(n -10)=k 2.①当n =10时,k =131.②当n >10时,则k <n 2+3n +1,又k 2-(n 2+3n )2=2n 2+3n +31>0,所以k >n 2+3n .从而n 2+3n <k <n 2+3n +1.又因为n ,k ∈N *,所以k 不存在,从而无正整数k 满足等式(*). ③当n <10时,则k >n 2+3n +1,因为k ∈N *,所以k ≥n 2+3n +2. 从而(n 2+3n +1)2-3(n -10)≥(n 2+3n +2)2.即2n 2+9n -27≤0.因为n ∈N *,所以n =1或2.n =1时,k 2=52,无正整数解;n =2时,k 2=145,无正整数解.综上所述,满足等式(*)的n ,k 分别为n =10,k =131.。
《创新设计》2017届高考数学(文)二轮复习(江苏专用)教师word文档 专题七
第1讲函数与方程思想、数形结合思想高考定位函数与方程的思想一般通过函数与导数、三角函数、数列、解析几何等知识进行考查;数形结合思想一般在填空题中考查.1.函数与方程思想的含义(1)函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,是对函数概念的本质认识,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决的思想方法.(2)方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决的思想方法.2.函数与方程的思想在解题中的应用(1)函数与不等式的相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式.(2)数列的通项与前n项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要.(3)解析几何中的许多问题,需要通过解二元方程组才能解决,这都涉及二次方程与二次函数的有关理论.3.数形结合是一种数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:①借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图象来直观地说明函数的性质;②借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.4.在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围.数学中的知识,有的本身就可以看作是数形的结合.热点一 函数与方程思想的应用[微题型1] 不等式问题中的函数(方程)法【例1-1】 (1)f (x )=ax 3-3x +1对于x ∈[-1,1],总有f (x )≥0成立,则a =________.(2)设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集是________.解析 (1)若x =0,则不论a 取何值,f (x )≥0显然成立;当x >0即x ∈(0,1]时,f (x )=ax 3-3x +1≥0可化为a ≥3x 2-1x 3.设g (x )=3x 2-1x 3,则g ′(x )=3(1-2x )x 4, 所以g (x )在区间⎝ ⎛⎦⎥⎤0,12上单调递增,在区间⎝ ⎛⎦⎥⎤12,1上单调递减, 因此g (x )max =g ⎝ ⎛⎭⎪⎫12=4,从而a ≥4. 当x <0即x ∈[-1,0)时,f (x )=ax 3-3x +1≥0可化为a ≤3x 2-1x 3,设g (x )=3x 2-1x 3,且g (x )在区间[-1,0)上单调递增,因此g (x )min =g (-1)=4,从而a ≤4,综上a =4.(2)设F (x )=f (x )g (x ),由于f (x ),g (x )分别是定义在R 上的奇函数和偶函数,得F (-x )=f (-x )·g (-x )=-f (x )g (x )=-F (x ),即F (x )在R 上为奇函数.又当x <0时,F ′(x )=f ′(x )·g (x )+f (x )g ′(x )>0,所以x <0时,F (x )为增函数.因为奇函数在对称区间上的单调性相同,所以x >0时,F (x )也是增函数. 因为F (-3)=f (-3)g (-3)=0=-F (3).所以,由图可知F (x )<0的解集是(-∞,-3)∪(0,3).答案 (1)4 (2)(-∞,-3)∪(0,3)探究提高 (1)在解决不等式问题时,一种最重要的思想方法就是构造适当的函数,利用函数的图象和性质解决问题;(2)函数f (x )>0或f (x )<0恒成立,一般可转化为f (x )min >0或f (x )max <0;已知恒成立求参数范围可先分离参数,然后利用函数值域求解.[微题型2] 数列问题的函数(方程)法【例1-2】 已知数列{a n }满足a 1=3,a n +1=a n +p ·3n (n ∈N *,p 为常数),a 1,a 2+6,a 3成等差数列.(1)求p 的值及数列{a n }的通项公式;(2)设数列{b n }满足b n =n 2a n,证明:b n ≤49. (1)解 由a 1=3,a n +1=a n +p ·3n ,得a 2=3+3p ,a 3=a 2+9p =3+12p .因为a 1,a 2+6,a 3成等差数列,所以a 1+a 3=2(a 2+6),即3+3+12p =2(3+3p +6),得p =2,依题意知,a n +1=a n +2×3n .当n ≥2时,a 2-a 1=2×31,a 3-a 2=2×32,…,a n -a n -1=2×3n -1.将以上式子相加得a n -a 1=2(31+32+…+3n -1),所以a n -a 1=2×3×(1-3n -1)1-3=3n -3, 所以a n =3n (n ≥2).又a 1=3符合上式,故a n =3n .(2)证明 因为a n =3n,所以b n =n 23n . 所以b n +1-b n =(n +1)23n +1-n 23n =-2n 2+2n +13n +1(n ∈N *), 若-2n 2+2n +1<0,则n >1+32,即当n ≥2时,有b n +1<b n ,又因为b 1=13,b 2=49,故b n ≤49.探究提高 数列最值问题中应用函数与方程思想的常见类型:(1)数列中的恒成立问题,转化为最值问题,利用函数的单调性或不等式求解.(2)数列中的最大项与最小项问题,利用函数的有关性质或不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1,⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1求解. (3)数列中前n 项和的最值:转化为二次函数,借助二次函数的单调性或求使a n ≥0(a n ≤0)成立时最大的n 值即可求解.[微题型3] 解析几何问题的方程(函数)法【例1-3】 设椭圆中心在坐标原点,A (2,0),B (0,1)是它的两个顶点,直线y =kx (k >0)与AB 相交于点D ,与椭圆相交于E 、F 两点.(1)若ED→=6DF →,求k 的值; (2)求四边形AEBF 面积的最大值.解 (1)依题意得椭圆的方程为x 24+y 2=1,直线AB ,EF 的方程分别为x +2y =2,y =kx (k >0).如图,设D (x 0,kx 0),E (x 1,kx 1),F (x 2,kx 2),其中x 1<x 2,且x 1,x 2满足方程(1+4k 2)x 2=4,故x 2=-x 1=21+4k 2.① 由ED →=6DF →知x 0-x 1=6(x 2-x 0), 得x 0=17(6x 2+x 1)=57x 2=1071+4k 2; 由D 在AB 上知x 0+2kx 0=2,得x 0=21+2k.所以21+2k =1071+4k 2, 化简得24k 2-25k +6=0,解得k =23或k =38.(2)根据点到直线的距离公式和①式知,点E ,F 到AB 的距离分别为h 1=|x 1+2kx 1-2|5=2(1+2k +1+4k 2)5(1+4k 2), h 2=|x 2+2kx 2-2|5=2(1+2k -1+4k 2)5(1+4k 2). 又AB =22+12=5,所以四边形AEBF 的面积为S =12·AB ·(h 1+h 2) =12·5·4(1+2k )5(1+4k 2)=2(1+2k )1+4k2 =21+4k 2+4k 1+4k 2≤22, 当4k 2=1(k >0),即当k =12时,上式取等号.所以S 的最大值为2 2.即四边形AEBF 面积的最大值为2 2.探究提高 解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.热点二 数形结合思想的应用[微题型1] 利用数形结合思想讨论方程的根或函数零点【例2-1】 (1)若函数f (x )=|2x -2|-b 有两个零点,则实数b 的取值范围是________.(2)设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x )=f (2-x ),且当x ∈[0,1]时,f (x )=x 3.又函数g (x )=|x cos(πx )|,则函数h (x )=g (x )-f (x )在⎣⎢⎡⎦⎥⎤-12,32上的零点个数为________.解析 (1)由f (x )=|2x -2|-b 有两个零点,可得|2x -2|=b 有两个不等的实根,从而可得函数y =|2x -2|的图象与函数y =b 的图象有两个交点,如图所示.结合函数的图象,可得0<b <2,故填(0,2).(2)根据题意,函数y =f (x )是周期为2的偶函数且0≤x ≤1时,f (x )=x 3,则当-1≤x ≤0时,f (x )=-x 3,且g (x )=|x cos(πx )|,所以当x =0时,f (x )=g (x ).当x ≠0时,若0<x ≤12,则x 3=x cos(πx ),即x 2=cos πx .再根据函数性质画出⎣⎢⎡⎦⎥⎤-12,32上的图象,在同一个坐标系中作出所得关系式等号两边函数的图象,如图所示,有5个根.所以总共有6个.答案 (1)(0,2) (2)6探究提高 用图象法讨论方程(特别是含参数的指数、对数、根式、三角等复杂方程)的解(或函数零点)的个数是一种重要的思想方法,其基本思想是先把方程两边的代数式看作是两个熟悉函数的表达式(不熟悉时,需要作适当变形转化为两个熟悉的函数),然后在同一坐标系中作出两个函数的图象,图象的交点个数即为方程解(或函数零点)的个数.[微题型2] 利用数形结合思想解不等式或求参数范围【例2-2】 (1)若不等式9-x 2≤k (x +2)-2的解集为区间[a ,b ],且b -a =2,则k =________.(2)若不等式|x -2a |≥12x +a -1对x ∈R 恒成立,则a 的取值范围是________.解析 (1)如图,分别作出直线y =k (x +2)-2与半圆y =9-x 2.由题意,知直线在半圆的上方,由b -a =2,可知b=3,a =1,所以直线y =k (x +2)-2过点(1,22),则k = 2.(2)作出y =|x -2a |和y =12x +a -1的简图,依题意知应有2a ≤2-2a ,故a ≤12. 答案 (1)2 (2)⎝ ⎛⎦⎥⎤-∞,12 探究提高 求参数范围或解不等式问题经常联系函数的图象,根据不等式中量的特点,选择适当的两个(或多个)函数,利用两个函数图象的上、下位置关系转化数量关系来解决问题,往往可以避免繁琐的运算,获得简捷的解答.[微题型3] 利用数形结合思想求最值【例2-3】 (1)已知P 是直线l :3x +4y +8=0上的动点,P A 、PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A 、B 是切点,C 是圆心,则四边形P ACB 面积的最小值为________.(2)(2015·全国Ⅰ卷)已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 的左支上一点,A (0,66),当△APF 周长最小时,该三角形的面积为________.解析 (1)从运动的观点看问题,当动点P 沿直线3x +4y +8=0向左上方或右下方无穷远处运动时,直角三角形P AC 的面积S Rt △P AC =12P A ·AC =12P A 越来越大,从而S 四边形P ACB 也越来越大;当点P 从左上、右下两个方向向中间运动时,S 四边形P ACB 变小,显然,当点P 到达一个最特殊的位置,即CP 垂直直线l 时,S 四边形P ACB 应有唯一的最小值,此时PC =|3×1+4×1+8|32+42=3, 从而P A =PC 2-AC 2=2 2.所以(S 四边形P ACB )min =2×12×P A ×AC =2 2.(2)设双曲线的左焦点为F 1,连接PF 1,根据双曲线的定义可知PF =2+PF 1,则△APF 的周长为P A +PF +AF =P A +2+PF 1+AF =P A +PF 1+AF +2,由于AF +2是定值,要使△APF 的周长最小,则P A +PF 1最小,即P ,A ,F 1三点共线,如图所示.由于A (0,66),F 1(-3,0),直线AF 1的方程为:x -3+y 66=1, 即x =y 26-3, 代入双曲线方程整理可得y 2+66y -96=0,解得y =26或y =-86(舍去),所以点P 的纵坐标为2 6.所以S △APF =S △AFF 1-S △PFF 1=12×6×66-12×6×26=12 6.答案 (1)22 (2)12 6探究提高 破解圆锥曲线问题的关键是画出相应的图形,注意数形结合的相互渗透,并从相关的图形中挖掘对应的信息加以分析与研究.直线与圆锥曲线的位置关系的转化有两种,一种是通过数形结合建立相应的关系式,另一种是通过代数形式转化为二元二次方程组的解的问题进行讨论.1.当问题中涉及一些变化的量时,就需要建立这些变化的量之间的关系,通过变量之间的关系探究问题的答案,这就需要使用函数思想.2.借助有关函数的性质,一是用来解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题,二是在问题的研究中,可以通过建立函数关系式或构造中间函数来求解.3.许多数学问题中,一般都含有常量、变量或参数,这些参变量中必有一个处于突出的主导地位,把这个参变量称为主元,构造出关于主元的方程,主元思想有利于回避多元的困扰,解方程的实质就是分离参变量.4.在数学中函数的图象、方程的曲线、不等式所表示的平面区域、向量的几何意义、复数的几何意义等都实现以形助数的途径,当试题中涉及这些问题的数量关系时,我们可以通过图形分析这些数量关系,达到解题的目的.5.有些图形问题,单纯从图形上无法看出问题的结论,这就要对图形进行数量上的分析,通过数的帮助达到解题的目的.6.利用数形结合解题,有时只需把图象大致形状画出即可,不需要精确图象.一、填空题1.直线3x-y+m=0与圆x2+y2-2x-2=0相切,则实数m=________.解析圆的方程(x-1)2+y2=3,圆心(1,0)到直线的距离等于半径⇒|3+m|3+1=3⇒|3+m|=23⇒m=3或m=-3 3.答案-33或 32.已知函数f(x)满足下面关系:①f(x+1)=f(x-1);②当x∈[-1,1]时,f(x)=x2,则方程f(x)=lg x解的个数是________.解析由题意可知,f(x)是以2为周期,值域为[0,1]的函数.又f(x)=lg x,则x∈(0,10],画出两函数图象,则交点个数即为解的个数.由图象可知共9个交点.答案93.函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为________.解析f′(x)>2转化为f′(x)-2>0,构造函数F(x)=f(x)-2x,得F(x)在R上是增函数.又F(-1)=f(-1)-2×(-1)=4,f(x)>2x+4,即F(x)>4=F(-1),所以x>-1.答案(-1,+∞)4.已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是________.解析 如图,设OA→=a ,OB →=b ,OC →=c ,则CA →=a -c ,CB →=b -c .由题意知CA→⊥CB →, ∴O ,A ,C ,B 四点共圆.∴当OC 为圆的直径时,|c |最大,此时,|OC→|= 2. 答案 25.已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为________.解析 函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x=a ,画出草图如图所示.由图象可知函数在(-∞,a ]和[a ,+∞)上都具有单调性,因此要使函数f (x )在区间[1,2]上具有单调性,只需a ≤1或a ≥2,从而a ∈(-∞,1]∪[2,+∞).答案 (-∞,1]∪[2,+∞)6.(2015·全国Ⅱ卷改编)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为________.解析 如图,设双曲线E 的方程为x 2a 2-y 2b 2=1(a >0,b >0),则AB =2a ,由双曲线的对称性,可设点M (x 1,y 1)在第一象限内,过M 作MN ⊥x 轴于点N (x 1,0),∵△ABM 为等腰三角形,且∠ABM =120°,∴BM =AB =2a ,∠MBN =60°,∴y 1=MN =BM sin ∠MBN =2a sin 60°=3a ,x 1=OB +BN =a +2a cos 60°=2a .将点M (2a ,3a )的坐标代入x 2a 2-y 2b 2=1,可得a 2=b 2,∴e =c a =a 2+b 2a 2= 2.答案 2 7.已知e 1,e 2是平面内两个相互垂直的单位向量,若向量b 满足|b |=2,b ·e 1=1,b ·e 2=1,则对于任意x ,y ∈R ,|b -(x e 1+y e 2)|的最小值为________.解析 |b -(x e 1+y e 2)|2=b 2+x 2e 21+y 2e 22-2x b ·e 1-2y b ·e 2+2xy e 1·e 2=4+x 2+y 2-2x-2y=(x-1)2+(y-1)2+2≥2,当且仅当x=1,y=1时,|b-(x e1+y e2)|2取得最小值2,此时|b-(x e1+y e2)|取得最小值 2.答案 28.设直线l与抛物线y2=4x相交于A,B两点,与圆C:(x-5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点.若这样的直线l恰有4条,则r的取值范围是________.解析设直线l的方程为x=ty+m,A(x1,y1),B(x2,y2),把直线l的方程代入抛物线方程y2=4x并整理得y2-4ty-4m=0,则Δ=16t2+16m>0,y1+y2=4t,y1y2=-4m,那么x1+x2=(ty1+m)+(ty2+m)=4t2+2m,则线段AB的中点M(2t2+m,2t).由题意可得直线AB与直线MC垂直,且C(5,0).当t≠0时,有k MC·k AB=-1,即2t-02t2+m-5·1t=-1,整理得m=3-2t2,把m=3-2t2代入Δ=16t2+16m>0,可得3-t2>0,即0<t2<3.由于圆心C到直线AB的距离等于半径,即d=|5-m|1+t2=2+2t21+t2=21+t2=r,所以2<r<4,此时满足题意且不垂直于x轴的直线有两条.当t=0时,这样的直线l恰有2条,即x=5±r,所以0<r<5.综上,可得若这样的直线恰有4条,则2<r<4.答案(2,4)二、解答题9.已知数列{a n}是一个等差数列,且a2=1,a5=-5.(1)求{a n}的通项a n;(2)求{a n}前n项和S n的最大值.解(1)设{a n}的公差为d,由已知条件,⎩⎨⎧a 1+d =1,a 1+4d =-5,解得a 1=3,d =-2. 所以a n =a 1+(n -1)d =-2n +5.(2)S n =na 1+n (n -1)2d =-n 2+4n =4-(n -2)2.所以n =2时,S n 取到最大值4.10.椭圆C 的中心为坐标原点O ,焦点在y 轴上,短轴长为2,离心率为22,直线l 与y 轴交于点P (0,m ),与椭圆C 交于相异两点A ,B ,且AP →=3PB →.(1)求椭圆C 的方程; (2)求m 的取值范围.解 (1)设椭圆C 的方程为y 2a 2+x 2b 2=1(a >b >0),设c >0,c 2=a 2-b 2,由题意,知2b =2,c a =22, 所以a =1,b =c =22.故椭圆C 的方程为y 2+x 212=1.即y 2+2x 2=1.(2)当直线l 的斜率不存在时,由题意求得m =±12; 当直线l 的斜率存在时,设直线l 的方程为y =kx +m (k ≠0),l 与椭圆C 的交点坐标为A (x 1,y 1),B (x 2,y 2), 由⎩⎨⎧y =kx +m ,2x 2+y 2=1,得(k 2+2)x 2+2kmx +m 2-1=0, Δ=(2km )2-4(k 2+2)(m 2-1) =4(k 2-2m 2+2)>0,(*)解上述方程后易得:x 1+x 2=-2km k 2+2,x 1x 2=m 2-1k 2+2.因为AP →=3 PB →,所以-x 1=3x 2.所以⎩⎨⎧x 1+x 2=-2x 2,x 1x 2=-3x 22.所以3(x 1+x 2)2+4x 1x 2=0. 所以3·⎝ ⎛⎭⎪⎫-2km k 2+22+4·m 2-1k 2+2=0.整理得4k 2m 2+2m 2-k 2-2=0, 即k 2(4m 2-1)+(2m 2-2)=0.当m 2=14时,上式不成立;当m 2≠14时,k 2=2-2m 24m 2-1,由(*)式,得k 2>2m 2-2, 又k ≠0,所以k 2=2-2m 24m 2-1>0.解得-1<m <-12或12<m <1.综上,所求m 的取值范围为⎝ ⎛⎦⎥⎤-1,-12∪⎣⎢⎡⎭⎪⎫12,1.11.设函数f (x )=ax 3-3ax ,g (x )=bx 2-ln x (a ,b ∈R ),已知它们在x =1处的切线互相平行. (1)求b 的值;(2)若函数F (x )=⎩⎨⎧f (x ),x ≤0,g (x ),x >0,且方程F (x )=a 2有且仅有四个解,求实数a 的取值范围.解 函数g (x )=bx 2-ln x 的定义域为(0,+∞), (1)f ′(x )=3ax 2-3a ⇒f ′(1)=0, g ′(x )=2bx -1x ⇒g ′(1)=2b -1, 依题意得2b -1=0,所以b =12. (2)x ∈(0,1)时,g ′(x )=x -1x <0,即g (x )在(0,1)上单调递减,x ∈(1,+∞)时,g ′(x )=x -1x >0,即g (x )在(1,+∞)上单调递增,所以当x =1时,g (x )取得极小值g (1)=12; 当a =0时,方程F (x )=a 2不可能有四个解;当a <0,x ∈(-∞,-1)时,f ′(x )<0,即f (x )在(-∞,-1)上单调递减,x ∈ (-1,0)时,f ′(x )>0, 即f (x )在(-1,0)上单调递增,所以当x =-1时,f (x )取得极小值f (-1)=2a , 又f (0)=0,所以F (x )的图象如图(1)所示, 从图象可以看出F (x )=a 2不可能有四个解. 当a >0,x ∈(-∞,-1)时,f ′(x )>0, 即f (x )在(-∞,-1)上单调递增, x ∈(-1,0)时,f ′(x )<0, 即f (x )在(-1,0)上单调递减,所以当x =-1时,f (x )取得极大值f (-1)=2a . 又f (0)=0,所以F (x )的图象如图(2)所求,从图(2)看出,若方程F (x )=a 2有四个解,则12<a 2<2a , 得22<a <2,所以,实数a 的取值范围是⎝ ⎛⎭⎪⎫22,2.第2讲 分类讨论思想、转化与化归思想高考定位 分类讨论思想,转化与化归思想近几年高考每年必考,一般体现在解析几何、函数与导数及数列解答题中,难度较大.1.中学数学中可能引起分类讨论的因素(1)由数学概念而引起的分类讨论:如绝对值的定义、不等式的定义、二次函数的定义、直线的倾斜角等.(2)由数学运算要求而引起的分类讨论:如除法运算中除数不为零,偶次方根被开方数为非负数,对数运算中真数与底数的要求,指数运算中底数的要求,不等式中两边同乘以一个正数、负数,三角函数的定义域,等比数列{a n }的前n 项和公式等.(3)由性质、定理、公式的限制而引起的分类讨论:如函数的单调性、基本不等式等.(4)由图形的不确定性而引起的分类讨论:如二次函数图象、指数函数图象、对数函数图象等.(5)由参数的变化而引起的分类讨论:如某些含有参数的问题,由于参数的取值不同会导致所得的结果不同,或者由于对不同的参数值要运用不同的求解或证明方法等.2.常见的转化与化归的方法转化与化归思想方法用在研究、解决数学问题时,思维受阻或寻求简单方法或从一种状况转化到另一种情形,也就是转化到另一种情境使问题得到解决,这种转化是解决问题的有效策略,同时也是获取成功的思维方式.常见的转化方法有:(1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题.(2)换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题.(3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径.(4)等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的.(5)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题、结论适合原问题.(6)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题.(7)坐标法:以坐标系为工具,用计算方法解决几何问题是转化方法的一个重要途径.(8)类比法:运用类比推理,猜测问题的结论,易于确定.(9)参数法:引进参数,使原问题转化为熟悉的形式进行解决.(10)补集法:如果正面解决原问题有困难,可把原问题的结果看做集合A,而把包含该问题的整体问题的结果类比为全集U,通过解决全集U及补集∁U A获得原问题的解决,体现了正难则反的原则.热点一分类讨论思想的应用[微题型1]由性质、定理、公式的限制引起的分类【例1-1】(1)设数列{a n}的前n项和为S n,已知2S n=3n+3,求数列{a n}的通项a n =________.(2)(2016·苏北四市调研)已知实数a ≠0,函数f (x )=⎩⎨⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________. 解析 (1)由2S n =3n +3得:当n =1时,2S 1=31+3=2a 1,解得a 1=3;当n ≥2时,a n =S n -S n -1=12[(3n +3)-(3n -1+3)]=3n -1,由于n =1时,a 1=3不适合上式.∴数列{a n }的通项公式为a n =⎩⎨⎧3,n =1,3n -1,n ≥2.(2)当a >0时,1-a <1,1+a >1, 这时f (1-a )=2(1-a )+a =2-a , f (1+a )=-(1+a )-2a =-1-3a .由f (1-a )=f (1+a )得2-a =-1-3a ,解得a =-32,不合题意,舍去; 当a <0时,1-a >1,1+a <1, 这时f (1-a )=-(1-a )-2a =-1-a , f (1+a )=2(1+a )+a =2+3a .由f (1-a )=f (1+a )得-1-a =2+3a , 解得a =-34.综上可知,a 的值为-34. 答案 (1)⎩⎨⎧3,n =1,3n -1,n ≥2(2)-34探究提高 由性质、定理、公式的限制引起的分类整合法往往是因为有的数学定理、公式、性质是分类给出的,在不同的条件下结论不一致的情况下使用,如等比数列的前n 项和公式、函数的单调性等. [微题型2] 由数学运算要求引起的分类【例1-2】 (1)(2016·苏、锡、常、镇调研改编)不等式|x |+|2x +3|≥2的解集是________.(2)已知m ∈R ,求函数f (x )=(4-3m )x 2-2x +m 在区间[0,1]上的最大值为________.解析 (1)原不等式可转化为⎩⎪⎨⎪⎧x <-32,-x -(2x +3)≥2, 或⎩⎪⎨⎪⎧-32≤x ≤0,-x +(2x +3)≥2或⎩⎨⎧x >0,x +(2x +3)≥2. 解得x ≤-53或-1≤x ≤0或x >0,故原不等式的解集为⎝ ⎛⎦⎥⎤-∞,-53∪[-1,+∞). (2)①当4-3m =0,即m =43时,函数y =-2x +43, 它在[0,1]上是减函数,所以y max =f (0)=43. ②当4-3m ≠0, 即m ≠43时,y 是二次函数.当4-3m >0,即m <43时,二次函数y 的图象开口向上,对称轴方程x =14-3m>0,它在[0,1]上的最大值只能在区间端点取得(由于此处不涉及最小值,故不需讨论区间与对称轴的关系). f (0)=m ,f (1)=2-2m ,当m ≥2-2m ,又m <43,即23≤m <43时,y max =m . 当m <2-2m ,又m <43,即m <23时,y max =2(1-m ).当4-3m <0,即m >43时,二次函数y 的图象开口向下,又它的对称轴方程x =14-3m<0,所以函数y 在[0,1]上是减函数,于是y max =f (0)=m . 由①、②可知,这个函数的最大值为y max =⎩⎪⎨⎪⎧2-2m ,m <23,m ,m ≥23.答案 (1)⎝ ⎛⎦⎥⎤-∞,-53∪[-1,+∞)(2)y max =⎩⎪⎨⎪⎧2-2m ,m <23,m ,m ≥23探究提高 由数学运算要求引起的分类整合法,常见的类型有除法运算中除数不为零,偶次方根为非负,对数运算中真数与底数的要求,指数运算中底数的要求,不等式两边同乘以一个正数、负数问题,含有绝对值的不等式求解,三角函数的定义域等,根据相应问题中的条件对相应的参数、关系式等加以分类分析,进而分类求解与综合.[微题型3] 由参数变化引起的分类【例1-3】 (2015·全国Ⅱ卷)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x -a . 若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增.若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0,所以f (x )在⎝ ⎛⎦⎥⎤0,1a 上单调递增,在⎣⎢⎡⎭⎪⎫1a ,+∞上单调递减. 综上,知当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝ ⎛⎦⎥⎤0,1a 上单调递增,在⎣⎢⎡⎭⎪⎫1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值;当a >0时,f (x )在x =1a 处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln 1a +a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a-1.因此f ⎝ ⎛⎭⎪⎫1a >2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增,g(1)=0.于是,当0<a<1时,g(a)<0;当a>1时,g(a)>0.因此,a的取值范围是(0,1).探究提高由参数的变化引起的分类整合法经常用于某些含有参数的问题,如含参数的方程、不等式,由于参数的取值不同会导致所得结果不同,或对于不同的参数值要运用不同的求解或证明方法.热点二转化与化归思想[微题型1]换元法【例2-1】已知实数a,b,c满足a+b+c=0,a2+b2+c2=1,则a的最大值是________.解析令b=x,c=y,则x+y=-a,x2+y2=1-a2.此时直线x+y=-a与圆x2+y2=1-a2有交点,则圆心到直线的距离d=|a|2≤1-a2,解得a2≤23,所以a的最大值为6 3.答案6 3探究提高换元法是一种变量代换,也是一种特殊的转化与化归方法,是用一种变数形式去取代另一种变数形式,是将生疏(或复杂)的式子(或数),用熟悉(或简单)的式子(或字母)进行替换;化生疏为熟悉、复杂为简单、抽象为具体,使运算或推理可以顺利进行.[微题型2]特殊与一般的转化【例2-2】已知f(x)=33x+3,则f(-2 015)+f(-2 014)+…+f(0)+f(1)+…+f(2 016)=________.解析f(x)+f(1-x)=33x+3+331-x+3=33x+3+3x3+3x=3x+33x+3=1,∴f(0)+f(1)=1,f(-2 015)+f(2 016)=1,∴f (-2 015)+f (-2 014)+…+f (0)+f (1)+…+f (2 016)=2 016. 答案 2 016探究提高 一般问题特殊化,使问题处理变得直接、简单.特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批处理问题的效果. [微题型3] 常量与变量的转化【例2-3】 对任意的|m |≤2,函数f (x )=mx 2-2x +1-m 恒为负,则x 的取值范围为________.解析 对任意的|m |≤2,有mx 2-2x +1-m <0恒成立,即|m |≤2时,(x 2-1)m -2x +1<0恒成立.设g (m )=(x 2-1)m -2x +1,则原问题转化为g (m )<0恒成立(m ∈[-2,2]).所以⎩⎨⎧g (-2)<0,g (2)<0,即⎩⎨⎧2x 2+2x -3>0,2x 2-2x -1<0.解得7-12<x <3+12,即实数x 的取值范围为⎝ ⎛⎭⎪⎫7-12,3+12. 答案 ⎝ ⎛⎭⎪⎫7-12,3+12探究提高 在处理多变元的数学问题时,我们可以选取其中的参数,将其看做是“主元”,而把其它变元看做是常量,从而达到减少变元简化运算的目的. [微题型4] 正与反的相互转化【例2-4】 若对于任意t ∈[1,2],函数g (x )=x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x 在区间(t ,3)上总不为单调函数,则实数m 的取值范围是________.解析 g ′(x )=3x 2+(m +4)x -2,若g (x )在区间(t ,3)上总为单调函数,则①g ′(x )≥0在(t ,3)上恒成立,或②g ′(x )≤0在(t ,3)上恒成立.由①得3x 2+(m +4)x -2≥0,即m +4≥2x -3x 在x ∈(t ,3)上恒成立,∴m +4≥2t -3t 恒成立,则m +4≥-1,即m ≥-5;由②得m +4≤2x -3x 在x ∈(t ,3)上恒成立, 则m +4≤23-9,即m ≤-373.∴函数g (x )在区间(t ,3)上总不为单调函数的m 的取值范围为-373<m <-5.答案 ⎝ ⎛⎭⎪⎫-373,-5 探究提高 否定性命题,常要利用正反的相互转化,先从正面求解,再取正面答案的补集即可,一般地,题目若出现多种成立的情形,则不成立的情形相对很少,从反面考虑较简单,因此,间接法多用于含有“至多”、“至少”及否定性命题情形的问题中.1.分类讨论思想的本质是“化整为零,积零为整”.用分类讨论的思维策略解数学问题的操作过程:明确讨论的对象和动机→确定分类的标准→逐类进行讨论→归纳综合结论→检验分类是否完备(即分类对象彼此交集为空集,并集为全集).做到“确定对象的全体,明确分类的标准,分类不重复、不遗漏”的分析讨论. 常见的分类讨论问题有:(1)集合:注意集合中空集∅讨论.(2)函数:对数函数或指数函数中的底数a ,一般应分a >1和0<a <1的讨论;函数y =ax 2+bx +c 有时候分a =0和a ≠0的讨论;对称轴位置的讨论;判别式的讨论.(3)数列:由S n 求a n 分n =1和n >1的讨论;等比数列中分公比q =1和q ≠1的讨论.(4)三角函数:角的象限及函数值范围的讨论.(5)不等式:解不等式时含参数的讨论,基本不等式相等条件是否满足的讨论.(6)立体几何:点线面及图形位置关系的不确定性引起的讨论;(7)平面解析几何:直线点斜式中k 分存在和不存在,直线截距式中分b =0和b ≠0的讨论;轨迹方程中含参数时曲线类型及形状的讨论.(8)去绝对值时的讨论及分段函数的讨论等.2.转化与化归思想遵循的原则:(1)熟悉已知化原则:将陌生的问题转化为熟悉的问题,将未知的问题转化为已知的问题,以便于我们运用熟知的知识、经验和问题来解决.(2)简单化原则:将复杂问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据.(3)和谐统一原则:转化问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐统一的形式;或者转化命题,使其推演有利于运用某种数学方法或符合人们的思维规律.(4)正难则反原则:当问题正面讨论遇到困难时,应想到问题的反面,设法从问题的反面去探讨,使问题获得解决.一、填空题1.等比数列{a n }中,a 3=7,前3项之和S 3=21,则公比q 的值是________. 解析 当公比q =1时,a 1=a 2=a 3=7,S 3=3a 1=21,符合要求.当q ≠1时,a 1q 2=7,a 1(1-q 3)1-q =21,解之得,q =-12或q =1(舍去).综上可知,q =1或-12.答案 1或-122.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)上任意一点P ,引与实轴平行的直线,交两渐近线于R ,Q 两点,则PR→·PQ →的值为________. 解析 当直线PQ 与x 轴重合时,|PR→|=|PQ →|=a . 答案 a 23.方程sin 2x +cos x +k =0有解,则k 的取值范围是________.解析 求k =-sin 2x -cos x 的值域.k =cos 2x -cos x -1=⎝ ⎛⎭⎪⎫cos x -122-54. 当cos x =12时,k min =-54,当cos x =-1时,k max =1,∴-54≤k ≤1.答案 ⎣⎢⎡⎦⎥⎤-54,14.若数列{a n }的前n 项和S n =3n -1,则它的通项公式a n =________.解析 当n ≥2时,a n =S n -S n -1=3n -1-(3n -1-1)=2×3n -1;当n =1时,a 1=S 1=2,也满足式子a n =2×3n -1,∴数列{a n }的通项公式为a n =2×3n -1.答案 2×3n -15.已知a 为正常数,若不等式1+x ≥1+x 2-x 22a 对一切非负实数x 恒成立,则a 的最大值为________.解析 原不等式即x 22a ≥1+x 2-1+x (x ≥0),(*) 令1+x =t ,t ≥1,则x =t 2-1,所以(*)式可化为(t 2-1)22a ≥1+t 2-12-t =t 2-2t +12=(t -1)22对t ≥1恒成立, 所以(t +1)2a≥1对t ≥1恒成立, 又a 为正常数,所以a ≤[(t +1)2]min =4,故a 的最大值是4.答案 46.已知△ABC 和点M 满足MA→+MB →+MC →=0.若存在实数k 使得CA →+CB →=kCM →成立,则k 等于________.解析 ∵MA→+MB →+MC →=0, ∴M 为已知△ABC 的重心,取AB 的中点D ,∴CA →+CB →=2CD →=2×32CM →=3CM →, ∵CA→+CB →=kCM →,∴k =3. 答案 37.设F 1,F 2为椭圆x 29+y 24=1的两个焦点,P 为椭圆上一点.已知P ,F 1,F 2是一个直角三角形的三个顶点,且PF 1>PF 2,则PF 1PF 2的值为________. 解析 若∠PF 2F 1=90°,则PF 21=PF 22+F 1F 22,∵PF 1+PF 2=6,F 1F 2=25,解得PF 1=143,PF 2=43,∴PF 1PF 2=72. 若∠F 2PF 1=90°,则F 1F 22=PF 21+PF 22=PF 21+(6-PF 1)2,解得PF 1=4,PF 2=2,∴PF 1PF 2=2. 综上所述,PF 1PF 2=2或72. 答案 2或728.已知函数f (x )=ln x -14x +34x -1,g (x )=-x 2+2bx -4,若对任意的x 1∈(0,2),任意的x 2∈[1,2],不等式f (x 1)≥g (x 2)恒成立,则实数b 的取值范围是________. 解析 依题意,问题等价于f (x 1)min ≥g (x 2)max ,f (x )=ln x -14x +34x -1(x >0),所以f ′(x )=1x -14-34x 2=4x -x 2-34x 2.由f ′(x )>0,解得1<x <3,故函数f (x )单调递增区间是(1,3),同理得f (x )的单调递减区间是(0,1)和(3,+∞),故在区间(0,2)上,x =1是函数f (x )的极小值点,这个极小值点是唯一的,所以f (x 1)min =f (1)=-12.函数g (x 2)=-x 22+2bx 2-4,x 2∈[1,2].当b <1时,g (x 2)max =g (1)=2b -5;当1≤b ≤2时,g (x 2)max =g (b )=b 2-4;当b >2时,g (x 2)max =g (2)=4b -8.故问题等价于⎩⎪⎨⎪⎧b <1,-12≥2b -5或⎩⎪⎨⎪⎧1≤b ≤2,-12≥b 2-4或⎩⎪⎨⎪⎧b >2,-12≥4b -8. 解第一个不等式组得b <1,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题1.(2015·北京卷改编)圆心为(1,1)且过原点的圆的方程是________.解析 因为圆心为(1,1)且过原点,所以该圆的半径r =12+12=2,则该圆的方程为(x -1)2+(y -1)2=2.答案 (x -1)2+(y -1)2=22.(2014·江苏卷)在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________.解析 圆心为(2,-1),半径r =2.圆心到直线的距离d =|2+2×(-1)-3|1+4=355, 所以弦长为2r 2-d 2=222-⎝ ⎛⎭⎪⎫3552=2555. 答案 2555 3.(2016·南京、盐城模拟)过点P (-4,0)的直线l 与圆C :(x -1)2+y 2=5相交于A ,B 两点,若点A 恰好是线段PB 的中点,则直线l 的方程为________.解析 设AB 的中点为点D ,则CD ⊥AB ,设CD =d ,AD =x ,则P A =AB =2x ,在直角三角形ACD 中,由勾股定理得d 2+x 2=r 2=5.在直角三角形PDC 中,由勾股定理得d 2+9x 2=CP 2=25,解得d 2=52.易知直线l 的斜率一定存在,设为k ,则l :y =k (x +4),圆心C (1,0)到直线l 的距离为d =|5k |k 2+1=102,解得k 2=19,k =±13,所以直线l 的方程为y =±13(x +4),即为x ±3y +4=0.答案 x ±3y +4=04.(2016·苏州调研)若直线l 1:y =x +a 和直线l 2:y =x +b 将圆(x -1)2+(y -2)2=8分成长度相等的四段弧,则a 2+b 2=________.解析 由弧长相等得弧所对的圆心角相等,所以四段弧所对的圆心角都是90°,直线l 1,l 2分布在圆心的两侧,且圆心到直线l 1,l 2的距离d =22r =2,即|a -1|2=2,|b -1|2=2,所以a =22+1,b =-22+1或a =-22+1,b =22+1,所以a 2+b 2=(22+1)2+(-22+1)2=18.答案 185.已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M 、N 分别是圆C 1、C 2上的动点,P 为x 轴上的动点,则PM +PN 的最小值为________. 解析 由条件可知,两圆的圆心均在第一象限,先求PC 1+PC 2的最小值,作点C 1关于x 轴的对称点C 1′(2,-3),则(PC 1+PC 2)min =C 1′C 2=5 2. 所以(PM +PN )min =52-4.答案 52-46.(2016·全国Ⅲ卷)已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别做l 的垂线与x 轴交于C ,D 两点,若AB =23,则CD =________.解析 设AB 的中点为M ,由题意知,圆的半径R =23,AB =23,所以OM=3,解得m =-33,由⎩⎨⎧x -3y +6=0,x 2+y 2=12解得A (-3, 3),B (0,23),则AC 的直线方程为y -3=-3(x +3),BD 的直线方程为y -23=-3x ,令y =0,解得C (-2,0),D (2,0),所以CD =4.答案 47.(2016·江西七校第二次联考)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F 作圆x 2+y 2=14a 2的切线,切点为E ,直线EF 交双曲线右支于点P ,若OE →=12(OF →+OP→),则双曲线的离心率是________.解析 如图,∵OE →=12(OF →+OP →),∴E 为FP 的中点, 又O 为FF ′的中点,∴OE 为△PFF ′的中位线,∴OE ∥PF ′,OE =12PF ′,∵OE =12a ,∴PF ′=a ,∵PF 切圆O 于E ,∴OE ⊥PF ,∴PF ′⊥PF ,∵FF ′=2c ,PF -PF ′=2a ,∴PF =2a +a =3a ,∴由勾股定理得a 2+9a 2=4c 2,∴10a 2=4c 2,∴e =c a =102.答案 102 8.直线2ax +by =1与圆x 2+y 2=1相交于A ,B 两点(其中a ,b 是实数),且△AOB 是直角三角形(O 是坐标原点),则点P (a ,b )与点(0,1)之间距离的最小值为________.解析 根据题意画出图形,如图所示,过点O 作OC ⊥AB 于C ,因为△AOB 为等腰直角三角形,所以C 为弦AB 的中点,又OA =OB =1,根据勾股定理得AB =2,∴OC =12AB =22. ∴圆心到直线的距离为12a 2+b 2=22, 即2a 2+b 2=2,即a 2=-12b 2+1≥0.∴-2≤b ≤ 2.则点P (a ,b )与点(0,1)之间距离d =(a -0)2+(b -1)2=a 2+b 2-2b +1=12b 2-2b +2.设f (b )=12b 2-2b +2=12(b -2)2,此函数为对称轴为x =2的开口向上的抛物线,∴当-2≤b ≤2<2时,函数为减函数.∵f (2)=3-22,∴d 的最小值为3-22=(2-1)2=2-1. 答案 2-1二、解答题9.(2015·全国Ⅰ卷)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点.(1)求k 的取值范围;(2)若OM→·ON →=12,其中O 为坐标原点,求MN .解 (1)由题设,可知直线l 的方程为y =kx +1,因为l 与C 交于两点, 所以|2k -3+1|1+k 2<1. 解得4-73<k <4+73.所以k 的取值范围为⎝ ⎛⎭⎪⎫4-73,4+73. (2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1,整理得(1+k 2)x 2-4(1+k )x +7=0. 解方程易得:x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2. OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )1+k 2+8. 由题设可得4k (1+k )1+k 2+8=12,解得k =1,所以l 的方程为y =x +1. 故圆心C 在l 上,所以MN =2.10.(2013·江苏卷)如图,在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4.设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程;(2)若圆C 上存在点M ,使MA =2MO ,求圆心C 的横坐标a 的取值范围.解 (1)由题设,圆心C 是直线y =2x -4和y =x -1的交点,解得点C (3,2),于是切线的斜率必存在.设过A (0,3)的圆C 的切线方程为y =kx +3,由题意,得|3k +1|k 2+1=1,解得k =0或-34,故所求切线方程为y =3或3x +4y -12=0.(2)因为圆心在直线y =2x -4上,所以圆C 的方程为(x -a )2+[y -2(a -2)]2=1.设点M (x ,y ),因为MA =2MO , 所以x 2+(y -3)2=2 x 2+y 2,化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4,所以点M 在以D (0,-1)为圆心,2为半径的圆上.由题意,点M (x ,y )在圆C 上,所以圆C 与圆D 有公共点,则|2-1|≤CD ≤2+1,即1≤a 2+(2a -3)2≤3.整理得-8≤5a 2-12a ≤0.由5a 2-12a +8≥0,得a ∈R ;由5a 2-12a ≤0,得0≤a ≤125.所以点C 的横坐标a 的取值范围是⎣⎢⎡⎦⎥⎤0,125.11.已知双曲线x 2-y 23=1. (1)若一椭圆与该双曲线共焦点,且有一交点P (2,3),求椭圆方程.(2)设(1)中椭圆的左、右顶点分别为A 、B ,右焦点为F ,直线l 为椭圆的右准线,N 为l 上的一动点,且在x 轴上方,直线AN 与椭圆交于点M .若AM =MN ,求∠AMB 的余弦值;(3)设过A 、F 、N 三点的圆与y 轴交于P 、Q 两点,当线段PQ 的中点为(0,9)时,求这个圆的方程.解 (1)∵双曲线焦点为(±2,0),设椭圆方程为x 2a 2+y 2b 2=1(a >b >0).则⎩⎪⎨⎪⎧a 2-b 2=4,4a 2+9b 2=1.∴a 2=16,b 2=12.故椭圆方程为x 216+y 212=1.(2)由已知,A (-4,0),B (4,0),F (2,0),直线l 的方程为x =8.设N (8,t )(t >0).∵AM =MN ,∴M ⎝ ⎛⎭⎪⎫2,t 2.由点M 在椭圆上,得t =6.故所求的点M 的坐标为M (2,3).所以MA→=(-6,-3),MB →=(2,-3),MA →·MB →=-12+9=-3. cos ∠AMB =MA →·MB →|MA→|·|MB →|=-336+9·4+9=-6565. (3)设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),将A 、F 、N 三点坐标代入,得⎩⎨⎧16-4D +F =0,4+2D +F =0,64+t 2+8D +Et +F =0,得⎩⎪⎨⎪⎧D =2,E =-t -72t ,F =-8. 圆的方程为x 2+y 2+2x -⎝ ⎛⎭⎪⎫t +72t y -8=0,令x =0,得y 2-⎝ ⎛⎭⎪⎫t +72t y -8=0. 设P (0,y 1),Q (0,y 2),则y 1,2=t +72t ±⎝ ⎛⎭⎪⎫t +72t 2+322. 由线段PQ 的中点为(0,9),得y 1+y 2=18,t +72t =18,此时,所求圆的方程为x 2+y 2+2x -18y -8=0.。