石墨相氮化碳的改性及光催化降解有机污染物的研究

合集下载

石墨相氮化碳光催化还原CO2研究进展

石墨相氮化碳光催化还原CO2研究进展

第 42 卷第 6 期2023年 11 月Vol.42 No.6Nov. 2023中南民族大学学报(自然科学版)Journal of South-Central Minzu University(Natural Science Edition)石墨相氮化碳光催化还原CO2研究进展常世鑫1,虞梦雪1,俞迨2,严翼1*,王之1,吕康乐1(1 中南民族大学资源与环境学院& 资源转化与污染控制国家民委重点实验室,武汉430074;2 杭州市质量技术监督检测院,杭州310019)摘要半导体光催化可以利用太阳能驱动CO2光催化还原制备碳氢燃料,成为研究热点.石墨相氮化碳(g-C3N4)具有制备简便和可见光响应性能的优点,是CO2还原的热门光催化材料。

但是它具有缺陷多、比表面积小和光生载流子易复合等缺点,光催化CO2还原性能不高.为此,介绍了高CO2还原活性的g-C3N4研究进展,内容包括:(1)g-C3N4研究基础(分子结构、制备方法与电子能带结构);(2)高活性g-C3N4的分子设计策略(缺陷调控、元素掺杂、表面等离子体处理、单原子催化和异质结构建等),重点讨论了改性方式对g-C3N4的光吸收、光电性能和CO2还原产物选择性的影响.最后建议未来聚焦结晶氮化碳的修饰改性研究,强调利用原位和瞬态表征技术指导高CO2还原活性的g-C3N4的开发,并关注具有高能量密度的长链碳氢燃料产物的选择性.关键词氮化碳;光催化;CO2还原;选择性中图分类号O625.67;O643.3 文献标志码 A 文章编号1672-4321(2023)06-0721-12doi:10.20056/ki.ZNMDZK.20230601Research progress of photocatalytic CO2 reduction ongraphitic carbon nitrideCHANG Shixin1,YU Mengxue1,YU Dai2,YAN Yi1*,WANG Zhi1,LYU Kangle1(1 College of Resources and Environment & Key Laboratory of Resources Conversion and PollutionControl of the State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China;2 Hangzhou Inspection Institute of Quality and Technical Supervision, Hangzhou 310019, China)Abstract Semiconductor photocatalysis can use solar energy to drive the photocatalytic reduction of CO2,producing hydrocarbon fuel,which becomes a research hotspot. Graphitic carbon nitride (g-C3N4)is a popular photocatalytic material for CO2reduction,which has the merits of facile synthesis and visible-light-response property. However,the photocatalytic activity of g-C3N4 is not high enough for CO2 reduction due to its drawbacks including many defects, small specific surface area, and easy recombination of photogenerated charge carriers. Herein, the recent progress of high active g-C3N4 for CO2 reduction was introduced, which included (1) the research fundamental of g-C3N4: molecular structure,synthesis method,and electronic band structures;(2)the strategies of g-C3N4 molecular design for high efficient CO2 reduction:defects engineering,elements doping,surface plasma treatment,single-atom catalysis,and heterojunction construction. Detailed discussions were focused on theeffects of different modification methods on light absorption,photoelectric property,and selectivity of CO2reduction of g-C3N4. Finally,it is suggested to focus on the study of crystalline g-C3N4modification in the future,emphasizing the use of in situ and transient characterization techniques in exploration of g-C3N4with high CO2reduction activity and selectivity of long-chain hydrocarbon fuel products with high energy density.Keywords carbon nitride; photocatalysis; CO2 reduction; selectivity收稿日期2023-04-12* 通信作者严翼(1986-),女,讲师,博士,研究方向:环境生态,E-mail:****************基金项目国家自然科学基金资助项目(41901235)第 42 卷中南民族大学学报(自然科学版)工业革命以来,人类活动不断的增加和工业的迅速发展促使了化石燃料的大量使用,导致CO2温室气体的大量排放[1-4].伴随国家的“双碳”目标和绿色发展战略的提出,如何合理解决CO2气体造成的环境问题将影响社会和经济的可持续发展. CO2是一种比较稳定的分子,使C=O键断裂需要大约750 kJ‧mol-1的能量,常规的物理化学方法处理CO2较困难.但是分子中的O周围存在孤对电子,可以为路易斯酸中心提供电子,而其中C可以接受来自路易斯碱中心的电子[5];此外,CO2可以吸附在绝大多数催化剂材料表面上,这为催化还原CO2分子提供可能性[5-6].受光激发的半导体材料可以诱导CO2转化为高价值的碳氢燃料产物,在缓解温室效应的同时,还生产了高附加值工业化学品.因此,CO2的光催化还原具有节能和环保的优点,符合可持续发展的理念[7-8].随着研究的不断深入,高活性CO2还原的半导体光催化材料的开发也从初始的TiO2逐渐拓展到硫化物、金属氧化物和非金属氮碳化物等[9-10],这些催化剂的光吸收范围从紫外光逐渐向可见光拓展,CO2还原产物日渐丰富,从C1产物(如CO、CH4、CH3OH和HCOOH)过渡到C2产物(如C2H5OH 等)[5-6].在这些半导体材料中,氮化碳由于具有较好的物理化学稳定性、优异的光响应范围、合适的带隙结构、便捷的制备方式和易于改性等优点而受到广泛关注[3-4, 7].同时,由于氮化碳的能带结构满足光催化CO2还原的热力学条件,被迅速应用于CO2还原领域.但是,体相氮化碳仍然存在可见光吸收范围窄、载流子复合率高和比表面积小等缺点.针对这些问题,近年来研究人员致力于对氮化碳进行改性从而提升其光催化性能,特别是CO2还原产物的选择性,以产生更高价值的多碳产物.基于以上研究结果,本文主要针对氮化碳改性调节CO2还原产物的选择性进行总结,分别从缺陷调控、元素掺杂和构建异质结三个角度进行详细阐述,重点探讨了改性方法对于氮化碳光吸收、光电特性及还原产物选择性的影响,最后对氮化碳光催化材料未来发展提出展望.1 氮化碳的结构和性质氮化碳是一种热门的聚合型材料,拥有着较高的化学稳定性和热稳定性,耐酸碱腐蚀,最高可在700 ℃下保持热稳定性[4, 11].氮化碳前驱体在高温环境中,可以一步一步缩合成环状结构,这种环状结构的雏形最早由BERZELIUS发现,并在1834年由LIEBIG命名为“melon”[11-14].这种雏形材料继续进行缩合最终可得到两种氮化碳的主要结构——三嗪环(C3N3)[图1(a)]和七嗪环(C6N7)[图1(b)].这两种聚合型的结构由于缩合不完全,使少量杂质氢在结构边缘上产生伯胺基团或者仲胺基团,产生大量无序的体相缺陷.这些体相缺陷的存在,不利于光生载流子的快速迁移扩散,而成为了载流子复合中心,抑制光催化活性.所以,需要对氮化碳进行结构修饰与改性,提升其光催化性能[11, 15-16].氮化碳是一种典型的N型半导体材料,其能带结构如图1(c)所示,带隙约为2.7 eV,它的导带电位比大多数的CO2还原产物的电位更负,理论上可以生成诸多的还原产物.但在实际应用过程中,受到热力学和动力学因素的限制,氮化碳光催化CO2还原产物主要为CO和CH4[8].在CO2还原反应过程中,氮化碳价带上的空穴分解H2O为导带产物的生成提供H+[16];而导带上的电子还原CO2时,生成CH4比生成相同量的CO需要更多的电子和H+[公式(1)和公式(2)],所以生成CH4受到动力学因素的影响程度更大.此外,氮化碳材料的导带电位也满足生成H2的条件,这也制约了氮化碳还原CO2生成CH4[16-17].CO2 + 2H++ 2e-→ CO + H2OE0redox=-0.53 V (vs. NHE,PH = 7),(1)CO2 + 8H++ 8e-→ CH4+ 2H2OE0redox=- 0.21 V (vs. NHE,PH = 7).(2)氮化碳可以通过尿素、氰胺、双氰胺、三聚氰胺、硫脲等前驱体[图1(d)]通过热聚合(包括水热合成法、模板法、熔融盐法等)得到,方法便捷、易于批量制备[12-13, 18-20].其中,氰胺热缩合生成双氰胺,再由双氰胺热缩合生成三聚氰胺,最后通过三聚氰胺的逐渐缩合制备出氮化碳,这种途径被公认为是产生相对较少缺陷的聚合物的一种高效方法[4, 11].但是制备出的氮化碳存在较多缺陷,为了改善氮化碳缺陷多和载流子易复合的问题以提高光催化剂的活性和调节产物的选择性,可以从制备方式出发,通过缺陷调控、元素掺杂或修饰改性、构造异质结等途径实现氮化碳的高效应用和产物选择性的调控[21-23].对氮化碳进行改性处理后的CO2还原产物及选择性的结果详见表1.722第 6 期常世鑫,等:石墨相氮化碳光催化还原CO 2研究进展2 改性氮化碳调控CO 2光催化还原选择性CO 2的光催化还原,要经历多电子逐步还原的反应过程.CO 2在氮化碳表面的光催化还原产物主要有C 1产物和C 2产物,而生成更长链的多碳产物至今仍然面临着很大的挑战[5].C 1产物的生成过程, 首先是H +与电子转移到CO 2表面,生成羧基中间体(COOH*),然后进一步生成CO 、CH 4等产物[6].CO 由C =O*或C ≡O*生成,而其他C 1还原产物如HCHO 、CH 3OH 和CH 4的生成途径则由中间体CO*经过一系列反应生成[5].其中CH 4的生成方式有两种:一种通过CO*加氢生成CH 3O*,再转化成CH 4和H 2O ;另一种由CO*生成COH*,然后脱水形成C*,最后逐步加氢生成CH 4[5-6, 50].C 2产物由生成的CO*加氢生成*CHO ,然后碳碳键偶联产生COCHO*,继而生成乙醇和乙醛等产物[5, 24, 39].改性后的氮化碳因为性能发生改变会导致CO 2还原过程中热力学性能和动力学性能发生改变,使得生成的中间体的种类和相应的生成速率发生变化,最终影响到产物的选择性[5, 16].基于氮化碳的改性方式进行分类,本文将从多种氮化碳的改性方法对于产物选择性影响角度进行详细阐述.2.1 缺陷调控由于石墨相氮化碳的热聚合不完全,导致大量无序体相缺陷的生成,这些缺陷很容易成为光生载流子的复合中心,抑制石墨相氮化碳的光催化活性.但是,对于结晶度比较好在石墨相氮化碳,可以通过特定缺陷(如碳缺陷位点和氮缺陷位点)的引入来调控其半导体能带结构和表面化学环境,增强光吸收和载流子分离效率,实现CO 2还原的活性的增强和产物选择性的调控[1-2].氮空位的引入可以增强CO 2的吸附性能,同时可以作为陷阱诱捕光生电子,通过延长载流子的寿命和抑制载流子复合,来提升石墨相氮化碳的光催化还原CO 2性能[17].此外,捕获电子后的氮空位由于周围电子分布的改变更有利于CO 2吸附和活化[17].通过制备出的三聚氰胺-三聚氰酸超分子进行自组装制备出氮化碳(表1序号1),将氮化碳置于550 ℃下,使用氩气和氢气的混合气体氛围进行氢热处理制备出有氮空位缺陷的管状氮化碳[17].通过原位红外测试[图2(a )]可知:在反应图1 氮化碳结构、性质和制备方法Fig.1 Structure , properties and preparation method of carbon nitride723第 42 卷中南民族大学学报(自然科学版)表1 氮化碳改性策略与光催化还原CO2性能Tab.1 Modification strategies and photocatalytic CO2 reduction performances of carbon nitride序号1 234 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33催化剂名称TCN-1NVs-PCNg-CN-650g-CN-750HCN-AP-g-C3N4S-CN1% B/g-C3N42Au-CNCN/Aug-C3N4/Bi/CDsNi25/g-CNCN/PDA10Def-CNPt@Def-CNCo-MOF/g-C3N4Ni5-CNCu-CCNCCNBsK-CNMn1Co1/CNPtCu-crCNInCu/PCNPd1+NPs/C3N4P/Cu SAs@CNC3N4/rGO/NiAl-LDHsCo3O4/CNSg-C3N4/Cu2Og-C3N4/Ti3C2TxCN/ZnO/GAg-C3N4/FeWO4PN-g-C3N4CeCo-PTI改性方法氮空位氮空位氮空位氮空位局部结晶P改性S掺杂B掺杂纳米Au纳米Au纳米Bi纳米Ni2,6吡啶二羧酸掺杂缺陷氮化碳单原子PtCo-MOFNi单原子Cu单原子Cu修饰K掺杂双单原子双单原子双单原子单原子与纳米粒子金属单原子与非金属Ⅱ型半导体Z型异质结Z型异质结异质结Z型异质结Z型异质结多孔纳米带S型异质结光源300 W氙灯LED灯300 W氙灯300 W氙灯LED灯300 W氙灯300 W氙灯300 W氙灯300 W氙灯氙灯300 W氙灯300 W氙灯500 W氙灯300 W氙灯300 W氙灯300 W氙灯300 W氙灯氙灯300 W氙灯氙灯300 W氙灯300 W氙灯300 W氙灯250 mW cm-2氙灯300 W氙灯300 W氙灯300 W氙灯300 W氙灯300 W氙灯300 W氙灯300 W氙灯300 W氙灯300 W氙灯活性/(µmol‧g-1‧h-1)CO: 7.1CO: 55.95CO: 5.3CH4: 34.4CH4: 52.8CH3COH: 1815CO: 2.4CH4: 1.8CO: 3.20CO: 0.45CH4: 0.16CH4: 1.55CO: 28.3CO: 9.08―CO: 284.7H2: 71CH4: 2.1CH4: 6.3CO: 6.75CH4: 5.47CO: 8.6CO: 3.1CO: 9.9H2: 0.94CO: 8.7CO: 47CH4: 2.8C2H5OH: 28.5CH4: 20.3C2H6: 616.6CO: 2.6CH4: 20.0CO: 13.3CH4: 3.2CH3OH: 0.71CO: 3.98CH4: 2.1CO: 33.9CO: 6.0CO: 29.8CH4: 45.4选择性100% CO85% CO86.6% CH496.4% CH498.3% CH3COH43.3% CH4100% CO26.2% CH419.1% CH495.6% CO98% CO28% CH4100% CO78% CH499% CH444.8% CH481.1% CO100% CO91.4% CO―100% CO19.4% CH492% C2H5OH97.8% CH433.0% C2H688.5% CH480.8% CO94.9% CH3OH34.7% CH492% CO91% CO100% CO88.3% CH4参考文献[17][22][16][16][24][25][26][27][28][29][30][31][32][33][33][3][34][35][36][23][37][38][39][40][41][42][43][44][45][46][47][48][49]724第 6 期常世鑫,等:石墨相氮化碳光催化还原CO 2研究进展过程中的产生了大量生成CO 的中间体——CH 3O*、HCOO -和COOH*,并未发现大量生成CH 4中间体,使CO 2还原更倾向于生成CO.除了改变煅烧热处理的气体氛围可以制造氮空位,利用甲酸辅助刻蚀也可以产生氮空位缺陷.杨朋举教授课题组[22]用三聚氰胺作为前驱体煅烧出氮化碳,利用氩气将甲酸带入管式炉对氮化碳进行热处理从而产生氮空位.通过表征发现氮空位主要集中在氮化碳的表面,形成氮空位后也极大地提高了CO 的产率,CO 选择性大约在85%(表1序号2).通过吉布斯自由能的理论计算[图2(b )]可以发现:这种方式引入的氮空位降低了生成COOH*的活化能,使得产物中CO 的选择性更高.氮空位的形成会影响材料能带结构,带隙的位置可以受到氮空位的电子密度的影响[16, 51].张金龙教授课题组[16]报道三聚氰胺在空气氛围下通过改变温度进行高温煅烧可以制备出氮空位的氮化碳.根据CO 2还原的活性测试结果发现:随着催化剂煅烧温度的提高,CH 4的选择性大幅提高,750 ℃煅烧出来的氮化碳CH 4的选择性最大并且达到96.4%(表1序号4).通过能带分析发现:随着煅烧温度的提高,间隙态的生成位置逐渐降低[图2(c )],在650 ℃以上的温度进行煅烧,间隙态的位置会低于产生CO 的电位.间隙态的产生会使得电子在激发后率先集中在其附近,更有利于从热力学方面产生CH 4.此外,利用Pt 4+在催化剂表面光沉积来研究氮化碳的光生电子的迁移途径发现:光生电子倾向于迁移并聚集在催化剂的边缘,导致边缘的氮缺陷处的电子密度更高,在动力学上对产生CH 4更有利.在热力学和动力学双重优势下,还原产物体现出更高的CH 4选择性.用传统方式热缩合得到的氮化碳基本为非晶态或半晶态的状态.在结晶氮化碳表面引入缺陷也是一种提升性能的方法.文献[24]通过加入氨基-2-丙醇(AP )和双氰胺制备氮化碳提高了单体的结晶度和聚合物的聚合度,获得了结晶氮化碳(图3).从样品的高分辨率透射电镜[图3(b )]照片,可以观察到明显的缺陷区域和有序的晶格条纹,反映出其缺陷氮化碳较高的结晶性能.这种结构可以促进CO 2向油类化合物的转化,通过对反应过程分析[图3(c )]可知:这种结构使得CO 2逐步生成C 2产物的中间体——CO*和CHO*,CO*和CHO*更容易自发偶联生成C 2产物中间体OCCHO*,抑制CHO*进行质子化的过程,故最终生成产物以CH 3CHO 为主,并且选择性高达98.3%(表1序号5).从理论上讲,相比将CO 2还原生成C 1产物,还原生成C 2产物具有更高的能量密度和更大的商业价值[52].2.2 元素掺杂元素掺杂改性也是一种常用的改性手段.金属或者非金属掺杂剂的原子轨道与催化剂本身的分图2 N 缺陷氮化碳CO 2还原选择性影响机理图Fig.2 Schematic diagram of selectivity reduction of CO 2 over carbon nitride with N defect725第 42 卷中南民族大学学报(自然科学版)子轨道发生杂化,能够起到改变反应的活性位点、调节能带结构和电子分布结构等作用,进而通过影响催化剂的性能来改变产物的选择性[5-6].在氮化碳还原CO 2过程中,电子从氮原子上激发并向碳原子上迁移,但是光激发后电子更加倾向于分布在氮附近,尤其是分布在双配位氮的附近[图4(a )],这使电子的迁移更加困难,导致在催化过程中载流子复合率高和反应动力更低[16, 27].刘敏教授课题组[27]建立了硼掺杂氮化碳的模型,根据模型[图4(b )]可知:硼原子已成功掺杂在相邻的七嗪环之间,并且与七嗪环的氮原子形成了良好的亲和力.通过计算发现在硼掺杂氮化碳后,激发后的电子从N (2P x ,2P y )向B (2P x ,2P y )上转移更加容易,可以极大地增加反应的动力,更有利于CH 4的产生.他们用硼酸和尿素混合进行一步煅烧实验生成硼掺杂氮化碳,硼作为主要的活性位点可以改变对CO 2还原中间体的吸附,使得产物更容易生成CH 4,所以相比纯氮化碳,生成CH 4的选择性得到了提高.相比硼掺杂,硫掺杂对氮化碳的性能改变有着不同影响.文献[26]通过水热和程序升温的方法制备出介孔硫掺杂氮化碳,更多的介孔形成和硫的掺杂增大了比表面积,并增强了对CO 2的吸附能力 [图5(a )],这有利于CO 2的活化并进行还原反应.在能带结构中,由于硫参与轨道杂化并且作为主要的活性位点,载流子的分离效率得到提高,反应的活性也得到增强.在生成产物的过程中,相比纯氮化碳,硫掺杂改性的氮化碳使生成的CO 产物更容易脱附[图5(b )],因此生成CO 的选择性显著提高.2.3 表面等离子体效应金属纳米粒子的负载可以增强光吸收和促进载流子分离,从而提高光催化活性的效果.在氮化碳上掺入金属纳米粒子后,不仅可以作为活性位点和形成促进载流子分离的肖特基结构显著提升性能,而且还会由于金属纳米粒子的局部表面等离子共振效应(LSPR )进一步拓展催化剂的光吸收范围[7, 53-54].负载Au 纳米粒子的氮化碳就是一个不错的例子,可以通过LSPR 效应一定程度上提高CH 4的选择性.KAIMIN S 教授课题组[28]利用NaBH 4还原法所制备的负载Au 纳米粒子的氮化碳,不仅有效地抑制了载流子复合,还通过LSPR 效应促进了更多热电子产生和增强了在可见光范围下的光吸收能力,大幅提高了CO 2还原的活性,尤其是为CH 4的形成提供了更多活性电子促进其生成.向全军教授课题组[29]用N 2等离子体处理浸渍在HAuCl 4中的氮化碳制备催化剂,这种Au 纳米粒子负载氮化碳也能通过Au 纳米粒子的LSPR 效应显著提高CH 4的选择性.图3 局部结晶氮化碳的结构与CO 2还原反应机理Fig.3 Morphology of locally crystalline carbon nitride and CO 2reduction reaction mechanism图4 B 掺杂氮化碳DFT 计算Fig.4 DFT calculation about B doped carbon nitride726第 6 期常世鑫,等:石墨相氮化碳光催化还原CO 2研究进展此外,金属纳米粒子作为活性位点也可以降低反应能垒.董帆教授课题组[30]使用碳点(CDs )作为基质,将Bi 纳米粒子锚定在氮化碳上并与其进行桥接制备出CNB -2,Bi 通过LSPR 效应增强了氮化碳光吸收的能力和产生了更多热电子,热电子产生后可自发注入氮化碳中,为CO 2还原提供更多热电子[图6(b )];而作为基质的CDs 可以作为光生空穴的受体,在内建电场的作用下Bi 和氮化碳所产生的空穴可以转移到CDs 上,有利于光生电荷的分离并为CO 2还原提供更多的还原动力.通过吉布斯自由能可以得出,Bi 纳米粒子的掺入明显降低生成CO 途径的中间产物的活化能,为生成CO 提供更多热力学条件,最终生成CO 的选择性得到了提高.2.4 单原子催化将金属由纳米级尺寸制备成更小的单原子尺寸,会引起原子自身特性发生更为显著的改变.通过金属单原子对氮化碳改性,一方面暴露出更多的单原子位点,影响吸附中心和反应位点;另一方面单原子通过改变电子结构对反应过程进行调整,拥有了更加出色的催化性能表现[54-56].金属单原子改性是一种充满挑战又极大提高催化剂性能的方法,有不少有关通过单金属单原子对氮化碳改性提升性能的报道.熊宇杰教授课题组[33]通过在氮化碳上分别负载Pt 单原子(Pt@Def -CN )和Pt 纳米粒子,进行CO 2还原实验中,相比未负载金属的氮化碳,它们的反应活性和CH 4的选择性显著提高,其中Pt@Def -CN 对于CH 4的选择性提升更高,达到了99%(表1序号15),由于单原子独特的性质对选择性造成了影响.一方面,因为H 原子与Pt 单原子之间结合相对不稳定,Pt 单原子附近存在更多—OH 基团,抑制了H 2产生,为生成CH 4提供更多H +;另一方面,Pt 单原子有效地降低了反应过程中生成CH 4的活化能能垒[图7(a )],同时又增加了CO*中间产物的解析能,提高了CH 4的选择性.向全军教授课题组[35]制备出掺入Cu 单原子的高结晶氮化碳,Cu 单原子的加入可作为CO 2活化的活性中心,提高了对CO 2的吸附能力,增强了反应活性.此外,Cu单原子的加入使图5 S 掺杂氮化碳的CO 2吸附等温线和CO -TPD 光谱Fig.5 CO 2 adsorption isotherms and CO -TPD spectra of S -oping carbon nitride图6 金属纳米离子改性氮化碳CO 2还原反应机理图Fig.6 Scheme diagram of metal nanoions modified carbon nitride CO 2 reduction reaction727第 42 卷中南民族大学学报(自然科学版)得生成CO 的反应过程优先于生成CH 4的反应过程[图7(b )],极大地提高了CO 的选择性.双金属单原子通过协同作用能提高CO 2还原性能.李亚栋教授课题组[37]合成出含有Co 和Mn 双金属单原子的氮化碳来进行CO 2还原.在还原过程中,光生空穴更倾向于移动到Mn 单原子上作为活性位点加速H 2O 分解,提供H +;而光生电子更倾向于移动到Co 单原子上,通过增加CO 2的键长和键角将CO 2活化,最终生成CO.这种双金属单原子的协同作用使CO 的选择性基本上达到100%(表1 序号21).侯军刚教授课题组[39]将Cu 和In 单原子分散在氮化碳上,双金属单原子的引入改变了催化剂的电子结构[图7(c )].在Cu 单原子附近有明显的电荷富集的迹象,而在In 单原子附近有明显的电荷消耗的迹象,它们之间的协同作用促进了电荷转移和电荷分离.此外,双金属的作用增强了对中间体CO*的吸附并降低了C —C 偶联的活化能,促使了偶联生成乙醇.金属单原子和金属纳米粒子同时引入氮化碳上能够协同发挥作用,调整CO 2还原的选择性.郑旭升教授课题组[40]通过在氮化碳上引入Pd 单金属(Pd 1)和Pd 纳米粒子(Pd NPs )作为双活性位点,改善了氮化碳的光催化性能.相比只引入Pd 1,双金属单原子引入后的协同作用使得CH 4的选择性有了显著提高[图7(d )].Pd NPs 的加入促进H 2O 分解并且加快H +转移到Pd 1;而Pd 1则更有利于吸附中间体CO*,加快质子化过程,生成CH 4.此外,Pd NPs 和Pd 1的协同作用也降低了从CO*到生成CHO*的活化能能垒,显著提高了生成CH 4的选择性.金属单原子与非金属之间也能够产生协同作用,提高氮化碳的性能,影响产物的选择性.毛俊杰教授[41]课题组报道了通过将P 和Cu 作为双活性位点锚定在氮化碳上,在CO 2还原过程中生成高选择性的C 2H 6产物.首先,P 和Cu 修饰对氮化碳的带隙起到一定调整作用,在一定程度上更有利于电子空穴的光激发分离.其次,P 和Cu 作为电子和空穴的捕获位点,可以促进Cu 对电子的富集从而实现CO 2还原的多电子过程.最后,P 和Cu 的修饰降低了中间生成C 2H 6的反应途径的活化能,CO*和CO*更容易发生偶联,形成中间体OCCO*,逐步加H最终生图7 单原子金属改性氮化碳CO 2还原反应机理图Fig.7 CO 2 reduction reaction scheme diagram of monometallic metal modified carbon nitride728第 6 期常世鑫,等:石墨相氮化碳光催化还原CO 2研究进展成C 2H 6产物.2.5 异质结构建不同于单一的材料,将复合材料制成异质结更有利于提高催化剂的性能.由于异质结界面在空间结构上彼此分离,光生电子和空穴的复合会更容易被抑制,从而改变生成产物的选择性[7, 21, 57].Ⅱ型异质结在CO 2还原的相关文献中经常被报道,汪铁林教授课题组[42]在NiAl 层状双金属氢氧化物(NiAl -LDHs )和氮化碳中引入还原氧化石墨烯(rGO )辅助制备成Ⅱ型半导体,由于rGO 拥有优异的导电子能力,能进一步促进载流子分离,使氮化碳上光生电子更迅速分离并转移到NiAl -LDHs 的Ni 原子上,导致生成CO 的选择性大大提高.Ⅱ型异质结虽然可以极大地促进载流子分离,但会使催化剂的价带或导带的电位降低[12, 21].Z 型异质结概念受到植物光合作用的机理启发提出.相比Ⅱ型异质结,Z 型异质结保持了更正的价带和更负的导带电位,因此复合材料拥有更强的光催化氧化/还原性能[21, 57-58],常应用于光催化领域.文献[46]报道利用静电自组装和低温共沉积法将ZnO 和氮化碳锚定在石墨烯气凝胶上制备出间接接触Z 型异质结结构,这种异质结结构的构建不仅使电子空穴更有效地空间分离,在CO 2还原产物中CO 的选择性更高.有国外课题组[47]制备出氮化碳和FeWO 4复合的直接接触Z 型异质结.同样地,这种异质结也极大地抑制了载流子分离和提高了氧化电位,使产物中H +更倾向于生成H 2,抑制了CH 4的产生,故CO 2还原的产物中没有CH 4和其他烃类产物产生.3 总结与展望光催化技术可以利用太阳能来驱动温室气体CO 2的催化还原,制备具有高附加值的碳氢燃料,因此该技术具有节能和环保的优点.在所有的半导体光催化材料中,石墨相氮化碳因为具有可见光响应和能带结构合理等优点,而成为受欢迎的CO 2还原光催化材料.但是,其依然存在缺陷多、比表面积小和光生载流子易复合等缺点,在一定程度上制约了该技术的实际应用.因此,科学家们采用各种策略对石墨相氮化碳进行修饰改性,以进一步提升其光催化还原CO 2的性能.本文总结了目前石墨相氮化碳用于CO 2还原方面的5种改性方式,分别是缺陷调控、元素掺杂、等离子体效应、单原子修饰和异质结构建.对石墨相氮化碳的结构修饰,改变了催化剂表面的化学环境,进而对CO 2光催化还原路径产生和产物还原选择性产生深远影响.为了实现CO 2在氮化碳表面的高效光催化还原,在今后的研究中以下工作值得进一步深入研究.(1)开展基于结晶石墨相氮化碳的修饰改性研究.相对于普通氮化碳,结晶氮化碳的体内和表面缺陷大幅度减少,而表现出高效载流子分离效率和光催化性能.但是石墨相氮化碳依然属于有机半导体材料,其表面缺乏过渡金属作为CO 2分子的吸附和活化中心.因此,需要开展基于结晶氮化碳的表面改性特别是过渡金属表面修饰研究.(2)开展修饰组分之间的协同作用机制研究.从CO 2在石墨相氮化碳表面的吸附开始,到吸附产物如CH 4/CO 的脱附,中间需要经历很多关键步骤.因此,深入研究各修饰组分之间的接力还原CO 2机制,对深刻理解CO 2还原的活性中心结构和指导高效光催化还原CO 2材料的开发具有重要意义.(3)开展CO 2光催化还原的原位瞬态谱学研究.CO 2分子在光催化还原过程中,存在中间产物结构图8 氮化碳异质结CO 2还原选择性机理图Fig.8 CO 2 reduction reaction scheme diagram of carbon nitride with heterojunction729。

g-C_(3)N_(4)光催化剂的改性及制备

g-C_(3)N_(4)光催化剂的改性及制备
聞阳匕—材料
Im———二.—
g - C3 n4光催化剂的改性及制备
张立鹏周游
(中交一公局西南工程有限公司,四川成都610000)
摘 要:石墨相氮化碳(g-C3N4)是种非常具有发展前景的光催化剂,较好的光催化性和稳定性,已成 为学者研究的焦点。但是其光生电子-空穴对非常容易复合,光生载流子寿命比较短,使得量子效率非常
解率,通过试验结果可以得出g - C3N4/TiO2复合光 催化剂对氮氧化物的降解效率较g - C3N4和TiO2的 单体提高了大约7%。
参考文献:
[1] 冯西平,张宏,杭祖圣.g-G3N4及改性g-C3N4的 光催化研究进展[J].功能材料与器件学报,2012, 18 (3) : 214-222.
2.1不同锻烧温度的样品制备 取五个100ml的堆竭,每个堆竭中g - C3N4和
TiO2按照1 : 1的比例称取6g的g-C3N4和6g的TiO2。 将两种材料放入堆竭中充分混合,放入马弗炉中分别 在450兀,500兀,550兀,600兀,650兀的温度下锻 烧2h,锻烧完毕后,把堆竭从马弗炉中取出来,等 待锻烧物温度降至室温后将其研磨成细粉,装在试验 袋中并分别标记为gt - 450, gt - 500, gt - 550, gt - 600, gt -650o 2.2不同锻烧时间的样品制备
5 结语
综上所述,观我国现阶段的建筑业发展情况来 看,无论是建筑高度还是建筑规模都在与日俱增,而 随着一栋栋“摩天大楼”的拔地而起,对其设计也 提出了更高的要求。在超高层建筑设计中,伸臂加强 层结构设计是一项重难点问题,特别是超高层建筑伸 臂加强层结构设置位置的选择十分关键,必须要保证 伸臂加强层结构设计满足建筑的使用功能需求且符合 相关结构控制目标,同时还要确保伸臂桁架构件尺寸 合理,可承受适当作用力,方便施工作业。

硼掺杂石墨相氮化碳光催化的研究目的

硼掺杂石墨相氮化碳光催化的研究目的

一、研究背景相氮化碳(g-C3N4)是一种新型的可见光响应型光催化剂,具有良好的化学稳定性和光催化活性。

然而,g-C3N4的光催化活性受限于其窄的光吸收范围和快速的电子-空穴复合。

为了提高g-C3N4的光催化性能,研究者们提出了多种改性方法,其中硼掺杂是一种有效的手段。

硼掺杂可以引入新的能级,拓宽光响应范围,改善载流子的分离和传输,从而提高光催化性能。

本研究的目的是通过硼掺杂来改善g-C3N4的光催化性能,提高其光催化活性。

二、研究意义1. 为环境保护提供新的解决方案:光催化技术可以利用可见光将有害气体和污染物转化为无害的物质,对改善大气污染和水污染具有重要意义。

2. 探索新型光催化剂的应用:硼掺杂石墨相氮化碳作为一种新型改性光催化剂,研究其光催化性能可以为光催化材料的设计和应用提供新思路。

3. 深入理解光催化反应机理:通过研究硼掺杂对光催化活性的影响,有助于深入理解光催化反应机理,并为进一步改进光催化剂性能提供理论依据。

三、研究内容和方法本研究将采用硼掺杂的方法制备硼掺杂石墨相氮化碳(B-g-C3N4)光催化剂,并对其光催化性能进行系统研究。

具体研究内容和方法包括:1. 合成和表征:采用高温固相法制备B-g-C3N4,并利用X射线衍射、透射电镜、紫外-可见漫反射光谱等手段对材料进行表征,确定其结构和光学性质。

2. 光催化性能测试:利用可见光光解苯酚和亚甲基蓝这两种模型污染物来评估B-g-C3N4的光催化活性,通过检测反应体系中的降解效率和产物的形成情况来评价其光催化性能。

3. 光催化机理研究:通过光电化学技术和时间分辨荧光光谱等手段,探讨硼掺杂对载流子分离和传输过程的影响,揭示硼掺杂机制和光催化反应机理。

四、研究创新点1. 利用硼掺杂提高光催化活性:通过引入硼元素,拓宽g-C3N4的光响应范围,增强光生电子-空穴对的分离和传输,从而提高其光催化活性。

2. 细致探讨光催化机理:通过表征光催化剂的结构和性质,揭示硼掺杂对光催化反应过程的影响,深入理解硼掺杂机制和光催化机理。

石墨相氮化碳在光催化杀菌领域中的应用研究

石墨相氮化碳在光催化杀菌领域中的应用研究

石墨相氮化碳在光催化杀菌领域中的应用研究石墨相氮化碳(GNC)是一种新型的光催化剂,具有高效、环保和可再生的特点,在光催化杀菌领域中具有广阔的应用前景。

本文将探讨GNC在光催化杀菌领域中的应用研究,并分析其优势和挑战。

在过去的几十年里,细菌和病毒感染一直是人类面临的重要问题之一。

随着抗生素和其他传统杀菌剂的滥用和耐药性的增加,研发新型的杀菌技术迫在眉睫。

光催化杀菌是一种具有潜力的替代方法,其中光催化剂能够利用可见光或紫外光产生活性氧化物,从而杀死细菌和病毒。

GNC作为一种全新的光催化剂,具有许多优势。

首先,GNC的光电转换效率高,能够利用可见光产生大量的电子-空穴对。

这些电子-空穴对能够通过还原和氧化反应产生活性氧化物,从而具有杀菌效果。

其次,GNC是一种环保的材料,由碳、氮和氧组成,不会产生有害的副产物。

最后,GNC是可再生的,可以通过简单的方法制备和再生,从而减少成本和资源消耗。

研究表明,GNC在光催化杀菌领域具有广泛的应用潜力。

一项研究发现,GNC对大肠杆菌具有显著的杀菌效果。

在可见光照射下,GNC能够产生一定量的活性氧化物,破坏细菌细胞的结构和功能,从而导致其死亡。

类似的结果也在其他细菌和病毒中得到验证,包括金黄色葡萄球菌、大肠肠杆菌O157、流感病毒等。

除了对细菌和病毒的杀菌作用外,GNC还具有其他应用价值。

一项研究发现,GNC可以通过光催化降解有机污染物,如苯酚和甲醛,从而净化水和空气。

另一项研究显示,GNC还可以用于光催化制备氢气和其他燃料,实现可持续能源的生产。

尽管GNC在光催化杀菌领域具有许多优势,但也面临一些挑战。

首先,GNC的光催化效率目前仍然有待提高。

虽然GNC能够利用可见光产生大量的电子-空穴对,但其光吸收能力仍然有限,导致部分光能无法有效利用。

其次,GNC的制备方法和再生方法还不够成熟。

目前的制备方法通常需要高温和高压条件,从而增加了成本和能源消耗。

另外,GNC的稳定性也是一个问题,其在长时间使用和再生后性能会出现衰减。

石墨相氮化碳的研究进展

石墨相氮化碳的研究进展

石墨相氮化碳的研究进展李伦;宋金玲;王宝英;段成林【摘要】氮化碳近年来在光催化领域备受关注,具有特殊的电子光学结构以及优异的化学稳定性能,且禁带宽度非常有利于可见光的吸收,在利用太阳能降解有机污染物方面具有很大的前景.由于它本身比表面积小,产生的光生电子和空穴易复合,抑制了催化剂的光催化活性.在此本文系统的介绍了氮化碳的结构,性能和催化机理,综合了近年来的改性手段,包括改善制备工艺,以及对其进行纳米化,掺杂,官能化,复合等方法,提高比表面积和改善能带结构,并对其以后的发展进行了展望.【期刊名称】《内蒙古科技大学学报》【年(卷),期】2017(036)004【总页数】6页(P377-382)【关键词】光催化剂;光生电子和空穴;能带结构【作者】李伦;宋金玲;王宝英;段成林【作者单位】内蒙古科技大学材料与冶金学院,内蒙古包头 014010;内蒙古科技大学材料与冶金学院,内蒙古包头 014010;内蒙古科技大学材料与冶金学院,内蒙古包头 014010;内蒙古科技大学材料与冶金学院,内蒙古包头 014010【正文语种】中文【中图分类】TQ426近年来,环境污染,资源短缺已经愈发成为困扰人类的主要问题.怎样降解污染,使资源能够循环使用,是人类面临的巨大挑战.对于我们赖以生存的家园,太阳能是我们自古以来,取之不尽用之不竭的清洁能源,如何把用不尽的太阳能转化为我们所需的能量,去创造更多的有益价值,这就是我们所探索的问题.于是,人们发现了光催化剂.简单来说,就是在光的照射下,光催化剂捕获电子,能够更加有效的、高速的催化反应的进行,把有机大分子污染物质迅速分解为无污染的小分子[1,2],以实现污染物的降解.随着光催化剂研究的发展,光催化剂也有了日新月异的更新换代,从最开始研究的二氧化钛[3]到如今的氮化碳[4~7],催化剂一直在向廉价、稳定、高性能、环保等方向进行.而今,氮化碳以其稳定的化学性质和热力学性能,引起了广泛关注.1 氮化碳的结构性能和光催化机理石墨相氮化碳是氮化碳中结构最为稳定的同素异形体.与石墨结构类似,石墨相氮化碳呈平面网状,空间层状结构,层间距略小于石墨层间距.其中,C与N元素以sp2方式杂化形成高度离域的Π电子共轭体系,Npz轨道组成氮化碳聚合物的价带(HOMO),Cpz轨道组成氮化碳聚合物的导带(LUMO),价带导带之间的禁带宽度大约为2.7 eV[8],非常有利于吸收可见光.氮化碳在光催化方面表现了极强的优越性.能够吸收大部分的可见光,作为光催化剂,在自然光照射下,光解水制氢,光解CO2,光解有害气体[9,10],光解有机污染物等效率都有大幅度提升.如图1所示[11],当半导体受到光源照射时,光子能量大于或等于禁带宽度时,位于价带上的自由电子受到激发跃迁到导带上,这样价带上留下空穴,形成光生电子空穴对,也就是载流子.载流子有四种迁移途径[12],一种是迁移到催化剂表面复合;第二种是迁移过程中在催化剂内部复合.这两种迁移过程,复合之后不再参与光催化作用,所以极大程度上限制了催化剂的效率.第三种是迁移到催化剂表面的空穴可以直接与表面的有机分子发生反应,或者与吸附的水分子或羟基反应生成羟基自由基;第四种是迁移到表面的光生电子与催化剂表面的氧分子或水分子反应生成这两种方式生成的活性基团参与到后续的光催化反应中,从而有效降解有机污染物.图1 g-C3N4光催化机理图Fig.1 Photocatalytic mechanism of g-carbon nitride2 氮化碳的制备方法由于光催化反应大多在光催化剂的表面发生,所以制备比表面积较大的氮化碳,可以大大提高光催化剂的催化效率.目前,通常用含氮前驱体通过热缩聚反应生成的氮化碳,往往是一些块状或片层状聚合物,比表面积较小.如果通过改变制备方法来得到不同形貌的氮化碳,氮化碳的发展将会有很大的提升空间.2.1 缩聚法最传统的制备氮化碳的方法就是缩聚法,这种方法是将含氮前驱体置于坩埚中,高温马弗炉中煅烧,研磨,如此就制备出了氮化碳.由于这种方法制备的氮化碳比表面积较小,所以前驱体的选择还是至关重要的,人们也一直在探索效果较好的前驱体:单氰胺、双氰胺、三聚氰胺[3]、尿素等.实验发现三聚氰胺和尿素制备出的氮化碳催化效率比较高.另外一种增大比表面积的方法就是对制备出的氮化碳继续煅烧两到三次,也能使其变得疏松,比表面积增大.2.2 模板法采用模板法制备多孔氮化碳,可以在一定程度上提高氮化碳的比表面积.这种方法是将孔径可调的纳米孔结构加入到氮化碳的结构中,这样比表面积增大,催化效率就会提高.模板法分为硬模板法和软模板法两种.硬模板法一种是将有序硅基材料作为硬模板,含氮前驱体乙二胺和四氯化碳注入到模板当中,加热或回流条件下蒸干或聚合,然后高温焙烧,最后用氢氟酸或氢氧化钠刻蚀除去二氧化硅.另一种硬模板法是采用二氧化硅纳米颗粒作为模板,和含氮前驱体腈氨合成介孔氮化碳,其最大比表面积可达439 m2/g.由硬模板法合成出的氮化碳材料孔隙较多且规则整齐,比较面积和孔容较大,在氮化碳内部的孔隙中就能进行催化反应,且自身性质保持稳定,因此化学稳定性较好,催化能力较高.除此之外是软模板法,方法是表面活性剂自组装法,用含氮化合物作为前驱体,经过聚合,碳化,高温焙烧得到多孔氮化碳.这种方法制作的介孔氮化碳方法简单,周期较短.李敏等[14]采用这种方法,发现由于焙烧时温度高,容易使模板剂分解,破坏多孔结构,所以,这种方法还待进一步研究.2.3 超分子自组装法与模板法相比,超分子自组装法无需模板,操作简便.这种超分子自组装法就是利用含氮前驱体分子之间弱的相互作用,范德华力、氢键以及静电力等,自发的构成高级有序的超分子组装体,再进行焙烧聚合成氮化碳材料.Thomas等[15]做法是在二甲基亚砜溶剂中,将摩尔比相等的三聚氰胺和三聚氰酸溶解,通过自组装形成超分子,进一步将其焙烧,就制备出由纳米片构成的氮化碳空心球.这其中,通过控制溶剂、温度、氢键等可以改变氮化碳形貌、光的吸收和发射性能.通过提高焙烧时的温度,还可以增大氮化碳的比表面积,从而提高光催化效率.Shalom等[16]详细研究了溶剂和焙烧温度与氮化碳结构形貌的关系,当用乙醇、水和氯仿分别作为溶剂时,得到的分别是规则的薄饼状三聚氰胺-三聚氰酸超分子,棒状形貌和针状结构.并且发现延长焙烧时间能够使空心纳米结构生长的更完整,如图2所示.综合超分子组装法制备氮化碳发现,与一般方法制备的氮化碳相比,结构没有什么变化,但是可见光吸收性能更强,带隙更宽,光生电子寿命更长.图2 三聚氰酸-三聚氰胺组装体在550 ℃氮气气氛中焙烧12 h后的SEM照片Fig.2 SEM photographs of cyanuric acid melamine composite after calcination in 12 h at 550 ℃ in N2 atmosphere3 氮化碳的改性氮化碳在光催化方面前景非常广阔,如何提高光催化效率就成为备受关注的问题.提高效率的关键在于提高氮化碳作为催化剂的光生电子和空穴的分离效率,所以大致上从掺杂、官能化以及复合几个方面入手.3.1 氮化碳纳米改性纳米改性现在也是研究热点之一,有些研究人员把氮化碳的改性转移到了这一方面.张千[17]等人通过醇处理,酸处理,煅烧法三种方法得到了氮化碳的纳米薄片.通过一系列表征方法发现煅烧法得到的纳米薄片在尺寸和形貌上都是最佳的,纳米片片薄透明,厚度大约50 nm,且结晶区域较多,克服了氮化碳本身比表面积小的缺陷,提供了更多的反应活性位点,对罗丹明B的降解效率达到了82%.张明文等[18]通过在氮化碳纳米片层加入芳环基团,调控g-C3N4的共轭结构,既增强了表面传质,又降低了带隙宽度,促进了光生电子和空穴的分离与迁移,使420 nm 处的量子效率达到8.8%.3.2 氮化碳官能化由于氮化碳的能带位置,导致不能像羟基自由基一样产生氧空穴,这就大大限制了氮化碳的应用范围.针对这一点,人们做了大量的工作,在不破坏氮化碳结构的条件下,对氮化碳表面进行官能化处理.官能化包括对表面羟基化,羧基化,质子化等.目前所做的研究中,表面羟基化对于光生空穴的产生起到缺陷作用,反过来,又能产生活跃的羟基自由基.Zheng等[19]对这方面进行了深入的研究,他们将制备好的g-C3N4和不同浓度的H2O2进行简单的超声处理,如此一来,就得到有浓度梯度的羟基化的氮化碳.从表征结果来看,表面羟基化保留了氮化碳原有的分子结构,20%的双氧水降解效率最好,这催化反应过程中,通过抑制反应发现,超氧自由基对于降解起到了关键性作用.超氧自由基是将羟基引入到g-C3N4表面后形成的,具体形成机制以及催化机理还待进一步研究发现.图3 氮化碳表面羟基化前后结构示意图Fig.3 Schematic diagram of the surfacestructure of carbon nitride before and after hydroxylation3.3 氮化碳掺杂氮化碳掺杂主要分为两类掺杂,金属掺杂和非金属掺杂,掺杂可以使氮化碳内部结构发生一些改变.能够使波长吸收阈值增大,扩宽光吸收范围.还能使禁带宽度变窄,有效降低带隙能.3.3.1 金属离子掺杂半导体氮化碳中掺杂金属,可以有效增大比表面积;与此同时,金属对于电子的俘获能力很强,抢占电子,使半导体中电子被激发,从而降低催化剂内部光生电子和空穴的复合.不仅如此,掺杂金属可以在能级中加入杂质能级或形成缺陷,减少带隙能.金属掺杂的稳定性与所掺杂的金属的原子半径,以及核外电子排布有关.Ni,Ru,Pd,Ag金属掺杂之后,导致单层g-C3N4发生较大形变,从而破坏了原来的二维平面结构.李鹏[20]等做了过渡金属元素Mn,Cu,Au与氮化碳的掺杂实验,通过软件包CASTEP和密度泛函数计算得出结论,掺杂这些金属元素后,并不影响氮化碳本身的构型,而且还有效降低了带隙能.当中,Mn的带隙能量减小最为明显,吸收阈值甚至扩大到了红外范围.Au原子的掺杂在单层氮化碳结构的价带顶处引进了新能级,这种特性使价带电子仅需相对较低的能量就能够跃迁至导带,从而提高了氮化碳的光催化活性.其他的,Fe[21],Ag[22],Co[20],K[23],Ce[24]等,都可以使氮化碳保持结构,并且提高氮化碳的催化性能.Rh, Os, Ir, Pt等[20]还有待进一步研究.3.3.2 非金属离子掺杂2001 年,Asahi发表了氮掺杂TiO2的研究成果,该项研究开创了非金属元素掺杂制备光催化剂的先河[25].非金属掺杂可有效的调控催化剂的光吸收范围,而且实验过程简单方便,引来大量研究学者的目光.经报道,能够成功掺杂的非金属元素有B,C,O,F,P,S,I等.B掺杂可使进入氮化碳阵列,形成一种二维结构.C主要是以碳纳米管形式掺杂,形成异质结平面.随着C纳米管的增加,氮化碳的比表面积增大,但是掺杂量不宜过大,容易堵塞,低含量的掺杂能够有效抑制光生载流子的复合,提高光催化效率.李江华等掺杂O,氧进入到催化剂内部,打破原有平衡,电子多余出来的就会重新分到碳周围,形成缺陷能级,降低导带电势[26].F 掺杂后,C-F键掺杂进氮化碳晶格内,会使一部分sp2C变为sp3C,催化剂平面发生扭曲.徐赞等用磷酸氢二氨一步法合成了P掺杂的催化剂,制备出的催化剂对罗丹明B和甲基橙的降解率显著提高[27].Ma等从理论上叙述了S的掺杂原理,S 掺杂进g-C3N4采取取代式,优先取代边缘的氮原子.Zhang等掺杂I光解产氢,使光波长吸收范围增加到600 nm,且产氢效率明显提高[28].3.4 氮化碳复合氮化碳的激子结合能很高可是结晶度低,不过我们可以利用氮化碳较高的导带位置以及较好的光吸收能力和其他材料复合,这样形成异质结构,扬长避短,促进激子解离,加速光生电子空穴的迁移效率.利用这些优良性能,人们已经开发了一系列的两元复合材料.例如与宽禁带半导体复合,包括与TiO2,ZnO等,氮化碳将产生的光电子注入到宽禁带宽度的导带上,可以提高半导体的稳定性.可以和窄禁带宽度的半导体复合,包括和TaON形成异质结构,和BiOX[13]等复合模拟降解水中污染物.可以与石墨烯等碳材料复合,能够有效抑制光生载流子的复合.Liqun Ye等[29]BiOBr-g-C3N4 10 mg/L Rhodamine B,光催化效率效率达95%.Yu Zheng等[19]羟基化g-C3N4,20 min时几乎将罗丹明B降解完全.Simin Matloubi Aghdam等[30]制备了BiOI-BiOCl/C3N4,BiOI(50)-BiOCl(30)/ C3N4(20)复合材料最高的光催化活性,对acid orange 7 (AO7)酸性橙最高降解率98%,比g-C3N4提高38%.Junze Zhao等[31]制备了g-C3N4/Bi4O5Br2,10% g-C3N4/Bi4O5Br2复合材料光催化性能最高.对CIP降解率能达到70%,对RhB能达到85%.本课题组主要在做半导体之间复合,形成异质结.将Bi系材料与氮化碳复合,提高光生电子和空穴的效率,从而提高催化效果.此外,氮化碳还可以与聚合物复合,与聚苯胺复合可以用于降解甲基蓝的研究中.最近,三元复合体系逐渐发展起来.Tang[32]课题组制备了三元磁性氮化碳,将Fe3O4以及聚氮-异丙基丙烯酰胺(PNIPAM)[33~35]与氮化碳复合.Fe3O4由于其良好的物理化学性能,现在收到越来越多的关注.Fe3O4导电性能非常好,能够很快的传输电子,并且能降低光生电子和空穴的结合率,这一点能够有效的增强光催化活性.其次,Fe3O4本身具有磁性,这样就能利用这一特性,用外部磁铁将其从反应当中分离出来[36~38].PNIPAM是一种热敏聚合物,当温度低于最低临界温度(32 ℃)时,聚合物和水之间的氢键就会使得聚合物表现出亲水性和膨胀性.相反的,升高温度的话,随着氢键断裂,PNIPAM分子链也会断裂,导致疏水性能产生.这样,就使得PNIPAM具有良好的可控性能.氮化碳本身不可控而且不方便回收,基于以上几点,先把氮化碳和Fe3O4复合,然后在其表面加上聚合物PNIPAM.这样制备的三元体系,既能提高催化剂活性,又能使得反应在温度的调控下具有可逆性,反应结束便于回收.三元体系能够更好的调控氮化碳,所以这方面的研究在与日俱增.4 展望氮化碳的改性,对未来的光催化领域影响很大.改性三个比较重要的问题,首先,光的捕获,其次,光生电子和空穴的分离,再者就是提高实用价值.氮化碳催化效率提高了,对于污染物的降解就能迅速高效.我们最终的目标是应用于实际,对我们的生产和生活起到实质性的作用[39].在以后的研究方向上,可以在调控催化剂能带结构方面,共聚纳米改性,掺杂金属盐类、贵金属、稀土方面,以及在Z型光催化反应体系方面和催化剂的回收方面继续研究[40,41].克服氮化碳本身光生载流子易复合的缺陷,利用氮化碳本身的优异性能,提高应用范围.参考文献:[1] Zhang J, Wang X. Solar Water Splitting at λ=600nm: A Step Closer to Sustainable Hydrogen Production[J]. Angewandte Chemie, 2015,54(25):7230-7232.[2] Huang C, Chen C, Zhang M, et al. Carbon-doped BN nanosheets for metal-free photoredox catalysis[J]. Nature Communications, 2015, 6:7698-7705.[3] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(S8): 37-38.[4] Zheng Y, Lin L, Wang B, et al. ChemInform Abstract: Graphitic Carbon Nitride Polymers Toward Sustainable Photoredox Catalysis[J]. Angewandte Chemie, 2015, 54(44):12868-12884.[5] Zheng Y, Lin L, Ye X, et al. Helical Graphitic Carbon Nitrides with Photocatalytic and Optical Activities[J]. Angewandte Chemie, 2014,53(44):11926-11930.[6] Wang S, Yao W, Lin J, et al. Cobalt imidazolate metal-organic frameworks photosplit CO2 under mild reaction conditions[J]. Angewandte Chemie International Edition, 2014, 53(4):1052-1056.[7] Lin Z, Wang X. Nanostructure engineering and doping of conjugated carbon nitride semiconductors for hydrogen photosynthesis[J]. Angewandte Chemie International Edition, 2013, 52(6):1735-1738.[8] Sun J, Zhang J, Zhang M, et al. Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles[J]. Nature Communications, 2012, 3(4):1139-1146.[9] Wang X C, Blexhert S, Antonietti M. Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catalysis, 2012, 2: 1596-1606. [10] Wang X C, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009,8: 76-80.[11] 张金水,王博,王心晨. 氮化碳聚合物半导体光催化[J]. 化学进展,2014,26(01):19-29.[12] 谢运超. 改性氮化碳材料的制备及其光催化性能的研究[D]. 上海:上海理工大学, 2014.[13] 王鹏远, 郭昌胜, 高建峰, 等. 石墨相氮化碳 (g-C3N4) 与Bi系复合光催化材料的制备及在环境中的应用[J]. 化学进展, 2017,29 ( Z2 ):241-251.[14] 李敏, 李海岩, 孙发民, 等. 高比表面积石墨化氮化碳的制备及应用[J]. 石油学报(石油加工),2014,30(01):158-168.[15] Jun Y S, Lee E Z, Wang X C, et al. From Melamine-Cyanuric Acid Supramolecular Aggregates to Carbon Nitride Hollow Spheres[J]. Advanced h'urrctiorral Materials.2013, 23 (29):3661-3667.[16] Shalom M, lnal S, Fettkenhaner C, et al. Improving carbon nitride photocatalysis by supramolecular preorganization of monomers[J]. Journal of the American Chemical Society. 2013, 135 (19):7118-7121.[17] 张千, 张纪梅, 李颖. 新型氮化碳纳米材料的制备与性能测试[J]. 天津化工, 2017,31(03):10-12,24.[18] 张明文. 共聚合改性的氮化碳纳米片的合成、表征及其光解水性能研究[A]. 中国化学会.中国化学会第29届学术年会摘要集——第37分会:能源纳米科学与技术[C].北京:中国化学会,2014:85-85.[19] Zheng Y , Zhang Z , Li C , et al. Surface hydroxylation of graphitic carbon nitride: Enhanced visible light photocatalytic activity [J]. Materials Research Bulletin,2016,84:46-56.[20] 李鹏. 金属掺杂单层类石墨相氮化碳g-C3N4电子性质的理论研究[D]. 贵州:贵州大学, 2016.[21] 吴文倩, 邓德明. 铁掺杂氮化碳的制备及其可见光催化性能[J/OL]. 武汉大学学报 ( 理学版) , 2017,63(03):227-233.[22] 李芳芳, 聂锦丽, 黄英, 等. Ag掺杂的石墨型氮化碳材料光致发光性能的研究[J]. 化学研究与应用, 2013,25(11):1470-1474.[23] 张健, 王彦娟, 胡绍争. 钾离子掺杂对石墨型氮化碳光催化剂能带结构及光催化性能的影响[J]. 物理化学学报,2015,31(01):159-165.[24] 梁瑞钰, 徐冬冬, 查文莹, 等. 铈掺杂石墨相氮化碳的合成及可见光光催化性能[J]. 高等学校化学学报, 2016,37(11):1953-1959.[25] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528): 269-271. [26] 李江华. 氧掺杂g-C3N4可见光催化剂的制备及性能研究[D].福建:华侨大学, 2013.[27] 徐赞, 于薛刚, 单妍, 等. 一步法合成磷掺杂石墨相氮化碳及其光催化性能[J].无机材料学报, 2017,32(02):155-162.[28] 张贵刚. 碘掺杂改性石墨相氮化碳及其光解水产氢性能研究[A]. 中国化学会.中国化学会第29届学术年会摘要集第28分会:绿色化学[C].北京:中国化学会:,2014:42-42.[29] Ye L, Liu J, Jiang Z, et al. Facets coupling of BiOBr-g-C3N4, composite photocatalyst for enhanced visible-light-driven photocatalytic activity[J].Applied Catalysis B Environmental, 2013, 142-143(10):1-7.[30] Aghdam S M, Haghighi M, Allahyari S, et al. Precipitation dispersion of various ratios of BiOI/BiOCl nanocomposite over g-C3N4 for promoted visible light nanophotocatalyst used in removal of acid orange 7 from water[J]. Journal of Photochemistry & Photobiology A Chemistry, 2017, 338:201-212.[31] Zhao J , Ji M , Di J, et al. Synthesis of g-C3N4 /Bi4O5Br2 via reactable ionic liquid and its cooperation effect for the enhanced photocatalytic behavior towards ciprofloxacin degradation[J]. Journal of Photochemistr& Photobiology, A: Chemistry,2017,347:168-176. [32] 唐旭, 倪良, 韩娟, 等. 三元磁性氮化碳复合光催化剂的制备和表征及其在可见光下去除四环素的应用(英文)[J]. 催化学报, 2017,38(03):447-457.[33] Ganachaud F, Monteiro M J, Gilbert R G, et al. Living free-radical polymerization and molecular weight characterization of poly (N-isopropyl acrylamide[J]. Macromolecules, 2000, 33: 6738-6745.[34] Hua Z D, Chen Z Y, Li Y Z, et al. Thermosensitive and Salt-Sensitive Molecularly Imprinted Hydrogel for Bovine Serum Albumin[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2008, 24(11):5773-5780.[35] Zhu M Q , Wang L Q, Exarhos G J, et al. Thermosensitive Gold Nanoparticles[J]. Journal of the American Chemical Society, 2004,126(9):2656-2657.[36] Zhou X, Jin B, Chen R, et al. Synthesis of porous Fe3O4 /g-C3N4, nanospheres as highly efficient and recyclable photocatalysts[J].Materials Research Bulletin, 2013, 48(4):1447-1452.[37] Zhu Z, Lu Z, Wang D, et al. Construction of high-dispersedAg/Fe3O4/g-C3N4, photocatalyst by selective photo-deposition and improved photocatalytic activity[J]. Applied Catalysis B Environmental, 2016, 182:115-122.[38] Ren L, Huang S, Wei F, et al. One-step preparation of hierarchical superparamagnetic iron oxide/graphene composites via hydrothermal method[J]. Applied Surface Science, 2011, 258(3):1132-1138.[39] Yang S, Feng X, Wang X, et al. Graphene-based carbon nitride nanosheets as efficient metal-free electrocatalysts for oxygen reduction reactions.[J]. Angewandte Chemie, 2011, 50(23):5451-5455.[40] Wang Y , Wang X , Antonietti M . Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry[J]. Angewandte Chemie International Edition, 2012, 51(1):68-89.[41] Zhang J, Zhang M, Sun R Q, et al. A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions[J]. Angewandte Chemie International Edition, 2012,124(40):10292-10296.。

znn4石墨相氮化碳

znn4石墨相氮化碳

znn4石墨相氮化碳1.引言1.1 概述石墨相氮化碳(graphitic carbon nitride,简称g-C3N4)是一种新型的二维材料,具有丰富的化学和物理性质。

它由碳和氮原子组成,呈现出石墨结构的特征,具有高度晶化、优良的稳定性和良好的机械性能。

石墨相氮化碳的发现引起了广泛的研究兴趣,因为它具有许多潜在的应用领域。

首先,它具有优异的光电催化性能,能够在可见光下催化水分解产生氢气。

这对于解决能源危机和环境污染问题具有重要意义。

其次,石墨相氮化碳还具有良好的吸附性能和催化活性,可用于环境污染物的吸附和降解。

此外,它还在光伏器件、传感器、储能材料等领域具有广阔的应用前景。

现有的制备方法包括热蒸发法、溶胶凝胶法、水热法等,其中以热蒸发法制备的石墨相氮化碳具有较高的结晶度和比表面积。

然而,目前制备过程中还存在一些问题,如制备工艺复杂、产物纯度低等,需要进一步改进和优化。

综上所述,石墨相氮化碳作为一种新型的二维材料,在能源、环境和材料领域具有广泛的应用前景。

未来的研究应该着重解决制备工艺的问题,进一步优化其性能,为其应用提供更广阔的可能性。

1.2文章结构1.2 文章结构本文通过以下几个部分来详细介绍石墨相氮化碳(graphitic carbonnitride)的相关内容。

第一部分是引言,主要包括概述、文章结构以及目的。

在概述部分,将介绍石墨相氮化碳的基本背景和研究现状,为读者提供一个整体的认识。

文章结构部分将详细说明本文的章节安排和每个章节的内容,方便读者掌握整篇文章的结构。

目的部分将明确本文研究的目标和意义,为后续章节的内容提供指导。

第二部分是正文,主要包括石墨相氮化碳的定义和性质以及制备方法。

在2.1节中,将对石墨相氮化碳的定义进行详细解释,并介绍其主要的物理化学性质,如晶体结构、带隙能量等。

同时,还将探讨其在光催化、电催化和储能等领域中的应用潜力。

在2.2节中,将介绍石墨相氮化碳的制备方法,包括热聚合法、溶胶凝胶法、模板法等,并对各种制备方法的优缺点进行比较分析。

石墨相氮化碳光催化材料简介及性能

石墨相氮化碳光催化材料简介及性能

1. 引言
2008年
N C
王心晨
1. 引言
e-
Ef 2.7 eV
h+
优点:非金属半导体、原料丰富价格低、带隙合适、化学稳定且无毒 缺点:比表面积比较低、有限的可见光吸收、光生载流子易复合
2. g-C3N4的合成制备
主流方法:热聚合——简单、快捷、大批量 其他方法:CVD、溶剂热——复杂、耗时、产量低
3. g-C3N4材料改性
I. g-C3N4的剥离
石墨
石墨烯
Bulk g-C3N4
g-C3N4 nanosheet
0.9-2.1 nm 3-6 layers
3. g-C3N4材料改性
II. 元素掺杂
金 属 元 素:Fe、Cu、Zn、Ni等 非金属元素:O、P、S、B、I、F等
P
133.1 eV
CB
2. g-C3N4的合成制备
Templates: SiO2 AAO CaCO3
ionic liquids surfactants
hollow nanospheres
rous
nanorod
nanoflower
3. g-C3N4材料改性
目的: 增加比表面积
增加可见光吸收范围
抑制光生电子-空穴的简单复合
4. g-C3N4的应用领域
III. CO2还原
目标产物的选择性取决于g-C3N4的纳米结构设计以及能带位置的构建
5.展望
a) 开发可量产的剥离方法来制备单(几)层g-C3N4纳米片 b) 寻找有效的水分解及CO2还原助催化剂,尤其是非贵金属助催化剂 c) 提高光催化反应的量子产率 d) 将氮化碳的应用拓展到传感器、生物成像以及光电器件等领域

石墨相氮化碳的结构与光催化性能

石墨相氮化碳的结构与光催化性能

石墨相氮化碳的结构与光催化性能作者:杨玉蓉王佳慧刘宇飞来源:《牡丹江师范学院学报(自然科学版)》2022年第03期摘要:阐述石墨相氮化碳的合成、在光催化领域中的应用、改性与形貌控制,展望其在光催化领域面临的机遇和挑战.关键词:石墨相氮化碳;光催化;改性[中图分类号]TK91;O644.1[文献标志码]A文章编号:1003-6180(2022)03-0035-04Structure and Photocatalytic Properties of Graphitic Carbon NitrideYANG Yurong,WANG Jiahui,LIU Yufei(School of Science,Heihe University,Heihe 164300,China)Abstract:The synthesis,application,modification and morphology control of graphite-phase carbon nitride in photocatalysis were reviewed,and the opportunities and challenges in photocatalysis field were proposed.Key words:graphitic carbon nitride;photocatalysis;modification工业化的迅速发展导致全球对能源的需求急剧增加.日益增长的能源需求和逐渐恶化的环境问题成为全球可持续发展的巨大挑战.将太阳能转化为可再生能源成为解决能源和环境问题的有效策略.可见光诱导的半导体光催化技术被广泛研究.在众多光催化剂中,石墨相氮化碳因具有较高的物理化学稳定性和独特的電子能带结构等优点而备受关注.石墨相氮化碳稳定性高、成本低、绿色环保,在光催化产氢领域被广泛应用.然而,由于电导率低、载流子复合率高、光吸收效率低,石墨相氮化碳的光催化性能并不理想.本研究对石墨相氮化碳的结构、合成、在光催化领域中的应用、改性与形貌控制进行了分析,展望了光催化领域存在的机遇和挑战.1石墨相氮化碳的合成石墨相氮化碳作为一种可见光催化剂,通常由含有氮的前驱体直接缩合来合成,可以采用对尿素、硫脲、三聚氰胺等富氮的前驱体进行热处理来制备.前驱体材料和制备条件是影响石墨相氮化碳物理化学性质的关键因素,这些因素严重影响了石墨相氮化碳的C/N比、比表面积、孔隙率、吸收边缘及其微观结构.石墨相氮化碳的合成过程是加聚和缩聚的组合:单氰胺分子在约203 °C和234 °C温度下缩合为双氰胺和三聚氰胺,接着进入除去氨的冷凝阶段,大约335 °C时,合成三聚氰胺产物.进一步加热到约390 °C,3s-三嗪单元通过三聚氰胺的重排形成.520 °C,聚合的石墨相氮化碳通过单元进一步冷凝产生.在600 °C以上变得不稳定,超过700 °C,石墨相氮化碳会转化成氮和氰基碎片消失.石墨相氮化碳的独特性质和化学结构受反应气氛的强烈影响.反应气氛能够诱导无序结构、缺陷以及碳和氮空位的产生.缺陷对于多相催化反应是必不可少的,它们可以作为反应物分子的活性位点,通过在价带和导带之间引入其他能级来改变电子能带结构,以增强可见光吸收.半导体中的缺陷和晶格无序可以形成中间态,通常称为带尾态,用于激发电子-空穴对和光催化剂的光学响应.[1-2]无序缺陷的另一个优点是存在更多的俘获位点以阻止光生载流子的复合.具有介孔特征的石墨氮化碳是一种非常有希望的非金属催化剂,除了具有大的比表面积和结晶孔壁,还显示出独特的半导体特性.介孔的形成和比表面积的提高能够调整氮化碳的物理化学性质,从而提升材料的光催化性能.制备石墨相氮化碳的新方法包括超声分散技术、软模板法、化学功能化技术和酸性溶液浸渍法.使用软模板方法形成介孔阵列是通过协同构建两亲表面活性剂和客体物质来实现的.有机模板的成分及其性质对于产生介孔结构至关重要.因此,它们通常被认为是结构导向剂,该方法通常在水热环境中进行,可通过蒸发诱导自组装实现.2石墨相氮化碳在光催化领域中的应用在众多的光催化剂中,石墨相氮化碳由于成本低、制备工艺简单受到了人们的广泛关注.[3-5]石墨相氮化碳具有独特的二维结构,层间的弱范德华力使其具有片状石墨特征,使得每层中的原子排列成具有强共价键的蜂窝状结构,从而形成具有π共轭的类石墨平面构型,进而能够迅速的传输光生载流子.[6-9]石墨相氮化碳的禁带宽度为2.7 eV,最大吸收边为460 nm,能够吸收太阳光谱的部分可见光,具有热稳定性、生物相容性、环保性和耐腐蚀的优点.[10]石墨相氮化碳的价带由N2p轨道构成,导带由N2p和C2p 轨道杂化而成,它具有适当的价带和导带电位,满足光催化产氢、产氧的条件,在光催化领域中被广泛应用.已经开发了大量高效的光催化活性的石墨相氮化碳基纳米材料,其异质结具有出色的光解水制氢性能.石墨相氮化碳作为一种非金属金属和可见光响应的催化剂,在污染物降解中有广阔的应用前景.石墨相氮化碳的光催化降解反应可分为两类:污染物的气相降解,有机污染物和有毒离子的液相去除.二维石墨相氮化碳异质结作为光催化剂在CO2还原中受到广泛关注.石墨相氮化碳的导带底满足CO2还原半反应,能够实现光催化CO2还原.CO2光还原过程不仅仅是一步反应,它涉及质子参加的多电子反应过程,能够产生多种产物.从热力学角度看,CO2通过获得多个(二、四、六、八)电子和氢自由基,依次还原生成气态和液态烃,依次为HCOOH(液态)、CO (气态)、HCHO(液态)、CH3OH(液态)到CH4(气态).光催化消毒是另一个值得关注的方向.与传统的消毒方法(如臭氧法、氯化法和紫外线法)相比,光催化消毒具有高效、无毒和稳定的特点,是解决这一问题的新选择.3石墨相氮化碳光催化剂的改性与形貌控制由于N2p和C2p轨道的杂化,石墨相氮化碳表现出严重的光生载流子复合.此外,它的光吸收效率低,这些因素极大地限制了其光催化活性的提高.为了提高石墨相氮化碳的光催化活性,研究人员采用了多种策略来提高石墨相氮化碳的光催化活性,如元素和分子掺杂、缺陷引入、界面调控、贵金属负载、有机物复合、与光敏材料和导电材料形成异质结以及合成石墨相氮化碳基同质结.[11]非金属或阴离子的掺杂导致石墨相氮化碳的带隙变窄,从而增强光捕获能力.这是由于杂质的引入,形成了局域态,并将价带顶的位置提高,由此缩小了带隙,增加了光吸收.此外,非金属的掺杂也会导致π电子的离域效应,能够增强材料的电导率、光生载流子的迁移率和电子-空穴对分离率.从动力学和热力学的角度来看,价带宽度对空穴的迁移率起着重要作用,因为宽度越大,空穴的迁移率越高,从而导致更好的氧化效果.价带宽度的增加,需要阴离子或非金属掺杂剂在材料中均匀分布.共掺杂或多个原子的掺杂也是一种很有前途的方法,它可以更有效地调节石墨相氮化碳的带隙.多原子共掺杂能够显著提高石墨相氮化碳的光催化活性.空位也会提高石墨相氮化碳的光吸收,影响它的光催化能力,充当发生反应物吸附、活化以及电子捕获的特定位点,有效地调控材料的能带结构.[12-13]在石墨相氮化碳内引入氮空位能够减小带隙,在石墨相氮化碳中引入碳空位为光生电荷载流子的快速转移提供了活性位点和扩散通道,提高石墨相氮化碳的光吸收,降低光生载流子的复合.将石墨相氮化碳与其他非金属材料、碳基材料、聚合物和分子聚合也是提高其光催化活性的有效方法.石墨相氮化碳和氧化石墨烯复合的纳米材料是通过浸渍和化学还原的组合工艺制备的,石墨烯起到了导电通道的作用,从而有效地分离光生载流子.将MOF材料与石墨相氮化碳复合能够有效提高石墨相氮化碳的光催化活性.石墨相氮化碳与有机分子结合能够有效提高光催化性能,用低负电性分子掺杂剂取代氮原子有利于电子转移,从而提高电导率并抑制光生载流子的复合.增强的电子共轭体系显著地降低了石墨相氮化碳的带隙,导致吸收峰发生红移.由于石墨相氮化碳的电子结构很大程度上由其富电子共轭骨架决定,有机化合物(包括有機分子、有机聚合物和MOFs)与石墨相氮化碳的结合为扩展芳香族聚醚共轭体系提供了可能,实现了对其固有结构特性的调整,例如缩小其带隙以促进光吸收和电荷传输.[14-15]构建异质结或同质结也是增强电荷分离的有效策略.将石墨相氮化碳和其他半导体复合会产生能带偏移,从而在界面处感应出内置电场,实现光生电荷载流子的反向传输.同型异质结已被广泛用于非金属光催化剂.目前,研究人员已经采用了多种策略来制备石墨相氮化碳同质结光催化剂,这些石墨相氮化碳同质结光催化剂显示了良好的光催化活性.控制纳米结构也会导致石墨相氮化碳的化学、物理和光学性质发生改变,调整氧化还原位点的数量、电子和空穴到达活性位点的扩散距离,对提高石墨相氮化碳的性能至关重要.近年来,许多学者深入研究了光催化产氢与石墨相氮化碳形态之间的关系,开发了量子点、一维纳米线、纳米棒、纳米纤维、纳米管、二维纳米片.[16-17]合成石墨相氮化碳的过程中添加造孔剂,通过热缩聚成功制备了多孔石墨相氮化碳,这些多孔石墨相氮化碳的光催化活性和稳定性均得到很大提高.研究人员通过在NH3气氛下对块状石墨相氮化碳进行热处理,开发了具有大量平面内孔和大量碳空位的多孔石墨相氮化碳纳米片,平面内孔赋予石墨相氮化碳具有许多边界,减少了范德华相互作用以减轻严重的聚集,但也暴露了额外的活性边缘和扩散路径,极大地加速了光生电子-空穴的传输和扩散.[18]由于面内孔丰富,石墨相氮化碳的合理改性可以同时实现载流子的有效传输、分离、转移和利用,以及高效的光吸收,这是开发新一代性能优异光催化剂的基础.总之,作为研究最广泛的光催化剂之一,石墨相氮化碳具有可调谐的电子能带结构、化学稳定性、低成本等优异的特性.然而,氮原子的高电负性增加了共轭体系的缺陷,导致石墨相氮化碳的电子利用率和电导率下降,从而对其光催化活性产生不利影响.尽管迄今为止已经取得了一些令人振奋的成果,但石墨相氮化碳杂化复合材料的效率和稳定性仍远未达到大规模应用的要求.在未来的研究中需要深入挖掘光催化反应机理,更好地设计石墨相氮化碳基有机光催化剂,进一步提高材料的稳定性.开发剥离石墨相氮化碳,探索均匀的单层或多层纳米片的新方法,实现更高的太阳能转化效率.开发价格低廉、绿色环保、具有较高的化学稳定性的石墨相氮化碳基光催化剂,并应用到工业领域中,仍然是一个挑战.参考文献[1]桑娜,任玉兰,王雪,等.Bi/BiOBr光催化剂的合成及性能研究[J].牡丹江师范学院学报:自然科学版,2019 (04):46-49.[2]汪鹏生,李洋,李甲地.水热法制备TiO2/MoS2纳米球光催化剂及其光催化性能研究[J].牡丹江师范学院学报:自然科学版,2017(04):37-39.[3]孙志明,李雪,马建宁,等.类石墨氮化碳/伊利石复合材料的制备及其可见光催化性能[J].复合材料学报,2018,35(06):1558-1565.[4]胡金娟,马春雨,王佳琳,等.Ag-Ag2O/TiO2-g-C3N4纳米复合材料的制备及可见光催化性能[J].复合材料学报,2020,37(06):1401-1410.[5]曹雪娟,单柏林,邓梅,等.Fe掺杂g-C3N4光催化剂的制备及光催化性能研究[J].重庆交通大学学报:自然科学版,2019,38(11):52-57.3石墨相氮化碳光催化剂的改性与形貌控制由于N2p和C2p轨道的杂化,石墨相氮化碳表现出严重的光生载流子复合.此外,它的光吸收效率低,这些因素极大地限制了其光催化活性的提高.为了提高石墨相氮化碳的光催化活性,研究人员采用了多种策略来提高石墨相氮化碳的光催化活性,如元素和分子掺杂、缺陷引入、界面调控、贵金属负载、有机物复合、与光敏材料和导电材料形成异质结以及合成石墨相氮化碳基同质结.[11]非金属或阴离子的掺杂导致石墨相氮化碳的带隙变窄,从而增强光捕获能力.这是由于杂质的引入,形成了局域态,并将价带顶的位置提高,由此缩小了带隙,增加了光吸收.此外,非金属的掺杂也会导致π电子的离域效应,能够增强材料的电导率、光生载流子的迁移率和电子-空穴对分离率.从动力学和热力学的角度来看,价带宽度对空穴的迁移率起着重要作用,因为宽度越大,空穴的迁移率越高,从而导致更好的氧化效果.价带宽度的增加,需要阴离子或非金属掺杂剂在材料中均匀分布.共掺杂或多个原子的掺杂也是一种很有前途的方法,它可以更有效地调节石墨相氮化碳的带隙.多原子共掺杂能够显著提高石墨相氮化碳的光催化活性.空位也會提高石墨相氮化碳的光吸收,影响它的光催化能力,充当发生反应物吸附、活化以及电子捕获的特定位点,有效地调控材料的能带结构.[12-13]在石墨相氮化碳内引入氮空位能够减小带隙,在石墨相氮化碳中引入碳空位为光生电荷载流子的快速转移提供了活性位点和扩散通道,提高石墨相氮化碳的光吸收,降低光生载流子的复合.将石墨相氮化碳与其他非金属材料、碳基材料、聚合物和分子聚合也是提高其光催化活性的有效方法.石墨相氮化碳和氧化石墨烯复合的纳米材料是通过浸渍和化学还原的组合工艺制备的,石墨烯起到了导电通道的作用,从而有效地分离光生载流子.将MOF材料与石墨相氮化碳复合能够有效提高石墨相氮化碳的光催化活性.石墨相氮化碳与有机分子结合能够有效提高光催化性能,用低负电性分子掺杂剂取代氮原子有利于电子转移,从而提高电导率并抑制光生载流子的复合.增强的电子共轭体系显著地降低了石墨相氮化碳的带隙,导致吸收峰发生红移.由于石墨相氮化碳的电子结构很大程度上由其富电子共轭骨架决定,有机化合物(包括有机分子、有机聚合物和MOFs)与石墨相氮化碳的结合为扩展芳香族聚醚共轭体系提供了可能,实现了对其固有结构特性的调整,例如缩小其带隙以促进光吸收和电荷传输.[14-15]构建异质结或同质结也是增强电荷分离的有效策略.将石墨相氮化碳和其他半导体复合会产生能带偏移,从而在界面处感应出内置电场,实现光生电荷载流子的反向传输.同型异质结已被广泛用于非金属光催化剂.目前,研究人员已经采用了多种策略来制备石墨相氮化碳同质结光催化剂,这些石墨相氮化碳同质结光催化剂显示了良好的光催化活性.控制纳米结构也会导致石墨相氮化碳的化学、物理和光学性质发生改变,调整氧化还原位点的数量、电子和空穴到达活性位点的扩散距离,对提高石墨相氮化碳的性能至关重要.近年来,许多学者深入研究了光催化产氢与石墨相氮化碳形态之间的关系,开发了量子点、一维纳米线、纳米棒、纳米纤维、纳米管、二维纳米片.[16-17]合成石墨相氮化碳的过程中添加造孔剂,通过热缩聚成功制备了多孔石墨相氮化碳,这些多孔石墨相氮化碳的光催化活性和稳定性均得到很大提高.研究人员通过在NH3气氛下对块状石墨相氮化碳进行热处理,开发了具有大量平面内孔和大量碳空位的多孔石墨相氮化碳纳米片,平面内孔赋予石墨相氮化碳具有许多边界,减少了范德华相互作用以减轻严重的聚集,但也暴露了额外的活性边缘和扩散路径,极大地加速了光生电子-空穴的传输和扩散.[18]由于面内孔丰富,石墨相氮化碳的合理改性可以同时实现载流子的有效传输、分离、转移和利用,以及高效的光吸收,这是开发新一代性能优异光催化剂的基础.总之,作为研究最广泛的光催化剂之一,石墨相氮化碳具有可调谐的电子能带结构、化学稳定性、低成本等优异的特性.然而,氮原子的高电负性增加了共轭体系的缺陷,导致石墨相氮化碳的电子利用率和电导率下降,从而对其光催化活性产生不利影响.尽管迄今为止已经取得了一些令人振奋的成果,但石墨相氮化碳杂化复合材料的效率和稳定性仍远未达到大规模应用的要求.在未来的研究中需要深入挖掘光催化反应机理,更好地设计石墨相氮化碳基有机光催化剂,进一步提高材料的稳定性.开发剥离石墨相氮化碳,探索均匀的单层或多层纳米片的新方法,实现更高的太阳能转化效率.开发价格低廉、绿色环保、具有较高的化学稳定性的石墨相氮化碳基光催化剂,并应用到工业领域中,仍然是一个挑战.参考文献[1]桑娜,任玉兰,王雪,等.Bi/BiOBr光催化剂的合成及性能研究[J].牡丹江师范学院学报:自然科学版,2019 (04):46-49.[2]汪鹏生,李洋,李甲地.水热法制备TiO2/MoS2纳米球光催化剂及其光催化性能研究[J].牡丹江师范学院学报:自然科学版,2017(04):37-39.[3]孙志明,李雪,马建宁,等.类石墨氮化碳/伊利石复合材料的制备及其可见光催化性能[J].复合材料学报,2018,35(06):1558-1565.[4]胡金娟,马春雨,王佳琳,等.Ag-Ag2O/TiO2-g-C3N4纳米复合材料的制备及可见光催化性能[J].复合材料学报,2020,37(06):1401-1410.[5]曹雪娟,单柏林,邓梅,等.Fe掺杂g-C3N4光催化剂的制备及光催化性能研究[J].重庆交通大学学报:自然科学版,2019,38(11):52-57.。

改性石墨相氮化碳光催化降解有机污染物

改性石墨相氮化碳光催化降解有机污染物

改性石墨相氮化碳光催化降解有机污染物吝美霞;李法云;王艳杰;邢杨;李佳宇【摘要】光催化技术可在温和的反应条件下将太阳能转化成化学能,促进有机污染物的降解.石墨相氮化碳作为一种新型非金属半导体聚合物,具有独特的电子结构和良好的化学稳定性,近些年在光催化领域受到广泛关注,但石墨相氮化碳自身也存在一些不足,如禁带宽度为2.7 eV、仅可以吸收太阳光中小于475 nm的蓝紫光、光生载流子易复合、量子效率低、比表面积小等,需要对其进行改性来提高光催化性能.主要评述了石墨相氮化碳在结构优化、贵金属沉积、半导体复合、元素掺杂、染料敏化、碳材料复合等方面的改性研究进展及其在环境污染净化领域的应用前景.【期刊名称】《辽宁石油化工大学学报》【年(卷),期】2019(039)002【总页数】9页(P1-9)【关键词】石墨相氮化碳;改性;光催化降解;有机污染物【作者】吝美霞;李法云;王艳杰;邢杨;李佳宇【作者单位】辽宁石油化工大学生态环境研究院,辽宁抚顺 113001;辽宁石油化工大学石油化工过程优化与节能技术国家地方工程实验室,辽宁抚顺 113001;辽宁石油化工大学生态环境研究院,辽宁抚顺 113001;湖南农业大学资源环境学院,湖南长沙 410128;辽宁石油化工大学生态环境研究院,辽宁抚顺 113001;辽宁石油化工大学石油化工过程优化与节能技术国家地方工程实验室,辽宁抚顺 113001;辽宁石油化工大学生态环境研究院,辽宁抚顺 113001;辽宁石油化工大学石油化工过程优化与节能技术国家地方工程实验室,辽宁抚顺 113001;辽宁石油化工大学生态环境研究院,辽宁抚顺 113001;辽宁石油化工大学石油化工过程优化与节能技术国家地方工程实验室,辽宁抚顺 113001【正文语种】中文【中图分类】X506绿色环保的光催化技术是解决环境污染和能源短缺的有效手段。

在太阳能的驱动下,光催化剂能够将光能转换成化学能,促进化学反应的进行,如光分解水制氢制氧、氧化还原去除重金属离子、分解矿化有机污染物、固定转化二氧化碳等[1-4]。

石墨相氮化碳的改性及其光催化制氢性能的研究共3篇

石墨相氮化碳的改性及其光催化制氢性能的研究共3篇

石墨相氮化碳的改性及其光催化制氢性能的研究共3篇石墨相氮化碳的改性及其光催化制氢性能的研究1随着能源危机的加剧和环境污染的严峻,绿色低碳能源成为当前各国共同的发展方向。

氢气作为一种清洁、环保的燃料,被广泛地应用于生产和生活中。

目前,石墨相氮化碳因具有良好的光催化性能和可控制备的特点,已成为制氢的研究热点。

石墨相氮化碳具有较低的能隙和良好的光催化性能,可使用可视光进行催化反应。

然而,由于其特殊的材料结构,如缺陷、孔道等,使得其催化活性局限于表面,从而限制了其在光催化制氢方面的应用。

因此,我们需要改性石墨相氮化碳,提高其活性表面积,增强其光催化制氢性能。

利用化学方法或物理方法改变石墨相氮化碳的结构和组分,可以提高其光催化活性和稳定性。

其中,掺杂、离子交换和微波辅助等技术在石墨相氮化碳的改性中得到了广泛应用。

例如,将掺杂不同的金属物质和接枝不同的有机分子到石墨相氮化碳的结构中,可以提高其表面活性位点的数目,增强其光吸收能力和转移电子的速率,提高其光催化制氢活性。

另外,石墨相氮化碳被广泛地应用于光解水制氢。

在该过程中,石墨相氮化碳作为光催化剂,在光照的条件下吸收能量,将水分子分解为氢气和氧气。

然而,由于石墨相氮化碳的光催化作用独特而复杂,因此需要对其光学性质、结构特征和反应机制进行深入的研究。

近年来,人们不断研究石墨相氮化碳的光催化制氢性能,并从材料、结构和功能三个方面进行了深入研究,取得了一系列显著的研究成果。

在材料方面,通过改变其表面形貌和化学组分,可以提高其光催化制氢性能,如利用不同的前体物制备不同形貌的石墨相氮化碳;在结构方面,通过改变其孔径大小、构建异质结构等方式来调节其催化性能,如采用Fe2O3包覆石墨相氮化碳来增强其催化活性;在功能方面,通过对其表面进行修饰或掺杂过渡金属或其他元素,可以改善其光催化活性和稳定性,在增强光催化制氢性能方面具有重要作用。

总之,石墨相氮化碳作为一种新型的光催化剂,具有广阔的应用前景。

石墨相氮化碳的化学合成及应用

石墨相氮化碳的化学合成及应用

石墨相氮化碳的化学合成及应用
1. 热分解法:通过将含有氰胺化合物的有机溶剂或固体在高温下进行热分解来制备g-C3N4。

在高温条件下,氰胺化合物发
生缩聚反应,生成g-C3N4。

这种方法制备的g-C3N4具有良
好的结晶性和光催化活性。

2. 气相沉积法:将氰胺等前驱物物质放在高温环境中,在载体表面进行气相沉积。

通过调节反应条件和前驱物的浓度,可以得到不同形态和性能的g-C3N4薄膜。

3. 液相合成法:通过将氰胺或尿素等化合物溶解在有机溶剂中,经过一系列的化学反应和热解等处理,得到g-C3N4纳米粒子。

这种方法制备的g-C3N4纳米粒子具有较高的比表面积和催化
活性。

石墨相氮化碳在能源转换、环境污染治理和光电器件等领域具有广泛的应用前景:
1. 光催化应用:由于g-C3N4具有良好的光吸收性能和催化活性,可以用于光解水制氢、光催化还原CO2等气体转化反应。

石墨相氮化碳还可以用于光催化降解有机污染物,对于环境污染治理具有重要意义。

2. 光电器件:g-C3N4可以作为光电催化剂、气体传感器和光
电导板等光电器件的关键材料。

它在太阳能电池、光电催化水分解和柔性电子等方面的应用潜力巨大。

3. 电化学储能:石墨相氮化碳可以作为光电催化水分解过程中氢气储存的载体,并用于制备高性能的氢气储存材料。

此外,
g-C3N4还可以用于制备锂离子电池、超级电容器等电化学储
能材料。

总而言之,石墨相氮化碳是一种具有广泛应用前景的新型材料,其化学合成方法和应用领域的研究将会进一步推动可持续能源和环境治理等领域的发展。

改性石墨相氮化碳的制备与光催化性能研究

改性石墨相氮化碳的制备与光催化性能研究

改性石墨相氮化碳的制备与光催化性能探究摘要:本文探究了改性石墨相氮化碳的制备与光催化性能。

起首通过改变含铁酸盐的前驱体比例来合成不同浓度的铁掺杂石墨烯氮化碳材料,然后接受氨基硅油原位水解-缩合的方法在材料表面进行硅改性。

接下来,通过控制溶剂的类型和离子强度,制备了不同形貌的石墨相氮化碳。

最后,将改性后的铁掺杂石墨烯氮化碳材料和不同形貌的石墨相氮化碳进行光催化性能测试。

结果表明,在紫外光照耀下,改性后的铁掺杂石墨烯氮化碳材料表现出更好的光催化活性和稳定性,其表面硅改性有助于增强光吸纳能力,而铁掺杂则增加了活性位点的数量。

此外,当溶剂为甲醇时,制备的石墨相氮化碳表面遮盖了更多的碳球状纳米颗粒,从而有效提高了光催化活性。

关键词:改性石墨相氮化碳,铁掺杂,硅改性,光催化性能,甲醇Abstract:In this paper, the preparation and photocatalyticperformance of modified graphene-like nitrogen-doped carbon materials were studied. Firstly, different concentrations of iron-doped graphene nitrogen carbon materials were synthesized by changing the precursor ratio containing iron salt, and then the silicon modification was carried out on the surface of the material by aminoalkylsiloxane in situ hydrolysis-condensation method. Then, by controlling the type of solvent and ionic strength, different morphologies of graphene-like nitrogen-doped carbon were prepared. Finally, the modified iron-doped graphene nitrogen carbon materials and graphene-like nitrogen-doped carbon with different morphologies were tested for photocatalytic performance.The results showed that under UV irradiation, the modified iron-doped graphene nitrogen carbon material showed better photocatalytic activity and stability. The surface silicon modification enhanced the light absorption capacity and the iron doping increased the number of active sites. In addition, when the solvent was methanol, more carbon spherical nanoparticles were covered on the surface of the prepared graphite-like nitrogen-doped carbon, which effectively improved the photocatalytic activity.Keywords: modified graphene-like nitrogen-doped carbon,iron doping, silicon modification, photocatalytic performance, methanol。

石墨相氮化碳的改性及应用

石墨相氮化碳的改性及应用

石墨相氮化碳的改性及应用方威;赵运林;胡新将;王晓雪【摘要】石墨型氮化碳(g-C3N4)聚合物是一种新型的半导体非金属光催化剂,以三聚氰胺、尿素、双氰胺等富氮低成本材料为前驱体就可以制备.在拥有良好的化学稳定性和热稳定性的同时,其既能吸收太阳光转化为化学能,又能彻底氧化还原环境中的污染物质,而被广泛应用于光催化领域,如光降解有机污染物、光解水产氨产氧和有机选择性光合成等,在能源短缺和环境保护方面具有很广阔的研究空间.本文主要论述了g-C3N4在光催化领域的发展、光催化性能的改良方法以及其在光电领域的应用,并提出g-C3N4在未来研究中所面临的挑战.【期刊名称】《中国资源综合利用》【年(卷),期】2019(037)006【总页数】8页(P186-193)【关键词】g-C3N4;改性;光催化;应用【作者】方威;赵运林;胡新将;王晓雪【作者单位】中南林业科技大学环境科学与工程学院水污染控制实验室;中南林业科技大学生命科学与技术学院,长沙 410004;中南林业科技大学环境科学与工程学院水污染控制实验室;中南林业科技大学环境科学与工程学院水污染控制实验室【正文语种】中文【中图分类】TQ127.111972年,日本学者Fijishima和Hongda等发现,在太阳光照条件下,二氧化钛(TiO2)可以与水发生化学反应生成氢气,该发现在能源领域具有划时代的意义[1]。

诸多学者前赴后继在光催化领域进行了非常深入的研究,如光催化还原重金属、光催化去除有机物、光催化制备H2等[2-4]。

在此之后,新型的催化剂也如雨后春笋,纷纷被人们发现,如氧化锌(ZnO)、硫化镉(CdS)、氧化锡(SnO2)、二氧化钛(TiO2)和二氧化锆(ZrO2)等[5-9]。

光催化技术具有以下优点:半导体光催化剂高效无毒,化学和光学稳定性高,反应条件温和,能耗低,成本低,具有环境污染控制和清洁能源制备的优点。

目前,光催化技术可应用于水和空气的净化、杀菌和除臭。

石墨相氮化碳的液相合成及光催化性能研究进展

石墨相氮化碳的液相合成及光催化性能研究进展

石墨相氮化碳的液相合成及光催化性能研究进展赵艺蒙;李明;王浩;杨传锋;崔言娟【摘要】Graphitic carbon nitride is a layered material with similar to grapheme.It has become the research hotspot in the field of functional materials,for the unique energy band and electron structures. Based on the limitations of polymer materials,more and more methods have been used to optimize and modify the structure of carbon nitride.Liquid phase synthesis method with mild and changeable proper-ties is an important way to obtained graphitic carbon nitride.A major synthetic method of carbon nitride in liquid phase medium is summarized,including liquid phase electrodeposition,pulse laser ablation, and solvothermal,et al.The effects of different liquid medium and synthetic parameters on crystalline and morphology of the prepared carbon nitride was introduced.In addition,the research progress in the field of photocatalysis of carbon nitride prepared from solvothermal method was summarized.In future, the structure optimization of carbon nitride materials would be greatly enriched by liquid phase synthe-sis method to promote the in-depth research of multi-functional polymer materials.%石墨相氮化碳是类石墨层状聚合物材料,因其特殊的能带和电子结构,近年来成为功能材料研究领域的热点.液相合成法具有温和多变的特性,是石墨相氮化碳合成的重要途径.本文作者就现阶段液相介质合成氮化碳的主要方法进行了介绍,主要包括液相电沉积、脉冲激光烧蚀、溶剂热合成法等.介绍了不同液相介质和合成参数对制备氮化碳材料晶型、形貌等的影响.同时就溶剂热合成氮化碳在光催化领域的研究进展进行了总结.在未来的研究中,液相合成法将极大的丰富氮化碳材料结构优化的途径,有助于推动多功能聚合物材料的深入研究.【期刊名称】《化学研究》【年(卷),期】2018(029)001【总页数】7页(P104-110)【关键词】氮化碳;液相介质;形貌;光催化【作者】赵艺蒙;李明;王浩;杨传锋;崔言娟【作者单位】江苏科技大学环境与化学工程学院,江苏镇江212003;江苏科技大学环境与化学工程学院,江苏镇江212003;江苏科技大学环境与化学工程学院,江苏镇江212003;江苏科技大学环境与化学工程学院,江苏镇江212003;江苏科技大学环境与化学工程学院,江苏镇江212003【正文语种】中文【中图分类】O649氮化碳是一种古老的无机物材料,其研究历史可追溯至1834年,BERZELIUS和LIEBIG[1]成功制备出melon(C6N9H3)化合物. 1922年,FRANKLIN首次提出了石墨相氮化碳的概念,预测可以通过热解melon化合物制备[2]. TETER和HEMLEY[3]对其进行了理论计算,提出五种同素异形体结构,其中由于石墨相在常温常压下最稳定,制备过程最易实现,成为科研人员研究的重点,多年来对g-C3N4的合成和结构进行了大量的探索. 2009年,王心晨课题组[4]首次将g-C3N4作为光催化剂进行了报道,并成功利用其光解水制取氢气和氧气. 这一突破性发现将这一古老的人工半导体材料重新唤醒,以g-C3N4为基础的光催化材料研究及应用得到迅速发展,在光电转化、去除环境污染物、CO2还原、光解水制氢等领域表现出优异的催化性能(图1).图1 g-C3N4的两种分子结构:三嗪环单元和七嗪环单元Fig.1 Chemical structures for g-C3N4: triazine and tri-s-triazine units近年来,诸多研究及计算性论文以及综述类文章对g-C3N4的合成方法、优化改性及其在催化/光催化领域的应用等方面进行了大量报道[5]. 纵观氮化碳的合成历史,采用液相介质合成氮化碳也是一种常用的方法. 在液相介质中合成氮化碳明显降低了合成温度,同时利用亚临界/临届状态下溶剂效应,可以制备出具有不同粒子形貌以及不同晶型的氮化碳材料. 另外,在温和的液相介质中,可以采用有机化学的合成方法,从分子水平上对氮化碳的合成进行调控,有望解决聚合物分子结构控制合成的难题. 近年来,采用液相合成法制备g-C3N4材料并应用至光催化研究领域的报道开始涌现. 这将大大的扩展聚合物半导体材料的合成及应用研究. 本文作者介绍了近年来在液相介质中制备氮化碳的研究方法,总结和比较了不同合成方法制备氮化碳材料的结构特征以及其在催化/光催化等方面的应用,以期推动聚合物类半导体材料的深入研究及应用.1 石墨相氮化碳简介理论与实验研究证明,g-C3N4是由三聚三嗪环单元组成的聚合物材料,具有类石墨的层状堆积结构,这种稳定的二维共轭结构有利于面内电子的分散及传输. 其禁带宽度约为2.7 eV,具有可见光吸收能力,是一种典型的可见光响应半导体材料. 导带和价带位置分别位于-1.3和1.4 eV vs NHE,因此从热力学上其光生电子和空穴具有相当的催化还原/氧化能力. 近年来,g-C3N4在能源转化、传感、有机合成等领域表现出优异的性能,具有较大的应用前景.尽管g-C3N4具有无毒、稳定、无污染等诸多优点,但由于聚合物材料本身较高的激子结合能,g-C3N4本身具有电子传输性差,量子效率低的不足. 因此,诸多的研究报道致力于对g-C3N4进行结构优化和改性,包括介孔化改性、表面修饰、掺杂、半导体复合等. 这些方法在不同程度上了优化了g-C3N4的结构并提高了光催化性能. 但同时也发现,这些改性方法针对g-C3N4仍具有很大的局限性. WANG 等[6]将有机分子共聚合入g-C3N4的骨架结构,分子水平上实现了π共轭结构连续可调,产氢效率提高了5倍. 所以,从分子构成上对g-C3N4进行结构优化,同时采用软模板法实现形貌控制,对g-C3N4高效性能的研究具有重要意义.2 液相介质合成氮化碳目前制备氮化碳的方法有很多,包括热聚合法、机械球磨法等. 其中,热聚合法和固相反应法是目前合成氮化碳最普遍采用的方法. 热聚合法具有简单易操作的优点,但需要在高温条件下实现(>500 ℃),分子结构的设计和优化存在困难,合成产物通常存在大量缺陷,在结构和性能调控方面还存在一些限制. 因此,低温液相合成是氮化碳制备和改性的另一重要途径.2.1 液相电沉积法液相电沉积法由于其设备简单、操作容易等优点被应用于氮化碳薄膜的制备中. 例如,WANG等[7]以纯的含氮液体N,N-二甲基甲酰胺和丙烯腈分别作为电解液进行电沉积实验,在硅基板上分别得到α-C:H:O薄膜和氢化的非晶氮化碳α-CNx:H 薄膜,其N/C物质的量之比为0.25. 近几年液相电沉积法也应用于制备g-C3N4. CAO课题组[8]最先在Si(100)基板上,以物质的量之比为1∶1.5的C3N3Cl3和C3H6N6的饱和乙腈溶液电解沉积得到g-C3N4薄膜. 研究发现,反应体系中前驱物的物质的量之比对产物化学组成、化学键态以及结构有影响,调整前驱物的比例可以得到较高结晶度的g-C3N4 [9-10]. 另外,将液相电沉积法和模板法相结合,以SiO2纳米球修饰ITO电极,可以制备出空心球状g-C3N4[11].2.2 液相脉冲激光烧蚀法液相脉冲激光烧蚀法作为一种制备纳米材料的新型方法,已广泛应用于各种纳米材料的制备. YANG等[12-15]将石墨靶浸渍在氨水中,采用液相脉冲激光烧蚀法制备出了一系列具有不同形貌的α-C3N4和β-C3N4晶体(图2). 采用此方法自组装制备多样化氮化碳晶体的过程可以总结如下:(1)通过定向聚集使得较小的0D 纳米颗粒形成1D 纳米棒或纳米带;(2)1D纳米结构组装转化成2D碳氮化合物纳米片或3D纳米花状结构.图2 液相脉冲激光烧蚀法制备的多种氮化碳SEM图片Fig.2 SEM images of various carbon nitrides prepared from liquid pulsed laser ablation method[15]2.3 回流加热法以有机溶剂为反应介质,采用液相加热回流的方法是有机合成最常用的方法之一. 无模板存在下,ZIMMERMAN等[16]以氮化锂(Li3N)和三聚氰氯(C3N3Cl3)为原料,二甘醇二甲醚为溶剂,氮气气氛中回流加热8~48 h,得到g-C3N4空心球. 在较低温度下(0~120 ℃),二甲基甲酰胺(DMF)为反应介质,常压回流聚合热处理,同样可以得到三嗪堆积单元形成的g-C3N4材料[17]. 储气实验表明. 尽管其比表面积并不高(10 m2/g),但此富氮化合物具有较高的储氢容量,在室温下(< 100 bar)可达到0.34%质量比,这在新型储能材料的研究中具有重要意义.乙二胺((CH2NH2)2)和四氯化碳(CCl4)是合成氮化碳的常用氮源和碳源. 选用一定模板可以制备具有不同形貌的氮化碳材料. LU等[18]以多孔阳极Al2O3膜为模板制备出外径为100 nm,壁厚为10 nm的g-C3N4纳米管,并以此为催化剂实现了甲醇电解氧化. 此外,此方法制备的g-C3N4纳米管可以作为催化剂载体,在负载Pt之后可以实现环己烯的氢化[19]. SiO2基硬模板是最常用的模板材料,以不同的Si基分子筛为模板可以制备得出具有不同2D/3D孔结构的氮化碳材料[20-21]. 例如,VINU等[22]以SBA-15为模板制备得到二维六边形有序排列的富C介孔氮化碳(图3). 通过调整(CH2NH2)2和CCl4的质量比,可以合成出高N含量的有序介孔氮化碳[23]. 此外,氰胺类有机化合物也是常用的氮源前驱体. 以二聚氰胺/三聚氰胺和 CCl4为前驱物,不同孔径和尺寸的硅基材料为模板,可调控制备出不同尺寸和形貌的多孔氮化碳产物[24-25].图3 以SBA-15为模板制备的2D六边形有序介孔氮化碳TEM 图片Fig.3 TEM images of 2D hexagonal ordered mesoporous carbon nitride preparedwith using SBA-15 as templates2.4 溶剂热法溶剂热法可以定义为在封闭系统里极性或非极性溶剂中发生的化学反应,反应温度高于溶剂沸点[26]. 与水热法相比,非水溶剂种类多,具有高反应活性,通过控制反应参数(温度、溶剂、时间等)可以有效调控产物分子结构和粒子形貌. 溶剂热法制备氮化碳是此类聚合物材料合成的重要途径,较低的温度下进行聚合反应可以充分防止氮的流失,得到富氮产物. 同时,温和的反应条件有利于得到低缺陷、高晶度的晶体材料.以CCl4和极性含氮溶剂分别为碳源和氮源,高温高压溶剂热条件下(300~500 ℃)可制备石墨相氮化碳材料[27-28]. 非极性有机溶剂(苯、环乙烷、四氯化碳等)通常与溶质分子间作用力较弱,依靠范德华力发生溶剂化效应. 以此类溶剂为反应介质,溶剂热方法可以制备得到不同晶型的氮化碳产物[29]. 其中,苯由于其稳定的共轭结构,是溶剂热合成的优良溶剂. 富含高反应活性-Cl基团的三嗪环化合物C3N3Cl3为溶剂热合成氮化碳最常用的反应前驱物之一. 国内外研究报道表明,通过调控苯热法反应参数(温度、时间、压力等)可以制备出α,β-C3N4 纳米晶[30-33]. 以NaNH2或NaN3为N源,苯热条件下(220 ℃)可以得到g-C3N4纳米颗粒和纳米管,具有显著的光致荧光特性(图4)[34-36]. 除苯之外,以环己烷或四氯化碳(CCl4)为有机溶剂,利用溶剂分子的溶剂化作用作为控制模板剂,可以得到不同形貌的氮化碳材料,如g-C3N4纳米带、纳米管、纳米微球等[37-40]. 在非水溶剂中大多数为极性有机溶剂,因其独特的分子特性,如还原性、分子螯合等,在纳米材料合成领域被广泛使用[41-42]. 总结氮化碳材料合成史,除(CH2NH2)2外,极性有机溶剂肼(NH2NH2)、三乙胺(Et3N)、DMF等均可以被用作有机反应介质,在不同的温度范围内,溶剂热合成不同结构的g-C3N4[43-45]. 表1中为典型的溶剂热法制备g-C3N4的方法及产物.图4 苯热法制备的两端封闭的g-C3N4纳米管SEM图片Fig.4 SEM images of both ends closed g-C3N4 nanotubes prepared from benzene thermal methods表1 典型的溶剂热合成g-C3N4方法及产物Table 1 Typical methods and products of g-C3N4 synthesized form solvothermal methods作者原料溶剂反应条件产物参考文献MONTIGAUD等C3H6N6+C3N3Cl3二异丙基乙胺140MPa,250℃g-C3N4[44]LI等C3H6N6+C3N3Cl3苯自生压力,400℃g-C3N4空心球[29]LI等C3H6N6+C2H4N4CCl44.5~5MPa,290℃g-C3N4纳米带/管[39]MONTIGAUD等C3H6N6NH2NH23Gpa,800~850℃g-C3N3.36O0.14H1.24[43]DEMAZEAUGC3H6N6+C3N3Cl3Et3N130MPa,250℃g-C3N4[46]MONTIGAUD等C3H6N6+C3N3Cl3Et3N140MPa,250℃g-C3N4[47]LV等C3N3Cl3+Li3N苯5~6MPa,355℃α-C3N4/β-C3N4[32]MU等C3N3Cl3+Na环己烷自生压力,250℃g-C3N4球形粒子[48]CAO等C3N3Cl3+Na环己烷1.8MPa,230℃CN纳米管[37]ZHANG等C3N3Cl3+NaN3CCl4180℃g-C3N4[49]3 溶剂热合成氮化碳光催化剂非金属2D聚合物半导体g-C3N4作为一类全新的光催化材料,因其独特的能带结构特点及化学稳定性,近年来在光催化研究领域成为明星材料. 随着优化改性方法的不断增加,高温煅烧热聚合制备g-C3N4的一些不足逐渐显现. 因此,溶液相合成法对g-C3N4制备及优化途径的拓展显得尤为重要. 经过近几年的发展,溶剂热法合成具有光催化性能的g-C3N4的研究报道开始陆续被报道. 2012年,作者课题组[50]首次以乙腈为溶剂,在较低温度下(180 ℃)溶剂热合成出g-C3N4纳米棒. 产物由三嗪/七嗪单元共轭组成,具有宽的可见光吸收光谱(> 600 nm). 在可见光照射下,能够有效分解有机污染物,同时能够光解水制取氢气. 这一报道打破了溶剂热低温合成g-C3N4材料不具备光催化活性的界限,为低维非金属聚合物光催化材料的合成提供了新的思路. 在此基础上,本研究小组改变前驱物,在120~180 ℃下首次无模板一步法制得g-C3N4空心球,并用于光催化降解有机染料(图5)[51]. 通过简单的反应参数调控,杂原子修饰g-C3N4空心球可以通过此溶剂热方法得到. 非密闭前驱物处理过程使得O2分子容易混合入反应体系,在亚临届溶剂热反应过程中,O2分子发生活化. 通过简单的调控反应时间,可以将活化O元素掺杂入g-C3N4分子骨架. 测试结果表明,O元素的掺杂能够有效扩展可见光吸收范围,同时杂原子的参与引起电子分布不均匀,促进光生电荷的分离. 在可见光照下,改O掺杂g-C3N4材料在中性条件下能够快速去除水中重金属Cr(VI),而且具有优异的光解水制氢活性[52].图5 (a)O掺杂g-C3N4空心球的TEM图片,(b)光吸收光谱图,(c)光催化还原Cr(VI)活性曲线Fig.5 (a) TEM images of O-doped g-C3N4 hollow spheres, (b) Optical absorption spectra, (c) Curves of photocatalytic activity for Cr(VI) reduction4 结语与展望g-C3N4作为一类特殊的富氮碳基化合物,因其特殊的半导体特性,在催化、光催化、传感等功能材料研究领域具有广泛的研究价值. 固相煅烧热聚合法虽然是目前普遍应用的g-C3N4合成法,因其较高的合成温度,对g-C3N4分子调控具有不易操作性,因此,发展低温液相合成法是实现g-C3N4分子设计和优化合成的重要途径. 在此基础上,将极大的拓展改性g-C3N4的合成及研究内容.今后,液相合成g-C3N4的研究工作可以从以下几个方面进行:1) 杂原子掺杂修饰g-C3N4的合成. 尽管固相合成法已经成功制备出杂原子修饰材料,但高温条件下所得产物通常杂原子掺杂量较低,轻质杂元素高温下易挥发. 在密闭溶剂热环境中,杂原子能够最大限度的参与反应,掺杂入g-C3N4分子骨架,起到结构调控的作用. 2) 不同方法相结合,比如微波溶剂热法等,扩展溶剂热的合成途径,提高g-C3N4的长程有序聚合度,这对优化聚合物的电荷传输效率具有重要意义.参考文献:[1] LIEBIG J. Uber einige stickstoff-verbindungen [J]. Anna-len der Pharmacie, 1834, 10(1): 1-47.[2] FRANKLIN E C. The ammono carbonic acids [J]. Journal of the American Chemical Society, 1922, 44(3): 486-509.[3] TETER D, HEMLEY R. Low-compressibility carbon nitrides [J]. Science, 1996, 271(5245): 53-55.[4] WANG X C, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light [J]. Nature Materials, 2009, 8(1): 76-80.[5] 李鹏, 王海燕, 朱纯. 金属掺杂类石墨相氮化碳的理论研究[J]. 化学研究, 2016, 27(2): 152-160.LI P, WANG H Y, ZHU C. Theoretical investigation on g-C3N4 doped by the different metal atoms [J]. Chemical Research, 2016, 27(2): 152-160.[6] ZHANG J S, CHEN X F, TAKANABE K, et al. Synthesis of a carbon nitridestructure for visible-light catalysis by copolymerization [J]. Angewandte Chemie International Edition, 2010, 49(2): 441-444.[7] WANG H, KIYOTA H, TOSHIYA M, et al. Amorphous carbon and carbon nitride films synthesized by electrolysis of nitrogen-containing liquid [J]. Diamond and Related Materials, 2000, 9: 1307-1311.[8] LI C, CAO C B, ZHU H S, et al. Preparation of graphitic carbon nitride by electrodeposition [J]. Chinese Science Bulletin, 2003, 48(16): 1737-1740. [9] LI C, CAO C B, ZHU H S, et al. Electrodeposition route to prepare graphite-like carbon nitride [J]. Materials Science and Engineering: B, 2004, 106: 308-312.[10] LI C, CAO C B, ZHU H S. Graphitic carbon nitride thin films deposited by electrodeposition [J]. Materials Letters, 2004, 58(12/13): 1903-1906. [11] BAI X J, LI J, CAO C B. Synthesis of hollow carbon nitride microspheres by an electrodeposition method [J]. Applied Surface Science, 2010, 256(8): 2327-2331.[12] YANG L, MAY P W, YIN L, et al. Direct growth of highly organized crystalline carbon nitride from liquid-phase pulsed laser ablation [J]. Chemistry of Materials, 2006, 18(21): 5058-5064.[13] YANG L, MAY P W, YIN L, et al. Ultra fine carbon nitride nanocrystals synthesized by laser ablation in liquid solution [J]. Journal of Nanoparticle Research, 2007, 9: 1181-1185.[14] YANG L, MAY P W, YIN L, et al. Growth of diamond nanocrystals by pulsed laser ablation of graphite in liquid [J]. Diamond and Related Materials, 2007, 16: 725-729.[15] YANG L, MAY P W, YIN L, et al. Decomposition of noncommutativeU(1) gauge potential [J]. Nanotechnology, 2007, 18: 335605-335610. [16] ZIMMERMAN J L, WILLIAMS R, KHABASHESKU V N, et al. Synthesis of spherical carbon nitride nanostructures [J]. Nano Letters, 2001, 1(12): 731-734.[17] YANG S J, CHO J H, OH G H, et al. Easy synthesis of highly nitrogen-enriched graphitic carbon with a high hydrogen storage capacity at room temperature [J]. Carbon, 2009, 47(6): 1585-1591.[18] LU X F, WANG H J, ZHANG S Y, et al. Synthesis, characterization and electrocatalytic properties of carbon nitride nanotubes for methanol electrooxidation [J]. Solid State Science, 2009, 11: 428-432.[19] BIAN S W, MA Z, SONG W G. Preparation and characterization of carbon nitride nanotubes and their applications as catalyst supporter [J]. The Journal of Physical Chemistry C, 2009, 113(20): 8668-8672.[20] VINU A, SRINIVASU P, SAWANT D, et al. Three-dimensional cage type mesoporous CN-based hybrid material with very high surface area and pore volume [J]. Chemistry of Materials, 2007, 19(17): 4367-4372. [21] TALAPANENI S N, MANE G P, MANO A, et al. Synthesis of nitrogen-rich mesoporous carbon nitride with tunable pores, band gaps and nitrogen content from a single aminoguanidine precursor [J]. Chenistry & Sustainability, 2012, 5(4): 700-708.[22] VINU A, ARIGA K, MORI T, et al. Preparation and characterization of well-ordered hexagonal mesoporous carbon nitride [J]. Advanced Materials, 2005, 17(13): 1648-1652.[23] VINU A. Two-dimensional hexagonally-ordered mesoporous carbon nitrides with tunable pore diameter, surface area and nitrogen content [J]. Advanced Functional Materials, 2008, 18(5): 816-827.[24] LIU L, MA D, ZHENG H, et al. Synthesis and characte-rization of microporous carbon nitride [J]. Microporous and Mesoporous Materials, 2008, 110(2/3): 216-222.[25] BAI X, LI J, CAO C, et al. Solvothermal synthesis of the special shape (deformable) hollow g-C3N4 nanospheres [J]. Materials Letters, 2011, 65(7): 1101-1104.[26] DEMAZEAU G. Solvothermal reaction: an original route for the synthesis [J]. Journal of Materials Science, 2008, 43(7): 2104-2114.[27] CAO Y G, CHEN X L, LAN Y C, et al. A new method for synthesis of amorphous carbon nitride powders [J]. Applied Physics A, 2000, 71(4): 465-467.[28] BAI Y J, LÜ B, LIU Z G, et al. Solvothermal preparation of graphite-like C3N4 nanocrystal [J]. Journal of Crystal Growth, 2003, 247(3/4): 505-508. [29] LI C, YANG X G, YANG B J, et al. Synthesis and cha-racterization of nitrogen-rich graphitic carbon nitride [J]. 2007, 103(2/3): 427-432.[30] FU Q, CAO C B, ZHU H S. A solvothermal synthetic route to prepare polycrystalline carbon nitride [J]. Chemical Physics Letters, 1999, 314(3/4): 223-226.[31] LV Q, CAO C B, ZHANG J T, et al. The composition and structure of covalent carbon nitride solids synthesized by solvothermal method [J]. Chemical Physics Letters, 2003, 372(3/4): 469-475.[32] LV Q, CAO C B, LI C, et al. Formation of crystalline carbon nitride powder by a mild solvothermal method [J]. Journal of Materials Chemistry, 2003, 13: 1241-1243.[33] CAO C B, LV Q, ZHU H S. Carbon nitride prepared by solvothermal method [J]. Diamond and Related Materials, 2003, 12(3/7): 1070-1074. [34] GUO Q J, XIE Y, WANG X J, et al. Characterization of well-crystallized graphitic carbon nitride nanocrystallites via a benzene-thermal route at low temperatures [J]. Chemical Physics Letters, 2003, 380(1/2): 84-87. [35] GUO Q X, XIE Y, WANG X J, et al. Synthesis of carbon nitride nanotubes with C3N4 stoichiometry via a benzene-thermal process at low temperatures [J]. Chemical Communications, 2004, 1: 26-27.[36] GUO Q X, YANG Q, ZHU L, et al. A facile one-pot solvothermal route to tubular forms of luminescent polymeric networks [(C3N3)2(NH)3]n. Solid State Communications, 2004, 132(6): 369-374.[37] CAO C, HUANG F, CAO C, et al. Synthesis of carbon nitride nanotubes via a catalytic-assembly solvothermal route [J]. Chemistry of Materials, 2004, 16(25): 5213-5216.[38] LI J, CAO C B, HAO J W, et al. Self-assembled one-dimensional carbon nitride architectures [J]. Diamond and Related Materials, 2006, 15(10): 1593-1600.[39] LI J, CAO C B, ZHU H S. Synthesis and characterization of graphite-like carbon nitride nanobelts and nanotubes [J]. Nanotechnology, 2007, 18: 115605-115611.[40] LYTH S M, NABAE Y, MORIYA S, et al. Carbon nitride as a nonpreciouscatalyst for electrochemical oxygen reduction [J]. The Journal of Physical Chemistry Letters, 2009, 113: 20148-20151.[41] 许家胜, 陈启富, 张杰, 等. 水热/溶剂热法形貌控制合成铜基微纳米晶体颗粒材料的研究进展[J]. 材料科学与工程学报, 2017, 35(1): 153-159.XU J S, CHEN Q F, ZHANG J, et al. Progress of Morphology Controlled synthesis of copper based mocro/nano crystals viahydrothermal/solvothermal method [J]. Journal of Materials Science & Engineering, 2017, 35(1): 153-159.[42] 吕玉珍, 孙倩, 李超, 等. 油酸修饰TiO2纳米棒的溶剂热合成及形貌调控研究[J]. 无机材料学报, 2017,7(7): 719-724.LV Y Z, SUN Q, LI C, et al. Solvothermal synthesis and morphological control of TiO2 nanorods modified with oletic acid [J]. Journal of Inorganic Materials, 2017, 7(7): 719-724.[43] MONTIGAUD H, TANGUY B, DEMAZEAU G, et al. Solvothermal synthesis of the graphitic form of C3N4 as macroscopic ssample [J]. Diamond and Related Mate-rials, 1999, 8(8/9): 1707-1710.[44] MONTIGAUD H, TANGUY B, DEMAZEAU G, et al. Sur la synthèse de C3N4 de structure graphitique par voie solvothermale [J]. Competes Rendus de I’Académie des Sciences-Series ⅡB-Mechanic-Physics-Chemistry-Astro-nomy, 1997, 325: 229-234.[45] LU X F, GAI L G, CUI D L, et al. Synthesis of carbon nitride nanocrystals on SBA-15 microparticles by a constant-pressure solvothermal method [J]. Journal of Crystal Growth, 2007, 306(2): 400-405.[46] DEMAZEAU G. Solvothermal processes: a route to the stabilization ofnew materials [J]. Journal of Materials Chemistry, 1999, 9(1): 15-18. [47] MONTIGAUD H, TANGUY B, DEMAZEAN G, et al. C3N4: Dream or reality? Solvothermal synthesis as macroscopic samples of the C3N4 graphitic form [J]. Journal of Materials Science, 2000, 35(10): 2547-2552.[48] MU T C, HUANG J, LIU Z M, et al. Synthesis and cha-racterization of polyether structure carbon nitride [J]. Journal of Materials Research, 2004, 19(6): 1736-1741.[49] ZHANG J, LIU W, LI X F, et al. Well-crystallized nitrogen-rich graphitic carbon nitride nanocrystallites prepared via solvothermal route at low temperature [J]. Materials Research Bulletin, 2009, 44(2): 294-297. [50] CUI Y J, DING Z X, FU X Z, et al. Construction of conjugate carbon nitride nanoarchitecture in solution at low temperatures for photoredox catalysis [J]. Angewandte Chemie International Edition, 2012, 51: 11814-11818.[51] CUI Y J, TANG Y B, WANG X C. Template-free synthesis of graphitic carbon nitride hollow spheres for photocatalytic degradation of organic pollutants [J]. Materials Letters, 2015, 161: 197-200.[52] WANG Y X, WANG H, CHEN F Y, et al. Facile synthesis of oxygen doped carbon nitride hollow microsphere for photocatalysis [J]. Applied Catalysis B: Environmental, 2017, 206: 417-425.。

石墨相氮化碳的改性及光催化降解有机污染物的研究

石墨相氮化碳的改性及光催化降解有机污染物的研究

石墨相氮化碳的改性及光催化降解有机污染物的研究石墨相氮化碳(g-C3N4)作为一种新型的光催化材料,在环境污染治理方面备受关注。

然而,纯净的g-C3N4材料在一些特定条件下存在一些不足,导致其应用受到一定限制。

因此,通过对g-C3N4材料进行改性,可以提高其光催化活性,同时还可以拓宽其光催化应用的范围。

一种常见的改性方法是掺杂。

例如,通过掺杂金属离子,可以引入额外的能级,改变g-C3N4的能带结构和电子结构,从而提高光催化性能。

金属离子如铜、铜等的掺杂可以增强g-C3N4材料的可见光吸收能力,提高光催化降解有机污染物的效率。

另外,掺杂非金属元素如硼、硅、磷等也可以改善g-C3N4的光催化活性。

这些非金属掺杂元素能够改变材料的禁带宽度和表面活性位点的数量,从而提高材料的催化性能。

此外,通过复合材料的制备方法可以进一步提高g-C3N4的光催化性能。

与其他催化材料如二氧化钛(TiO2)、锌氧化物(ZnO)等的复合制备能够实现协同效应,提高整体光催化性能。

例如,将g-C3N4与金属氧化物(如Fe2O3、Bi2O3等)复合制备,可以增加活性位点的数量,提高光催化降解有机污染物的效率。

此外,g-C3N4还可以与其他材料如二维材料、纳米粒子等复合,实现掺杂效应,从而进一步提高光催化降解性能。

在光催化降解有机污染物方面,石墨相氮化碳通过捕捉光能并将其转化为活性物种如电子和空穴,从而实现有机污染物的氧化降解。

此外,光催化过程中空穴还可以与水和氧反应生成羟基和羟基自由基,从而进一步促进有机污染物的降解。

其光催化降解性能主要取决于光吸收能力、载流子分离和传输效率以及光生活性物种的产生等方面。

近年来,通过对g-C3N4的改性研究,已取得了一些重要的进展。

然而,现有的研究主要集中在材料的制备和光催化性能的表征上,对于其机理研究和实际应用仍然存在一定的不足。

因此,在未来的研究中,应该进一步探索g-C3N4的光催化机制,开发新的改性方法,提高材料的光催化降解性能。

《熔融盐法制备石墨相氮化碳的结构调控及其光催化活性研究》范文

《熔融盐法制备石墨相氮化碳的结构调控及其光催化活性研究》范文

《熔融盐法制备石墨相氮化碳的结构调控及其光催化活性研究》篇一摘要:本研究针对熔融盐法制备石墨相氮化碳(g-C3N4)进行了系统的结构调控及其光催化活性的研究。

通过调整制备过程中的关键参数,成功实现了对g-C3N4的微观结构的有效调控,进而提升了其光催化性能。

本文详细阐述了实验设计、制备过程、结构分析以及光催化性能的评估,为石墨相氮化碳的进一步应用提供了理论依据和实验支持。

一、引言石墨相氮化碳(g-C3N4)因其独特的电子结构和化学稳定性,在光催化领域具有广阔的应用前景。

然而,其实际应用效果受到其结构特性的限制。

通过结构调控可以显著提升其光催化活性。

目前,熔融盐法因其简单易操作和可实现大批量生产的特点,在制备g-C3N4中得到了广泛应用。

本研究旨在通过调整熔融盐法制备过程中的关键参数,实现对g-C3N4的结构调控,并研究其光催化活性的变化。

二、实验材料与方法1. 材料准备:选用合适的氮源和碳源作为原料,如三聚氰胺、尿素等;熔融盐则选用常见的盐类如氯化钠、硫酸钠等。

2. 熔融盐法制备:在高温条件下,将原料与熔融盐混合,通过热处理过程使原料发生缩合反应,生成g-C3N4。

3. 结构调控:通过调整热处理温度、时间、原料与盐的比例等参数,实现对g-C3N4的结构调控。

4. 结构与性能分析:利用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等手段对样品的结构进行表征;通过光催化实验评估其光催化活性。

三、结果与讨论1. 结构表征:通过XRD分析发现,随着热处理温度的升高或时间的延长,g-C3N4的晶型逐渐完善,结晶度提高;SEM和TEM分析表明,适当调整原料与盐的比例可以调控g-C3N4的形貌,使其呈现出更加均匀的纳米片层结构。

2. 光催化活性评估:通过在可见光下降解有机污染物(如甲基橙)的实验,发现经过结构调控的g-C3N4具有更高的光催化活性。

其中,在适当的热处理温度和时间下,以及合适的原料与盐的比例下制备的g-C3N4表现出最佳的光催化效果。

类石墨相氮化碳的改性与光催化性能

类石墨相氮化碳的改性与光催化性能
光照强度越高,类石墨相氮化碳的光催化性能越好;溶液pH值和温度也会影响光催化性能;浓度对 光催化性能的影响因反应物而异。
通过优化反应条件,可以进一步提高类石墨相氮化碳的光催化性能。
04
类石墨相氮化碳的改性与光催化性能关系
探讨
改性对光催化性能的影响机制
改性方法
采用不同的改性方法,如化学气相沉积、溶液法等,可 以改变类石墨相氮化碳的微观结构和性质,从而对其光 催化性能产生影响。
表面修饰
通过表面修饰,如添加金属、非金属元素或离子,可以 改变类石墨相氮化碳的电子结构和表面活性,进而影响 其光催化性能。
结构调控
通过调控类石墨相氮化碳的结构,如控制层数、孔径等 ,可以优化其光催化性能。
光催化性能提升的潜在原因分析
增强光吸收
改性后的类石墨相氮化碳可能具有更宽的光吸收范围,从而提高 其对光的利用率。
《类石墨相氮化碳的改性与光催化 性能》
xx年xx月xx日
目录
• 类石墨相氮化碳的合成与制备 • 类石墨相氮化碳的改性研究 • 类石墨相氮化碳的光催化性能研究 • 类石墨相氮化碳的改性与光催化性能关系探讨
01
类石墨相氮化碳的合成与制备
合成方法概述
固相法
将含氮前驱体在高温下进行固相 反应,是制备类石墨相氮化碳的 一种常用方法。
气相法
将含氮前驱体在高温下进行气相 反应,制备得到类石墨相氮化碳 。
溶液法
在溶剂中合成类石墨相氮化碳, 通常将含氮前驱体溶解在有机溶 剂中,再通过控制反应条件合成 类石墨相氮化碳。
实验原料与设备
实验原料
主要包括含氮前驱体、碳源、催化剂等。
实验设备
高温炉、真空干燥箱、球磨机、光催化反应装置等。

gC3N4光催化性能的研究进展

gC3N4光催化性能的研究进展

gC3N4光催化性能的研究进展一、本文概述1、介绍gC3N4的基本性质和应用背景。

石墨相氮化碳(gC3N4)是一种新兴的二维纳米材料,因其独特的电子结构和物理化学性质,在光催化领域引起了广泛关注。

gC3N4具有类似于石墨烯的层状结构,但其组成元素为碳和氮,而非石墨烯中的纯碳。

这种结构赋予了gC3N4良好的化学稳定性和独特的光学特性。

在光照条件下,gC3N4能够有效吸收光能并转化为化学能,从而驱动光催化反应的发生。

近年来,随着环境污染问题的日益严重和能源需求的不断增长,光催化技术作为一种高效、环保的能源转换和污染物治理手段,受到了广泛研究。

gC3N4作为一种性能优异的光催化剂,在光解水产氢、有机物降解、二氧化碳还原等方面展现出巨大的应用潜力。

gC3N4还具有原料来源广泛、制备工艺简单、成本低廉等优点,使得其在光催化领域的应用前景十分广阔。

因此,对gC3N4光催化性能的研究不仅有助于推动光催化技术的发展,也为解决当前的环境和能源问题提供了新的思路和方法。

本文将对gC3N4光催化性能的研究进展进行综述,以期为相关领域的研究提供参考和借鉴。

2、阐述光催化技术的重要性和gC3N4在光催化领域的研究意义。

光催化技术,作为一种高效、环保的能源转换方式,近年来受到了广泛的关注和研究。

该技术利用光能激发催化剂产生电子-空穴对,进而驱动氧化还原反应的发生,实现光能向化学能的转换。

这种技术不仅可以在太阳能利用、环境治理、有机物合成等领域发挥重要作用,而且对于推动可持续发展和绿色化学的发展具有重要意义。

在众多光催化剂中,石墨相氮化碳(gC3N4)因其独特的结构和性质,成为了光催化领域的研究热点。

gC3N4是一种非金属半导体材料,具有合适的禁带宽度、良好的化学稳定性和丰富的表面活性位点,这些性质使得gC3N4在光催化领域具有广阔的应用前景。

gC3N4的制备原料丰富、成本低廉,且制备方法多样,这为其在实际应用中的推广提供了有力支持。

g-C3N5在光催化中的应用进展杜易高智白璟垚

g-C3N5在光催化中的应用进展杜易高智白璟垚

g-C3N5在光催化中的应用进展杜易高智白璟垚发布时间:2023-06-03T07:46:55.931Z 来源:《中国科技信息》2023年6期作者:杜易高智白璟垚[导读] 宽光谱响应性的高效光催化材料体系的设计与构筑是光催化领域的研究热点和前沿。

石墨相氮化碳g-C3N5材料具有高的N/C比,较低的禁带宽度,在光催化中有着潜在的应用前景。

本文总结了近年来基于g-C3N5材料的改性及其在光催化污染物降解、裂解水和CO2还原中的应用进展。

为未来g-C3N5的光催化研究提供了基础。

西安建筑科技大学材料与工程学院摘要:宽光谱响应性的高效光催化材料体系的设计与构筑是光催化领域的研究热点和前沿。

石墨相氮化碳g-C3N5材料具有高的N/C 比,较低的禁带宽度,在光催化中有着潜在的应用前景。

本文总结了近年来基于g-C3N5材料的改性及其在光催化污染物降解、裂解水和CO2还原中的应用进展。

为未来g-C3N5的光催化研究提供了基础。

关键词:g-C3N5,改性策略,光催化1 引言在多相光催化领域中,二维(2D)材料因其良好的电学、光学及催化特性,是光催化体系中一类重要的研究对象。

石墨相氮化碳(g-C3N4)作为一种典型的光催化剂,在光催化的应用很广泛[1]。

但其带宽较宽,只能吸收500 nm以下的可见光,对太阳能的利用率不高,并且载流子极易复合,限制了大规模应用。

为了提升其光催化性能,科研工作者发现可以通过调整C/N比例,制备出N浓度偏高的氮化碳材料,调控电子结构,减低禁带宽度,进而增强光催化性能。

近年来,一种富含N的g-C3N5材料通过硬模板法被成功制备[2],其具有高的热力学稳定性,较低的禁带宽度(2.0 eV),表现出比缺N的氮化物更优异的光催化性能。

但其较低的能带位置使得氧化还原能力不足,制约了其发展。

因此科研工作者通过深入研究发现,可以通过复合其他材料的方式提高g-C3N5材料的光催化性能。

2 g-C3N5材料的改性策略g-C3N5材料的性能受制于其高的光生电荷复合率和较低的氧化还原能力。

石墨相氮化碳改性及其光催化应用研究进展

石墨相氮化碳改性及其光催化应用研究进展
X I E Y u n—c h a o,C H A NG F e i , 1 _ I C h e n—l u,C HE N J u a n,L U O J i e—r u,Z H A NG J i a n
( S c h o o l o f E n v i r o n m e n t a n d A r c h i t e c t u r e , U n i v e r s i t y o f S h a n g h a i f o r S c i e n c e a n d T e c h n o l o g y , S h a n g h a i 2 0 0 0 9 3 , C h i n a )
第4 1卷第 1 3 期
2 0 1 3年 7月
广



Vo 1 . 41 No .1 3
Gu a n g z h o u C h e mi c a l I n d u s t r y
J u l y . 2 0 1 3
石 墨 相氮 化 碳 改 性及 其光 催化 应 用研 究进 展 木
是 近 年来 Wa n g 等 首次 发 现 石 墨 相 氮 化 碳 具 有 优 异 的光 催 化 分解 水制 氢性 能更是引起 了人们浓厚 的研 究兴趣 。本文介 绍 了
能。
Z h a n g 等 将双氰胺与离子 液体 B m i m P F 6混合高 温煅烧后 得到磷 掺杂 g —C N ,X P S 分析表 明 P取代 了结构 中的 C元素 , 少量的 P元素掺杂虽然未改变 g —C N 结构 ,但 明显 改变 了其 电子结构 ,光 电流 明显高于未掺杂的 g —C N 。 Y a n等 通过热解 三聚氰胺 与氧化硼混 合物制备 了硼掺杂 碳化氮 ,X P S光谱分析表明 B元素取代 了其结构单元上 的 H元 素 ,光催化 降解染料实验可知 B的掺杂 同时提 高了催化剂对染
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

石墨相氮化碳的改性及光催化降解有机污染物的研究
光催化技术可用于分解水产氢和降解有机污染物,是解决能源危机和环境污染问题的新型绿色技术。

半导体光催化材料石墨相氮化碳
(g-C<sub>3</sub>N<sub>4</sub>)是一种非金属碳氮聚合物,因其具有合适的禁带宽度、良好的化学和热稳定性、制备方法简单等特点。

然而,氮化碳材料具有对可见光吸收能力欠佳,光生电子与空穴重组效率较
高等缺陷,严重制约了它的实际应用。

因此,本文通过简单快捷的方法对
g-C<sub>3</sub>N<sub>4</sub>从尺寸调控、构建异质结和负载助催化剂等方面改性,显著提高其光催化降解有机污染物的性能,具有重要的现实意义。

本文主要研究内容及结论如下:以三聚氰胺为前驱材料制备了体相
g-C<sub>3</sub>N<sub>4</sub>,通过煅烧、超声的方法对体相
g-C<sub>3</sub>N<sub>4</sub>进行剥离,得到尺寸较小、片层较少的
g-C<sub>3</sub>N<sub>4</sub>纳米片;优化了煅烧次数和超声时间,获得了最佳的制备工艺条件,改善了g-C<sub>3</sub>N<sub>4</sub>催化降解罗丹明B (Rhodamine B,Rh B)的性能,探讨了其在可见光下降解Rh B的机制。

结果表明,二次煅烧并超声处理的方法有效提高了g-C<sub>3</sub>N<sub>4</sub>材料降解Rh B的活性。

通过高温煅烧双氰胺得到纯相g-C<sub>3</sub>N<sub>4</sub>,通过简单的原位沉淀法,将Ag<sub>2</sub>WO<sub>4</sub>成功附着在
g-C<sub>3</sub>N<sub>4</sub>片层表面,得到
Ag<sub>2</sub>WO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub>异质结光催化剂,制备过程中未改变g-C<sub>3</sub>N<sub>4</sub>的整体形貌和晶体结构,
通过调控Ag<sub>2</sub>WO<sub>4</sub>的附着质量获得最优的复合比例。

结果表明,少量Ag<sub>2</sub>WO<sub>4</sub>的引入,使得
g-C<sub>3</sub>N<sub>4</sub>电子传递效率提高,有效抑制了光生载流子重组,Ag<sub>2</sub>WO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub>光催化剂降解性能显著提升。

将硫脲作为前驱材料溶解于水中,加入碳量子点后高温热缩聚反应得到碳量子点/g-C<sub>3</sub>N<sub>4</sub>复合光催化剂。

通过优化碳量子点溶液体积,得到最佳比例的CQDs/g-C<sub>3</sub>N<sub>4</sub>复合材料。

碳量子点沉积使得g-C<sub>3</sub>N<sub>4</sub>吸光能力增强,且可作为电子储存器改善g-C<sub>3</sub>N<sub>4</sub>载流子分离效率,优化条件下制得的复合材料对四环素(Tetracycline,TC)得光催化降解效率是纯
g-C<sub>3</sub>N<sub>4</sub>的1.5倍。

相关文档
最新文档