04第二章 系统的数学模型1

合集下载

机械工程控制基础--第二章

机械工程控制基础--第二章

,
Cm
Tm J

TaTm
d2
dt 2
Tm
d
dt
Cdua
CmTa
dM L dt
CmM L
TaTm
d2
dt 2
Tm
d
dt
Cdua
CmTa
dM L dt
CmM L
设电动机处于平衡态,导数为零,静态模型
Cdua CmML 设平衡点 (ua0,ML0, )
L
R
即有 Cdua0 CmML0 ua
i2R2
1 C2
i2dt
1 C1
(i1 i2 )dt
1
C2 i2dt u2
i1 C1
3. 消除中间变量 i1、i2,并整理:
R1C1R2C2
d2u2 dt 2
(R1C1
R2C2
R1C2
)
du2 dt
u2
u1
R2 i2 C2 u2
例5 直流电动机 1. 明确输入与输出:
输入ua 和ML,输出
注意:负载效应,非线性项的线性化。
3. 消除中间变量,得到只包含输入量和输出量的微分方程。
4. 整理微分方程。输出有关项放在方程左侧,输入有关项 放在方程右侧,各阶导数项降阶排列。
an
x(n) o
(t
)
a x(n1) n1 o
(t
)
a1xo (t) a0xo (t)
bm
x(m) i
(t
)
bm1xi(
...
a1 s
a0
(n m) 传递函数
传递函数定义:
零初始条件下,线性定常系统输出的拉氏变换与输入的拉
氏变换之比。

自动控制原理_第二章

自动控制原理_第二章

Gk ( s) G ( s) H ( s)
B( s) G1 ( s)G2 ( s) H ( s) E ( s)
注意:这里的开环传递函数是针对闭环系统而言的,而不是指开环系 统的传递函数。
解:首先对小车进行受力分析,在水平方向应 用牛顿第二定律可写出:
dy(t ) d 2 y (t ) F (t ) f Ky (t ) m dt dt 2

2
T
m f , 可得 K 2 mK
图2 弹簧-质量-阻尼器系统图
d 2 y( t ) dy(t ) F (t ) T 2 T y ( t ) dt 2 dt K
用解析法列写系统或元部件微分方程的一般步骤是:
(1)根据系统的具体工作情况,确定系统或元部件的输
入、输出变量;
(2)从输入端开始,按照信号的传递顺序,依据各变量 所遵循的物理(或化学)定律,列写出各元部件的动态方程, 一般为微分方程组; (3)消去中间变量,写出输入、输出变量的微分方程; (4)将微分方程标准化。即将与输入有关的各项放在等 号右侧,与输出有关的各项放在等号左侧,并按降幂排列。
以工作点处的切线代替曲线,得到变量在工作点的增量方程, 经上述处理后,输出与输入之间就成为线性关系。
二、复频域模型 – 传递函数
(1)利用时域卷积获得:
如果已知系统单位脉冲响应为g(t),则任意输入r(t)的响应输出c(t):
c( t )


r ( ) g(t )d
c(t ) r ( ) g(t )d
0 t
考虑到物理可实现性,上式改为: 对上式做拉氏变换得:
C ( s) R( s)G( s) G( s)
C ( s) R( s )

自动控制原理课件 第二章 线性系统的数学模型

自动控制原理课件 第二章 线性系统的数学模型



c(t ) e
dt Leabharlann t

c( s )
g ( ) r ( ) d e s ( ) d 0 0 g ( )e s r ( )e s d d 0 0





0
g ( )e
5) 闭环系统传递函数G(s)的分母并令其为0,就是系统的特征方 程。
• 涉及的是线性系统 非线性系统必须 进行线性化处理
§2-6 信号流程图
系统很复杂,为方便研究,也为了与 实际对应,通常将复杂系统分解为 若干典型环节的连接
数学模型的定义 数学模型: 描述系统变量间相互关系的动态性能的运动方程 建立数学模型的方法:
解析法: 依据系统及元件各变量之间所遵循的物理或化学规律列写出相 应的数学关系式,建立模型。 自动控制系统的组成可以是电气的,机械的,液压的,气动的等等,然 而描述这些系统的数学模型却可以是相同的。因此,通过数学模型来研 究自动控制系统,就摆脱了各种类型系统的外部关系而抓住这些系统的 共同运动规律,控制系统的数学模型是通过物理学,化学,生物学等定 律来描述的,如机械系统的牛顿定律,电气系统的克希霍夫定律等都是 用来描述系统模型的基本定律。 实验法: 人为地对系统施加某种测试信号,记录其输出响应,并用适当 的数学模型进行逼近。这种方法也称为系统辨识。 数学模型的形式 时间域: 复数域: 频率域: 微分方程 差分方程 传递函数 结构图 频率特性 状态方程
1 例1 : F ( s) ( s 1)(s 2)(s 3) c c c 1 2 3 s 1 s 2 s 3
1 1 c1 [ ( s 1)]s 1 ( s 1)(s 2)(s 3) 6 1 1 c2 [ ( s 2)]s 2 ( s 1)(s 2)(s 3) 15 1 1 c3 [ ( s 3)]s 3 ( s 1)(s 2)(s 3) 10 1 1 1 1 1 1 F ( s) 6 s 1 15 s 2 10 s 3 1 1 1 f (t ) e t e 2t e 3t 6 15 10

自动控制原理-第二章 控制系统的数学模型

自动控制原理-第二章 控制系统的数学模型
dn dtn f ( t )
t
f (t)dt 0
t
f ( )d
n
ki .L[ f (t )]
i 1
sF (s) f (0 )
s2F (s) sf (0 ) f (0 )
snF (s) sn1 f (0 ) sn2 f (0 ) f (n1) (0 )
电枢回路方程为
La
dia (t) dt

Raia (t)

Ea (t)

ua (t)
电磁转矩方程 M m Cmia (t)
电动机轴上转矩平衡方程
Jm
dm (t)
dt

fmm (t)

Mm

MC
(t)
若以角速度 m 为输出量、电枢电压 ua 为输入量,
消去中间变量,直流电动机的微分方程为
(s2+s+1)Uc(s)= Ur(s)+0.1(s+2)
即 U S 1 U S 0.1S 2
C
S2 S 1 r
S2 S 1
通电瞬间, ur(t)=1 或 Ur(s)=L[ur(t)]=1/S
故 U S 1 1 0.1S 2
C
S2 S 1 S S2 S 1
再对上式两边求反拉氏变换:
u c
t

L1 U C
S


L1
S
2
1 S
1
1 S

S
2
1 S
1
=1+1.15e-0.5tSin(0.866t-120°)+ 0.2e-0.5tSin(0.866t+30°)

《控制工程基础》第二章

《控制工程基础》第二章

第二章 系统的数学模型
2.2 系统的微分方程
例2-6 下图所示为一电网络系统,其输入为电压u(t), 输出为电容器的电量q(t),列写该系统微分方程。
L
R
解:根据克希荷夫电压定律,得
u
i
C
u(t)Ldd(ti)tR(ti)C 1i(t)dt

i(t) dq(t) dt
消去中间变量i(t),并整理得,
轴平移了时间T。 例 求f(t)= 1 - 1 1(t-T)的拉氏变换
TT
4. 微分定理
若L[f(t)]=F(s),则有L[ df ( t ) ]=s F(s) - f(0)
初始状态为0时,L[
d
n
d
f
n
( t
t
)
dt
]=
s
n
F(s)
第二章 系统的数学模型 2.3 拉氏变换与拉氏反变换
5. 积分定理
解: 1)明确系统的输入与输出,
f( t) k
输入—f(t) , 输出—x(t)
m
2)进行受力分析,列写微分方程,
cx ( t) f(t) kx(t) 利用 Fma,得
图2-1
பைடு நூலகம்
m f( t ) k ( t ) x c x ( t ) m x ( t )
c· x(t)
3)整理微分方程,得
m x ( t ) c x ( t ) k ( t ) x f ( t )
本章教学大纲
1. 掌握机械、电气系统微分方程的建立方法; 2. 了解非线性方程的线性化; 3. 熟悉拉氏变换及反变换、线性定常微分方程的解法; 4. 掌握传递函数基本概念及典型环节传递函数; 5. 掌握系统传递函数方框图的化简。 教学重点:微分方程建立、传递函数概念与求法、典

系统的数学模型

系统的数学模型

系统的数学模型是建立在客观环境系统的基础上的,它反映了评价所涉及的各种环境要素和过程,以及它们之间的相互联系和作用。

这个模型是建立在物理定律和机械定律的基础上的,通过推导可以得到数学模型。

数学模型可以分为静态模型和动态模型,静态模型主要用于静态误差分析,而动态模型则主要用于分析连续系统(微分方程)和离散系统(差分方程)。

系统的数学模型还可以根据目的分为三类:用来帮助对象设计和操作的模型,用来帮助控制系统设计和操作的模型,以及用来进行系统仿真的模型。

在建模过程中,还需要注意掌握好复杂和简单的度,以作合理折中。

第2章 系统的数学模型及传递函数

第2章  系统的数学模型及传递函数

u(t)
R-L-C无源电路网络
L
R
di(t) d 2q(t) u(t) L dt L dt2
ui(t)
i(t) C
uo(t)
R-L-C无源电路网络
20
ui
(t)
Ri (t )
L
d dt
i(t)
1 C
i(t)dt
uo
(t)
1 C
i(t)dt
ui(t)
L
R
i(t) C uo(t)
R-L-C无源电路网络
6
• 实际的系统通常是非线性的,线性只在一定的工 作范围内成立。
• 判别系统的数学模型微分方程是否是非线性的, 可视其中的函数及其各阶导数,如出现高于一次 的项,或者导数项的系数是输出变量的函数,则 此微分方程是非线性的。(P11)
• 非线性微分方程的求解很困难。在一定条件下, 可以近似地转化为线性微分方程,可以使系统的 动态特性的分析大为简化。实践证明,这样做能 够圆满地解决许多工程问题,有很大的实际意义。
5. 系统传递函数只表示系统输入量与输出量的数学关系(描述系统 的外部特性),而没有表示系统中间变量之间的关系(描述系统的内 部特性)。在现代控制理论中,可采用状态空间描述法来对系统的动 态特性进行描述。
34
y(t) k c m f(t)
••

m y(t) c y(t) ky(t) f (t)
输出 b
输出
输出
0
输入
0
输入
0
输入
a 饱和(放大器)
死区(电机)
间隙(齿轮)
A.饱和:如运算放大器当输入大于一定值时,输出被限制在 ±15V,达到饱和。
B.传动间隙:齿轮及丝杠螺母副组成的机床进给传动系统, 有传动间隙,在输入与输出间有滞环关系。P11图2-1

第2章 线性系统的数学模型

第2章 线性系统的数学模型

2.2.1
传递函数的定义
传递函数: 初始条件为零时,线性定常系统或
元件输出信号的拉氏变换与输入信号的拉氏变 换的比,称为该系统或元件的传递函数。
线性定常系统微分方程的一般表达式
d n c(t ) d n1c(t ) dc(t ) d m r (t ) an dt n an1 dt n1 a1 dt a0 c(t ) bm dt m b0 r (t )
ma F F FB FK
F (t )
m
k
(1)
f
y (t )
其中 FB f
dy dt FK ky
-阻尼器的粘性摩擦力 -弹簧的弹力
(3)消去中间变量,得到输入与输出的关系方程 将以上各式代入(1)式得 d2y dy m 2 F f ky dt dt
(4)整理且标准化
U2
(3)消去中间变量,得到U2与U1的关系方程
对(2)式求导得
dU 2 1 i, dt C 即i C dU 2 dt
d 2U 2 dU 2 U 2 U1 代入(3)式并整理得 LC 2 RC dt dt
例2-2:如图所示为一弹簧阻尼系统。图中质量为m的物体受 到外力作用产生位移Y,求该系统的微分方程。 解: (1)确定输入量和输出量 输入量:外力F(t) 输出量:位移y(t) (2)列写原始微分方程
2)
c( s) bm (d m s m d m1s m1 1) G( s) r ( s) an (cn s n cn 1s n 1 1)
(T1s 1)(T2 s 1) (Tm s 1) =K (T1s 1)(T2s 1) (Tm s 1)
+

自动控制原理第二章

自动控制原理第二章
例2-2的机械系统的微分方程为
d 2 x(t ) dx(t ) m f kx(t ) F (t ) 2 dt dt
当初始条件为零时,对上式进行拉氏变换后可得传递函数为
X ( s) 1 G( s) 2 F ( s) ms fs k
三、性质: ★
1、传递函数表达系统本身固有的动态性能,与输入量大
an c ( n ) (t ) an 1c ( n 1) (t ) ... a1c (1) (t ) a0 c(t ) bm r ( m ) (t ) bm 1r ( m 1) (t ) ... b1r (1) (t ) b0 r (t ), (n m)
2-2 微分方程(基本数学模型)
一、微分方程的建立(时域)
控制系统中的输出量和输入量通常都是时间 t 的函数。
很多常见的元件或系统的输出量和输入量之间的关系都可以用 一个微分方程表示,方程中含有输出量、输入量及它们各自对时间 的导数或积分。这种微分方程又称为动态方程、运动方程或动力学 方程。微分方程的阶数一般是指方程中最高导数项的阶数,又称为 系统的阶数。
例2-1的RLC串联电路的微分方程为
d 2 u o (t ) du o (t ) LC RC u o (t ) u i (t ) 2 dt dt
当初始条件为零时,对上式进行拉氏变换后可得传递函数为
U o ( s) 1 G( s) U i ( s) LCs 2 RCs 1
本章只讨论解析法建立系统的数学模型。
3.模型表示形式
a.时域:微分方程;b.复数域:传递函数,c.频域:频率特 性
三种数学模型之间的关系
线性定常系统
拉氏 s=jω 微分方程 变换 传递函数 频率特性

机械工程控制基础-系统数学模型

机械工程控制基础-系统数学模型

由于:
d 1 A ( H 0 H ) H0 H qi 0 qi dt 2 H0
阻尼
v1 ( t ) x1(t) fC (t)
C
v2 ( t ) x2(t) fC(t)
f C (t ) C v1 (t ) v2 (t ) Cv (t ) dx1 (t ) dx2 (t ) C dt dt dx(t ) C 6 dt
机械平移系统
E Ri
12
电气系统 电气系统三个基本元件:电阻、电容和电感。
电阻 i( t)
R
u ( t) 电容 i( t)
C u ( t)
u(t ) Ri(t )
1 u (t ) i (t )dt C du (t ) i (t ) C Cu dt
13
电感 i( t) L u ( t) R-L-C无源电路网络
消去中间变量,得到描述元件或系统输入、 输出变量之间关系的微分方程; 标准化:右端输入,左端输出,导数降幂排列
3、 控制系统微分方程的列写 机械系统 机械系统中以各种形式出现的物理现象,都可 简化为质量、弹簧和阻尼三个要素:
4
质量
fm(t)
m
x (t) v (t) 参考点
2
d d f m (t ) m v(t ) m 2 x(t ) mx dt dt
21
液位系统
A:箱体截面积;
:由节流阀通流面积和通流口的结构形式决 定的系数,通流面积不变时,为常数。
d A H (t ) H (t ) qi (t ) dt
上式为非线性微分方程,即此液位控制系统为 非线性系统。
线性系统微分方程的一般形式

第二章 过程控制系统的数学模型-1

第二章 过程控制系统的数学模型-1
过 统
上一页 下一页 返回 上一页 下一页 返回
被控对象的动态特性 2:对象动态特性的定义 是指对象的某一输入量发生扰动时,其 被控参数随时间变化的特性。 3:被控对象的分类 具有一个被控参数的被控对象——多输入单输 出的被控对象 具有若干个被控参数的被控对象——多输 入多输出的被控对象
过 统
上一页
几种典型的过渡过程:
过 统
上一页
下一页
返回
几种典型的过渡过程:
非周期衰减过程 衰减振荡过程 √ √
等幅振荡过程 发散振荡过程
? X
一般是不允许的 除开关量控制回路
单调发散过程
过 统
X
上一页
下一页
返回
数学
几种
数学模型
时域模型
频域模型
方框图和信号流图
状态空间模型
微 分 方 程
差 分 方 程
传 递 函 数
干扰:内干扰---调节器的输出量u(t); 外干扰---其余非控制的输入量。 通道:输入量与输出量间的信号联系。
过 统
控制通道 干扰通道
返回
上一页
下一页
被控对象特性:
指对象输入量与输出量之间的关系(数学模型) 指对象输入量与输出量之间的关系( 数学模型)
即对象受到输入作用后,被控变量是如何变化的、变化量为多少…… 即对象受到输入作用后,被控变量是如何变化的、变化量为多少…… 输入量?? 控制变量+各种各样的干扰变量
y(t)表示输出量,x(t)表示输入量,通常输出量的阶次不低与输入量的阶次(n≥m) 表示输出量,x(t) 表示输入量,通常输出量的阶次不低与输入量的阶次(
当n=m时,称对象是正则的;当n>m时,称对象是严格正则的;n<m 的对象是不可实现的。通常n=1,称该对象为一阶对象模型;n=2, 称二阶对象模型。

chap2 系统的数学模型

chap2 系统的数学模型
线性系统
线性系统可用线性微分方程进行描述
线性微分方程中各阶导数的系数不能是未知函数或变量的非线性函数 线性系统满足叠加原理 例: a2 a1 x a0 x b2u b1u x 非线性系统 非线性系统不能用线性微分方程进行描述 非线性系统不满足叠加定理
例: ml l mgsin 0
控制原理
武汉科技大学机械自动化学院
4
第二章 系统的数学模型
l1 Q1
H l2 Q2
自动恒温控制系统
水位调节系统
5
控制原理
武汉科技大学机械自动化学院
第二章 系统的数学模型
控制系统相关概念:
1. 控制器---对被控对象起控制作用装置的总体 2. 被控对象---要求实现控制的机器、设备或生产过程 3. 输出量(被控量)---表现于控制对象或系统的输出端,用于描述 被控对象工作状态的物理量 4. 输入量(给定量)---作用于控制对象或系统输入端,用于表征被 控量的希望运行规律
d 2 x(t ) M f (t ) f1 (t ) f 2 (t ) 2 dt dx(t ) f (t ) B Kx(t ) dt
控制原理
d 2 x(t ) dx(t ) M B Kx(t ) f (t ) 2 dt dt
14
武汉科技大学机械自动化学院
第二章 系统的数学模型

19
控制原理
武汉科技大学机械自动化学院
第二章 系统的数学模型
2.1 物理系统建模
2.1.4 控制系统建模步骤
① 确定系统的输入量与输出量,将系统分解为各简单环节(按功能)
20
控制原理
武汉科技大学机械自动化学院
第二章 系统的数学模型

第二章系统的数学模型

第二章系统的数学模型

2.2 控制系统的复数域数学模型(传递函数)
一.传递函数
1.线性定常系统的传递函数定义为:
零初始条件下,系统输出量的拉氏变换与输入 量的拉氏变换之比。
R(s) G(s) C(s)
传递函数
输出的拉氏变换 输入的拉氏变换
|零初始条件
C(s) R(s)
G(s)
零初始条件
➢ 零初始条件指的是输入、输出初始条件均为零,即
在给定工作点 ( x0,y0 )附近,将上式展开泰勒级数:
y
f (x)
df f ( x0 ) dx
1 d2 f x x0 ( x x0 ) 2! dx2
(x x0 )2
x x0
若在工作点 ( x0,y0 ) 附近增量 x x0 的变化很小,则可略去式中 ( x x0 )2 项及其后面所有的高阶项,这样,上式近似表示为:
l
s
1)
G(s)
i 1 d
l 1 e
sv (Tjs 1) (Tk2s2 2 kTk s 1)
j 1
k 1
纯微分环节
s
es
积分环节
惯性环节
振荡环节
延迟环节
典型环节
➢ 比例环节的传递函数为:
Proportional element (link)
C(s) G(s) K R(s)
齿轮传动
方框图为:
➢ 频域数学模型:
频率特性
2.1 线性系统的时域数学模型
本节主要研究描述 线性、定常、集总参量控制系统的微分方程的
建立和求解方法
线性元件的微分方程
一.微分方程:
给定量和扰动量作为系统输入量,被控制量作为系统输出 的一种系统描述方法

第第二章 控制系统的数学模型

第第二章 控制系统的数学模型

1
sa
1
(s a)n
18
拉普拉斯变换简表
f (t)
9
sin t
10
cost
11
1 (1 eat )
a
12
1 a
(a0
(a0
a)eat
)
13
1 a2
(at
1
e at
)
14
a0t a2
(
a0 a2
t)(eat
1)
F (s)
s2 2
s
s2 2
s s(s a)
s a0 s(s a)
1 s2 (s a)
(1)独立性(可加性):线性系统内各个 激励产生的响应互不影响
xi1(t) xi2(t)
xo1(t) xo2(t)
xi1(t)+xi2(t) xo1(t)+xo2(t)
(2)均匀性(齐次性)
8
线形系统的一般形式
an
dn dtn
y(t) an1
d n1 d t n 1
y(t) ... a1
d dt
dt
s

证:
f (0) lim sF (s)
s
由微分定理有:
L( df (t)) sF (s) f (0) dt
两边取极限
lim[ df (t) est dt] lim[sF (s) f (0)]
s 0 dt
s
27
lim[ df (t) est dt] lim[sF (s) f (0)]
0 dt s0
s0
lim est 1
s0
[ df (t) dt] lim[sF (s) f (0)]

自动控制原理-第二章全

自动控制原理-第二章全

其中: fs (t) Kx(t)
弹簧力
fd (t)
阻尼力
B
dx(t dt
)
m
K
B
所以有:
m
d 2 x(t) dt 2
B
dx(t) dt
Kx(t)
f
(t)
特点:f (t) 为作用于各部件的诸力之和,而每一个部件变化
了相同的位移x(t) 。
第二章 自动控制系统的数学模型
2.1 元件和系统微分方程的建立
A1(0.5 j0.866) A2 (0.5 j0.866)
使等号两端的实部和虚部分别相等有 解之得 A1 1, A2 0
0.5.866
所以
F (s)
1 s
s2
s s 1
1 s
(s
s 0.5 0.5)2 (0.866 )2
(4)对部分分式进行拉式反变换,即得微分方程 的解。
第二章 自动控制系统的数学模型
2.2 用拉普拉斯变换方法解微分方程
例:已知
d 2 xc dt 2
5 dxc dt
6xc
6u(t)
u(t) 1(t)
设初始条件为 xc (0) 2, xc (0) 2 求输出量 xc (t)
解: 将微分方程取拉氏变换
(s
0.5 0.5)2 (0.866 )2
所以 f (t) 1 e0.5t cos 0.866 t 0.57e0.5t sin 0.866 t
第二章 自动控制系统的数学模型
2.2 用拉普拉斯变换方法解微分方程
例:已知
F (s)
s2 s2
9s 33 6s 34
求 f (t) L1 F (s)
F (s) M (s) A1 A2 An

第二章物理系统的数学模型及传递函数

第二章物理系统的数学模型及传递函数

要 消去它们, 就要找出中间变量与其它因素间的关系. 感应 电势 E ( t ) 正比于转速 m ( t ) 和激磁电流 I f 产生的磁通量 由于激磁电流是恒定的, 所以磁通量也恒定, 感应电势仅取 决于转速, 并可表示为:
a
(3) 消去中间变量 从式(1)和式(2)中可见,
i a ( t ), E a ( t ), M m ( t ) 是中间变量,
uC (t ) u (t )
m
d x(t ) dt
2
2
f
dx(t ) dt
Kx(t ) F (t )
相似系统:揭示了不同物理现象之间的相似关系
三、非线性系统的线性化
1)线性系统 线性系统是由线性元件组成的系统,线性微分
方程用来描述线性系统。 若微分方程的系数是常数称线性定常系统,或 线性时不变系统。 这是经典控制论主要研究的对象,因为它可以 方便地进行拉氏变换,并求得传递函数。
4.用解析法建立运动方程的步骤
1)分析系统的工作原理和系统中各变量间的关系,确 定出待研究元件或系统的输入量和输出量; 2)从输入端入手(闭环系统一般从比较环节入手), 依据各元件所遵循的物理,化学,生物等规律,列写 各自方程式,但要注意负载效应。所谓负载效应,就 是考虑后一级对前一级的影响。 3)将所有方程联解,消去中间变量,得出系统输入输 出的标准方程。所谓标准方程包含三方面的内容:① 将与输入量有关的各项放在方程的右边,与输出量有 关的各项放在方程的左边;②各导数项按降幂排列; ③将方程的系数通过元件或系统的参数化成具有一定 物理意义的系数。
§2-1 系统的数学模型

线性系统微分方程的建立
步骤:1.分析系统和元件的工作原理,找出 各物理量之间的关系,确定输出量及输入 量。 2.设中间变量,依据物理、化学等定律忽 略次要因素列写微分方程式。 3. 将所有方程联解,消去中间变量,得出系统

自动控制系统的数学模型

自动控制系统的数学模型
只产生微小偏差(增量)。
第二章 自动控制系统的数学模型
编写微分方程是描述系统动态特性最基本的方法。 系统微分方程式的建立的基本步骤如下: ⑴ 明确要解决问题的目的和要求,确定系统的输入变量和输出变量; ⑵ 对问题进行适当的简化,抓住能代表系统运动规律的主要特征,舍去一些次要因素,必要时也
可进行一些合理的假设; ⑶ 根据系统所遵循的物理、化学定律,从输入端开始,按照信号传递顺序,依次列出组成系统各
第二章 自动控制系统的数学模型
数学模型的种类: ①经典:微分方程,差分方程,瞬态响应函数,传递函数,频率特性。 ②现代:状态方程,状态空间表达式。 本章重点以机理分析法为基础,介绍微分方程,瞬态响应函数和传递函数的建立。
第二章 自动控制系统的数学模型
2.1.1 动态微分方程式的编写 微分方程是描述自动控制系统动态特性的最基本数学模型。 建立微分方程的前提条件: ①给定发生变化或出现扰动瞬间之前,系统应处于平衡状态,被控量各阶段导数为零。(初始为零); ②在任一瞬间,系统状态可用几个独立变量完全确定; ③被控量几个独立变量原始平衡状态下工作点确定后,当给定变化或有扰动时,它们在工作点附近
次数 一般不高于分母多项式的次数 ,且所有系数都为实数。 ⑶ 传递函数与系统的微分方程相联系,两者可以互相转换。 ⑷ 传递函数是系统单位脉冲响应的拉氏变换。 ⑸ 传递函数是与 平面上的零、极点图相对应。 ⑹ 传递函数只描述系统的输入—输出特性,而不能表征系统的物理结构及内部所有状况的特性。
不同的物理系统可以有相同的传递函数。同一系统中,不同物理量之间对应的传递函数也不 相同。
元件的微分方程; ⑷ 消去中间变量,最后得到描述系统输出量与输入量的微分方程。 ⑸ 写出微分方程的规范形式,即所有与输出变量有关的项写在方程左边,所有与输入变量有关的
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解:设:L{y(t)}=Y(s),方程两边取Laplace变换,有 1 2 s Y ( s) sy(0) y(0) 2[sY (s) y(0)] 3Y (s) s 1
利用初始条件,得到
2
1 s Y ( s) 1 2sY ( s) 3Y ( s) s 1
3 1 8 1 s2 Y (s) 4 8 ( s 1)( s 1)( s 3) s 1 s 1 s 3
若f(t)及各阶导数的初值均为0,即
f (0) f (0) f
n
( n 2)
(0) f
( n 1)
(0) 0

d n L[ n f (t )] s F ( s) dt
11
4. 积分定理:原函数f(t)的积分的 Laplace变换
F ( s) f 1 (0) L[ f (t )dt ] s s
y (t ) L
1
Y s
1 4
e e e
3 8 t 1 8
t
3t
21
2.2基本概念
1 建立数学模型的意义
(1)可定性地了解系统的工作原理及其特性; (2)更能定量地描述系统的动态性能; (3)揭示系统的内部结构、参数与动态性能 之间的关系。
22
2 系统数学模型的形式
1
式中 f
F ( s) 初始条件为零时 L[ f (t )dt ] s 1 L[ f (t )dt ] n F (s) s
12
(0) f (t )dt
t 0
5. 位移定理
L[e
at
f (t )] F (s a)
6. 延迟定理
L[ f (t a) 1(t a)] e F (s)
36

i1R1 1 (i1 i 2)dt u1 C1 1 i dt 1 (i i )dt i2 R2 2 1 2 C2 C1 1 i dt u 2 C2 2
(4)消去中间变量
d 2u 2 du 2 R1C1R 2C 2 2 ( R1C1 R 2C 2 R1C 2) u 2 u1 dt dt
n 1
e
at
e
rt

r a s a s r
17
2.1.4 Laplace逆变换
Laplace逆变换公式为
f (t )
简写
2 j
1
1
a j
a j
F (s)e ds
st
f (t ) L [ F (s)]
直接通过积分求Laplace 逆变换通常很繁锁,对于 一般问题都可以避免这样的积分,利用Laplace 变 换表,查表求原函数。
n n
15
n
11. 卷积性质
L f t g t F s G s
如t<0时,f(t)=g(t)=0,则:
L f t g t f g t d
t 0
16
小结拉氏变换表
原函数f t 象函数F s 原函数f t
傅立叶变换建立了时域和频域的联系;
而拉氏变换建立了时域和复频域的联系.
2
2.1.1 Laplace 变换的定义 2.1.2 典型函数的Laplace变换 2.1.3 Laplace变换的的性质 2.1.4 Laplace逆变换 2.1.5 用Laplace变换求解常系数线性
微分方程
3
2.1.1 Laplace 变换的定义
设函数x(t),满足 1) 2)

t 0 时 x(t ) 0 t 0 时 x(t )有界

0 其中x(t)为时间t的函数,在每个有限区间内连续或分段连 续,则x(t)的Laplace变换定义为

x(t )e dt
st
X ( s) L[( x(t )] x(t )e dt
L[ (t )]

0
L[ (t )] 1
1 st lim dt lim 1 e e 0 0 s 1
st
7
4. 正弦和余弦函数
L[sin t ] 2 2 s s L[cos t ] 2 2 s
8
2.1.3 Laplace变换的的性质

38
例2 图示为电枢控制式直流电机原理图,设 u a 为电 枢两端的控制电压, 为电机旋转角速度, L 为折 M 合到电机轴上的总的负载力矩。当激磁不变时,用 u M 电枢控制的情况下, a 为给定输入, L 为干扰输入, 为输出。系统中ed为电动机旋转时电枢两端的反电 势; 为电动机的电枢电流; 为电动机的电磁力矩。 ia M
18
2.1.5 利用Laplace变换求解微分方程解的步骤
1) 对微分方程进行Laplace变换,并代入初始 条件; 2) 求解因变量Laplace变换的代数方程;
3) 求解因变量Laplace逆变换,得到所求的微 分方程的解。
19
20

例1
y 2 y 3 y e t y (0) 0, y(0) 1
第2章 控制系统的数学模型
2.1 2.2 2.3 2.4 2.5 2.6 2.7 Laplace 变换及其性质 基本概念 系统的微分方程 系统的传递函数 系统的传递函数方框图及其简化 反馈控制系统的传递函数 相似原理
1
2.1 Laplace 变换及其性质
Laplace(拉普拉斯)变换是描述、分析连续、线性、 时不变系统的重要工具,可理解为广义单边傅立叶 变换。
原函数f(t)的导数的Laplace变换 d L[ f (t )] sF ( s) f (0) dt
f(t)的n阶导数的Laplace变换
dn L[ n f (t )] s n F ( s) s n 1 f (0) s n 2 f (0) sf ( n 2) (0) f ( n 1) (0) dt
13
as
7. 初值定理
若函数f(t)的Laplace变换为F(s),且
lim sF (s) 存在,
s
则时间函数f(t)的初始值
lim f (t ) lim sF (s)
t 0 s
8.终值定理
若函数f(t)的Laplace变换为F(s),且 lim 则原函数f(t)的稳态值
t s 0
e
at
at
L[e ] e e dt e
at st 0 0


( s a )t
Re(s a) 0
1 dt sa
6
3. 脉冲函数 (t)
0 t 0且t (t ) 1 lim t 0
28
二、典型元件的微分方程
29
1 dF v t k dt
30
F(t) F(t) c
c
F(t) c
c
c
31
32
i t C
du t dt
33
34
例1 图示为两个形式相同 的RC电路串联而成的 滤波网络,试写出以 输出电压和输入电压 为变量的滤波网络的 微分方程。 解:列写系统微分方程 (1)输入:电压 u1 输出:电压 u 2 中间变量 i1,i2 (2)简化 (3)根据克希荷夫定律,可写出下列原始方程式:
注意:线性及非线性这一特性并不随系统的 表示方法而改变,它是系统本身的固有特性。 线性系统与非线性系统的根本区别在于:线 性系统满足叠加原理,而非线性系统则不满 足叠加原理。
26
叠加原理:总输出等于各个输入单独作 用而产生的输出之和。
线性化:为了分析研究非线性系统,在一定范 围内将一些非线性因素忽略,近似地用线性 数学模型来代替,这便是所谓数学模型的线 性化。 本质非线性系统:例如电气系统中某些元件 存在继电特性、饱和、死区和磁滞等现象, 只能采取非线性方法进行分析与设计。这方 面内容,本课程不作要求。
st 0

式中 s — 复变数,
s j
4
2.1.2 典型函数的Laplace变换
1. 单位阶跃函数1(t)
0 t 0 1(t ) 1 t 0


1 st L[1(t )] 1(t )e dt e 0 s
st

0
1 s
52Leabharlann 指数函数象函数F s
t
1 t
1
1/ s
n! sn 1 1 sa n!
sin t
cost
e at sin t e
at
s s2 2
2
2 2 s
t
n
s a
sa s2 2
2
e at t e
n at
cos t
s a
27
2.3系统的微分方程
一.用分析法(解析法)列写微分方程的一般方法
(1)确定系统或各元件的输入、输出变量。系统的给定 输入量或扰动输入量都是系统的输入量,而被控制 量则是输出量; (2)进行适当的简化,忽略次要因素; (3) 从系统的输入端开始,按照信号的传递顺序,根据 各变量所遵循的物理定理,列写出在运动过程中的 各个环节的动态微分方程; (4)消除中间变量,写出只含有输入、输出变量的微分 方程; (5)标准化。整理所得微分方程: 输出量降幂排列=输入量降幂排列
1. 线性
L[ f1 (t )] F1 (s)
L[af1 (t )] aF1 ( s)
9
2. 叠加性
相关文档
最新文档