平面直角坐标系的知识点归纳总结

合集下载

《平面直角坐标系》知识点大全

《平面直角坐标系》知识点大全

《平面直角坐标系》知识点大全3.1确定位置:在平面内,确定一个物体的位置一般需要两个数据。

3.2平面直角坐标系1、有序数对:我们把这种有顺序的两个数a 与b 组成的数对叫做有序数对,即:(a,b)2、平面直角坐标系:在平面内,两条互相垂直、且有公共原点的数轴组成平面直角坐标系。

水平的数轴称为x 轴或横轴,习惯上取向右为正方向竖直的数轴称为y 轴或纵轴,习惯上取向上方向为正方向两坐标轴的交战为平面直角坐标系的原点3、象限:坐标轴上的点不属于任何象限第一象限:x>0,y>0;第二象限:x<0,y>0第三象限:x<0,y<0;第四象限:x>0,y<0x 轴上的点:(x ,0)y 轴上的点:(0,y )4、距离问题:点(x ,y )距x 轴的距离为y点(x ,y )距y 轴的距离为x坐标轴上两点间距离:点A (x 1,0)点B (x 2,0),则AB 距离为21x x -点A (0,y 1)点B (0,y 2),则AB 距离为21y y -5、角平分线问题若点(x ,y )在第一、三象限角平分线上,则x=y若点(x ,y )在第二、四象限角平分线上,则x=-y6、对称问题:对称点坐标的特征:P(a,b)关于x 轴对称的点的坐标为(a,-b);P(a,b)关于y 轴对称的点的坐标为(-a,b);P(a,b)关于原点对称的点的坐标为(-a,-b)7、平行于坐标轴的直线上的点:平行于x 轴的直线上的点的纵坐标相同;平行于y 轴的直线上的点的横坐标相同。

8、中点坐标:点A (1x ,0)点B (2x ,0),则AB 中点坐标为(221x x +,0)。

有关平面直角坐标系的知识点及考点归纳

有关平面直角坐标系的知识点及考点归纳

数学篇数苑纵横坐标系与其它数学知识存在不可分割的联系.许多知识在平面直角坐标系中进行研究会更加直观易懂.所以只有牢固掌握了与直角坐标系有关的知识点与考点,才能更好地学习一次函数、反比例函数和二次函数等相关知识.一、平面直角坐标系相关知识点归纳1.平面直角坐标系的定义:在平面内画两条互相垂直、原点重合的数轴,就组成平面直角坐标系.水平的数轴称为x 轴或横轴,竖直的数轴称为y 轴或纵轴,两坐标轴的交点为平面直角坐标系的原点.2.各个象限内点的特征:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限.坐标在四个象限的特点:点P (x ,y )在第一象限则x >0,y >0;在第二象限则x <0,y >0;在第三象限则x <0,y <0;在第四象限则x >0,y <0.3.点到坐标轴的距离:点P (x ,y )到x 轴的距离为|y |,到y 轴的距离为|x |.到坐标原点的距离为x 2+y 2.4.点的对称:点P (m ,n ),关于x 轴的对称点坐标是(m ,-n ),关于y 轴的对称点坐标是(-m ,n ),关于原点的对称点坐标是(-m ,-n ).5.平行线:平行于x 轴的直线上的点的特征:纵坐标相等,如直线PQ ,P (m ,n )Q (p ,n );平行于y 轴的直线上的点的特征:横坐标相等,如直线PQ 、P (m ,n )、Q (m ,p ).6.象限角的平分线:第一、三象限角平分线上的点横、纵坐标相等,可记作:P (m ,m );点P (a ,b )关于第一、三象限坐标轴夹角平分线的对称点坐标是(b ,a );第二、四象限角P (m ,-m );点P (a ,b )关于第二、四象限坐标轴夹角平分线的对称点坐标是(-b ,-a ).7.点的平移:在平面直角坐标系中,将点(x ,y )向右平移a 个单位长度,可以得到对应点(x +a ,y );向左平移a 个单位长度,可以得到对应点(x -a ,y );向上平移b 个单位长度,可以得到对应点(x ,y +b );向下平移b 个单位长度,可以得到对应点(x ,y -b ).二、平面直角坐标系相关考点归纳1.求坐标求点的坐标的方法是过这个点向x 轴作垂线,则垂足对应的数就是该点的横坐标;过这个点向y 轴作垂线,则垂足对应的数就是该点的纵坐标.确定了一个点的横坐标和纵坐标,就知道这个点的坐标.例1如图1,在平面直角坐标系xOy 中,已知点A(3,4),将OA 绕坐标原点O 逆时针旋转90°至OA ′,则点A ′的坐标是.解:如图2,过点A 作AB ⊥x 轴于B ,过点A ′作A ′B ′⊥x 轴于B ′,∵OA 绕坐标原点O 逆时针旋转90°至OA ′,∴OA =OA ′,∠AOA ′=90°,∵∠A ′OB ′+∠AOB =90°,∠AOB +∠OAB =90°,∴∠OAB =∠A ′OB ′.在△AOB 和△OA ′B ′中,ìíîïï∠OAB =∠A ′OB ′,∠ABO =∠OB ′A ′,OA =OA ′,∴△AOB ≌△OA ′B ′(AAS ),∴OB ′=AB =4,A ′B ′=OB =3,有关平面直角坐标系的知识点及考点归纳湖南怀化顾建明图123数学篇数苑纵横图2例2在平面直角坐标系中,A(-5,0),B(3,0),点C在y轴上,△ABC的面积为12,求点C的坐标.解:∵点A(-5,0),B(3,0),都在x轴上,∴AB=8.∵△ABC的面积为12,点C在y轴上,∴△ABC的面积=12AB⋅OC=12.解得OC=3,若点C在y轴的正半轴上,则点C的坐标为(0,3),若点C在y轴的负半轴上,则点C的坐标为(0,-3),综上所述,点C的坐标为(0,3)或(0,-3).2.求象限在平面直角坐标系中,各象限内点的符号特点是:第一象限内的点,横坐标和纵坐标都为正;第二象限内点的横坐标为负,纵坐标为正;第三象限内点的横坐标和纵坐标都为负;第四象限内点的横坐标为正,纵坐标为负.确定了点横坐标及纵坐标的正负,就确定了象限.例3若点M(x,y)满足(x+y)2=x2+y2-2,则点M所在象限是().A.第一象限或第三象限B.第二象限或第四象限C.第一象限或第二象限D.不能确定解:∵(x+y)2=x2+y2+2xy,∴原式可化为xy=-1,∴x、y异号,∴点M(x,y)在第二象限或第四象限.故选B项.例4已知点P(x,y)在函数y=1x2+-x的图象上,那么点P在平面直角坐标系中的().A.第一象限B.第二象限C.第三象限D.第四象限解:由题意x2≠0且-x≥0,∴x<0,∴1x2>0,x>0,∴y>0.∴点P(x,y)在第二象限.故选B项.3.求面积当三角形有一边在x轴上时,则以x轴上的边为底边,其长等于x轴上两个顶点横坐标差的绝对值,此边上的高就等于另一个顶点纵坐标的绝对值;当三角形的一边在y 轴上时,则以y轴上的边为底边,其长等于y 轴上两个顶点纵坐标差的绝对值,此边上的高就等于另一个顶点横坐标的绝对值.确定了三角形的底边和高就能求出面积.例5如图3,△ABC的三个顶点坐标分别是A(2,4),B(-2,0),C(3,0),求△ABC的面积.图3解:过A作AD⊥x轴,垂足为D,∵A的坐标是(2,4),∴AD=4,24数学篇∵B (-2,0),C (3,0),∴BC =5,∴S △ABC =12BC ∙AD =12×5×4=10.例6如图4,平面直角坐标系中,已知点A (-3,-1),B (1,3),C (2,-3),求三角形ABC 的面积.图4分析:由于三边均不平行于坐标轴,所以我们无法直接求边长,也无法求高,因此得另想办法.根据平面直角坐标系的特点,可以将三角形围在一个梯形或长方形中,这个梯形(长方形)的上下底(长)与其中一个坐标轴平行,高(宽)与另一个坐标轴平行.这样,梯形(长方形)的面积就容易求出,然后再减去围在梯形(长方形)内边缘部分的直角三角形的面积,即可求得原三角形的面积.解:如图5,过点A 、C 分别作平行于y 轴的直线,与过点B 平行于x 轴的直线交于点D 、E ,则四边形ADEC 为梯形.图5因为A (-3,-1),B (1,3),C (2,-3),所以AD =4,CE =6,DB =4,BE =1,DE =5.所以S △ABC =12(AD +CE )×DE -12×AD ×DB-12×CE ×BE =12×(4+6)×5-12×4×4-12×6×1=14.平面直角坐标系可以帮助我们建立图形与数量间的联系,并为几何问题和代数问题的相互转化提供条件.因此,同学们一定要掌握好平面直角坐标系的相关知识点与考点,从而不断提高分析问题和解答问题的能力.上期《<实数>巩固练习》参考答案1.D ;2.C ;3.D ;4.A ;5.B ;6.5;7.-1;8.4;9.14或22;10.-3;11.解:(1)3,14-3;(2)∵2<6<3,4<21<5,∴m =6-2,n =4,∴2m +n -26=2(6-2)+4-26=0;(3)a =15,b =32-5.12.解:(1)原来正方形场地的周长为80m;(2)设长方形场地宽为3a m ,则长为5a m.由题意有:3a ×5a =315,解得:a =±21,∵3a 表示长度,∴a >0,∴a =21,∴这个长方形场地的周长为2(3a +5a )=16a =1621(m ),∵80=16×5=16×25>1621,∴这些铁栅栏够用.答:这些铁栅栏够用.数苑纵横25。

平面直角坐标系知识点总结归纳

平面直角坐标系知识点总结归纳

平面直角坐标系知识点总结归纳-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII平面直角坐标系的知识点归纳总结1.平面直角坐标系的定义:在平面内画两条____________________________的数轴组成平面直角坐标系。

水平的数轴为_______,习惯上取向___为正方向;竖直的数轴为______,取向_____为正方向;它们的公共原点O为直角坐标系的原点。

两坐标轴把平面分成_____________,坐标轴上的点不属于____________。

2.点的坐标:可用有序数对(a ,b)表示平面内任一点P的坐标。

a表示横坐标,b表示纵坐标。

3.各象限内点的坐标符号特点:第一象限__________,第二象限_____________, 第三象限______________,第四象限______________。

4.坐标轴上点的坐标特点: 横轴上的点纵坐标为_______,纵轴上的点横坐标为________。

【练习1】指出下列各点所在的象限或坐标轴。

A.(3,4)B.(-2,5)C.(-4,-1)D.(2.5,-2)E.(0,-4)F.(0,0)【练习2】下列说法正确的是()A平面内,两条互相垂直的直线构成数轴B、坐标原点不属于任何象限。

C.x轴上点必是纵坐标为0横坐标不为D、坐标为(3, 4)与(4,3)表示同一个点。

【练习3】已知坐标平面内点M(a,b)在第二象限,那么点N(b, -a)在()A.第一象限 B.第二象限C.第三象限 D.第四象限【练习4】在平面直角坐标系中,点(-1,m2+1)一定在()A、第一象限B、第二象限C、第三象限D、第四象限【练习5】点P(3a-9,a+1)在第二象限,则a的取值范围为___________.5.对称点:在平面直角坐标系中,点(,)P a b 关于x 轴的对称点的坐标为__________关于y 轴的对称点的坐标为___________,关于原点的对称点的坐标为__________。

(完整版)平面直角坐标系知识点总结(可编辑修改word版)

(完整版)平面直角坐标系知识点总结(可编辑修改word版)

温馨提示(a , b )与(b , a )顺序不同,含义就不同。

例如:用(3 , 5) 表示第 3 列的第 5 位同学,那么(5 , 3) 就表示第 5 列的第 3 位同学。

夯实基础平面直角坐标系平面直角坐标系的有关概念一.有序数对在日常生活中,可以用有序数对来描述物体的位置,这样可以用含有两个数的组合来表示一个确定的位置,其中两个数各自表示不同的含义,我们把这种有顺序的两个数 a 与b 组成的数对,叫做有序数对,记作(a , b )。

例 1:(1)在一层的电影院内如何找到电影票上所指的位置?(2)在电影票上, 如果把“5 排 8 号”简记为(5,8),那么“4 排 9 号”如何表示?(8,3)表示什么含义?二.平面直角坐标系相关概念具体内容平面直角坐标系定义在平面内画两条互相垂直并且原点重合的数轴,这样就建立了平面直角坐标系两轴水平的数轴叫做 x 轴或横轴,取向右为正方向;垂直的数轴叫做 y 轴或纵轴,取向上为正方向 原点 两轴的交点O 为平面直角坐标系的原点 坐标平面坐标系所在的平面叫做坐标平面三.象限x 轴和 y 轴把坐标平面分成四个部分,称为四个象限,按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限,如图。

y第二象限第三象限第一象限Ox第四象限y b • Oax例 2:设M (a , b ) 为平面直角坐标系中的点。

(1) 当a > 0, b < 0 时,点M 位于第几象限?(2) 当ab > 0 时,点M 位于第几象限?四.点的坐标对于坐标平面内的任意一点 A ,过点 A 分别向 x 轴、 y 轴作垂线,垂足在 x 轴、 y 轴上对应的数 a 、b 分别叫做点 A 的横坐标和纵坐标,有序数对(a , b )叫做点 A 的坐标,记作A (a , b ) ,如图。

1. 已知坐标平面内的点,确定点的坐标先由已知点 P 分别向 x 轴、 y 轴作垂线,设垂足分别为 A 、 B ,再求出垂足 A 在 x 轴上的坐标 a 与垂足 B 在 y 轴上的坐标b ,最后按顺序写成(a , b )即可。

(完整版)平面直角坐标系知识点总结

(完整版)平面直角坐标系知识点总结

平面直角坐标系二、知识要点梳理知识点一:有序数对比如教室中座位的位置,常用“几排几列”来表示,而排数和列数的先后顺序影响座位的位置,因此用有顺序的两个数a与b组成有序数时,记作(a,b),表示一个物体的位置。

我们把这种有顺序的两个数a与b组成的数对叫做有序数对,记作: (a,b).要点诠释:对“有序”要准确理解,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,表示不同位置。

知识点二:平面直角坐标系以及坐标的概念1.平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系。

水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1)。

注:我们在画直角坐标系时,要注意两坐标轴是互相垂直的,且有公共原点,通常取向右与向上的方向分别为两坐标轴的正方向。

平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的。

2.点的坐标点的坐标是在平面直角坐标系中确定点的位置的主要表示方法,是今后研究函数的基础。

在平面直角坐标系中,要想表示一个点的具体位置,就要用它的坐标来表示,要想写出一个点的坐标,应过这个点A分别向x轴和y轴作垂线,垂足M在x轴上的坐标是a,垂足N在y轴上的坐标是b,我们说点A的横坐标是a,纵坐标是b,那么有序数对(a,b)叫做点A的坐标.记作:A(a,b).用(a,b)来表示,需要注意的是必须把横坐标写在纵坐标前面,所以这是一对有序数。

注:①写点的坐标时,横坐标写在前面,纵坐标写在后面。

横、纵坐标的位置不能颠倒。

②由点的坐标的意义可知:点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离。

知识点三:点坐标的特征l.四个象限内点坐标的特征:两条坐标轴将平面分成4个区域称为象限,按逆时针顺序分别叫做第一、二、三、四象限,如图2.这四个象限的点的坐标符号分别是(+,+),(-,+),(-,-),(+,-).2.数轴上点坐标的特征:x轴上的点的纵坐标为0,可表示为(a,0);y轴上的点的横坐标为0,可表示为(0,b).注意:x轴,y轴上的点不在任何一个象限内,对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上。

平面直角坐标系知识点口诀

平面直角坐标系知识点口诀

平面直角坐标系知识点口诀一、平面直角坐标系基本概念口诀。

1. 坐标轴。

- 平面直角坐标系,横轴纵轴要牢记。

- 横轴名叫x轴,向右为正方向齐。

- 纵轴名叫y轴,向上为正方向立。

- 原点坐标是(0,0),两条数轴交点集。

2. 象限。

- 坐标平面分象限,一、二、三、四按序排。

- 右上象限是第一,符号为(+, +)真开怀。

- 左上象限第二家,符号是(-, +)不奇怪。

- 左下象限第三处,(-, -)符号记心怀。

- 右下象限第四域,(+, -)符号要明白。

3. 点的坐标。

- 点在平面有坐标,先横后纵顺序好。

- 横坐标x把位标,纵坐标y来相靠。

- 例如点A(x,y),x在前来y在后。

二、坐标的平移口诀。

1. 左右平移。

- 点沿x轴左右移,左右平移x变起。

- 向左平移减数值,向右平移加无疑。

- 例如点P(x,y),向左平移a单位,新坐标为(x - a,y)。

- 向右平移a单位,新坐标就成(x+a,y)。

2. 上下平移。

- 点沿y轴上下移,上下平移y变易。

- 向下平移减数值,向上平移加进去。

- 若点Q(x,y),向上平移b单位,新坐标为(x,y + b)。

- 向下平移b单位,新坐标就是(x,y - b)。

三、对称点坐标口诀。

1. 关于x轴对称。

- 关于x轴来对称,横坐标x不变更。

- 纵坐标y变符号,正负相反记心中。

- 点M(x,y)对称点,x轴对称M'(x, - y)。

2. 关于y轴对称。

- 关于y轴的对称,纵坐标y不折腾。

- 横坐标x变符号,正负互换要记清。

- 若点N(x,y)对称,y轴对称N'(-x,y)。

3. 关于原点对称。

- 原点对称有特点,横纵坐标都要变。

- 横坐标x变符号,纵坐标y也换脸。

- 点P(x,y)对称点,原点对称P'(-x, - y)。

(完整版)平面直角坐标系知识点归纳

(完整版)平面直角坐标系知识点归纳

X平面直角坐标系知识点归纳1、在平面内,两条互相垂直且有公共原点的数轴组成了平面直角坐标系;2、坐标平面上的任意一点 P 的坐标,都和惟一的一对有序实数对(a,b )一一对应;其中,a 为横坐标,b 为纵坐标坐标;3、 x 轴上的点,纵坐标等于 0; y 轴上的点,横坐标等于 0; 坐标轴上的点 不属于任何象限;4、 四个象限的点的坐标具有如下特征:小结:(1 )点P ( x, y )所在的象限 —►横、纵坐标X 、y 的取值的正负性;(2 )点P ( X, y )所在的数轴 —*■横、纵坐标X 、y 中必有一数为零;5、 在平面直角坐标系中,已知点p (a,b ),则(1) 点P 到X 轴的距离为b ;( 2 )点P 到y 轴的距离为(3) 点P 到原点o 的距离为PO = .a 2 b 26、 平行直线上的点的坐标特征:a )在与x 轴平行的直线上,所有点的纵坐标相等;b )在与y 轴平行的直线上,所有点的横坐标相等;d bJ_____ P(a,b) 1____________ 1-3 -2 -1 0 -1-2 -31a X点A 、B 的纵坐标都等于m ;象限 横坐标X 纵坐标y 第一象限 正 正 第二象限 负 正 第三象限负 负 第四象限正负b YC点C、D的横坐标都等于n ;,nD 'XX7、对称点的坐标特征:8、两条坐标轴夹角平分线上的点的坐标的特征:a)若点P ( m,n )在第一、三象限的角平分线上,则 b)若点P ( m,n )在第二、四象限的角平分线上,贝Um基本练习:练习 仁在平面直角坐标系中,已知点 P ( m 5,m2 )在x 轴上,贝U P 点坐标为 _________2练习2 :在平面直角坐标系中,点P ( m 2, 4 ) 一定在 _____________ 象限;2练习3 :已知点P ( a 1, a 9)在x 轴的负半轴上,则 P 点坐标为___________________ ;练习4 :已知X 轴上一点A (3 , 0) , y 轴上一点B ( 0 , b ),且AB=5,则b 的值为 ______________ ; 练习5 :点M (2 , - 3)关于x 轴的对称点N 的坐标为 _______________ ;关于y 轴的对称点P的坐标为 ________ ;关于原点的对称点 Q 的坐标为 ___________ 。

(完整版)平面直角坐标系知识点总结

(完整版)平面直角坐标系知识点总结

平面直角坐标系平面直角坐标系的有关概念夯实基础一.有序数对在日常生活中,可以用有序数对来描述物体的位置,这样可以用含有两个数的组合来表示一个确定的位置,其中两个数各自表示不同的含义,我们把这种有顺序的两个数a 与b 组成的数对,叫做有序数对,记作()b a ,。

温馨提示()b a ,与()a b ,顺序不同,含义就不同。

例如:用()5,3表示第3列的第5位同学,那么()3,5就表示第5列的第3位同学。

例1:(1)在一层的电影院内如何找到电影票上所指的位置?(2)在电影票上,如果把“5排8号”简记为(5,8),那么“4排9号”如何表示?(8,3)表示什么含义?二.平面直角坐标系 三.象限x 轴和y 轴把坐标平面分成四个部分,称为四个象限,按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限,如图。

第一象限 第二象限 第三象限第四象限yOx温馨提示如果所表示的平面直角坐标系具有实际意义,一般在表示横轴、纵轴的字母后附上单位。

例2:设()b aM ,为平面直角坐标系中的点。

(1)当0,0<>b a 时,点M 位于第几象限? (2)当0>ab 时,点M 位于第几象限?四.点的坐标对于坐标平面内的任意一点A ,过点A 分别向x 轴、y 轴作垂线,垂足在x 轴、y 轴上对应的数a 、b 分别叫做点A 的横坐标和纵坐标,有序数对()b a ,叫做点A 的坐标,记作()b a A ,,如图。

1.已知坐标平面内的点,确定点的坐标先由已知点P 分别向x 轴、y 轴作垂线,设垂足分别为A 、B ,再求出垂足A 在x 轴上的坐标a 与垂足B 在y 轴上的坐标b ,最后按顺序写成()b a ,即可。

2.已知点的坐标确定点的位置若点P 的坐标是()b a ,,先在x 轴上找到坐标为a 的点A ,在y 轴上找到坐标为b 的点B ;再分别过点A 、点B 作x 轴、y 轴的垂线,两垂线的交点就是所要确定的点P 。

平面直角坐标系知识点总结

平面直角坐标系知识点总结

平面直角坐标系知识点总结一、知识点框架图二、知识点整理1、有序数对两个数a 、b 组成的有顺序的数对即为有序数对,记作(a ,b )。

ps :有序,即强调(a ,b )和(b ,a )的区别 2、平面直角坐标系三要素:x 轴(横轴)、y 轴(纵轴)、原点O 。

四象限:第一、二、三、四 象限ps :x 轴、y 轴方向要死记 3、点的坐标写点的坐标:写出A 点的坐标(a ,b ),过A 做x 轴y 轴的垂线,点A 到y 轴的距离为a ,点A 到x 轴的距离为b 。

确定平面内点的坐标建立平面直角坐标系点P 坐标 (有序数对(x ,y ))画两条数轴 ①数轴 ②有公共原点1)写点的坐标时,横轴在前(a),纵轴在后(b)2)注意各象限中a、b的正负号4、点坐标的特征1)四象限中点的特征:2)数轴上点的特征:x轴上点的纵坐标为0,写为(a,0)y轴上点的横坐标为0,写为(0,b)ps:坐标轴上的点不属于任一象限!!!3)象限角分线上点的坐标:4)对称点坐标的特点:点A(a,b):5)平行于坐标轴的直线上的点三、平面直角坐标系的应用:1、坐标表示地理位置a)建立坐标系,选择原点,确定下x、y轴b)由具体问题建立适当的比例,标单位长度c)在坐标平面内画出点,写出坐标ps:即为,建系、定长度、写坐标2、用坐标表示平移a)点的平移:b)图形的平移:图形平移即为点平移,且为图形上的点的整体平移。

四、坐标系中的重点&难点重点:建立坐标系,点坐标的特征;难点:点的平移和图形的平移1:如图,在X轴上有五个点,它们的横坐标依次为1,2,3,4,5.分别过这些点作X轴的垂线,与三条直线y=ax,y=(a+1)x,y=(a+2)x相交,其中a >0,则图中阴影部分的面积是()A.12.5B.25C.12.5aD.25a2:在平面直角坐标系中,已知3个点的坐标分别为A1(1,1) 、A2(0,2)、A3(-1,1),一只电子蛙位于坐标原点处,第1次电子蛙由原点跳到以A1为对称中心的对称点P1,第2次电子蛙由P1点跳到以A2为对称中心的对称点P2,第3次电子蛙由P 2点跳到以A3为对称中心的对称点P3,…,按此规律,电子蛙分别以A1、A2、A3为对称中心继续跳下去.问当电子蛙跳了2009次后,电子蛙落点的坐标是P2009(_______ ,_______).1、考点分析:此题包括坐标系、一次函数以及图形面积的求法。

平面直角坐标系知识点总结

平面直角坐标系知识点总结

平面直角坐标系知识点总结平面直角坐标系是数学中一个重要的概念,它在几何图形的分析与研究中起到了关键作用。

在本文中,我们将对平面直角坐标系的概念、性质以及常见的应用进行总结。

通过阅读本文,读者将更好地理解和应用平面直角坐标系。

1. 平面直角坐标系的定义平面直角坐标系是由两条相互垂直的数轴(x轴和y轴)所确定的坐标系统。

其中,x轴被称为横轴,y轴被称为纵轴。

x轴和y轴的交点称为坐标原点O,它是平面直角坐标系的起点。

通过在每个轴上引入单位长度,我们可以对平面上的点进行精确的描述。

2. 平面直角坐标系的性质- 平面直角坐标系中的任意一点都可以通过一对有序实数(x, y)来表示,这对实数分别表示点在x轴和y轴上的投影长度,称为该点的坐标。

- 坐标原点O的坐标为(0, 0)。

横轴上的点的坐标形式为(x, 0),纵轴上的点的坐标形式为(0, y)。

- 平面上两点的距离可以通过坐标计算公式来确定。

对于两个点A(x₁, y₁)和B(x₂, y₂),它们之间的距离为√((x₂ - x₁)² + (y₂ - y₁)²)。

- 平面上两条线段垂直的条件是它们的斜率互为相反数。

3. 平面直角坐标系的应用- 几何图形的位置表示:通过平面直角坐标系,我们可以精确地确定几何图形在平面上的位置。

通过计算坐标,我们可以判断图形的相对位置、大小和形状。

- 直线方程的表示:平面直角坐标系能够方便地将直线的方程表示出来。

一般地,直线的方程可以表示为y = kx + b的形式,其中k是斜率,b是与y轴的截距。

- 坐标变换:平面直角坐标系中,我们可以对坐标进行平移、旋转、缩放等变换操作。

这些操作对于解决几何问题和数学推导具有重要意义。

总结:通过本文的介绍,我们对平面直角坐标系的定义、性质以及应用有了更深入的了解。

平面直角坐标系不仅仅是一个几何概念,它在数学和实际问题的求解中具有广泛的应用。

希望读者通过阅读本文,能够更好地理解和运用平面直角坐标系,为进一步的数学学习和问题解决提供帮助。

平面直角坐标系知识点大全

平面直角坐标系知识点大全

平面直角坐标系知识点1、有序数对:我们把有顺序的两个数a 与b 组成的数对,叫做有序数对.2、平面直角坐标系:我们可以在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系.水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y 轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的坐标平面内的任意一点P ,都与唯一的一对有序实数对(b a ,其中,a 为点P 的横坐标,b 为点P 的纵坐标坐标. 3、象限:坐标轴上的点不属于任何象限 第一象限:x>0,y>0 ; 第二象限:x<0,y>0; 第三象限:x<0,y<0 ; 第四象限:x>0,y<0. 横坐标轴上的点:(x ,0); 纵坐标轴上的点:(0,y ).小结:(1)点P (x,y)所在的象限 横、纵坐标x、y的取值的正负性;(2)点P (x,y)所在的数轴 横、纵坐标x、y中必有一数为零.4、平移:在平面直角坐标系中,将点(x ,y )向右平移a 个单位长度,可以得到对应点(x+a ,y ); 向左平移a 个单位长度,可以得到对应点(x-a ,y ); 向上平移b 个单位长度,可以得到对应点(x ,y+b ); 向下平移b 个单位长度,可以得到对应点(x ,y-b ).5、距离问题:点(x ,y )距x 轴的距离为y 的绝对值,即|y |;点(x ,y )距y 轴的距离为x 的绝对值,即|x |.坐标轴上两点间距离:点A (x 1,0)点B (x 2,0),则AB 距离为 x 1-x 2的绝对值,即AB=|x 1-x 2|;点A (0,y 1)点B (0,y 2),则AB 距离为 y 1-y 2的绝对值,即AB=|y 1-y 2|.6.特殊点的坐标:平行于x 轴的直线上的点的坐标特点是 纵坐标相同 ; 平行于y 轴的直线上的点的坐标特点是 横坐标相同 .7、绝对值相等的代数问题:a 与b 的绝对值相等,可推出1)a=b 或者 2)a=-b .8、角平分线问题:若点(x ,y )在一、三象限角平分线上,则x=y (横、纵坐标相等);若点(x ,y )在二、四象限角平分线上,则x=-y (横、纵坐标互为相反数).9、对称问题:一点关于x 轴对称,则x 同y 反(同:坐标相同,反:坐标互为相反数); 关于y 轴对称,则y 同x 反;关于原点对称,则x 反y 反.10.利用平面直角坐标系绘制某一区域的各点分布情况的平面图包括以下过程:(1)建立适当的坐标系,即选择适当点作为原点,确定x 轴、y 轴的正方向;(2)根据具体问题确定恰当的比例尺,在数轴上标出单位长度;(3)在坐标平面上画出各点,写出坐标名称. 0 1 -2。

初中数学:平面直角坐标系知识点

初中数学:平面直角坐标系知识点

平面直角坐标系知识点点的坐标(1)我们把有顺序的两个数a和b组成的数对,叫做有序数对,记作(a,b).(2)平面直角坐标系的相关概念①建立平面直角坐标系的方法:在同一平面内画;两条有公共原点且垂直的数轴.②各部分名称:水平数轴叫x轴(横轴),竖直数轴叫y轴(纵轴),x轴一般取向右为正方向,y轴一般取象上为正方向,两轴交点叫坐标系的原点.它既属于x轴,又属于y轴.(3)坐标平面的划分建立了坐标系的平面叫做坐标平面,两轴把此平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限.(4)坐标平面内的点与有序实数对是一一对应的关系.坐标确定位置平面内特殊位置的点的坐标特征(1)各象限内点P(a,b)的坐标特征:①第一象限:a>0,b>0;②第二象限:a<0,b>0;③第三象限:a<0,b<0;④第四象限:a>0,b<0.(2)坐标轴上点P(a,b)的坐标特征:①x轴上:a为任意实数,b=0;②y轴上:b为任意实数,a=0;③坐标原点:a=0,b=0.(3)两坐标轴夹角平分线上点P(a,b)的坐标特征:①一、三象限:a=b;②二、四象限:a=﹣b.坐标与图形性质1、点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.2、有图形中一些点的坐标求面积时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.3、若坐标系内的四边形是非规则四边形,通常用平行于坐标轴的辅助线用“割、补”法去解决问题.方向角方向角是从正北或正南方向到目标方向所形成的小于90°的角(1)方向角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.(2)用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.(注意几个方向的角平分线按日常习惯,即东北,东南,西北,西南.)(3)画方向角以正南或正北方向作方向角的始边,另一边则表示对象所处的方向的射线.坐标与图形变化-平移(1)平移变换与坐标变化①向右平移a个单位,坐标P(x,y)⇒P(x+a,y)①向左平移a个单位,坐标P(x,y)⇒P(x﹣a,y)①向上平移b个单位,坐标P(x,y)⇒P(x,y+b)①向下平移b个单位,坐标P(x,y)⇒P(x,y﹣b)(2)在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)。

平面直角坐标系知识点

平面直角坐标系知识点

平面直角坐标系知识点1.坐标轴:-x轴:水平方向的直线,与y轴垂直。

-y轴:竖直方向的直线,与x轴垂直。

-坐标原点:x轴与y轴的交点,坐标为(0,0)。

2.坐标表示:-一点的坐标表示为(x,y),其中x为该点在x轴上的坐标值,y为该点在y轴上的坐标值。

-向右移动x个单位,向上移动y个单位,可以到达坐标点(x,y)。

3.象限:-平面直角坐标系被分为四个象限,分别为第一象限、第二象限、第三象限和第四象限。

-第一象限:x轴与y轴的正方向所在的象限,x轴和y轴上的坐标值都为正数。

-第二象限:x轴的负方向与y轴的正方向所在的象限,x轴上的坐标值为负数,y轴上的坐标值为正数。

-第三象限:x轴与y轴的负方向所在的象限,x轴和y轴上的坐标值都为负数。

-第四象限:x轴的正方向与y轴的负方向所在的象限,x轴上的坐标值为正数,y轴上的坐标值为负数。

4.距离公式:-两点之间的距离可以使用勾股定理计算。

设A(x1,y1)和B(x2,y2)是两个点,在平面上划出一个三角形,其底边为x轴上的线段,高为y轴上的线段。

-这时,AB的距离d可以使用勾股定理表示:d=√((x2-x1)²+(y2-y1)²)。

5.直线和斜率:- 平面上的直线可以用方程表示,通常形式为y = kx + b,其中k 是斜率,表示直线与x轴的夹角的正切值;b是该直线与y轴交点的纵坐标。

-平行于y轴的直线的斜率为无穷大,与y轴相交的点无x坐标,方程为x=a,其中a是与y轴相交的点的横坐标。

6.对称性:-平面上的点关于x轴对称:设点A的坐标为(x,y),则点A'的坐标为(x,-y)。

-平面上的点关于y轴对称:设点A的坐标为(x,y),则点A'的坐标为(-x,y)。

-平面上的点关于原点对称:设点A的坐标为(x,y),则点A'的坐标为(-x,-y)。

7.坐标变换:-平面上的点可通过平移、旋转、缩放等方式进行坐标变换。

-平移:将点A(x,y)平移h个单位到点A'(x+h,y)。

平面直角坐标系知识点

平面直角坐标系知识点

平面直角坐标系知识点(一)有序数对1、有序数对:用两个数来表示一个确定的位置,其中两个数各自表示不同的意义,我们把这种有挨次的两个数组成的数对,叫做有序数对,记作(a,b)。

2、坐标:数轴(或平面)上的点可以用一个数(或数对)来表示,这个数(或数对)叫做这个点的坐标。

(二)平面直角坐标系1、平面直角坐标系:在平面内画两条相互垂直,并且有公共原点的数轴。

这样我们就说在平面上建立了平面直角坐标系,简称直角坐标系。

2、X轴:水平的数轴叫X轴或横轴。

向右方向为正方向。

3、Y轴:竖直的数轴叫Y轴或纵轴。

向上方向为正方向。

4、原点:两个数轴的交点叫做平面直角坐标系的原点。

对应关系:平面直角坐标系内的点与有序实数对一一对应。

(三)坐标对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x 轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。

(四)象限1、象限:X轴和Y轴把坐标平面分成四个局部,也叫四个象限。

右上面的叫做第一象限,其他三个局部按逆时针方向依次叫做其次象限、第三象限和第四象限。

象限以数轴为界,横轴、纵轴上的点及原点不属于任何象限。

一般,在x轴和y轴取一样的单位长度。

2、象限的特点:1、特别位置的点的坐标的特点:(1)x轴上的点的纵坐标为零;y轴上的点的横坐标为零。

(2)第一、三象限角平分线上的点横、纵坐标相等;其次、四象限角平分线上的点横、纵坐标互为相反数。

(3)在任意的两点中,假如两点的.横坐标一样,则两点的连线平行于纵轴;假如两点的纵坐标一样,则两点的连线平行于横轴。

2、点到轴及原点的距离:点到x轴的距离为|y|;点到y轴的距离为|x|;点到原点的距离为x的平方加y的平方再开根号;3、三大规律(1)平移规律:点的平移规律左右平移→纵坐标不变,横坐标左减右加;上下平移→横坐标不变,纵坐标上加下减。

图形的平移规律,找特别点。

(2)对称规律关于x轴对称→横坐标不变,纵坐标互为相反数;关于y轴对称→横坐标互为相反数,纵坐标不变;关于原点对称→横纵坐标都互为相反数。

《平面直角坐标系》知识点梳理

《平面直角坐标系》知识点梳理

注:我们在画直角坐标系时,我们在画直角坐标系时,要注意两坐标轴是互相垂直的,要注意两坐标轴是互相垂直的,要注意两坐标轴是互相垂直的,且有公共原点,且有公共原点,且有公共原点,通常取向通常取向右与向上的方向分别为两坐标轴的正方向。

平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的。

的数轴组成的。

2.2.点的坐标点的坐标点的坐标点的坐标是在平面直角坐标系中确定点的位置的主要表示方法,是今后研究函数的基础。

在平面直角坐标系中,在平面直角坐标系中,要想表示一个点的具体位置,要想表示一个点的具体位置,要想表示一个点的具体位置,就要用它的坐标来表示,就要用它的坐标来表示,就要用它的坐标来表示,要想写出要想写出一个点的坐标,应过这个点A 分别向x 轴和y 轴作垂线,垂足M 在x 轴上的坐标是a ,垂足N 在y 轴上的坐标是b ,我们说点A 的横坐标是a ,纵坐标是b ,那么有序数对(,那么有序数对(a,b a,b a,b)叫做)叫做点A 的坐标的坐标..记作记作:A(a,b).:A(a,b).:A(a,b).用用(a (a,,b)b)来表示,需要注意的是必须把横坐标写在纵坐标前面,来表示,需要注意的是必须把横坐标写在纵坐标前面,所以这是一对有序数。

所以这是一对有序数。

注:①写点的坐标时,横坐标写在前面,纵坐标写在后面。

横、纵坐标的位置不能颠倒。

《平面直角坐标系》知识点梳理知识点一:有序数对比如教室中座位的位置,比如教室中座位的位置,常用常用“几排几列”“几排几列”来表示,来表示,而排数和列数的先后顺序影响座位的位置,因此用有顺序的两个数a 与b 组成有序数时,记作组成有序数时,记作(a (a (a,,b)b),表示一个物体的位置。

,表示一个物体的位置。

我们把这种有顺序的两个数a 与b 组成的数对叫做有序数对,记作组成的数对叫做有序数对,记作: (a,b): (a,b): (a,b).. 要点诠释对“有序”要准确理解,即两个数的位置不能随意交换,对“有序”要准确理解,即两个数的位置不能随意交换,(a (a (a,,b)b)与与(b (b,,a)a)顺序不同,含顺序不同,含义就不同,表示不同位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面直角坐标系的知识点归纳总结1.平面直角坐标系的定义:平面内画两条____________________________的数轴组成平面直角坐标系。

水平的数轴为_______,习惯上取向___为正方向;竖直的数轴为______,取向_____为正方向;它们的公共原点O 为直角坐标系的 。

两坐标轴把平面分成_____________,坐标轴上的点不属于____________。

注意:同一平面、互相垂直、公共原点、数轴。

2.点的坐标:坐标平面内的点可以用一对 表示,这个 叫坐标。

表示方法为(a ,b)。

a 是点对应 轴上的数值,表示点的 坐标;b 是点对应 轴上的数值,表示点的 坐标。

点(a ,b)与点(b ,a )表示同一个点时,a b ;当a b 时,点(a ,b)与点(b ,a )表示不同的点。

3.坐标系内点的坐标特点:小结:(1)点P (y x ,)所在的象限 横、纵坐标x 、y 的取值的正负性; (2)点P (y x ,)所在的数轴 横、纵坐标x 、y 中必有一数为零;练1、下列说法正确的是( )A 平面内,两条互相垂直的直线构成数轴B 、坐标原点不属于任何象限。

C.x 轴上点必是纵坐标为0,横坐标不为0 D 、坐标为(3, 4)与(4,3)表示同一个点。

练2、判断题(1)坐标平面上的点与全体实数一一对应( ) (2)横坐标为0的点在轴上( )坐标轴上 点P (x ,y ) 连线平行于 坐标轴的点 点P (x ,y )在各象限 的坐标特点 象限角平分线上 的点 X 轴Y 轴原点平行X 轴平行Y 轴第一象限第二象限 第三象限 第四象限 第一、 三象限 第二、四象限(3)纵坐标小于0的点一定在轴下方( ) (4)若直线轴,则上的点横坐标一定相同( ) (5)若,则点P ()在第二或第三象限( )(6)若,则点P ()在轴或第一、三象限( )练3、已知坐标平面内点M(a,b)在第二象限,那么点N(b, -a)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 练4、在平面直角坐标系中,点(-1,m 2+1)一定在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限练5、点E 与点F 的纵坐标相同,横坐标不同,则直线EF 与y 轴的关系是 ( ) A .相交 B .垂直 C .平行 D .以上都不正确 练6、若点A (m,n ),点B (n,m )表示同一点,则这一点一定在( ) A 第二、四象限的角平分线上 B 第一、三象限的角平分线上 C 平行于X 轴的直线上 D 平行于Y 轴的直线上练7、点P(3a-9,a+1)在第二象限,则a 的取值范围为___________. 练8、如果点M (3a-9,1-a )是第三象限的整数点,则M 的坐标为__________;4、平面直角坐标系中的距离 (1)点到坐标轴的距离点P (b a ,)到横轴的距离= , 点P (b a ,)到纵轴的距离= ,注:1、点到横轴的距离等于( )坐标的( ),点到纵轴的距离等于( )坐标的( );2、坐标转化为距离时要加绝对值;距离转化为坐标时要分情况,考虑正负。

(2)若P (a ,b ),Q (a ,n ),则PQ=( ),PQ 的中点坐标为( );若P (a ,b ),Q (m ,b ),则PQ=( ),PQ 的中点坐标为( ); 横坐标相等的点在同一条平行于( )的直线上,垂直方向两点间的距离等于( ); 纵坐标相等的点在同一条平行于( )的直线上,水平方向两点间的距离等于( )。

(3)若P (a ,b ),Q (m ,n ),则点P 与点Q 的水平距离=( ),点P 与点Q 的垂直距离=( )点P 与点Q 的距离PQ =( );PQ 的中点坐标为( )P (b a ,)xyO(4)点P (a ,b )与原点的距离= ,练1、点E (a,b )到x 轴的距离是4,到y 轴距离是3,则有( )A .a=3, b=4B .a=±3,b=±4C .a=4, b=3D .a=±4,b=±3 练2、点 A 在第二象限 ,它到 x 轴 、y 轴的距离分别是3、5,则坐标是 . 已知点M(2m+1,3m-5)到x 轴的距离是它到y 轴距离的2倍,则m= 。

5注:上加下减,右加左减。

练1、在平面直角坐标系中,有一点P (-4,2),若将P : (1)向左平移2个单位长度,所得点的坐标为__________ (2)向右平移3个单位长度,所得点的坐标为__________ (3)向下平移4个单位长度,所得点的坐标为__________(4)先向右平移5个单位长度,再向上平移3个单位长度,所得坐标为_______。

练2、线段CD 是由线段AB 平移得到的,点A (–1,4)的对应点为C (4,7),则点B (-4,–1)的对应点D的坐标为 ( )A .(2,9)B .(5,3)C .(1,2)D .(– 9,– 4)练3、将点P(-3,y)向下平移3个单位,向左平移2个单位后得到点Q(x ,-1),则xy=__ 。

6、坐标与对称a) 点P ),(n m 关于x 轴的对称点为P1( ), 即( )不变,纵坐标( ); b) 点P ),(n m 关于y 轴的对称点为P2( ), 即( )不变,( )互为相反数; c) 点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都( );XXP X-练1、已知点M ()y x ,与点N ()3,2--关于x 轴对称,则______=+y x 。

练2、已知点P ()3,3b a +与点Q ()b a 2,5+-关于x 轴对称,___________==b a 。

练3、将三角形ABC 的各顶点的横坐标都乘以1-,则所得三角形与三角形ABC 的关系( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .将三角形ABC 向左平移了一个单位练4、若│3-a │+(a-b+2)2=0,则点M (a ,b )关于y 轴的对称点的坐标为_______. 练5、若点M ()m m -+3,12关于y 轴的对称点M ′在第二象限,则m 的取值范围是 .【精题精炼】一、选择题:1、点P (a,b ),ab >0,a +b <0,则点P 在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 2、若点P 的横坐标是-2,且到x 轴的距离为4,则P 点的坐标是 ( ) (A)(4,-2)或(-4,-2) (B)(-2,4)或(-2,-4) (C)(-2,4) (D)(-2,-4)3、在平面直角坐标系中,A(-1,0),B(5,0),C(2,4),则三角形ABC 的面积为( ) (A)30 (B)12 (C)20 (D)104、过点A (-3 ,2)和点B (-3,5)作直线AB,则直线AB ( ) A 平行于x 轴 B 平行于x 轴 C 与y 轴相交 D 与y 轴垂直5、若点A(-7,y)向下平移5个单位的像与点A 关于x 轴对称,则y 的值是 ( )(A)-5 (B)5 (c)52 (D)25-6、观察图(1)与(2)中的两个三角形,(1)中的三角形经下列变换能得到(2)中的三角形的是 ( ) (A)每个点的横坐标加上2 (B)每个点的纵坐标加上2 (C)每个点的横坐标减去2 (D)每个点的纵坐标减去2 二、填空题12题图1.点P(m+2,m-1)在y 轴上,则点P 的坐标是_______________。

.2.已知:A(1,2),B(x,y),AB ∥x 轴,且B 到y 轴距离为2,则点B 的坐标是_______。

3.点P (x ,y )在第四象限,且|x|=3,|y|=2,则P 点的坐标是_______。

4.点P (a-1,a-9)在x 轴负半轴上,则P 点坐标是_______。

5.点A(2,3)到x 轴的距离为_______;点B(-4,0)到y 轴的距离为_______;点C 到x 轴的距离为1,到y 轴的距离为3,且在第三象限,则C 点坐标是_______。

6.直角坐标系中,在y 轴上有一点P ,且OP=5,则P 的坐标为_________。

7.如图,一个机器人从O 点出发,向正东方向走3m, 到达1A 点,再向正北走6m 到达2A 点,再向正西走 9m 到达点,再向正南走12m ,到达点,再向正东方向 走15m 到达5A 点,按如此规律走下去,当机器人走 到6A 点时,6A 点的坐标是________三、解答题1、已知:)54,21(-+a a A ,且点A 到两坐标轴的距离相等,求A 点坐标.2.建立平面直角坐标系并表示下列各点,回答下列相关的问题。

(0,2),(1,5),(3,5),(3,5),(3,5),(5,6)A B C D E F -----(1)A 点到原点O 的距离是____________(2)将点C 向x 轴的负方向平移6个单位,它与点_______重合。

(3)连接CE ,则直线CE 与y 轴是什么位置关系 (4)点F 到x 轴、y 轴的距离分别是多少3.如图,四边形ABCD 各个顶点的坐标分别为(–2,8),(–11,6),(–14,0),(0,0)。

(1)计算这个四边形的面积。

(2)如果把原来ABCD 各个顶点纵坐标保持不变,横坐标增加2,所得的四边形面积又是多少4.长方形ABCD 的边4,6AB BC ==,若将该长方形放在平面直角坐标系中,使点A 的坐标为(-1,2),且AB x C 图,将三角形ABC 向右平移2个单位长度,再向下平移3个单位长度,得到对应的三角形A 1B 1C 1,(1)写出点A 1、B 1、C 1的坐标。

(2)求三角形ABC 的面积。

6、如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B分别向上平移2个单位,再向右平移1D ,连接AC ,BD ,CD .(1)求点C ,D 的坐标及四边形ABDC 的面积ABDC S 四边形DC3-1BA Oxy(2)在y 轴上是否存在一点P ,连接PA ,PB ,使PAB S =ABDC S 四边形, 若存在这样一点,求出点P 的坐标,若不存在,试说明理由.7、如图所示,在直角坐标系中,第一次将△OAB 变换成△11OA B ,第二次将△11OA B 变换成△22OA B ,第三次将△22OA B 变换成△33OA B ,已知A(1,3),1A (2,3),2A (4,3),3A (8,3),B(2,O),1B (4,O),2B (8,0),3B (16,O).(1)观察每次变换前后的三角形有何变化,找出规律,按此变换规律将△33OA B 变换成△44OA B ,则4A 的坐标是_________,4B 的坐标是_________.(2)若按第(1)题的规律将△OAB 进行了n 次变换,得到△n OA n B ,比较每次变换中三角形顶点坐标有何变化,找出规律,请推测n A 的坐标是____________,n B 的坐标是______________.。

相关文档
最新文档