2014届高考数学知识要点复习20
2014高考数学总复习资料
2014年数学总复习资料高三数学总复习分类讨论复习目标:1.掌握分类讨论必须遵循的原则 2.能够合理,正确地求解有关问题 命题分析:分类讨论是一种重要的逻辑方法,也是一种常用的数学方法,这可以培养学生思维的条理性和概括性,以及认识问题的全面性和深刻性,提高学生分析问题,解决问题的能力.因此分类讨论是历年数学高考的重点与热点.而且也是高考的一个难点.这次的一模考试中,尤其是西城与海淀都设置了解答题来考察学生对分类讨论问题的掌握情况.重点题型分析: 例1.解关于x 的不等式:)()(232R a x a a a x ∈+<+解:原不等式可分解因式为:(x-a)(x-a 2)<0 (下面按两个根的大小关系分类)(1)当a>a 2⇒a 2-a<0即 0<a<1时,不等式的解为 x ∈(a 2, a).(2)当a<a 2⇒a 2-a>0即a<0或a>1时,不等式的解为:x ∈(a, a 2)(3)当a=a 2⇒a 2-a=0 即 a=0或 a=1时,不等式为x 2<0或(x-1)2<0 不等式的解为 x ∈∅.综上,当 0<a<1时,x ∈(a 2, a)当a<0或a>1时,x ∈(a,a 2) 当a=0或a=1时,x ∈∅.评述:抓住分类的转折点,此题分解因式后,之所以不能马上写出解集,主要是不知两根谁大谁小,那么就按两个根之间的大小关系来分类.例2.解关于x 的不等式 ax 2+2ax+1>0(a ∈R) 解:此题应按a 是否为0来分类.(1)当a=0时,不等式为1>0, 解集为R. (2)a ≠0时分为a>0 与a<0两类①10)1(00440002>⇒⎩⎨⎧>->⇒⎪⎩⎪⎨⎧>->⇒⎩⎨⎧>>a a a a a a a a ∆时,方程ax 2+2ax+1=0有两根aa a a aa a a a a a x )1(12442222,1-±-=-±-=-±-=. 则原不等式的解为),)1(1())1(1,(+∞-+-----∞aa a a a a .②101000440002<<⇒⎩⎨⎧<<>⇒⎪⎩⎪⎨⎧<->⇒⎩⎨⎧<>a a a a a a a ∆时, 方程ax 2+2ax+1=0没有实根,此时为开口向上的抛物线,则不等式的解为(-∞,+∞).③ 11000440002=⇒⎩⎨⎧==>⇒⎪⎩⎪⎨⎧=->⇒⎩⎨⎧=>a a a a a a a a 或∆时, 方程ax 2+2ax+1=0只有一根为x=-1,则原不等式的解为(-∞,-1)∪(-1,+∞).④01000440002<⇒⎩⎨⎧><<⇒⎪⎩⎪⎨⎧>-<⇒⎩⎨⎧><a a a a a a a a 或∆时,方程ax 2+2ax+1=0有两根,aa a a a a a x )1(12)1(22,1-±-=-±-=此时,抛物线的开口向下的抛物线,故原不等式的解为:))1(1,)1(1(aa a a a a ----+-. ⑤φ∈⇒⎩⎨⎧≤≤<⇒⎪⎩⎪⎨⎧≤-<⇒⎩⎨⎧≤<a a a a a a a 1000440002∆ 综上:当0≤a<1时,解集为(-∞,+∞). 当a>1时,解集为),)1(1())1(1,(+∞-+-----∞aa a a a a . 当a=1时,解集为(-∞,-1)∪(-1,+∞). 当a<0时,解集为))1(1,)1(1(aa a a a a ----+-. 例3.解关于x 的不等式ax 2-2≥2x-ax(a ∈R)(西城2003’一模 理科)解:原不等式可化为⇔ ax 2+(a-2)x-2≥0, (1)a=0时,x ≤-1,即x ∈(-∞,-1]. (2)a ≠0时,不等式即为(ax-2)(x+1)≥0. ① a>0时, 不等式化为0)1)(2(≥+-x ax , 当⎪⎩⎪⎨⎧->>120a a ,即a>0时,不等式解为),2[]1,(+∞--∞a .当⎪⎩⎪⎨⎧-≤>120aa ,此时a 不存在.② a<0时,不等式化为0)1)(2(≤+-x ax ,当⎪⎩⎪⎨⎧-<<120a a ,即-2<a<0时,不等式解为]1,2[-a当⎪⎩⎪⎨⎧-><120a a ,即a<-2时,不等式解为]2,1[a -.当⎪⎩⎪⎨⎧-=<120aa ,即a=-2时,不等式解为x=-1.综上:a=0时,x ∈(-∞,-1).a>0时,x ∈),2[]1,(+∞--∞a.-2<a<0时,x ∈]1,2[-a .a<-2时,x ∈]2,1[a-.a=-2时,x ∈{x|x=-1}.评述:通过上面三个例题的分析与解答,可以概括出分类讨论问题的基本原则为: 10:能不分则不分; 20:若不分则无法确定任何一个结果; 30:若分的话,则按谁碍事就分谁.例4.已知函数f(x)=cos 2x+asinx-a 2+2a+5.有最大值2,求实数a 的取值. 解:f(x)=1-sin 2x+asinx-a 2+2a+5.6243)2(sin 22++---=a a a x 令sinx=t, t ∈[-1,1]. 则6243)2()(22++---=a a a t t f (t ∈[-1,1]). (1)当12>a即a>2时,t=1,2533max =++-=a a y 解方程得:22132213-=+=a a 或(舍). (2)当121≤≤-a 时,即-2≤a ≤2时,2a t =,262432max =++-=a a y ,解方程为:34-=a 或a=4(舍).(3)当12-<a 即a<-2时, t=-1时,y max =-a 2+a+5=2即 a 2-a-3=0 ∴ 2131±=a , ∵ a<-2, ∴ 2131±-=a 全都舍去.综上,当342213-=+=a a 或时,能使函数f(x)的最大值为2. 例5.设{a n }是由正数组成的等比数列,S n 是其前n 项和,证明:15.025.05.0log 2log log ++>+n n n S S S .证明:(1)当q=1时,S n =na 1从而0)1()2(2121211212<-=+-+⋅=-⋅++a a n a n na S S S n n n (2)当q ≠1时,qq a S n n --=1)1(1, 从而.0)1()1()1)(1(2122121221212<-=-----=-⋅++++nn n n nn n q a q q a q q a S S S由(1)(2)得:212++<⋅n n n S S S . ∵ 函数x y 5.0log =为单调递减函数.∴15.025.05.0log 2log log ++>+n n n S S S .例6.设一双曲线的两条渐近线方程为2x-y+1=0, 2x+y-5=0,求此双曲线的离心率. 分析:由双曲线的渐近线方程,不能确定其焦点位置,所以应分两种情况求解.解:(1)当双曲线的焦点在直线y=3时,双曲线的方程可改为1)3()1(222=---b y a x ,一条渐近线的斜率为2=a b , ∴ b=2.∴ 555222==+==a a a b a c e .(2)当双曲线的焦点在直线x=1时,仿(1)知双曲线的一条渐近线的斜率为2=ba,此时25=e . 综上(1)(2)可知,双曲线的离心率等于255或. 评述:例5,例6,的分类讨论是由公式的限制条件与图形的不确定性所引起的,而例1-4是对于含有参数的问题而对参数的允许值进行的全面讨论.例7.解关于x 的不等式 1512)1(<+--x x a .解:原不等式 012)1(55<⇔+--x x a0)]2()1)[(2(022)1(012)1(<----⇔<--+-⇔<+--⇔a x a x x a x a x x a⎪⎩⎪⎨⎧>----<-⎪⎩⎪⎨⎧<---->-⎩⎨⎧<--=-⇔0)12)(2(01)3(0)12)(2(01)2(0)21)(2(01)1(a ax x a a a x x a x a 或或 由(1) a=1时,x-2>0, 即 x ∈(2,+∞). 由(2)a<1时,012>--aa,下面分为三种情况. ①⎩⎨⎧<<⇒⎪⎩⎪⎨⎧>--<012121a a aa a 即a<1时,解为)12,2(a a --. ②0012121=⇒⎩⎨⎧=<⇒⎪⎩⎪⎨⎧=--<a a a a a a 时,解为∅.③ ⎪⎩⎪⎨⎧<--<2121aa a ⇒ ⎩⎨⎧><01a a 即0<a<1时,原不等式解为:)2,12(a a --. 由(3)a>1时,aa--12的符号不确定,也分为3种情况.①⎩⎨⎧≤>⇒⎪⎩⎪⎨⎧≥-->012121a a a a a ⇒ a 不存在.② ⇒⎩⎨⎧>>⇒⎪⎩⎪⎨⎧<-->012121a a a a a 当a>1时,原不等式的解为:),2()12,(+∞---∞ a a . 综上:a=1时,x ∈(2,+∞). a<1时,x ∈)12,2(aa-- a=0时,x ∈∅.0<a<1时,x ∈)2,12(a a-- a>1时,x ∈),2()12,(+∞---∞ aa. 评述:对于分类讨论的解题程序可大致分为以下几个步骤: 10:明确讨论的对象,确定对象的全体; 20:确定分类标准,正确分类,不重不漏; 30:逐步进行讨论,获得结段性结记; 40:归纳总结,综合结记. 课后练习:1.解不等式2)385(log 2>+-x x x 2.解不等式1|)3(log ||log |3121≤-+x x3.已知关于x 的不等式052<--ax ax 的解集为M. (1)当a=4时,求集合M:(2)若3∈M ,求实数a 的取值范围.4.在x0y 平面上给定曲线y 2=2x, 设点A 坐标为(a,0), a ∈R ,求曲线上点到点A 距离的最小值d ,并写成d=f(a)的函数表达式.参考答案:1. ),(),(∞+2353212.]4943[,3. (1) M 为),(),(2452 ∞- (2)),9()35,(+∞-∞∈ a 4. ⎪⎩⎪⎨⎧<≥-==时当时当1||112)(a a a a a f d .2006年高三数学第三轮总复习函数押题针对训练复习重点:函数问题专题,主要帮助学生整理函数基本知识,解决函数问题的基本方法体系,函数问题中的易错点,并提高学生灵活解决综合函数问题的能力。
2014高考数学理科知识要点归纳(理科选修系列)
2014高考数学理科选修系列知识要点概括(理科专用)一、排列组合.本节公式(1)排列数公式)1()3)(2)(1(+-⋅⋅⋅---=m n n n n n A mn(这里m、n∈*N ,且m≤n)(2)组合数公式n m n n n n n A A C m mm n mn)1()3)(2)(1(+-⋅⋅⋅---==(这里m、n∈*N ,且m≤n)(3)组合数的两个性质mn nm n C C -= 二、二项式定理1.二项式定理:*222110,)(N n b C b a C b a C b a C a C b a nn n r r n r n n n n n n n n ∈+⋅⋅⋅++⋅⋅⋅+++=+---上列公式所表示的定理叫做二项式定理.右边的多项式叫做n b a )(+的二项展开式,它一共有n+1项.其中各项的系数),,2,1,0(n r C rn ⋅⋅⋅=叫做二项式系数. 式中的r r n r n b a C -叫做二项展开式的通项,用1+r T 表示,即1+r T =rr n r n b a C -.2.二项式系数的性质:(1)对称性.与首末两端“等距离”的两个二项式系数相等.事实上,这一性质可直接由公式mn nm n C C -=得到. (3)各二项式系数的和.)!(!m n n A m n -=)!(!!m n m n C m n -=n b a )(+的展开式的各个二项式系数的和等于n 2.4.二项式奇数项系数的和等于二项式偶数项系数的和.即131202-=⋅⋅⋅++=⋅⋅⋅++n n n n n C C C C三、离散型随机变量分布列1、 离散型随机变量的分布列:设离散型随机变量ξ可能取的值为12i x x x ⋅⋅⋅⋅⋅⋅、ξ取每一个值()1,2,i x i =⋅⋅⋅的概率为()i i P x p ξ==,则称表ξ1x 2x … i x …P1p2p…i p …为随机变量ξ的概率分布,简称ξ的分布列2、数学期望: 一般地,若离散型随机变量ξ的概率分布为ξ x 1 x 2 … x n … Pp 1p 2…p n…则称=ξE +11p x +22p x …++n n p x … 为ξ的数学期望,简称期望3、方差:对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…,且取这些值的概率分别是1p ,2p ,…,n p ,…,那么,ξD =121)(p E x ⋅-ξ+222)(p E x ⋅-ξ+…+n n p E x ⋅-2)(ξ+…称为随机变量ξ 的均方差,简称为方差,式中的ξE 是随机变量ξ的期望. 4、标准差:ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ四、矩阵与变换1、定义:规定二阶矩阵A=a b c d ⎡⎤⎢⎥⎣⎦,与向量x y α→⎡⎤=⎢⎥⎣⎦的乘积为ax by A cx dy α→+⎡⎤=⎢⎥+⎣⎦,即A α→=a b c d ⎡⎤⎢⎥⎣⎦x y ⎡⎤⎢⎥⎣⎦=ax by cx dy +⎡⎤⎢⎥+⎣⎦2、单位矩阵:1001M ⎡⎤=⎢⎥⎣⎦,3、矩阵的逆矩阵、特征值与特征向量 (1).矩阵的逆矩阵设A 是一个二阶矩阵,如果存在二阶矩阵B ,使得BA =AB =E ,则称矩阵A可逆,或称矩阵A 是可逆矩阵,并且称B 是A 的逆矩阵.(性质1)设A 是一个二阶矩阵,如果A 是可逆的,则A 的逆矩阵是唯一的.A 的逆矩阵记为A -1.(性质2)设A ,B 是二阶矩阵,如果A ,B 都可逆,则AB 也可逆,且(AB )-1=B -1A -1. (2).二阶矩阵的特征值和特征向量(1) 特征值与特征向量的概念设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使得Aα=λα,那么λ称为A 的一个特征值,α称为A 的一个属于特征值λ的一个特征向量.(2) 特征多项式设λ是二阶矩阵A =⎣⎢⎡⎦⎥⎤a b c d 的一个特征值,它的一个特征向量为α=⎣⎢⎡⎦⎥⎤x y ,则A ⎣⎢⎡⎦⎥⎤x y =λ⎣⎢⎡⎦⎥⎤x y ,即⎩⎨⎧ ax +by =λx ,cx +dy =λy ,也即⎩⎨⎧(λ-a )x -by =0,-cx +(λ-d )y =0.(*) 定义:设A =⎣⎢⎡⎦⎥⎤a b c d 是一个二阶矩阵,λ∈R , 我们把行列式f (λ)=⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =λ2-(a +d )λ+ad -bc,称为A 的特征多项式.(3) 矩阵的特征值与特征向量的求法如果λ是二阶矩阵A 的特征值,则λ一定是二阶矩阵A 的特征多项式的一个根,即f (λ)=0,此时,将λ代入二元一次方程组(*),就可得到一组非零解⎣⎢⎡⎦⎥⎤x 0y 0,于是非零向量⎣⎢⎡⎦⎥⎤x 0y 0即为A 的属于λ的一个特征向量五、选修不等式证明 1、基本不等式①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤②(基本不等式)2a bab +≥ ()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: 2a b ab +≥ 2.2a b ab +⎛⎫≤ ⎪⎝⎭2、柯西不等式(重点记忆内容)(1),二维形式的柯西不等式:22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.(2)三维形式的柯西不等式:2222222123123112233()()().a a a b b b a b a b a b ++++≥++ (3),一般形式的柯西不等式:2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++。
2014届高考理科数学知识点总结(经典)
高考数学(理科)基础知识归纳集合与简易逻辑知识回顾:(一) 集合1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用2. 集合的表示法:列举法、描述法、图形表示法 集合元素的特征:确定性、互异性、无序性 3⑴①一个命题的否命题为真,它的逆命题一定为真 .否命题 逆命题.② 一个命题为真,则它的逆否命题一定为真.原命题逆否命题.(二) 含绝对值不等式、一元二次不等式的解法及延伸1. 整式不等式的解法 根轴法(零点分段法)① 将不等式化为a o (x-x i )(x-x 2)…(x-x ">0(<0)形式,并将各因式x 的系数化“ +” ;(为了统一方便)② 求根,并在数轴上表示出来;③ 由右上方穿线,经过数轴上表示各根的点(为什么?);④ 若不等式(x 的系数化“ +”后)是“ >0” ,则找“线”在 x 轴上方的区间;若不等式是“<0” ,则找“线”在 x 轴下方的区间.— _C 口 - 七_______ g+u+ 、x1x2X 3m-3_[xm-2 x m-1- 卜 --------------------------x ym(自右向左正负相间)则不等式 a 0x na 1xn 1a 2xn 2确定•3.含绝对值不等式的解法(1) 公式法:ax b c ,与|ax b| c(c 0)型的不等式的解法 (2) 定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题.a n 0( O)(a o 0)的解可以根据各区间的符号特例①一元一次不等式ax>b 解的讨论;一兀二次方程ax 2 bx c 0 a 0的根有两相异实根X l ,X 2(X i X 2)有两相等实根bX [ x ?—2a无实根ax 2 bx c 0 (a 0)的解集xx 為或x x 2b XX ——2aRax 2 bx c 0 (a 0)的解集xx 1 x x 22.分式不等式的解法(1)标准化:移项通分化为f(x)>0(或 f (x) c\ <0)f(x)>0(或 f(x)W 0)的形式,g(x ) g(x)g(x) g(x)(2)转化为整式不等式(组)f (X)0 f(x)g(x)f (x) 0; 0 f(x)g(x) 0g(x)g(x)g(x) 04. 一兀二次方程根的分布2一兀二次方程 ax +bx+c-0(a 丰0)(1)根的“零分布”:根据判别式和韦达定理分析列式解之.(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之 •(三)简易逻辑1命题的定义:可以判断真假的语句叫做命题。
2014高考数学考前知识点
2014高考数学考前知识点【集合部分】1、集合相关观念(1)集合性质:确定性、互异性、无序性(2)n 个元素集合有2n个子集,有21n-个真子集,有22n-个非空真子集 (3)空集是任何一个集合的子集,是一切非空集合的真子集(4)交集“”;并集“”;补集“AU C ”{|,} {|} {,}A B x x A x B A B x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉U 交:且并:或补:且C【函数、导数】1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数;],[)(0)()(21b a x f x f x f 在⇔>-上是减函数. (2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性(1)定义:对于定义域内任意的x ,若)()(x f x f =-,则)(x f 是偶函数;若)()(x f x f -=-,则)(x f 是奇函数。
(2)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。
奇函数)(x f 在原点有定义,则0)0(=f3、函数的周期性:若)()(x f T x f =+,则T 叫做这个函数的一个周期。
(差为定值想周期)(1)三角函数的最小正周期:||2:)cos(),sin(ωπϕωϕω=+=+=T x A y x A y ;||:tan ωπω==T x y 4、两个函数图象的对称性(和为定值想对称)(1)如果函数()x f y =对于一切R x ∈,都有()()x a f x a f -=+,那么函数()x f y =的图象关于直线a x =对称⇔()y f x a =+是偶函数;(2)若都有()()x b f x a f +=-,那么函数()x f y =的图象关于直线2ba x +=对称; 5、极值、最值(极值点处的导数值为零,最值只在极值点处或端点处) 求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 6、图象变换问题(1)平移变换:ⅰ))()(a x f y x f y ±=→=,)0(>a ———左“+”右“-”; ⅱ))0(,)()(>±=→=k k x f y x f y ———上“+”下“-”; (2)对称变换:ⅰ))(x f y =−−→−)0,0()(x f y --=;ⅱ))(x f y =x −−→轴)(x f y -=;ⅲ) )(x f y =y −−→轴)(x f y -=;ⅳ))(x f y =−→−=xy ()x f y =; (3)翻折变换:ⅰ)|)(|)(x f y x f y =→=———(去左翻右)y 轴右不动,右向左翻()(x f 在y 左侧图象去掉);独家内部教材 学习改变命运,携手名师,把握未来!ⅱ)|)(|)(x f y x f y =→=———(留上翻下)x 轴上不动,下向上翻(|)(x f |在x 下面无图象); (4)伸缩变换ⅰ))()(x f y x f y ω=→=, ()0>ω———纵坐标不变,横坐标变为原来的ω1倍;ⅱ))()(x Af y x f y =→=, ()0>A ———横坐标不变,纵坐标变为原来的A 倍; 7、函数零点的求法:⑴直接法(求0)(=x f 的根);⑵图象法;⑶二分法.(4)零点定理:若()y f x =在[,]a b 上满足()()0f a f b ⋅<,则()y f x =在(,)a b 内至少有一个零点。
2014年高考数学不等式复习知识
(1)不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.(2)一元二次不等式①会从实际情境中抽象出一元二次不等式模型. ②通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.③会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.(3)二元一次不等式组与简单线性规划问题①会从实际情境中抽象出二元一次不等式组.②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组. ③会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.(4)基本不等式:①了解基本不等式的证明过程.②会用基本不等式解决简单的最大(小)值问题.考纲解读:不等式的考查主要以中档题为主,以选填题为主;不等式的性质常与简易逻辑结合考查;不等式的解法主要以一元二次不等式为主,兼顾其它(如简单的分式不等式、绝对值不等式、指对数不等式、与分段函数有关的不等式等),常与集合(选填题)、导数(解答题中对参数的分类讨论)结合;线性规划问题难度不大;基本不等式求最值是重点,要加强训练;不等式的恒成立也应当重视。
近几年考点分布从近几年的高考试题来看,对不等式重点考查的有四种题型:解不等式、证明不等式、不等式的应用、不等式的综合性问题。
这些不等式试题主要体现了等价转化、函数与方程、分类讨论等数学思想.随着以培养创新精神和实践能力为重点的素质教育的深入发展,近年来高考命题越来越关注开放性、探索性等创新型问题,尤其是与函数、导数、数列综合的不等式证明问题以及涉及不等式的应用题等。
考查的内容及其难度主要以有以下几点:1、不等式的性质、基本不等式和绝对值不等式的考查,大多出现在选择题或填空题中,一般属于容易题或中档题。
因此,关于这一部分的知识,重在理解并深刻记忆基本公式. 2、含参的不等式问题是近几年考的较多的一种题型,特别是不等式恒成立问题中参数取值范围的求法。
3、不等式几乎能与所有数学知识建立广泛的联系,通常以不等式与函数、三角、向量、数列、解析几何、数列的综合问题的形式出现,尤其是以导数或向量为背景的导数(或向量)、不等式、函数的综合题和有关不等式的证明或性质的代数逻辑推理题。
2014年高考数学重要知识点详细总结-高考数学
2014年高考数学重要知识点详细总结高中数学常用公式及常用结论1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B == .3.包含关系A B A A B B =⇔= U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦU C A B R ⇔= 64.容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++- ()()()()card A B card B C card C A card A B C ---+ .5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n–2个.6.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M Nf x +--<⇔()0()f x N M f x ->- ⇔11()f x N M N>--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价于0)()(21<k f k f ,或0)(1=k f 且22211k k a b k +<-<,或0)(2=k f 且22122k abk k <-<+. 9.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p a bx ,2∈-=,则{}min max max ()(),()(),()2b f x f f x f p f q a=-=;[]q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p abx ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.10.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩; (3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .11.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3)0)(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩.12.13.14.四种命题的相互关系15.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 16.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2ba x +=对称. 21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.22.多项式函数110()n n n n P x a x a x a --=+++ 的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=- (2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=-()()f a b mx f mx ⇔+-=.24.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称. (3)函数)(x f y =和)(1x fy -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.26.互为反函数的两个函数的关系a b f b a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx fy +=-,而函数)([1b kx fy +=-是])([1b x f ky -=的反函数.28.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()xf x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠. (4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,()(0)1,lim1x g x f x→==. 29.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x +=+∈,则)(x f 的周期T=2a ; (3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ;(4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ; (6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a.30.分数指数幂(1)m na =0,,a m n N *>∈,且1n >). (2)1m nm naa-=(0,,a m n N *>∈,且1n >).31.根式的性质 (1)na =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.32.有理指数幂的运算性质 (1) (0,,)rsr sa a aa r s Q +⋅=>∈.(2) ()(0,,)r s rs a a a r s Q =>∈. (3)()(0,0,)rr rab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.34.对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m n a a nb b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).35.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+;(2) log log log aa a MM N N =-; (3)log log ()na a M n M n R =∈.36.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.37. 对数换底不等式及其推广若0a >,0b >,0x >,1x a ≠,则函数log ()axy bx =(1)当a b >时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为增函数. , (2)当a b <时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为减函数.推论:设1n m >>,0p >,0a >,且1a ≠,则 (1)log ()log m p m n p n ++<. (2)2log log log 2a a am nm n +<. 38. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+.39.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++ ).40.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+ 211()22d n a d n =+-. 41.等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩. 42.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111n n nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. 43.分期付款(按揭贷款)每次还款(1)(1)1nn ab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ).44.常见三角不等式 (1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.45.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=. 46.正弦、余弦的诱导公式(奇变偶不变,符号看象限)212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩212(1)s ,s()2(1)sin ,n n co n co απαα+⎧-⎪+=⎨⎪-⎩47.和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±= ;tan tan tan()1tan tan αβαβαβ±±=. 22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ= ).48.二倍角公式sin 2sin cos ααα=.2222cos2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 49. 三倍角公式3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+.3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-. 50.三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=.51.正弦定理2sin sin sin a b cR A B C===. 52.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.53.面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111sin sin sin 222S ab C bc A ca B ===.(3)OAB S ∆=54.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A Bπ+⇔=-222()C A B π⇔=-+. 55. 简单的三角方程的通解sin (1)arcsin (,||1)kx a x k a k Z a π=⇔=+-∈≤. s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤.tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.特别地,有sin sin (1)()k k k Z αβαπβ=⇔=+-∈.s cos 2()co k k Z αβαπβ=⇔=±∈.tan tan ()k k Z αβαπβ=⇒=+∈.56.最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈.sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈. cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈.cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈.tan ()(arctan ,),2x a a R x k a k k Z πππ>∈⇒∈++∈.tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈.57.实数与向量的积的运算律 设λ、μ为实数,那么(1) 结合律:λ(μa)=(λμ)a;(2)第一分配律:(λ+μ)a=λa+μa; (3)第二分配律:λ(a+b)=λa+λb. 58.向量的数量积的运算律: (1) a 〃b= b 〃a (交换律); (2)(λa )〃b= λ(a 〃b )=λa 〃b= a 〃(λb ); (3)(a +b )〃c= a 〃c +b 〃c. 59.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 60.向量平行的坐标表示 设a=11(,)x y ,b=22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=. 53. a 与b 的数量积(或内积) a 〃b=|a ||b|cos θ. 61. a 〃b 的几何意义数量积a 〃b 等于a 的长度|a|与b 在a 的方向上的投影|b|cos θ的乘积. 62.平面向量的坐标运算(1)设a=11(,)x y ,b=22(,)x y ,则a+b=1212(,)x x y y ++. (2)设a=11(,)x y ,b=22(,)x y ,则a-b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a=(,),x y R λ∈,则λa=(,)x y λλ.(5)设a=11(,)x y ,b=22(,)x y ,则a 〃b=1212()x x y y +. 63.两向量的夹角公式cos θ=(a =11(,)x y ,b=22(,)x y ).64.平面两点间的距离公式,A B d=||AB ==(A 11(,)x y ,B 22(,)x y ).65.向量的平行与垂直设a=11(,)x y ,b=22(,)x y ,且b ≠0,则 A||b ⇔b=λa 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a 〃b=012120x x y y ⇔+=. 66.线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12PPPP λ=,则 121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+ ⇔12(1)OP tOP t OP =+- (11t λ=+). 67.三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. 68.点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP的坐标为(,)h k .69.“按向量平移”的几个结论(1)点(,)P x y 按向量a=(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a=(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a=(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a=(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=.(5) 向量m=(,)x y 按向量a=(,)h k 平移后得到的向量仍然为m=(,)x y .70. 三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则(1)O 为ABC ∆的外心222OA OB OC ⇔== .(2)O 为ABC ∆的重心0OA OB OC ⇔++=.(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅.(4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=.(5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+.71.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥(当且仅当a =b 时取“=”号). (3)3333(0,0,0).a b c abc a b c ++≥>>>(4)柯西不等式22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈(5)b a b a b a +≤+≤-. 72.极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+(1)若积xy 是定值,则当||y x -最大时,||y x +最大; 当||y x -最小时,||y x +最小.(2)若和||y x +是定值,则当||y x -最大时, ||xy 最小; 当||y x -最小时, ||xy 最大.73.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或.74.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.75.无理不等式 (1()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩.(22()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或.(32()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩.76.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩77.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).78.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式 1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、)(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).79.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222||A B C l l A B C ⇔=≠; ②1212120l l A A B B ⊥⇔+=;80.夹角公式(1)2121tan ||1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan ||A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1与l 2的夹角是2π. 81. 1l 到2l 的角公式(1)2121tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1到l 2的角是2π. 82.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.83.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).84. 或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是: 若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下.若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左.85. 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域 设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是: 111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分; 111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分.86. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0). (3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).87. 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----= 1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0ax by c ++=是直线AB的方程,λ是待定的系数.(2)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.(3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的系数.88.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.89.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .其中22BA CBb Aa d +++=.90.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .91.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是 0000()()022D x xE y y x x y yF ++++++=.当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;②斜率为k 的圆的切线方程为y kx =±92.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.93.椭圆22221(0)x y a b a b+=>>焦半径公式)(21c a x e PF +=,)(22x ca e PF -=.94.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<. (2)点00(,)P x y 在椭圆22221(0)x y a b a b+=>>的外部2200221x y a b⇔+>. 95. 椭圆的切线方程(1)椭圆22221(0)x y a b a b +=>>上一点00(,)P x y 处的切线方程是00221x x y y a b+=.(2)过椭圆22221(0)x y a b a b+=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b+=. (3)椭圆22221(0)x y a b a b+=>>与直线0Ax By C ++=相切的条件是22222A a B b c +=.96.双曲线22221(0,0)x y a b a b -=>>的焦半径公式21|()|a PF e x c =+,22|()|a PF e x c=-.97.双曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->. (2)点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的外部2200221x y a b ⇔-<. 98.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x aby ±=.(2)若渐近线方程为x aby ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x轴上,0<λ,焦点在y 轴上).99. 双曲线的切线方程(1)双曲线22221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是00221x x y y a b-=.(2)过双曲线22221(0,0)x y a b a b-=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b-=. (3)双曲线22221(0,0)x y a b a b-=>>与直线0Ax By C ++=相切的条件是22222A a B b c -=.100. 抛物线px y 22=的焦半径公式抛物线22(0)y px p =>焦半径02p CF x =+.过焦点弦长p x x px p x CD ++=+++=212122.101.抛物线px y 22=上的动点可设为P ),2(2 y py 或或)2,2(2pt pt P P (,)x y ,其中 22y px = .102.二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+-;(3)准线方程是2414ac b y a--=.103.抛物线的内外部(1)点00(,)P x y 在抛物线22(0)y px p =>的内部22(0)y px p ⇔<>. 点00(,)P x y 在抛物线22(0)y px p =>的外部22(0)y px p ⇔>>. (2)点00(,)P x y 在抛物线22(0)y px p =->的内部22(0)y px p ⇔<->. 点00(,)P x y 在抛物线22(0)y px p =->的外部22(0)y px p ⇔>->. (3)点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =>的外部22(0)x py p ⇔>>. (4) 点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =->的外部22(0)x py p ⇔>->.104. 抛物线的切线方程(1)抛物线px y 22=上一点00(,)P x y 处的切线方程是00()y y p x x =+.(2)过抛物线px y 22=外一点00(,)P x y 所引两条切线的切点弦方程是00()y y p x x =+.(3)抛物线22(0)y px p =>与直线0Ax By C ++=相切的条件是22pB AC =.105.两个常见的曲线系方程(1)过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是12(,)(,)0f x y f x y λ+=(λ为参数).(2)共焦点的有心圆锥曲线系方程22221x y a k b k+=--,其中22max{,}k a b <.当22min{,}k a b >时,表示椭圆; 当2222min{,}max{,}a b k a b <<时,表示双曲线.106.直线与圆锥曲线相交的弦长公式 AB =1212|||AB x x y y ==-=-(弦端点A ),(),,(2211y xB y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率).107.圆锥曲线的两类对称问题(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=. (2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是22222()2()(,)0A Ax By C B Ax By C F x y A B A B ++++--=++.108.“四线”一方程对于一般的二次曲线220Ax Bxy Cy Dx Ey F +++++=,用0x x 代2x ,用0y y 代2y ,用002x y xy +代xy ,用02x x +代x ,用02y y +代y 即得方程0000000222x y xy x x y yAx x B Cy y D E F ++++⋅++⋅+⋅+=,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.109.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点; (2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行.110.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行.111.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直.112.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直;(3)转化为线与另一线的射影垂直; (4)转化为线与形成射影的斜线垂直. 113.证明直线与平面垂直的思考途径(1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 114.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直.115.空间向量的加法与数乘向量运算的运算律 (1)加法交换律:a +b=b +a .(2)加法结合律:(a +b)+c=a +(b +c). (3)数乘分配律:λ(a +b)=λa +λb .116.平面向量加法的平行四边形法则向空间的推广 始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量.117.共线向量定理对空间任意两个向量a 、b(b ≠0 ),a ∥b ⇔存在实数λ使a=λb .P A B 、、三点共线⇔||AP AB ⇔AP t AB = ⇔(1)OP t OA tOB =-+.||AB CD ⇔AB 、CD共线且AB CD 、不共线⇔AB tCD = 且AB CD 、不共线.118.共面向量定理向量p 与两个不共线的向量a 、b 共面的⇔存在实数对,x y ,使p ax by =+.推论 空间一点P 位于平面MAB 内的⇔存在有序实数对,x y ,使MP xMA yMB =+ ,或对空间任一定点O ,有序实数对,x y ,使OP OM xMA yMB =++.119.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1k ≠时,若O ∈平面ABC ,则P 、A 、B 、C 四点共面;若O ∉平面ABC ,则P 、A 、B 、C 四点不共面.C A B 、、、D 四点共面⇔AD 与AB 、AC共面⇔AD xAB y AC =+ ⇔ (1)OD x y OA xOB yOC =--++(O ∉平面ABC ).120.空间向量基本定理 如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =xa +yb +zc .推论 设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x ,y ,z ,使OP xOA yOB zOC =++.121.射影公式已知向量AB=a 和轴l ,e 是l 上与l 同方向的单位向量.作A 点在l 上的射影'A ,作B 点在l 上的射影'B ,则''||cos A B AB = 〈a ,e 〉=a 〃e122.向量的直角坐标运算设a =123(,,)a a a ,b =123(,,)b b b 则 (1)a +b =112233(,,)a b a b a b +++; (2)a -b =112233(,,)a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R); (4)a 〃b =112233a b a b a b ++;123.设A 111(,,)x y z ,B 222(,,)x y z ,则 AB OB OA =-= 212121(,,)x x y y z z ---.124.空间的线线平行或垂直设111(,,)a x y z =r ,222(,,)b x y z =r,则a b r r P ⇔(0)a b b λ=≠r r r r ⇔121212x x y y z zλλλ=⎧⎪=⎨⎪=⎩;a b ⊥r r ⇔0a b ⋅=r r⇔1212120x x y y z z ++=.125.夹角公式设a =123(,,)a a a ,b =123(,,)b b b ,则 cos 〈a ,b 〉.推论 2222222112233123123()()()a b a b a b a a a b b b ++≤++++,此即三维柯西不等式. 126. 四面体的对棱所成的角四面体ABCD 中, AC 与BD 所成的角为θ,则2222|()()|cos 2AB CD BC DA AC BDθ+-+=⋅.127.异面直线所成角cos |cos ,|a b θ=r r=||||||a b a b ⋅=⋅r rr r(其中θ(090θ<≤o o)为异面直线a b ,所成角,,a b r 分别表示异面直线a b ,的方向向量)128.直线AB 与平面所成角sin ||||AB m arc AB m β⋅=(m为平面α的法向量). 129.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,A B 、为ABC ∆的两个内角,则2222212sin sin (sin sin )sin A B θθθ+=+.特别地,当90ACB ∠=时,有22212sin sin sin θθθ+=.130.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,''A B 、为ABO ∆的两个内角,则222'2'212tan tan (sin sin )tan A B θθθ+=+.特别地,当90AOB ∠=时,有22212sin sin sin θθθ+=.131.二面角l αβ--的平面角cos ||||m n arc m n θ⋅= 或cos ||||m narc m n π⋅-(m ,n 为平面α,β的法向量).132.三余弦定理设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=.133. 三射线定理若夹在平面角为ϕ的二面角间的线段与二面角的两个半平面所成的角是1θ,2θ,与二面角的棱所成的角是θ,则有22221212sin sin sin sin 2sin sin cos ϕθθθθθϕ=+- ;1212||180()θθϕθθ-≤≤-+ (当且仅当90θ= 时等号成立).134.空间两点间的距离公式 若A 111(,,)x y z ,B 222(,,)x y z ,则,A B d =||AB = =135.点Q 到直线l 距离h =(点P 在直线l 上,直线l 的方向向量a=PA ,向量b=PQ ). 136.异面直线间的距离||||CD n d n ⋅=(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).137.点B 到平面α的距离||||AB n d n ⋅= (n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). 138.异面直线上两点距离公式d =.d =d ='E AA F ϕ=--).(两条异面直线a 、b 所成的角为θ,其公垂线段'AA 的长度为h.在直线a 、b 上分别取两点E 、F ,'A E m =,AF n =,EF d =). 139.三个向量和的平方公式2222()222a b c a b c a b b c c a ++=+++⋅+⋅+⋅2222||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a =+++⋅+⋅+⋅140. 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=.(立体几何中长方体对角线长的公式是其特例).141. 面积射影定理'cos S S θ=. (平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的为θ). 142. 斜棱柱的直截面已知斜棱柱的侧棱长是l ,侧面积和体积分别是S 斜棱柱侧和V 斜棱柱,它的直截面的周长和面积分别是1c 和1S ,则①1S c l =斜棱柱侧. ②1V S l =斜棱柱.143.作截面的依据三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行. 144.棱锥的平行截面的性质如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比.145.欧拉定理(欧拉公式)2V F E +-=(简单多面体的顶点数V 、棱数E 和面数F).(1)E =各面多边形边数和的一半.特别地,若每个面的边数为n 的多边形,则面数F 与棱数E 的关系:12E nF =; (2)若每个顶点引出的棱数为m ,则顶点数V 与棱数E 的关系:12E mV =. 146.球的半径是R ,则其体积343V R π=, 其表面积24S R π=.147.球的组合体(1)球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长. (2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长. (3) 球与正四面体的组合体:棱长为a,. 148.柱体、锥体的体积13V Sh =柱体(S 是柱体的底面积、h 是柱体的高).13V Sh =锥体(S 是锥体的底面积、h 是锥体的高).149.分类计数原理(加法原理)12n N m m m =+++ .150.分步计数原理(乘法原理)12n N m m m =⨯⨯⨯ .151.排列数公式m n A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=. 152.排列恒等式 (1)1(1)mm n n A n m A -=-+;(2)1m mn n n A A n m -=-; (3)11m m n n A nA --=;(4)11nn nn n n nA A A ++=-; (5)11mmm n n n A A mA -+=+.(6) 1!22!33!!(1)!1n n n +⋅+⋅++⋅=+- .153.组合数公式m n C=m n m m A A =mm n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤). 154.组合数的两个性质 (1)mn C =mn nC - ; (2) mn C +1-m nC =mn C 1+.注:规定10=n C . 155.组合恒等式(1)11mm n n n m C C m --+=; (2)1m mn n n C C n m -=-;(3)11mm n n n C C m--=;(4)∑=nr r nC0=n2;(5)1121++++=++++r n rn rr rr r rC C C C C .(6)nnn rn n n n C C C C C 221=++++++ . (7)1425312-+++=+++n n n n n n n C C C C C C .(8)1321232-=++++n nn n n n n nC C C C .(9)rn m rn rm n r m n rm C C C C C C C +-=+++011. (10)nn n n n n n C C C C C 22222120)()()()(=++++ . 156.排列数与组合数的关系m m n n A m C =⋅! .157.单条件排列以下各条的大前提是从n 个元素中取m 个元素的排列. (1)“在位”与“不在位”①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n mn A A (补集思想)1111---=m n n A A (着眼位置)11111----+=m n m m n A A A (着眼元素)种.(2)紧贴与插空(即相邻与不相邻)①定位紧贴:)(n m k k ≤≤个元在固定位的排列有km k n kk A A --种.②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有kk k n k n A A 11+-+-种.注:此类问题常用捆绑法;③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在一起来作全排列,k 个的一组互不能挨近的所有排列数有kh hh A A 1+种.(3)两组元素各相同的插空m 个大球n 个小球排成一列,小球必分开,问有多少种排法?当1+>m n 时,无解;当1+≤m n 时,有n m n nn m C A A 11++=种排法. (4)两组相同元素的排列:两组元素有m 个和n 个,各组元素分别相同的排列数为n n m C +.158.分配问题(1)(平均分组有归属问题)将相异的m 、n 个物件等分给m 个人,各得n 件,其分配方法数共有mnn nn nn mn nn mn nmn n mn C C C C C N )!()!(22=⋅⋅⋅⋅⋅=-- . (2)(平均分组无归属问题)将相异的m 〃n 个物体等分为无记号或无顺序的m 堆,其分配方法数共有mn nn n n n mn n n mn n mn n m mn m C C C C C N )!(!)!(!...22=⋅⋅⋅⋅=--. (3)(非平均分组有归属问题)将相异的) 12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数共有!!...!!!! (212)11m n n n n p n p n n n m p m C C C N m m =⋅⋅=-.(4)(非完全平均分组有归属问题)将相异的) 12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、…个相等,则其分配方法数有!...!!!...211c b a m C C C N m m n n n n p n p ⋅⋅=- 12!!!!...!(!!!...)m p m n n n a b c =.(5)(非平均分组无归属问题)将相异的) 12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数有!!...!!21m n n n p N =.(6)(非完全平均分组无归属问题)将相异的) 12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、…个相等,则其分配方法数有!...)!!(!!...!!21c b a n n n p N m =.(7)(限定分组有归属问题)将相异的p (2m p n n n = 1+++)个物体分给甲、乙、丙,……等m 个人,物体必须被分完,如果指定甲得1n 件,乙得2n 件,丙得3n 件,…时,则无论1n ,2n ,…,m n 等m 个数是否全相异或不全相异其分配方法数恒有!!...!! (212)11m n n n n p n p n n n p C C C N m m =⋅=-.159.“错位问题”及其推广贝努利装错笺问题:信n 封信与n 个信封全部错位的组合数为1111()![(1)]2!3!4!!n f n n n =-+-+- . 推广: n 个元素与n 个位置,其中至少有m 个元素错位的不同组合总数为 1234(,)!(1)!(2)!(3)!(4)!(1)()!(1)()!m m m m ppmm mmf n m n C n C n C n C n C n p C n m =--+---+--+--++--12341224![1(1)(1)]p m p m m m m m m mp mn n n n n nC C C C C C n A A A A A A =-+-+-+-++- . 160.不定方程2n x x x m = 1+++的解的个数(1)方程2n x x x m = 1+++(,n m N *∈)的正整数解有11m n C --个. (2) 方程2n x x x m = 1+++(,n m N *∈)的非负整数解有 11n m n C +--个.(3) 方程2n x x x m = 1+++(,n m N *∈)满足条件i x k ≥(k N *∈,21i n ≤≤-)的非负整数解有11(2)(1)m n n k C +----个.(4) 方程2n x x x m = 1+++(,n m N *∈)满足条件i x k ≤(k N *∈,21i n ≤≤-)的正整数解有12222321(2)11121221(1)n m n m n k n m n k n m n k n n n n n n C C C C C C C +--+---+---+---------+-+- 个. 161.二项式定理nn n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+--- 222110)( ;二项展开式的通项公式。
2014高三数学知识点梳理
2014高三数学知识点梳理1、梳理知识,建构知识网络。
数学知识虽然千头万绪,但只要对考点、知识点逐步分析及梳理,就可以达到层次分明,纲目清楚。
一年一度的《考试说明》反映了命题的方向,考生应当结合课本,对照《考试说明》把知识点从整体上再理一遍,同时针对近几年高考走向进行研究分析,构建一个重、难点突出、知识体系分明的知识网络。
2、专题分析,归纳方法技巧。
在复习的过程中,要归纳重要的数学思想方法,数学思想方法是数学的精髓,对此进行归纳、领会、应用,才能把数学知识与技能转化为分析问题解决问题的能力。
另外要归纳重要热点题型的解题方法。
开放性、探索性问题是这几年高考命题的热点,应用问题则是每年必考而且考察力度呈上升趋势的题型,复习时应给予关注。
3、查漏补缺,反思漏洞失误。
在最后的阶段,要总结反思以往的漏洞及问题,对易错的问题及知识点进行列举,易误的进行归纳,找出错误的症结,发现自己的薄弱环节,试着从变换视角、逆向思维中分析问题,这样做可以减少失误,杜绝错误。
4、钻研评分,规范答题格式。
在考试过程中,一些同学往往多题被扣分,究其原因,主要是答题不规范,思维不严谨。
临考前同学们应精心研究近几年的高考试题及评分标准,参照标准,规范自己的答题格式,尽量减少无谓的失分。
5、调整心态,掌握考试技巧。
考前切忌把大量精力放在做题上,对自己不放心,打疲劳战,这样得不偿失。
这时候首先应当休息好,调整好自己的心态,对高考的知识点进行拉网式的回忆和联想。
其次应该充满信心,保持良好的心态,沉着以待。
进入考场后应合理安排时间,沉着应对,先易后难,稳扎稳打,尽可能做到层层有据、步步正确,对考试中出现的个别难题,要不急不躁,从多方面分析,不要因此影响情绪,影响考试正常发挥。
以上就是高三数学知识点梳理,希望能帮助到大家。
精心整理,仅供学习参考。
2014年高考数学知识大梳理
2014........年高考数学..........知识识大大梳梳理理((...........知知识识精精粹粹版版)) 《《黄黄冈冈中中学学》》资资深深老老师师强强势势总总结结,,为为年年学学子子倾倾情情打打造造.............................................. 高一数学必修1知识网络集合123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。
、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/nA AA B C A B B C A C A B A B x B x A A B A B A B A BA B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。
、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。
真子集:若且(即至少存在但),则是的真子集。
集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A BA B x x A x B A A A A A A B B A A B A A B B A B A C a rd A B C a rd A C a rd B C a rd A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩函数,,,A B A x B y f B A B x y x f y y x y →映射定义:设,是两个非空的集合,如果按某一个确定的对应关系,使对于集合中的任意一个元素, 在集合中都有唯一确定的元素与之对应,那么就称对应:为从集合到集合的一个映射传统定义:如果在某变化中有两个变量并且对于在某个范围内的每一个确定的值,定义 按照某个对应关系都有唯一确定的值和它对应。
2014高考数学必考点汇总
2014年高考数学必考点汇总2014年高考数学必考点汇总数学网收集了今年高考最有可能考查的6个必考热点,希望能引起大家的重视,在备考的最后加以重视。
必考点1:数列问题。
解答题的第一题,按照高考命题轮回的原则,2014年高考数列类解答题将是最热门的考点之一,预计会考查等差数列、等比数列的通项、前n项和的探求,简单数列不等式的证明,数列中最值问题的求解.会涉及考查等量问题、代数变形与推理、基本量思想等,其中,方程思想、消元方法是经常用到的.把一般数列问题化为等差、等比数列问题,求通项与前n项和,多用公式法.必考点2:实际应用性问题。
在高考中属于必考内容,也是新课标高考的核心理念所在,高考非常重视考查考生的应用意识,由于数学应用的广泛性,其命题背景非常广泛,函数与导数、三角函数、平面向量、数列、不等式、立体几何、解析几何、计数原理、概率与统计等都可以成为命制应用性问题的知识背景.随着近几年以概率与统计为载体的应用性问题的“崛起”,其他知识方面,尤其函数与导数的应用性问题被大大削弱,所以我们选取概率与统计作为对象进行探讨.必考点3:圆及其相关问题。
圆的问题近几年的高考考查的热度之高,令人咂舌,在选择题或填空题中要么单独考查,要么融合在圆锥曲线中综合考查,在解答题中,也多融入圆的知识进行考查,只要涉及到圆的相关问题,难度一般都不会太小,在备考中需要注意.必考点4:最值问题。
函数的最值问题是在运动变化中寻找特殊值的一类问题,《考试大纲》有三处涉及这个问题,一是在函数部分,二是在三角函数部分,三是在导数及其应用部分.最值问题有较为广阔的命题背景,既可以考查函数的最值,也可以考查解析几何、立体几何、数列等问题的最值,还可以考查概率、统计中的最值,解决这类问题的基本思想是构建函数、不等式,通过研究函数或不等式加以解决.热点5:探索性问题。
探索性问题是高考考查的热点题型之一,主要考查考生分析问题、解决问题的能力,这类问题一般是以“是否存在”设问,解题的一般思路是先假设其存在,通过推理论证,如果导出了矛盾,就说明其不存在,否则就是存在的.热点6:信息迁移题。
2014年高考数学全部知识点
2014年高考数学全部知识点1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么?2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。
∅ 注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
{}{}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ⊂(答:,,)-⎧⎨⎩⎫⎬⎭10133. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n ()若,;2A B A B A A B B ⊆⇔== (3)德摩根定律:()()()()()()C C C C C C U U U U U U A B A B A B A B ==, 4.你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于的不等式的解集为,若且,求实数x ax x aM M M a --<∈∉50352的取值范围。
()(∵,∴·∵,∴·,,)335305555015392522∈--<∉--≥⇒∈⎡⎣⎢⎫⎭⎪M a a M a aa5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和()()∨∧“非”().⌝ 若为真,当且仅当、均为真p q p q ∧ 若为真,当且仅当、至少有一个为真p q p q ∨若为真,当且仅当为假⌝p p6. 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。
)原命题与逆否命题同真、同假;逆命题与否命题同真同假。
7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B 中有元素无原象) 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 9. 求函数的定义域有哪些常见类型? ()()例:函数的定义域是y x x x =--432lg()()()(答:,,,)022334 10. 如何求复合函数的定义域?[]如:函数的定义域是,,,则函数的定f x a b b a F(x f x f x ())()()>->=+-0义域是_。
2014年高考数学基础知识点框架复习
注意:开方时符号的选取
函数的图象和性质
函数
图像
定义域
值域
奇偶性
奇函数
偶函数
奇函数
周期性
单调性
对称轴
无
对称中心
三角恒等变换
两角和
与差
辅助角公式:
二倍角
,
解三角形
内角和
正弦定理
余弦定理
面积公式
四、数 列:
数列
概 念
按照一定次序排列起来的一列数
等差数列、等比数列
等差数列
等比数列
定义
通项公式
① ;
② ;
使用条件:
“一正二定三取等;
六,
加减法
数乘向量
· =
向量的数量积
· =
· =
向量平行
//
//
向量垂直
⊥
⊥
距离
︱ ︱=
︱ ︱=
夹角
七、导数
导数概念
在点 处的导数记作:
导数的几何意义
函数 在点 处的导数是曲线 在点 处的切线的斜率,即:
导数的运算
公式
① ; ② ;
③ ; ④ ;
图象:
定义
单调性
应用
函数的
零点
函数 的零点就是方程 实数根,即函数 的图象与 轴交点的横坐标。
求零点个数的方法:
1解方程,看根的个数
2画图,看交点个数
三、三角函数:“一看角、二看名、三看式”
三角函数
弧度角度
定义
, ,
符号规律:“才”
三角函数线
诱导公式
“ ,奇变偶不变,符号看象限”
注意:符号看变化前的函数
2014年高考数学知识点总结
学科一级知识点二级知识点三级知识点数学集合和常用逻辑用语集合集合的含义与表示数学集合间的基本关系数学集合基本运算【交集、并集、补集、余集】数学常用逻辑用语命题及其关系数学充分条件与必要条件数学充要条件数学简单逻辑联结词数学全称量词与存在性量词数学函数与导数函数函数及其表示数学函数的定义域与值域数学函数的解析式数学映射数学反函数数学函数的图像数学函数单调性与最值数学函数的奇偶性数学函数周期性与对称性数学基本初等函数I与应用一次函数与二次函数数学指数与指数函数数学对数与对数函数数学指数方程与对数方程数学幂函数数学函数与方程数学函数模型及其应用数学函数综合数学导数导数概念与几何意义数学导数计算数学利用导数研究函数单调性数学利用导数求函数最值与极值数学利用导数证明不等式数学导数实际应用数学导数综合应用数学定积分与微积分基本定理数学极限数学三角函数、三角恒等变换、解三角形三角函数任意角、弧度制和任意角三角函数数学同角三角函数基本关系式和诱导公式数学三角函数图像与性质数学三角函数图像变换数学反三角函数与简单三角方程数学三角函数模型应用数学三角恒等变换两角和与差的三角函数数学倍角公式数学简单三角恒等变换数学解三角形正弦定理数学余弦定理数学正弦定理与余弦定理的实际应用数学三角函数综合应用数学平面向量平面向量的概念及线性运算平面向量概念数学平面向量线性运算数学平面向量基本定理及坐标表示平面向量基本定理数学平面向量坐标运算数学平面向量的数量积平面向量的数量积定义数学平面向量的数量积应用数学线段定比分点数学平移数学平面向量应用平面向量物理应用数学平面向量几何应用数学数列数列的概念和表示法数学等差数列等差数列通项公式数学等差数列前n项和数学等比数列等比数列通项公式数学等比数列前n项和数学数列求和公式法、分组求和数学倒序相加、错位相减、裂项相消求和数学数列综合应用数学不等式不等式的性质数学解不等式一元二次不等式数学绝对值不等式数学分是不等式数学基本不等式数学线性规划二元一次不等式(组)表示的区域数学线性规划数学不等式选讲绝对值不等式数学柯西不等式数学排序不等式数学不等式证明数学立体几何空间几何体柱、锥、台、球结构特征数学空间几何体三视图和直观图数学空间几何体表面积和体积数学空间点、线、面之间位置关系平行数学垂直数学距离数学角数学空间向量空间直角坐标系数学空间向量及运算数学空间向量的应用数学解析几何直线直线的倾斜角与斜率数学直线的方程数学两直线的位置关系数学距离数学圆圆的标准方程与一般方程数学直线与圆位置关系数学圆与圆位置关系数学圆锥曲线椭圆【标准方程,解析式,离心率,准线】数学双曲线【标准方程,解析式,离心率,准线】数学抛物线【标准方程,解析式,离心率,准线】数学直线与圆锥位置关系数学曲线与方程数学坐标系与参数方程平面直角坐标系与平面上伸缩变换数学极坐标系数学简单曲线的极坐标方程数学柱坐标系和球坐标系数学参数方程的概念数学参数方程与普通方程的互化数学直线的参数方程数学圆的参数方程数学圆锥曲线的参数方程数学计数原理与概率统计计数原理分类加法计数原理与分类乘法计数原理数学排列组合数学二项定理数学统计与概率分成抽样数学用样本估计总体数学变量相关性数学统计案列数学事件与概率数学古典概型数学几何概型数学离散型随便变量及其分布列数学超几何分布数学条件概率数学独立事件与乘法公式数学n次独立重复实验与二项分布数学离散型随机变量的均值、方差数学正态分布数学算法和程序框图框图结构图、流程图数学算法初步算法的概念数学程序框图的三种逻辑结构数学基本算法语句数学中国古代算法案列数学推理与证明合情推理与演绎推理数学直接证明与间接证明【反证法】数学数学归纳法数学数系的扩充与复数复数复数的概念与向量表示数学复数的加减及几何意义数学复数的乘除数学矩阵与行列式矩阵与变换线性变换与二阶矩阵数学变换的复合与二阶矩阵数学逆变换与逆矩阵数学变换的不变量与矩阵的特征向量数学行列式二阶、三阶行列式数学二元、三元线性方程组的讨论数学几何证明选讲相似三角形平行截割定理数学直角三角形射影定理数学圆圆周角定理数学圆的切线判定定理及性质定理数学相交弦定理与切割定理数学圆的内接四边形的性质定理与判定定理以上知识点为个人参考众多资料总结得出,如有不妥之处请联系修改;如有雷同纯属巧合;仅供大家参考使用。
2014高考数学必备提分知识点
1.集合(1)n 元集合有2n个子集,有21n-个真子集,有22n-个非空真子集 (2)空集是任何一个集合的子集,是一切非空集合的真子集 (3)交集“”;并集“”;补集“AU C ”2.函数(1)映射可以多对一,但是不能一对多,从m 元集合到n 元集合可以形成mn 个不同的映射 (2)函数的奇偶性 ①常见的奇函数:21k y x+=,xxy a a -=-,11x x a y a -=+,)y x =,sin y x =②常见的偶函数:y x =,2k y x =,x x y a a -=+,cos y x =,y C =(C 为常数) ③奇函数±奇函数=奇函数;偶函数±偶函数=偶函数奇函数⨯奇函数=偶函数⨯偶函数=偶函数;奇函数⨯偶函数=奇函数 (3)函数的单调性①增函数+增函数=增函数;减函数+减函数=减函数 增函数-减函数=增函数;减函数-增函数=减函数 ②复合函数单调性:同增异减 (4)指对幂函数运算法则 (1)mnm na a a +⋅=;m n m n a a a -÷=;()m n mna a=;()m m m a b ab =(2)log a b ab =;log log log ()a a a M N MN +=;log log log a a aMM N N-= log log log m a m N N a=;log log m na a nb b m =;1log log a b b a =2.常见函数的导函数(1)'0C =(C 为常数)(2)'1()n n x nx -=;特别地,'=,'211()x x =-(3)'()ln x x aa a =;特别地,'()x x e e =(4)'11(log)log ln aa x e x x a ==;特别地,'1(ln )x x= (5)'(sin )cos x x =;'(cos )sin x x =-3.三角函数公式(1)圆心角弧度:l R α=;扇形面积公式:12S l R =⋅;180rad π︒=,'157.35718rad ︒︒≈= (2)1cos sin 22=+αα;αααtan cos sin = (3)诱导公式:(4)和角公式:①两角和与差的正余弦,正切公式:cos()cos cos sin sin cos()cos cossin sin αβαβαβαβαβαβ+=-⎧⎨-=+⎩ s i n ()s i nc o sc o s ss i n ()s i n c o s c o s s i nαβαβαβαβαβαβ+=+⎧⎨-=-⎩ tan tan tan()1tan tan tan tan tan()1tan tan αβαβαβαβαβαβ+⎧+=⎪-⎪⎨-⎪-=⎪+⎩②倍角公式:αααcos sin 22sin =;ααα2tan 1tan 22tan -=;ααααα2222sin 211cos 2sin cos 2cos -=-=-=;③辅助角公式:sin cos )a x b x x ϕ+=+,其中tan baϕ=特别的,有:sin cos )4x x x π+=+,sin cos )4x x x π-=-cos 2sin()6x x x π+=+cos 2sin()6x x x π-=- sin 2sin()3x x x π+=+,sin 2sin()3x x x π-=-④特殊结论:42675cos 15sin -== ,42615cos 75sin +==;tan152︒=tan 752︒=(5)正弦定理:2sin sin sin a b c R A B C=== (6)余弦定理:2222cos a b c bc A =+-,222b c cos 2a A bc+-=;2222cos b a c ac B =+-,222cos 2a c b B ac+-=;2222cos c a b ab C =+-,222cos 2a b c C ab+-=5.数列(1)等差数列①1n n a a d --=;()n m a a n m d -=- ②1(1)()n m a a n d a n m d =+-=+- ③11()(1)22n n n a a n n dS na +-==+; ④当m n p q +=+时,m n p q a a a a +=+;21(21)n n S n a -=- (2)等比数列①1n n a q a -=;n mn ma q a -= ②11n n m n m a a q a q --=⋅=⋅ ③11,1(1),11n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩④当m n p q +=+时,m n p q a a a a ⋅=⋅;6.不等式(1)若a ,b R ∈,则222a b ab +≥(当且仅当a b =时等号成立)若x ,y R +∈,则x y +≥x y =时等号成立)(2)若a ,b R ∈,则222()42a b a b ab ++≤≤(当且仅当a b =时等号成立) (3)若a ,b ,c R +∈,则有:a b c ++≥a b c ==时等号成立)7.平面向量(1)若11(,)a x y =,22(,)b x y = ①2a x y =+1212(,)a b x x y y +=++;1212(,)a b x x y y -=--;②1212a b x x y y ⋅=+;cos a b a b θ⋅=⋅(θ为a 与b 的夹角) (2)若11(,)a x y =,22(,)b x y =①当a ∥b 时,12210x y x y -=;②当a ⊥b 时,11220x y x y +=(3)AB BC AC +=;AB AC CB -= (4)2AB AC AD +=(D 为BC 中点)8.直线和圆(1)距离公式:①点111(,)P x y ,222(,)P x y 之间的距离:12PP =②点00(,)P x y 到直线0Ax By C ++=的距离:d =③平行线间的距离:10Ax By C ++=与20Ax By C ++=的距离:d =(2)位置关系①11y k x b =+与22y k x b =+平行:12k k =且12b b ≠;11y k x b =+与22y k x b =+垂直:121k k =-②1110A x B y C ++=与2220A x B y C ++=平行:1221A B A B =且1221AC A C ≠且1212B C C B ≠1110A x B y C ++=与2220A x B y C ++=垂直:12120A A B B +=(3)直线0Ax By C ++=和圆222()()x a y b R -+-=的位置关系:判断圆心(,)O a b 到直线0Ax By C ++=的距离d =与半径R 的大小关系当d R <时,直线和圆相交(有两个交点); 当d R =时,直线和圆相切(有且仅有一个交点); 当d R <时,直线和圆相离(无交点); (4)圆和圆的位置关系:判断圆心距12d OO =与两圆半径之和12R R +,半径之差12R R -(12R R >)的大小关系 当12d R R >+时,两圆相离,有4条公切线;当12d R R =+时,两圆外切,有3条公切线; 当1212R R d R R -<<+时,两圆相交,有2条公切线;当12d R R =-时,两圆内切,有1条公切线;当120d R R ≤<-时,两圆内含,没有公切线;9.圆锥曲线(1)离心率:ce a=(2)通径:过焦点作与焦点所在坐标轴垂直的直线与曲线两个交点的距离(3)焦点三角形:椭圆(或双曲线)上一点00(,)P x y 与两焦点形成的三角形,记12F PF θ∠=(4)渐近线:22221x y a b-=(0a >,0b >)的渐近线方程为b y x a =±与22221x y a b -=具有相同渐近线的双曲线方程:2222x y a bλ-= 等轴双曲线:实轴与虚轴长相等,22x y λ-=,离心率e =共轭双曲线:实虚对调,22221x y a b -=的共轭双曲线是22221y x b a-=(5)抛物线的焦半径: ①21cos A p p AF x α=+=-,21cos B p pBF x α=+=+②22sin A B p AF BF x x p α+=++=,112AF BF p+= (6)弦中点问题(点差法):直线y kx b =+与22221x y a b +=(0a b >>)交于A ,B 两点,AB 的中点为00(,)P x y ,则2020x b k a y =-⋅直线y kx b =+与22221x y a b -=(0a >,0b >)交于A ,B 两点,AB 的中点为00(,)P x y ,则2020x b k a y =⋅直线y kx b =+与22y px =交于A ,B 两点,AB 的中点为00(,)P x y ,则0pk y = (7)弦长公式21AB x =-=21AB y =-= 10.简易逻辑(1)逻辑联结词:或(∨),且(∧),非(⌝)若p q ∧为真,当且仅当p q 、均为真; 若p q ∨为假,当且仅当p q 、均为假;若p ⌝为真,当且仅当p 为假;(2)原命题:若A ,则B 命题的否定(非p ):若A ,则B ⌝(命题的否定条件不否,结论否) 逆命题:若B ,则A ;否命题:若A ⌝,则B ⌝(否命题是条件和结论全否)逆否命题:若B ⌝,则A ⌝ (3)若A B →,则A 是B 的充分条件,B 是A 的必要条件11.复数(1)21i =-,若z a bi =+①a 为实部,b为虚部,z =z a bi =-②z a bi =+且在复平面内对应的点的坐标为(,)a b (2)若1z a bi =+,2z c di =+,①12()()z z a c b d i +=+++;12()()z z a c b d i -=-+- ②12()()z z ac bd ad bc i ⋅=-++;122222()()()()z a bi c di ac bd bc adi z c di c di c d c d+-+-==++-++。
2014年高考(文科数学)知识点归纳总结
2014年高考(文科数学)知识点归纳总结一.常见的数集自然数集:N ;正整数集:N *或N +;整数集:Z ;有理数集:Q ;实数集:R 。
复数集:C 二.集合间基本关系的几个结论(1)A ⊆A (任何一个集合是本身子集).(2)∅⊆A (空集是任何集合的子集);(3)∅A (非空集合)(空集是任何非空集合的真子集) (4).若A 含有n 个元素,则A 的子集有2n 个,A 的非空子集有2n -1个,A 的非空真子集有2n -2个. 3.集合的运算及其性质(1)集合的交、并、补运算:交集:A ∩B ={x|x ∈A ,且x ∈B};并集:A ∪B ={x|x ∈A ,或x ∈B};补集:∁U A ={x|x ∈U ,且x ∉A}.U 为全集,∁U A 表示A 相对于全集U 的补集.(2)集合的交、并、补运算性质:①A ∪B =A ⇔B ②A ∩B =A ⇔A ③ A ∪(∁U A)=U ④A ∩(∁U A)=∅⑤⑤∁U (∁U A)=A.⑥∁U (A ∪B) =(∁U A) ∩ (∁U A)⑦∁U (A ∩B) =(∁U A) ∪ (∁U A) 三:映 射与函数1.映射:设A 、B 是两个非空集合,如果按某一种对应法则f ,对于A 中的每一个元素,在B 中都有唯一确定的元素与之对应,那么这样的单值对应叫做集合A 到集合B 的映射.A 中的元素叫做原象,B 中的相应元素叫做象。
在A 到B 的映射中,从A 中元素到B 中元素的对应,可以多对一,不可以一对多。
2.函数:设A ,B 是两个非空的数集,如果按照某种对应法则f ,使对于集合A 中的每一个元素x ,在集合B 中都有唯一的元素y 和它对应,那么这样的对应叫做从A 到B 的一个函数,记作y =f(x),x ∈A 函数三要素:定义域A :x 取值范围组成的集合。
值域B :y 取值范围组成的集合。
对应法则f :y 与x 的对应关系。
有解析式和图像和映射三种表示形式 3.函数与映射的区别在于:(1)两个集合必须是数集; (2)不能有剩余的象,即每个函数值y 都能找到相应的自变量x 与其对应。
2014高考数学知识点
2014高考数学知识点2014年的高考数学试卷是考查学生对数学知识点的掌握和应用能力的重要考试。
下面,我将为您详细介绍2014年高考数学试卷涉及的主要知识点。
知识点一:函数与方程在2014年的高考数学试卷中,函数与方程是一个非常重要的知识点。
学生需要掌握函数的概念、性质和图像,并能够解一元一次方程、一元二次方程、一次不等式、二次不等式等各种类型的方程。
此外,还需要了解函数与方程在实际问题中的应用,例如利用函数关系解决实际问题、求函数的最值等。
知识点二:三角函数三角函数也是2014年高考数学试卷中的重点内容。
学生需要了解正弦函数、余弦函数、正切函数等各种三角函数的定义、性质以及它们的图像。
同时,还需要能够解三角方程和三角不等式,并能够应用三角函数解决实际问题,如求角度、求距离等。
知识点三:数列与数学归纳法数列与数学归纳法也是2014年高考数学试卷中的重要知识点。
学生需要了解数列的概念、性质和求和公式,并能够判断数列的特点,如等差数列、等比数列等。
此外,还需要掌握数学归纳法的基本原理和应用,以解决数列问题。
知识点四:立体几何立体几何是2014年高考数学试卷中的必考知识点之一。
学生需要了解各种立体几何的基本概念,如球体、圆柱体、锥体等,并能够计算立体几何的表面积和体积。
此外,还需要掌握立体几何在实际问题中的应用,如计算容积、表面积等。
知识点五:概率与统计概率与统计也是2014年高考数学试卷中的重点知识点。
学生需要了解概率的基本概念、性质和计算方法,并能够解决概率问题,如计算事件的概率、计算样本空间等。
同时,还需要了解统计的基本概念和方法,如频数、频率、均值、中位数等,并能够分析和解释统计数据。
通过对2014年高考数学试卷的分析,我们可以看出,数学知识点的掌握是高考数学考试的核心要求。
只有对这些知识点有深入的理解和熟练的应用,才能在考试中取得好成绩。
因此,我们应该注重对这些知识点的学习和巩固,并进行大量的练习,以提高自己的数学水平和解题能力。
2014年高考数学重要易错知识点归纳总结(考试必胜)
2014年高考数学重要知识点归纳总结(考试必胜)一、集合、简易逻辑、函数1. 研究集合必须注意集合元素的特征即三性(确定,互异,无序); 已知集合A={x,xy,lgxy},集合 B={0,|x |,y},且A=B,则x+y=2. 研究集合,首先必须弄清代表元素,才能理解集合的意义。
已知集合M={y |y=x 2 ,x ∈R},N={y |y=x 2+1,x ∈R},求M ∩N ;与集合M={(x,y )|y=x 2 ,x ∈R},N={(x,y)|y=x 2+1,x ∈R}求M ∩N 的区别。
3. 集合 A 、B ,∅=⋂B A 时,你是否注意到“极端”情况:∅=A 或∅=B ;求集合的子集BA ⊆时是否忘记∅. 例如:()()012222<--+-x a x a 对一切R x ∈恒成立,求a 的取植范围,你讨论了a =2的情况了吗?4. 对于含有n 个元素的有限集合M, 其子集、真子集、非空子集、非空真子集的个数依次为,n 2,12-n,12-n .22-n 如满足条件}4,3,2,1{}1{⊂⊆M 的集合M 共有多少个5. 解集合问题的基本工具是韦恩图; 某文艺小组共有10名成员,每人至少会唱歌和跳舞中的一项,其中7人会唱歌跳舞5人会,现从中选出会唱歌和会跳舞的各一人,表演一个唱歌和一个跳舞节目,问有多少种不同的选法? 6. 两集合之间的关系。
},14{},,12{Z k k x x N Z k k x x M ∈±==∈+==7. (C U A)∩( C U B) = C U (A ∪B) (C U A)∪( C U B) = C U (A ∩B);B B A =I A B ⊆⇒; 8、可以判断真假的语句叫做命题. 逻辑连接词有“或”、“且”和“非”. p9、否 原命题与逆否命题同真同假;逆命题与否命题同真同假.10、你对映射的概念了解了吗?映射f :A →B 中,A 中元素的任意性和B 中与它对应元素的唯一性,哪几种对应能够成映射?11、函数的几个重要性质:①如果函数()x f y =对于一切R x ∈,都有()()x a f x a f -=+或f (2a-x )=f (x ),那么函数()x f y =的图象关于直线a x =对称.②函数()x f y =与函数()x f y -=的图象关于直线0=x 对称; 函数()x f y =与函数()x f y -=的图象关于直线0=y 对称; 函数()x f y =与函数()x f y --=的图象关于坐标原点对称.③若奇函数()x f y =在区间()+∞,0上是递增函数,则()x f y =在区间()0,∞-上也是递增函数. ④若偶函数()x f y =在区间()+∞,0上是递增函数,则()x f y =在区间()0,∞-上是递减函数. ⑤函数()a x f y +=)0(>a 的图象是把函数()x f y =的图象沿x 轴向左平移a 个单位得到的;函数()a x f y +=()0(<a 的图象是把函数()x f y =的图象沿x 轴向右平移a 个单位得到的;函数()x f y =+a )0(>a 的图象是把函数()x f y =助图象沿y 轴向上平移a 个单位得到的;函数()x f y =+a )0(<a 的图象是把函数()x f y =助图象沿y 轴向下平移a 个单位得到的.12、求一个函数的解析式和一个函数的反函数时,你标注了该函数的定义域了吗? 13、求函数的定义域的常见类型记住了吗?函数y=2)3lg()4(--x x x 的定义域是 ;复合函数的定义域弄清了吗?函数)(x f 的定义域是[0,1],求)(log 5.0x f 的定义域. 函数)(x f 的定义域是[b a ,],,0>->a b 求函数)()()(x f x f x F -+=的定义域14、含参的二次函数的值域、最值要记得讨论。
2014高考数学必修章节知识点归纳
2014年高考数学知识点归纳总结必修1数学知识点第一章、集合与函数概念 §1.1.1、集合1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。
集合三要素:确定性、互异性、无序性。
2、 只要构成两个集合的元素是一样的,就称这两个集合相等。
3、 常见集合:正整数集合:*N 或+N ,整数集合:Z ,有理数集合:Q ,实数集合:R .4、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系1、 一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。
记作B A ⊆.2、 如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B.3、 把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集. 4、 如果集合A 中含有n 个元素,则集合A 有n2个子集.§1.1.3、集合间的基本运算1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A . 2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A . 3、全集、补集?{|,}U C A x x U x U =∈∉且 §1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等. §1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值1、 注意函数单调性证明的一般格式:解:设[]b a x x ,,21∈且21x x <,则:()()21x f x f -=…§1.3.2、奇偶性1、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么就称函数()x f 为偶函数.偶函数图象关于y 轴对称.2、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么就称函数()x f 为奇函数.奇函数图象关于原点对称. 第二章、基本初等函数(Ⅰ) §2.1.1、指数与指数幂的运算1、 一般地,如果a x n=,那么x 叫做a 的n 次方根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学阶段复习讲义(3)
抽样与统计
一.课前预习:
1. 为了正确所加工一批零件的长度,抽测了其中200个零件的长度,
在这个问题中,200个零件的长度是 ( )
A .总体
B .个体是每一个学生
C .总体的一个样本
D .样
本容量
( 7,
3= 5样
为 6于 A D .组距
7. 下列叙述中:
①变量间关系有函数关系,还有相关关系 ②回归函数即用函数关系
近似地描述相互关系 ③121n
i n i x x x x ==+++∑ ;
④线性回归方程y bx a ∧=+,其中1
2
1()()()n i i
i n i
i x x y y b x x --
=-=--=-∑∑,---=x b y a ⑤线性回归方程一定可以近似地表示所有相关关系.
其中正确的有
( )
A. ①②③
B. ①②④⑤
C. ①②③④
D. ③④⑤
和
例3.为了解某地高一年级男生的身高情况,从其中的一个学校选取
(1)求出表中a,m的值.(2)估计该年级男生的平均身高;(3)画出频率分布直方图和频率折线图.
三.课后作业:
1.为了了解全校240名学生的身高情况,从中抽取40名学生进行测
量,下列说法正确的是
( )
A .总体是240
B .个体是每一个学生
C .样本是40名学生
D .样本容量是40
2.下列抽样中不是系统抽样的是 ( )
A .从标有1~15号的15个小球中任选3个作为样本,按从小号到大
号排序,随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入
样
B .工厂生产的产品,用传送带将产品送入包装车间前,检验人员从
传送带上每隔五分钟抽一件产品检验
C .搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到
调查到事先规定的调查人数为止
D .电影院调查观众的某一指标,通知每排(每排人数相等)座位号
为14的观众留下来座谈
3.某社区有400个家庭,其中高等收入家庭120户,中等收入家庭
180户,低收入家庭100户.为了调查社会购买力的某项指标,要从
中抽取一个容量为100的样本记作①;某校高一年级有12名女排球
运动员,要从中选出3人调查学习负担情况,记作②;那么,完成上
述2项调查应采用的抽样方法是 ( )
A .①用随机抽样法,②用系统抽样法
B .①用分层抽样法,
②用随机抽样法
C .①用系统抽样法,②用分层抽样法
D .①用分层抽样法,
②用系统抽样法
4.要从已编号(1~60)的60枚最新研制的某型导弹中随机抽取6
枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确
定所选取的6枚导弹的编号可能是( )
A .5,10,15,20,25,30
B .3,13,23,33,43,53
C .1,2,3,4,5,6
D .2,4,8,16,32,48
5.数据a 1,a 2,a 3,…,a n 的方差为σ2,则数据2a 1,2a 2,2a 3,…,
2a n 的方差为( )
A .22
B .σ 2
C .2σ 2
D .4σ2
6.一个容量为20的样本,已知某组的频率为0.25,则该组的频数为 ( )
A .5
B .15
C .2
D .80
7.一个容量为40的样本数据分组后组数与频数如下:[25,25.3),6;[25.3,25.6),4;[25.6,25.9),10;[25.9,26.2),8;[26.2,
26.5),8;[26.5,26.8),4;则样本在[25,25.9)上的频率为 ( )
A .203
B .101
C .21
D .4
1 8.设有一个直线回归方程为y =2-1.5x ,则变量x 增加一个单位时
9 |
A
()
A.0.14和0.37 B.1和1C.0.03和0.06 D.3和
图和累积频率分布图;(3)根据累积频率分布估计该校毕业生起始月薪低于2000元的概率;(4)估计起始月薪平均值.。