广东省从化市2014年中考一模数学试题
2014广州市从化中考数学一模试卷(含答案)-已排版
x图1 2014年广州从化市初三综合测试试卷(一模)数 学第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如果□×(12-)=1,则“□”内应填的实数是( * ). A .12B .2C . 12-D . 2-2.某种禽流感病毒变异后的直径为0.00000012米,将0.00000012写成科学记数法是( * ).A .61.210-⨯B . 71.210-⨯C .60.1210-⨯D .71.210⨯3.计算 a 2* 2a 3 的结果是( )A .52aB .62aC .68aD .58a4.下列物体中,俯视图为矩形的是( * ).5.一次函数32+=x y 的图象经过第( * )象限.A .一、二、三B .一、三、四C .一、二、四D .二、三、四6.在Rt △ABC 中,∠C=90°,cos B =21,若BC=1,则AC=( * ).A .1B .2C .3D .57.如图1,在Rt △ABC 中,∠ACB=90°,AC=8,BC=6,将△ABC 绕AC 所在的直线k 旋转一周得到一个旋转体,则该旋转体的侧面积为( * ). A .30π B . 40π C .50π D. 60π8.已知一组数据:-1,x ,1,2,0的平均数是1,则这组数据的中位数是( * ).A .1B .0C .-1D .29.如图2,A B ,是反比例函数2y x=的图象上的两点,AC BD , 都垂直于x 轴,垂足分别为C D AB ,,的延长线交x 轴于点E .若C D ,的坐标分别为(10),,(40),,则BDE △的面积与ACE △的 面积的比值是( * ).A .12B .14C .18D .116图310.如图3,正方形的边长为4,P 为正方形边上一动点,运动路线是A →D →C →B →A ,设P 点经过的路程为x ,以点A 、P 、D 为顶点的三角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是( * ).第二部分 非选择题 (共120分)二、填空题(本大题共6小题,每小题3分,满分18分.) 11.计算:6-= .12.因式分解:29x -=_____________.13.如图4,四边形ABCD 中,AD ∥BC ,BD 平分∠ABC ,若∠A=100°,则∠DBC= . 14.方程0415=-+xx 的解是: . 15.已知二次函数c bx ax y ++=2中,其函数y 与自变量x 之间的部分点A (x 1,y 1)、B (x 2,y 2)在这个二次函数的图象上,则当0<x 1<1,2<x 2<3时,y 1与y 2的大小关系是 .16.如图5,正方形ABCD 的边长为2cm,E 、F 分别是BC 、CD 的中点,连接BF 、DE ,则图中阴影部分的面积是 cm 2.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分) 解方程组:⎩⎨⎧==+1-25y x y x图5图418.(本小题满分9分)如图6,已知AC 与BD 交于点O,AO=CO,BO=DO.求证:AB ∥CD19.(本小题满分10分)从2011年5月1日起,公安部门加大了对“酒后驾车”的处罚力度,出台了不准酒后驾车的禁令.某记者在某区随机选取了几个停车场对开车的司机进行了相关的调查,本次调查结果有四种情况:A .有酒后开车; B .喝酒后不开车或请专业司机代驾;C .开车当天不喝酒;D .从不喝酒.将这次调查情况整理并绘制了如下尚不完整的统计图7(1)和图7(2),请根据相关信息,解答下列问题.(2)图7(1)中情况D 所在扇形的圆心角为 ,并补全图7(2); (3)在本次调查中,记者随机采访其中的一名司机,求他属情况C 的概率。
2014中考数学试卷(精细解析word版)--广东省
2014中考数学试卷(精细解析word版)--广东省2014年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)1.(3分)(2014•广东)在1,0,2,﹣3这四个数中,最大的数是()A.1 B.0 C. 2 D.﹣3考点:有理数大小比较.分析:根据正数大于0,0大于负数,可得答案.解答:解:﹣3<0<1<2,故选:C.点评:本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.2.(3分)(2014•广东)在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、不是轴对称图形,不是中心对称图形.故此选项错误;B、不是轴对称图形,也不是中心对称图形.故此选项错误;解答:解:x3﹣9x,=x(x2﹣9),=x(x+3)(x﹣3).故选D.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.5.(3分)(2014•广东)一个多边形的内角和是900°,这个多边形的边数是()A.4 B. 5 C. 6 D.7考点:多边形内角与外角.分析:根据多边形的外角和公式(n﹣2)•180°,列式求解即可.解答:解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=900°,解得n=7.故选D.点评:本题主要考查了多边形的内角和公式,熟记公式是解题的关键.6.(3分)(2014•广东)一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是()A.B.C.D.考点:概率公式.分析:直接根据概率公式求解即可.解答:解:∵装有7个只有颜色不同的球,其中3个红球,∴从布袋中随机摸出一个球,摸出的球是红球的概率=.故选B.点评:本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.7.(3分)(2014•广东)如图,▱ABCD中,下列说法一定正确的是()A.AC=BD B.AC⊥BD C.AB=CD D.AB=BC考点:平行四边形的性质.分析:根据平行四边形的性质分别判断各选项即可.解答:解:A、AC≠BD,故此选项错误;B、AC不垂直BD,故此选项错误;C、AB=CD,利用平行四边形的对边相等,故此选项正确;D、AB≠BC,故此选项错误;故选:C.点评:此题主要考查了平行四边形的性质,正确把握其性质是解题关键.8.(3分)(2014•广东)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为()A.B.C.D.考点:根的判别式.专题:计算题.分析:先根据判别式的意义得到△=(﹣3)2﹣4m>0,然后解不等式即可.解答:解:根据题意得△=(﹣3)2﹣4m>0,解得m<.故选B.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.9.(3分)(2014•广东)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17考点:等腰三角形的性质;三角形三边关系.分析:由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.解答:解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选A.点评:本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论.10.(3分)(2014•广东)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A.函数有最小值B.对称轴是直线x=C.当x<,y随x的增大而减小D.当﹣1<x<2时,y>0 考点:二次函数的性质.分析:根据抛物线的开口方向,利用二次函数的性质判断A;根据图形直接判断B;根据对称轴结合开口方向得出函数的增减性,进而判断C;根据图象,当﹣1<x<2时,抛物线落在x轴的下方,则y <0,从而判断D.解答:解:A、由抛物线的开口向下,可知a<0,函数有最小值,正确,故本选项不符合题意;B、由图象可知,对称轴为x=,正确,故本选项不符合题意;C、因为a>0,所以,当x<时,y随x的增大而减小,正确,故本选项不符合题意;D、由图象可知,当﹣1<x<2时,y<0,错误,故本选项符合题意.故选D.点评:本题考查了二次函数的图象和性质,解题的关键是利用数形结合思想解题.二、填空题(本大题6小题,每小题4分,共24分)11.(4分)(2014•广东)计算2x3÷x=2x2.考点:整式的除法.分析:直接利用整式的除法运算法则求出即可.解答:解:2x3÷x=2x2.故答案为:2x2.点评:此题主要考查了整式的除法运算法则,正确掌握运算法则是解题关键.12.(4分)(2014•广东)据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学记数法表示为 6.18×108.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将618 000 000用科学记数法表示为:6.18×108.故答案为:6.18×108.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(4分)(2014•广东)如图,在△ABC中,D,E分别是边AB,AC的中点,若BC=6,则DE=3.考点:三角形中位线定理.分析:由D、E分别是AB、AC的中点可知,DE是△ABC 的中位线,利用三角形中位线定理可求出DE.解答:解:∵D、E是AB、AC中点,∴DE为△ABC的中位线,∴ED=BC=3.故答案为3.点评:本题用到的知识点为:三角形的中位线等于三角形第三边的一半.14.(4分)(2014•广东)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为3.考点:垂径定理;勾股定理.分析:作OC⊥AB于C,连结OA,根据垂径定理得到AC=BC=AB=3,然后在Rt△AOC中利用勾股定理计算OC 即可.解答:解:作OC⊥AB于C,连结OA,如图,∵OC⊥AB,∴AC=BC=AB=×8=4,在Rt△AOC中,OA=5,∴OC===3,即圆心O到AB的距离为3.故答案为:3.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.15.(4分)(2014•广东)不等式组的解集是1<x <4.考点:解一元一次不等式组.专题:计算题.分析:分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.解答:解:,由①得:x<4;由②得:x>1,则不等式组的解集为1<x<4.故答案为:1<x<4.点评:此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.16.(4分)(2014•广东)如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于﹣1.考点: 旋转的性质.分析: 根据题意结合旋转的性质以及等腰直角三角形的性质得出AD =BC =1,AF =FC ′=AC ′=1,进而求出阴影部分的面积.解答: 解:∵△ABC 绕点A 顺时针旋转45°得到△A ′B ′C ′,∠BAC =90°,AB =AC =,∴BC =2,∠C =∠B =∠CAC ′=∠C ′=45°,∴AD ⊥BC ,B ′C ′⊥AB ,∴AD =BC =1,AF =FC ′=AC ′=1,∴图中阴影部分的面积等于:S △AFC ′﹣S △DEC ′=×1×1﹣×(﹣1)2=﹣1. 故答案为:﹣1.点评: 此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD ,AF ,DC ′的长是解题关键.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)(2014•广东)计算:+|﹣4|+(﹣1)0﹣()﹣1.考点: 实数的运算;零指数幂;负整数指数幂.分析:本题涉及零指数幂、负指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=3+4+1﹣2=6.点评:本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(6分)(2014•广东)先化简,再求值:(+)•(x2﹣1),其中x=.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x 的值代入进行计算即可.解答:解:原式=•(x2﹣1)=2x+2+x﹣1=3x+1,当x=时,原式=.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.(6分)(2014•广东)如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).考点:作图—基本作图;平行线的判定.分析:(1)根据角平分线基本作图的作法作图即可;(2)根据角平分线的性质可得∠BDE=∠BDC,根据三角形内角与外角的性质可得∠A=∠BDE,再根据同位角相等两直线平行可得结论.解答:解:(1)如图所示:(2)DE∥AC∵DE平分∠BDC,∴∠BDE=∠BDC,∵∠ACD=∠A,∠ACD+∠A=∠BDC,∴∠A=∠BDC,∴∠A=∠BDE,∴DE∥AC.点评:此题主要考查了基本作图,以及平行线的判定,关键是正确画出图形,掌握同位角相等两直线平行.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)(2014•广东)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)考点:解直角三角形的应用-仰角俯角问题.分析:首先利用三角形的外角的性质求得∠ABC的度数,得到BC的长度,然后在直角△BDC中,利用三角函数即可求解.解答:解:∵∠CBD=∠A+∠ACB,∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,∴∠A=∠ACB,∴BC=AB=10(米).在直角△BCD中,CD=BC•sin∠CBD=10×=5≈5×1.732=8.7(米).答:这棵树CD的高度为8.7米.点评:本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.21.(7分)(2014•广东)某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?考点:分式方程的应用.分析:(1)利用利润率==这一隐藏的等量关系列出方程即可;(2)用销售量乘以每台的销售利润即可.解答:解:(1)设这款空调每台的进价为x元,根据题意得:=9%,解得:x=1200,经检验:x=1200是原方程的解.答:这款空调每台的进价为1200元;(2)商场销售这款空调机100台的盈利为:100×1200×9%=10800元.点评:本题考查了分式方程的应用,解题的关键是了解利润率的求法.22.(7分)(2014•广东)某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有1000名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)用没有剩的人数除以其所占的百分比即可;(2)用抽查的总人数减去其他三类的人数,再画出图形即可;(3)根据这次被调查的所有学生一餐浪费的食物可以供200人用一餐,再根据全校的总人数是18000人,列式计算即可.解答:解:(1)这次被调查的同学共有400÷40%=1000(名);故答案为:1000;(2)剩少量的人数是;1000﹣400﹣250﹣150=200,补图如下;(3)18000×=3600(人).答:该校18000名学生一餐浪费的食物可供3600人食用一餐.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)(2014•广东)如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数y=(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB 面积相等,求点P坐标.考点:反比例函数与一次函数的交点问题.分析:(1)根据一次函数图象在上方的部分是不等式的解,观察图象,可得答案;(2)根据待定系数法,可得函数解析式;(3)根据三角形面积相等,可得答案.解答:解:(1)由图象得一次函数图象在上的部分,﹣4<x <﹣1,当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)设一次函数的解析式为y=kx+b,y=kx+b的图象过点(﹣4,),(﹣1,2),则,解得一次函数的解析式为y=x+,反比例函数y=图象过点(﹣1,2),m=﹣1×2=﹣2;(3)连接PC、PD,如图,设P(x,x+)由△PCA和△PDB面积相等得(x+4)=|﹣1|×(2﹣x﹣),x=﹣,y=x+=,∴P点坐标是(﹣,).点评:本题考查了反比例函数与一次函数的交点问题,利用了函数与不等式的关系,待定系数法求解析式.24.(9分)(2014•广东)如图,⊙O是△ABC的外接圆,AC 是直径,过点O作OD⊥AB于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F 点,连接PF.(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF是⊙O的切线.考点:切线的判定;弧长的计算.分析:(1)根据弧长计算公式l=进行计算即可;(2)证明△POE≌△ADO可得DO=EO;(3)连接AP,PC,证出PC为EF的中垂线,再利用△CEP∽△CAP找出角的关系求解.解答:(1)解:∵AC=12,∴CO=6,∴==2π;(2)证明:∵PE⊥AC,OD⊥AB,∠PEA=90°,∠ADO=90°在△ADO和△PEO中,,∴△POE≌△AOD(AAS),∴OD=EO;(3)证明:如图,连接AP,PC,∵OA=OP,∴∠OAP=∠OPA,由(1)得OD=EO,∴∠ODE=∠OED,又∵∠AOP=∠EOD,∴∠OPA=∠ODE,∴AP∥DF,∵AC是直径,∴∠APC=90°,∴∠PQE=90°∴PC⊥EF,又∵DP∥BF,∴∠ODE=∠EFC,∵∠OED=∠CEF,∴∠CEF=∠EFC,∴CE=CF,∴PC为EF的中垂线,∴∠EPQ=∠QPF,∵△CEP∽△CAP∴∠EPQ=∠EAP,∴∠QPF=∠EAP,∴∠QPF=∠OPA,∵∠OPA+∠OPC=90°,∴∠QPF+∠OPC=90°,∴OP⊥PF,∴PF是⊙O的切线.点评:本题主要考查了切线的判定,解题的关键是适当的作出辅助线,准确的找出角的关系.25.(9分)(2014•广东)如图,在△ABC中,AB=AC,AD⊥AB 于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.考点:相似形综合题.分析:(1)如答图1所示,利用菱形的定义证明;(2)如答图2所示,首先求出△PEF的面积的表达式,然后利用二次函数的性质求解;(3)如答图3所示,分三种情形,需要分类讨论,分别求解.解答:(1)证明:当t=2时,DH=AH=2,则H为AD的中点,如答图1所示.又∵EF⊥AD,∴EF为AD的垂直平分线,∴AE=DE,AF=DF.∵AB=AC,AD⊥AB于点D,∴AD⊥BC,∠B=∠C.∴EF∥BC,∴∠AEF=∠B,∠AFE=∠C,∴∠AEF=∠AFE,∴AE=AF,∴AE=AF=DE=DF,即四边形AEDF为菱形.(2)解:如答图2所示,由(1)知EF∥BC,∴△AEF∽△ABC,∴,即,解得:EF=10﹣t.S △PEF=EF•DH=(10﹣t)•2t=﹣t2+10t=﹣(t﹣2)2+10存在最大值,最大值为10,此时BP=3t=6.∴当t=2秒时,S△PEF(3)解:存在.理由如下:①若点E为直角顶点,如答图3①所示,此时PE∥AD,PE=DH=2t,BP=3t.∵PE∥AD,∴,即,此比例式不成立,故此种情形不存在;②若点F为直角顶点,如答图3②所示,此时PE∥AD,PF=DH=2t,BP=3t,CP=10﹣3t.∵PF∥AD,∴,即,解得t=;③若点P为直角顶点,如答图3③所示.过点E作EM⊥BC于点M,过点F作FN⊥BC于点N,则EM=FN=DH=2t,EM∥FN∥AD.∵EM∥AD,∴,即,解得BM=t,∴PM=BP﹣BM=3t﹣t=t.在Rt△EMP中,由勾股定理得:PE2=EM2+PM2=(2t)2+(t)2=t2.∵FN∥AD,∴,即,解得CN=t,∴PN=BC﹣BP﹣CN=10﹣3t﹣t=10﹣t.在Rt△FNP中,由勾股定理得:PF2=FN2+PN2=(2t)2+(10﹣t)2=t2﹣85t+100.在Rt△PEF中,由勾股定理得:EF2=PE2+PF2,即:(10﹣t)2=(t2)+(t2﹣85t+100)化简得:t2﹣35t=0,解得:t=或t=0(舍去)∴t=.综上所述,当t=秒或t=秒时,△PEF为直角三角形.点评:本题是运动型综合题,涉及动点与动线两种运动类型.第(1)问考查了菱形的定义;第(2)问考查了相似三角形、图形面积及二次函数的极值;第(3)问考查了相似三角形、勾股定理、解方程等知识点,重点考查了分类讨论的数学思想.。
广州从化初三一模数学试题及答案
DExyBAO C图2图12014年从化市初三综合测试试卷数 学第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如果□×(12-)=1,则“□”内应填的实数是( ). A .12 B .2 C . 12- D . 2-2.某种禽流感病毒变异后的直径为0.00000012米,将0.00000012写成科学记数法是( ).A .61.210-⨯B . 71.210-⨯C .60.1210-⨯D .71.210⨯3.计算 a 2 ⋅ 2a 3的结果是( )A .52aB .62aC .68aD .58a4.下列物体中,俯视图为矩形的是( * ).5.一次函数32+=x y 的图象经过第( )象限.A .一、二、三B .一、三、四C .一、二、四D .二、三、四6.在Rt △ABC 中,∠C=90°,cos B =21,若BC=1,则AC=( ).A .1B .2C .3D .5 7.如图1,在Rt △ABC 中,∠ACB=90°,AC=8,BC=6,将△ABC 绕AC所在的直线k 旋转一周得到一个旋转体,则该旋转体的侧面积为( ).A .30πB . 40πC .50π D. 60π8.已知一组数据:-1,x ,1,2,0的平均数是1,则这组数据的中位数是( ).A .1B .0C .-1D .29.如图2,A B ,是反比例函数2y x=的图象上的两点,AC BD ,都垂直于x 轴,垂足分别为C D AB ,,的延长线交x 轴于点E .若C D ,的坐标分别为(10),,(40),,则BDE △的面积与ACE △的 面积的比值是( ).A .12B .14C .18D .116图310.如图3,正方形的边长为4,P 为正方形边上一动点,运动路线是A→D→C→B→A ,设P 点经过的路程为x ,以点A 、P 、D 为顶点的三角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是( * ).第二部分 非选择题 (共120分)二、填空题(本大题共6小题,每小题3分,满分18分.) 11.计算:6-= . 12.因式分解:29x -=_____________.13.如图4,四边形ABCD 中,AD ∥BC ,BD 平分∠ABC ,若∠A=100°, 则∠DBC = . 14.方程0415=-+xx 的解是: . 15.已知二次函数c bx ax y ++=2中,其函数y 与自变量x 之间的部分对应值如下表所示:x … 0 1 2 3 … y … 5 2 1 2 …点A (x 1,y 1)、B (x 2,y 2)在这个二次函数的图象上,则 当0<x 1<1,2<x 2<3时,y 1与y 2的大小关系是 . 16.如图5,正方形ABCD 的边长为2cm ,E 、F 分别是BC 、CD 的中点,连接BF 、DE , 则图中阴影部分的面积是 cm 2.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分) 解方程组:⎩⎨⎧==+1-25y x y x18.(本小题满分9分)如图6,已知AC 与BD 交于点O,AO=CO,BO=DO .求证:AB ∥CDBCEA D F图5 图6图419.(本小题满分10分)从2011年5月1日起,公安部门加大了对“酒后驾车”的处罚力度,出台了不准酒后驾车的禁令.某记者在某区随机选取了几个停车场对开车的司机进行了相关的调查,本次调查结果有四种情况:A .有酒后开车; B .喝酒后不开车或请专业司机代驾;C .开车当天不喝酒;D .从不喝酒.将这次调查情况整理并绘制了如下尚不完整的统计图7(1)和图7(2),请根据相关信息,解答下列问题.(1)该记者本次一共调查了 名司机;(2)图7(1)中情况D 所在扇形的圆心角为 ,并补全图7(2); (3)在本次调查中,记者随机采访其中的一名司机,求他属情况C 的概率。
新人教版八年级数学上册八年级数学上15试卷。2分式的乘除计算题精选(含答案)
新人教版八年级数学上册八年级数学上15试卷。
2分式的乘除计算题精选(含答案)分式的乘除计算题精选(含答案)一、解答题(共21小题)1.(2014·淄博)计算:分析:原式约分即可得到结果。
解答:原式 =答案。
2.(2014·长春一模)化简:分析:原式利用除法法则变形,约分即可得到结果。
解答:原式 =答案。
3.(2012·漳州)化简:分析:先把各分式的分子和分母因式分解以及除法运算转化为乘法运算得到原式。
解答:原式 =然后约分即可。
答案。
4.(2012·南昌)化简:分析:根据分式的乘法与除法法,先把各分式的分子因式分解,再把分式的除法变为乘法进行计算即可。
解答:原式 = ÷1答案。
5.(2012·大连二模)计算:分析:首先将除法运算化为乘法运算,要注意先把分子、分母能因式分解的先分解,然后约分。
解答:原式 =答案。
6.(2011·六合区一模)化简:分析:本题考查的是分式的乘除法运算,按运算顺序,先算括号里面的,再做乘法运算,要注意先把分子、分母能因式分解的先分解,然后约分。
解答:原式 = ÷ (2分)答案。
省略部分内容)7.(2010·密云县)化简:化简分式 $\frac{2x^3-2x^2}{x^4-4x^3+4x^2}$。
解:原式 $=\frac{2x^2(x-1)}{x^2(x-2)^2}=\frac{2(x-1)}{(x-2)^2}$。
8.(2010·从化市一模)化简:化简分式 $\frac{2x^2-4x}{x^3-2x^2}$。
解:原式 $=\frac{2x(x-2)}{x^2(x-2)}=\frac{2}{x}$。
9.(2009·清远)化简:化简分式 $\frac{a^2-b^2}{a^2+b^2}$。
解:原式 $=\frac{(a+b)(a-b)}{a^2+b^2}$。
10.(2007·双柏县)化简:化简分式 $\frac{x^2-4}{x^2-1}\div\frac{x^2-3x+2}{x^2-x-2}$。
2014广东省中考数学卷(含标准答案)
2014年广东数学中考试卷年级姓名一、选择题(本大题10小题,每小题3分,共30分)1、在1,0,2,-3这四个数中,最大的数是()A、1B、0C、2D、-32、在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A、B、C、D、3、计算3a-2a的结果正确的是()A、1B、aC、-a D、-5a4、把39x x-分解因式,结果正确的是()A、()29x x-B、()23x x-C、()23x x+D、()()33x x x+-5、一个多边形的内角和是900°,这个多边形的边数是()A、10B、9C、8D、76、一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )A、47B、37C、34D、137、如图7图,□ABCD中,下列说法一定正确的是()A、AC=BD B、AC⊥BDC、AB=CDD、AB=BC题7图8、关于x的一元二次方程230x x m-+=有两个不相等的实数根,则实数m的取值范围为()A、94m>B、94m<C、94m=D、9-4m<9、一个等腰三角形的两边长分别是3和7,则它的周长为( )A、17 B、15 C、13D、13或1710、二次函数()20y ax bx c a=++≠的大致图象如题10图所示,关于该二次函数,下列说法错误的是()ABD题10图A 、函数有最小值 B、对称轴是直线x =21 C 、当x <21,y 随x 的增大而减小 D、当 -1 < x < 2时,y>0 二、填空题(本大题6小题,每小题4分,共24分)11、计算32x x ÷= ;12、据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学计数法表示为 ;13、如题13图,在△ABC 中,点D ,E 分别是AB,AC 的中点,若BC=6,则DE= ;题13图 题14图 14、如题14图,在⊙O 中,已知半径为5,弦AB 的长为8,那么圆心O 到AB 的距离为 ;15、不等式组2841+2x x x ⎧⎨-⎩<>的解集是 ; 16、如题16图,△AB C绕点A 顺时针旋转45° 得到△'''A B C ,若∠BAC=90°,AB=AC=2, 题16图则图中阴影部分的面积等于 。
广东省2014年中考数学试卷及答案解析(精品真题)
广东省2014年中考数学试卷及答案解析(精品真题) 学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2014年)在1,0,2,-3这四个数中,最大的数是( )A .1B .0C .2D .-32.(2014年)在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .3.(2014年)计算3a -2a 的结果正确的是( )A .1B .AC .-aD .-5a4.(2014年)把分解因式,结果正确的是( ) A .B .C .D .5.(2014年)一个多边形的内角和是900°,这个多边形的边数是( )A .10B .9C .8D .76.(2014年)一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )A .47B .37C .34D .137.(2014年)如图,在▱ABCD 中,下列说法一定正确的是( )A .AC =BDB .AC ⊥BD C .AB =CD D .AB =BC8.(2014年)关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为( )A .94m >B .94m <C .94m =D .9-4m < 9.(2014年)一个等腰三角形的两边长分别是3和7,则它的周长为( )A .17B .15C .13D .13或17 10.(2014年)二次函数()20y ax bx c a =++≠的大致图象如图所示,关于该二次函数,下列说法错误的是( )A .函数有最小值B .对称轴是直线x=C .当x<,y 随x 的增大而减小 D .当 -1 < x < 2时,y>0二、填空题11.(2014年)计算32x x ÷=_______;12.(2014年)据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学计数法表示为______;13.(2014年)如图,在△ABC 中,D ,E 分别是边AB ,AC 的中点,若BC=6,则DE=_______.14.(2014年)如图,在⊙O 中,已知半径为5,弦AB 的长为8,那么圆心O 到AB 的距离为_______;15.(2014年)不等式组2841+2x x x ⎧⎨-⎩<>的解集是________. 16.(2014年)如图,△ABC 绕点A 顺时针旋转45°得到△'''A B C ,若∠BAC=90°,AB=AC=________.17.(20140114(1)()2=_____.三、解答题18.(2014年)先化简,再求值:()221111x x x ⎛⎫+⋅- ⎪-+⎝⎭,其中x = 19.(2014年)如图,点D 在△ABC 的AB 边上,且∠ACD=∠A(1)作△BDC 的平分线DE ,交BC 于点E (用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE 与直线AC 的位置关系(不要求证明)20.(2014年)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A 处测得树顶C 的仰角为30°,然后沿AD 方向前行10m ,到达B 点,在B 处测得树顶C 的仰角高度为60°(A 、B 、D 三点在同一直线上).请你根据他们测量数据计算这棵树CD 的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)21.(2014年)某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价:(利润率=利润∶进价=(售价-进价):进价)(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?22.(2014年)某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐?23.(2014年)如图,已知A14,2⎛⎫-⎪⎝⎭,B(-1,2)是一次函数y kx b=+与反比例函数myx=(0,0m m <)图象的两个交点,AC ⊥x 轴于C ,BD ⊥y 轴于D .(1)根据图象直接回答:在第二象限内,当x 取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m 的值;(3)P 是线段AB 上的一点,连接PC ,PD ,若△PCA 和△PDB 面积相等,求点P 坐标.24.(2014年)如图,⊙O 是△ABC 的外接圆,AC 是直径,过点O 作OD ⊥AB 于点D ,延长DO 交⊙O 于点P ,过点P 作PE ⊥AC 于点E ,作射线DE 交BC 的延长线于F 点,连接PF .(1)若∠POC=60°,AC=12,求劣弧PC 的长;(结果保留π)(2)求证:OD=OE ;(3)求证:PF 是⊙O 的切线.25.(2014年)如图,在△ABC 中,AB=AC ,AD ⊥BC 点D ,BC=10cm ,AD=8cm ,点P 从点B 出发,在线段BC 上以每秒3cm 的速度向点C 匀速运动,与此同时,垂直于AD 的直线m 从底边BC 出发,以每秒2cm 的速度沿DA 方向匀速平移,分别交AB 、AC 、AD 于E 、F 、H ,当点P 到达点C 时,点P 与直线m 同时停止运动,设运动时间为t 秒(t >0).(1)当t=2时,连接DE 、DF ,求证:四边形AEDF 为菱形;(2)在整个运动过程中,所形成的△PEF 的面积存在最大值,当△PEF 的面积最大时,求线段BP 的长;(3)是否存在某一时刻t ,使△PEF 为直角三角形?若存在,请求出此时刻t 的值,若不存在,请说明理由.参考答案1.C【解析】试题分析:在有理数的比较大小中,正数大于负数;0大于负数小于正数;两个负数比较大小,绝对值越大的数反而越小;两个正数比较大小,绝对值越大的数就越大.本题中-3<0<1<2.考点:有理数的大小比较2.C【分析】根据轴对称图形和中心对称图形的定义进行分析即可.【详解】A、不是轴对称图形,也不是中心对称图形.故此选项错误;B、不是轴对称图形,也不是中心对称图形.故此选项错误;C、是轴对称图形,也是中心对称图形.故此选项正确;D、是轴对称图形,但不是中心对称图形.故此选项错误.故选C.【点睛】考点:1、中心对称图形;2、轴对称图形3.B【解析】试题分析:将同类项的系数相加减作为结果的系数,字母和字母的指数不变.原式=3a-2a=(3考点:合并同类项计算.4.D【解析】试题分析:x3﹣9x,=x(x2﹣9),=x(x+3)(x﹣3).故选D.考点:1、提公因式法分解因式;2、公式法分解因式5.D【详解】解:根据多边形的内角和公式可得:(n-2)×180°=900°,解得:n=7.故选D6.B【解析】袋中一共7个球,摸到的球有7种可能,而且机会均等,其中有3个红球,因此摸到红球的概率为37,故选B.7.C【解析】试题分析:平行四边形的两组对边分别平行且相等,对角线互相平分. 考点:平行四边形的性质.8.B【分析】根据方程有两个不等的实数根,故△>0,得不等式解答即可.【详解】试题分析:由已知得△>0,即(﹣3)2﹣4m>0,解得m<94.故选B.此题考查了一元二次方程根的判别式.9.A【详解】试题分析:当3为腰时,则3+3=6<7,不能构成三角形,则等腰三角形的腰长为7,底为3,则周长为:7+7+3=17.考点:等腰三角形的性质10.D【解析】试题分析:A、由抛物线的开口向上,可知a>0,函数有最小值,正确,故本选项不符合题意;B、由图象可知,对称轴为x=,正确,故本选项不符合题意;C、因为a>0,所以,当x<时,y随x的增大而减小,正确,故本选项不符合题意;D、由图象可知,当﹣1<x<2时,y<0,错误,故本选项符合题意.故选D.考点:二次函数的性质11.2x2【解析】试题分析:2x3÷x=2x2考点:单项式除法12.6.18×108【详解】试题分析:科学计数法是指a×10n,1≤a<10,n为原数的整数位数减一.考点:科学计数法13.3 .【解析】试题分析:由D、E分别是AB、AC的中点可知,DE是△ABC的中位线,利用三角形中位线定理可求出ED=12BC=3.故答案为3. 考点: 三角形中位线定理.14.3【解析】试题分析:过点O 作OC ⊥AB 于C ,连结OA ,如图,∵OC ⊥AB ,∴AC=BC=AB=×8=4,在Rt △AOC 中,OA=5,∴OC==3, 即圆心O 到AB 的距离为3.考点:1、垂径定理;2、勾股定理15.14x <<【详解】试题分析:, 由①得:x <4;由②得:x >1,则不等式组的解集为1<x <4.考点:解一元一次不等式组16【分析】根据题意结合旋转的性质以及等腰直角三角形的性质得出AD=12BC=1,AF=FC ′=sin45°AC ′=2AC ′=1,进而求出阴影部分的面积.【详解】解:∵△ABC 绕点A 顺时针旋转45°得到△A ′B ′C ′,∠BAC=90°, ∴BC=2,∠C=∠B=∠CAC ′=∠C ′=45°,∴AD ⊥BC ,B ′C ′⊥AB ,∴AD=12BC=1,AF=FC ′=sin45°AC ′=2AC ′=1,∴图中阴影部分的面积等于:S △AFC ′﹣S △DEC ′=12×1×1﹣121)21.1.【点睛】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD ,AF ,DC ′的长是解题关键.17.6.【详解】解:原式=3+4+1﹣2=6.故答案为6.【点睛】实数的运算;零指数幂;负整数指数幂.18.3x+1【解析】试题分析:首先将括号里面的分式进行通分,然后根据分式的乘法法则进行计算.试题解析:原式=[2(1)1(1)(1)(1)(1)x x x x x x +-++-+-]⋅(x+1)(x -1)=221(1)(1)x x x x ++-+-⋅(x+1)(x -1)=3x+1当x=13时,原式=3x+1=3×13考点:分式的化简求值.19.(1)作图见解析;(2)DE ∥AC.【分析】(1)、根据角平分线的画法画出角平分线;(2)、根据角平分线的性质和三角形外角的性质得出DE 和AC 平行.【详解】解:(1)、如图所示:(2)DE ∥AC∵DE 平分∠BDC ,∴∠BDE=12∠BDC , ∵∠ACD=∠A ,∠ACD+∠A=∠BDC ,∴∠A=12∠BDC , ∴∠A=∠BDE ,∴DE ∥AC .(2)、DE ∥AC.考点:(1)、角平分线的画法;(2)、角平分线的性质.20.这棵树CD 的高度为8.7米【解析】试题分析:首先利用三角形的外角的性质求得∠ACB 的度数,得到BC 的长度,然后在直角△BDC 中,利用三角函数即可求解.试题解析:∵∠CBD=∠A+∠ACB ,∴∠ACB=∠CBD ﹣∠A=60°﹣30°=30°,∴∠A=∠ACB ,∴BC=AB=10(米).在直角△BCD 中,CD=BCsin ∠CBD=105×1.732=8.7(米). 答:这棵树CD 的高度为8.7米.考点:解直角三角形的应用21.(1)这款空调每台的进价为1200元;(2)商场销售这款空调机100台的盈利为10800元.【分析】(1)由“利润率=利润∶进价=(售价-进价):进价”这一隐藏的等量关系列出方程即可;(2)用销售量乘以每台的销售利润即可.【详解】解:(1)设这款空调每台的进价为x 元,根据题意得: 16350.8x x⨯-=9%, 解得:x=1200,经检验:x=1200是原方程的解.答:这款空调每台的进价为1200元;(2)商场销售这款空调机100台的盈利为:100×1200×9%=10800元.考点:分式方程的应用22.(1)1000;(2)图形见解析;(3)该校18000名学生一餐浪费的食物可供3600人食用一餐.【分析】(1)用没有剩的人数除以其所占的百分比即可;(2)用抽查的总人数减去其他三类的人数,再画出图形即可;(3)根据这次被调查的所有学生一餐浪费的食物可以供200人用一餐,再根据全校的总人数是18000人,列式计算即可.【详解】解:(1)这次被调查的同学共有400÷40%=1000(名)故答案为:1000(2)剩少量的人数是:1000-400-250-150=200(名),(3)()2001803601000人⨯= 答:该校1800名学生一餐浪费的食物可供360人食用一餐.23.(1)当﹣4<x <﹣1时,一次函数大于反比例函数的值;(2)一次函数的解析式为y=x+;m=﹣2;(3)P 点坐标是(﹣,).【详解】 试题分析:(1)根据一次函数图象在反比例函数图象上方的部分是不等式的解,观察图象,可得答案;(2)根据待定系数法,可得函数解析式以及m 的值;(3)设P 的坐标为(x ,x+)如图,由A 、B 的坐标可知AC=,OC=4,BD=1,OD=2,易知△PCA 的高为x+4,△PDB 的高(2﹣x ﹣),由△PCA 和△PDB 面积相等得,可得答案. 试题解析:(1)由图象得一次函数图象在反比例函数图象上方时,﹣4<x <﹣1, 所以当﹣4<x <﹣1时,一次函数大于反比例函数的值;(2)设一次函数的解析式为y=kx+b ,y=kx+b的图象过点(﹣4,),(﹣1,2),则,解得一次函数的解析式为y=x+,反比例函数y=图象过点(﹣1,2),m=﹣1×2=﹣2;(3)连接PC、PD,如图,设P的坐标为(x,x+)如图,由A、B的坐标可知AC=,OC=4,BD=1,OD=2,易知△PCA的高为x+4,△PDB的高(2﹣x﹣),由△PCA和△PDB 面积相等得××(x+4)=×|﹣1|×(2﹣x﹣),x=﹣,y=x+=,∴P点坐标是(﹣,).考点:反比例函数与一次函数的交点问题24.(1)劣弧PC 的长为2π;(2)证明见解析;(3)证明见解析.【分析】(1)由弧长公式180n r l π=进行计算即可; (2)证明△POE ≌△ADO 可得DO=EO ;(3)连接AP ,PC ,证出PC 为EF 的中垂线,再利用△CEP ∽△CAP 找出角的关系求解.【详解】(1)∵AC=12,∴CO=6,∴劣弧PC 的长为606l 180π⋅⋅==2π; (2)∵ OD ⊥AB ,PE ⊥AC∴ ∠ADO=∠PEO=90°在△ADO 和△PEO 中,ADO PEO AOD POE OA OP ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ △ADO ≌△PEO∴ OD=OE(3)连接PC ,由AC 是直径知BC ⊥AB ,又OD ⊥AB ,∴ PD ∥BF∴ ∠OPC=∠PCF ,∠ODE=∠CFE由(2)知OD=OE ,则∠ODE=∠OED ,又∠OED=∠FEC∴ ∠FEC=∠CFE∴ EC=FC由OP=OC 知∠OPC=∠OCE∴ ∠PCE =∠PCF在△PCE 和△PFC 中,EC FC PCE PCF PC PC =⎧⎪∠=∠⎨⎪=⎩∴ △PCE ≌△PFC∴ ∠PFC =∠PEC=90°由∠PDB=∠B=90°可知∠ODF=90°即OP ⊥PF∴ PF 是⊙O 的切线考点:1、切线的判定;2、弧长的计算;3、三角形全等的判定与性质.25.(1)证明见解析;BP=6cm ;当或时,△PEF 为直角三角形.【解析】试题分析:(1)由对角线互相垂直平分的四边形是菱形进行证明;(2)首先求出△PEF 的面积的表达式,然后利用二次函数的性质求解;(3)分三种情形,需要分类讨论,分别求解.试题解析:(1)当t=2时,DH=AH=4,由AD ⊥AB ,AD ⊥EF 可知EF ∥BC,∴EH=BD ,FH=CD , 又∵ AB=AC ,AD ⊥BC∴ BD=CD∴ EH=FH∴ EF 与AD 互相垂直平分∴ 四边形AEDF 为菱形(2)依题意得DH=2t,AH=8-2t,BC=10cm,AD=8cm,由EF∥BC知△AEF∽△ABC∴即,解得EF=10-t∴即△PEF的面积存在最大值10cm2,此时BP=3×2=6cm.(3)过E、F分别作EN⊥BC于N,EM⊥BC于M,易知EF=MN=EN=FM,由AB=AC可知BN=CM=在Rt△ACD和Rt△FCM中,由,即,解得FM=EN=2t,又由BP=3t知CP=10-3t,,则,分三种情况讨论:①若∠EPF=90°,则,解得,(舍去)②若∠EFP=90°,则,解得,(舍去)③若∠FEP=90°,则,解得,(均舍去)综上所述,当或时,△PEF为直角三角形.考点:1、菱形的判定;2、相似三角形;3、二次函数的性质;4、分类讨论的数学思想.。
最新2014年广东省中考模拟试题数学试卷
校内学科排序: 评 审 编 号:
2014 年佛山市高中阶段招生考试模拟试题数学科试卷
说 明:本试卷分为第 I 卷(选择题)和第 II 卷(非选择题)两部分,共 6 页,满分 120 分,考试时间 100 分钟。
注意事项:
1、 试卷的选择题和非选择题都在答题卡上作答,不能答在试卷上
2、 要作图(含辅助线)或画表,先用铅笔进行画线、绘图,再用黑色字迹的钢笔或签 字等描黑。
第 I 卷(选择题 共 30 分)
一.选择题(本大题共 10 小题,每小题 3 分,共 30 分。在每小题给出的四个选项中, 只有一项是符合题目要求的。答案 选项填涂在答题卡上。)
1. 5 的倒数是(
A、 5
2. (2a 2 )3 等于( )
A.6 a5
B、5
B.6 a6
)
C、 1 5
C.8 a5
16.先化简,再求值: x2 2x 1 3 ,其中 x 2 . x2 x x
17.四张扑克牌的牌面如图①所示,将扑克牌洗均匀后,如图②背面朝上放置在桌面上。 (1)若随机抽取一张扑克牌,则牌面数字恰好 为 5 的概率是_____________; (2)规定游戏规则如下:若同时随机抽取两张 扑克牌,抽到两张牌的牌面数字之和是偶数为胜; 反之,则为负。你认为这个游戏是否公平?请说明理由。
h
O A .
h
tO B .
tO C .
h
10.图 1 是三个直立于水平面上的形状完全相同的几何体(下底面为圆面,单位:cm)。将它们拼成 如图 2 的新几何体,则该新几何体的体积为( )
4
4
A.48 cm3
6
4
4
图1
6
2014广一模(理数)word试题·答案
广州市2014届普通高中毕业班综合测试(一)数学(理科)本试卷共4页,21小题, 满分150分.考试用时120分钟 注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号。
用黑色字迹钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. ()()22221211236n n n n ++++++=()*n ∈N . 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知i 是虚数单位,若()2i 34i m +=-,则实数m 的值为 A .2- B .2± C .2±D .22.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若2C B =,则c b为 A .2sin C B .2cos B C .2sin B D .2cos C3.圆()()22121x y -+-=关于直线y x =对称的圆的方程为A .()()22211x y -+-= B .()()22121x y ++-= C .()()22211x y ++-= D .()()22121x y -++= 4.若函数()21f x x ax =++的定义域为实数集R ,则实数a 的取值范围为A .()2,2-B .()(),22,-∞-+∞C .(][),22,-∞-+∞ D .[]2,2-5.某中学从某次考试成绩中抽取若干名学生的分数,并绘制成如图1的频率分布直方图.样本数据分组为[)50,60,[)60,70,[)70,80,[)80,90,[]90,100.若用分层抽样的方法从样本中抽取分数在[]80,100范围内的数据16个, 则其中分数在[]90,100范围内的样本数据有A .5个B .6个C .8个D .10个 6.已知集合32A x x x ⎧⎫=∈∈⎨⎬-⎩⎭Z Z 且,则集合A 中的元素个数为 A .2 B .3 C .4D .57.设a ,b 是两个非零向量,则使a b =a b 成立的一个必要非充分条件是 A .=a b B .⊥a b C .λ=a b()0λ> D .ab8.设a ,b ,m 为整数(0m >),若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余,记为()mod a b m ≡.若0122202020202020C C 2C 2C 2a =+⋅+⋅++⋅,()mod10a b ≡,则b 的值可以是A .2011B .2012C .2013D .2014二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.若不等式1x a -<的解集为{}13x x <<,则实数a 的值为 .10.执行如图2的程序框图,若输出7S =,则输入k ()*k ∈N 的值为 .11.一个四棱锥的底面为菱形,其三视图如图3所示,则这个四棱锥的体积是 .11 正(主)视图 侧(左)视图图3俯视图452 2图2开始 结束输入k否 是输出S 1n n =+?n k < 0,0n S ==log y x =12n S S -=+图1分数频率/组距50 60 70 80 90 100 0.0100.015 0.020 0.025 0.030 012.设α为锐角,若3cos 65απ⎛⎫+= ⎪⎝⎭,则sin 12απ⎛⎫-= ⎪⎝⎭ .13.在数列{}n a 中,已知11a =,111n n a a +=-+,记n S 为数列{}n a 的前n 项和,则2014S = .(二)选做题(14~15题,考生只能从中选做一题) 14.(坐标系与参数方程选做题)在极坐标系中,直线()sin cos a ρθθ-=与曲线2cos 4sinρθθ=-相交于A ,B 两点,若AB =23,则实数a 的值为 .15.(几何证明选讲选做题)如图4,PC 是圆O 的切线,切点为C ,直线PA 与圆O 交于A ,B 两点,APC ∠的平分线分别交弦CA ,CB 于D ,E两点,已知3PC =,2PB =,则PEPD的值为 .题号 1 23 4 5 67 8答案 A B A D B C D A二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题,满分30分.其中14~15题是选做题,考生只能选做一题.题号 9 10 11 12131415答案23421020112-1-或5-23PEABC D 图4O。
2014年广州中考数学10、16题汇编(含答案)
2014年广州中考数学10、16题汇编2014年从化一模1010.如图3,正方形的边长为4,P 为正方形边上一动点,运动路线是A→D→C→B→A,设P 点经过的路程为x ,以点A 、P 、D 为顶点的三角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是( * ). 答案:B2014年番禺一模1010.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论中不.正确..的是(※). (A )0c < (B )y 的最小值为负值(C )当1x >时,y 随x 的增大而减小 (D )3x =是关于x 的方程20ax bx c ++=的一个根答案:C2014年白云一模1010.将边长为3cm 的正三角形的各边三等分,以这六个分点为顶点构成一个正六边形,再顺次连结这个正六边形的各边中点,又形成一个新正六边形,则这个新正六边形的面积等于(*) 2 2 2 (D)28cm 答案:B第10题图2014萝岗一模1010.如图,在菱形ABCD中,0110A∠=,E、F分别是边AB和BC的中点,于P,则(D).A.35°B.45°C.50°D.55°2014天河一模1410. Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于E,OD⊥BC交⊙O于D,DE交BC于F,点P 为CB延长线上的一点,PE延长交AC于G,PE=PF.小华得出3个结论:①GE=GC;②AG=GE;③OG∥BE.其中正确的是(D).A.①② B. ①③ C. ②③ D. ①②③2014增城一模1010.如图,边长分别为4和8的两个正方形ABCD和CEFG并排放在一起,连结BD并延长交EG于点T,交FG于点P,则=GT(*B)A.2B.22C.2D.12014越秀一模1010.如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交与点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;如此类推,则AP6的长为(A).A.512532⨯B.69352⨯C.614532⨯D.711352⨯第10题图2014南沙一模102014黄埔一模1010.关于x 的一元二次方程x 2+kx -1=0的根的情况是(B )(A )有两个不相等的同号实数根 (B )有两个不相等的异号实数根 (C )有两个相等的实数根 (D )没有实数根 2014从化一模1616.如图5,正方形ABCD 的边长为2cm ,E 、F 分别是BC 、CD 的中点,连接BF 、DE , 则图中阴影部分的面积是 cm 2. 答案:832014番禺一模1616.已知圆锥的底面半径为10cm ,侧面积为2260cm π,设圆锥的母线与高的夹角为θ,则cos θ的值为.答案:12132014白云一模1616.如图2,在梯形ABCD中,AD∥BC,∠B=90°,∠C=45°,AD=2,BC=8,E为图5BA Ox第16题AB的中点,EF∥DC交BC于点F.则EF的长= * . 答案:2014天河一模162014萝岗一模1616.一圆锥模型的底面半径为5cm ,母线长为7cm ,那么它的侧面积是﹡cm 2.(结果不取近似值). 答案:35π 2014增城一模1616.如图,AB 是⊙O 的直径,C 、D 是⊙O 上的点,︒=∠30CDB ,过点C 作⊙O 的切线交AB 的延长线于E ,则E sin 的值为*21**.2014越秀一模1616.已知α ,β是关于x 的一元二次方程x 2+(2m +3)x +m 2=0的两个不相等的实数根,且满足βα11+=﹣1,则m 的值是3.2014南沙一模1616.如图,矩形ABCD 中,AB=6,BC=8,E 是BC 边上的一定点,P 是CDA BCDEF 图2边上的一动点(不与点C、D重合),M,N分别是AE、PE的中点,记MN的长度为a,在点P运动过程a<<.中,a不断变化,则a的取值范围是452014年黄埔一模1616.已知等腰△ABC中,AB=AC,D是BC边上一点,连接AD,若△ACD和△ABD都是等腰三角形,则∠C的度数是45或36 .。
2014广东中考数学模拟
2014年广东省初中毕业生学业考试模拟卷数 学一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.(2010•菏泽)负实数a 的倒数是( )A . ﹣aB .C . ﹣D . a2.港、珠、澳大桥工程估计投资726亿元,用科学记数法表示正确的是( )A . 7.26×1010元B . 72.6×109元C . 0.726×1011元D . 7.26×1011元3.(2013•盐城)下面的几何体中,主视图不是矩形的是( )A .B .C .D .4.下列运算中,错误的是( )A .B .C .D .5.(2011•昭通)将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为( )A . 45°B . 60°C . 75°D . 85°6.(2013•盐城)某公司10名职工5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( )工资(元)2000 2200 2400 2600 人数(人)1 3 4 2A . 2400元、2400元B . 2400元、2300元C . 2200元、2200元D . 2200元、2300元7.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .8.(2013•雅安)二次函数y=ax 2+bx+c 的图象如图所示,则一次函数y=ax+b 与反比例函数y=在同一平面直角坐标系中的大致图象为( )A .B .C .D .9.(2013•营口)不等式组的解集在数轴上表示正确的是( ) A . B . C . D .10.(2013•泸州)函数自变量x 的取值范围是( ) A . x ≥1且x≠3B . x ≥1C . x ≠3D . x >1且x≠3二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应位置上.11.(2013•南平)分解因式:3a 2+6a+3= _________ .12.(2013•苏州)方程=的解为 _________ .13.(2013•荆门)如图,在Rt △ABC 中,∠ACB=90°,D 是AB 的中点,过D 点作AB 的垂线交AC 于点E ,BC=6,sinA=,则DE= _________ .14.(2013•铁岭)如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为_________.15.(2011•成都)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是_________.16.(2006•威海)如图,一圆与平面直角坐标系中的x轴切于点A(8,0),与y轴交于点B(0,4),C(0,16),则该圆的直径为_________.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(2011•武汉)解方程:x2+3x+1=0.18.先化简,再求值:,其中x=.19.(2012•宜昌)如图,已知E是平行四边形ABCD的边AB上的点,连接DE.(1)在∠ABC的内部,作射线BM交线段CD于点F,使∠CBF=∠ADE;(要求:用尺规作图,保留作图痕迹,不写作法和证明)(2)在(1)的条件下,求证:△ADE≌△CBF.四、解答题(二)(本大题3小题,每小题7分,共21分)20.某市从今年1月1日起调整居民用水每立方米的价格,每立方米价格上涨,小丽家去年12月份的水费是15元,而今年5月份的水费是30元,已知小丽家今年5月份的用水量比去年12月份的用水量多5立方米,求该市去年和今年居民用水每立方米的价格各是多少?21.(2012•湘西州)如图,O是菱形ABCD对角线AC与BD的交点,CD=5cm,OD=3cm;过点C作CE∥DB,过点B作BE∥AC,CE与BE相交于点E.(1)求OC的长;(2)求证:四边形OBEC为矩形;(3)求矩形OBEC的面积.22.(2013•泉州)四张小卡片上分别写有数字1、2、3、4,它们除数字外没有任何区别,现将它们放在盒子里搅匀.(1)随机地从盒子里抽取一张,求抽到数字3的概率;(2)随机地从盒子里抽取一张,将数字记为x,不放回再抽取第二张,将数字记为y,请你用画树状图或列表的方法表示所有等可能的结果,并求出点(x,y)在函数y=图象上的概率.四、解答题(三)(本大题3小题,每小题9分,共27分)23.已知:关于x的方程x2﹣kx﹣2=0.(1)求证:无论k为何值时,方程有两个不相等的实数根.(2)设方程的两个实数根为x1,x2,若2(x1+x2)>x1x2,求k的取值范围.(3)设方程的两个实数根为x1,x2,且满足,求k的值.24.(2013•义乌市)已知直线PD垂直平分⊙O的半径OA于点B,PD交⊙O于点C、D,PE是⊙O的切线,E为切点,连结AE,交CD于点F.(1)若⊙O的半径为8,求CD的长;(2)证明:PE=PF;(3)若PF=13,sinA=,求EF的长.25.(2012•莱芜)如图,顶点坐标为(2,﹣1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点.(1)求抛物线的表达式;(2)设抛物线的对称轴与直线BC交于点D,连接AC、AD,求△ACD的面积;(3)点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F.问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似?若存在,求点E的坐标;若不存在,请说明理由.。
2014年广东省中考数学试卷及答案
2014年广东省中考数学试卷一、选择题(共10小题,每小题3分,满分30分) 1.(3分)(2014•广东)若二次根式有意义,则x 的取值范围是( )2.(3分)(2014•广东)下列标志中,可以看作是中心对称图形的是( )A B C D 3.(根据表中数据可知,全班同学答对的题数所组成的样本的中位数和众数分别是( ) A .8、8 B . 8、9 C .9、9 D .9、8 4.(3分)(2014•广东)下列函数:①y x =-;②2y x =;③1y x=-;④2y x =.当0x <时,y 随x 的增大而减小的函数有( )A .1 个B .2 个C .3 个D .4 个 5.(3分)(2014•广东)圆锥的底面直径是80cm ,母线长90cm ,则它的侧面展开图的圆心角是( ) A. 320° B. 40° C. 160° D. 80° 6.(3分)(2014•广东)下列四个几何体中,俯视图为四边形的是( )A B C D7.(3分)(2014•广东)据报道,2013年第一季度,广东省实现地区生产总值约1260 000 000 000元,用科学记数法表示为( )A. 0.126×1012元B. 1.26×1012元C. 1.26×1011元D.12.6×1011元 8.(3分)(2014•广东)已知实数a 、b ,若a >b ,则下列结论正确的是( )A. a ﹣5<b ﹣5B. 2+a <2+bC.D. 3a >3b9.(3分)(2014•广东)如图,AC ∥DF ,AB ∥EF ,点D 、E 分别在AB 、AC 上,若∠2=50°,则∠1的大小是( )A.30°B.40° C .50° D.60°10.(3分)(2014•广东)已知k1<0<k2,则函数y=k1x﹣1和y=的图象大致是()A B C D二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应位置上. 11.(4分)(2014•广东).计算:2()a a-÷=.12.(4分)(2014•广东)如图1,在O⊙中,20ACB∠=°,则AOB∠=_______度.13.(4分)(2014•广东)如图2 所示,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O至少经过____________次旋转而得到,每一次旋转_______度.14.(4分)(2014•广东)小张和小李去练习射击,第一轮10发子弹打完后,两人的成绩如图3所示.根据图中的信息,小张和小李两人中成绩较稳定的是.15.(4分)(2014•广东)如图4,把一个长方形纸片沿EF折叠后,点D C、分别落在11D C、的位置.若65EFB∠=°,则1AED∠等于_______度.16.(4分)(2014•广东)如图5,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有个,第n幅图中共有个.C图1……第1幅第2幅第3幅第n幅图5图3A E DCFBD1C1图4三、解答题(一)(本大题3小题,每小题5分,共15分)17.(5分)(2014•广东)如图 6,已知线段AB ,分别以A B 、为圆心,大于12AB长为半径画弧,两弧相交于点C 、Q ,连结CQ 与AB 相交于点D ,连结AC ,BC .那么: (1)∠ ADC =________度; (2)当线段460AB ACB =∠=,°时,ACD ∠= ______度,ABC △的面积等于_________(面积单位). 18.(5分)(2014•广东):1012)4cos30|3-⎛⎫++- ⎪⎝⎭°19.(5分)(2014•广东)先化简,再求值:2224441x x xx x x x --+÷-+-,其中32x =.四、解答题(二)(本大题3小题,每小题8分,共24分) 20.(8分)(2014•广东)如图 8,梯形ABCD 中,AB CD ∥,点F 在BC 上,连DF 与AB 的延长线交于点G .(1)求证:CDF BGF △∽△;(2)当点F 是BC 的中点时,过F 作EF CD ∥交AD 于点E ,若6cm 4cm AB EF ==,,求CD 的长.CBDA 图6D C F EA G图821.(8分)(2014•广东)“五·一”假期,某公司组织部分员工到A、B、C三地旅游,公司购买前往各地的车票种类、数量绘制成条形统计图,如图9.根据统计图回答下列问题:(1)前往A地的车票有_____张,前往C地的车票占全部车票的________%;(2)若公司决定采用随机抽取的方式把车票分配给100 名员工,在看不到车票的条件下,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小王抽到去B地车票的概率为______;(3)若最后剩下一张车票时,员工小张、小李都想要,决定采用抛掷一枚各面分别标有数字1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小张掷得着地一面的数字比小李掷得着地一面的数字大,车票给小张,否则给小李.”试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?22.(8分)(2014•广东)如图10,已知抛物线233y x x=-+x轴的两个交点为A B、,与y轴交于点C.(1)求A B C,,三点的坐标;(2)求证:ABC△是直角三角形;(3)若坐标平面内的点M,使得以点M和三点A B C、、为顶点的四边形是平行四边形,求点M的坐标.(直接写出点的坐标,不必写求解过程)x四、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)(2014•广东)菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.24.已知:如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)求证:AC与⊙O相切;(2)当BD=6,sinC=时,求⊙O的半径.25.(9分)(2014•广东)如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0),B(2,0),交y轴于C(0,﹣2),过A,C画直线.(1)求二次函数的解析式;(2)点P在x轴正半轴上,且PA=PC,求OP的长;(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;②若⊙M的半径为,求点M的坐标.部分答案:解:(1)30;20. ·················································································································· 2 分 (2)12. ·································································································································· 4 分 (3)可能出现的所有结果列表如下:或画树状图如下:共有 16 种可能的结果,且每种的可能性相同,其中小张获得车票的结果有6种: (2,1),(3,1),(3,2),(4,1),(4,2),(4,3), ∴小张获得车票的概率为63168P ==;则小李获得车票的概率为35188-=. ∴这个规则对小张、小李双方不公平. 8 分22. (1)解:令0x =,得y =(0C . ··················································· 1分 令0y =,得20x =,解得1213x x =-=,, ∴(10)(30)A B -,,,. ······································································································ 3分(2)法一:证明:因为22214AC =+=, 222231216BC AB =+==,, ·························· 4分 ∴222AB AC BC =+, ················································· 5分 ∴ABC △是直角三角形. ············································ 6分 法二:因为13OC OA OB ===,,∴2OC OA OB =, ··················································································································· 4分1 2 3 4 1 1 2 3 4 2 1 2 3 4 3 1 2 3 44开始小张 小李 x21题图M 1 3∴OC OBOA OC=,又AOC COB ∠=∠, ∴Rt Rt AOC COB △∽△. ···································································································· 5分 ∴90ACO OBC OCB OBC ∠=∠∠+∠=,°, ∴90ACO OCB ∠+∠=°,∴90ACB ∠=°, 即ABC △是直角三角形. ······················································· 6 分(3)1(4M ,2(4M -,3(2M .(只写出一个给1分,写出2个,得1.5分) 8分sinC=求出sinA=sinC===,即可求出半径.sinC=sinA=sinC=,sinA==,r=,的半径是,OP=,)的坐标代入,得k,y=x×﹣,(,DE= AC===∴,,,3+)或(﹣。
2014年广东省中考数学试卷
数学试卷 第1页(共8页) 数学试卷 第2页(共8页)绝密★启用前广东省2014年初中毕业生学业考试数 学本试卷满分120分,考试时间100分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在1,0,2,3-这四个数中,最大的数是( )A .1B .0C .2D .3-2.在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )AB C D 3.计算32a a -的结果正确的是( ) A .1B .aC .a -D .5a - 4.把39x x -分解因式,结果正确的是( )A .2(9)x x -B .2(3)x x -C .2(3)x x +D .(3)(3)x x x +- 5.一个多边形的内角和是900,这个多边形的边数是( )A .10B .9C .8D .76.一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率为( )A .47B .37C .34D .137.如图,□ABCD 中,下列说法一定正确的是 ( )A .AC BD =B .AC BD ⊥ C .AB CD =D .AB BC =8.关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围是 ( )A .94m >B .94m <C .94m =D .94m <- 9.一个等腰三角形的两边长分别是3和7,则它的周长为( )A .17B .15C .13D .13或1710.二次函数2(0)y ax bx c a =++≠的大致图象如图所示,关于该二次函数,下列说法错误的是( )A .函数有最小值B .对称轴是直线12x =C .当12x <时,y 随x 的增大而减小 D .当12x -<<时,0y >第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题4分,共24分.请把答案填写在题中的横线上) 11.计算32=x x ÷ .12.据报道,截至2013年12月我国网民规模达618000000人.将618000000用科学记数法表示为 .13.如图,在ABC △中,点D ,E 分别是AB ,AC 的中点,若6BC =,则DE =.14.如图,在O 中,已知半径为5,弦AB 的长为8,那么圆心O 到AB 的距离为 .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共8页) 数学试卷 第4页(共8页)15.不等式组28,41+2x x x ⎧⎨-⎩<>的解集是 .16.如图,ABC △绕点A 顺时针旋转45得到''AB C △,若90BAC ∠=,AB AC ==则图中阴影部分的面积等于.三、解答题(本大题共9小题,共66分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分6分)11|4|(1)()2--+--.18.(本小题满分6分) 先化简,再求值:221()(1)11x x x +--+,其中x19.(本小题满分6分)如图,点D 在ABC △的AB 边上,且ACD A ∠=∠.(1)作BDC ∠的平分线DE ,交BC 于点E (用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE 与直线AC 的位置关系(不要求证明).20.(本小题满分7分)如图,某数学兴趣小组想测量一棵树CD 的高度.他们先在点A 处测得树顶C 的仰角为30,然后沿AD 方向前行10m ,到达B 点,在B 处测得树顶C 的仰角高度为60(A ,B ,D 三点在同一直线上).请你根据他们测量数据计算这棵树CD 的高度(结果精确到0.1m ).( 1.414 1.732≈)21.(本小题满分7分)某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价;(==)利润售价-进价利润率进价进价(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?数学试卷 第5页(共8页) 数学试卷 第6页(共8页)22.(本小题满分7分)某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食.为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图1和图2所示的不完整的统计图.图1图2(1)这次被调查的同学共有 名; (2)把条形统计图(图1)补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐?23.(本小题满分9分)如图,已知1(4,)2A -,(1,2)B -是一次函数()y kx b k b =+≠与反比例函数m y x=(0,0)m x ≠<图象的两个交点,AC x ⊥轴于点C ,BD y ⊥轴于点D . (1)根据图象直接回答:在第二象限内,当x 取何值时,一次函数的值大于反比例函数的值?(2)求一次函数解析式及m 的值;(3)P 是线段AB 上的一点,连接PC ,PD ,若PCA △和PDB △面积相等,求点P 的坐标.毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共8页) 数学试卷 第8页(共8页)24.(本小题满分9分) 如图,O 是ABC △的外接圆,AC 是直径.过点O 作线段OD AB ⊥于点D ,延长DO 交O 于点P ,过点P 作PE AC ⊥于点E ,作射线DE 交BC 的延长线于点F ,连接PF .(1)若60POC ∠=,12AC =,求劣弧PC 的长(结果保留π); (2)求证:OD OE =; (3)求证:PF 是O 的切线.25.(本小题满分9分)如图,在ABC △中,AB AC =,AD BC ⊥点D ,10cm BC =,8cm AD =.点P 从点B 出发,在线段BC 上以每秒3cm 的速度向点C 匀速运动,与此同时,垂直于AD 的直线m 从底边BC 出发,以每秒2cm 的速度沿DA 方向匀速平移,分别交AB ,AC ,AD 于E ,F ,H .当点P 到达点C 时,点P 与直线m 同时停止运动.设运动时间为t秒(0)t >.备用图(1)当2t =时,连接DE ,DF .求证:四边形AEDF 为菱形;(2)在整个运动过程中,所形成的PEF △的面积存在最大值.当PEF △的面积最大时,求线段BP 的长;(3)是否存在某一时刻t ,使PEF △为直角三角形?若存在,请求出此时刻t 的值;若不存在,请说明理由.。
2013-2014广东中考一摸
广东省2014年中考数学模拟试题7一.选择题(本大题共10小题,每小题3分,共30分。
)1.3-的值等于( ). A .3 B .-3 C .±3 D .3 2.若分式21-x 有意义,则x 的取值范围是( ). A . 2x > B .2≤x C .x =2 D .2x ≠3.在下列运算中,计算正确的是 ( ). A . 725)(x x =B . 222)(y x y x -=-C . 10313x x x =÷D . 633x x x =+ 4.化简错误!未找到引用源。
+aa 1+的结果是( ). A .2a a +B .1-aC .1+aD .15.菱形具有而矩形不一定具有的性质是( ). A .对角线相等 B .对角线互相垂直 C .对角线互相平分 D .对角互补6.将抛物线2y x =-向左平移2个单位后,得到的抛物线的解析式是( ). A .22y x =-+ B .2(2)y x =-+ C .2(2)y x =-- D .22y x =--7.不等式组的解集在数轴上表示如图1所示, 则该不等式组可能为 ( ).A .{12x x >-≤ B .{12x x ≥-< C .{12x x ≥-≤ D .{12x x <-≥8.两个大小不同的球在水平面上靠在一起,组成如图2 所示的几何体,则该几何体的左视图是(). A .两个外离的圆 B .两个外切的圆 C .两个相交的圆D .两个内切的圆9.已知正比例函数y kx =(0k ≠)的函数值y 随x 的增大而增大,水平面主视方向图2图1则一次函数y kx k =+的图象大致是( ).10.如图,在Rt △ABC 中,∠ABC=90°,AB=8cm ,BC=6cm ,分别以A ,C 为圆心,以的长为半径作圆,将Rt △ABC 截去两个扇形,则剩余(阴影)部分的面积为( )cm 2.A . 24﹣πB . πC . 24﹣πD . 24﹣π二、填空题(本大题共6小题,每小题4分,共24分)11.在初三基础测试中,从化某中学的小明的6科成绩分别为语文120分,英语127分,数学123分,物理83分,化学80分,政治83分,则他的成绩的众数为 分.12.已知圆柱的底面半径为2cm ,高为5cm ,则圆柱的侧面积是 cm 2 .(结果保留π)13.点(1,2)在反比例函数1ky x -=的图象上,则k 的值是 .14.分解因式:a ax 42-=15. 如图3,△ABC 中,DE ∥BC ,DE 分别交边AB 、AC 于D 、E 两点,若AD :AB =1:3,则△ADE 与四边形DBCE 的面积比为 .16.如图4,已知正方形ABCD 的边长为3,E 为CD 边上一点,1=DE .以点A 为中心,把△ADE 顺时针旋转090,得△E AB ',连接E E ',则E E '的长等于 .OxyOxyOxyyxOA.B .C . D.图3数学答题卡评分:一、选择题(每小题3分,总计30分)二、填空题(每小题4分,总计24分)11、__ ,12、 ,13、 ,14、 ,15、 ,16、 .三、解答题(一):(本大题共3小题,题每小题6分,共18分)17.解方程:451+=x x18.先化简,再求值:22()()(2)3a b a b a b a ++-+-,其中32,32+=-=b a题号 1 2 3 4 5 6 7 8 9 10答案班别姓名:座位号学号:密封线内不要答题19. 如图5,已知,AB CD B C =∠=∠,AC 和BD 相交于点O , E 是AD 的中点,连结OE . (1)求证:△AOB≌△DOC; (2)求AEO ∠的度数.四、解答题(共3个小题,每小题7分,满分21分)20.如图6,矩形ABCD 的对角线AC 、BD 相交与点O,DE ∥AC,CE ∥BD.(1)求证:四边形OCED 是菱形;(2)若∠DOA=60°,AC 的长为8cm,求菱形OCED 的面积.图 6图521.为实施“农村留守儿童关爱计划”,某校对全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:(1)求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;(2)某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率。
最新广东中考模拟考试《数学卷》含答案解析
广 东 中 考 全 真 模 拟 测 试数 学 试 卷一、选择题(本题共有10小题,每小题4分,共40分) 1. 2-的值等于( ) A. 2 B. 12- C. 12 D. ﹣22. 据国家统计局网站2014年12月4日发布消息,2014年广东省粮食总产量约为13573000吨,将13573000用科学记数法表示为( ) A. 61.357310⨯ B. 71.357310⨯ C. 81.357310⨯ D. 91.357310⨯3. 下列图案中既是中心对称图形,又是轴对称图形的是( )A. B. C.D. 4. 如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△A 'OB ',若∠AOB=15°,则∠AOB '的度数是( )A. 25°B. 30°C. 35°D. 40° 5. 下列计算中,结果正确的是( )A. 236a a a ⋅=B. (2)(3)6a a a ⋅=C. 236()a a =D. 623a a a ÷= 6. 如图,AB 是⊙O 直径,点C ,D 在⊙O 上,OD∥AC,下列结论错误的是( )A. ∠BOD=∠BACB. ∠BAD=∠CADC. ∠C=∠DD. ∠BOD=∠COD 7. 已知AB 为⊙O 的弦,⊙O 的半径为5,OC ⊥AB 于点D ,交⊙O 于点C ,且CD =1,则弦AB 的长是( )A. 3B. 4C. 5D. 68. 若关于x 的一元二次方程的两个根为x 1=1,x 2=2,则这个方程可能是( )A . x 2-3x+2=0 B. x 2+3x+2=0 C. x 2+3x-2=0 D. x 2-2x+3=09. 如图,抛物线y=ax 2+bx+c (a >0)的对称轴是直线x=1,且经过点P (3,0),则a-b+c 的值为( )A. 0B. -1 C .1 D.2 10. 已知一个三角形的两边长是方程x 2﹣8x+15=0的两根,则第三边y 的取值范围是( )A. y <8B. 3<y <5C. 2<y <8D. 无法确定二、填空题(本大题共6小题,每小题5分,共30分)11. 若0<x <5,则25xx -+=12. 若点A (a –2,3)与点B (4,–3)关于原点对称,则a= .13. 若关于x 的一元二次方程2(3)0x k x k +++=的一个根是-2,则另一个根是______.14. 如图,△ABC 为⊙O 的内接三角形,AB 为⊙O 的直径,点D 在⊙O 上,∠ADC=54°,则∠BAC 的度数等于 .15. 已知x 1,x 2是方程x 2-4x+2=0的两根,求:(x 1-x 2)2=_____________.16. 已知: 233212C ⨯=⨯=3,35543123C ⨯⨯=⨯⨯=10,4665431234⨯⨯⨯=⨯⨯⨯C =15,…,观察上面的计算过程,寻找规律并计算:610C =_____.三、解答题(一)(本大题3小题,每小题7分,共21分)17. 计算:0314(2)352--+-÷ ⎪+⎝⎭ 18. 先化简,再求值:2224441x x x x x x x --+÷-+-,其中32x = 19. 如图,要把残破的轮片复制完整,已知弧上的三点A 、B 、C .①用尺规作图法找出BAC 所在圆的圆心(保留作图痕迹,不写作法);②设△ABC 是等腰三角形,底边BC =8cm ,腰AB =5cm ,求圆片的半径R .四、解答题(二)(本大题3小题,每小题9分,共27分)20. 关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2.(1)求k 的取值范围;(2)若x 1+x 2=1﹣x 1x 2,求k 的值. 21. 二次函数y =ax 2+bx +c(a≠0)的图象如图所示,根据图象解答下列问题: (1)方程ax 2+bx +c =0的两个根为____________; (2)不等式ax 2+bx +c>0的解集为________; (3)y 随x 的增大而减小的自变量x 的取值范围为________; (4)若方程ax 2+bx +c =k 有两个不相等的实数根,则k 的取值范围为________.22. 某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?五、解答题(三)(本大题3小题,第23、24小题各11分,第25题10分,共32分)23. 如图,在Rt△OAB中,∠OAB=90°,且点B 的坐标为(4,2).(1)画出OAB关于点O成中心对称的11OA B,并写出点B1的坐标;(2)求出以点B1为顶点,并经过点B的二次函数关系式.24. 如图,⊙C经过原点且与两坐标轴分别交于点A和点B,点A的坐标为(0,2),点B的坐标为(23,0),解答下列各题:(1)求线段AB的长;(2)求⊙C的半径及圆心C的坐标;(3)在⊙C上是否存在一点P,使得△POB是等腰三角形?若存在,请求出P点的坐标.25. 在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕着点B顺时针旋转角a(0°<a<90°)得到△A1BC;A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论.(2)如图2,当a=30°时,试判断四边形BC1DA的形状,并证明.(3)在(2)的条件下,求线段DE的长度.答案与解析一、选择题(本题共有10小题,每小题4分,共40分)1. 2-的值等于()A .2 B. 12- C. 12 D. ﹣2 【答案】A 【解析】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,-=,故选A.所以222. 据国家统计局网站2014年12月4日发布消息,2014年广东省粮食总产量约为13573000吨,将13573000用科学记数法表示为()A. 6⨯ D. 91.3573101.357310⨯1.357310⨯ C. 8⨯ B. 71.357310【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:13573000=7⨯1.357310故选:B.【点睛】本题考查科学计数法.3. 下列图案中既是中心对称图形,又是轴对称图形的是()A. B. C. D.【答案】A【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,也是中心对称图形,故此选项正确;B 、是轴对称图形,不是中心对称图形,故此选项错误;C 、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义,是中心对称图形,故此选项错误;D 、是轴对称图形,不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误.故选A .【点睛】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.4. 如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△A'OB ',若∠AOB=15°,则∠AOB'的度数是( )A. 25°B. 30°C. 35°D. 40°【答案】B【解析】 【详解】∵将△AOB 绕点O 按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A ′OA -∠A′OB′=45°-15°=30°,故选B .5. 下列计算中,结果正确的是( )A. 236a a a ⋅=B. (2)(3)6a a a ⋅=C. 236()a a =D. 623a a a ÷= 【答案】C【解析】选项A ,235a a a ⋅=,选项A 错误;选项B ,()()2236a a a ⋅= ,选项B 错误;选项C ,()326a a =,选项C 正确;选项D ,624a a a ÷=,选项D 错误.故选C.6. 如图,AB 是⊙O 直径,点C ,D 在⊙O 上,OD∥AC,下列结论错误的是( )A. ∠BOD=∠BACB. ∠BAD=∠CADC. ∠C=∠DD. ∠BOD=∠COD【答案】C【解析】【分析】根据平行线的性质,可得∠BOD=∠BAC(选项A正确)、∠ADO=∠CAD、∠C=∠COD,再根据OA=OD可得∠D=∠BAD,由OA=OC可得∠BAD=∠C,由等量代换可推导得出选项B、D正确,选项C 无法得出.【详解】∵OD//AC,∴∠BOD=∠BAC、∠D=∠CAD、∠C=∠COD,故A选项正确,∵OA=OD,∴∠D=∠BAD,∴∠BAD=∠CAD,故B选项正确,∵OA=OC,∴∠BAD=∠C,∴∠BOD=∠COD,故D选项正确,由已知条件无法得出∠C=∠D,故C选项错误,故选C.【点睛】本题考查了圆的性质、平行线的性质、等腰三角形的性质等,熟练掌握相关性质是解题的关键.7. 已知AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是( )A. 3B. 4C. 5D. 6【答案】D【解析】【分析】连接AO,得到直角三角形,再求出OD的长,就可以利用勾股定理求解.【详解】连接AO,∵半径是5,CD=1,∴OD=5-1=4,根据勾股定理,22AO OD,∴AB=3×2=6,即弦AB的长是6,故选D.【点睛】本题考查了垂径定理的应用,作出辅助线AO构造直角三角形是解题的关键.8. 若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程可能是()A. x2-3x+2=0B. x2+3x+2=0C. x2+3x-2=0D. x2-2x+3=0【答案】A【解析】【分析】先计算出x1+x2=3,x1x2=2,然后根据根与系数的关系得到满足条件的方程可为x2-3x+2=0.【详解】解:∵x1=1,x2=2,∴x1+x2=3,x1x2=2,∴以x1,x2为根的一元二次方程可为x2-3x+2=0.故选A.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba,x1x2=ca.9. 如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a-b+c的值为()A. 0B. -1C.1 D. 2【答案】A【解析】试题分析:因为对称轴x=1且经过点P (3,0)所以抛物线与x 轴的另一个交点是(-1,0)代入抛物线解析式y=ax 2+bx+c 中,得a-b+c=0.故选A .考点:二次函数的图象.10. 已知一个三角形的两边长是方程x 2﹣8x+15=0的两根,则第三边y 的取值范围是( )A. y <8B. 3<y <5C. 2<y <8D. 无法确定【答案】C【解析】x 2-8x+15=0,∴(x-3)(x-5)=0,∴x 1=3,x 2=5,∴三角形第三边y 的取值范围为:5-3<y <5+3,即2<y <8.故选C. 二、填空题(本大题共6小题,每小题5分,共30分)11. 若0<x <5,则25x x -+= 【答案】5【解析】【分析】根据绝对值的性质、二次根式的性质进行化简后再进行加减运算即可得.【详解】∵0<x <5,∴x-5<0,∴ |x-5|+ 2x =|x-5|+|x|=5-x+x=5,故答案为5.【点睛】本题考查了绝对值的性质、二次根式的性质,熟练掌握这两个性质是解此题的关键.12. 若点A (a –2,3)与点B (4,–3)关于原点对称,则a= .【答案】-2【解析】解:关于原点对称的点横、纵坐标均互为相反数,则13. 若关于x 的一元二次方程2(3)0x k x k +++=的一个根是-2,则另一个根是______.【答案】1【解析】试题分析:将x=-2代入可得:4-2(k+3)+k=0,解得:k=-2,则原方程为:2x +x -2=0,则(x+2)(x -1)=0,解得:x=-2或x=1,即另一个根为1.考点:一元二次方程的解.14. 如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,点D在⊙O上,∠ADC=54°,则∠BAC的度数等于.【答案】36°【解析】试题分析:由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠B=∠ADC=54°,又由直径所对的圆周角是直角,即可求得∠ACB=90°,继而求得∠BAC=90°-∠ABC=90°-54°=36°.考点:圆周角定理15. 已知x1,x2是方程x2-4x+2=0的两根,求:(x1-x2)2=_____________.【答案】8【解析】【分析】易得到两根之和与两根之积的具体数值,利用(x1-x2)2=(x1+x2)2-4x1x2代入相应的数值进行计算即可得.【详解】∵x1,x2是方程x2-4x+2=0的两根,∴x1+x2=4,x1x2=2,∴(x1-x2)2=(x1+x2)2-4x1x2=42-4×2=8,故答案为8.【点睛】本题考查了一元二次方程根与系数的关系,解决本题的关键是把所求的代数式整理成与根与系数有关的形式.16. 已知:2332 12C⨯=⨯=3,35543123C⨯⨯=⨯⨯=10,4665431234⨯⨯⨯=⨯⨯⨯C=15,…,观察上面的计算过程,寻找规律并计算:610C=_____.【答案】210.【解析】【分析】根据()()()()()121121--⋯-+=--⋯n m m m m m n C n n n 计算可得. 【详解】6101098765==210654321⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯C , 故答案为210.【点睛】本题主要考查有理数的乘法,解题的关键是根据已知等式得出计算公式.三、解答题(一)(本大题3小题,每小题7分,共21分)17. 计算:0314(2)352--+-÷ ⎪+⎝⎭【答案】-23【解析】【分析】按顺序进行算术平方根的计算、0次幂的计算、乘方运算、负指数幂运算,然后再按运算顺序进行计算即可.【详解】()03142352--+-÷ ⎪+⎝⎭, =2-1+(-8)×3 ,=2-1-24,=-23.【点睛】本题考查了实数的混合的运算,涉及到0次幂、负指数幂等知识点,熟练掌握0次幂、负指数幂的运算法则是解题的关键. 18. 先化简,再求值:2224441x x x x x x x --+÷-+-,其中32x = 【答案】解:原式=,代32x =.得:-6 【解析】先因式分解,再利用分式的基本性质化简,最后求值.19. 如图,要把残破的轮片复制完整,已知弧上的三点A 、B 、C .①用尺规作图法找出BAC 所在圆的圆心(保留作图痕迹,不写作法);②设△ABC 是等腰三角形,底边BC =8cm ,腰AB =5cm ,求圆片的半径R .【答案】(1)详见解析;(2)256. 【解析】【分析】 (1)作两弦的垂直平分线,其交点即为圆心O ;(2)构建直角△BOE ,利用勾股定理列方程可得结论.【详解】①作法:分别作AB 和AC 的垂直平分线,设交点为O ,则O 为所求圆的圆心;②连接AO 、BO ,AO 交BC 于E ,∵AB=AC ,∴AE ⊥BC ,∴BE=12BC= 12×8=4, Rt △ABE 中,222254AB BE -=-=3,设⊙O 的半径为R ,在Rt △BEO 中,OB 2=BE 2+OE 2 ,即R 2=42+(R-3)2 ,∴R=256(cm), 答:圆片的半径R 为256cm 【点睛】本题综合考查了垂径定理,勾股定理、线段垂直平分线的尺规作图等知识点,要注意作图和解题中垂径定理的应用.四、解答题(二)(本大题3小题,每小题9分,共27分)20. 关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2.(1)求k 的取值范围;(2)若x 1+x 2=1﹣x 1x 2,求k 的值.【答案】(1)12k ≤;(2)3k =- 【解析】试题分析:(1)方程有两个实数根,可得240b ac ∆=-≥,代入可解出k 的取值范围;(2)由韦达定理可知,()2121221,x x k x x k +=-=,列出等式,可得出k 的值. 试题解析:(1)∵Δ=4(k -1)2-4k 2≥0,∴-8k +4≥0,∴k ≤12; (2)∵x 1+x 2=2(k -1),x 1x 2=k 2,∴2(k -1)=1-k 2,∴k 1=1,k 2=-3.∵k ≤12,∴k =-3. 21. 二次函数y =ax 2+bx +c(a≠0)的图象如图所示,根据图象解答下列问题:(1)方程ax 2+bx +c =0的两个根为____________;(2)不等式ax 2+bx +c>0的解集为________;(3)y 随x 的增大而减小的自变量x 的取值范围为________;(4)若方程ax 2+bx +c =k 有两个不相等的实数根,则k 的取值范围为________.【答案】(1)x 1=1,x 2=3 (2)1<x<3 (3)x>2 (4)k<2【解析】【分析】(1)根据函数与方程的关系,当y =0时,函数图象与x 轴的两个交点的横坐标即为方程ax 2+bx +c =0的两个根;(2)根据函数的性质可知,在点(1,0)与点(3,0)之间,y >0,即可解答.(3)根据函数的性质可知,在对称轴的右侧,y随x的增大而减小,找到函数的对称轴即可得到x的取值范围;(4)方程ax2+bx+c=k有两个不相等的实数根,即函数y=ax2+bx+c(a≠0)与y=k有两个交点,据此即可直接求出k的取值范围.【详解】解:(1)当y=0时,函数图象与x轴的两个交点的横坐标即为方程ax2+bx+c=0的两个根,由图可知,方程的两个根为x1=1,x2=3.(2)根据函数图象,不等式ax2+bx+c>0的解集为1<x<3.(3)根据函数图象,在对称轴的右侧,y随x的增大而减小,此时,x>2.(4)如图:方程ax2+bx+c=k有两个不相等的实数根,即函数y=ax2+bx+c(a≠0)与y=k有两个交点,此时,k<2.故答案(1)x1=1,x2=3,(2)1<x<3,(3)x>2,(4)k<2.【点睛】本题考查了二次函数与x轴的交点,二次函数与不等式,充分利用函数图象,直观解答是解题的关键,体现了数形结合思想的优越性.22. 某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?【答案】(1) 4800元;(2) 降价60元.【解析】试题分析:(1)先求出降价前每件商品的利润,乘以每月销售的数量就可以得出每月的总利润;(2)设每件商品应降价x元,由销售问题的数量关系“每件商品的利润×商品的销售数量=总利润”列出方程,解方程即可解决问题.试题解析:(1)由题意得60×(360-280)=4800(元).即降价前商场每月销售该商品的利润是4800元; (2)设每件商品应降价x 元,由题意得(360-x -280)(5x +60)=7200,解得x 1=8,x 2=60.要更有利于减少库存,则x =60.即要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元.点睛:本题考查了列一元二次方程解实际问题的销售问题,解答时根据销售问题的数量关系建立方程是关键.五、解答题(三)(本大题3小题,第23、24小题各11分,第25题10分,共32分) 23. 如图,在Rt △OAB 中,∠OAB =90°,且点B 的坐标为(4,2).(1)画出OAB 关于点O 成中心对称的11OA B ,并写出点B 1的坐标;(2)求出以点B 1为顶点,并经过点B 的二次函数关系式.【答案】(1)图见解析,点()142B --,;(2)()214216y x =+-. 【解析】【分析】 (1) 先由条件求出A 点的坐标, 再根据中心对称的性质求出1A 、 1B 的坐标, 最后顺次连接1OA 、1OB , △OAB 关于点O 成中心对称的△11OA B 就画好了,可求出B 1点坐标.(2) 根据 (1) 的结论设出抛物线的顶点式, 利用待定系数法就可以直接求出其抛物线的解析式.【详解】(1)如图,点()142B --,.(2)设二次函数的关系式是()242y a x =+-,把(4,2)代入上式得()22442a =+-,116a ∴=, 即二次函数关系式是()214216y x =+-. 【点睛】本题主要考查中心对称的性质,及用待定系数法求二次函数的解析式,难度不大.24. 如图,⊙C 经过原点且与两坐标轴分别交于点A 和点B ,点A 的坐标为(0,2),点B 的坐标为(23,0),解答下列各题:(1)求线段AB 的长;(2)求⊙C 的半径及圆心C 的坐标;(3)在⊙C 上是否存在一点P ,使得△POB 是等腰三角形?若存在,请求出P 点的坐标.【答案】(1)4;(2)存在符合条件的P 点:P 133);P 231).【解析】【分析】(1)首先连接AB ,由点A 的坐标为(0,2),点B 的坐标为(30),利用勾股定理即可求得线段AB 的长;(2)首先过点C 作CD ⊥OB 于点D ,过点C 作CE ⊥OA 于点E ,由垂径定理即可求得点C 的坐标,然后由圆周角定理,可得AB是直径,即可求得⊙C的半径;(3)作OB的垂直平分线,交⊙C于M、N,由垂径定理知:MN必过点C,即MN是⊙C的直径,由此可知M、N均符合P点的要求,由此即可得.【详解】(1)∵A(0,2),B(23,0),∴OA=2,OB=23,Rt△OAB中,由勾股定理,得:AB=22OA OB=4;(2)过点C作CD⊥OB于点D,过点C作CE⊥OA于点E,∴OD=12OB=3,OE=12OA=1,∴圆心C的坐标为(3,1),∵∠AOB=90°,∴AB是⊙C的直径,∴⊙C的半径为2;(3)作OB的垂直平分线,交⊙C于M、N,由垂径定理知:MN必过点C,即MN是⊙C的直径;∴M33),N31);由于MN垂直平分OB,所以△OBM、△OBN都是等腰三角形,因此M、N均符合P点的要求;故存在符合条件的P点:P133);P23,﹣1).【点睛】本题考查了圆周角定理、勾股定理以及垂径定理,此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.25. 在△ABC 中,AB=BC=2,∠ABC=120°,将△ABC 绕着点B 顺时针旋转角a (0°<a <90°)得到△A 1BC ;A 1B 交AC 于点E ,A 1C 1分别交AC 、BC 于D 、F 两点.(1)如图1,观察并猜想,在旋转过程中,线段BE 与BF 有怎样的数量关系?并证明你的结论. (2)如图2,当a=30°时,试判断四边形BC 1DA 的形状,并证明.(3)在(2)的条件下,求线段DE 的长度.【答案】(1)1EA FC =.(2)四边形1BC DA 是菱形.(3)2233. 【解析】【分析】 (1)根据等边对等角及旋转的特征可得1ABE C BF ≅即可证得结论;(2)先根据两组对边分别平行的四边形是平行四边形,再得到邻边相等即可判断结论;(3)过点E 作EG AB ⊥于点G ,解Rt AEG △可得AE 的长,结合菱形的性质即可求得结果.【详解】(1)1EA FC =.证明:(证法一)AB BC A C =∴∠=∠,.由旋转可知,111,,AB BC A C ABE C BF =∠=∠∠=∠∴1A BF CBE ≌.∴BE BF ,=又1AB BC =,∴11A C A B CB ∠=∠=,,即1EA FC =.(证法二)AB BC A C =∴∠=∠,.由旋转可知,1BA BE BC BF -=-,而1EBC FBA ∠=∠∴1A BF CBE ∴≅∴BE BF ,=∴1BA BE BC BF -=-即1EA FC =.(2)四边形1BC DA 是菱形.证明:111130,A ABA AC AB ︒∠=∠=∴‖同理1AC BC ‖ ∴四边形1BC DA 是平行四边形.又1AB BC =,∴四边形1BC DA 是菱形(3)过点E 作EG AB ⊥于点E ,则1AG BG ==.在EG AB ⊥中,AE =.由(2)知四边形1BC DA 是菱形,∴1AG BG ==.∴2ED AD AE =-= 【点睛】解答本题的关键是掌握好旋转的性质,平行四边形判定与性质,的菱形的判定与性质,选择适当的条件解决问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图12014年从化市初三综合测试试卷数 学本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分.考试时间120分钟. 注意事项:1.答卷前,考生务必在答题卡第1面密封线内用黑色字迹的钢笔或签字笔填写自己的学校、姓名、考号等.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题号的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如果□×(12-)=1,则“□”内应填的实数是( * ). A .12 B .2 C . 12- D . 2-2.某种禽流感病毒变异后的直径为0.00000012米,将0.00000012写成科学记数法是( * ).A .61.210-⨯B . 71.210-⨯C .60.1210-⨯D .71.210⨯3.计算 a 2 ⋅ 2a 3的结果是( )A .52aB .62aC .68aD .58a4.下列物体中,俯视图为矩形的是( * ).5.一次函数32+=x y 的图象经过第( * )象限.A .一、二、三B .一、三、四C .一、二、四D .二、三、四6.在Rt △ABC 中,∠C=90°,cos B =21,若BC=1,则AC=( * ).A .1B .2C .3D .5x图3 7.如图1,在Rt △ABC 中,∠ACB=90°,AC=8,BC=6,将△ABC 绕AC 所在的直线k 旋转一周得到一个旋转体,则该旋转体的侧面积为( * ).A .30πB . 40πC .50π D. 60π8.已知一组数据:-1,x ,1,2,0的平均数是1,则这组数据的中位数是( * ).A .1B .0C .-1D .29.如图2,A B ,是反比例函数2y x=的图象上的两点,AC BD , 都垂直于x 轴,垂足分别为C D AB ,,的延长线交x 轴于点E .若C D ,的坐标分别为(10),,(40),,则BDE △的面积与ACE △的 面积的比值是( * ).A .12B .14C .18D .11610.如图3,正方形的边长为4,P 为正方形边上一动点,运动路线是A→D→C→B→A ,设P 点经过的路程为x ,以点A 、P 、D 为顶点的三角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是( * ).第二部分 非选择题 (共120分) 二、填空题(本大题共6小题,每小题3分,满分18分.) 11.计算:6-= . 12.因式分解:29x -=_____________.13.如图4,四边形ABCD 中,AD ∥BC ,BD 平分∠ABC ,若∠A=100°, 则∠DBC = . 14.方程0415=-+xx 的解是: . 15.已知二次函数c bx ax y ++=2中,其函数y 与自变量x 之间的部分点A (x 1,y 1)、B (x 2,y 2)在这个二次函数的图象上,则当0<x 1<1,2<x 2<3时,y 1与y 2的大小关系是 .16.如图5,正方形ABCD 的边长为2cm ,E 、F 分别是BC 、CD 的中点,连接BF 、DE , 则图中阴影部分的面积是 cm 2.图5 图4三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分) 解方程组:⎩⎨⎧==+1-25y x y x18.(本小题满分9分)如图6,已知AC 与BD 交于点O,AO=CO,BO=DO .求证:AB ∥CD 19.(本小题满分10分) 从2011年5月1日起,公安部门加大了对“酒后驾车”的处罚力度,出台了不准酒后驾车的禁令.某记者在某区随机选取了几个停车场对开车的司机进行了相关的调查,本次调查结果有四种情况:A .有酒后开车; B .喝酒后不开车或请专业司机代驾;C .开车当天不喝酒;D .从不喝酒.将这次调查情况整理并绘制了如下尚不完整的统计图7(1)和图7(2),请根据相关信息,解答下列问题.(1)该记者本次一共调查了名司机;20.(本小题满分10分) 若x ,y 为实数,且满足033=++-y x ,(1)如果实数x ,y 对应为直角坐标的点A (x ,y ),求点A 在第几象限; (2)求2014)(yx的值?21.(本小题满分12分)如图8,已知在Rt ABC △中,90C ∠=°,AD 是BAC ∠的平分线.(1)作一个O ⊙使它经过A D 、两点,且圆心O 在AB 边上; (不写作法,保留作图痕迹).(2)判断直线BC 与O ⊙的位置关系,并说明理由.22.(本小题满分12分)图6图7(1) 图7(2)AC D B图8为促进资源节约型和环境友好型社会建设,根据国家发改委实施“阶梯电价”的有关文件要求,广州市决定从2012年7月1日起对居民生活用电试行“阶梯电价”收费,具体收费标(1)如果小明家3月用电120度,则需交电费多少元?(2)求“超过200千瓦时,但不超过400千瓦时的部分”每月电费y (元)与用电量x (千瓦时)之间的函数关系式;(3)试行“阶梯电价”收费以后,小明家用电量多少千瓦时,其当月的平均电价每千瓦时不超过0.71元?23.(本小题满分12分)已知在Rt △ABC 中,∠C=90°,AC=BC=2.将一块等腰直角三角板的直角顶点放在斜边AB 的中点P 处,将三角板绕点P 旋转,三角板的两直角边分别交线段AC 、CB 于D 、E 两点.如图9(1)(2)是旋转三角板得到的图形中的两种情况. (1)如图9(1),三角板绕点P 旋转,当PD ⊥AC 时,求证:PD=PE .当PD 与AC 不垂直时,如图9(2),PD=PE 还成立吗?并证明你结论.(2)如图9(2),三角板绕点P 旋转,当△PEB 成为等腰三角形时,求CE 的长.24.(本小题满分14分)如图10,抛物线2124y x x =--+的顶点为A,与y(1)求点A 、点B 的坐标.(2)若点P 是x 轴上任意一点,求证:PA PB AB -≤. (3)当PB PA -最大时,求点P 的坐标.25.(本小题满分14分)如图11,射线AM BN ∥,∠A =∠B =90°,点D 、C 分别在AM 、BN上运动(点D 不与A 重合、点C 不与B 重合),E 是AB 边上的动点(点E 不与A 、B 重合),在运动过程中始终保持DE EC ⊥,且AD DE AB a +==.(1)求证:△ADE ∽△BEC ;(2)设AE m =,请探究:△BEC 的周长是否与m 值有关,若有关,请用含有m 的代数式表示△BEC 的周长;若无关,请说明理由.B2014年从化市初中毕业生综合测试数学参考答案与评分标准说明:1.本解答给出了一种解法供参考,如果考生的解法与本解答不同,各学校备课组可根据试题的主要考查内容比照评分标准制订相应的评分则.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,选择题和填空题不给中间分.一、选择题:(本大题考查基本知识和基本运算.共10小题,每小题3分,共30分)三、解答题:(本题共有9个小题, 共102分) 17. 解法一: 由⎩⎨⎧=-=+125y x y x (2)(1) (1)+(2)得:63=x …………………………………2分 解得:2=x (3) ……………………………………………4分 把(3)代入(1)得: 52=+y ………………………………………6分 解得:3=y ………………………………………8分所以原方程组的解为:⎩⎨⎧==32y x ………………………………………………9分 解法二:由(1)得:x y -=5 (3)……………………………………2分 把(3)代入(2)得:1)5(2=--x x解得:2=x (4)……………………………………4分把(3)代入(1)得: 52=+y ………………………………………6分 解得:3=y ………………………………………8分所以原方程组的解为:⎩⎨⎧==32y x ………………………………………………9分18. 证法一:∵∠AOB=∠COD ………………………………………2分又∵AO=CO,BO=DO∴⊿AOB ≌⊿COD(SAS) …………………………………5分 ∴ ∠A=∠C …………………………………………7分 ∴ AB ∥CD …………………………………………9分证法二:连结BC 和AD, …………………………………2分 ∵AO=CO,BO=DO∴四边形形ABCD 是平行四边形 …………………………5分 ∴ AB ∥CD …………………………………………9分19.解:(1)该记者本次一共调查了 200 名司机; ……………………2分 (2)图7(1)中情况D 所在扇形的圆心角为 0162; ……………………4分……………………7分(3)在本次调查中,记者随机采访其中的一名司机,他属情况C 的概率502320092==. …………………………………………10分 20. 解:∵033=++-y x∴ ⎩⎨⎧=+=-0303y x ………………………………………………2分解得:3,3-==y x ………………………………………………4分图7(2)(1)∵ 3,3-==y x 则A (3,3-)∴ A 在第四象限 ………………………………………………6分 (2)∵ 3,3-==y x∵2014)(yx =2014)33(- = 2014)1(- ……………………………………8分 =1 …………………………………………………………10分 21.解:(1)作图正确(需保留线段AD 中垂线的痕迹). …………………4分 (2)直线BC 与O ⊙相切. ……………5分理由如下:连结OD , ∵OA OD =,OAD ODA ∴∠=∠. ……………6分∵AD 平分BAC ∠,OAD DAC ∴∠=∠. ……………7分 ODA DAC ∴∠=∠. ……………8分 OD AC ∴∥. ……………10分 ∵9090C ODB ∠=∴∠=°,°,即OD BC ⊥.BC ∴为O ⊙的切线. ……………………………12分22.解:(1)120⨯0.61=73.2(元) ……………………………………4分 (2)66.0)200(61.0200⨯-+⨯=x y=0.66x -10 ……………………………………8分 (3)设小明家用电x 千瓦时,月平均电价每千瓦时不超过0.71元,由题意,得 71.091.0)400(66.020061.0200≤⨯-+⨯+⨯x x ……………10分 解得:x ≤550.答:小明家用电量不超过550千瓦时,月平均电价每千瓦时不超过0.71元.…12分23.解:(1)∵∠C=90°,AC=BC ,P 是AB 中点,∴∠A=∠B=45°, AP=PB ,, ∵PD ⊥AC,PD ⊥PE ∵∠ADP =∠PEB=90°, ∴△ADP ≌△PEB ,∴PD=PE . ………………………………………………2分当PD 与AC 不垂直时PD=PE 依然成立.………………3分 证明:连接PC ,∵△ABC 是等腰直角三角形,P 是AB 中点, ∴CP=PB ,CP ⊥AB ,∠ACP=21∠ACB=45°, 即∠ACP=∠B=45° ……………………………4分 ∵∠DPC+∠CPE=∠BPE+∠CPE=90°, ∴∠DPC=∠BPE ,∴△PCD ≌△PBE ,……………………………5分 ∴PD=PE .………………………………………6分 (2)分三种情况讨论如下:①当PE=PB ,点C 与点E 重合,即CE=0. …………………8分 ②当PE=BE 时,CE=1. ………………………………………10分 ③当BE=PB 时,CE=2 ………………………………………12分24.解:(1)抛物线2124y x x =--+与y 轴的交于点B , 令x=0得y=2.∴B (0,2) …………………………………2分∵22112(2)344y x x x =--+=-++∴A (—2,3)………………………………4分(2)当点P 是 AB 的延长线与x 轴交点时,AB PB PA =-.…………………………………6分当点P 在x 轴上又异于AB 的延长线与x 轴的交点时, 在点P 、A 、B 构成的三角形中,AB PB PA <-.综合上述:PA PB AB -≤ …………………………………………………………9分 (3)解法一:作直线AB 交x 轴于点P ,由(2)可知:当P A —PB 最大时,点P 是所求的点 …10分 作AH ⊥OP 于H .∵BO ⊥OP , ∴△BOP ∽△AHP ∴ AH ∥BO ∴AH HPBO OP=…………………………………………………………………………12分 由(1)可知:AH=3、OH=2、OB=2,∴OP=4,故P (4,0) ……………………………………………………………14分 解法二:设直线AB 所在解析式为y kx b =+,图象经过(2,3),(0,2)A B -,………………10分得方程组232k b b -+=⎧⎨=⎩,解得122k b ⎧=-⎪⎨⎪=⎩ …………………………………………12分∴122y x =-+; 当0y =时,4x =∴点P 坐标为(4,0).………………………………………………………………14分25.(1)证明:DE EC ∵⊥,90DEC ∠=∴,90AED BEC ∠+∠=∴ ………………………………………2分又90A B ∠=∠=∵,90AED EDA ∠+∠=∴,BEC EDA ∠=∠∴…………4分 ∴△ADE ∽△BEC …………………………………………6分(2)解法一:△AED 的周长AE AD DE a m =++=+,BE a m =-设AD x =,则DE a x =- ……………………………………7分∵90A ∠= 222D E A E A D =+∴即22222a ax x m x -+=+ 222a m x a-=∴ ……………………………………………9分由(1)知△ADE ∽△BEC∵2222a m ADE AD a ma BEC BE a m a -+===-△的周长△的周长……………………11分∴△BEC 的周长22a ADE a a m==+△的周长…………………13分∴△BEC 的周长与m 的值无关 …………………………14分解法二:同解法一求出BE a m =-,222a m AD a-= …………………………9分∵△ADE ∽△BECA E D E A DB C C E B E ==∴ 22()22AE BE m a m amBC a m AD a m a-===-+∴ …………………………10分 222222()()22a m a a m DE BE a m a CE a m AD a m a---+===-+………………11分∴△BEC的周长222()2am a mBE BC CE a m aa m a m+=++=-++=++……………13分∴△BEC的周长与m的值无关.…………………………………14分。