某降压变电站变压器继电保护的配置及整定计算
变压器的继电保护与整定计算
变压器的继电保护与整定计算一、继电保护概述在变压器运行过程中,由于其特殊的工作环境和重要的作用,对其电气保护要求非常高。
继电保护主要是通过电气装置实现对变压器的过电流、过压、欠压、失压、短路等异常情况进行及时发现和处理,以保护变压器的运行安全。
二、继电保护的分类1.电流保护:对变压器的短路故障进行保护,主要包括差动保护、零序保护和过电流保护。
2.电压保护:对变压器的过电压和欠电压故障进行保护,主要包括过电压保护和欠电压保护。
3.频率保护:对变电站整体或部分区域的频率变化进行保护,主要包括频率偏差保护。
4.绝缘保护:对变压器的绝缘状况进行保护,主要包括绝缘电阻保护和绝缘油温保护。
5.温度保护:对变压器的温度进行保护,主要包括油温保护和线圈温度保护。
三、继电保护的整定计算1.差动保护整定计算差动保护是变压器最重要的保护方式,其整定计算主要包括选择合适的CT变比和故障电流的判断。
-首先,根据变压器的额定容量和额定电流,计算出变压器的额定电流。
-其次,根据变压器的连接组别和变压器设计参数,选择合适的CT变比。
根据差动电流计算装置的灵敏系数和CT一次、二次侧额定电流,从而确定差动电流判断参数。
-最后,根据变压器的绕阻参数和变压器接线方式,计算差动保护的整定电流。
根据保护整定表格,确定U矩和I矩。
2.过电流保护整定计算过电流保护是变压器常用的保护方式,其整定计算主要包括选择合适的电流互感器和整定保护参数。
-首先,根据变压器额定容量和额定电流,计算变压器的额定电流。
-其次,根据过电流保护的设定电流和时间特性,选择合适的电流互感器。
-最后,根据保护整定计算公式计算过电流保护的电流设置参数。
3.过电压保护整定计算过电压保护是变压器常用的保护方式,其整定计算主要包括选择合适的电压互感器和整定保护参数。
-首先,根据变压器的额定电压和设计参数,计算变压器的额定电压。
-其次,根据过电压保护的设定电压和时间特性,选择合适的电压互感器。
35kV变电站的继电保护配置及其整定计算
35kV变电站的继电保护配置及其整定计算摘要:电网运行过程中,电力元件只有受到继电器的保护,才能保证安全运行,防止用电事故的发生,在本文中主要针对35kV变电站的继电保护配置及其整定计算进行以下介绍,旨在为变电站继电保护方面提供可行性思路,从而推动我国电力行业稳健发展。
关键词:35kV变电站;继电保护配置;整定计算;在35kV变电站建设的过程中,继电保护配置是重要的工作。
从原理上来看,继电保护就是利用系统预警机制实现信号预警、故障预警和电力保护等动作的联动,从而为电力系统运行提供保护。
而继电保护配置与整定计算的原理虽然不复杂,但是却存在一定规律,还要给予足够的重视。
因此,相关人员还应加强有关问题的研究,以便更好的开展相关工作。
一、35kV变电站继电保护配置实际应用1.1 35kV变电站概述智能化技术是当前提升变电站功能成效的主要途径,具体来说,通过计算机网络技术35kV变电站正在朝着数字化智能化前进,其数字化智能化水平也在不断提高,信息共享也已经初步成为现实变电站一旦应用数字化技术其信息采集、处理等工作的效率将更高,其电力系统发挥的作用也将更大。
通俗来讲,智能化后的变电站出现停电等供电事故的可能性将大大降低,而且其应用电力设备出现故障的频率也将大大降低继电保护装置便是变电站智能化的典型代表,通过这个装置变电站可以自动对故障进行识别并作出保护动作,因而智能化的继电保护装置具有十分广阔发展前景。
通常来说35kV变电站智能化系统主要包括三个层次:过程层包含有大量的设备,从而涉及到很多的电力元件,一旦出现问题将直接影响变电站的供电,因此对其进行重点继电保护是十分必要的间隔层主要针对于二次设备。
能切实起到间隔设备作用站控层的工作主要是进行数据采集、设备监控等,而且这一切都可以通过自动化技术实现。
1.2 35kV变电站设备继电保护功能分析1.2.1线路保护线路保护十分重要。
且其重要性主要体现在以下几个方面:(变电站实际应用中,如何在不同电压等级下对间隔单元进行良好监控是需要考虑的重点问题,而相应的电路保护装置便能够解决这一问题。
110KV变电站继电保护的配置及整定计算共3篇
110KV变电站继电保护的配置及整定计算共3篇110KV变电站继电保护的配置及整定计算1110KV变电站继电保护的配置及整定计算近年来,随着电力系统运行的日趋复杂,变电站继电保护系统已经成为电力系统必不可少的组成部分。
在变电站中,继电保护系统可以起到监视电力系统状态、保护设备、隔离故障和防止故障扩散等作用。
因此,配置合理的变电站继电保护系统对于保障电力系统安全稳定运行具有重要意义。
110KV 变电站继电保护系统配置110KV 变电站的继电保护系统包括主保护和备用保护两部分。
其具体配置如下:1. 主保护主保护是指在故障发生时起主要保护作用的继电保护。
110KV 变电站主要采用压变、电流互感器、电缆等传感器来监测电力系统的状态,以触发主保护动作。
主保护通常包括过电流保护、差动保护、方向保护等,具体如下:(1)过电流保护过电流保护是指在电力系统出现短路故障时,通过检测系统中的过电流来触发主保护。
110KV 变电站中的过电流保护一般采用零序电流保护、相间短路保护、不平衡电流保护等。
(2)差动保护差动保护是指利用相间元件间电流的差值来检测电力系统内部的故障。
110KV 变电站通常采用内部差动保护和母线差动保护。
(3)方向保护方向保护是指在电力系统中,通过检测电流的相位关系判断故障位置,以实现保护的目的。
110KV 变电站中通常采用方向保护器等设备。
2. 备用保护备用保护作为主保护的补充,扮演着备胎的角色。
当主保护故障或失效时,备用保护会立即自动接管主保护的作用。
110KV 变电站的备用保护一般包括互感器保护、开关保护、微机继电保护等。
110KV 变电站继电保护参数的整定计算继电保护参数的整定计算是指在设计或更换继电保护设备时,根据电力系统的特点,在准确理解保护对象的特性的基础上,通过计算整定参数来满足系统的保护要求。
1. 整定参数的确定原则整定参数的确定应根据以下原则:(1)可靠性原则:整定参数应当使保护措施尽可能保证电力系统的连续、稳定和安全运行。
110KV变电所继电保护设计整定计算设计任务书
电力职业技术学院继电保护及其自动化专业毕业设计任务书标题:110KV变电站继电保护的设计与整定计算原始数据:1.设计一座110KV降压变电站(1)110KV侧有L101、L103两条出线,35KV侧有L302、L303、L304、L305、L306五条出线,10KV侧有八条出线。
(2)与电力系统的连接;①110KV侧线路L101接入110kv系统:②35KV侧一路通过306开关接入35KV区域供电系统。
(3)主变压器数量及容量:1、每台变压器容量:31.5MVA绕组类型及接线组别:三相三绕组,yo/y/△-12-11;额定电压:110/38.5/11KV;短路百分比:高-中(17),高-低(10),中-低(6.5):绝缘类型:分级绝缘。
(4)110kv、35KV、10KV母线侧线路后备保护最大动作时间分别为110kv:2.5S、35kv:2.5S、10kv:2S。
2.电力系统的主要参数:(1)1)110kv系统最大等效正序电抗*ma*为6.6ω,最小等效正序电抗*ma*为5.3ω,最大等效电抗*ma* = 5.3Ω,35KV系统为9.2ω,最小等效电抗*.ma*为8.1ω。
(2)部分线路的主要参数如下表所示:L101:额定电压110KV长度52KM最大(额定)负载为51MVA每单位长度正序电抗(ω/km) 0.4L302:额定电压35KV长度18KM最大(额定)负载为6.3MVA每单位长度正序电抗(ω/km) 0.4L303:额定电压35KV长度16公里;最大(额定)负载为6.3MVA每单位长度正序电抗(ω/km) 0.4L304额定电压35KV长度32KM最大(额定)负载为4MVA每单位长度正序电抗(ω/km) 0.4L305:额定电压35KV长21公里;最大(额定)负载为4MVA每单位长度正序电抗(ω/km) 0.4L306:额定电压35KV长度25公里;最大(额定)负载为13.2MVA每单位长度正序电抗(ω/km) 0.4二、设计的主要要求1.根据本变电站主变压器的类型和容量,配置主变压器的继电保护方案,计算其主保护的整定;2.配置L303和L304线路的继电保护方案,并进行相应的整定计算。
35kV降压变电站继电保护设计
35kV降压变电站继电保护设计摘要:本设计可分为几部分:设计方案的确定;系统负荷计算,短路电流的计算;主变压器继电保护的配置、整定及校验的确定。
10kV出线继电保护的配置、整定及校验的确定。
无功补偿系统继电保护配置、整定及校验。
关键词:负荷计算;无功功率;短路电流;继电保护一、变电站继电保护和自动装置规划1.1系统分析及继电保护要求1.1.1系统一次1、变电站规模及电气主接线:本次设计变电站装设20000kVA双绕组变压器2台(N-1备用),35kV进线两回,单母分段接线;35kV主变出线2回,10kV出线12回,10kV电气主接线为单母线分段。
变电站主变的调压方式及无功补偿配置:变电站主变压器采用有载调压变压器,无功补偿方式采用10kV侧集中补偿方式,无功补偿电容器选用室外成套补偿装置。
补偿容量按照主变容量的15﹪选定,即总补偿容量为6000kVar。
变电站消弧线圈的装设:本站暂不考虑设置消弧线圈。
1.1.2为保证安全供电和电能质量,继电保护应满足四项基本要求,即选择性、速动性、灵敏性和可靠性。
1.2继电保护装置规划⑴35kV母联保护设置备自投及母联相间及零序过流、母联充电保护的功能。
⑵变压器主保护:变压器本体和有载分接开关重瓦斯保护、纵差保护,作用于总出口,跳主变35kV侧进线开关及主变10kV侧进线开关。
⑶35kV后备保护①10kV复合电压闭锁过电流保护:延时作用于总出口,跳主变二侧开关及35kV母联开关。
②35kV过负荷保护:延时发过负荷信号。
⑷10kV后备保护①10kV复合电压闭锁10kV过流保护:第一时限跳10kV分段开关,第二时限跳主变10kV侧进线开关,第三时限跳主变进线35kV侧开关及35kV母联开关。
②10kV过负荷保护:延时发过负荷信号。
主变10kV侧后备保护动作闭锁10kV分段备自投。
⑸非电量保护变压器非电量保护跳闸或发告警信号(包括变压器本体和有载瓦斯、变压器压力释放、变压器本体和有载油位异常等)。
110KV变电所继电保护的设计及整定计算
题目:110KV变电所继电保护的设计及整定计算原始资料:1、待设计的某110KV降压变电所(1)110KV侧共有两回出线L101、L103,35KV侧共有五回出线L302、L303、L304、L305、L306,而10KV侧共有八回出线。
(2)与电力系统连接情况;①110KV侧L101线路接至110KV系统:②35KV侧有一回线路经306开关接至35KV地区电源系统。
(3)主变台数及容量:1台,每台容量:31.5MVA;绕组型式及接线组别:三相三绕组、Yo/Y/△-12-11;额定电压:110/38.5/11KV;短路电压百分数:高-中(17)、高-低(10)、中-低(6.5):绝缘型式:分级绝缘。
(4)110KV、35KV和10KV母线侧线路后备保护的最大动作时间分别为:110kv:2.5S、35kv:2.5S、10kv:2S。
2、电力系统主要参数:(1)110KV系统的最大等值正序电抗Xmax=6.6Ω,最小等值正序电抗Xmax=5.3Ω,35KV系统的最大等值电抗Xmax=9.2Ω,最小等值电抗X.max=8.1Ω(2)部分线路的主要参数如下表所示:L101:额定电压110KV;长度52KM;最大(额定)负荷51MVA;单位长度的正序电抗(Ω/KM)0.4L302:额定电压35KV;长度18KM;最大(额定)负荷6.3MVA;单位长度的正序电抗(Ω/KM)0.4L303:额定电压35KV;长度16KM;最大(额定)负荷6.3MVA;单位长度的正序电抗(Ω/KM)0.4L304额定电压35KV;长度32KM;最大(额定)负荷4MVA;单位长度的正序电抗(Ω/KM)0.4L305:额定电压35KV;长度21KM;最大(额定)负荷4MVA;单位长度的正序电抗(Ω/KM)0.4L306:额定电压35KV;长度25KM;最大(额定)负荷13.2MVA;单位长度的正序电抗(Ω/KM)0.4二、设计的主要要求1、根据本变电所主变压器的型式和容量,配置主变器的继电保护方案并对其主保护进行整定计算;2、配置线路L303、L304的继电保护方案并进行相应的整定计算。
变压器保护整定计算
36
2020年8月14日星期五
变压器继电保护整定计算
37
2020年8月14日星期五
变压器继电保护整定计算
38
2020年8月14日星期五
变压器继电保护整定计算
39
2020年8月14日星期五
变压器继电保护整定计算
40
2020年8月14日星期五
变压器继电保护整定计算
41
2020年8月14日星期五
变压器继电保护整定计算
42
2020年8月14日星期五
Hale Waihona Puke 变压器继电保护整定计算43
2020年8月14日星期五
变压器继电保护整定计算
44
2020年8月14日星期五
变压器继电保护整定计算
45
2020年8月14日星期五
变压器继电保护整定计算
46
2020年8月14日星期五
变压器继电保护整定计算
47
2020年8月14日星期五
变压器继电保护整定计算
48
2020年8月14日星期五
变压器继电保护整定计算
49
2020年8月14日星期五
变压器继电保护整定计算
50
2020年8月14日星期五
变压器继电保护整定计算
51
2020年8月14日星期五
变压器继电保护整定计算
52
2020年8月14日星期五
变压器继电保护整定计算
53
2020年8月14日星期五
变压器继电保护整定计算
54
2020年8月14日星期五
变压器继电保护整定计算
55
2020年8月14日星期五
变压器继电保护整定计算
56
电力变压器继电保护配置
电力变压器继电保护配置摘要:本文介绍电力变压器的继电保护配置。
用于输配电系统升、降电压的电力变压器是现代电力系统中的重要电气设备之一,其安全运行直接关系到整个电力系统的连续稳定运行,可靠性要求很高。
如果电力变压器发生故障,将会造成很大的影响。
因此要加强其保护,为其配置性能良好,动作可靠的继电保护装置,以提高电力系统的安全运行。
电力变压器的继电保护分为电量和非电量两类保护,在本文中,我们重点对这两类继电保护配置进行介绍,希望对大家有所帮助。
关键词:电力变压器;继电保护配置;电量和非电量电力变压器继电保护配置1.引言继电保护是对电力系统中发生的故障或异常情况进行检测,从而发出报警信号,或直接将故障部分隔离、切除的一种重要措施。
其保护对象为发电机、变压器、输电线路、母线等。
电力变压器是电力系统的重要设备,为了保护其连续稳定运行,需要为其配置性能良好,动作可靠的继电保护装置。
电力变压器在运行中发生的故障可以分为内部故障和外部故障两类。
变压器内部故障指变压器油箱里面发生的各种故障,其主要类型有:各相绕组之间发生的相间短路,单相绕组部分线匝之间发生的匝间短路,单相绕组或引出线通过外壳发生的单相接地故障以及铁芯烧毁等,对应的保护方式为变压器瓦斯保护(轻瓦斯和重瓦斯)等非电量保护。
变压器外部故障指变压器油箱外部绝缘套管及其引出线上发生的各种故障,其主要类型有:绝缘套管闪络或破碎而发生的单相接地(通过外壳)短路,引出线之间发生的相间故障,对应的保护方式是纵差动保护或电流速断保护等电量保护。
电力变压器的不正常工作状态包括:由于外部短路或过负荷引起的过电流、油箱漏油造成的油面降低、变压器中性点电压升高、由于外加电压过高或频率降低引起的过励磁等。
为了防止电力变压器在发生各种类型故障和不正常运行时造成不应有的损失,保证电力系统连续安全运行,电力变压器一般应装设以下继电保护装置:(1)防御变压器油箱内部各种短路故障和油面降低的瓦斯保护(通过气体聚集量及油速整定)、温度保护(通过温度高低)、油位保护(通过油位高低)、防爆保护(压力)、防火保护(通过火灾探头等)、超速保护(速度整定)等。
110kV电网继电保护配置与线路保护整定计算(计算书)
第一章 电力系统各元件主要参数的计算1.1基准值选择基准功率:S B =100MV ·A 基准电压:U B =115V 基准电流:A U S I B B B 5023==基准电抗:Ω==25.1322BB B S U Z1.2 发电机参数的计算有限容量发电机的电抗标幺值计算公式:NB dG S S X X "=*对于无穷大容量系统的电抗标幺值计算公式:S S X B S ''=*式中: ''d X —— 发电机次暂态电抗 B S —— 基准容量100MV A N S ——发电机额定容量MV AS '' ——系统出口母线三相短路容量,取800MV A 利用以上公式对100MW 的发电机:已知:MWA P N 100= 取 8.0cos =ϕ 则 M V A P S N N 1258.0100c o s ===ϕ088.012510011.0*=⨯="=NB d GS S X XΩ=⨯==638.1125.132088.0*B GG Z X X对于无穷大容量电源S :最大运行方式下正序阻抗Ω=⨯==16.2125.13216.0*B S S Z X X最大运行方式下零序阻抗Ω=⨯==48.6325.13248.0*00B S S Z X X 最小运行方式下正序阻抗Ω=⨯==385.3425.13226.0*B S S Z X X最小运行方式下零序阻抗Ω=⨯==155.10325.13278.0*B S S Z X X1.3 变压器参数的计算变压器电抗标幺值计算公式: NB K T S S U X 100(%)*=式中: (%)K U —— 变压器短路电压百分值 B S —— 基准容量100MV AN S ——变压器额定容量MV A (1) 利用以上公式对T(T1,T2,T3) :已知: MVA S N 150= 5.12(%)=K U 则 083.01501001005.12100(%)*=⨯⨯==NB K T S S U XΩ=⨯==977.1025.132083.0*B T T Z X X (2)对T4(T5):已知: MVA S N 50= 12(%)=K U 则 24.05010010012100(%)*4=⨯⨯==NB K T S S U XΩ=⨯==74.3125.13224.0*44B T T Z X X(3)对T6(T7):已知: MVA S N 5.31= 5.10(%)=K U 则 333.05.311001005.10100(%)*6=⨯⨯==NB K T S S U XΩ=⨯==083.4025.132333.0*66B T T Z X X1.4 输电线路参数的计算输电线路电阻忽略不计,设线路正序阻抗为0.4/KM Ω,线路零序阻抗为1.21/KMΩ线路阻抗有名值的计算:正序阻抗 1X X l =零序阻抗 0X X l = 线路阻抗标幺值的计算:正序阻抗 21*1BB UlS X X =零序阻抗 20*0BB U lS X X =式中: 1X ------------ 每公里线路正序阻抗值 Ω/ KM 0X ----------- 每公里线路零序阻抗值 Ω/ KM l ------------ 线路长度 KM B U -------------------基准电压115KV B S ------------------- 基准容量100MV A (1)线路正序阻抗:Ω=⨯==2.5134.01AB AB l X X039.0115100134.0221*=⨯⨯==BBAB ABUS l X XΩ=⨯==2.9234.01BC BC l X X070.0115100234.0221*=⨯⨯==BBBC BC US l X XΩ=⨯==8.4124.01CA CA l X X036.0115100124.0221*=⨯⨯==BBCA CA US l X XΩ=⨯==22554.01SC SC l X X166.0115100554.0221*=⨯⨯==BBSC SC US l X X(2) 线路零序电抗:Ω=⨯==73.151321.100AB AB l X X119.01151001321.1220*0=⨯⨯==BBAB AB U S l X XΩ=⨯==83.272321.100BC BC l X X21.01151002321.1220*0=⨯⨯==BBBC BC US l X XΩ=⨯==52.141221.100CA CA l X X110.01151001221.1220*0=⨯⨯==BBCA CA US l X XΩ=⨯==55.665521.100SC SC l X X503.01151005521.1220*0=⨯⨯==BBSC SC U S l X X第二章 短路电流的计算2.1 线路AC 上零序电流的计算2.1.1 线路AC 末端发生短路时零序电流计算B 母线发生最大接地电流时,C1,C2接通,B 、C 母线连通。
电力变压器的继电保护整定值计算
电力变压器的继电保护整定值计算一.电力变压器的继电保护配置注1:①当带时限的过电流保护不能满足灵敏性要求时,应采用低电压闭锁的带时限的过电流保护。
②当利用高压侧过电流保护及低压侧出线断路器保护不能满足灵敏性要求时,应装设变压器中性线上的零序过电流保护。
③低压电压为230/400V的变压器,当低压侧出线断路器带有过负荷保护时,可不装设专用的过负荷保护。
④密闭油浸变压器装设压力保护。
⑤干式变压器均应装设温度保护。
注2:电力变压器配置保护的说明(1)配置保护变压器内部各种故障的瓦斯保护,其中轻瓦斯保护瞬时动作发出信号,重瓦斯保护瞬时动作发出跳闸脉冲跳开所连断路器。
(2)配置保护变压器绕组和引线多相短路故障及绕组匝间短路故障的纵联差动保护或者电流速断保护,瞬时动作跳开所连断路器。
(3)配置保护变压器外部相间短路故障引起的过电流保护或复合电压启动过电流保护。
(4)配置防止变压器长时间的过负荷保护,一般带时限动作发出信号。
(5)配置防止变压器温度升高或冷却系统故障的保护,一般根据变压器标准规定,动作后发出信号或作用于跳闸。
(6)对于110kV 级以上中性点直接接地的电网,要根据变压器中性点接地运行的具体情况和变压器的绝缘情况装设零序电流保护或零序电压保护,一般带时限动作 作用于跳闸。
注3:过流保护和速断保护的作用及X 围① 过流保护:可作为本线路的主保护或后备保护以及相邻线路的后备 保护。
它是按照躲过最大负荷电流整定,动作时限按阶段原那么选择。
②速断保护:分为无时限和带时限两种。
a. 无时限电流速断保护装置是按照故障电流整定的,线路有故障时,它能瞬时动作,其保护X 围不能超出本线路末端,因此只能保护线路的一部分。
b. 带时限电流速断保护装置,当线路采用无时限保护没有保护X 围时,为使线路全长都能得到快速保护,常常采用略带时限的电流速断与下级无时限电流速断保护相配合,其保护X 围不仅包括整个线路,而且深入相邻线路的第一级保护区,但不保护整个相邻线路,其动作时限比相邻线路的无时限速断保护大一个时间级。
变电站继电保护整定值计算书
一.限时电流速断保护的作用
限时电流速断保护用来切除本线路电流速断保护范围以外的全长范围内的故障,并对末端短路有足够的灵敏度。
限时电流速断保护是线路的主保护。
二.限时电流速断保护的电流整定值计算
限时电流速断保护的最大保护范围为下级保护的电流速断保护的最小范围,如保护5的限时电流速断保护范围为保护10的速断保护的最小范围。故其电流整定值为:
变电站继电保护整定值计算书
继电保护装置是电力系统重要二次设备,它对电力系统安全稳定地运行起着重要的作用。电力系统对继电保护装置的要求是快速性、可靠性、选择性。要满足这三点要求,除选用性能良好的继电保护装置外,还必须正确地进行整定。性能再好的保护装置,如整定不正确,也不能正确地完成保护功能。
本章就采用微机保护装置的35kV变电站的线路、主变、电容等设备的保护定值的计算,作简单的介绍,以帮助用户正确地进行35kV变电站,继电保护装置进行整定,充分发挥各种保护装置的作用,保证变电站设备的安全和可靠、经济、稳定运行。
式中: 为分支系数,在有源分支电路时,分支系数>1,流过保护1的电流小于流过保护2的电流。
2.无源并联支路对限时电流速断保护整定值的影响:以图16-3所示电网为例,在线路2中的d点短路时,流过线路1的电流为:
继电保护配置及整定计算
保证电力系统安全稳定运行
提高电力系统的可靠性
优化电力系统的经济性
预防和减少电力系统的事故
可靠性:确保保护装置在规定的运行方式和故障类型下能够正确动作,不发生误动或拒动。
选择性:在保护装置发生动作时,应仅切除故障设备或线路,尽量减小对其他设备或线路 的影响。
灵敏性:保护装置应能够灵敏地反映被保护设备或线路的故障,并在规定的保护范围内达 到相应的灵敏度要求。
及时处理继电保 护装置的故障和 异常情况
汇报人:XX
XX,A CLICK TO UNLIMITED POSSIBILITES
汇报人:XX
目录
CONTENBiblioteka S保证电力系统安全稳定运行
提高电力系统的可靠性
添加标题
添加标题
防止设备损坏和事故扩大
添加标题
添加标题
保障用户用电安全和正常供电
继电保护装置:用于检测和切除故障元件,保障电力系统正常运行
互感器:将一次侧的高电压和大电流转换为二次侧的低电压和小电流,便于测量和保护 装置的接入
保护装置的选择:根据系统要求和设备特性选择合适的保护装置。 配置方案:根据保护需求制定合理的配置方案,确保保护装置的正确安装和运行。 整定计算:根据系统参数和运行要求进行整定计算,确保保护装置的正确动作。 调试与测试:在安装完成后进行调试和测试,确保保护装置的性能和功能符合要求。
考虑保护装置的特性,确保其能 够正确动作
遵循继电保护配置的原则,确保 系统的安全稳定运行
添加标题
添加标题
添加标题
添加标题
考虑系统运行方式和负荷变化, 以确定合适的整定值
考虑可能出现的故障类型和运行 异常,以确定相应的保护方案
添加项标题
110kV变压器保护的配置及整定计算
94科技资讯 SCIENCE & TECHNOLOGY INFORMATION2010 NO.36SCIENCE & TECHNOLOGY INFORMATION动力与电气工程变压器的造价昂贵,一旦发生故障遭到损坏,其检修难度大、时间长,要造成很大的经济损失。
该电压等级变压器大部分为终端变,与客户联系紧密,变压器发生故障后突然切除,对客户供电可靠性及质量有较大影响,所以除了要保证变压器安全运行外,还要最大限度地缩小故障影响范围,要求在继电保护的整体配置上尽量做到完善、合理。
1 110kV变压器各保护装置作用及定值整定方法1.1变压器瓦斯保护0.8MVA及以上油浸式变压器均应配备瓦斯保护,对带有载调压的油浸式变压器的调压装置也应配置瓦斯保护,瓦斯保护分轻瓦斯和重瓦斯两种。
轻瓦斯主要反映在运行或者轻微故障时由油分解的气体上升至瓦斯继电器,气压使油面下降,继电器的开口杯随油面落下,轻瓦斯干簧触点接通发出信号。
重瓦斯主要反映变压器严重内部故障(特别是匝间短路等其他变压器保护不能快速动作的故障),故障产生的强烈气体推动油流冲击挡板,挡板上磁铁吸引重瓦斯干簧触点,使触点接通作用于变压器各侧断路器跳闸。
通常根据变压器容量大小来整定轻瓦斯气体容积,110kV变压器轻瓦斯定值为250cm3~350cm3,油面降低到轻瓦斯刻度线时轻瓦斯触点导通,发出轻瓦斯动作信号。
若需调整轻瓦斯定值,可调节开口杯背后的重锤改变开口杯的平衡。
重瓦斯定值一般为1.0~1.55m/s,若重瓦斯不满足要求,可调节指针弹簧改变档板的强度。
1.2变压器差动保护变压器的差动保护是按照循环电流原理构成,即将变压器电流进行相量相加,使正常运行和区外故障时流入保护装置的电流基本为0,而区内故障时流入保护装置的电流大于差动保护的动作电流整定值,保护无时限动作跳主变各侧断路器。
变压器差动保护的保护范围为各侧差动保护用电流互感器所包围的区域。
6.3MVA及以上变压器,2MVA及以上电流速断保护灵敏性不能满足要求的变压器均应配置差动保护。
电力变压器的继电保护整定值计算
电力变压器的继电保护整定值计算一.电力变压器的继电保护配置注1:①当带时限的过电流保护不能满足灵敏性要求时,应采用低电压闭锁的带时限的过电流保护。
②当利用高压侧过电流保护及低压侧出线断路器保护不能满足灵敏性要求时,应装设变压器中性线上的零序过电流保护。
③低压电压为230/400V的变压器,当低压侧出线断路器带有过负荷保护时,可不装设专用的过负荷保护。
④密闭油浸变压器装设压力保护。
⑤干式变压器均应装设温度保护。
注2:电力变压器配置保护的说明(1)配置保护变压器内部各种故障的瓦斯保护,其中轻瓦斯保护瞬时动作发出信号,重瓦斯保护瞬时动作发出跳闸脉冲跳开所连断路器。
(2)配置保护变压器绕组和引线多相短路故障及绕组匝间短路故障的纵联差动保护或者电流速断保护,瞬时动作跳开所连断路器。
(3)配置保护变压器外部相间短路故障引起的过电流保护或复合电压启动过电流保护。
(4)配置防止变压器长时间的过负荷保护,一般带时限动作发出信号。
(5)配置防止变压器温度升高或冷却系统故障的保护,一般根据变压器标准规定,动作后发出信号或作用于跳闸。
(6)对于110kV级以上中性点直接接地的电网,要根据变压器中性点接地运行的具体情况和变压器的绝缘情况装设零序电流保护或零序电压保护,一般带时限动作作用于跳闸。
注3:过流保护和速断保护的作用及范围①过流保护:可作为本线路的主保护或后备保护以及相邻线路的后备保护。
它是按照躲过最大负荷电流整定,动作时限按阶段原则选择。
②速断保护:分为无时限和带时限两种。
a.无时限电流速断保护装置是按照故障电流整定的,线路有故障时,它能瞬时动作,其保护范围不能超出本线路末端,因此只能保护线路的一部分。
b.带时限电流速断保护装置,当线路采用无时限保护没有保护范围时,为使线路全长都能得到快速保护,常常采用略带时限的电流速断与下级无时限电流速断保护相配合,其保护范围不仅包括整个线路,而且深入相邻线路的第一级保护区,但不保护整个相邻线路,其动作时限比相邻线路的无时限速断保护大一个时间级。
论35KV变电站继电保护的配置及整定计算
论35KV变电站继电保护的配置及整定计算就目前来说,所有的电力元件都要进行继电保护,这样才能确保电网运行的安全性和可靠性。
基于此,本文先是介绍了35KV变电站中线路和变压器的继电保护装置,然后进行了35KV变电站继电保护的整定计算。
目的是帮助电力企业及相关单位更好地使用继电保护装置。
标签:35KV变电站;继电保护装置;整定计算继电保护作为变电站运行过程中保障电力元件遭到损害、提高电力元件使用寿命的主要手段。
一旦变电站的继电保护装置出现了问题,会对电网的稳定运行造成不利的影响。
目前,如何充分发挥出继电保护装置的作用,对继电保护定值进行科学合理的整定计算,是变电站保障安全运行的关键。
因此,对于35KV变电站继电保护的配置及整定计算是很有必要的。
1、35KV变电站继电保护的配置1.1 35KV变电站的线路继电保护装置根据不同的出线回路数和线路的故障类型,为35KV变电站的线路设置的继电保护装置如下:第一,单回路出线保护,主要应用于胶木厂或者织布厂的出线,使用两段式的电流保护,即电流速断保护及过电流保护。
其中,电流速断保护装置是根据线路出现短路的时候,通过保护装置的电流来进行动作电流的选择,通过动作电流的大小来确定保护装置的保护范围;过电流保护装置是根据线路出现短路时的电流大于正常运行时的特点来判断线路是否出现了短路故障,将定时限的过电流保护作为电流速断保护装置的后备,排除掉电流速断保护范围之外的故障。
第二,双回路出线保护,主要应用于炼铁厂、配电所以及印染厂的出线,使用横联方向差动保护及电流保护装置。
其中,横联方向差动保护装置通过对比两线路的电流数值及相位是否相同来判断故障的发生,该装置主要是由电流起动元件、出口执行元件以及功率方向元件所构成,电流起动元件主要用来判断电路是否出现故障,功率方向元件主要用来判断线路发生故障的位置,该装置的保护动作时間为0秒,但是横联方向差动保护装置会在相继动作区内出现短路,从而延长排除故障的时间,因此要安装一套电流保护装置作为后备。
继电保护课程设计题目
继电保护课程设计题目电气与信息工程学院《电力系统继电保护》课程设计任务书班级0914专业电气工程及其自动化设计时间第18周指导教师2015年12月1、2015—2016学年第一学期第18周2、教室、图书馆及机房二、设计目的和要求1、继电保护课程设计是配合“电力系统继电保护原理”理论教学而设置的一门实践性课程。
主要目的是通过该课程使学生初步掌握继电保护的设计步骤和方法,熟悉有关“规定”和“设备手册”的使用方法,以及继电保护标准图的绘制等。
2、通过该课程设计使学生达到以下几点要求:1)、巩固和加深对继电保护基本知识的理解,提高学生综合运用所学知识的能力。
2)、培养学生根据课题需要选学参考资料的自学能力。
通过独立思考、钻研有关问题,学会自己分析解决问题的方法。
3)、通过对实际系统的设计方案的分析比较、计算、设备选择、或数字仿真等环节,初步掌握继电保护系统的分析方法和工程设计方法。
4)、了解相关的工程技术规范,能按课程设计任务书的要求编写设计说明书,能正确反映设计和实验成果、正确绘制电路图等。
5)、通过课程设计实践,培养学生建立正确的生产观点、经济观点和全局观点。
1、双侧电源的35KV线路继电保护的配置及整定计算。
原始资料:某双侧电源的35KV线路网络接线如下:已知:(1)、电厂为3台3⨯6000KW、电压等级为6、3KV的有自动电压调节器的汽轮发电机,功率因数cosϕ=0.8,X d”=0.125, X2 =0.15, 升压站为2台容量各为10MV A的变压器U d=7.5%,各线路的长度XL—1为20KM;XL—2为50KM;XL—3为25KM;XL—4为14KM ;XL—5为40KM发电机系统(2)、电厂最大运行方式为3台发电机2台变压器运行方式,最小运行方式为2台发电机2台变压器运行方式;XL—1线路最大负荷功率为10MW,XL—4线路最大负荷功率为6MW。
(3)、各可靠系数设为:K I K =1.2,K II K =1.1,K III K =1.2,XL—1线路自起动系数K Zq =1.1,XL—4线路自起动系数K Zq=1.2,XL—5线路过流保护的动作时限为1.6秒, XL—3线路C侧过流保护的动作时限为1.秒,保护操作电源为直流220V。
继电保护定值整定计算公式大全(最新)
继电保护定值整定计算公式大全1、负荷计算〔移变选择〕:cos de Nca wmk P S ϕ∑=〔4-1〕式中 S ca --一组用电设备的计算负荷,kVA ;∑P N --具有一样需用系数K de 的一组用电设备额定功率之和,kW 。
综采工作面用电设备的需用系数K de 可按下式计算Nde P P k ∑+=max6.04.0 〔4-2〕 式中 P max --最大一台电动机额定功率,kW ;wm ϕcos --一组用电设备的加权平均功率因数2、高压电缆选择:〔1〕向一台移动变电站供电时,取变电站一次侧额定电流,即NN N ca U S I I 131310⨯== 〔4-13〕式中 N S —移动变电站额定容量,kV •A ;N U 1—移动变电站一次侧额定电压,V ; N I 1—移动变电站一次侧额定电流,A 。
〔2〕向两台移动变电站供电时,最大长时负荷电流ca I 为两台移动变电站一次侧额定电流之和,即31112ca N N I I I =+=〔4-14〕〔3〕向3台及以上移动变电站供电时,最大长时负荷电流ca I 为3ca I =〔4-15〕式中 ca I —最大长时负荷电流,A ;N P ∑—由移动变电站供电的各用电设备额定容量总和,kW ;N U —移动变电站一次侧额定电压,V ; sc K —变压器的变比;wm ϕcos 、ηwm —加权平均功率因数和加权平均效率。
〔4〕对向单台或两台高压电动机供电的电缆,一般取电动机的额定电流之和;对向一个采区供电的电缆,应取采区最大电流;而对并列运行的电缆线路,那么应按一路故障情况加以考虑。
3、 低压电缆主芯线截面的选择1〕按长时最大工作电流选择电缆主截面 〔1〕流过电缆的实际工作电流计算① 支线。
所谓支线是指1条电缆控制1台电动机。
流过电缆的长时最大工作电流即为电动机的额定电流。
NN N N N ca U P I I ηϕcos 3103⨯== 〔4-19〕式中 ca I —长时最大工作电流,A ;N I —电动机的额定电流,A ; N U —电动机的额定电压,V ; N P —电动机的额定功率,kW ; N ϕcos —电动机功率因数;N η—电动机的额定效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.设计目的:通过本课程设计,使学生掌握和应用电力系统继电保护的设计、整定计算、资料整理查询和电气绘图等使用方法。
在此过程中培养学生对各门专业课程整体观的综合能力,通过较为完整的工程实践基本训练,为全面提高学生的综合素质及增强工作适应能力打下一定的基础。
本课程主要设计变压器继电保护的原理、配置及整定计算,给今后继电保护的工作打下良好的基础。
2.设计内容和要求(包括原始数据、技术参数、条件、设计要求等):1、原始资料:在电气上距离电源较远的变电所(如下图)所示已知:(1)有两台容量相同的Yd,11连接的三相变压器并列运行,变压器参数为7500KVA、35/6.6、Ud=7.5%,变压器的最大负荷电流为1.7倍的额定电流。
(2)系统在35KV母线上的最大短路容量为83MVA,最小短路容量为78MVA,本变电站最小运行方式为单台变压器运行方式。
(3)低压侧母线无专门的保护。
3.设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕:(1)选择变压器保护所需的电流互感器变比、计算短路电流。
(2)设置变压器保护并对其进行整定计算。
(3)绘制出变压器继电保护展开图。
(4)绘制出变压器屏屏面布置图及设备表。
(5)写出说明书。
(6)选出所需继电器的规格、型号。
1引言电力系统运行中常会出现故障和一些异常运行状态,而这些现象会发展成事故,使整个系统或其中一部分不能正常工作,从而造成对用户少送电、停止送电或电能质量降低到不能容许的地步,甚至造成设备损坏和人身伤亡。
而电力系统各元件之间是通过电或磁建立的联系,任何一元件发生故障时,都有可能立即在不同程度上影响到系统的正常运行。
因此,切除故障元件的时间常常要求短到1/10s甚至更短。
而这个任务靠人完成是不可能的,所以要有一套自动装置来执行这一任务。
继电保护的作用不只限于切除故障元件和限制事故影响范围(这是首要任务),还要保证系统的安全稳定运行。
这就要求每个保护单元都能共享全系统的运行和故障信息的数据,各个保护单元与重合闸装置在分析这些信息和数据的基础上协调动作,实现微机保护装置的网络化。
这样,继电保护装置能够得到的系统故障信息愈多,对故障性质、故障位置的判断和故障距离的检测愈准确,大大提高保护性能和可靠性。
继电保护装置为了完成它的任务,必须在技术上满足选择性、速动性、灵敏性和可靠性四个基本要求。
对于作用于继电器跳闸的继电保护,应同时满足四个基本要求,而对于作用于信号以及只反映不正常的运行情况的继电保护装置,这四个基本要求中有些要求可以降低。
1)选择性:是指当电力系统中的设备或线路发生短路时,其继电保护仅将故障的设备或线路从电力系统中切除,当故障设备或线路的保护或断路器拒动时,应由相邻设备或线路的保护将故障切除。
2)速动性:是指继电保护装置应能尽快地切除故障,以减少设备及用户在大电流、低电压运行的时间,降低设备的损坏程度,提高系统并列运行的稳定性。
3)灵敏性:是指电气设备或线路在被保护范围内发生短路故障或不正常运行情况时,保护装置的反应能力。
4)可靠性:包括安全性和信赖性,是对继电保护最根本的要求。
安全性:要求继电保护在不需要它动作时可靠不动作,即不发生误动。
信赖性:要求继电保护在规定的保护范围内发生了应该动作的故障时可靠动作,即不拒动。
2设计任务与目的2.1课设要求在电气上距离电源较远的变电所图2.1所示图2.1 原电路图已知:(1)有两台容量相同的Yd,11连接的三相变压器并列运行,变压器参数为7500KVA、35/6.6、Ud=7.5%,变压器的最大负荷电流为1.7倍的额定电流。
(2)系统在35KV母线上的最大短路容量为83MVA,最小短路容量为78MVA,本变电站最小运行方式为单台变压器运行方式。
(3)低压侧母线无专门的保护。
2.2设计任务(1)选择变压器保护所需的电流互感器变比、计算短路电流。
(2)设置变压器保护并对其进行整定计算。
(3)绘制出变压器继电保护展开图。
(4)绘制出变压器屏屏面布置图及设备表。
(5)写出说明书。
(6)选出所需继电器的规格、型号。
3 设计原理3.1 6.6KV线路电流速断保护根据短路时通过保护装置的电流来选择动作电流,以动作电流的大小来控制保护装置的保护范围;有无时限电流速断和延时电流速断,采用二相二电流继电器的不完全星形接线方式,本设计选用无时限电流速断保护。
3.2 6.6KV线路过电流保护利用短路时的电流比正常运行时大的特征来鉴别线路发生了短路故障,其动作的选择性由过电流保护装置的动作具有适当的延时来保证,有定时限过电流保护和反时限过电流保护;本设计与电流速断保护装置共用两组电流互感器,采用二相二继电器的不完全星形接线方式,选用定时限过电流保护,作为电流速断保护的后备保护,来切除电流速断保护范围以外的故障,其保护范围为本线路全部和下段线路的一部分。
3.3 程序平行双回线路横联方向差动保护通过比较两线路的电流相位和数值相同与否鉴别发生的故障;由电流起动元件、功率方向元件和出口执行元件组成,电流起动元件用以判断线路是否发生故障,功率方向元件用以判断哪回线路发生故障,双回线路运行时能保证有选择的动作。
该保护动作时间0S。
由于横联保护在相继动作区内短路时,切除故障的时间将延长一倍,故加装一套三段式电流保护,作为后备保护。
3.4 变压器瓦斯保护利用安装在变压器油箱与油枕间的瓦斯继电器来判别变压器内部故障;当变压器内部发生故障时,电弧使油及绝缘物分解产生气体。
故障轻微时,邮箱内气体缓慢产生,气体上升聚集在继电器里,使油面下降,继电器动作,接点闭合,这是让其作用于信号,称为轻瓦斯保护;故障严重时,邮箱内产生大量的气体,在该气体作用下形成强烈的油流,冲击继电器,使继电器动作,接点闭合,这时作用于跳闸并发信,称为重瓦斯保护。
3.5 变压器纵联差动保护按照循环电流的原理构成。
在变压器两侧都装设电流互感器,其二次I绕组按环流原则串联,差动继电器并接在回路壁中,在正常运行和外部短路时,二次电流在臂中环流,使差动保护在正常运行和外部短路时不动作,由电流互感器流入继电器的电流应大小相等,相位相反,使得流过继电器的电流为零;在变压器内部发生相间短路时,从电流互感器流入继电器的电流大小不等,相位相同,使继电器内有电流流过。
但实际上由于变压器的励磁涌流、接线方式及电流互感器误差等因素的影响,继电器中存在不平衡电流,变压器差动保护需解决这些问题,方法有:靠整定值躲过不平衡电流;采用比例制动差动保护;采用二次谐波制动;采用间歇角原理;采用速饱和变流器。
本设计采用较经济的BCH-2型带有速饱和变流器的继电器,以提高保护装置的励磁涌流的能力。
4 短路电流计算4.1 基准参数选定S B =100MVA,UB=UAV,35kV侧UB=37kV,6.6kV侧UB=6.9kV;561373100311.USIBBB=⨯==378963100322..U S I B B B =⨯== 又变压器的阻抗X T *为,1750010010000057100=⨯⨯==.S %S U X N d k *T 4.2 短路电流计算(1)最大运行方式下:因已知35kV 侧的短路容量S k1=83MV A ,且U c1=37kV ,此时2台变压器并列运行,可求短路电流I k.max.1kA kA U S I c k k 30.1373833111.max .=⨯== 又有*111.max .X I I B k = ∴20.130.156.11.max .1*1===k B I I X 则6.6kV 侧的短路电流可求得:70.11//120.1//***1max =+=+=T T X X X XkA X I I B k 924.470.137.8max 22.max .=== 系统等效图4.1所示:图4.1 系统等效图 (2)最小运行方式下:因已知35kV 侧的短路容量S k2=78MVA,且U c2=6.9kV,此时只有一台运行,可求短路电流I k.min.1:1/1.20 2/13/1kA kA U S I c k k 22.1373783121.min .=⨯== 6.6kV 侧短路电流I k.min.2可求得20.2120.1**1min =+=+=T X X X kA X I I B k 80.320.237.8min 22.min .=== 系统等效图如图4.2所示:图4.2 系统等效图5 主变继电保护整定计算及继电器选择5.1 瓦斯保护轻瓦斯保护的动作值按气体容积为250~3002cm 整定,本设计采用2802cm 。
重瓦斯保护的动作值按导油管的油流速度为0.6~1.52cm 整定本,本设计采用0.92cm 。
瓦斯继电器选用803-FJ 型。
瓦斯保护原理图如图5.1所示图5.1 瓦斯保护原理图5.2 纵联差动保护选用2-BCH 型差动继电器1/1.20 2/15.2.1 纵联差动保护原理图如图5.2所示图5.2 纵联差动保护原理图5.2.2 计算Ie 及电流互感器变比表5-1 变压器纵差动保护用互感器变比选择 名 称各侧数据 Y (35kV)△(6.6kV ) 额定电流e I 1S/3e U 1=123.7A e I 2=S/3c U 2=656.1A 变压器接线方式Y △ CT 接线方式△ Y CT 计算变比e I 13/5=214.2/5 e I 2/5=656.1/5 实选CT 变比n250/5 800/5 实际额定电流e I 13/5=5.36A e I 2/5=5.15A 不平衡电流Ibp5.36-5.15=0.21A 确定基本侧基本侧 非基本侧 5.2.3 确定基本侧动作电流(1)躲过外部故障时的最大不平衡电流bp k dz I K I ≥1利用实用计算式max 211)(d za i tx fzq k dz I f U f K K K I ⨯∆+∆+=式中k K —可靠系数,采用1.3;fzq K —非同期分量引起的误差,采用1;tx K —同期系数,CT 型号相同且处于同一情况时取0.5,型号不同时取1,本设计取1; △U —变压器调压时所产生的相对误差,采用调压百分数的一半,本设计取0.05; △za f —继电器整定匝数与计算匝数不等而产生的相对误差,暂无法求出,先采用中间值0.05;i f —电流互感器的最大相对误差,取0.1;代入数据得1dz I =1.3(1×1×0.1+0.05+0.05)×1.3=0.338kA(2)躲过变压器空载投入或外部故障后电压恢复时的励磁涌流e k dz I K I =1式中 k K —可靠系数,采用1.3e I —变压器额定电流代入数据得1dz I =1.3×123.7A=0.16kA(3)躲过电流互感器二次回路短路时的最大负荷电流1dz I =1.7×123.7A=0.21kA比较上述(1),(2),(3)式的动作电流,取最大值为计算值,即=1dz I 0.338kA5.2.4 确定基本侧差动线圈的匝数和继电器的动作电流将两侧电流互感器分别结于继电器的两组平衡线圈,再接入差动线圈,使继电器的实用匝数和动作电流更接近于计算值;以二次回路额定电流最大侧作为基本侧,基本侧的继电器动作电流及线圈匝数计算如下:基本侧(35kV )继电器动作值11n I K I dz JX dzjsI ⨯= 代入数据得A kA I dzjsI 7.1150338.03=⨯=基本侧继电器差动线圈匝数dzjsIwo cdjsI I A W = 式中wo A 为继电器动作安匝,应采用实际值,本设计中采用额定值,取得60安匝。