空间分析——栅格数据的空间分析(一)
栅格数据空间分析

栅格数据空间分析
栅格数据空间分析是一种地理信息系统(GIS)分析方法,用于对栅
格数据进行处理和分析。
栅格数据由等尺度的正方形单元组成,在地理空
间上形成一个网格。
每个栅格单元代表一个特定的地理区域,例如一块土地、一座建筑物或一个气象站。
接下来是数据变换,包括栅格数据融合、相似性度量和特征提取等。
栅格数据融合是将多个栅格数据集合并到一个单一的栅格数据中,以获取
更全面和准确的信息。
相似性度量用于比较不同栅格数据之间的相似性和
差异性,以支持空间分析和决策制定。
特征提取是从栅格数据中提取具有
特定意义和价值的特征,例如提取建筑物、道路或河流等。
最后是空间分析,包括空间统计、遥感应用和模拟建模等。
空间统计
用于分析和研究栅格数据中的空间分布和空间关联性,例如热点分析、空
间插值和时空分析等。
遥感应用利用栅格数据进行地物分类、土地利用变
化检测和资源管理等。
模拟建模是利用栅格数据构建地理模型,进行模拟
和预测,例如气候模拟、城市扩张和生态模拟等。
栅格数据空间分析的主要优势在于能够处理大量的空间数据和复杂的
空间关系,同时还能够考虑地球表面的不规则性和异质性。
然而,栅格数
据空间分析也存在一些限制,例如空间分辨率和数据量的限制,以及对数
据获取和预处理的要求较高。
总之,栅格数据空间分析是一种重要的GIS分析方法,能够有效地提取、分析和模拟栅格数据中的空间信息,为决策制定和问题解决提供支持。
在不同的应用领域中,栅格数据空间分析具有广泛的应用前景和发展潜力。
栅格数据的空间分析报告

栅格数据的空间分析一、实验综述1、实验目的及要求实验目的:学习ARCGIS中栅格数据的空间分析基本方法,掌握ArcGIS9中栅格数据空间分析的基本方法和操作。
实验内容:运用ARCGIS的空间分析扩展模块进行空间分析。
Arcgis10的栅格数据的空间分析基本方法:栅格数据重分类、距离分析、采样点数据空间插值、栅格单元统计、交叉面积表、邻域分析、栅格计算器等。
2、实验仪器、设备ARCGIS软件、landuse和elevation等二、实验步骤1.栅格分析环境设置:首先在ArcMap中执行菜单命令<自定义>-<扩展模块>,在扩展模块管理窗口中,将“spatial analysis空间分析”前的检查框打上勾。
ArcGIS10栅格数据空间分析模块(Spatial Analyst),只能进行简单的等高线和直方图分析。
其它的分析工具要在Arctools工具中进行。
点击工具栏“”打开Arctools。
2. 高程数据生成坡度数据在Arctools-Spatial Analyst-表面分析中双击打开“坡度”。
按如下设置。
点击“确定”,生成坡度图。
3、高程数据生成坡向图在“Arctools-Spatial Analyst-表面分析”中双击打开“坡向”。
按如下设置。
点击“确定”,生成坡向图。
4、高程数据生成等高线图在“Arctools-Spatial Analyst-表面分析中”双击打开“等值线”。
按如下设置。
点击“确定”,生成等值线图。
5、视域分析在“Arctools-Spatial Analyst-表面分析”中双击打开“视域”。
按如下设置。
点击“确定”,生成视域分析图。
6、栅格数据重分类(Reclassify)重分类:将栅格图层的数值进行重新分类组织或者重新解释。
重分类的关键是确定原数据到新数据之间的对应关系。
在“Arctools-Spatial Analyst-重分类”中双击打开“重分类”。
栅格数据基本分析方法

栅格数据基本分析方法栅格数据是由一系列规则排列的网格单元组成的空间数据集合。
它通常用于描述和分析地理信息系统中的地表特征和现象。
栅格数据基本分析方法是指使用栅格数据进行数据处理、可视化和模型建立的一系列方法和技术。
下面将介绍一些常用的栅格数据基本分析方法。
1.数据预处理栅格数据预处理是指对原始栅格数据进行清洗、转换和重采样等操作,以便进行后续的分析和应用。
常见的数据预处理方法包括数据去噪、数据融合、数据重投影和数据重采样等。
去噪可以通过滤波算法、空间平滑等方法实现,融合可以通过融合不同传感器获取的数据、融合不同时相的数据等方法实现,投影和重采样可以将数据转换到统一的坐标系统和分辨率下。
2.可视化栅格数据可视化是指将栅格数据以图像的形式展示出来,以便理解和分析地表特征和现象。
常见的栅格数据可视化方法包括颜色编码、图像渲染、等值线图、栅格分层和比例尺控制等。
颜色编码通过将栅格数据的数值映射到一定的颜色范围内,来表示不同数值代表的地表特征;图像渲染通过使用不同的渲染算法和颜色映射表将栅格数据转换成图像;等值线图通过连接具有相同数值的栅格单元来表示地表特征的等值线。
3.空间分析栅格数据的空间分析是指基于栅格数据进行空间关系分析、空间统计和地理建模等操作。
常见的空间分析方法包括邻域分析、拓扑关系分析、栅格代数运算、栅格重分类和栅格面积计算等。
邻域分析可以通过计算栅格单元周围的邻域特征和自动距离来获得地表特征的空间指数和密度信息。
拓扑关系分析可以通过计算栅格数据之间的空间连接和邻近性来确定地理实体之间的拓扑关系。
栅格代数运算可以对栅格数据进行加、减、乘、除等运算,用于生成衍生数据和计算栅格指标。
栅格重分类可以通过定义不同的分类规则和阈值来将栅格数据转换成不同的分类,用于区分地物类型和提取特征信息。
栅格面积计算可以通过计算栅格数据的像元个数和单元面积来获取不同地物类型的空间分布和面积比例。
4.模型建立栅格数据的模型建立是指使用栅格数据进行模型分析和预测,以便提取地表特征的空间和时间关系。
如何进行栅格地图生成和地理空间数据分析

如何进行栅格地图生成和地理空间数据分析栅格地图生成和地理空间数据分析是现代地理信息系统(GIS)中的重要环节。
随着遥感技术和数字地图技术的发展,栅格地图成为了地理信息处理和分析的重要工具。
本文将介绍如何进行栅格地图生成和地理空间数据分析的基本步骤和方法。
栅格地图生成是将现实世界的地理空间数据转化为栅格数据的过程。
栅格数据是由像素组成的矩阵,每个像素对应现实世界中的一个区域。
栅格地图生成的第一步是选择适当的栅格分辨率。
分辨率决定了栅格地图的精度,高分辨率可以提供更详细的信息,但需要更大的存储空间和计算资源。
在选择分辨率时,需要根据具体的研究目的和数据来源进行权衡。
栅格地图生成的第二步是数据预处理。
地理空间数据通常来自不同的来源,具有不同的格式和投影系统。
因此,首先需要将不同的数据源整合到同一坐标系统下,并进行投影转换。
其次,还要处理数据的空缺和异常值,以保证栅格地图的质量和准确性。
栅格地图生成的第三步是栅格化过程。
栅格化是将矢量数据转化为栅格数据的过程。
这个过程可以利用插值方法来实现,最常用的插值方法有反距离加权和克里金插值。
插值方法可以根据已有的点数据估算出整个区域的值,从而生成栅格数据。
地理空间数据分析是利用栅格地图进行各种地理问题的研究和分析。
该过程通常涉及到空间统计、多尺度分析、遥感影像分析等方法和技术。
空间统计是研究地理现象在空间上的分布和相关性的方法。
通过空间统计分析,可以揭示地理现象的空间规律和模式,为规划和决策提供支持。
多尺度分析是将地理现象在不同尺度上进行比较和分析的方法。
地理现象常常是具有多个尺度的,而不同尺度上的地理现象又具有不同的特征和规律。
通过多尺度分析,可以将地理问题从不同的角度进行研究,提高研究的全面性和准确性。
遥感影像分析是利用遥感技术获取的影像数据进行地理分析的方法。
遥感影像数据提供了丰富的地理信息,可以从不同的角度和尺度对地理现象进行分析。
遥感影像分析可以用于土地利用分类、植被覆盖度估算、城市扩张监测等领域,为地理问题的研究提供强大的工具和支持。
实验二栅格数据的空间分析

实验二栅格数据的空间分析栅格数据的空间分析是利用栅格数据进行空间统计和空间建模的过程。
栅格数据是用栅格单元组成的二维数组,每个栅格单元代表地理空间上的一个特定位置,栅格单元中的数值表示该位置的一些属性或现象。
栅格数据的空间分析可以帮助我们理解地理现象的空间分布、模式和关系,为决策提供空间参考。
栅格数据的空间分析可以包括以下几个方面的内容。
首先是栅格数据的空间统计。
栅格数据的空间统计可以通过计算栅格数据的均值、最大值、最小值、标准差等统计指标,来描述地理现象的空间变化和分布情况。
通过空间统计分析,我们可以揭示地理现象的空间模式、集聚程度和异质性等特征。
其次是栅格数据的空间插值。
栅格数据的空间插值是通过已有的离散栅格数据,推算出未知位置的栅格数值,从而建立连续的栅格表面。
在空间插值中,常用的方法有反距离加权插值法、克里金插值法、样条插值法等。
通过空间插值,我们可以填补数据缺失的区域,获得更加连续、光滑的栅格表面。
再次是栅格数据的空间分析。
栅格数据的空间分析可以通过栅格运算、栅格叠加、栅格筛选等操作,在栅格数据之间进行空间计算和图层叠加。
通过空间分析,我们可以识别地理要素之间的关系,进行空间查询和挖掘,得到新的地理信息。
最后是栅格数据的空间建模。
栅格数据的空间建模是指基于栅格数据进行地理模型的构建和分析。
在空间建模中,可以使用基于栅格数据的地理模型,如细胞自动机模型、物理模型、统计模型等,来模拟和预测地理现象的发展和变化。
通过空间建模,我们可以预测未来的地理状态、评估不同决策对地理系统的影响,并优化决策方案。
总的来说,栅格数据的空间分析是利用栅格数据进行地理信息的统计、插值、分析和模拟的过程。
通过空间分析,我们可以更好地理解地理现象的空间分布和变化规律,为决策提供科学依据,促进地理信息的应用和发展。
arcgis栅格数据空间分析实验报告

实验五栅格数据的空间分析一、实验目的理解空间插值的原理,掌握几种常用的空间差值分析方法。
二、实验内容根据某月的降水量,分别采用IDW、Spline、Kriging方法进行空间插值,生成中国陆地范围内的降水表面,并比较各种方法所得结果之间的差异,制作降水分布图。
三、实验原理与方法实验原理:空间插值是利用已知点的数据来估算其他临近未知点的数据的过程,通常用于将离散点数据转换生成连续的栅格表面。
常用的空间插值方法有反距离权重插值法(IDW)、样条插值法(Spline)和克里格插值方法(Kriging)。
实验方法:分别采用IDW、Spline、Kriging方法对全国各气象站点1980年某月的降水量进行空间插值生成连续的降水表面数据,分析其差异,并制作降水分布图。
四、实验步骤⑴打开arcmap,加载降水数据,行政区划数据,城市数据,河流数据,并进行符号化,对行政区划数据中的多边形取消颜色填充页脚内容1⑵点击空间分析工具spatial analyst→options,在general标签中将工作空间设置为实验数据所在的文件夹⑶点击spatial analyst→interpolate to raster→inverse distance weighted,在input points下拉框中输入rain1980,z字rain,像元大小设置为10000页脚内容2点击空间分析工具spatial analyst→options,在extent标签中将分析范围设置与行政区划一致,点击spatial an interpolate to raster→inverse distance weighted,在input points下拉框中输入rain1980,z字段选择rain,像元大小10000点击空间分析工具spatial analyst→options在general标签中选province作为分析掩膜,点击spatial analyst→interp raster→inverse distance weighted,在input points下拉框中输入rain1980,z字段选择rain,像元大小设置为10000页脚内容3求三者最大值与最小值的差值,并转化为整形数据,进行符号化,分为三类页脚内容4⑷采用样条差值点击spatial analyst→interpolate to raster→spline,在input points下拉框中输入rain1980,z字段选择rain,像元大小设置点击空间分析工具spatial analyst→options,在extent标签中将分析范围设置与行政区划一致,点击spatial an interpolate to raster→spline,在input points下拉框中输入rain1980,z字段选择rain,像元大小设置为10000点击空间分析工具spatial analyst→options在general标签中选province作为分析掩膜,点击spatial analyst→interp raster→spline,在input points下拉框中输入rain1980,z字段选择rain,像元大小设置为10000页脚内容5求三者最大值与最小值的差值,并转化为整形数据,进行符号化,分为三类⑸采用页脚内容6点击spatial analyst→interpolate to raster→kriging,在input points下拉框中输入rain1980,z字段选择rain,像元大小设置点击空间分析工具spatial analyst→options在general标签中选province作为分析掩膜,点击spatial analyst→interpolate →kriging,在input points下拉框中输入rain1980,z字段选择rain,像元大小设置为10000页脚内容7求三者最大值与最小值的差值,并转化为整形数据,进行符号化,分为三类页脚内容8结果为三次插值求平均,分为4类制作降水量分布图,添加图名,图框,指北针,图例,比例尺页脚内容9五、实验总结1、栅格数据空间分析可以运用到哪些领域?栅格数据结构简单、直观、非常利于计算机操作和处理,是GIS常用的空间基础数据格式,基于栅格数据的空间分析是GIS空间分析的基础,也是GIS空间分析模块(Spatial Analyst)的核心内容。
栅格数据的空间分析

栅格数据的空间分析栅格数据的空间分析是地理信息系统(GIS)中常用的一种分析方法,它通过对栅格数据进行处理和分析,来研究和描述地理现象的空间分布和关系。
栅格数据通常以像元(Grid Cell)为单位,每个像元代表了一定大小的区域,其中包含了该区域的空间属性或特征。
首先,栅格数据的处理是栅格空间分析的基础。
栅格数据通常以图像的形式呈现,可以通过遥感技术获取或生成。
在进行空间分析前,需要对栅格数据进行预处理,包括数据清理、去噪、校正等。
同时,栅格数据还可以进行融合、重分类、裁剪等操作,以满足具体的分析需求。
其次,栅格数据的空间分析包括了众多的方法和技术。
其中最常用的是栅格地图代数运算,包括加、减、乘、除等运算,用于栅格数据的叠加、缩放、变换等操作。
此外,还可以进行基本的空间统计分析,如均值、方差、标准差等,用于描述栅格数据的中心趋势和分散程度。
另外,还可以进行栅格数据的分类、聚类、插值等操作,以识别和评估地理现象的空间分布规律。
最后,栅格数据的空间分析在各个领域都有广泛的应用。
在环境科学领域,可以使用栅格数据进行环境评估和监测,如水质分析、土地覆盖变化分析等。
在气象学领域,可以使用栅格数据进行气候模拟和预测,如降水量、温度等指标的空间分布分析。
在土地利用规划领域,可以使用栅格数据进行土地评价和优化布局,如农田布局、城市规划等。
总结起来,栅格数据的空间分析是GIS中一种重要的分析方法,它通过对栅格数据进行处理和分析,帮助我们更好地理解地理现象的空间分布和关系。
栅格数据的处理、空间分析方法和应用多样化,广泛应用于各个领域,对于地理信息的收集、管理和决策支持都具有重要意义。
在未来,随着遥感技术和计算机计算能力的不断提高,栅格数据的空间分析将得到更广泛和深入的应用。
GIS空间分析第三章栅格数据分析

GIS空间分析第三章栅格数据分析栅格数据分析是GIS空间分析的重要组成部分,它是通过对栅格数据进行数学计算、空间统计和空间模型构建来揭示地理现象和解决实际问题的过程。
本文将围绕栅格数据的分类、栅格数据的操作、栅格数据的转换和栅格数据的模型构建展开阐述。
首先,栅格数据可以分为单波段栅格数据和多波段栅格数据。
单波段栅格数据是指只包含一个变量的栅格数据,如高程数据、遥感影像数据等;而多波段栅格数据则是指包含多个变量的栅格数据,如遥感影像的RGB波段数据。
栅格数据的操作包括栅格数据的重分类、栅格数据的代数运算和栅格数据的空间过滤。
栅格数据的重分类是指将栅格数据的属性值按照一定的标准进行重新划分,以便于后续的分析和应用;栅格数据的代数运算是指对栅格数据进行加、减、乘、除等数学运算,以获得新的栅格数据;栅格数据的空间过滤是指通过设定空间窗口大小和权重来对栅格数据进行平滑或者锐化处理,以揭示地理现象的模式和变化。
栅格数据的转换包括栅格数据的样本导出、栅格数据的统计和栅格数据的可视化。
栅格数据的样本导出是指从栅格数据中提取一部分样本数据,用于建立统计模型或者进行其他分析;栅格数据的统计分析是指对栅格数据进行均值、方差、标准差等统计指标的计算,以了解栅格数据的分布特征;栅格数据的可视化是指通过色彩、阴影和填充等方式将栅格数据以图像的形式展示出来,以便于人们对其进行直观的理解和分析。
最后,栅格数据的模型构建是指根据栅格数据的特征和空间关系建立数学模型,用于解决实际问题。
常见的栅格数据模型包括地形模型、遥感模型和景观模型。
地形模型是通过栅格数据的高程信息构建的,它可以用来进行地形分析、地形模拟和洪水预测等;遥感模型是通过栅格数据的反射率信息构建的,它可以用来进行植被分析、土地利用分类和环境监测等;景观模型是通过栅格数据的空间分布和格网图案构建的,它可以用来进行景观格局分析和景观生态研究等。
总之,栅格数据分析是GIS空间分析中一种重要的数据分析方法,它通过对栅格数据进行分类、操作、转换和模型构建来揭示地理现象和解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重分类娱乐场所直线距离数据集
娱乐场所近~远 对应于 适宜度10~1
重分类现有学校直线距离数据集
新学校距离现有学校比较远时适宜性好,仍分 为10级,距离学校最远的单元赋值为10,距离学校 最近的单元赋值为1。得到重分类学校距离图。
重分类土地利用数据集
土地利用对新建学校的适宜性有一定的影响。 如在有湿地、水体分布区建学校的适宜性极差,于 是在重分类时删除这两类,然后对剩下的其它土地 利用类型重新赋值。 赋值如下:
(一)背景
合理的学校空间位置布局,有利于学生的上课
与生活。学校的选址问题需要考虑地理位置、学生
娱乐场所配套、与现有学校的距离间隔等因素,从
总体上把握这些因素能够确定出适宜性比较好的学 校选址区。
(二)目的
通过练习,熟悉ArcGIS栅格数据距离制图、
成本距离加权、数据重分类、多层面合并等空间 分析功能;熟练掌握利用ArcGIS空间分析功能, 分析类似学校选址等实际应用问题。
密度制图
密度制图根据输入的要素数据集计算整 个区域的数据聚集状况,从而产生一个连续 的密度表面。密度制图主要是基于点数据生 成的,以每个待计算格网点为中心,进行圆 形区域的搜寻,进而来计算每个格网点的密 度值。
表面分析
表面分析主要生成新的数据集,诸如等 值线、坡度、坡向、山体阴影等派生数据, 获得更多的反映原始数据集所暗含的空间特 征、空间格局等信息。
表面分析的功能有:查询表面值、从表 面获取坡度和坡向信息、创建等值线、面积 和体积、数据重分类、将表面转化为矢量数 据等。
统计分析
是基于栅格数据的一种空间统计分析,包括
基于单元的统计(cell statistics)、邻域统计、 分类区统计等内容。
可以统计栅格数据的:最小值、最大值、数 值范围、数据总和、平均值、标准差、出现频率 最高和最低的数值等。
新学校应避开现有学校,合理分布。
各数据层权重比为:距离娱乐设施占0.5,距离 学校占0.25,土地利用类型和地势位置因素各占 0.125。 实现过程运用ArcGIS的扩展模块(Extension) 中的空间分析(Spatial Analyst)部分功能,具 体包括:坡度计算,直线距离制图功能、重分类 及栅格计算器等功能完成。 给出适合新建学校的适宜地区图,并作简要分析。
重分类
重分类是基于栅格数据的原有数值,对原有 数值重新进行分类整理从而得到一组新值并输出 的方法。 重分类包括四种基本分类形式: (1)新值代替:用一组新值代替原来的旧值。 (2)旧值合并:将原值重新组合分类。 (3)重新分类:以一种分类体系对原始值进行分 类。 (4)空值设置:把指定值设置空值。
(五)实现的思路及流程
数 据 准 备 派 生 数 据 重 分 类 最 终 结 果
土地利用图 高程图 娱乐场所分布图 学校分布图
计算坡度
距离娱乐场所
距离学校
(六)操作步骤
第一步:运行ArcGIS,加载Spatial Analyst模块,如果 该模块没有激活,则单击Tools菜单下的Extension进 行加载。 第二步:加载数据
栅格计 算器
得到最终适宜性数据集suit,并将适宜性 大于8的区域提取出来,确定其为最佳选
址区域。
The End
第四步:计算派生数据
从DEM中派生坡度数据
从娱乐场所数据“rec_sites”中计算距离 娱乐场所的直线距离数据
从学校数据中计算距离学校的直线距离数据
第五步:对派生数据重分类
重分类坡度数据集
把坡度数据重新分类成等间距的10类,并 赋予建校适宜度数值,数值大小由坡度决定, 平坦地适宜度数值大,反之,陡峭地适宜度数 值小。平坦~陡峭对应于适宜度大~适宜度小 (10~1)
Barren land
1
Forest
City center
2
3
Vegetable
Agriculture Public
4
5 10
Transtional 7
第六步:适宜性分析 重分类以后,各个数据集都统一到相同的等级体系内, 且每个数据集中那些被认为比较适宜性的属性都被赋 予比较高的值。 给四种因素赋予不同的权重,然后合并数据集以找到 最适宜的位置。 单击Spatial Analyst 下拉列表框中的Raster Calculator 命令对各个重分类后数据集的合并计算,最终适宜性 数据集的加权计算公式为: Suit(最终适宜性)=Reclassdisr(娱乐场所)×0.5 +reclassdiss(现有学校)×0.25+reclassland(土地利 用)×0.125+reclassslope(坡度)×0.125
Landuse(土地利用数据);
DEM(数字高程数据); Rec_sites(娱乐场所分布数据); School(现有学校分布数据)。
第三步:设置空间分析环境
单击Spatial Analyst模块的下拉箭头,打 开Options对话框,设置相关参数: 在General选项卡中,设置工作目录,注 意:工作目录和数据目录路径都不能出现 中文字;
空间分析
——栅格数据的空间分析应用
主讲:赖格英教授 江西师范大学地理与环境学院
一、基于栅格数据的空间分析的简介
距离制图(Distance)
是根据每一栅格相距其最近要素(也称 “源”)的距离分析制图,从而反映每一栅 格与其最邻近源的相互关系。通过距离制图 可以获得很多相关信息,指导人们进行资源 的合理规划和利用。 例如:飞机失事紧急救援时从指定地区 到最近医院的距离;消防、照明等市政设施 的布设及其服务区域的分析等。
(三)数据
Landuse(土地利用数据);
DEM(数字高程数据);
Rec_sites(娱乐场所分布数据);
School(现有学校分布数据)。
(四)要求
新学校选址需注意如下几点:
新学校应位于地势较平坦处;
新学校的建立应结合现有土地利用类型综合考虑, 选址成本不高的区域; 新学校应该与现有娱乐设施相配套,学校距离这些 设施愈近愈好;
栅格计算
栅格计算是数据处理和分析最为常见的方法,
也是建立复杂的应用数学模型的基本模块。
可以在ArcGIS下面进行算术运算(+、-、 ×、/)、布尔运算(and、or、not)、关系运 算(>、>=、<、<=等)、函数运算(算术函数、 三角函数、对数函数、指数函数、栅格数据空间 分析函数等)。
二、实例应用——学校选址