2010广东中考数学试卷

合集下载

2010年广东省中考数学真题试题(含答案)

2010年广东省中考数学真题试题(含答案)

机密☆启用前2010年广东中考数学试题及答案(含答案)说明:1.全卷共4页,考试用时100分钟,满分为120分.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、 试室号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑, 如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域 内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和 涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.-3的相反数是( ) A .3B .31 C .-3D .13-2.下列运算正确的是( ) A .ab b a 532=+B .()b a b a -=-422C .()()22b a b a b a -=-+D . ()222b a b a +=+3.如图,已知∠1=70°,如果CD ∥BE ,那么∠B 的度数为( ) A.70° B.100° C.110° D.120°4.某学习小组7位同学,为玉树地震灾区捐款,捐款金额分别为5元、6元、6元、7元、8元、 9元,则这组数据的中位数与众数分别为( ) A .6,6 B .7,6 C . 7,8 D .6,85. 左下图为主视方向的几何体,它的俯视图是( )二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.根据新网上海6月1日电:世博会开园一个月来,客流平稳,累计到当晚19时,参观者已超过 8000000人次,试用科学记数法表示8000000= .7.分式方程112=+x x的解x = . 8.如图,已知R t △ABC 中,斜边BC 上的高AD =4,cosB =54,则 AC = .9.某市2007年、2009年商品房每平方米平均价格分别为4000元、5760元,假设2007年后的两 年内,商品房每平方米平均价格的年增长率都为x ,试列出关于x 的方程: . 10.如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到新正方形A 2B 2C 2D 2(如图(2));以此下去…, 则正方形A 4B 4C 4D 4的面积为 .三、解答题(一)(本大题5小题,每小题6分,共30分)11.计算:()001260cos 2214π-+-⎪⎭⎫ ⎝⎛+-.12. 先化简,再求值()x x x x x 224422+÷+++ ,其中 x = 2 .13. 如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,R t △ABC 的顶点均在格点上,在建立平面直角坐标系以后,点A 的坐标为(-6,1),点B 的坐标为(-3,1),点C 的坐标为 (-3,3).(1)将R t △ABC 沿X 轴正方向平移5个单位得到R t △A 1B 1C 1,试在图上画出R t △A 1B 1C 1的图形,并写出点A 1的坐标。

2010年广东省茂名市中考数学试卷

2010年广东省茂名市中考数学试卷

2010年广东省茂名市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1、(2010•茂名)如图所示的几何体的主视图是()A、B、C、D、考点:简单组合体的三视图。

分析:找到从正面看所得到的图形即可.解答:解:从正面可看到从左往右4列小正方形的个数为:1,1,2,2,故选B.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.2、(2010•茂名)下列运算中结果正确的是()A、3a+2b=5abB、5y﹣3y=2C、﹣3x+5x=﹣8xD、3x2y﹣2x2y=x2y考点:合并同类项。

分析:①所含字母相同,并且相同字母的指数相同,像这样的项是同类项;②合并同类项,系数相加字母不变;③、④合并同类项,系数相加字母和字母的指数不变.解答:解:A、算式中所含字母不同,所以不能合并,故A错误;B、5y﹣3y=2y,合并同类项,系数相加字母不变,故B错误;C、﹣3x+5x=2x,合并同类项,系数相加减,故C错误;D、3x2y﹣2x2y=x2y,合并同类项,系数相加字母和字母的指数不变,故D正确.故选D.点评:“同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并”这是本题特别应该注意的地方.3、(2010•茂名)如图所示,梯子的各条横档互相平行,若∠1=70°,则∠2的度数是()A、80°B、110°C、120°D、140°考点:平行线的性质。

专题:计算题。

分析:先根据两直线平行,同位角相等求出∠2的邻补角,再根据平角的定义即可求出.解答:解:如图,∵各条横档互相平行,∠1=70°,∴∠3=∠1=70°,∴∠2=180°﹣70°=110°.故选B.点评:本题利用平行线的性质和平角的定义求解.4、(2010•茂名)下列命题是假命题的是()A、三角形的内角和是180°B、多边形的外角和都等于360°C、五边形的内角和是900°D、三角形的一个外角等于和它不相邻的两个内角的和考点:多边形内角与外角;三角形内角和定理;三角形的外角性质。

【真题集详解版】2010年广东省中考数学试卷及答案

【真题集详解版】2010年广东省中考数学试卷及答案

2010年广东省中考数学试卷一、填空题(共6小题,满分23分)1、(2010•广东)﹣2的绝对值是.考点:绝对值。

分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解答:解:|﹣2|=2.故填2.点评:规律总结:一个正数的绝对值是它本身;一个负数的绝对值是是它的相反数;0的绝对值是0.2、(2010•广东)据中新网上海6月1日电:世博会开园一个月来,客流平稳,累计至当晚19时,参观者已超过8 000 000人次.试用科学记数法表示8 000 000= .考点:科学记数法—表示较大的数。

专题:应用题。

分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:用科学记数法表示8 000 000=8×106.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3、(2010•定西)分式方程的解x= .考点:解分式方程。

专题:计算题。

分析:本题的最简公分母是x+1,方程两边都乘最简公分母,可把分式方程转换为整式方程求解.结果要检验.解答:解:方程两边都乘x+1,得2x=x+1,解得x=1.检验:当x=1时,x+1≠0.∴x=1是原方程的解.点评:(1)解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解.(2)解分式方程一定注意要代入最简公分母验根.4、(2010•广东)如图,已知Rt△ABC中,斜边BC上的高AD=4,cosB=,则AC= .考点:解直角三角形。

分析:根据题中所给的条件,在直角三角形中解题.根据角的正弦值与三角形边的关系,可求出AC.解答:解:∵在Rt△ABC中,cosB=,∴sinB=,tanB==.∵在Rt△ABD中AD=4,∴AB=.在Rt△ABC中,∵tanB=,∴AC=×=5.点评:本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.5、(2010•广东)某市2007年、2009年商品房每平方米平均价格分别为4000元、5760元,假设2007年后的两年内,商品房每平方米平均价格的年增长率都为x,试列出关于x的方程:.考点:由实际问题抽象出一元二次方程。

2010年广东省中考数学试卷解析

2010年广东省中考数学试卷解析

2010年广东省中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题4分,满分32分)1.(4分)﹣3的相反数是()A.3 B.C.﹣3 D.﹣考点:难易度M111 相反数容易题分析:根据相反数的概念解答即可.即:∵互为相反数相加等于0,∴﹣3的相反数是3.故选:A.解答: A点评:此题主要考查了相反数的意义,属于中考的一个高频考点,要注意一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(4分)下列运算正确的是()A.2a+3b=5ab B.2(2a﹣b)=4a﹣b C.(a+b)(a﹣b)=a2﹣b2D.(a+b)2=a2+b2考点:容易题:M11K 整式运算容易题分析:A、利用合并同类项的法则即可判定∵2a,3b不是同类项,∴2a+3b≠5ab,故选项错误;B、利用去括号的法则可得2(2a﹣b)=4a﹣2b,故选项错误;C、利用平方差公式可得(a+b)(a﹣b)=a2﹣b2,正确;D、利用完全平方公式可得(a+b)2=a2+b2+2ab,故选项错误.故选C.解答: C点评:此题较容易,属于送分题,主要考查了整式的运算法则,其中对于平方差公式和完全平方公式的公式结构一定要熟练.3.(4分)如图,已知∠1=70°,如果CD∥BE,那么∠B的度数为()A.70°B.100°C.110°D.120°考点:M31B 平行线的判定及性质M31A 相交线(对顶角、邻补角、同位角、同旁内角、内错角、).难易度:容易题.分析:此题解法不唯一,可以先求出∠1的邻补角,再根据两直线平行,同位角相等即可求出.亦可以先求出∠1的对顶角,再根据两直线平行,同旁内角相等即可求出,具体解法如下:解:如图,∵∠1=70°,∴∠2=∠1=70°,∵CD∥BE,∴∠B=180°﹣∠1=180°﹣70°=110°.故选:C.解答: C点评:本题解法不唯一,主要考查平行线的判定及性质,属于中考高频考点,需要熟练掌握.4.(4分)某学习小组7位同学,为玉树地重灾区捐款,捐款金额分别为:5元,10元,6元,6元,7元,8元,9元,则这组数据的中位数与众数分别为()A.6,6 B.7,6 C.7,8 D.6,8考点:难易度:M214 中位数、众数容易题分析:首先把所给数据按从小到大的顺序重新排序,然后利用中位数和众数的定义就可以求出结果.具体如下:把已知数据按从小到大的顺序排序后为5元,6元,6元,7元,8元,9元,10元,∴中位数为7∵6这个数据出现次数最多,∴众数为6.故选B.解答: B点评:本题结合众数与中位数考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为中位数.如果是偶数个则找中间两位数的平均数.众数只要找次数最多的即可.5.(4分)如图为主视图方向的几何体,它的俯视图是()A .B .C .D .考点: 难易度 M414 视图与投影 容易题分析: 找到从上面看所得到的图形即可.从上面看可得到三个左右相邻的长方形,故选D 解答: D .点评:本题考查了三视图的知识,属于中考常考知识,注意俯视图是从物体的上面看得到的视图是解题的关键.6.(4分)如图,把等腰直角△ABC 沿BD 折叠,使点A 落在边BC 上的点E 处.下面结论错误的是( )A .AB=BEB .AD=DC C .AD=DED .AD=EC 考点: 难易度: M411 图形的折叠、镶嵌 容易题 分析: 根据折叠性质,有AB=BE ,AD=DE ,∠A=∠DEC=90°.∴A 、C 正确; 又∠C=45°,∴△CDE 是等腰直角三角形,EC=DE ,CD >DE . ∴D 正确,B 错误. 故选B . 解答:B 点评: 本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后对应边、角相等.7.(4分)已知方程x 2﹣5x+4=0的两根分别为⊙O 1与⊙O 2的半径,且O 1O 2=3,那么两圆的位置关系是( )A .相交B .外切C .内切D .相离 考点: 难易度: M34C 圆与圆的位置关系 M127 解一元二次方程 容易题. 分析: 解答此题,先要求一元二次方程的两根,然后根据圆与圆的位置关系判断条件,确定位置关系.具体解法如下:解:解方程x2﹣5x+4=0得x1=1,x2=4,∵O1O2=3,x2﹣x1=3,∴O1O2=x2﹣x1∴⊙O1与⊙O2内切.故选C.解答: C点评:此题综合考查一元二次方程的解法及两圆的位置关系的判断方法.属于中考常考题,注意:外离,则P>R+r;外切,则P=R+r;相交,则R﹣r<P<R+r;内切,则P=R﹣r;内含,则P<R﹣r.(P表示圆心距,R,r分别表示两圆的半径).8.(4分)已知一次函数y=kx﹣1的图象与反比例函数的图象的一个交点坐标为(2,1),那么另一个交点的坐标是()A.(﹣2,1)B.(﹣1,﹣2) C.(2,﹣1)D.(﹣1,2)考点:M154 反比例函数的应用M144 一次函数的应用难易度:较难题分析:把交点坐标代入一次函数可求得一次函数的解析式,让一次函数解析式与反比例函数解析式组成方程组即可求得另一交点的坐标.具体解法如下:解:∵(2,1)在一次函数解析式上,∴1=2k﹣1,解得k=1,y=x﹣1,与反比例函数联立得:;解得x=2,y=1;或x=﹣1,y=﹣2.故选:B.解答: B点评:本题考查了反比例函数与一次函数交点的问题,解法不唯一,点在函数图象上,那么点适合函数图象,注意也可根据反比例函数上的点的横纵坐标的积为2可很快得到答案.二、填空题(共5小题,每小题4分,满分20分)9.(4分)据中新网上海6月1日电:世博会开园一个月来,客流平稳,累计至当晚19时,参观者已超过8 000 000人次.试用科学记数法表示8 000 000=.考点:M11C 科学记数法.难易度:容易题.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.则此题用科学记数法表示为:8 000 000=8×106解答:8×106点评:此题考查科学记数法的表示方法.属于中考热点,注意科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(4分)分式方程的解x=.考点:M12B 解可化为一元一次方程的分式方程.难易度:容易题.分析:本题的最简公分母是x+1,方程两边都乘最简公分母,可把分式方程转换为整式方程求解.结果要检验.具体解法如下:解:方程两边都乘x+1,得2x=x+1,解得x=1.检验:当x=1时,x+1≠0.∴x=1是原方程的解.解答: 1点评:本题不难,主要考查了解可化为一元一次方程的分式方程,解此类题型的一般步骤如下:(1)解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解.(2)解分式方程一定注意要代入最简公分母验根.11.(4分)如图,已知Rt△ABC中,斜边BC上的高AD=4,cosB=,则AC=.考点:难易度:M32E 解直角三角形容易题分析:对于此题,在直角三角形中,根据角的正弦值与三角形边的关系,可求出AC.具体解法如下:解:∵在Rt△ABC中,cosB=,∴sinB=,tanB==.∵在Rt△ABD中AD=4,∴AB=.在Rt△ABC中,∵tanB=,∴AC=×=5.解答: 5点评:本题考查了解直角三角形,属于中考常考知识点,注意边角之间的函tanB=,是解决此题的根本所在.数关系tanB=、12.(4分)某市2007年、2009年商品房每平方米平均价格分别为4000元、5760元,假设2007年后的两年内,商品房每平方米平均价格的年增长率都为x,试列出关于x的方程:.考点:M12A 一元二次方程的应用M127 解一元二次方程.难易度:中等题分析:由于设2007年后的两年内,商品房每平方米平均价格的年增长率都为x,那么2008年商品房每平方米平均价格为4000(1+x),2009年商品房每平方米平均价格为4000(1+x)(1+x),再根据2009年商品房每平方米平均价格为5760元即可列出方程.具体解法如下:解:设2007年后的两年内,商品房每平方米平均价格的年增长率都为x,依题意得4000(1+x)(1+x)=5760,即4000(1+x)2=5760.故填空答案:4000(1+x)2=5760.解答:4000(1+x)2=5760点评:此类题为中考热点题型,主要考查了增长率的问题,注意:一般公式为原来的量(1±x)2=现在的量,x为增长或减少百分率.增加用+,减少用﹣.13.(4分)如图,已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1边长按原法延长一倍得到正方形A2B2C2D2;以此下去…,则正方形A4B4C4D4的面积为.考点:M335 正方形的性质与判定M339 四边形的面积M612 规律型题.难易度:较难题.分析:本题需先根据已知条件得出延长n次时面积的公式,再根据求正方形A4B4C4D4正好是要求的第5次的面积,把它代入即可求出答案.具体解法如下:解:最初边长为1,面积1,延长一次为,面积5,再延长为51=5,面积52=25,下一次延长为5,面积53=125,以此类推,当N=4时,正方形A4B4C4D4的面积为:54=625.故答案为:625.解答:625点评:本题属于规律型题,主要考查了正方形的性质与判定,属于中考必考题型,在解题时要根据已知条件找出规律,从而得出正方形的面积.三、解答题(共11小题,满分98分)14.(7分)计算:.考点:难易度: M119 实数的混合运算M32D 特殊角三角函数的值M11E 二次根式的化简容易题.分析:对于本题,在计算时,需要针对每个式子分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:=2﹣2﹣1+1 (4)=0 (6)点评:本题考查实数的实数的综合运算能力,涉及零指数幂、负指数幂、二次根式化简、特殊角的锐角三角函数值等考点,是各地中考题中常见的计算题型.解题时注意各个式子的计算方式,确保正确无误。

2010年广东佛山中考数学试卷及答案(WORD版)[1]

2010年广东佛山中考数学试卷及答案(WORD版)[1]

2010年佛山市高中阶段招生考试数 学 试 卷一、选择题:1、如图,数轴上的点A 表示的数为a ,则a1等于( ) A 、21- B 、21C 、-2D 、22、300角的补角是( )A 、300 角B 、600角C 、900 角D 、1500角3、如图,把其中的一个小正方形看成是基本图形,这个图形中不包含的变换的是( ) A 、对称 B 、平移 C 、相似(相似比不为1) D 、旋转4、“数x 不小于2”是指( )A 、300 角B 、600角C 、900 角D 、1500角5、如图,直线与两个同心圆分别相交于图示的各点,则正确的是( ) A 、MP 与RN 的关系无法确定 B 、MP=RN C 、MP<RN D 、MP>RN6、掷一枚均匀的,前5次朝上的点数恰好是1~5,在第6次朝上的点数(A 、一定是6B 、一定不是6C 、是6 的可能性大小大于是1~5的任意一个数的可能性D 、是6 的可能性大小等于是1~5的任意一个数的可能性 7、尺规作图是指( )A 、用直尺规范作图B 、用刻度尺和圆规作图C 、用没有刻度尺直尺和圆规作图D 、直尺和圆规是作图工具8、如图,是一个几何体的三视图(含有数据)则这个几何体的侧面展开图的面积等于( ) A 、π2 B 、π C 、4 D 、29、多项式21xy xy -+的次数及最高次数的系数是( ) A 、2,1 B 、2,-1 C 、3,-1 D 、5,-110、4个数据8,10,x,10的平均数和中位数相等,则x 等于( ) A 、8 B 、10 C 、12 D 、8或12 二、填空题:11、分解因式:22xy y x -=12、在算式3[]21--中的[ ]里,填入运算符号 使得等式的值最小(在符号÷⨯-+,,,中选择一个) 13、不等式组⎪⎩⎪⎨⎧-≥>+32132x x xx 的解集是A 0 1主视图 左视图俯视图14、根据反比例函数xy 2-=的图象(请先画图象)回答问题,当函数值为正时,x 取值范围是 15、如图,AB 是伸缩性遮阳棚,CD 是窗户,要想夏至正午时的阳光刚好不能射入窗户,则AB 的长度是(假如夏至正午时的阳光与地平面的夹角是600) 三、解答题 16、化简:31922---a a a17、已知,在平行四边形ABCD 中,EFGH 分别是ABBCCDDA 上的点,且AE=CG ,BF=DH ,求证:AEH ∆≌CGF ∆18、儿子今年13岁,父亲今年40岁,是否有那一年父亲的年龄是儿子年龄的4倍?19、一般认为,如果一个人的肚脐以上的高度与肚脐以下的高度符合黄金分割,则这个人好看。

2010年广东省珠海市中考数学试卷

2010年广东省珠海市中考数学试卷

2010年广东省珠海市中考数学试卷一、填空题(共6小题,满分23分)1、(2010•广东)﹣2的绝对值是 .考点:绝对值。

分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解答:解:|﹣2|=2.故填2.点评:规律总结:一个正数的绝对值是它本身;一个负数的绝对值是是它的相反数;0的绝对值是0.2、(2010•珠海)分解因式ax 2﹣ay 2= .考点:提公因式法与公式法的综合运用。

分析:应先提取公因式a ,再对余下的多项式利用平方差公式继续分解. 解答:解:ax 2﹣ay 2,=a (x 2﹣y 2),=a (x+y )(x ﹣y ).点评:本题主要考查提公因式法分解因式和平方差公式分解因式,需要注意分解因式一定要彻底.3、(2010•珠海)方程组x +y =112x ﹣y =7的解是 . 考点:解二元一次方程组。

分析:因为未知数y 的系数互为相反数,所以可先用加减消元法再用代入消元法解方程组. 解答:解:(1)+(2)得,3x=18,x=6,代入(1)得,6+y=11,y=5,故原方程组的解为{x =6y =5. 点评:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.4、(2010•珠海)一天,小青在校园内发现:旁边一颗树在阳光下的影子和她本人的影子在同一直线上,树顶的影子和她头顶的影子恰好落在地面的同一点,同时还发现她站立于树影的中点(如图所示).如果小青的身高为1.65米,由此可推断出树高是 米.考点:三角形中位线定理。

专题:应用题。

分析:根据三角形的中位线定理的数量关系“三角形的中位线等于第三边的一半”,进行计算.解答:解:根据三角形的中位线定理,得树高是小青的身高的2倍,即3.3米.故答案为3.3点评:本题考查运用三角形的中位线定理解决生活中的实际问题,将生活中的实际问题转化为数学问题是解题的关键.5、(2010•珠海)如图,P是菱形ABCD对角线BD上一点,PE⊥AB于点E,PE=4cm,则点P 到BC的距离是cm.考点:菱形的性质。

2010-2011广东东莞中考数学试卷及答案

2010-2011广东东莞中考数学试卷及答案

机密★启用前2010年广东省初中毕业生学业考试数 学一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. (2010广东东莞,1,3分)-3的相反数是( )A .3B .31 C .-3D .31-【分析】相反数的定义:只有符号不同的两个数叫做互为相反数.从而可得-3的相反数是3 【答案】A【涉及知识点】相反数的定义【点评】本题属于基础题,主要考查对相反数的概念的掌握情况. 【推荐指数】★2. (2010广东东莞,2,3分)下列运算正确的是( )A .ab b a 532=+B .b a b a -=-4)2(2C .22))((b a b a b a-=-+D .222)(ba b a+=+【分析】不是同类项不能合并,乘法分配律运用时要将括号外的因式与括号内的各个因式分别相乘,不能漏乘. 【答案】C【涉及知识点】同类项,整式的运算,乘法公式.【点评】本题属于基础题,主要考查整式运算中的有关知识,其中同类项要有三个同:所含字母相同,相同字母的指数相同;去括号法则的理论依据是乘法分配律,还有乘法公式的运用要注意区分平方差公式与完全平方公式的区别.对整式基本运算的知识点考查比较全面,信度较高.【推荐指数】★★★3. (2010广东东莞,3,3分)如图,已知∠1=70°如果CD ∥BE ,那么∠B 的度数为( )A .70°B .100°C .110°D .120°【分析】根据“两直线平行,同位角相等”可得的邻补角与∠B 相等, 所以∠B =180°-70°=110° 【答案】C【涉及知识点】平行线性质,邻补角【点评】本题考查了平行线的性质定理,考查知识点单一,属于简单题,信度较高. 【推荐指数】★★4. (2010广东东莞,4,3分)某学习小组7位同学,为玉树地震灾区捐款,捐款金额分别为5元,10元,6元,6元,7元,8元,9元,则这组数据的中位数与众数分别为( ) A .6,6B .7,6C .7,8D .6,8【分析】将这组数据从小到大排列后的顺序为:5,6,6,7,8,9,10.数据个数为7个,所以其中位数是其中第四个,即7;其中数据6出现的次数最多,因此众数为6.ABCD E【答案】B【涉及知识点】中位数,众数【点评】本题考查数据的中位数、众数,属基本概念题,比较简单.只要掌握概念,就可以得分. 【推荐指数】★★★5. (2010广东东莞,5,3分)左下图为主视方向的几何体,它的俯视图是( )【分析】根据几何体的摆放,其俯视图应为第四个. 【答案】D【涉及知识点】几何体的三视图【点评】本题考查的知识点只有一个,要求考生有一定的空间想象力,属于基础题. 【推荐指数】★★★二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6. (2010广东东莞,6,4分)据新华网上海6月1日电:世博会开园一个月来,客流平稳,累计至当晚19时,参观者已超过8000000人次.试用科学记数法表示8000000= .【分析】8000000=8×1000000,1000000=106,所以8000000=8×106 【答案】8×106【涉及知识点】科学记数法 【点评】【推荐指数】★★★★7. (2010广东东莞,7,4分)分式方程112=+x x 的解x = .【分析】最简公分母为1+x ,所以两边同时乘上(1+x ),得:12+=x x ,解得1=x ,检验:1=x 时,01≠+x .所以1=x 是方程的解.【答案】1=x【涉及知识点】分式方程【点评】解分式方程的关键是利用等式的性质去分母,将分式方程转化为一元一次方程,体现了转化的数学思想;解分式方程的另一个注意点是一定要检验,以防产生增根.【推荐指数】★★★★★8. (2010广东东莞,8,4分)如图,已知Rt △ABC 中,斜边BC 上的高AD =4,cosB =54,则AC = .【分析】由∠B =∠CAD ,可得cos CAD =54=AC AD ,因为AD =4,所以AC =5【答案】5AB CD第5题图A .B.C.D.【涉及知识点】解直角三角形【点评】作为每年中考的必考知识点之一,解直角三角形的试题一般难度都不大,以考查基本概念为主,但如果混淆概念的话,将难以得分.【推荐指数】★★★★★9. (2010广东东莞,9,4分)某市2007年、2009年商品房每平方米平均价格分别为4000元、5760元,假设2007年后的两年内,商品房每平方米平均价格的年增长率都为x ,试列出关于x 的方程: . 【分析】根据题意,得2008年的商品房每平方米的平均价格为)1(400040004000x x +=+,2009年的商品房每平方米的平均价格为2)1(4000)1(4000)1(4000x x x x +=+++【答案】5760)1(40002=+x【涉及知识点】一元二次方程解决实际问题【点评】本题主要考查列一元二次方程解决实际问题,属常规题,难度不大. 【推荐指数】★★★★10.(2010广东东莞,10,4分)如图⑴,已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍后得到正方形A 2B 2C 2D 2(如图⑵);以此下去…,则正方形A 4B 4C 4D 4的面积为 .【分析】AA 1=1,AB 1=2,所以A 1B 1=5;A 1A 2=5,A 1B 2=52,所以A 2B 2=5=55⨯;根据规律可以发现正方形A n B n C n D n 的边长为n )5(,所以其面积为n n n 5)5(])5[(22==【答案】625【涉及知识点】勾股定理,正方形的面积【点评】本题巧妙地将求正方形的面积与勾股定理结合,并采用了规律探索的形式,对考生的思维能力要求较高,难度中等略偏上.【推荐指数】★★★★★三、解答题(一)(本大题5小题,每小题6分,共30分) 11.(2010广东东莞,11,6分)计算:1)2(60cos 2)21(4π-++︒--.【答案】原式=2+2-2×21+1=4-1+1=4 【涉及知识点】实数的运算,特殊角的三角函数值,零指数幂【点评】实数的运算一直是中考中的重要内容,经常与负整数指数幂、零指数幂及绝对值、特殊角的三角形函数值一起组合ABC D A 1B 1C 1D 1第10题图(1)CDA 1B 1C 1D 1 A BA 2B 2C 2D 2第10题图(2)出题,题目不难,主要考查考生对基本概念的掌握和运算的基本功.【推荐指数】★★12.(2010广东东莞,12,6分)先化简,再求值:)2(24422x x x x x +÷+++,其中2=x .【答案】原式=xx x x x 1)2(12)2(2=+⋅++;当2=x时,原式=2221=【涉及知识点】因式分解,分式的乘除,二次根式的化简【点评】分式的运算总是与因式分解密不可分,本题比较简单,但在求值时应注意先化简这一前提,不能直接将2=x 代入式子求值;最后的结果也要化为最简二次根式.【推荐指数】★★★13.(2010广东东莞,13,6分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,Rt△ABC 的顶点均在格点上,在建立平面直角坐标系后,点A 的坐标为(-6,1),点B 的坐标为(-3,1),点C 的坐标为(-3,3). ⑴将Rt △ABC 沿x 轴正方向平移5个单位得到Rt △A 1B 1C 1,试在图上画出Rt △A 1B 1C 1的图形,并写出点A 1的坐标. ⑵将原来的Rt △ABC 绕点B 顺时针旋转90°得到Rt △A 2B 2C 2,试在图上画出Rt △A 2B 2C 2的图形【答案】A 1(-1,1)【涉及知识点】平移,旋转,平面直角坐标系【点评】本题在平面直角坐标系中实现图形的平移、旋转,题目比较简单,属送分题. 【推荐指数】★★★14.(2010广东东莞,14,6分)如图,P A 与⊙O 相切于A 点,弦AB ⊥OP ,垂足为C ,OP 与⊙O 相交于D 点,已知OA =2,OP =4.⑴求∠POA 的度数; ⑵计算弦AB 的长.第13题图【分析】⑴由PA 是切线可得∠P AO =90°;由OA =2,OP =4得∠APO =30°, 所以∠POA =60°.⑵根据AB ⊥OP 得△AOC 为直角三角形,又由∠POA =60°,AO =2得OC =1,所以AC =3;根据垂径定理,有CB=AC =3,所以AB =32【答案】⑴∵P A 与⊙O 相切于A 点∴∠P AO =90° ∵OA =2,OP =4 ∴∠APO =30° ∴∠POA =60° ⑵∵AB ⊥OP∴△AOC 为直角三角形,AC =BC ∵∠POA =60° ∴∠AOC =30° ∵AO =2 ∴OC =1 ∴在Rt △AOC 中,322=-=OC AO AC ∴AB =AC +BC =32【涉及知识点】垂径定理,切线的性质,30°角所对的直角边等于斜边的一半,勾股定理【点评】本题属于垂径定理、切线性质的基本运用,综合了直角三角形的相关知识,难度不高,容易上手,只要掌握了基本概念,运算仔细,就可以拿分.【推荐指数】★★★★★15.(2010广东东莞,15,6分)如图,一次函数y =kx -1的图象与反比例函数xm y =的图象交于A 、B 两点,其中A 点坐标为(2,1). ⑴试确定k 、m 的值; ⑵求B 点的坐标.ABCDO 第14题图【分析】⑴把A 点坐标分别代入两个函数表达式,就可以解得m k ,;⑵将两个解析式联立构成一个方程组,解方程组可得两个坐标,又因为B 点在第三象限,所以可以确定B 点的坐标.【答案】⑴把点(2,1)分别代入函数解析式得:⎪⎩⎪⎨⎧==-12112m k ,解得⎩⎨⎧==21m k⑵根据题意,得⎪⎩⎪⎨⎧=-=x y x y 212解得⎩⎨⎧-=-=2111y x , ⎩⎨⎧==1222y x (舍去)所以B 点坐标为(-1,-2)【涉及知识点】待定系数法求函数解析式,函数与方程(组)【点评】待定系数法求函数解析式和求函数图象的交点坐标都是历年中考中出现频率相当高的知识点,本题着重考查基本概念、方法的运用,比较简单,稍加注意就可得满分.【推荐指数】★★★★四、解答题(二)(本大题4小题,每小题7分,共28分)16.(2010广东东莞,16,7分)分别把带有指针的圆形转盘A 、B 分成4等分、3等分的扇形区域,并在每一小区域内标上数字(如图所示).欢欢、乐乐两人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.⑴试用列表或画树状图的方法,求欢欢获胜的概率; ⑵请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.【答案】⑴列表:转盘B转盘A第16题图所以P (奇)=21126= ⑵由表格得P (偶)=21126=,所以P (奇)=P (偶),所以游戏规则对双方是公平的. 【涉及知识点】概率【点评】用列表法或树状图求概率是中考中的常见题型,只要掌握求概率的基本方法,一般不会失分,此题较简单. 【推荐指数】★★★★17.(2010广东东莞,待定系数法,读图能力17,7分)已知二次函数c bx x y ++-=2的图象如图所示,它与x 轴的一个交点坐标为(-1,0),与y 轴的交点坐标为(0,3)⑴求出b ,c 的值,并写出此时二次函数的解析式;⑵根据图象,写出函数值y 为正数时,自变量x 的取值范围.【答案】⑴根据题意,得:⎩⎨⎧==+--301c c b ,解得⎩⎨⎧==32c b ,所以抛物线的解析式为322++-=x x y⑵令0322=++-=x x y ,解得3,121=-=x x ;根据图象可得当函数值y 为正数时,自变量x 的取值范围是-1<x <3.【涉及知识点】待定系数法,二次函数,一元二次方程,数形结合思想【点评】本题除了考查待定系数法、方程(组)的解法外还涉及到数形结合这一重要数学[思想,第二小题有一定的难度,相当多的考生可能会列出一个一元二次不等式却无法解决,但利用图象解更直观,更方便.【推荐指数】★★★★★18.(2010广东东莞,18,7分)如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD 、等边△ABE .已知∠BAC =30°,EF ⊥AB ,垂足为F ,边结DF . ⑴试说明AC =EF ;⑵求证:四边形ADFE 是平行四边形.【分析】⑴由等边△ABE 得∠ABE =60°,AB =BE ,由EF ⊥AB 得∠BFE =90°,从而可证△ABC ≌△EFB ,得AC =EF ⑵由等边△ACD 得AD =AC ,∠CAD =60°,所以∠BAD =90°,则AD ∥EF ,由AC =EF 得AD =EF , 所以四边形ADFE 为平行四边形【答案】⑴∵等边△ABEABCDEF∴∠ABE =60°,AB =BE∵EF ⊥AB ∴∠BFE =∠AFE =90° ∵∠BAC =30°,∠ACB =90° ∴∠ABC =60°∴∠ABC =∠ABE ,∠ACB =∠BFE =90° ∴△ABC ≌△EFB , ∴AC =EF ⑵∵等边△ACD∴AD =AC ,∠CAD =60° ∴∠BAD =90°,∴AD ∥EF ∵AC =EF ∴AD =EF∴四边形ADFE 是平行四边形.【涉及知识点】等边三角形,直角三角形,平行四边形的判定【点评】特殊三角形与平行四边形一直是中考的必考内容,此题将两者巧妙地组合,且难度不高,是道好题. 【推荐指数】★★★★★19.(2010广东东莞,19,7分)某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车共10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李. ⑴请你帮助学校设计所有可行的租车方案;⑵如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省? 【分析】⑴可借助表格分析:题中隐含了不等关系:装载能力不小于装载需求,即: 甲车所能装载人数+乙车所能装载人数≥340; 甲车所能装载行李数+乙车所能装载行李数≥170根据两个不等关系列出不等式组,解出这个不等式组的解集,取其中的正整数解即可得方案; ⑵可用含x 的式子表示租车的总费用W =2000x +1800(10-x )=200x +18000,这是一个一次函数,根据一次函数的增减性可得使租车费用最省的方案.【答案】⑴设租用甲种型号的车x 辆,则租用乙种型号的车(10-x )辆,根据题意,得:⎩⎨⎧≥-+≥-+.170)10(2016,340)10(3040x x x x 解得:4≤x ≤215.因为x 是正整数,所以7,6,5,4=x .所以共有四种方案,分别为:方案一:租用甲种车型4辆,乙种车型6辆;方案一:租用甲种车型5辆,乙种车型5辆;方案一:租用甲种车型6辆,乙种车型4辆;方案一:租用甲种车型7辆,乙种车型3辆.⑵设租车的总费用为W ,则W =2000x +1800(10-x )=200x +18000,200=k >0,W 随x 的增大而增大,所以当4=x 即选择方案一可使租车费用最省.【涉及知识点】不等式组,一次函数【点评】不等式组的实际应用一直是中考的必考点之一,解决问题的关键在于正确找出题中的不等关系,从而得到不等式组,再确定其正整数解,而对其中的选择最优方案问题,通常借助一次函数的增减性来解决.【推荐指数】★★★★五、解答题(三)(本大题3小题,每小题9分,共27分)20.(2010广东东莞,20,9分)已知两个全等的直角三角形纸片ABC 、DEF ,如图⑴放置,点B 、D 重合,点F 在BC 上,AB与EF 交于点G .∠C =∠EFB =90°,∠E =∠ABC =30°,AB =DE =4. ⑴求证:△EGB 是等腰三角形;⑵若纸片DEF 不动,问△ABC 绕点F 逆时针旋转最小 度时,四边形ACDE 成为以ED 为底的梯形(如图⑵).求此梯形的高图(2)AB DFGECEGF(D )CBA图(1)【分析】⑴要证等腰三角形,只需证∠EBA =∠E =30°即可;⑵由旋转知FC =232-,当四边形ACDE 成为以ED为底的梯形时,ED ∥AC ,则ED ⊥CB ,此时,旋转角∠DFB =30°,又由DF =2,得点F 到ED 的距离为3,从而可得梯形的高.【答案】⑴∵∠EFB =90°,∠ABC =30°∴∠EBG =30° ∵∠E =30° ∴∠E =∠EBG ∴EG =BG∴△EGB 是等腰三角形⑵在Rt △ABC 中,∠C =90°,∠ABC =30°,AB =4 ∴BC =32;在Rt △DEF 中,∠EFD =90°,∠E =30°,DE =4 ∴DF =2 ∴CF =232-.∵四边形ACDE 成为以ED 为底的梯形 ∴ED ∥AC ∵∠ACB =90° ∴ED ⊥CB∵∠EFB =90°,∠E =30° ∴∠EBF =60° ∵DE =4∴DF =2 ∴F 到ED 的距离为3∴梯形的高为2333232-=+-【涉及知识点】解直角三角形,旋转,等腰三角形的判定,梯形【点评】旋转的本质是旋转不改变图形的形状、大小,抓住了这一点,就可以很容易地求出CF 的长,这也是本题中求出梯形的高的关键.本题难度并不大,但兼容了许多知识点,对考生的知识综合应用能力要求较高.【推荐指数】★★★★21.(2010广东东莞,21,9分)阅读下列材料:1×2=31(1×2×3-0×1×2), 2×3=31(2×3×4-1×2×3),3×4=31(3×4×5-2×3×4),由以上三个等式相加,可得 1×2+2×3+3×4=31×3×4×5=20. 读完以上材料,请你计算下各题:⑴1×2+2×3+3×4+…+10×11(写出过程); ⑵1×2+2×3+3×4+…+n ×(n +1)= ; ⑶1×2×3+2×3×4+3×4×5+…+7×8×9= . 【分析】)]1()1()2()1([(31)1(+⨯⨯--+⨯+⨯=+⨯n n n n n n nn )]2)(1()1()3()2()1([(1)2()1(4++⨯⨯--+⨯+⨯+⨯=+⨯+⨯n n n n n n n n n n n【答案】⑴1×2+2×3+3×4+…+10×11=31×(1×2×3-0×1×2+2×3×4-1×2×3…+10×11×12-9×10×11) =31×10×11×12 =440⑵1×2+2×3+3×4+…+n ×(n +1) =31×[1×2×3-0×1×2+2×3×4-1×2×3+… +)1()1()2()1(+⨯⨯--+⨯+⨯n n n n n n ]=)2()1((31+⨯+⨯n n n⑶1×2×3+2×3×4+3×4×5+…+7×8×9=41×[1×2×3×4-0×1×2×3×4+2×3×4×5-1×2×3×4+…+7×8×9×10-6×7×8×9]=41×7×8×9×10=1260【涉及知识点】实数的运算【点评】规律运算类试题的关键在于找出其中的内在规律,前两问难度适中,第三问有一定的难度,只有认真分析,真正找出其中规律后才能确定其最前面的分数是41而不是31.【推荐指数】★★★22.(2010广东东莞,矩形中的动点;两直角三角形相似的讨论问题22,9分)如图(1),(2)所示,矩形ABCD 的边长AB =6,BC =4,点F 在DC 上,DF =2.动点M 、N 分别从点D 、B 同时出发,沿射线DA 、线段BA 向点A 的方向运动(点M 可运动到DA 的延长线上),当动点N 运动到点A 时,M 、N 两点同时停止运动.连接FM 、MN 、FN ,当F 、N 、M 不在同一直线时,可得△FMN ,过△FMN 三边的中点作△PQW .设动点M 、N 的速度都是1个单位/秒,M 、N 运动的时间为x 秒.试解答下列问题:⑴说明△FMN ∽ △QWP ; ⑵设0≤x ≤4(即M 从D 到A 运动的时间段).试问x 为何值时,△PQW 为直角三角形?当x 在何范围时,△PQW 不为直角三角形? ⑶问当x 为何值时,线段MN 最短?求此时MN 的值.MA BACN M图(1)【分析】⑴由中位线定理可得PQ ∥FN ,PW ∥MN ,WQ ∥MF ,根据平行线性质可知∠PQW =∠MFN ,∠PWQ =∠FMN ,则可证两三角形相似;⑵不论点如何运动,当点M 在线段DA 上时,MD =BN =x ,则AM =x -4,AN =x -6,可先用含x 的式子分别表示线段MN 、MF 、NF 的平方,再分别讨论当M 、N 、F 为直角顶点时,对应的就是W 、P 、Q 为直角顶点,根据勾股定理可列出方程,求出相应的x 的值;⑶【答案】⑴∵P 、Q 、W 分别为△FMN 三边的中点∴PQ ∥FN ,PW ∥MN ∴∠MNF =∠PQM =∠QPW 同理:∠NFM =∠PQW ∴△FMN ∽ △QWP ⑵NMDCBA由⑴得△FMN ∽ △QWP ,所以△FMN 为直角三角形时,△QWP 也为直角三角形.如图,过点N 作NECD 于E ,根据题意,得DM =BN =x ,∴AM =4-x ,AN =DE =6-x∵DF =2,∴EF =4-x∴MF 2=22+x 2=x 2+4,MN 2=(4-x )2+(6-x )2=2x 2-20x +52,NF 2=(4-x )2+42=x 2-8x +32,① 如果∠MNF =90°,则有2x 2-20x +52+x 2-8x +32=x 2+4,解得x 1=4,x 2=10(舍去);②如果∠NMF =90°,则有2x 2-20x +52+x 2+4=x 2-8x +32,化简,得:x 2-6x +12=0,△=-12<0,方程无实数根;③如果∠MFN =90°,则有2x 2-20x +52=x 2+4+x 2-8x +32,解得x =34.∴当x 为4或34时,△PQW 为直角三角形,当0≤x <34或34<x <4时,△PQW 不为直角三角形(利用直角两旁的直角三角形相似比用勾股定理简单)⑶∵点M 在射线DA 上,点N 在线段AB 上,且AB ⊥AD ,MN 2=()x -42+()x -62当x =5时,这时取最小值2。

2010年广东省广州市中考数学试题及答案1

2010年广东省广州市中考数学试题及答案1

4C PD O B AE 22.(12分)目前世界上最高的电视塔是广州新电视塔.如图8所示,新电视塔高AB 为610米,远处有一栋大楼,某人在楼底C 处测得塔顶B 的仰角为45°,在楼顶D 处测得塔顶B 的仰角为39°.(1)求大楼与电视塔之间的距离AC ;(2)求大楼的高度CD (精确到1米)【答案】(1)由题意,AC =AB =610(米);(2)DE =AC =610(米),在Rt △BDE 中,tan ∠BDE =BE DE ,故BE =DE tan39°.因为CD =AE ,所以CD =AB -DE ·tan39°=610-610×tan39°≈116(米)答:大楼的高度CD 约为116米. 23.(12分)已知反比例函数y =8m x-(m 为常数)的图象经过点A (-1,6). (1)求m 的值; (2)如图9,过点A 作直线AC与函数y =8m x -的图象交于点B ,与x 轴交于点C ,且AB =2BC ,求点C 的坐标.【答案】解:(1)∵ 图像过点A (-1,6),861m -=-. ∴ m -8-1=6 (2)分别过点A 、B 作x 轴的垂线,垂足分别为点D 、E ,由题意得,AD =6,OD =1,易知,AD ∥BE ,∴△CBE ∽△CAD ∵AB =2BC ,∴13CB CA =∴136BE =,∴BE =2.即点B 的纵坐标为当y =2时,x =-3,易知:直线AB 为y =2x +8,∴C (-4,0)24.(14分)如图,⊙O 的半径为1,点P 是⊙O 上一点,弦AB 垂直平分线段OP ,点D 是APB上任一点(与端点A 、B 不重合),DE ⊥AB 于点E ,以点D 为圆心、DE 长为半径作⊙D ,分别过点A 、B 作⊙D 的切线,两条切线相交于点C .(1)求弦AB 的长;(2)判断∠ACB 是否为定值,若是,求出∠ACB 的大小;否则,请说明理由; (3)记△ABC 的面积为S ,若2S DE =ABC 的周长. 【分析】(1)连接OA ,OP 与AB 的交点为F ,则△OAF 为直角三角形,且OA =1,OF =12,借助勾股定理可求得AF 的长; (2)要判断∠ACB 是否为定值,只需判定∠CAB +∠ABC 的值是否是定值,由于⊙D 是△ABC 的内切圆,所以AD 和BD分别为∠CAB 和∠ABC 的角平分线,因此只要∠DAE +∠DBA是定值,那么CAB +∠ABC 就是定值,而∠DAE +∠DBA 等于弧AB 所对的圆周角,这个值等于∠AOB 值的一半;(3)由题可知ABD ACD BCD S S S S ∆∆∆=++=12DE (AB +AC +BC ),又因为2S DE =45°39°D CAE BF CP D O B A E H G所以21()2DE AB AC BCDE++=,所以AB+AC+BC=,由于DH=DG=DE,所以在Rt△CDH中,CH,同理可得CG,又由于AG=AE,BE=BH,所以AB+AC+BC=CG+CH+AG+AB+BH=+,可得=DE+DE=3,代入AB+AC+BC=,即可求得周长为【答案】解:(1)连接OA,取OP与AB的交点为F,则有OA=1.∵弦AB垂直平分线段OP,∴OF=12OP=12,AF=BF.在Rt△OAF中,∵AF,∴AB=2AF(2)∠ACB是定值.理由:由(1)易知,∠AOB=120°,因为点D为△ABC的内心,所以,连结AD、BD,则∠CAB=2∠DAE,∠CBA=2∠DBA,因为∠DAE+∠DBA=12∠AOB=60°,所以∠CAB+∠CBA=120°,所以∠ACB=60°;(3)记△ABC的周长为l,取AC,BC与⊙D的切点分别为G,H,连接DG,DC,DH,则有DG=DH=DE,DG⊥AC,DH⊥BC.∴ABD ACD BCDS S S S∆∆∆=++=12AB•DE+12BC•DH+12AC•DG=12(AB+BC+AC) •DE=12l•DE.∵2SDE=212l DEDE=l=∵CG,CH是⊙D的切线,∴∠GCD=12∠ACB=30°,∴在Rt△CGD中,CG=tan30DG=,∴CH=CG.又由切线长定理可知AG=AE,BH=BE,∴l=AB+BC+AC==,解得DE=3,∴△ABC的周长为25.(14分)如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=-12x+b交折线OAB于点E.(1)记△ODE的面积为S,求S与b的函数关系式;(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形OA1B1C1,试探究OA1B1C1与矩形OABC的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面6【分析】(1)要表示出△ODE 的面积,要分两种情况讨论,①如果点E 在OA 边上,只需求出这个三角形的底边OE 长(E 点横坐标)和高(D 点纵坐标),代入三角形面积公式即可;②如果点E 在AB 边上,这时△ODE 的面积可用长方形OABC 的面积减去△OCD 、△OAE 、△BDE 的面积;(2)重叠部分是一个平行四边形,由于这个平行四边形上下边上的高不变,因此决定重叠部分面积是否变化的因素就是看这个平行四边形落在OA 边上的线段长度是否变化.【答案】(1)由题意得B (3,1).若直线经过点A (3,0)时,则b =32 若直线经过点B (3,1)时,则b =52若直线经过点C (0,1)时,则b =1 ①若直线与折线OAB 的交点在OA 上时,即1<b ≤32,如图25-a , 此时E (2b ,0) ∴S =12OE ·CO =12×2b ×1=b ②若直线与折线OAB 的交点在BA 上时,即32<b <52,如图2 此时E (3,32b -),D (2b -2,1) ∴S =S 矩-(S △OCD +S △OAE +S △DBE ) = 3-[12(2b -1)×1+12×(5-2b )·(52b -)+12×3(32b -)] =252b b - ∴2312535222b b S b b b ⎧<≤⎪⎪=⎨⎪-<<⎪⎩ (2)如图3,设O 1A 1与CB 相交于点M ,OA 与C 1B 1相交于点N OA 1B 1C 1与矩形OABC 的重叠部分的面积即为四边形DNEM 的面积。

2010年广东省广州市中考数学试卷(含答案)

2010年广东省广州市中考数学试卷(含答案)

2010年山东省威海市初中升学考试数 学请仔细阅读以下说明:1.本试卷共10页,分第 I 卷和第 II 卷两部分.第 I 卷(1-2页)为选择题,第 II 卷(3-10页)为非选择题.试卷满分120分.考试时间120分钟.2.请清点试卷,并将答题卡和第Ⅱ卷密封线内的考生信息填写完整.3.第Ⅰ卷的答案用2B 铅笔涂在答题卡上.第Ⅱ卷的答案用蓝色或黑色钢笔、圆珠笔填写在试卷上.不要求保留精确度的题目,计算结果保留准确值.希望你能愉快地度过这120分钟,祝你成功!第 I 卷 (选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选,均不得分)1.据统计,截止到5月31日上海世博会累计入园人数803.27万人.803.27万这个数字(保留两位有效数字)用科学记数法表示为A .8.0×102B. 8.03×102C. 8.0×106D. 8.03×1062.如图,在△ABC 中,∠C =90°.若BD ∥AE ,∠DBC =20°,则∠CAE 的度数是A .40°B .60°C .70°D .80°3.计算()201020092211-⨯⎪⎭⎫ ⎝⎛-的结果是A .-2B .-1C .2D .3 4.下列运算正确的是A .xy y x 532=+B .a a a =-23C .b b a a -=--)(D .2)2(12-+=+-a a a a )( 5.一个圆锥的底面半径为6㎝,圆锥侧面展开图扇形的圆心角为240°,则圆锥的母线长为 A .9㎝ B .12㎝ C .15㎝ D .18㎝6.化简a a b a b -÷⎪⎭⎫⎝⎛-2的结果是A .1--aB .1+-aC .1+-abD .b ab +-7.右图是由几个相同的小正方体搭成的几何体的三视图, 则搭成这个几何体的小正方体的个数是A .5B .6C .7D .88.已知1=-b a ,则a 2-b 2-2b 的值为A .4B .3C .1D .09.如图,在△ABC 中,D ,E 分别是边AC ,AB 的中点, 连接BD .若BD 平分∠ABC ,则下列结论错误的是A .BC =2BEB .∠A =∠EDAC .BC =2AD D .BD ⊥AC10.如图,在梯形ABCD 中,AB ∥CD ,AD =BC ,对角线AC ⊥BD ,垂足为O .若CD =3,AB =5,则AC 的长为A .24B .4C .33D .5211.如图是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘停止后,指针所指区域内的数字之和为4的概率是AECA BDOCADBE左视图俯视图A .21B .31C .41D .5112.在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1…按这样的规律进行下去,第2010个正方形的面积为A .2009235⎪⎭⎫⎝⎛B .2010495⎪⎭⎫ ⎝⎛ C .2008495⎪⎭⎫ ⎝⎛D .4018235⎪⎭⎫ ⎝⎛第 II 卷 (非选择题,共84分)二、填空题(本大题共6小题,每小题3分,共18分. 只要求填出最后结果)13.在函数x y -=3中,自变量x 的取值范围是 . 14.如图,AB 为⊙O 的直径,点C ,D 在⊙O 上.若∠AOD =30°,则∠BCD 的度数是 .15.如图①,在第一个天平上,砝码A 的质量等于砝码B 加上砝码C 的质量;如图②,在第二个天平上,砝码A 加上砝码B 的质量等于3个砝码C 的质量.请你判断:1个砝码A16.如图,点A ,B ,C 的坐标分别为(2,4),(5,2),(3,-1).若以点A ,B ,C ,D 为顶点的四边形既是轴对称图形,又是中心对称图形,则点D 的坐标为 .17.小明家为响应节能减排号召,计划利用两年时间,将家庭每年人均碳排放量由目前的3125kg降至2000㎏﹙全球人均目标碳排放量﹚,则小明家未来两年人均碳排放量平均每年须降低的百分率是 . 18.从边长为a 的大正方形纸板中间挖去一个边长为b 的小正方形后,将其截成四个相同的等腰梯形﹙如图①﹚,可以拼成一个平行四边形﹙如图②﹚.现有一平行四边形纸片ABCD ﹙如图③﹚,已知∠A =45°,AB =6,AD =4.若将该纸片按图②方式截成四个相同的等腰梯形,然后按图①方式拼图,则得到的大正方形的面积为 .(第15题图)图 ①图 ②(第16题图)图 ②图 ①a A图 ③BC﹙第14题图﹚B三、解答题(本大题共7小题,共66分)19.(7分)解不等式组:20.(7分)某市从今年1月1日起调整居民用天燃气价格,每立方米天燃气价格上涨25%.小颖家去年12月份的燃气费是96元.今年小颖家将天燃气热水器换成了太阳能热水器,5月份的用气量比去年12月份少10m³,5月份的燃气费是90元.求该市今年居民用气的价格.21.(9分)某校为了解学生“体育大课间”的锻炼效果,中考体育测试结束后,随机从学校720名考生中抽取部分学生的体育测试成绩绘制了条形统计图.试根据统计图提供的信息,回答下列问题:,众数是 ;女生体育成绩的中位数是 .(3)若将不低于27分的成绩评为优秀,估计这720名考生中,成绩为优秀的学生大约是多少?22.(10分) 如图,一次函数b kx y +=的图象与反比例函数x my =的图象交于点A ﹙-2,-5﹚,C ﹙5,n ﹚,交y 轴于点B ,交x 轴于点D .(1) 求反比例函数x m y =和一次函数b kx y +=的表达式; (2) 连接OA ,OC .求△AOC 的面积.⎪⎩⎪⎨⎧--125x x ≤()342-x .23.(10分)如图,在□ABCD 中,∠DAB =60°,AB =15㎝.已知⊙O 的半径等于3㎝,AB ,AD 分别与⊙O 相切于点E ,F .⊙O 在□ABCD 内沿AB 方向滚动,与BC 边相切时运动停止.试求⊙O 滚过的路程.24.(11分)如图①,将一张矩形纸片对折,然后沿虚线剪切,得到两个(不等边)三角形纸片△ABC ,△A 1B 1C 1.﹙1﹚将△ABC ,△A 1B 1C 1如图②摆放,使点A 1与B 重合,点B 1在AC 边的延长线上,连接CC 1交BB 1于点E .求证:∠B 1C 1C =∠B 1BC .﹙2﹚若将△ABC ,△A 1B 1C 1如图③摆放,使点B 1与B 重合,点A 1在AC 边的延长线上,连接CC 1交A 1B 于点F .试判断∠A 1C 1C 与∠A 1BC 是否相等,并说明理由.﹙3﹚写出问题﹙2﹚中与△A 1FC 相似的三角形 .25.(12分) (1)探究新知:①如图,已知AD ∥BC ,AD =BC ,点M ,N 是直线CD 上任意两点. 求证:△ABM 与△ABN 的面积相等.A ABDCMN图 ①AB (A 1) CB 1C 1图 ②EA 1C 1CAB (B 1)图 ③FA 1B 1C 1 AB C (图①)②如图,已知AD ∥BE ,AD =BE ,AB ∥CD ∥EF ,点M 是直线CD 上任一点,点G 是直线EF 上任一点.试判断△ABM 与△ABG 的面积是否相等,并说明理由.(2)结论应用:如图③,抛物线c bx ax y ++=2的顶点为C (1,4),交x 轴于点A (3,0),交y 轴于点D .试探究在抛物线c bx ax y ++=2上是否存在除点C 以外的点E ,使得△ADE 与△ACD 的面积相等? 若存在,请求出此时点E 的坐标,若不存在,请说明理由.﹙友情提示:解答本问题过程中,可以直接使用“探究新知”中的结论.﹚参考解答及评分意见评卷说明:1.第一大题(选择题)和第二大题(填空题)的每小题,只有满分和零分两个评分档,不给中间分.2.第三大题(解答题)每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.部分试题有多种解法,对考生的其他解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多备用图图 ③ C图 ②ABDMF EG不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.二、填空题(本大题共6小题,每小题3分,共18分)13.x ≤3; 14.105°; 15.2; 16.﹙0,1﹚; 17.20%; 18.2611+. 三、解答题(本大题共7小题, 共66分) 19.(本小题满分7分)解:⎪⎩⎪⎨⎧-≤--+-②(①>).342125,3231x x xx解不等式①,得x <5. ………………………………………………………………3分 解不等式②,得x ≥-2. ………………………………………………………………6分 因此,原不等式组的解集为-2≤x <5. ………………………………………………7分 20.(本小题满分7分)解:设该市去年居民用气的价格为x 元/ m³,则今年的价格为(1+25%)x 元/ m³.……1分根据题意,得 10%)251(9096=+-x x . …………………………………………………3分 解这个方程,得x =2.4. …………………………………………………………………6分经检验,x =2.4是所列方程的根. 2.4×(1+25%)=3 (元).所以,该市今年居民用气的价格为3元/ m³. ………………………………………7分 21.(本小题满分9分)﹙1﹚80; …………………………………………………………………………………3分 ﹙2﹚26.4, 27, 27; ………………………………………………﹙每空1分﹚6分﹙3﹚396804472080231227720=⨯=+++⨯﹙人﹚. ……………………………………9分 22.(本小题满分10分)解:(1)∵ 反比例函数x m y =的图象经过点A ﹙-2,-5﹚, ∴ m =(-2)×( -5)=10.∴ 反比例函数的表达式为x y 10=. ……………………………………………………2分 ∵ 点C ﹙5,n ﹚在反比例函数的图象上,∴ 2510==n .∴ C 的坐标为﹙5,2﹚. ……………………………………………………………3分 ∵ 一次函数的图象经过点A ,C ,将这两个点的坐标代入b kx y +=,得 ⎩⎨⎧+=+-=-.5225b k b k , 解得⎩⎨⎧-==.31b k , …………………………………………………5分 ∴ 所求一次函数的表达式为y =x -3. …………………………………………………6分 (2) ∵ 一次函数y =x -3的图像交y 轴于点B ,∴B 点坐标为﹙0,-3﹚. …………………………………………………………7分 ∴ OB =3.∵ A 点的横坐标为-2,C 点的横坐标为5,∴ S △AOC = S △AOB + S △BOC =()22152215212-21=+⋅⋅=⋅⋅+⋅⋅OB OB OB . …………10分 23.(本小题满分10分) 解:连接OE ,OA .……………………1分∵ AB ,AD 分别与⊙O 相切于点E ,F .∴ OE ⊥AB ,OE =3㎝.………………2分 ∵ ∠DAB =60°,∴ ∠OAE =30°. ……………………3分在Rt △AOE 中,AE =3tan tan 30OE OAE ︒==∠ …………………………………5分∵ AD ∥BC ,∠DAB =60°,∴ ∠ABC =120°. ………………………………………………………………6分A设当运动停止时,⊙O 与BC ,AB 分别相切于点M ,N ,连接ON ,OB . ………7分 同理可得 BN =3㎝. ……………………………………………………………9分 ∴ )3415(33315-=--=--=BN AE AB EN ㎝.∴ ⊙O 滚过的路程为()3415-㎝. ……………………………………………10分 24.(本小题满分11分)(1)证明:由题意,知△ABC ≌△A 1B 1C 1,∴ AB= A 1B 1,BC 1=AC ,∠2=∠7,∠A =∠1.∴ ∠3=∠A =∠1. ………………………………………………………………1分 ∴ BC 1∥AC .∴ 四边形ABC 1C 是平行四边形. ………………2分∴ AB ∥CC 1. ∴ ∠4=∠7=∠2. …………………………………3分 ∵ ∠5=∠6, ∴ ∠B 1C 1C =∠B 1BC .……………………………4分﹙2﹚∠A 1C 1C =∠A 1BC . …………………………5分理由如下:由题意,知△ABC ≌△A 1B 1C 1,∴ AB= A 1B 1,BC 1=BC ,∠1=∠8,∠A =∠2. ∴ ∠3=∠A ,∠4=∠7. ………………………6分 ∵ ∠1+∠FBC =∠8+∠FBC , ∴ ∠C 1BC =∠A 1BA . …………………………7分 ∵ ∠4=21(180°-∠C 1BC ),∠A=21(180°-∠A 1BA ).∴ ∠4=∠A . …………………………………8分 ∴ ∠4=∠2. ∵ ∠5=∠6,∴ ∠A 1C 1C =∠A 1BC .……………………………………………………………………9分 ﹙3﹚△C 1FB ,…………10分; △A 1C 1B ,△ACB .…………11分﹙写对一个不得分﹚ 25.(本小题满分12分)﹙1﹚①证明:分别过点M ,N 作 ME ⊥AB ,NF ⊥AB ,垂足分别为点E ,F . ∵ AD ∥BC ,AD =BC , ∴ 四边形ABCD 为平行四边形.∴ AB ∥CD .∴ ME = NF .∵S △ABM =ME AB ⋅21,S △ABN =NFAB ⋅21, ∴ S △ABM = S △ABN . ……………………………………………………………………1分 ②相等.理由如下:分别过点D ,E 作DH ⊥AB ,EK ⊥AB ,垂足分别为H ,K . 则∠DHA =∠EKB =90°. ∵ AD ∥BE ,∴ ∠DAH =∠EBK . ∵ AD =BE , ∴ △DAH ≌△EBK . ∴ DH =EK . ……………………………2分 ∵ CD ∥AB ∥EF ,∴S △ABM =DH AB ⋅21,S △ABG =EKAB ⋅21, ∴ S △ABM = S △ABG . …………………………………………………………………3分﹙2﹚答:存在. …………………………………………………………………………4分解:因为抛物线的顶点坐标是C (1,4),所以,可设抛物线的表达式为4)1(2+-=x a y .又因为抛物线经过点A (3,0),将其坐标代入上式,得()41302+-=a ,解得1-=a .∴ 该抛物线的表达式为4)1(2+--=x y ,即322++-=x x y . ………………………5分 ∴ D 点坐标为(0,3).设直线AD 的表达式为3+=kx y ,代入点A 的坐标,得330+=k ,解得1-=k . ∴ 直线AD 的表达式为3+-=x y .过C 点作CG ⊥x 轴,垂足为G ,交AD 于点H .则H 点的纵坐标为231=+-.∴ CH =CG -HG =4-2=2. …………………………………………………………6分A B (A 1) C B 1 C 1 图 ② E 14 32 56 7A 1 C 1C A B (B 1)图 ③F3 645 1 2 7 8 A BD C M N 图 ①E F HC图 ②A B D M F E G K设点E 的横坐标为m ,则点E 的纵坐标为322++-m m .过E 点作EF ⊥x 轴,垂足为F ,交AD 于点P ,则点P 的纵坐标为m -3,EF ∥CG . 由﹙1﹚可知:若EP =CH ,则△ADE 与△ADC 的面积相等.①若E 点在直线AD 的上方﹙如图③-1﹚,则PF =m -3,EF =322++-m m .∴ EP =EF -PF =)3(322m m m --++-=m m 32+-.∴ 232=+-m m .解得21=m ,12=m . ……………………………7分当2=m 时,PF =3-2=1,EF=1+2=3. ∴ E 点坐标为(2,3).同理 当m =1时,E 点坐标为(1,4),与C 点重合. ………………………………8分②若E 点在直线AD 的下方﹙如图③-2,③-3﹚,则m m m m m PE 3)32()3(22-=++---=. ……………………………………………9分∴232=-m m .解得21733+=m ,21734-=m . ………………………………10分当2173+=m 时,E 点的纵坐标为2171221733+-=-+-;当2173-=m 时,E 点的纵坐标为2171221733+-=---.∴ 在抛物线上存在除点C 以外的点E ,使得△ADE 与△ACD 的面积相等,E 点的坐标为E 1(2,3);)21712173(2+-+,E ;)21712173(3+--,E . ………………12分 ﹙其他解法可酌情处理﹚。

2010年广东省中考数学试题及答案

2010年广东省中考数学试题及答案

机密☆启用前2010年广东省初中毕业生学业考试数 学说明:1.全卷共4页,考试用时100分钟,满分为120分.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、试室号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.-3的相反数是( )A .3B .31C .-3D .13- 2.下列运算正确的是( )A .ab b a 532=+B .()b a b a -=-422C .()()22b a b a b a -=-+D . ()222b a b a +=+ 3.如图,已知∠1=70°,如果CD ∥BE ,那么∠B 的度数为( )A.70°B.100°C.110°D.120°4.某学习小组7位同学,为玉树地震灾区捐款,捐款金额分别为5元、6元、6元、7元、8元、 9元,则这组数据的中位数与众数分别为( )A .6,6B .7,6C . 7,8D .6,85. 左下图为主视方向的几何体,它的俯视图是( )二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.根据新网上海6月1日电:世博会开园一个月来,客流平稳,累计到当晚19时,参观者已超过 8000000人次,试用科学记数法表示8000000= .7.分式方程112=+x x 的解x = . 8.如图,已知R t △ABC 中,斜边BC 上的高AD =4,cosB =54,则 AC = .9.某市2007年、2009年商品房每平方米平均价格分别为4000元、5760元,假设2007年后的两 年内,商品房每平方米平均价格的年增长率都为x ,试列出关于x 的方程: .10.如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到新正方形A 2B 2C 2D 2(如图(2));以此下去…,则正方形A 4B 4C 4D 4的面积为 .三、解答题(一)(本大题5小题,每小题6分,共30分)11.计算:()001260cos 2214π-+-⎪⎭⎫ ⎝⎛+-. 12. 先化简,再求值 ()x x x x x 224422+÷+++ ,其中 x = 2 .13. 如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,R t △ABC 的顶点均在格点上,在建立平面直角坐标系以后,点A 的坐标为(-6,1),点B 的坐标为(-3,1),点C 的坐标为 (-3,3).(1)将R t △ABC 沿X 轴正方向平移5个单位得到R t △A 1B 1C 1,试在图上画出R t △A 1B 1C 1的图形,并写出点A 1的坐标。

2010年广东深圳中考数学试卷及答案(WORD版)

2010年广东深圳中考数学试卷及答案(WORD版)

深圳市2010年初中毕业生学业考试数 学 试 卷第一部分 选择题(本部分共12小题,每小题3分,共36分.每小题给出的4个选项中,其中只有一个是正确的) 1.-2的绝对值等于( )A .2B .-2C .12 D .42.为保护水资源,某社区新建了雨水再生工程,再生水利用量达58600立方米/年。

这个数据用科学记数法表示为(保留两个有效数字)( )A .58×103B .5.8×104C .5.9×104D .6.0×104 3.下列运算正确的是A .(x -y )2=x 2-y 2B .x 2·y 2 =(xy )4C .x 2y +xy 2 =x 3y 3D .x 6÷y 2 =x 4 4t )5.下列说法正确的是( ) A .“打开电视机,正在播世界杯足球赛”是必然事件B .“掷一枚硬币正面朝上的概率是12 ”表示每抛掷硬币2次就有1次正面朝上C .一组数据2,3,4,5,5,6的众数和中位数都是5D .甲组数据的方差S 甲2=0.24,乙组数据的方差S 甲2=0.03,则乙组数据比甲组数据稳定 6.下列图形中,是.中心对称图形但不是..轴对称图形的是( )7.已知点P (a -1,a +2)在平面直角坐标系的第二象限内,则a 的取值范围在数轴上可表示为(阴影部分)( )8.观察下列算式,用你所发现的规律得出22010的末位数字是( )21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…, A .2 B .4 C .6 D .89.如图1,△ABC 中,AC =AD =BD ,∠DAC =80º,则∠B 的度数是( ) A B D AB C DABCD10.有四张质地相同的卡片,它们的背面相同,其中两张的正面印有“粽子”的图案,另外两张的正面印有“龙舟”的图案,现将它们背面朝上,洗均匀后排列在桌面,任意翻开两张,那么两张图案一样的概率是( ) A .13 B .12 C .23 D .3411.某单位向一所希望小学赠送1080件文具,现用A 、B 两种不同的包装箱进行包装,已知每个B 型包装箱比A 型包装箱多装15件文具,单独使用B 型包装箱比单独使用A 型包装箱可少用12个。

2010年广东省广州市数学中考试题参考答案

2010年广东省广州市数学中考试题参考答案

2010年广州市中考试题参考答案一、填空题1.【分析】正数和负数可以表示一对相反意义的量,在本题中“增加”和“减小”就是一对相反意义的量,既然增加用正数表示,那么减少就用负数来表示,后面的百分比的值不变.【答案】B【涉及知识点】负数的意义【点评】本题属于基础题,主要考查学生对概念的掌握是否全面,考查知识点单一,有利于提高本题的信度.【推荐指数】★2.【分析】图1是一个直角题型,上底短,下底长,绕对称轴旋转后上底形成的圆小于下底形成的圆,因此得到的立体图形应该是一个圆台.【答案】C【涉及知识点】面动成体【点评】本题属于基础题,主要考查学生是否具有基本的识图能力,以及对点线面体之间关系的理解,考查知识点单一,有利于提高本题的信度.【推荐指数】★3.【分析】去括号时,要按照去括号法则,将括号前的-3与括号内每一项分别相乘,尤其需要注意,-3与-1相乘时,应该是+3而不是减3.【答案】D【涉及知识点】去括号【点评】本题属于基础题,主要考查去括号法则,理论依据是乘法分配律,容易出错的地方有两处,一是-3只与x相乘,忘记乘以-1;二是-3与-1相乘时,忘记变符号.本题直指去括号法则,没有任何其它干扰,掌握了去括号法则就能得分,不掌握就不能得分,信度相当好.【推荐指数】★★4.【分析】由D、E分别是边AB、AC的中点可知,DE是△ABC的中位线,根据中位线定理可知,DE=12BC=2.5.【答案】A【涉及知识点】中位线【点评】本题考查了中位线的性质,三角形的中位线是指连接三角形两边中点的线段,中位线的特征是平行于第三边且等于第三边的一半.【推荐指数】★★5.【分析】解不等式①,得:x>-3;解不等式②,得:x≤2,所以不等式组的解集为-3<x<2.【涉及知识点】解不等式组【点评】解不等式组是考查学生的基本计算能力,求不等式组解集的时候,可先分别求出组成不等式组的各个不等式的解集,然后借助数轴或口诀求出所有解集的公共部分.【推荐指数】★★★ 6.【分析】在这四个图片中只有第三幅图片是中心对称图形,因此是中心对称称图形的卡片的概率是41. 【答案】A【涉及知识点】中心对称图形 概率【点评】本题将两个简易的知识点,中心对称图形和概率组合在一起,是一个简单的综合问题,其中涉及的中心对称图形是指这个图形绕着对称中心旋转180°后仍然能和这个图形重合的图形,简易概率求法公式:P (A )=mn,其中0≤P (A )≤1.【推荐指数】★★★★ 7.【分析】由主视图可知,这个长方体的长和高分别为4和3,由俯视图可知,这个长方体的长和宽分别为4和2,因此这个长方体的长、宽、高分别为4、2、3,因此这个长方体的体积为4×2×3=24平方单位.【答案】C【涉及知识点】三视图【点评】三视图问题一直是中考考查的高频考点,一般题目难度中等偏下,本题是由两种视图来推测整个正方体的特征,这种类型问题在中考试卷中经常出现,本题所用的知识是:主视图主要反映物体的长和高,左视图主要反映物体的宽和高,俯视图主要反映物体的长和宽.【推荐指数】★★★★ 8.【分析】A 项中a ·b >0可得a 、b 同号,可能同为正,也可能同为负;B 项中a ·b<0可得a 、b 异号,所以错误;C 项中a ·b =0可得a 、b 中必有一个字母的值为0,但不一定同时为零.【答案】D【涉及知识点】乘法法则 命题真假【点评】本题主要考查乘法法则,只有深刻理解乘法法则才能求出正确答案,需要考生具备一定的思维能力.【推荐指数】★★9.a =1=11a --,由于a <1,所以a -1<0,因此11a --=(1-a )-1=-a .【涉及知识点】二次根式的化简【点评】本题主要考查二次根式的化简,难度中等偏难. 【推荐指数】★★★ 10.【分析】m 对应的数字是12,12+10=22,除以26的余数仍然是22,因此对应的字母是w ;a 对应的数字是0,0+10=10,除以26的余数仍然是10,因此对应的字母是k ;t 对应的数字是19,19+10=29,除以26的余数仍然是3,因此对应的字母是d ;…,所以本题译成密文后是wkdrc .【答案】A【涉及知识点】阅读理解【点评】本题是阅读理解题,解决本题的关键是读懂题意,理清题目中数字和字母的对应关系和运算规则,然后套用题目提供的对应关系解决问题,具有一定的区分度.【推荐指数】★★★★ 二、填空题 11.【分析】358000可表示为3.58×100000,100000=105,因此358000=3.58×105. 【答案】3.58×105【涉及知识点】科学记数法 【点评】科学记数法是每年中考试卷中的必考问题,把一个数写成a ×10n的形式(其中1≤a <10,n 为整数,这种计数法称为科学记数法),其方法是(1)确定a ,a 是只有一位整数的数;(2)确定n ;当原数的绝对值≥10时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值<1时,n 为负整数,n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).【推荐指数】★★★★★ 12.【分析】由于分式的分母不能为0,x -5在分母上,因此x -5≠0,解得x ≠5. 【答案】5 x【涉及知识点】分式的意义【点评】初中阶段涉及有意义的地方有三处,一是分式的分母不能为0,二是二次根式的被开方数必须是非负数,三是零指数的底数不能为零.【推荐指数】★★★13.【分析】由于两人的平均分一样,因此两人成绩的水平相同;由于2甲S >2乙S ,所以乙的成绩比甲的成绩稳定. 【答案】乙【涉及知识点】数据分析【点评】平均数是用来衡量一组数据的一般水平,而方差则用了反映一组数据的波动情况,方差越大,这组数据的波动就越大.14.【分析】扇形弧长可用公式:180n rl π=求得,由于本题n =90°,r =2,因此这个扇形的弧长为π.【答案】π【涉及知识点】弧长公式【点评】与圆有关的计算一直是中考考查的重要内容,主要考点有:弧长和扇形面积及其应用等.【推荐指数】★★★★ 15.【分析】3ab 2+a 2b =ab (3b +a ). 【答案】ab (3b +a )【涉及知识点】提公因式法因式分解【点评】本题是对基本运算能力的考查,因式分解是整式部分的重要内容,也是分式运算和二次根式运算的基础,因式分解的步骤,一提(提公因式),二套(套公式,主要是平方差公式和完全平方公式),三分组(对于不能直接提公因式和套公式的题目,我们可将多项式先分成几组后后,分组因式分解).【推荐指数】★★★ 16.【分析】由于BD 是△ABC 的角平分线,所以∠ABC =2∠ABD =72°,所以∠ABC=∠C =72°,所以△ABC 是等腰三角形.∠A =180°-2∠ABC =180°-2×72°=36°,故∠A =∠ABD ,所以△ABD 是等腰三角形∠DBC =∠ABD =36°,∠C =72°,可求∠BDC =72°,故∠BDC =∠C ,所以△BDC 是等腰三角形.【答案】3【涉及知识点】等腰三角形的判定【点评】要想说明一个三角形是等腰三角形,只要能找到两个相等的角或两条相等的边即可,本题主要考查的“等角对等边”的应用,本题难度中等,只要细心,很容易拿分.【推荐指数】★★★★ 三、解答题 17.【答案】.112312⎩⎨⎧=-=+②①y x y x①+②,得4x =12,解得:x =3.将x =3代入①,得9-2y =11,解得y =-1.所以方程组的解是⎩⎨⎧-==13y x .【点评】对二元一次方程组的考查主要突出基础性,题目一般不难,系数比较简单,主要考查方法的掌握.18.【分析】由于AD ∥BC ,所以∠A +∠B =180°,要想说明∠A +∠C =180°,只需根据等腰梯形的两底角相等来说明∠B =∠C 即可.【答案】证明:∵梯形ABCD 是等腰梯形,∴∠B =∠C 又∵AD ∥BC ,∴∠A +∠B =180° ∴∠A +∠C =180°【涉及知识点】等腰梯形性质【点评】本题是一个简单的考查等腰梯形性质的解答题,属于基础题. 【推荐指数】★★★ 19.【分析】由于这个方程有两个相等的实数根,因此⊿=240b a -=,可得出a 、b 之间的关系,然后将4)2(222-+-b a ab 化简后,用含b 的代数式表示a ,即可求出这个分式的值.【答案】解:∵)0(012≠=++a bx ax 有两个相等的实数根,∴Δ=240b ac -=,即240b a -=.∵2222222222244444)2(a ab b a a ab b a a ab b a ab =+-=-++-=-+-∵0a ≠,∴4222==a b a ab【涉及知识点】分式化简,一元二次方程根的判别式【点评】本题需要综合运用分式和一元二次方程来解决问题,考查学生综合运用多个知识点解决问题的能力,属于中等难度的试题,具有一定的区分度.20.【分析】(1)由于非常了解频数40,频率为0.2,因此样本容量为:40÷0.2=200,表中的m 是比较了解的频率,可用频数120除以样本容量200;(2)非常了解的频率为0.2,扇形圆心角的度数为0.2×360°=72°;(3)由样本中“比较了解”的频率0.6可以估计总体中“比较了解”的频率也是0.6.【答案】(1)200;0.6;(2)72°;补全图如下:60%比较了解20%非常了解基本了解不太了解2%18%(3)1800×0.6=900【涉及知识点】扇形统计图 样本估计总体【点评】统计图表是中考的必考内容,本题渗透了统计图、样本估计总体的知识,数据的问题在中考试卷中也有越来越综合的趋势.【推荐指数】★★★★★21.【分析】(1)代入对称轴公式2b x b=-和顶点公式(-2bb ,244ac b a -)即可;(3)结合图像可知这两点位于对称轴右边,图像随着x 的增大而减少,因此y 1<y 2.【答案】解:(1)x =1;(1,3)x … -1 0 1 2 3 … y…-1232-1…(3)因为在对称轴x =1右侧,y 随x 的增大而减小,又x 1>x 2>1,所以y 1<y 2.【涉及知识点】抛物线的顶点、对称轴、描点法画图、函数增减性【点评】二次函数是中考考查的必考内容之一,本题是综合考查二次函数的一些基础知识,需要考生熟悉二次函数的相关基本概念即可解题.【推荐指数】★★★★★ 22.【分析】(1)由于∠ACB =45°,∠A =90°,因此△ABC 是等腰直角三角形,所以AC =AB =610;(2)根据矩形的对边相等可知:DE =AC =610米,在Rt △BDE中,运用直角三角形的边角关系即可求出BE的长,用AB的长减去BE的长度即可.【答案】(1)由题意,AC=AB=610(米);(2)DE=AC=610(米),在Rt△BDE中,tan∠BDE=BE DE,故BE=DE tan39°.因为CD=AE,所以CD=AB-DE·tan39°=610-610×tan39°≈116(米)答:大楼的高度CD约为116米.【涉及知识点】解直角三角形【点评】解直角三角形是每年中考的必考知识点之一,主要考查直角三角形的边角关系及其应用,难度一般不会很大,本题是基本概念的综合题,主要考查考生应用知识解决问题的能力,很容易上手,容易出错的地方是近似值的取舍.【推荐指数】★★★★★23.【分析】(1)将A点坐标代入反比例函数解析式即可得到一个关于m的一元一次方程,求出m的值;(2)分别过点A、B作x轴的垂线,垂足分别为点D、E,则△CBE∽△CAD,运用相似三角形知识求出CE的长即可求出点C的横坐标.【答案】解:(1)∵图像过点A(-1,6),861m-=-.∴m-8-1=6(2)分别过点A、B作x轴的垂线,垂足分别为点D、E,由题意得,AD=6,OD=1,易知,AD∥BE,∴△CBE∽△CAD,∴CB BE CA AD=.∵AB=2BC,∴13 CB CA=∴136BE=,∴BE=2.即点B的纵坐标为2当y=2时,x=-3,易知:直线AB为y=2x+8,∴C(-4,0)【涉及知识点】反比例函数【点评】由于今年来各地中考题不断降低难度,中考考查知识点有向低年级平移的趋势,反比例函数出现在解答题中的频数越来约多.【推荐指数】★★★★24.【分析】(1)连接OA,OP与AB的交点为F,则△OAF为直角三角形,且OA=1,OF=12,借助勾股定理可求得AF的长;(2)要判断∠ACB 是否为定值,只需判定∠CAB +∠ABC 的值是否是定值,由于⊙D 是△ABC 的内切圆,所以AD 和BD 分别为∠CAB 和∠ABC 的角平分线,因此只要∠DAE +∠DBA 是定值,那么CAB +∠ABC 就是定值,而∠DAE +∠DBA 等于弧AB 所对的圆周角,这个值等于∠AOB 值的一半; (3)由题可知ABD ACD BCD S S S S ∆∆∆=++=12DE (AB +AC +BC ),又因为243SDE=,所以21()243DE AB AC BC DE ++=,所以AB +AC +BC =83DE ,由于DH=DG =DE ,所以在Rt △CDH 中,CH =3DH =3DE ,同理可得CG =3DE ,又由于AG =AE ,BE =BH ,所以AB +AC +BC =CG +CH +AG +AB +BH =23DE +23,可得83DE =23DE +23,解得:DE =3,代入AB +AC +BC =83DE ,即可求得周长为243.【答案】解:(1)连接OA ,取OP 与AB 的交点为F ,则有OA =1.∵弦AB 垂直平分线段OP ,∴OF =12OP =12,AF =BF . 在Rt △OAF 中,∵AF =22OA OF -=2211()2-=3,∴AB =2AF =3.(2)∠ACB 是定值.理由:由(1)易知,∠AOB =120°, 因为点D 为△ABC 的内心,所以,连结AD 、BD ,则∠CAB =2∠DAE ,∠CBA =2∠DBA , 因为∠DAE +∠DBA =12∠AOB =60°, 所以∠CAB +∠CBA =120°,所以∠ACB =60°;(3)记△ABC 的周长为l ,取AC ,BC 与⊙D 的切点分别为G ,H ,连接DG ,DC ,DH ,则有DG =DH =DE ,DG ⊥AC ,DH ⊥BC . ∴ABD ACD BCD S S S S ∆∆∆=++ =12AB ·DE +12BC ·DH +12AC ·DG =12(AB +BC +AC )·DE =12l ·DE . ∵2S DE =212l DEDE g =l =.∵CG ,CH 是⊙D 的切线,∴∠GCD =12∠ACB =30°, ∴在Rt △CGD 中,CG =tan30DG o, ∴CH =CG.又由切线长定理可知AG =AE ,BH =BE ,∴l =AB +BC +AC ==,解得DE =3, ∴△ABC 的周长为【涉及知识点】垂径定理 勾股定理 内切圆 切线长定理 三角形面积【点评】本题巧妙将垂径定理、勾股定理、内切圆、切线长定理、三角形面积等知识综合在一起,需要考生从前往后按顺序解题,前面问题为后面问题的解决提供思路,是一道难度较大的综合题【推荐指数】★★★★★ 25.【分析】(1)要表示出△ODE 的面积,要分两种情况讨论,①如果点E 在OA 边上,只需求出这个三角形的底边OE 长(E 点横坐标)和高(D 点纵坐标),代入三角形面积公式即可;②如果点E 在AB 边上,这时△ODE 的面积可用长方形OABC 的面积减去△OCD 、△OAE 、△BDE 的面积;(2)重叠部分是一个平行四边形,由于这个平行四边形上下边上的高不变,因此决定重叠部分面积是否变化的因素就是看这个平行四边形落在OA 边上的线段长度是否变化.【答案】(1)由题意得B (3,1).若直线经过点A (3,0)时,则b =32 若直线经过点B (3,1)时,则b =52若直线经过点C(0,1)时,则b=1①若直线与折线OAB的交点在OA上时,即1<b≤32,如图25-a,此时E(2b,0)∴S=12OE·CO=12×2b×1=b②若直线与折线OAB的交点在BA上时,即32<b<52,如图2此时E(3,32b-),D(2b-2,1)∴S=S矩-(S△OCD+S△OAE+S△DBE)=3-[12(2b-1)×1+12×(5-2b)·(52b-)+12×3(32b-)] =252b b-∴2312535222b bSb b b⎧<≤⎪⎪=⎨⎪-<<⎪⎩(2)如图3,设O1A1与CB相交于点M,OA与C1B1相交于点N,则矩形OA1B1C1与矩形OABC的重叠部分的面积即为四边形DNEM的面积.由题意知,DM ∥NE ,DN ∥ME ,∴四边形DNEM 为平行四边形根据轴对称知,∠MED =∠NED又∠MDE =∠NED ,∴∠MED =∠MDE ,∴MD =ME ,∴平行四边形DNEM 为菱形.过点D 作DH ⊥OA ,垂足为H ,由题易知,tan ∠DEN =12,DH =1,∴HE =2, 设菱形DNEM 的边长为a , 则在Rt △DHM 中,由勾股定理知:222(2)1a a =-+,∴54a =∴S 四边形DNEM =NE ·DH =54∴矩形OA 1B 1C 1与矩形OABC 的重叠部分的面积不发生变化,面积始终为54. 【涉及知识点】轴对称 四边形 勾股定理【点评】本题是一个动态图形中的面积是否变化的问题,看一个图形的面积是否变化,关键是看决定这个面积的几个量是否变化,本题题型新颖是个不可多得的好题,有利于培养学生的思维能力,但难度较大,具有明显的区分度.【推荐指数】★★★★★。

2010年广东深圳中考数学试卷(word版及答案)

2010年广东深圳中考数学试卷(word版及答案)

深圳市2010年初中毕业生学业考试数学试卷第一部分选择题(本部分共12小题,每小题3分,共36分.每小题给出的4个选项中,其中只有一个是正确的)1.-2的绝对值等于A .2B .-2C .12 D .42.为保护水资源,某社区新建了雨水再生工程,再生水利用量达58600立方米/据用科学记数法表示为(保留两个有效数字)A .58×103B .5. 8×104C .5. 9×104D .6. 04 3.下列运算正确的是A .(x -y 2=x 2-y 2B .x 2·y 2 =(xy 4C .x 2y +xy 2 =x 3y 3D .x 6y 2 =x 4 45.下列说法正确的是 A BC .一组数据2,3D 稳定6.下列图形中,是...P (a -1,a +2)在平面直角坐标系的第二象限内,则a 的取值范围在数轴上可8.观察下列算式,用你所发现的规律得出22010的末位数字是1A 1B 1D 1B C DA21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,A .2 B .4 C .6 D .89.如图1,△ABC 中,AC =AD =BD ,∠DAC =80º,则∠B 的度数是A .40ºB .35ºC .25ºD .20º10.有四张质地相同的卡片,它们的背面相同,其中两张的正面印有“粽子”的图案,另外两张的正面印有“龙舟”的图案,现将它们背面朝上,洗均匀后排列在桌面,任意翻开两张,那么两张图案一样的概率是A .13B .12C .23D .3411.某单位向一所希望小学赠送1080件文具,现用A 、B 知每个B 型包装箱比A 型包装箱多装15件文具,单独使用B 包装箱可少用12个。

设B 型包装箱每个可以装x A .1080x 1080x -1512 B .1080x 1080x -1512C .1080x =1080x +1512.如图2,点P (3a A .y =3x 填空题(本题共413.分解因式:4x 2-414.如图3,在□_______________. 15.如图416.如图5,在北偏东60º方向B 处,此时观测到灯塔M 在北偏东30º方向上,那么该船继续填空题(本题共7小题,其中第17小题6分,第18小题6分,第19小题7分,第AB 图5北北图4主视图俯视图20小题7分,第21小题8分,第22小题9分,第23小题9分,共52分.)17.(本题6分)计算:( 13 -2-2sin45º+(π -3. 14 0+ 128+(-1 3.18.(本题6分)先化简分式a 2-9a +6a +9÷a -3a +3a -a -a 2a -1,然后在0,1,2,3中选一个你认为合适的a 值,代入求值.19.(本题7调查数据制作了频数分布直方图和扇形统计图,图62:(1 (2度;(2(32. 5,若每个被检单位的建筑面积均为10000平方米,则按小明的办法,可估x ≥4(千克/平方米·月)的被检单位一个月的碳排放总值约为吨.(2分)20.(本题7分)如图8,△AOB 和△COD 均为等腰直角三角形,∠AOB =∠COD =90º,D 在AB 上.(1)求证:△AOB ≌△COD ;(4分)(2)若AD =1,BD =2,求CD 的长.(3分)321.(本题8分)儿童商场购进一批M 型服装,销售时标价为75元/件,按获利50%.商场现决定对M 型服装开展促销活动,每件在8x 售,已知每天销售数量y (件)与降价x 元之间的函数关系为y =20+4x x >0)(1)求M 型服装的进价;(3分)(2分)22.(本题9分)如图底AD 在x (1(2)点M 为y M 的坐标;(2分)(3)在第(2)求点P 的坐标.(4分)23.(本题9分)如图10,以点M (-1,0)为圆心的圆与y 轴、x 轴分别交于点A 、B 、C 、D ,直线y =-33x - 33与⊙M 相切于点H ,交x 轴于点E ,交y 轴于点F .(1)请直接写出OE 、⊙M 的半径r 、CH 的长;(3分)图9图8O(2)如图11,弦HQ 交x 轴于点P ,且DP :PH =3:2,求cos ∠QHC 的值;(3分)(3)如图12,点K 为线段EC 上一动点(不与E 、C 重合),连接BK 交⊙M 于点T ,弦AT 交x 轴于点N .是否存在一个常数a ,始终满足MN ·MK =a ,如果存在,请求出a 的值;如果不存在,请说明理由.(3分)案第一部分:选择题D 4、B 5、D 6、A 7、C 8、B 9、C 10、A 13、4(1(1 x x +- 14、3 15、9 16、15 11192+⨯= 18、223 (3 2(3 31a a a a a a a a a a -+-=-=+=+--原式当2a =时,原式=4图10图11中小学教育资源站(,百万资源免费下载,无须注册!1 2 又 OC OD, OA OE ,AOC BOD (2)由AOC BOD 有: AC BD 2 ,CAO DBO 45 ,CAB 90,故 CD AC 2 AD 2 22 12 5 21、(1)、设进价为 a 元,依题意有:a(1 50 75 80,解之得: a 40 (元)(2)、依题意, W (204 x(60 40 x 4 x 2 60 x 400 4( x 故当 x 15 625 2 y 15 7.5 (元)时, W最大 625 (元) 2 a 1 2 ;故 y x 4 为所求 c4 22、(1)、因为点 A、B 均在抛物线上,故点 A、B 的坐标适合抛物线方程∴ 4a c 0 a c 3 解之得: A O M B 图2 D x (2)如图 2,连接 BD,交 y 轴于点 M,则点 M 就是所求作的点 2k b 0 k 1 设 BD 的解析式为 y kx b ,则有,,k b 3 b 2 故 BD 的解析式为 y x 2 ;令 x 0, 则 y 2 ,故 M (0, 2 C (3、如图 3,连接 AM,BC 交 y 轴于点 N,由(2)知,OM=OA=OD=2,AMB 90易知BN=MN=1,易求 AM 2 2, BM 2 y P2 P1 1 S ABM 2 2 2 2 ;设P( x, x 2 4 , 2 1 1 2 2 依题意有: AD x 4 4 2 ,即: 4x 4 42 2 2 解之得: x 2 2 , x 0 ,故符合条件的 P 点有三个: A O M N C P3D x P (2 2, 4, P2 ( 2 2, 4, P3 (0, 4 1 23、(1)、如图 4,OE=5, r 2 ,CH=2 (2)、如图 5,连接 QC、QD,则CQD 90,QHC QDC 易知CHP DQP ,故 B 图3 y B DP DQ , PH CH CE H M 3 DQ , DQ 3 ,由于 CD 4 , 2 2 QD 3 ; cos Q cos 4 (3)、如图 6,连接 AK,AM,延长AM, O D A xF 图4 中小学教育资源站 中小学教育资源站(,百万资源免费下载,无须注册!与圆交于点 G,连接 TG,则,由于,故,;而,故在和中, 1 2 ;AMK NMA 故AMK NMA ; y Q C P M B MN AM ; AM MK 即:MN MK AM 4 2 E y G 4 3 O D A x 故存在常数 a ,始终满足 MN MKa 常数 a 4 H B F 图5 K E T 1 C N M 2 O D A x H F 图6 中小学教育资源站。

2010广东佛山中考数学试题及答案

2010广东佛山中考数学试题及答案

2010年佛山市高中阶段学校招生考试数学说明:本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,满分120分,考试时间100分钟。

注意事项:1.试卷的选择题和非选择题都在答题卡上作答,不能答在试卷上。

2.要作图(含辅助线)或画表,先用铅笔进行画线、绘图,再用黑色字迹的钢笔或签字笔描黑。

3.其余注意事项,见答题卡。

第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,答案选项填涂在答题卡上)。

1.如图,数轴上的点A表示的数为a,则1a等于A.12B.12C.-2D.22.30°角的补角是A.30°角B. 60°角C. 90°角D. 150°角3.如图,把其中的一个小正方形看作基本图形,这个图形中不含的变换是A.对称 B.平移C.相似(相似比不为1) C.旋转4.“数x不小于2”。

是指A. x≤2B.x≥2C.x<2D.x>2 5.如图,直线与两个同心圆分别交于图示的各点,则正确的是A.MP与RN的大小关系不定 B.MP=RNC.MP<RND.MP>RN6.掷一枚均匀的骰子,前5次朝上的点数恰好是1 ~5,则第6次朝上的点数A.一定是6 B.一定不是6C.是6的可能性大于是1 ~5中的任意一个数的可能性D.是6的可能性等于是1 ~5中的任意一个数的可能性7.尺规作图是指A.用直尺规范作图B.用刻度尺和尺规作图C.用没有刻度的直尺和圆规作图D.直尺和圆规是作图工具8.如图,是一个几何体的三视图(含有数据),则这个几何体的侧面展开图的面积等于A.2πB.πC.4 D.29.多项式1+xy-xy²的次数及最高次项的系数分别是A.2,1 B.2,-1 C.3,-1 D.5,-110.四个数据8,10,x,10的平均数与中位数相等,则x等于A.8 B.10 C.12 D.8和12第Ⅱ卷(非选择题共90分)二、填空题(本大题共5小题,每小题3分,共15分,把答案填在答题卡中)。

2010年广东省深圳中考数学试卷(含答案)

2010年广东省深圳中考数学试卷(含答案)

h
h
h
h
O t
A
O t
B
O t
C
O t
D
5.下列说法正确的是
A.“打开电视机,正在播世界杯足球赛”是必然事件
B.“掷一枚硬币正面朝上的概率是
1 2
”表示每抛掷硬币 2 次就有 1 次正面朝上
C.一组数据 2,3,4,5,5,6 的众数和中位数都是 5 D.甲组数据的方差 S 甲 2=0.24,乙组数据的方差 S 甲 2=0.03,则乙组数据比甲组数据
D 在 AB 上.
A
(1)求证:△AOC≌△BOD;(4 分) (2)若 AD=1,BD=2,求 CD 的长.(3 分)
D C
B O
图8
21.(本题 8 分)儿童商场购进一批 M 型服装,销售时标价为 75 元/件,按 8 折销售仍可获 利 50%.商场现决定对 M 型服装开展促销活动,每件在 8 折的基础上再降价 x 元销售, 已知每天销售数量 y(件)与降价 x 元之间的函数关系为 y=20+4x(x>0) (1)求 M 型服装的进价;(3 分) (2)求促销期间每天销售 M 型服装所获得的利润 W 的最大值.(5 分)
(3)、如图 6,连接 AK,AM,延长 AM,
与圆交于点 G,连接 TG,则 ∠GTA =90°
∴∠2 + ∠4= 90°
CM
E
OD x
H
A
F
图4
∠3 =∠4 ,∴∠2 + ∠3 =90°
由于 ∠BKO + ∠3= 90° ,故, ∠BKO = ∠2 ;
而 ∠BKO = ∠1,故 ∠1 =∠2
在 ∆AMK 和 ∆NMA 中, ∠1 =∠2 ; ∠AMK = ∠NMA
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年广东省初中数学毕业生学业考试
一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确
的,请把答题卡上对应题目所选的选项涂黑. 1.-3的相反数是( ) A .3
B .
3
1 C .-3
D .13
-
2.下列运算正确的是( )
A .ab b a 532=+
B .()b a b a -=-422
C .()()2
2
b a b a b a -=-+
D . ()2
22
b a b a +=+
3.如图,已知∠1=70°,如果CD ∥BE ,那么∠B 的度数为( ) A.70° B.100° C.110° D.120°
4.某学习小组7位同学,为玉树地震灾区捐款,捐款金额 分别为5元、6元、6元、7元、8元、9元, 则这组数据的中位数与众数分别为( )
A .6,6
B .7,6
C . 7,8
D .6,8 5. 左下图为主视方向的几何体,它的俯视图是( )
二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应
的位置上.
6.根据新网上海6月1日电:世博会开园一个月来,客流平稳,累计到当晚19时, 参观者已超过8000000人次,试用科学记数法表示8000000= .
7.分式方程
11
2=+x x
的解x = . 8.如图,已知R t △ABC 中,斜边BC 上的高AD =4,cosB =
5
4
,则AC = . 9.某市2007年、2009年商品房每平方米平均价格分别为4000元、5760元,假设2007年后的两 年内,商品房每平方米平均价格的年增长率都为x ,试列出关于x 的方程: . 10.如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;
把正方形A 1B 1C 1D 1边长按原法延长一倍得到新正方形A 2B 2C 2D 2(如图(2));以此下去…, 则正方形A 4B 4C 4D 4的面积为 .
11.计算:.
12. 先化简,再求值
()
x x x x x 22
4
422+÷+++ ,其中 x = 2 .
13. 如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,R t △ABC 的顶点均在格点上,
在建立平面直角坐标系以后,点A 的坐标为(-6,1),点B 的坐标为(-3,1),点C 的坐标为 (-3,3).
(1)将R t △ABC 沿X 轴正方向平移5个单位得到R t △A 1B 1C 1,试在图上画出R t △A 1B 1C 1的图形,
并写出点A 1的坐标。

(2)将原来的R t △ABC 绕着点B 顺时针旋转90°得到R t △A 2B 2C 2,试在图上画出R t △A 2B 2C 2的
图形。

14.如图,PA 与⊙O 相切于A 点,弦A B ⊥OP ,垂足为C ,OP 与⊙O 相交于D 点,已知OA =2,
OP =4.
⑴求∠POA 的度数; ⑵计算弦AB 的长.
15.如图,一次函数1y kx =-的图象与反比例函数m
y x
=
的图象交于A 、B 两点,其中A 点坐标 为(2,1).
⑴试确定k 、m 的值; ⑵求B 点的坐标. ()00
1260cos 2214π-+-⎪⎭
⎫ ⎝⎛+-
16.分别把带有指针的圆形转盘A 、B 分成4等份、3等份的扇形区域,并在每一个小区域内标上
数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停 止时,若指针所指两区域的数字之积为奇数,则欢欢 胜;若指针所指两区域的数字之积为偶数,则乐乐胜; 若有指针落在分割线上,则无效,需重新转动转盘. ⑴试用列表或画树状图的方法,求欢欢获胜的概率; ⑵请问这个游戏规则对欢欢、乐乐双方公平吗?试 说明理由. 17.已知二次函数2
y x bx c =-++的图象如图所示,它与x 轴的一个交点坐标为(-1,0) ,与
y 轴的交点坐标为(0,3)
. ⑴求出b ,c 的值,并写出此二次函数的解析式;
⑵根据图象,写出函数值y 为正数时,自变量x 的取值范围.
18.如图,分别以Rt ABC ∆的直角边AC 及斜边AB 向外作等边ACD ∆,等边ABE ∆.已知
∠BAC =30°,EF ⊥AB ,垂足为F ,连结DF .
⑴试说明AC =EF ; ⑵求证:四边形ADFE 是平行四边形.
19.某学校组织340名师生进行长途考察活动,带有行礼170件,计划租用甲、乙两种型号的汽车 共有10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李. ⑴请你帮助学校设计所有可行的租车方案;
⑵如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省? 五、解答题(三)(本大题3小题,每小题9分,共27分)
20.已知两个全等的直角三角形纸片ABC 、DEF ,如图(1)放置,点B 、D 重合,点F 在BC 上,
AB 与EF 交于点G .∠C =∠EFB =90°,∠E =∠ABC =30°,AB =DE =4. (1)求证:EGB ∆是等腰三角形;
(2)若纸片DEF 不动,问ABC ∆绕点F 逆时针旋转最小____度时,四边形ACDE 成为以ED 为底的梯形(如图(2)).求此梯形的高. 第17题图 第18题图
21.阅读下列材料:
1
12(123012),
31
23(234123),31
34(345234),
3
⨯=⨯⨯-⨯⨯⨯=⨯⨯-⨯⨯⨯=⨯⨯-⨯⨯
由以上三个等式相加,可得
1
122334345203
⨯+⨯+⨯=⨯⨯⨯=.
读完以上材料,请你计算下各题:
(1)1223341011⨯+⨯+⨯++⨯(写出过程); (2)122334(1)_____n n ⨯+⨯+⨯+
+⨯+=;
(3)123234345789______⨯⨯+⨯⨯+⨯⨯+
+⨯⨯=.
22.如图(1),(2)所示,矩形ABCD 的边长AB =6,BC =4,点F 在DC 上,DF =2.动点M 、N 分别从点D 、B 同时出发,沿射线DA 、线段BA 向点A 的方向运动(点M 可运动到DA 的延 长线上),当动点N 运动到点A 时,M 、N 两点同时停止运动.连结FM 、MN 、FN ,当F 、N 、 M 不在同一条直线时,可得FMN ∆,过FMN ∆三边的中点作∆PQW .设动点M 、N 的速度 都是1个单位/秒,M 、N 运动的时间为x 秒.试解答下列问题: (1)说明FMN ∆∽∆QWP ;
(2)设0≤x ≤4(即M 从D 到A 运动的时间段).试问x 为何值时,∆PQW 为直角三角形?
当x 在何范围时,∆PQW 不为直角三角形?
(3)问当x 为何值时,线段MN 最短?求此时MN 的值.
2010年广东省初中毕业生学业考试
数 学 试 题 参 考 答 案
1、A
2、C
3、B
4、D
5、D
6、6810⨯
7、1x y -+
8、5
9、1- 10、625 11、解:原式1
222142
=+-⨯+=。

12、解:⎩⎨⎧=-+=-433022
2y y x y x
由①得: 2x y =………… ③
将③代入②,化简整理,得: 2340y y +-= 解得:
13y y ==-或
将13y y ==-或代入①,得: 21x y =⎧⎨
=⎩ 或6
3
x y =-⎧⎨=-⎩ 13、(1)如右图,A 1(-1,1); (2)如右图。

14、(1)60° (2
)AB =15、(1)m ≤1 (2)12331
()422
m x x =
==, 16、(1)5
9 (2)不公平。

因为欢欢获胜的概率是
59;乐乐获胜的概率是49。

17、(1)22323b c y x x =-=-++,, (2)13x -<< 18、(1
)提示:AC AB EF AE AC AE ==,,
(2)提示:000603090DAF EFA ∠=+==∠,AD ∥EF 且AD=EF
19、(1)四种方案,分别为::4:5:6:7:6
:5
:4
:3
⎧⎧⎧⎧⎨
⎨⎨⎨⎩⎩⎩⎩甲甲甲甲或或或乙乙乙乙 (2):4:6
⎧⎨
⎩甲乙 最便宜,费用为18800元。

20、(1)提示:030EBG E ∠=∠= G E G B ∴= (2)30(度)
21、(1)原式11011124403=⨯⨯⨯= (2)1
(1)(2)3
n n n ⨯⨯+⨯+ (3)1260
22、(1)提示:∵PQ ∥FN ,PW ∥MN ∴∠QPW =∠PWF ,∠PWF =∠MNF ∴∠QPW =∠MNF
同理可得:∠PQW =∠NFM 或∠PWQ =∠NFM ∴△FMN ∽△QWP
…………… ①
…… ② 第13题(1)答案
第13题(2)答案
(2)当
4
4
3
x x
==
或时,△PQW为直角三角形;
当0≤x<4
3

4
3
<x<4时,△PQW不为直角三角形。

(3)2+。

相关文档
最新文档