精品解析:湖南省长沙市2018年中考数学试题(原卷版)

合集下载

(中考精品卷)湖南省邵阳市中考数学真题(解析版)

(中考精品卷)湖南省邵阳市中考数学真题(解析版)

2022年邵阳市初中学业水平考试试题卷数 学温馨提示:(1)本学科试卷分试题卷和答题卡两部分,考试时量为120分钟,满分为120分;(2)请你将姓名、准考证号等相关信息按要求填涂在答题卡上; (3)请你在答题卡上作答,答在本试题卷上无效.一、选择题(本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. -2022的绝对值是( ) A. 12022 B. 12022- C. -2022 D. 2022【答案】D【解析】【分析】直接利用绝对值定义判断即可.【详解】解:-2022的绝对值是2022,故选:D .【点睛】本题考查了绝对值的定义,明确负数的绝对值等于它的相反数是解题关键. 2. 下列四种图形中,对称轴条数最多的是( )A. 等边三角形B. 圆C. 长方形D. 正方形【答案】B【解析】【分析】分别求出各个图形的对称轴的条数,再进行比较即可.【详解】解:因为等边三角形有3条对称轴;圆有无数条对称轴;长方形有2条对称轴;正方形有4条对称轴;经比较知,圆的对称轴最多.故选:B .【点睛】此题考查了轴对称图形对称轴条数的问题,解题的关键是掌握轴对称图形对称轴的定义以及性质.3. 5月29日腾讯新闻报道,2022年第一季度,湖南全省地区生产总值约为11000亿元,11000亿用科学记数法可表示为1210a ⨯,则a 的值是( )A. 0.11B. 1.1C. 11D. 11000 【答案】B【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,整数位数减1即可.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:因1亿=108,所以11000亿用科学记数法表示为1.1×104×108=1.1×1012. 故选:B .【点睛】此题考查了科学记数法表示绝对值大于1的数.解题的关键是关键知道1亿=108,要正确确定a 的值以及n 的值.4. 下列四个图形中,圆柱体的俯视图是( )A. B. C. D.【答案】D【解析】【分析】根据俯视图是从上面看到的视图进而得出答案即可.【详解】解:竖直放置的圆柱体,从上面看是圆,所以俯视图是圆.故选∶D .【点睛】此题考查了简单几何体的三视图,解题的关键是熟练掌握圆柱体的三视图. 5. 假定按同一种方式掷两枚均匀硬币,如果第一枚出现正面朝上,第二枚出现反面朝上,就记为(正,反),如此类推,出现(正,正)的概率是( )A. 1B. 34C. 12D. 14【答案】D【解析】【分析】由列举法可得:掷两枚硬币,所有等可能的结果有:正正,正反,反正,反反,其中出现(正,正)的情况有1种,然后利用概率公式求解即可求得答案.为【详解】∵掷两枚硬币,所有等可能的结果有:正正,正反,反正,反反,其中出现(正,正)的情况有1种,∴P(正,正)=14.故选∶D.【点睛】此题考查了列举法求概率,解题关键是知道概率=所求情况数与总情况数之比.6. 下列长度的三条线段能首尾相接构成三角形的是()A. 1cm,2cm,3cmB. 3cm,4cm,5cmC. 4cm,5cm,10cmD. 6cm,9cm,2cm【答案】B【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,知A、1+2=3,不能组成三角形,故选项错误,不符合题意;B、3+4>5,能够组成三角形,故选项正确,符合题意;C、5+4<10,不能组成三角形,故选项错误,不符合题意;D、2+6<9,不能组成三角形,故选项错误,不符合题意;故选:B.【点睛】此题考查了三角形的三边关系.解题的关键是看较小的两个数的和是否大于第三个数.7. 如图是反比例函数y=1x的图象,点A(x,y)是反比例函数图象上任意一点,过点A作AB⊥x轴于点B,连接OA,则△AOB的面积是()A. 1B. 12C. 2 D.32的【答案】B【解析】【分析】由反比例函数的几何意义可知,k =1,也就是△AOB 的面积的2倍是1,求出△AOB 的面积是12. 【详解】解:设A (x ,y )则OB =x ,AB =y , ∵A 为反比例函数y =1x 图象上一点, ∴xy =1,∴S △ABO =12AB •OB =12xy =12×1=12, 故选:B .【点睛】本题考查反比例函数的几何意义,即k 的绝对值,等于△AOB 的面积的2倍,数形结合比较直观.8. 在直角坐标系中,已知点3,2A m ⎛⎫ ⎪⎝⎭,点B n ⎫⎪⎪⎭是直线()0y kx b k =+<上的两点,则m ,n 的大小关系是( )A. m n <B. m n >C. m n ≥D. m n ≤【答案】A【解析】【分析】因为直线()0y kx b k =+<,所以随着自变量的增大,函数值会减小,根据这点即可得到问题解答.【详解】解:∵因为直线()0y kx b k =+<,∴y 随着x 的增大而减小,∵32>2,∴32> ∴m <n ,故选:A .【点睛】此题考查了一次函数的图象和性质,解题的关键是正确判断一次函数的增减性并灵活运用.9. 如图,⊙O 是等边△ABC 的外接圆,若AB =3,则⊙O 的半径是( )A. 32 D. 52【答案】C【解析】【分析】作直径AD ,连接CD ,如图,利用等边三角形的性质得到∠B =60°,关键圆周角定理得到∠ACD =90°,∠D =∠B =60°,然后利用含30度的直角三角形三边的关系求解.【详解】解:作直径AD ,连接CD ,如图,∵△ABC 为等边三角形,∴∠B =60°,∵AD 为直径,∴∠ACD =90°,∵∠D =∠B =60°,则∠DAC =30°,∴CD =12AD , ∵AD 2=CD 2+AC 2,即AD 2=(12AD )2+32,∴AD ,∴OA =OB =12AD . 故选:C . 【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了等边三角形的性质、圆周角定理和含30度的直角三角形三边的关系.10. 关于x 的不等式组()1233111222x x x a ⎧->-⎪⎪⎨⎪-<-⎪⎩有且只有三个整数解,则a 的最大值是( )A. 3B. 4C. 5D. 6 【答案】C【解析】【分析】分别对两个不等式进行求解,得到不等式组的解集为1x a <<,根据不等式组有且只有三个整数解的条件计算出a 的最大值. 【详解】解不等式1233x x ->-, 1233x x -+>, ∴2233x >, ∴1x >, 解不等式111(2)22x a -<-, 得11(2)122x a <-+, ∴x a <, ∴1233111(2)22x x x a ⎧->-⎪⎪⎨⎪-<-⎪⎩的解集为1x a <<, ∵不等式组有且只有三个整数解,∴不等式组的整数解应为:2,3,4,∴a 的最大值应为5故选:C .【点睛】本题考查不等式组的整数解,解题的关键是熟练掌握不等式组的相关知识.二、填空题(本大题有8个小题,每小题3分,共24分)11. 因式分解:224a b -=_____.【答案】()()22a b a b +-【解析】【分析】本题利用平方差公式进行因式分解即可.【详解】解:原式=(a+2b)(a-2b) .12. 有意义,则x的取值范围是_________.【答案】x>2##2<x【解析】【分析】根据二次根式有意义的条件:被开方数是非负数和分式有意义的条件:分母不为0即可求出结论.【详解】解:由题意可得x-2>0,解得:x>2,故答案为:x>2.【点睛】本题考查的是分式及二次根式有意义的条件,掌握二次根式的被开方数是非负数、分式分母不为0解题的关键.13. 某班50名同学的身高(单位:cm)如下表所示:【答案】160【解析】【分析】根据众数的定义求解.【详解】在这一组数据中160出现了10次,次数最多,故众数是160.故答案为:160.【点睛】此题考查了众数,解题的关键是掌握众数的定义.14. 分式方程532x x-=-的根为_____【答案】x=-3 【解析】【详解】解:532x x-=-,去分母得:5x-3(x-2)=0,解得:x =-3,检验:当x =-3时,x (x -3)≠0,所以,原分式方程的解为x =-3,故答案是:x =-3.15. 已知矩形的一边长为6cm ,一条对角线的长为10cm ,则矩形的面积为_________2cm .【答案】48【解析】【分析】如图,先根据勾股定理求出8cm AB ==,再由ABCD S AB BC=⨯矩形求解即可.【详解】解:在矩形ABCD 中,6cm BC =,10cm AC =,∴Rt ABC △中,8AB ==(cm),∴28648(cm )ABCD S AB BC =⨯=⨯=矩形.故答案为:48.【点睛】此题考查了矩形的性质,勾股定理,解题的关键是熟知上述知识.16. 已知2310x x -+=,则2395x x -+=_________.【答案】2【解析】【分析】将2395x x -+变形为23(31)+2x x -+即可计算出答案.【详解】22239539323(31)+2x x x x x x -+=-++=-+∵2310x x -+=∴23950+2=2x x -+=故答案为:2.【点睛】本题考查代数式的性质,解题的关键是熟练掌握代数式的相关知识. 17. 如图,在等腰ABC 中,120A ∠=︒,顶点B 在ODEF 的边DE 上,已知140∠=︒,则2∠=_________.在【答案】110º【解析】【分析】先根据等腰三角形的性质求出∠ABC 的度数;再根据平行四边形对边平行和两直线平行同旁内角互补的性质,得出∠2+∠ABE =180º,代入求解即可.【详解】解:∵ABC 是等腰三角形,∠A =120º,∴∠ABC =∠C =(180º-∠A )÷2=30º,∵四边形ODEF 是平行四边形,∴OF ∥DE ,∴∠2+∠ABE =180º,即∠2+30º+40º=180º,∴∠2=110º.故答案为:110º.【点睛】此题考查了等腰三角形的性质和平行四边形的性质,解题的关键是数形结合,熟练运用上述知识求解.18. 如图,在ABC 中,点D 在AB 边上,点E 在AC 边上,请添加一个条件_________,使ADE ABC △△∽.【答案】∠ADE =∠B (答案不唯一).【解析】【分析】已知有一个公共角,则可以再添加一个角从而利用有两组角对应相等的两个三角形相似来判定或添加夹此角的两边对应成比例也可以判定.【详解】解∶∵∠A =∠A ,∴根据两角相等的两个三角形相似,可添加条件∠ADE =∠B 或∠AED =∠C 证ADE ABC △△∽相似; 根据两边对应成比例且夹角相等,可添加条件AD AE AB AC=证ADE ABC △△∽相似. 故答案为∶∠ADE =∠B (答案不唯一).【点睛】此题考查了本题考查了相似三角形的判定,解题的关键是掌握相似三角形的判定方法. 三、解答题(本大题有8个小题,第19~25题每题8分,第26题10分,共66分.解答应写出必要的文字说明、演算步骤或证明过程)19. 计算:201(2)2sin 602π-⎛⎫-+-- ⎪⎝⎭︒. 【答案】【解析】【分析】先计算零指数幂、负指数幂、锐角三角函数值,再计算二次根式的乘法和加减法. 【详解】解:201(2)2sin 602π-⎛⎫-+-- ⎪⎝⎭︒数幂、负指数幂、锐角三角函数值的计算法则.20. 先化简,再从-1,0,1x 值代入求值.211111x x x x ⎛⎫+÷ ⎪+--⎝⎭. 【答案】11x +【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把合适的x 的值代入计算即可求出值. 【详解】解:211111x x x x ⎛⎫+÷ ⎪+--⎝⎭ 11(1)(1)(1)(1)1x x x x x x x ⎡⎤-=+÷⎢⎥+-+--⎣⎦ 的1(1)(1)x x x x x -=⋅+- =11x +, ∵x +1≠0,x -1≠0,x ≠0,∴x ≠±1,x ≠0当x 时,原式==【点睛】本题主要考查了分式的化简求值,分母有理化,解题的关键是掌握分式混合运算顺序和运算法则.21. 如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 在对角线BD 上,且BE DF =,OE OA =.求证:四边形AECF 是正方形.【答案】证明过程见解析【解析】【分析】菱形的两条对角线相互垂直且平分,再根据两条对角线相互垂直平分且相等的四边形是正方形即可证明四边形AECF 是正方形.【详解】证明:∵ 四边形ABCD 是菱形∴ OA =OC ,OB =OD 且AC ⊥BD ,又∵ BE =DF∴ OB -BE =OD -DF即OE =OF∵OE =OA∴OA =OC =OE =OF 且AC =EF又∵AC ⊥EF∴ 四边形DEBF 是正方形.【点睛】此题考查了菱形的性质和正方形的判定,解题的关键是掌握上述知识.22. 2021年秋季,全国义务教育学校实现课后服务全覆盖.为了促进学生课后服务多样化,某校组织了第二课堂,分别设置了文艺类、体育类、阅读类、兴趣类四个社团(假设该校要求人人参与社团,每人只能选择一个).为了了解学生喜爱哪种社团活动,学校做了一次抽样调查,并绘制成如图(1)、图(2)所示的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题.(1)求抽取参加调查的学生人数.(2)将以上两幅不完整的统计图补充完整.(3)若该校有1600人参加社团活动,试估计该校报兴趣类社团的学生人数.【答案】(1)抽取参加调查的学生人数为40人(2)统计图见解析(3)估计该校报兴趣类社团的学生人数有200人【解析】【分析】(1)从两个统计图中可知,报兴趣类社团有5人,占调查人数的12.5%,可求出抽取参加调查的学生人数;(2)求出报体育类社团的人数即可补全条形统计图,求出文艺类和阅读类所占百分比可补全扇形统计图;(3)用1600去乘报兴趣类社团的学生所占的比例即可.【小问1详解】解:5÷12.5%=40(人)答:抽取参加调查的学生人数为40人.【小问2详解】解:40×25%=10(人),补全条形统计图如图所示:15100%40⨯=37.5%,10100%25%40⨯=,补全扇形统计图如图所示: 【小问3详解】解:1600×12.5%=200(人)答:估计该校报兴趣类社团的学生人数有200人.【点睛】此题考查了条形统计图、扇形统计图的意义和制作方法以及用样本估计总体,解题的关键是从两个统计图中获取数量和数量关系式.23. 2022年2月4日至20日冬季奥运会在北京举行.某商店特购进冬奥会纪念品“冰墩墩”摆件和挂件共180个进行销售.已知“冰墩墩”摆件的进价为80元/个,“冰墩墩”挂件的进价为50元/个.(1)若购进“冰墩墩”摆件和挂件共花费了11400元,请分别求出购进“冰墩墩”摆件和挂件的数量.(2)该商店计划将“冰墩墩”摆件售价定为100元/个,“冰墩墩”挂件售价定为60元/个,若购进的180个“冰墩墩”摆件和挂件全部售完,且至少盈利2900元,求购进的“冰墩墩”挂件不能超过多少个?【答案】(1)购进“冰墩墩”摆件80件,“冰墩墩”挂件的100件;(2)购进的“冰墩墩”挂件不能超过70个.【解析】【分析】(1)设购进“冰墩墩”摆件x 件,“冰墩墩”挂件的y 件,利用总价=单价×数量,结合购买“冰墩墩”摆件和“冰墩墩”挂件共180个且共花费11400元,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购买“冰墩墩”挂件m 个,则购买“冰墩墩”摆件(180-m )个,利用总价=单价×数量,结合至少盈利2900元,即可得出关于m 不等式,解之即可得出结论.【小问1详解】解:设购进“冰墩墩”摆件x 件,“冰墩墩”挂件的y 件,依题意得:180805011400x y x y +=⎧⎨+=⎩, 解得:80100x y =⎧⎨=⎩, 答:购进“冰墩墩”摆件80件,“冰墩墩”挂件的100件;【小问2详解】解:设购买“冰墩墩”挂件m 个,则购买“冰墩墩”摆件(180-m )个,依题意得:(100-80)(180-m )+(60-50)m ≥2900,解得:m ≤70,答:购进的“冰墩墩”挂件不能超过70个.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.24. 如图,已知DC 是O 的直径,点B 为CD 延长线上一点,AB 是O 的切线,点A 为切点,且AB AC =.(1)求ACB ∠的度数;(2)若O 的半径为3,求圆弧 AC 的长.【答案】(1)30︒(2)2π【解析】【分析】(1)证明ADO ∆是等边三角形,得到60ADO ︒∠=,从而计算出ACB ∠的度数;(2)计算出圆弧 AC 的圆心角,根据圆弧弧长公式计算出最终的答案.【小问1详解】如下图,连接AO的∵AB 是O 的切线∴OA AB ⊥∴90OAB ︒∠=∵90DAC ︒∠=∴DAC OAB ∠=∠∵AB AC =∴B C ∠=∠∴ABO ACD ∆∆≌∴AD AO DO ==∴ADO ∆是等边三角形∴60ADO ︒∠=∵90DAC ︒∠=∴30ACB ︒∠=【小问2详解】∵60AOD ︒∠=∴120AOC ︒∠=圆弧 AC 的长为:12032180ππ︒︒⨯⨯= ∴圆弧 AC 的长为2π.【点睛】本题考查全等三角形、等腰三角形、等边三角形和圆的性质,解题的关键是熟练掌握全等三角形、等腰三角形、等边三角形和圆的相关知识.25. 如图,一艘轮船从点A 处以30km/h 的速度向正东方向航行,在A 处测得灯塔C 在北偏东60︒方向上,继续航行1h 到达B 处,这时测得灯塔C 在北偏东45︒方向上,已知在灯塔C 的四周40km 内有暗礁,问这艘轮船继续向正东方向航行是否安全?并说明理由. 1.414≈ 1.732≈)【答案】这艘轮船继续向正东方向航行是安全的,理由见解析【解析】【分析】如图,过C 作CD ⊥AB 于点D ,根据方向角的定义及余角的性质求出∠BAC =30°,∠CBD =45°,解Rt △ACD 和Rt △BCD ,求出CD 即可.【详解】解:过点C 作CD ⊥AB ,垂足为D .如图所示:根据题意可知∠BAC =90°−60°=30°,∠DBC =90°-45°=45°,AB =30×1=30(km ), 在Rt △BCD 中,∠CDB =90°,∠DBC =45°,tan ∠DBC =CD BD ,即CD BD =1 ∴CD =BD设BD =CD =x km ,在Rt △ACD 中,∠CDA =90°,∠DAC =30°,∴tan ∠DAC =CD AD ,即30x x =+解得x ,∵40.98km>40km∴这艘船继续向东航行安全.【点睛】此题考查了解直角三角形的应用;解题的关键是熟练掌握锐角三角函数定义. 26. 如图,已知直线y =2x +2与抛物线y =ax 2+bx +c 相交于A ,B 两点,点A 在x 轴上,点B 在y 轴上,点C (3,0)在抛物线上.(1)求该抛物线的表达式.(2)正方形OPDE的顶点O为直角坐标系原点,顶点P在线段OC上,顶点E在y轴正半轴上,若△AOB与△DPC全等,求点P的坐标.(3)在条件(2)下,点Q是线段CD上的动点(点Q不与点D重合),将△PQD沿PQ 所在的直线翻折得到△PQD',连接CD',求线段CD'长度的最小值.【答案】(1)该抛物线的表达式为y=23-x2+43x+2;(2)点P的坐标为(1,0)或(2,0);(3)线段CD'长度的最小值为1.【解析】【分析】(1)先求得点A(-1,0),点B(0,2),利用待定系数法即可求解;(2)分两种情况讨论:△AOB≌△DPC和△AOB≌△CPD,利用全等三角形的性质求解即可;(3)按照(2)的结论,分两种情况讨论,当P、D'、C三点共线时,线段CD'长度取得最小值,据此求解即可.【小问1详解】解:令x=0,则y=2x+2=2,令y=0,则0=2x+2,解得x=-1,点A(-1,0),点B(0,2),把A(-1,0),B(0,2),C(3,0)代入y=ax2+bx+c,得9302a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得23432abc⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,∴该抛物线的表达式为y=23-x2+43x+2;【小问2详解】解:若△AOB和△DPC全等,且∠AOB=∠DPC=90°,分两种情况:①△AOB≌△DPC,则AO=PD=1,OB=PC=2,∵OC=3,∴OP=3-2=1,∴点P的坐标为(1,0);②△AOB≌△CPD,则OB=PD=2,∴正方形OPDE的边长为2,∴点P的坐标为(2,0);综上,点P的坐标为(1,0)或(2,0);【小问3详解】解:①点P的坐标为(1,0)时,∵△PQD'与△PQD关于PQ对称,∴PD'=PD,∴点D'在以点P为圆心,1为半径的圆上运动,当P、D'、C三点共线时,线段CD'长度取得最小值,最小值为2-1=1;②点P的坐标为(2,0)时,∵△PQD'与△PQD关于PQ对称,∴PD'=PD,∴点D'在以点P为圆心,2为半径的圆上运动,当P、C、D'三点共线时,线段CD'长度取得最小值,最小值为2-1=1;综上,线段CD'长度的最小值为1.【点睛】此题主要考查了二次函数的综合应用,全等三角形的判定与性质以及待定系数法求二次函数解析式,正方形的性质的应用,点和圆的位置关系,解题的关键是正确进行分类讨论。

2018年全国中考数学真题分类 线段垂直平分线、角平分线、中位线解析版(精品文档)

2018年全国中考数学真题分类  线段垂直平分线、角平分线、中位线解析版(精品文档)

2018年全国中考数学真题分类 线段垂直平分线、角平分线、中位线(一)一、选择题1. (2018四川泸州,7题,3分) 如图2,ABCD 的对角线AC ,BD 相交于点O ,E 是AB 中点,且AE+EO=4,则ABCD 的周长为( )A.20B. 16C. 12D.8第7题图 【答案】B 【解析】ABCD 的对角线AC ,BD 相交于点O ,所以O 为AC 的中点,又因为E 是AB 中点,所以EO是△ABC 的中位线,AE=21AB ,EO=21BC ,因为AE+EO=4,所以AB+BC=2(AE+EO)=8,ABCD 中AD=BC ,AB=CD ,所以周长为2(AB+BC)=16【知识点】平行四边形的性质,三角形中位线2. (2018四川省南充市,第8题,3分)如图,在Rt ABC ∆中,90ACB ∠=,30A ∠=,D ,E ,F 分别为AB ,AC ,AD 的中点,若2BC =,则EF 的长度为( )A .12B .1C .32D【答案】B【思路分析】1.由∠ACB =90°,∠A =30°,BC 的长度,可求得AB 的长度,2.利用直角三角形斜边D的中线等于斜边第一半,求得CD 的长度;3.利用中位线定理,即可求得EF 的长.【解题过程】解:在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =2,,∴AB =4,CD =12AB ,∴CD =12×4=2,∵E ,F 分别为AC ,AD 的中点,∴EF =12CD =12×2=1,故选B.【知识点】30°所对直角边是斜边的一半;直角三角形斜边的中线等于斜边第一半;中位线定理3. (2018四川省达州市,8,3分) △ABC 的周长为19,点D 、E 在边BC 上,∠ABC 的平分线垂直于AE ,垂足为N ,∠ACB 的平分线垂直于AD ,垂足为M .若BC =7,则MN 的长为( ) . A .32 B .2 C .52D .3第8题图 【答案】C ,【解析】∵△ABC 的周长为19,BC =7, ∴AB +AC =12.∵∠ABC 的平分线垂直于AE ,垂足为N ,∴BA =BE ,N 是AE 的中点. ∵∠ACB 的平分线垂直于AD ,垂足为M ,∴AC =DC ,M 是AD 的中点. ∴DE =AB +AC -BC =5. ∵MN 是△ADE 的中位线, ∴MN =12DE =52. 故选C.【知识点】三角形的中位线4. (2018浙江杭州, 10,3分)如图,在△ABC 中,点D 在AB 边上,DE//BC ,与边AC 交于点E ,连接BE ,记△ADE ,△BCE 的面积分别为S 1,S 2,( )A. 若2AD>AB ,则3S 1>2S 2B. 若2AD>AB ,则3S 1<2S 2C. 若2AD<AB ,则3S 1>2S 2D. 若2AD<AB ,则3S 1<2S 2【答案】D【思路分析】首先考虑极点位置,当2AD=AB 即AD=BD 时S 1,S 2的关系,然后再考虑AD>BD 时S 1,S 2的变化情况。

2018年长沙市中考数学试卷及答案解析-最新汇编

2018年长沙市中考数学试卷及答案解析-最新汇编

2018年湖南省长沙市中考数学试卷一、选择题(在下列各题的四个选项中,只有一项是符合要求的,请在答题卡中填涂符合题意的选项,本大题共12个小题,每小题3分,共36分)1.(3.00分)﹣2的相反数是()A.﹣2 B.﹣C.2 D.2.(3.00分)据统计,2017年长沙市地区生产总值约为10200亿元,经济总量迈入“万亿俱乐部”,数据10200用科学记数法表示为()A.0.102×105B.10.2×103C.1.02×104D.1.02×1033.(3.00分)下列计算正确的是()A.a2+a3=a5 B.3C.(x2)3=x5D.m5÷m3=m24.(3.00分)下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cm C.5cm,5cm,10cm D.6cm,7cm,14cm5.(3.00分)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.6.(3.00分)不等式组的解集在数轴上表示正确的是()A.B.C.D.7.(3.00分)将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A. B. C. D.8.(3.00分)下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件9.(3.00分)估计+1的值是()A.在2和3之间B.在3和4之间C.在4和5之间D.在5和6之间10.(3.00分)小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是()A.小明吃早餐用了25minB.小明读报用了30minC.食堂到图书馆的距离为0.8kmD.小明从图书馆回家的速度为0.8km/min11.(3.00分)我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为()A.7.5平方千米B.15平方千米C.75平方千米D.750平方千米12.(3.00分)若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x2﹣16),则符合条件的点P()A.有且只有1个B.有且只有2个C.有且只有3个D.有无穷多个二、填空题(本大题共6个小题,每小题3分,共18分)13.(3.00分)化简:= .14.(3.00分)某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如下扇形统计图,则“世界之窗”对应扇形的圆心角为度.15.(3.00分)在平面直角坐标系中,将点A′(﹣2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是.16.(3.00分)掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为偶数的概率是.17.(3.00分)已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为.18.(3.00分)如图,点A,B,D在⊙O上,∠A=20°,BC是⊙O的切线,B为切点,OD的延长线交BC于点C,则∠OCB= 度.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第22、23题每小题6分,第25、26题每小题6分,共66分。

精品解析:2024年广东省深圳市中考数学试题(解析版)

精品解析:2024年广东省深圳市中考数学试题(解析版)
2024 年深圳市初中学业水平测试
数学学科试卷
说明:
1.答题前,请将姓名、准考证号和学校用黑色字迹的钢笔或签字笔填写在答题卡定的位置
上,并将条形码粘贴好.
2.全卷共 6 页.考试时间 90 分钟,满分 100 分.
3.作答选择题 1-8,选出每题答案后,用 2B 铅笔把答题卡上对应题目答案标号的信息点框
涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.作答非选择题 9—20,用黑色字迹的
钢笔或签字笔将答案(含作辅助线)写在答题卡指定区域内.写在本试卷或草稿纸上,其答
案一律无效.
4.考试结束后,请将答题卡交回.
第一部分 选择题
.一、选择题(本大题共 8 小题,每小题 3 分,共 24 分,每小题有四个选项,其中只有一个是
B、 m2n m = m3n ,故该选项符合题意; C、 3mn − m 3n ,故该选项不符合题意;
D、 (m −1)2 = m2 − 2m +1 m2 −1,故该选项不符合题意;
故选:B. 4. 二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律, 二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、 小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒、大 寒),若从二十四个节气中选一个节气,则抽到的节气在夏季的概率为( )
∴扇形 EOF 的面积为 90 42 = 4 , 360
故答案为: 4 .
12. 如图,在平面直角坐标系中,四边形 AOCB 为菱形,tan AOC = 4 ,且点 A 落在反比例函数 y = 3 上,
3
x
点 B 落在反比例函数 y = k (k 0) 上,则 k = ________.

精品解析:2023年湖南省衡阳市中考数学真题(原卷版)

精品解析:2023年湖南省衡阳市中考数学真题(原卷版)

2023湖南省衡阳市中考数学一、选择题(本大题共12个小题,每小题3分,满分36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 中国是最早采用正负数表示相反意义的量、并进行负数运算的国家.若收入500元记作500+元,则支出237元记作( )A. 237+元B. 237−元C. 0元D. 474−元 2. 下列长度的各组线段能组成一个三角形的是( )A. 1cm,2cm,3cmB. 3cm,8cm,5cmC. 4cm,5cm,10cmD. 4cm,5cm,6cm3. 下面四种化学仪器的示意图是轴对称图形的是( )A. B. C. D. 4. 作为中国非物质文化遗产之一的紫砂壶,成型工艺特别,造型式样丰富,陶器色泽古朴典雅,从一个方面鲜明地反映了中华民族造型审美意识.如图是一把做工精湛的紫砂壶“景舟石瓢”,下面四幅图是从左面看到的图形的是( )A. B. C. D.5. 计算2312x的结果正确的是( )A. 6xB. 614xC. 514xD. 9x6. 据共青团中央2023年5月3日发布的中国共青团团内统计公报,截至2022年12月底,全国共有共青团员7358万.数据7358万用科学记数法表示为( )A 77.35810× B. 37.35810× C. 4735810× D. 67.35810×.7. )A. 0,0a b >>B. 0,0a b <<C. 0,0a b ≤≤D. 0,0a b ≥≥ 8. 如图,在四边形ABCD 中,BC ∥AD ,添加下列条件,不能判定四边形ABCD 是平行四边形的是( )A. AB =CDB. AB ∥CDC. ∠A =∠CD. BC =AD9. 《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设有x 只鸡,y 只兔.依题意,可列方程组为( )A. 35,4294x y x y += +=B. 94,4235x y x y += +=C. 35,2494x y x y += +=D. 94,2435x y x y += +=10. 某射击运动队进行了五次射击测试,甲、乙两名选手的测试成绩如下表.甲、乙两名选手成绩的方差分别记为2S 甲和2S 乙,则2S 甲与2S 乙的大小关系是( ) 测试次数 12 3 4 5 甲5 10 9 3 8 乙 86 8 6 7A. 22S S >甲乙B. 22S S <甲乙C. 22S S =甲乙D. 无法确定11. 我们可以用以下推理来证明“在一个三角形中,至少有一个内角小于或等于60°”.假设三角形没有一个内角小于或等于60°,即三个内角都大于60°.则三角形的三个内角的和大于180°,这与“三角形的内角和等于180°”这个定理矛盾.所以在一个三角形中,至少有一个内角小于或等于60°.上述推理使用的证明方法是( )A. 反证法B. 比较法C. 综合法D. 分析法12. 已知0m n >>,若关于x 的方程2230x x m +−−=的解为()1212,x x x x <.关于x 的方程2230x x n +−−=的解为3434,()x x x x <.则下列结论正确的是( )A 3124x x x x <<< B. 1342x x x x <<< C. 1234x x x x <<< D. 3412x x x x <<<二、填空题(本大题共6个小题,每小题3分,满分18分.)13. 在平面直角坐标系中,点()3,2P −−所在象限是第________象限.14. 一个布袋中放着3个红球和9个黑球,这两种球除了颜色以外没有任何其他区别.布袋中的球已经搅匀.从布袋中任取1个球,取出红球的概率是________.15. 已知5x =,则代数式2324416x x −−−的值为________. 16. 已知关于x 方程2200x mx +−=的一个根是4−,则它的另一个根是________.17. 如图,在Rt ABC △中,90,8,6ACB AC BC ∠=°==.以点C 为圆心,r 为半径作圆,当所作圆与斜边AB 所在的直线相切时,r 的值为________.18. 如图,用若干个全等的正五边形排成圆环状,图中所示的是其中3个正五边形的位置.要完成这一圆环排列,共需要正五边形的个数是________ 个.三、解答题(本大题共8个小题,19~20题每题6分,21~24题每题8分,25题10分,26题12分,满分66分.解答应写出文字说明、证明过程或演算步骤.)19.计算:()321−++−×20 解不等式组:()40213x x x −≤ +<①② .的的.21. 2023年3月27日是第28个全国中小学生安全教育日,为提高学生安全防范意识和自我防护能力,某学校举行了校园安全知识竞赛活动.现从八、九年级中各随机抽取15名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x 表示,80分及以上为优秀,共分成四组,A :6070x ≤<;B :7080x ≤<;C :8090x ≤<;D :90100x ≤≤),并给出下面部分信息:八年级抽取的学生竞赛成绩在C 组中的数据为:84,84,88.九年级抽取的学生竞赛成绩为:68,77,75,100,80,100,82,86,95,91,100,86,84,94,87.八、九年级抽取的学生竞赛成绩统计表根据以上信息,解答下列问题:(1)填空:=a ________,b =________,c =________.(2)该校八、九年级共500人参加了此次竞赛活动,请你估计该校八、九年级参加此次竞赛活动成绩达到90分及以上的学生人数.22. 如图,正比例函数43y x =的图象与反比例函数12(0)y x x =>的图象相交于点A .(1)求点A 的坐标.(2)分别以点O 、A 为圆心,大于OA 一半的长为半径作圆弧,两弧相交于点B 和点C ,作直线BC ,交x 轴于点D .求线段OD 的长.23. 随着科技的发展,无人机已广泛应用于生产生活,如代替人们在高空测量距离和高度.圆圆要测量教学楼AB 的高度,借助无人机设计了如下测量方案:如图,圆圆在离教学楼底部C 处,遥控无人机旋停在点C 的正上方的点D 处,测得教学楼AB 的顶部B 处的俯角为30°,CD 长为49.6米.已知目高CE 为1.6米.(1)求教学楼AB 的高度.(2)若无人机保持现有高度沿平行于CA 的方向,以/秒的速度继续向前匀速飞行,求经过多少秒时,无人机刚好离开圆圆的视线EB .24. 如图,AB 是O 的直径,AC 是一条弦,D 是 AC 的中点,DE AB ⊥于点E ,交AC 于点F ,交O 于点H ,DB 交AC 于点G .(1)求证:AF DF =.(2)若5,sin 2AF ABD =∠=O 的半径. 25. (1)[问题探究]如图1,在正方形ABCD 中,对角线AC BD 、相交于点O .在线段AO 上任取一点P (端点除外),连接PD PB 、.①求证:PD PB =;②将线段DP 绕点P 逆时针旋转,使点D 落在BA 的延长线上的点Q 处.当点P 在线段AO 上的位置发生变化时,DPQ ∠的大小是否发生变化?请说明理由; ③探究AQ 与OP 的数量关系,并说明理由.(2)[迁移探究]如图2,将正方形ABCD 换成菱形ABCD ,且60ABC ∠=°,其他条件不变.试探究AQ 与CP 的数量关系,并说明理由.26. 如图,已知抛物线223y ax ax =−+与x 轴交于点()1,0A −和点B ,与y 轴交于点C ,连接AC ,过B 、C 两点作直线.(1)求a 的值.(2)将直线BC 向下平移()0m m >个单位长度,交抛物线于B ′、C ′两点.在直线B C ′′上方的抛物线上是否存在定点D ,无论m 取何值时,都是点D 到直线B C ′′的距离最大,若存在,请求出点D 的坐标;若不存在,请说明理由.(3)抛物线上是否存在点P ,使45PBC ACO ∠+∠=°,若存在,请求出直线BP 的解析式;若不存在,请说明理由.。

2018年湖南省长沙市中考数学试题(含答案解析版)

2018年湖南省长沙市中考数学试题(含答案解析版)

注意事项:2018 年长沙市初中学业水平考试试卷数学1、答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、考室和座位号;2、必须在答题卡上答题,在草稿纸、试题卷上答题无效;3、答题时,请考生注意各大题号后面的答题提示;4、请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;5、答题卡上不得使用涂改液、涂改胶和贴纸;6、本学科试卷共26个小题,考试时量120分钟,满分120分。

一、选择题(在下列各题的四个选项中,只有一项是符合题意的。

请在答题卡中填涂符合题意的选项。

本大题共12个小题,每小题3分,共36分)1、(长沙市)-2 的相反数是A、-2B、-12 C、2D、122、(长沙市)据统计, 2017 年长沙市地区生产总值约为10200 亿元,经济总量迈入”万亿俱乐部”,数据10200用科学记数法表示为A、0.102⨯1053、下面计算正确的是B、10.2 ⨯10 3C、1.0.2 ⨯10 4D、10.2 ⨯10 5A、a2 +a 3 =a 5B、3 2 - 2 2 = 1C、(x 2 )3=x 5D、m5 ÷m 3 =m 24、下列长度的三条线段,能组成三角形的是A、459cm B、8815cmC、5510cmD、6714cm5、下列四个图形中,既是轴对称图形又是中心对称图形的是A 、B 、C 、D、6、不等式20240xx+>⎧⎨-≤⎩的解集在数轴上表示正确的是A、B、C、D、0 0 7、将下面左侧的平面图形绕轴l 旋转一周,可以得到的立体图形是A 、B 、C 、D 、8、下面说法正确的是A 、任意掷一枚质地均匀的硬币10 次,一定有 5 次正面朝上B 、天气预报说”明天降水概率为 40% ”,表示明天有 40% 的时间在下雨C 、“篮球队员在罚球线上投筐一次,投中”为随机事件D 、“ a 是实数, a ≥ 0 ”是不可能事件9、估计 10 + 1 的值 A 、在 2 和 3 之间 B 、在 3 和 4 之间 C 、在 4 和 5 之间 D 、在 5 和 6 之间 10、小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回 家.下图反映了这个过程中,小明离家的距离 y 与时间 x 之间的对应关系.根据图像下列说法正确 的是A 、小明吃早餐用了 25 min C 、食堂到图书馆的距离为 0.8kmB 、小明读报用了30 minD 、小明从图书馆回家的速度为 0.8km / min11、我国南宋著名数学家秦九韶的著作《数书九章》里记A 、7.5 平方千米 B 、15 平方千米 C 、75 平方千米 D 、750 平方千米 12、若对于任意非零实数 a ,抛物线 y = ax 2 + ax - 2a 总不经过点 P (x - 3,x 2- 16),则符合条件的点 P A 、有且只有 1 个 B 、有且只有 2 个 C 、至少有 3 个 D 、有无穷多个 二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分) m 1 13、化简 -= 。

2023年中考数学全真模拟卷(含答案)四

2023年中考数学全真模拟卷(含答案)四

2023年中考数学全真模拟卷第四模拟(本卷满分120分,考试时间为90分钟)一、单选题(共10小题,每小题3分,共30分。

每小题给出的四个选项中只有一个....选项是最符合题意的)1.13-的相反数是()A .3B .-3C .13D .13-2.2015年9月14日,通过位于美国的两个LIGO 探测器,人类第一次探测到了引力波的存在,这次引力波的信号显著性极其大,探测结果只有三百五十万分之一的误差.三百五十万分之一约为0.0000002857.将0.0000002857用科学记数法表示应为()A .72.85710-⨯B .62085710-⨯C .60.285710-⨯D .82.85710-⨯3.在▱ABCD 中,AC AD ⊥,30B ∠=︒,2AC =,则▱ABCD 的周长是()A .4+B .8C .8+D .164.木箱里装有仅颜色不同的8张红色和若干张蓝色卡片,随机从木箱里摸出1张卡片记下颜色后再放回,经过多次的重复试验,发现摸到蓝色卡片的频率稳定在0.6附近,则估计木箱中蓝色卡片有()A .18张B .16张C .14张D .12张5.下列计算正确的是()A .325x x x +=B .()236x x =C .()336x x =D .236a a a ⋅=6.已知一次函数的图象与直线2y x =-平行,且与函数43y x =-的图象交y 轴于同一点,则这个一次函数的解析式是()A .23y x =--B .23y x =-+C .23y x =-D .23y x =+7.一副直角三角板按如图所示的方式摆放,其中点C 在FD 的延长线上,且AB ∥FC ,则∠CBD 的度数为()A .15°B .20°C .25°D .30°8.如图,是某几何体的三视图,根据三视图,描述物体的形状是正确的是()A .圆柱体B .长方体C .圆台D .半圆柱和长方体组成的组合体9.如图,三角形纸片ABC ,点D 是BC 边上一点,连接AD ,把ABD △沿着AD 翻折,得到AED △,DE 与AC 交于点G ,连接BE 交AD 于点F .若DG GE =,6AF =,4BF =,ADG △的面积为8,则点F 到BC 的距离为()A B C D 10.若二次函数223y ax ax a =-+-(a 是不为0的常数)的图象与x 轴交于A ,B 两点.下列结论:①0a >;②当1x >-时,y 随x 的增大而增大;③无论a 取任何不为0的数,该函数的图象必经过定点()1,3-;④若线段AB 上有且只有5个横坐标为整数的点,则a 的取值范围是1334a <<.其中正确的结论是()A .①②B .②④C .①③D .③④二、填空题(本大题共7小题,每小题4分,共28分)11.函数y =________.12.一组数据3,4,6,8,x 的平均数是6,则这组数据的中位数是________.13.尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA ,OB 于C ,D ,再分别以点C ,D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP.由作法得△OCP ≌△ODP 的根据是_________.14.如图,AB ∥CD ,直线l 平分∠AOE ,∠1=40°,则∠2=_____度.15.我国明代数学家程大位所著的《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的译文为:如果每间客房住7人,那么有7人无房可住;如果每间客房住9人,那么就空出一间房.则该店有________客房间.16.如图,点(4,)B m 在双曲线20(0)y x x=>上,点D 的双曲线6(0)y x x =->上,点A 在y 轴的正半轴上,若A 、B 、C 、D 构成的四边形为正方形,则对角线AC 的长是_____.17.如图,点F 在平行四边形ABCD 的边AD 上,延长BF 交CD 的延长线于点E ,交AC 于点O ,若19AOB COE S S ∆∆=,则AF DF =__________.三、解答题(本大题共3小题,每小题6分,共18分)18.有理数a ,b ,c在数轴上的位置如图所示.(1)a b -______0(填“>”“<”“=”);(2)试化简下式:a b b c a c ---+-.19.如图,点A ,B ,C ,D 在同一直线上,//AE DF ,//CE BF ,AE FD =.求证:AB CD =20.某中学为了了解学生最喜欢的一种球类运动,以便合理安排活动场地,在全校至少喜欢一种球类(乒乓球、羽毛球、排球、篮球、足球)运动的1500名学生中,随机抽取了若干名学生进行调查(每人只能在这五种球类运动中选择一种).调查结果统计如下:球类名称人数乒乓球42羽毛球a 排球15篮球33足球b解答下列问题:(1)这次抽样调查中的样本是________;(2)统计表中,a=________,b=________;(3)试估计上述1500名学生中最喜欢乒乓球运动的人数.四、解答题(本大题共3小题,每小题8分,共24分)21.如图,在145⨯的网格中,每个小正方形的边长都为1.网格线的交点称为格点,以格点为顶点的三角形称为格点三角形.已知直线l 及格点A ,B ,连接AB .(1)请根据以下要求依次画图:①在直线l 的左边画出一个格点ABC ∆(点C 不在直线l 上),且满足格点ABC ∆是直角三角形;②画出ABC ∆关于直线l 的轴对称A B C '''∆.(2)满足(1)的A B C '''∆面积的最大值为多少?22.如图,AB 是⊙O 的直径,点C 是⊙O 上一点(点C 不与点A ,B 重合),点E 是 BC 的中点,连接OE 交弦BC 于点D ,过点B 的直线与OE 的延长线交于点P ,连接AC ,CE ,BE ,∠EBP =∠ECB .(1)求证:BP 是⊙O 的切线;(2)若CE =2,∠EBP =30°,求阴影部分的面积.23.为巩固拓展脱贫攻坚成果,开启乡村振兴发展之门,某村村民组长组织村民加工板栗并进行销售.根据现有的原材料,预计加工规格相同的普通板栗、精品板栗共4000件.某天上午的销售件数和所卖金额统计如下表:普通板栗(件)精品板栗(件)总金额(元)甲购买情况23350乙购买情况41300(1)求普通板栗和精品板栗的单价分别是多少元.(2)根据(1)中求出的单价,若普通板栗和精品板栗每件的成本分别为40元、60元,且加工普通板栗a 件(10003000a ≤≤),则4000件板栗的销售总利润为w 元.问普通板栗和精品板栗各加工多少件,所获总利润最多?最多总利润是多少?五、解答题(本大题共2小题,每小题10分,共20分)24.如图,在等边三角形ABC 右侧作射线CP ,∠ACP=α(0°<α<60°),点A 关于射线CP 的对称点为点D ,BD 交CP 于点E ,连接AD ,AE .(1)依题意补全图形;(2)求∠DBC 的大小(用含α的代数式表示);(3)直接写出∠AEB 的度数;(4)用等式表示线段AE ,BD ,CE 之间的数量关系,并证明.25.已知:如图,在平面直角坐标系xOy 中,二次函数2()40y ax bx a =++≠与x 轴交于点A 、B ,点A 的坐标为(4,0),点B 的坐标为(2,0)-.(1)求该二次函数的表达式;(2)点Q 是线段AB 上的动点,过点Q 作QE ∥AC ,交BC 于点E ,连接CQ .当CQE ∆的面积最大时,求点Q 的坐标;(3)若平行于x 轴的动直线l 与该抛物线交于点P ,与直线AC 交于点F ,点D 的坐标为(2,0).问:是否存在这样的直线l ,使得ODF ∆是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.2023年中考数学全真模拟卷答案第四模拟(本卷满分120分,考试时间为90分钟)一、单选题(共10小题,每小题3分,共30分。

2018年湖南省长沙市中考数学试题(含答案解析版).(优选.)

2018年湖南省长沙市中考数学试题(含答案解析版).(优选.)

最新文件---- 仅供参考------已改成word文本------ 方便更改注意事项:2018 年长沙市初中学业水平考试试卷数学1、答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、考室和座位号;2、必须在答题卡上答题,在草稿纸、试题卷上答题无效;3、答题时,请考生注意各大题号后面的答题提示;4、请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;5、答题卡上不得使用涂改液、涂改胶和贴纸;6、本学科试卷共26个小题,考试时量120分钟,满分120分。

一、选择题(在下列各题的四个选项中,只有一项是符合题意的。

请在答题卡中填涂符合题意的选项。

本大题共12个小题,每小题3分,共36分)1、(长沙市)-2 的相反数是A、-2B、-12 C、2D、122、(长沙市)据统计, 2017 年长沙市地区生产总值约为10200 亿元,经济总量迈入”万亿俱乐部”,数据10200用科学记数法表示为A、0.102⨯1053、下面计算正确的是B、10.2 ⨯10 3C、1.0.2 ⨯10 4D、10.2 ⨯10 5A、a2 +a 3 =a 5B、3 2 - 2 2 = 1C、(x 2 )3=x 5D、m5 ÷m 3 =m 24、下列长度的三条线段,能组成三角形的是A、459cm B、8815cmC、5510cmD、6714cm5、下列四个图形中,既是轴对称图形又是中心对称图形的是A 、B 、C 、D、6、不等式20240xx+>⎧⎨-≤⎩的解集在数轴上表示正确的是A、B、C、D、0 0 7、将下面左侧的平面图形绕轴l 旋转一周,可以得到的立体图形是A 、B 、C 、D 、8、下面说法正确的是A 、任意掷一枚质地均匀的硬币10 次,一定有 5 次正面朝上B 、天气预报说”明天降水概率为 40% ”,表示明天有 40% 的时间在下雨C 、“篮球队员在罚球线上投筐一次,投中”为随机事件D 、“ a 是实数, a ≥ 0 ”是不可能事件9、估计 10 + 1 的值 A 、在 2 和 3 之间 B 、在 3 和 4 之间 C 、在 4 和 5 之间 D 、在 5 和 6 之间 10、小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回 家.下图反映了这个过程中,小明离家的距离 y 与时间 x 之间的对应关系.根据图像下列说法正确 的是A 、小明吃早餐用了 25 min C 、食堂到图书馆的距离为 0.8kmB 、小明读报用了30 minD 、小明从图书馆回家的速度为 0.8km / min11、我国南宋著名数学家秦九韶的著作《数书九章》里记载A 、7.5 平方千米 B 、15 平方千米 C 、75 平方千米 D 、750 平方千米 12、若对于任意非零实数 a ,抛物线 y = ax 2 + ax - 2a 总不经过点 P (x - 3,x 2- 16),则符合条件的点 P A 、有且只有 1 个 B 、有且只有 2 个 C 、至少有 3 个 D 、有无穷多个 二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分) m 1 13、化简 -= 。

(中考精品卷)湖南省永州市中考数学真题(解析版)

(中考精品卷)湖南省永州市中考数学真题(解析版)

永州市2022年初中学业水平考试数学试卷温馨提示:1、本试卷包括试题卷和答题卡.考生作答时,选择题和非选择题均须作答在答题卡上,在本试卷上作答无效.考生在答题卡上按答题卡中注意事项的要求答题.2、考试结束后,将本试卷和答题卡一并交回.3、本试题卷共6页,如有缺页,请申明.4、本试题卷共三道大题,26个小题.满分150分,考试时量120分钟.一、选择题(本大题共10个小题,每小题4分,共40分.每个小题只有一个正确选项,请将正确的选项填涂到答题卡上)1. 如图,数轴上点E对应的实数是( )A. 2-B. 1-C. 1D. 2【答案】A【解析】【分析】根据数轴上点E所在位置,判断出点E所对应的值即可;【详解】解:根据数轴上点E所在位置可知,点E在-1到-3之间,符合题意的只有-2;故选:A.【点睛】本题主要考查数轴上的点的位置问题,根据数轴上点所在位置对点的数值进行判断是解题的关键.2. 下列多边形具有稳定性的是( )A. B. C.D.【答案】D【解析】【分析】利用三角形具有稳定性直接得出答案.【详解】解:三角形具有稳定性,四边形、五边形、六边形都具有不稳定性,故选D .【点睛】本题考查三角形的特性,牢记三角形具有稳定性是解题的关键.3. 剪纸是我国具有独特艺术风格的民间艺术,反映了劳动人民对现实生活的深刻感悟.下列剪纸图形中,是中心对称图形的有( )① ② ③ ④A. ①②③B. ①②④C. ①③④D. ②③④ 【答案】A【解析】【分析】根据中心对称图形的定义判断即可;【详解】解:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;∴是中心对称图形的是:①②③;故选:A .【点睛】本题主要考查中心对称图形的定义,掌握中心对称图形的定义是解题的关键. 4. 水州市大力发展“绿色养殖”,单生猪养殖2021年共出栏7791000头,同比增长29.33%,成为湖南省生猪产业发展高地和标杆、将数7791000用科学记数法表示为( )A. 3779110⨯B. 577.9110⨯C. 67.79110⨯D. 70.779110⨯【答案】C【解析】【分析】根据科学记数法的表示形式为a ×10n ,其中1≤|a |<10,n 为整数,确定a 、n 的值即可.【详解】解:由题意知:7791000=67.79110⨯,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n ,其中1≤|a |<10,n 为整数,正确确定a 的值以及n 的值是解题的关键.5. 下列各式正确的是( )= B. 020= C. 321a a -= D. ()224--=【答案】D【解析】【分析】利用二次根式性质化简、零指数幂、合并同类项、有理数减法运算即可判断。

(中考精品卷)湖南省怀化市中考数学真题(解析版)

(中考精品卷)湖南省怀化市中考数学真题(解析版)

2022年湖南省怀化市中考数学真题一、选择题1.12-的相反数是( )A. 2-B. 2C.12- D. 12【答案】D【解析】【分析】根据相反数的性质,互为相反数的两个数的和为0即可求解.【详解】解:因为-12+12=0,所以-12的相反数是12.故选:D.【点睛】本题考查求一个数的相反数,掌握相反数的性质是解题关键.2. 代数式25x,1π,224x+,x2﹣23,1x,12xx++中,属于分式的有( )A. 2个B. 3个C. 4个D. 5个【答案】B【解析】【分析】看分母中是否含有字母,如果含有字母则是分式,如果不含字母则不是,根据此依据逐个判断即可.【详解】分母中含有字母的是22 4x+,1x,12xx++,∴分式有3个,故选:B.【点睛】本题考查分式的定义,能够准确判断代数式是否为分式是解题的关键.3. 2022年3月11日,新华社发文总结2021年中国取得的科技成就,其中包括“奋斗者”号载人潜水器最深下潜至10909米.其中数据10909用科学记数法表示为( )A. 10.909×102B. 1.0909×103C. 0.10909×104D. 1.0909×104【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:10909用科学记数法可以表示:1.0909×104.故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 下列说法正确的是( )A. 相等的角是对顶角B. 对角线相等的四边形是矩形C. 三角形的外心是它的三条角平分线的交点D. 线段垂直平分线上的点到线段两端的距离相等【答案】D【解析】【分析】根据对顶角的概念、矩形的判定、三角形外心的定义和垂直平分线的性质逐项判定即可得出结论.【详解】解:A、根据对顶角的概念可知,相等的角不一定是对顶角,故该选项不符合题意;B、根据矩形的判定“对角线相等的平行四边形是矩形”可知该选项不符合题意;C、根据三角形外心的定义,外心是三角形外接圆圆心,是三角形三条边中垂线的交点,故该选项不符合题意;D、根据线段垂直平分线的性质可知该选项符合题意;故选:D.【点睛】本题考查基本几何概念、图形判定及性质,涉及到对顶角的概念、矩形的判定、三角形外心的定义和垂直平分线的性质等知识点,熟练掌握相关几何图形的定义、判定及性质是解决问题的关键.5. 下列计算正确的是( )A. (2a2)3=6a6B. a8÷a2=a4=2 D. (x﹣y)2=x2﹣y2【答案】C【解析】【分析】根据积的乘方、同底数幂的除法、二次根式的化简、完全平方公式求解即可;【详解】解:A.(2a2)3=8a6≠6a6,故错误;B a8÷a2=a6≠a4,故错误;.D.(x ﹣y )2=x 2﹣2xy +y 2≠x 2﹣y 2,故错误; 故选:C .【点睛】本题主要考查积的乘方、同底数幂的除法、二次根式的化简、完全平方公式等知识,掌握相关运算法则是解题的关键. 6. 下列一元二次方程有实数解的是( ) A. 2x 2﹣x +1=0 B. x 2﹣2x +2=0C. x 2+3x ﹣2=0D. x 2+2=【答案】C 【解析】【分析】判断一元二次方程实数根的情况用根的判别式进行判断.【详解】A 选项中,224(1)42170b ac =-=--⋅⋅=-<△,故方程无实数根; B 选项中,2(2)41240=--⋅⋅=-<△,故方程无实数根;C 选项中,2341(2)170=-⋅⋅-=>△,故方程有两个不相等的实数根;D 选项中,80=-<△,故方程无实数根; 故选C .【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程实数根情况的判定方法是解题的关键.7. 一个多边形的内角和为900°,则这个多边形是( ) A. 七边形 B. 八边形C. 九边形D. 十边形【答案】A 【解析】【分析】根据n 边形的内角和是(n ﹣2)•180°,列出方程即可求解. 【详解】解:根据n 边形的内角和公式,得 (n ﹣2)•180°=900°, 解得n =7,∴这个多边形的边数是7, 故选:A .【点睛】本题考查了多边形的内角和,解题的关键是熟记内角和公式并列出方程. 8. 如图,△ABC 沿BC 方向平移后的像为△DEF ,已知BC =5,EC =2,则平移的距离是( )A. 1B. 2C. 3D. 4【答案】C 【解析】【分析】根据题意判断BE 的长就是平移的距离,利用已知条件求出BE 即可. 【详解】因为ABC 沿BC 方向平移,点E 是点B 移动后的对应点, 所以BE 的长等于平移的距离,由图像可知,点B 、E 、C 在同一直线上,BC =5,EC =2, 所以BE =BC -ED =5-2=3, 故选 C .【点睛】本题考查了平移,正确找出平移对应点是求平移距离关键.9. 从下列一组数﹣2,π,﹣12,﹣0.12,0中随机抽取一个数,这个数是负数的概率为( ) A.56B.23C.12D.13【答案】B 【解析】【分析】找出题目给的数中的负数,用负数的个数除以总的个数,求出概率即可. 【详解】∵数﹣2,π,﹣12,﹣0.12,06个数, 其中﹣2,﹣12,﹣0.12为负数,有4个, ∴这个数是负数的概率为4263P ==, 故答案选:B .【点睛】本题考查负数的认识,概率计算公式,正确找出负数的个数是解答本题的关键. 10. 如图,直线AB 交x 轴于点C ,交反比例函数y =1a x-(a >1)的图像于A 、B 两点,过点B 作BD ⊥y 轴,垂足为点D ,若S △BCD =5,则a 的值为( )的A. 8B. 9C. 10D. 11【答案】D 【解析】【分析】设1a B m m -⎛⎫ ⎪⎝⎭,,由S △BCD =112a m m -⋅即可求解. 【详解】解:设1a B m m -⎛⎫⎪⎝⎭,, ∵BD ⊥y 轴 ∴S △BCD =112a m m-⋅=5, 解得:11a = 故选:D .【点睛】本题主要考查反比例函数的应用,掌握反比例函数的相关知识是解题的关键.二、填空题11. 计算52x x ++﹣32x +=_____. 【答案】1 【解析】【分析】根据同分母分式相加减,分母不变,把分子相加减计算即可. 【详解】解:52x x ++﹣32x +=532122x x x x +-+==++ 故答案为:1.【点睛】本题考查分式的加减,解题关键是熟练掌握同分母分式相加减时分母不变,分子相加减,异分母相加减时,先通分变为同分母分式,再加减. 12. 因式分解:24-=x x _____. 【答案】2(1)(1)+-x x x【解析】【分析】根据提公因式法和平方差公式进行分解即可. 【详解】解:()242221(1)(1)-=-=+-x x x x x x x ,故答案为:2(1)(1)+-x x x【点睛】本题考查了提公因式法和平方差公式,熟练掌握提公因式法和平方差公式是解题的关键.13. 已知点A (﹣2,b )与点B (a ,3)关于原点对称,则a ﹣b =______. 【答案】5 【解析】【分析】根据平面直角坐标系中,关于原点对称的点横、纵坐标都互为相反数,求出a ,b 的值即可.【详解】∵点A (﹣2,b )与点B (a ,3)关于原点对称, ∴2a =,3b =-, ∴()235a b -=--= 故答案为:5.【点睛】本题考查平面直角坐标系中,关于原点对称的点的坐标的特点,掌握特殊位置关系的点的坐标变化是解答本题的关键.14. 如图,△ABC 中,点D 、E 分别是AB 、AC 的中点,若S △ADE =2,则S △ABC =_____.【答案】8 【解析】【分析】根据三角形中位线定理求得DE ∥BC ,12DE BC =,从而求得△ADE ∽△ABC ,然后利用相似三角形的性质求解.【详解】解:∵D 、E 分别是AB 、AC 的中点,则DE 为中位线, 所以DE ∥BC ,12DE BC = 所以△ADE ∽△ABC∴21()4ADE ABC S DE S BC ==∵S△ADE=2,∴S△ABC=8故答案为:8.【点睛】本题考查中位线及平行线性质,本题难度较低,主要考查学生对三角形中位线及平行线性质等知识点的掌握.15. 如图,AB与⊙O相切于点C,AO=3,⊙O的半径为2,则AC的长为_____.【解析】【分析】根据切线的性质得到∠OCA=90°,再利用勾股定理求解即可.【详解】解:连接OC,∵AB与⊙O相切于点C,∴OC⊥AB,即∠OCA=90°,在Rt△OCA中,AO=3 ,OC=2,∴AC=【点睛】本题考查了切线的性质,勾股定理,熟练掌握切线的性质是解题关键.切线的性质:圆的切线垂直于经过切点的半径.16. 正偶数2,4,6,8,10,…,按如下规律排列,则第27行的第21个数是_____.【答案】744 【解析】【分析】由题意知,第n 行有n 个数,第n 行的最后一个偶数为n (n +1),计算出第27行最后一个偶数,再减去与第21位之差即可得到答案.【详解】由题意知,第n 行有n 个数,第n 行的最后一个偶数为n (n +1), ∴第27行的最后一个数,即第27个数为2728756⨯=,∴第27行的第21个数与第27个数差6位数,即75626744-⨯=, 故答案为:744.【点睛】本题考查数字类规律的探究,根据已知条件的数字排列找到规律,用含n 的代数式表示出来由此解决问题是解题的关键.三、解答题17. 计算:(3.14﹣π)0+|﹣1|+(12)﹣1. 【答案】【解析】【分析】分别根据二次根式的性质、负整数指数幂、零指数幂的计算法则计算出各数,再根据实数混合运算的法则进行计算即可.【详解】解:(3.14﹣π)0﹣1|+(12)﹣1.【点睛】本题考查的是实数的运算,熟知二次根式的性质、负整数指数幂、零指数幂的计算法则是解答此题的关键.18. 解不等式组,并把解集在数轴上表示出来.()51313221x x x x ⎧->+⎨-≤+⎩①②【答案】23x <≤,数轴见解析 【解析】【分析】根据解一元一次不等式组的方法步骤求解,然后在数轴上把解集表示出来即可.【详解】解:()51313221x x x x ⎧->+⎨-≤+⎩①②由①得2x >,由②得3x ≤,该不等式组的解集为23x <≤, 在数轴上表示该不等式组的解集为:【点睛】本题考查一元一次不等式组的解法步骤及用数轴表示不等式组的解集,熟练掌握相关解法步骤是解决问题的关键.19. 某地修建了一座以“讲好隆平故事,厚植种子情怀”为主题的半径为800米的圆形纪念园.如图,纪念园中心点A 位于C 村西南方向和B 村南偏东60°方向上,C 村在B 村的正东方向且两村相距2.4千米.有关部门计划在B 、C 两村之间修一条笔直的公路来连接两村.问该公路是否穿过纪念园?试通过计算加以说明. 1.73≈1.41)【答案】不穿过,理由见解析 【解析】【分析】先作AD ⊥BC ,再根据题意可知∠ACD=45°,∠ABD =30°,设CD =x ,可表示AD 和BD ,然后根据特殊角三角函数值列出方程,求出AD ,与800米比较得出答案即可.【详解】不穿过,理由如下:过点A 作AD ⊥BC ,交BC 于点D ,根据题意可知∠ACD=45°,∠ABD =30°. 设CD =x ,则BD=2.4-x , 在Rt △ACD 中,∠ACD=45°, ∴∠CAD=45°, ∴AD=CD =x .在Rt △ABD 中,t an 30A D B D︒=,即2.4x x =-, 解得x =0.88,可知AD=088千米=880米,因为880米>800米,所以公路不穿过纪念园.【点睛】本题主要考查了解直角三角形的应用,构造直角三角形是解题的关键.20. 如图,点A ,B ,C ,D 在⊙O 上, AB = CD.求证:(1)AC =BD ; (2)△ABE ∽△DCE . 【答案】(1)见解析 (2)见解析【解析】【分析】(1)两个等弧同时加上一段弧后两弧仍然相等;再通过同弧所对的弦相等证明即可;(2)根据同弧所对的圆周角相等,对顶角相等即可证明相似. 【小问1详解】∵ AB = CD∴ AB AD += CD AD + ∴ BAD ADC =∴BD =AC 【小问2详解】 ∵∠B =∠C ;∠AEB =∠DEC ∴△ABE ∽△DCE【点睛】本题考查等弧所对弦相等、所对圆周角相等,掌握这些是本题关键.21. 电视剧《一代洪商》在中央电视台第八套播出后,怀化市各旅游景点知名度得到显菩提高.为全面提高旅游服务质量,旅游管理部门随机抽取了100名游客进行满意度调查,并绘制成如下不完整的频数分布表和扇形统计图..频数分布表 满意程度频数(人) 频率 非常满意50 0.5 满意30 0.3 一般 a c 不满意b 0.05 合计 100 1根据统计图表提供的信息,解答下列问题:(1)a = ,b = ,c = ;(2)求扇形统计图中表示“一般”的扇形圆心角α的度数;(3)根据调查情况,请你对各景点的服务提一至两条合理建议.【答案】(1)15;5;0.15(2)54°(3)有理即可;见详解【解析】【分析】(1)根据图表信息进行求解即可;(2)根据满意度“一般”所占圆的的比例乘360°即可得α的度数;(3)根据图表数据给出合理建议即可;【小问1详解】解:1000.055b =⨯=(人);1005030515a =---=(人); 10.50.30.050.15c =---=【小问2详解】0.1536054⨯︒=︒答:扇形统计图中表示“一般”扇形圆心角α的度数为54°.【小问3详解】根据图表可以看出绝大多数还是相当满意的,所以我觉得我们可以多一些对细节的规划,在环境一块更加注重,做到尽善尽美,推出一些具备特色的服务项目,给到游客不一样的体验.【点睛】本题主要考查扇形统计图,圆心角的求解,解本题的关键在于需认真读题并正确计算出结果.22. 如图,在等边三角形ABC 中,点M 为AB 边上任意一点,延长BC 至点N ,使CN =AM ,连接MN 交AC 于点P ,MH ⊥AC 于点H .(1)求证:MP =NP ;(2)若AB =a ,求线段PH 的长(结果用含a 的代数式表示).【答案】(1)见详解;(2)0.5a .【解析】【分析】(1)过点M 作MQ ∥CN ,证明MQP NCP ≅△△即可;(2)利用等边三角形的性质推出AH =HQ ,则PH =HQ +PQ =0.5(AQ +CQ ).【小问1详解】如下图所示,过点M 作MQ ∥CN ,∵ABC 为等边三角形,MQ ∥CN , ∴1AM AB AQ AC==, 则AM =AQ ,且∠A =60°,∴AMQ △为等边三角形,则MQ =AM =CN ,的又∵MQ ∥CN ,∴∠QMP =∠CNP ,在MQP NCP △与△中,MPQ NPC QMP CNP QM CN ∠=∠⎧⎪∠=∠⎨⎪=⎩∴MQP NCP ≅△△,则MP =NP ;【小问2详解】∵AMQ △为等边三角形,且MH ⊥AC ,∴AH =HQ ,又由(1)得,MQP NCP ≅△△,则PQ =PC ,∴PH =HQ +PQ =0.5(AQ +CQ )=0.5AC =0.5a .【点睛】本题考查了等边三角形的性质与判定、三角形全等的判定,正确作出辅助线是解题的关键.23. 去年防洪期间,某部门从超市购买了一批数量相等的雨衣(单位:件)和雨鞋(单位:双),其中购买雨衣用了400元,购买雨鞋用了350元,已知每件雨衣比每双雨鞋贵5元.(1)求每件雨衣和每双雨鞋各多少元?(2)为支持今年防洪工作,该超市今年的雨衣和雨鞋单价在去年的基础上均下降了20%,并按套(即一件雨衣和一双雨鞋为一套)优惠销售. 优惠方案为:若一次购买不超过5套,则每套打九折:若一次购买超过5套,则前5套打九折,超过部分每套打八折.设今年该部门购买了a 套,购买费用为W 元,请写出W 关于a 的函数关系式.(3)在(2)的情况下,今年该部门购买费用不超过320元时最多可购买多少套?【答案】(1)每件雨衣40元,每双雨鞋35元(2)()600.954052705600.848305a a a W a a a ⨯⨯=≤<⎧=⎨+-⨯⨯=+≥⎩(3)最多可购买6套【解析】【分析】(1)根据题意,设每件雨衣()5+x 元,每双雨鞋x 元,列分式方程求解即可; (2)根据题意,按套装降价20%后得到每套60元,根据费用=单价×套数即可得出结论; (3)根据题意,结合(2)中所求,得出不等式4830320a +≤,求解后根据实际意义取值即可.【小问1详解】解:设每件雨衣()5+x 元,每双雨鞋x 元,则4003505x x=+,解得35x =, 经检验,35x =是原分式方程的根,540x ∴+=,答:每件雨衣40元,每双雨鞋35元;【小问2详解】解:根据题意,一套原价为354075+=元,下降20%后的现价为()75120%60⨯-=元,则()600.954,052705600.84830,5a a a W a a a ⨯⨯=≤<⎧=⎨+-⨯⨯=+≥⎩; 【小问3详解】解:320270> ,∴购买的套数在5a ≥范围内,即4830320a +≤,解得145 6.04224a ≤≈, 答:在(2)的情况下,今年该部门购买费用不超过320元时最多可购买6套.【点睛】本题考查实际应用题,涉及分式方程的实际应用、一次分段函数的实际应用和不等式解实际应用题等知识,熟练掌握实际应用题的求解步骤“设、列、解、答”,根据题意得出相应关系式是解决问题的关键.24. 如图一所示,在平面直角坐标中,抛物线y =ax 2+2x +c 经过点A (﹣1,0)、B (3,0),与y 轴交于点C ,顶点为点D .在线段CB 上方的抛物线上有一动点P ,过点P 作PE ⊥BC 于点E ,作PF ∥AB 交BC 于点F .(1)求抛物线和直线BC 的函数表达式,(2)当△PEF 周长为最大值时,求点P 的坐标和△PEF 的周长.(3)若点G 是抛物线上的一个动点,点M 是抛物线对称轴上的一个动点,是否存在以C 、B 、G 、M 为顶点的四边形为平行四边形?若存在,求出点G 的坐标,若不存在,请说明理由.【答案】(1)抛物线函数表达式为2y x 2x 3=-++,直线BC 的函数表达式为3y x =-+ (2)点P 的坐标为 (32,154),△PEF的周长为91)4(3)存在,(2,3)或(-2,-5)或(4,-5)【解析】【分析】(1)由点A ,B 的坐标,利用待定系数即可求解析式;(2)利用直线和抛物线的位置关系相切时对应的等腰直角三角形PEF 周长最大,二次函数与一次函数联立方程,根的判别式0∆=,从而找出对应点P 坐标,进而求出周长; (3)根据平行四边形对角线性质和中点公式,把BC 是否为对角线分情况进行分析,设出点G 的横坐标,利用中点公式列方程计算即可求解.【小问1详解】解:将点A (-1,0),B (3,0)代入2y ax 2x c =++,得:02096a c a c =-+⎧⎨=++⎩ ,解得13a c =-⎧⎨=⎩, 所以抛物线解析式为2y x 2x 3=-++,C (0,3)的设直线BC 的函数表达式y kx b =+ ,将B (3,0),C (0,3)代入得:033k b b =+⎧⎨=⎩ ,解得13k b =-⎧⎨=⎩, 所以直线BC 的函数表达式为3y x =-+【小问2详解】解:如图,设将直线BC 平移到与抛物线相切时的解析式为y x p =-+ ,与抛物线联立得:223y x p y x x =-+⎧⎨=-++⎩ 整理得2330x x p -+-=234(3)0p ∆=--= ,解得p =, 将214p =代入2330x x p -+-=,解得32x =, 将32x =代入2y x 2x 3=-++得154y =, 即△PEF 的周长为最大值时,点P 的坐标为 (32,154) 将32x =代入3y x =-+得32y =, 则此时1539424PF =-=,因为△PEF 为等腰直角三角形,94PE FE ===则△PEF 的周长最大为91)4+【小问3详解】答:存在.已知B (3,0),C (0,3),设点G(m ,223m m -++ ),N (1,n ),当BC 为平行四边形对角线时,根据中点公式得:13m += ,2m =,则G 点坐标为(2,3);当BC 为平行四边形对角线时,同样利用中点坐标公式得:31m += 或31m -= ,解得2m =- 或4m = 则G 点坐标为(-2,-5)或(4,-5)故点G 坐标为(2,3)或(-2,-5)或(4,-5)【点睛】本题考查了待定系数法求二次函数解析式、二次函数图像上点的坐标特征、待定系数法求一次函数解析式、直线与抛物线的位置关系、根的判别式,等腰直角三角形性质,平行四边形的性质,解题的关键(1)根据点的坐标利用待定系数求解析式;(2利用直线和抛物线的位置关系,巧妙利用判别式;(3)熟悉平行四边形对角线性质,结合中点公式分情况展开讨论。

【精品】二年级(上)数学应用题及解析-类型三 两位数不退位减应用题人教新课标版

【精品】二年级(上)数学应用题及解析-类型三  两位数不退位减应用题人教新课标版

类型三两位数不退位减应用题【基础训练】一、选择题。

1.书架上有36本书,拿走一些,书架上还有3本书,拿走了几本?列式为()。

A.36-3B.36+3C.36+362.妈妈有83元,买书用去21元,还剩多少元?列式为( )。

A.83+21B.83-21C.21+213.小军今年12岁,再过几年就是28岁?列式为( )。

A.28-12B.28+12C.12+124.买一个篮球55元,足球32元,篮球比足球贵多少钱?列式为( )。

A.55+32B.55-32C.32+325.小明有34个苹果,吃了12个后,和小丽同样多,?(提出一步用减法解决的问题)A.小明有多少个B.小丽有多少个C.小明和小丽一共有多少个二、解答题。

1.小丽听写了56个字,写错了13个,小丽写对了多少个?2.一个足球要36元,小丽有24元,还差多少元才能购买一个足球?3.小方家有45只鸡,养的鸭比鸡少5只,小方家有鸭多少只?4.小华有95枚邮票,小明有83枚邮票,小明的邮票比小华多多少枚?5.小芳8岁,妈妈39岁,小芳比妈妈小几岁?6.小小要做76朵大红花,已经做了35朵,还有多少朵没有做?7.一辆汽车上午运货23箱,下午运货12箱,下午比上午少运多少箱?8.小英跳绳56下,小明跳绳44下,小明再跳多少下就和小英一样多?9.小云吹了56个气球,有5个破了,还有几个没破?10.小青带来38节废电池,小云比小青少带5节,小云带来几节废电池?11.一年级有52名同学,准备乘两辆车去公园,一辆车上已经坐了21名同学,另一辆车上坐了多少人?12.小林妈妈有98元,给小林买书包花了26元,还剩下多少元?13.小明和小芳一起做跳绳,小明跳了67下,小芳跳了42下。

小芳再跳多少下就和小明跳的一样多?14.小朋友都喜欢看动画片,喜欢看《喜洋洋》的小朋友有75人,喜欢看《黑猫警长》小朋友比喜欢看《喜洋洋》的小朋友少50人,喜欢看《黑猫警长》小朋友有多少人?15.一本故事书是85页,小明看了63页,还剩下多少页没有看?[来源:学科网ZXXK]16.二(1)班喜欢排球的女生有21人,喜欢足球的男生有32人,喜欢足球的男生比喜欢排球的女生多多少人?[来源:学科网]17.(1)卡车比大客车多多少辆?(2)面包车和大客车一共有多少辆?(3)你还能提出数学问题并列式解答吗?18.买玩具。

精品解析:2018届华师大版九年级数学下册同步试题:易错专题:抛物线的变换(原卷版)

精品解析:2018届华师大版九年级数学下册同步试题:易错专题:抛物线的变换(原卷版)

易错专题:抛物线的变换类型一 抛物线的平移1. 要将抛物线y=x 2+2x+3平移后得到抛物线y=x 2,下列平移方法正确的是( )A. 向左平移1个单位长度,再向上平移2个单位长度B. 向左平移1个单位长度,再向下平移2个单位长度C. 向右平移1个单位长度,再向上平移2个单位长度D. 向右平移1个单位长度,再向下平移2个单位长度2. 如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换.已知抛物线经过两次简单变换后的一条抛物线是21y x =+,则原抛物线的解析式不可能的是( )A. 21y x =-B. 265y x x =++ C. 244y x x =++ D. 2817y x x =++ 类型二 抛物线的旋转3. 将抛物线y =-12(x -3)2+5绕顶点旋转180°后的关系式为__________________. 4. 如图,一段抛物线y=﹣x (x ﹣1)(0≤x≤1)记为m 1,它与x 轴交点为O 、A 1,顶点为P 1;将m 1绕点A 1旋转180°得m 2,交x 轴于点A 2,顶点为P 2;将m 2绕点A 2旋转180°得m 3,交x 轴于点A 3,顶点为P 3,…,如此进行下去,直至得m 10,顶点为P 10,则P 10的坐标为______.类型三 抛物线的对称5. 抛物线y =ax 2+2ax +a 2+2的一部分如图所示,那么该抛物线在y 轴右侧与x 轴交点的坐标是( )A . (12,0) B. (1,0) C. (2,0) D. (3,0) 6. 已知二次函数y =2 x 2+9x+34,当自变量x 取两个不同的值x 1、x 2时,函数值相等,则当自变量x 取x 1+x 2时的函数值与A. x =1时的函数值相等B. x =0时的函数值相等C. x =时的函数值相等D. x =-时的函数值相等 7. 已知二次函数y =2x 2-12x +5,则该函数图象关于x 轴对称的图象的关系式为________________. 8. 如图,在平面直角坐标系中,点A 在第二象限,以A 为顶点的抛物线经过原点,与x 轴负半轴交于点B ,对称轴为直线x= -2,点C 在抛物线上,且位于点A 、B 之间(C 不与A 、B 重合).若△ABC 的周长为a ,则四边形AOBC 的周长为_________ .( 用含a 的式子表示).9. 已知抛物线2:p y ax bx c =++的顶点为C ,与x 轴相交于A 、B 两点(点A 在点B 左侧),点C 关于x 轴的对称点为'C ,我们称以A 为顶点且过点'C ,对称轴与y 轴平行的抛物线为抛物线p 的“梦之星”抛物线,直线'AC 为抛物线p 的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是221y x x =++和22y x =+,则这条抛物线的解析式为________. 10. 如图,已知抛物线C 1:y=a 1x 2+b 1x+c 1和C 2:y=a 2x 2+b 2x+c 2都经过原点,顶点分别为A ,B ,与x 轴的另一个交点分别为M 、N ,如果点A 与点B ,点M 与点N 都关于原点O 成中心对称,则抛物线C 1和C 2为姐妹抛物线,请你写出一对姐妹抛物线C 1和C 2,使四边形ANBM 恰好是矩形,你所写的一对抛物线解析式是___________易错专题:抛物线的变换类型一 抛物线的平移1. 要将抛物线y=x 2+2x+3平移后得到抛物线y=x 2,下列平移方法正确的是( )A. 向左平移1个单位长度,再向上平移2个单位长度B. 向左平移1个单位长度,再向下平移2个单位长度C. 向右平移1个单位长度,再向上平移2个单位长度D. 向右平移1个单位长度,再向下平移2个单位长度【答案】D【解析】【分析】原抛物线顶点坐标为(-1,2),平移后抛物线顶点坐标为(0,0),由此确定平移规律.【详解】y=x 2+2x+3=(x+1)2+2,该抛物线的顶点坐标是(-1,2),抛物线y=x 2的顶点坐标是(0,0), 则平移的方法可以是:将抛物线y=x 2+2x+3向右移1个单位,再向下平移2个单位.故选D .【点睛】本题考查抛物线的平移,熟记抛物线平移的规律是解题的关键.2. 如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换.已知抛物线经过两次简单变换后的一条抛物线是21y x =+,则原抛物线的解析式不可能的是( )A. 21y x =-B. 265y x x =++C. 244y x x =++D. 2817y x x =++ 【答案】B【解析】【分析】先把函数化为顶点式y=(x-h )2+k ,根据图象左移加,右移减,图象上移加,下移减,可得答案.【详解】A 、y=x 2-1,先向上平移1个单位得到y=x 2,再向上平移1个单位可以得到y=x 2+1,故A 正确; B 、y=x 2+6x+5=(x+3)2-4,无法经两次简单变换得到y=x 2+1,故B 错误;C 、y=x 2+4x+4=(x+2)2,先向右平移2个单位得到y=(x+2-2)2=x 2,再向上平移1个单位得到y=x 2+1,故C正确;D、y=x2+8x+17=(x+4)2+1,先向右平移2个单位得到y=(x+4-2)2+1=(x+2)2+1,再向右平移2个单位得到y=x2+1,故D正确;故选:B.【点睛】本题考查了二次函数图象与几何变换,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式,注意由目标函数图象到原函数图象方向正好相反,掌握运算法则是解题关键.类型二抛物线的旋转3. 将抛物线y=-12(x-3)2+5绕顶点旋转180°后的关系式为__________________.【答案】y=12(x-3)2+5【解析】抛物线y=-12(x-3)2+5绕顶点旋转180°,则顶点(3,5)不变,对称轴不变,抛物线的开口方向相反,所以旋转后的抛物线解析式为y=12(x-3)2+5.故答案为y=12(x-3)2+5.4. 如图,一段抛物线y=﹣x(x﹣1)(0≤x≤1)记为m1,它与x轴交点为O、A1,顶点为P1;将m1绕点A1旋转180°得m2,交x轴于点A2,顶点为P2;将m2绕点A2旋转180°得m3,交x轴于点A3,顶点为P3,…,如此进行下去,直至得m10,顶点为P10,则P10的坐标为______.【答案】(9.5,﹣0.25)【解析】试题分析:y=﹣x(x﹣1)(0≤x≤1),OA1=A1A2=1,P2P4=P1P3=2,P2(1.5,﹣0.25)P10的横坐标是1.5+2×[(10﹣2)÷2]=9.5,P10的纵坐标是﹣0.25,故答案为(9.5,﹣0.25).考点:1、规律题;2、二次函数图象的几何变换类型三抛物线的对称5. 抛物线y=ax2+2ax+a2+2的一部分如图所示,那么该抛物线在y轴右侧与x轴交点的坐标是()A. (12,0) B. (1,0) C. (2,0) D. (3,0)【答案】B 【解析】【分析】【详解】y=ax2+2ax+a2+2的对称轴为直线x=-2a2a=-1,所以点(-3,0)关于直线x=-1的对称点的坐标为(1,0).故选B.6. 已知二次函数y=2 x2+9x+34,当自变量x取两个不同的值x1、x2时,函数值相等,则当自变量x取x1+x2时的函数值与A. x=1时的函数值相等B. x=0时的函数值相等C. x=时的函数值相等D. x=-时的函数值相等【答案】B【解析】∵y=2x2-9x+34,∴对称轴为x=92a4b-=,而自变量x取两个不同的值x1,x2时,函数值相等,∴x1+x2=92,而x=92和x=0关于x=94对称,当自变量x取x1+x2时的函数值应当与x=0时的函数值相等.故选B.7. 已知二次函数y =2x 2-12x +5,则该函数图象关于x 轴对称的图象的关系式为________________.【答案】y =-2(x -3)2+13【解析】y =2x 2-12x +5=2(x -3)2-13,顶点坐标为(3,-13),其图象关于x 轴对称的顶点坐标为(3,13),所以对称后的图象的关系式为y =-2(x -3)2+13.故答案为y =-2(x -3)2+13.8. 如图,在平面直角坐标系中,点A 在第二象限,以A 为顶点的抛物线经过原点,与x 轴负半轴交于点B ,对称轴为直线x= -2,点C 在抛物线上,且位于点A 、B 之间(C 不与A 、B 重合).若△ABC 的周长为a ,则四边形AOBC 的周长为_________ .( 用含a 的式子表示).【答案】a+4【解析】∵抛物线经过原点,与x 轴负半轴交于点B ,对称轴为直线x =-2,∴OB =4.由抛物线的对称性知AB =AO ,∴四边形AOBC 的周长为AO +AC +BC +OB =△ABC 的周长+OB =a +4.故答案为a +4. 点睛: 本题考查了二次函数的性质.此题利用了抛物线的对称性,解题的技巧性在于把求四边形AOBC 的周长转化为求(△ABC 的周长+OB )是值.9. 已知抛物线2:p y ax bx c =++的顶点为C ,与x 轴相交于A 、B 两点(点A 在点B 左侧),点C 关于x 轴的对称点为'C ,我们称以A 为顶点且过点'C ,对称轴与y 轴平行的抛物线为抛物线p 的“梦之星”抛物线,直线'AC 为抛物线p 的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是221y x x =++和22y x =+,则这条抛物线的解析式为________.【答案】223y x x =--【解析】【分析】先求出y=x 2+2x+1和y=2x+2的交点C′的坐标为(1,4),再求出“梦之星”抛物线y=x 2+2x+1的顶点A 坐标(-1,0),接着利用点C 和点C′关于x 轴对称得到C (1,-4),则可设顶点式y=a (x-1)2-4,然后把A 点坐标代入求出a 的值即可得到原抛物线解析式.【详解】∵y=x 2+2x+1=(x+1)2,∴A 点坐标为(−1,0),解方程组22122y x x y x ⎧=++⎨=+⎩得10x y =-⎧⎨=⎩或14x y =⎧⎨=⎩, ∴点C′的坐标为(1,4),∵点C 和点C′关于x 轴对称,∴C(1,−4),设原抛物线解析式为y=a(x−1)2−4,把A(−1,0)代入得4a−4=0,解得a=1,∴原抛物线解析式为y=(x−1)2−4=x 2−2x−3.故答案为y=x 2−2x−3.【点睛】本题考查了二次函数的性质,解题的关键是熟练的掌握二次函数的性质与运算.10. 如图,已知抛物线C 1:y=a 1x 2+b 1x+c 1和C 2:y=a 2x 2+b 2x+c 2都经过原点,顶点分别为A ,B ,与x 轴的另一个交点分别为M 、N ,如果点A 与点B ,点M 与点N 都关于原点O 成中心对称,则抛物线C 1和C 2为姐妹抛物线,请你写出一对姐妹抛物线C 1和C 2,使四边形ANBM 恰好是矩形,你所写的一对抛物线解析式是___________【答案】233y x x =-+,2323y x x =+(答案不唯一,只要符合条件即可). 【解析】 试题分析:因点A 与点B ,点M 与点N 都关于原点O 成中心对称,所以把抛物线C 2看成抛物线C 1以点O 为旋转中心旋转180°得到的,由此即可知a 1,a 2互为相反数,抛物线C 1和C 2的对称轴直线关于y 轴对称,由此可得出b 1=b 2.抛物线C 1和C 2都经过原点,可得c 1=c 2,设点A (m ,n ),由题意可知B (-m ,-n ),由勾股定理可得AB =.由图象可知MN=︱4m ︱,又因四边形ANBM 是矩形,所以AB=MN,4m =,解得223,m n m n ==即,设抛物线的表达式为2()y a x m n =-+,任意确定m 的一个值,根据3m n =±n 的值,抛物线过原点代入即可求得表达式,然后在确定另一个表达式即可.l 例如,当m=1时,,抛物线的表达式为2(1)y a x =-+x=0,y=0代入解得a=,即2y =+,所以另一条抛物线的表达式为2y =+.考点:旋转、矩形、二次函数综合题.。

精品解析:2023年湖南省岳阳市中考数学真题(解析版)

精品解析:2023年湖南省岳阳市中考数学真题(解析版)

2023年岳阳市初中学业水平考试试卷数学温馨提示:1.本试卷共三大题,24小题,满分120分,考试时量90分钟;2.本试卷分为试题卷和答题卡两部分,所有答案都必须填涂或填写在答题卡上规定的答题区域内;3,考试结束后,考生不得将试题卷、答题卡、草稿纸带出考场.一、选择题(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中,选出符合要求的一项)1. 2023的相反数是( ) A. 12023 B. 2023− C. 2023 D. 12023− 【答案】B【解析】【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:2023的相反数是2023−,故选:B .【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.2. 下列运算结果正确的是( )A. 23a a a ⋅=B. 623a a a ÷=C. 33a a −=D. 222()a b a b −=−【答案】A【解析】【分析】根据同底数幂的乘法,同底数幂的除法,合并同类项法则,完全平方公式,进行计算即可求解.【详解】解:A 、 23a a a ⋅=,故该选项正确,符合题意;B 、 624a a a ÷=,故该选项不正确,不符合题意;C 、 32a a a −=,故该选项不正确,不符合题意;D 、222()2a b a ab b −=−+,故该选项不正确,不符合题意;故选:A .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,合并同类项,完全平方公式,熟练掌握同底数幂的乘法,同底数幂的除法,合并同类项法则,完全平方公式是解题的关键.3. 下列几何体的主视图是圆的是( )A. B. C. D.【答案】A【解析】【分析】根据主视图的概念找出各种几何体的主视图即可.【详解】解:A 、主视图为圆,符合题意;B 、主视图为正方形,不符合题意;C 、主视图为三角形,不符合题意;D 、主视图为长方形,不符合题意.故选:A .【点睛】本题考查简单几何体的三视图,解题的关键是能够理解主视图的概念以及对常见的几何体的主视图有一定的空间想象能力.4. 已知AB CD ,点E 在直线AB 上,点,F G 在直线CD 上,EG EF ⊥于点,40E AEF ∠=°,则EGF ∠的度数是( )A. 40°B. 45°C. 50°D. 60°【答案】C【解析】 【分析】根据平行线的性质和直角三角形两锐角互余分析计算求解.【详解】解:∵AB CD ,∴40AEF EFG °∠=∠=,∵EG EF ⊥,∴9050EGF EFG ∠=°−∠=°,故选:C .【点睛】本题考查平行线性质和直角三角形两锐角互余,掌握两直线平行,内错角相等以及直角三角形的两锐角互余是解题关键.5. 在5月份跳绳训练中,妍妍同学一周成绩记录如下:176,178,178,180,182,185,189(单位:次/分钟),这组数据的众数和中位数分别是()A. 180,182B. 178,182C. 180,180D. 178,180【答案】D【解析】【分析】根据众数和中位数的定义即可得到答案.【详解】解:数据从小到大排列为176,178,178,180,182,185,189,出现次数最多的是178,共出现2次,众数是178,中位数为180.故选:D【点睛】此题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数,一组数据按照大小顺序排列后,处在中间位置或中间两个数的平均数叫做中位数,熟练掌握定义是解题的关键.6. 下列命题是真命题的是()A. 同位角相等B. 菱形的四条边相等C. 正五边形是中心对称图形D. 单项式25ab的次数是4【答案】B【解析】【分析】根据平行线的性质,菱形的性质,正五边形定义,中心对称图形的定义,单项式次数的定义求解.【详解】A. 两平行线被第三条直线所截,同位角相等,故此命题为假命题;B. 根据菱形的性质,菱形的四条边相等,故此命题为真命题;C. 正五边形不符合中心对称图形的定义,不是中心对称图形,故此命题为假命题;D. 单项式25ab的次数是3,故此命题是假命题;故选:B.【点睛】本题考查平行线的性质,菱形的性质,正五边形定义,中心对称图形的定义,单项式次数的定义,熟练掌握上述知识是关键.7. 我国古代数学名著《九章算术》中有这样一道题:“今有圆材,径二尺五寸.欲为方版,令厚七寸,问广几何?”结合右图,其大意是:今有圆形材质,直径BD为25寸,要做成方形板材,使其厚度CD达到7寸.则BC的长是()A. 寸B. 25寸C. 24寸D. 7寸【答案】C【解析】【分析】根据矩形的性质,勾股定理求解.【详解】由题意知,四边形ABCD 是矩形,BC CD ∴⊥∴在Rt BCD 中,24BC故选:C .【点睛】本题考查矩形的性质,勾股定理;由矩形的性质得出直角三角形是解题的关键.8. 若一个点的坐标满足(),2k k ,我们将这样的点定义为“倍值点”.若关于x 的二次函数()()212y t x t x s =++++(,s t 为常数,1t ≠−)总有两个不同的倍值点,则s 的取值范围是( )A. 1s <−B. 0s <C. 01s <<D. 10s −<<【答案】D【解析】 【分析】利用“倍值点”的定义得到方程()210t x tx s +++=,则方程的0∆>,可得2440t ts s −−>,利用对于任意的实数s 总成立,可得不等式的判别式小于0,解不等式可得出s 的取值范围.【详解】解:由“倍值点”的定义可得:()()2212x t x t x s =++++, 整理得,()210t x tx s +++= ∵关于x 的二次函数()()212y t x t x s =++++(,s t 为常数,1t ≠−)总有两个不同的倍值点,∴()22=41440,t t s t ts s ∆−+=−−> ∵对于任意实数s 总成立,∴()()24440,s s −−×−<整理得,216160,s s +<∴20,s s +<∴()10s s +<,∴010s s < +> ,或010s s > +<, 当010s s < +> 时,解得10s −<<, 当010s s > +<时,此不等式组无解, ∴10s −<<,故选:D .【点睛】本题主要考查了二次函数图象上点的坐标特征,一元二次方程根的判别式以及二次函数与不等式的关系,理解新定义并能熟练运用是解答本题的关键.二、填空题(本大题共8小题,每小题4分,满分32分)9. 函数1y=x 2−中,自变量x 的取值范围是____. 【答案】x 2≠【解析】【详解】解:由题意知:x -2≠0,解得x ≠2;故答案为x ≠2.10. 近年来,岳阳扛牢“守护好一江碧水”责任,水在变清,岸在变绿,洞庭湖真正成为鸟类的天堂.2022年冬季,洞庭湖区越冬水鸟数量达37.83万只,数据378300用科学记数法表示为_________.【答案】53.78310×【解析】【分析】用科学记数法表示绝对值较大的数时,一般形式为10n a ×,其中1||10a ≤<,n 为整数.【详解】解:53.78378300310=×.故答案为:53.78310×.【点睛】本题考查了科学记数法,科学记数法的表示形式为10n a ×的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数,确定a 与n 的值是解题的关键. 11. 有两个女生小合唱队,各由6名队员组成,甲队与乙队的平均身高均为160cm x =,甲队身高方差2 1.2s =甲,乙队身高方差2 2.0s =乙,两队身高比较整齐的是_________队.(填“甲”或“乙”)【答案】甲【解析】【分析】根据方差越小,波动越小,越稳定判断即可.【详解】∵2 1.2s =甲,2 2.0s =乙,且22s s 甲乙<∴甲队稳定,故答案为:甲.【点睛】本题考查了方差的决策性,熟练掌握方差的意义是解题的关键.12. 如图,①在,OA OB 上分别截取线段,OD OE ,使OD OE =;②分别以,D E 为圆心,以大于12DE 的长为半径画弧,在AOB ∠内两弧交于点C ;③作射线OC .若60AOB ∠=°,则AOC ∠=_________°.【答案】30【解析】【分析】由作图可知OC 是AOB ∠的角平分线,根据角平分线的定义即可得到答案.【详解】解:由题意可知,OC 是AOB ∠的角平分线, ∴11603022AOC AOB ∠=∠=×°=°. 故答案为:30【点睛】此题考查角平分线的作图、角平分线相关计算,熟练掌握角平分线的作图是解题的关键. 13. 观察下列式子:21110−=×;22221−=×;23332−=×;24443−=×;25554−=×;…依此规律,则第n (n 为正整数)个等式是_________.【答案】()21n n n n −=− 【解析】【分析】根据等式的左边为正整数的平方减去这个数,等式的右边为这个数乘以这个数减1,即可求解.【详解】解:∵21110−=×;22221−=×;23332−=×;24443−=×;25554−=×;…∴第n (n 为正整数)个等式是()21n n n n −=−, 故答案为:()21n n n n −=−. 【点睛】本题考查了数字类规律,找到规律是解题的关键.14. 已知关于x 的一元二次方程22220x mx m m ++−+=有两个不相等.....的实数根,且12122x x x x ++⋅=,则实数m =_________.【答案】3【解析】【分析】利用一元二次方程22220x mx m m ++−+=有两个不相等.....的实数根求出m 的取值范围,由根与系数关系得到212122,2x x m x x m m +=−=−+,代入12122x x x x ++⋅=,解得m 的值,根据求得的m 的取值范围,确定m 的值即可.【详解】解:∵关于x 的一元二次方程22220x mx m m ++−+=有两个不相等.....的实数根, ∴()()22242480m m m m ∆=−−+=−>,解得m>2,∵212122,2x x m x x m m +=−=−+,12122x x x x ++⋅=, ∴2222m m m −+−+=,解得123,0m m ==(不合题意,舍去),∴3m = 故答案为:3【点睛】此题考查一元二次方程根的判别式和一元二次方程根与系数关系,熟练掌握根的判别式和根与系数关系的内容是解题的关键.15. 2023年岳阳举办以“跃马江湖”为主题的马拉松赛事.如图,某校数学兴趣小组在A 处用仪器测得赛场一宣传气球顶部E 处的仰角为21.8°,仪器与气球的水平距离BC 为20米,且距地面高度AB 为1.5米,则气球顶部离地面的高度EC 是_________米(结果精确到0.1米,sin 21.80.3714,cos21.80.9285,tan 21.80.4000°≈°≈°≈).【答案】9.5【解析】【分析】通过解直角三角形ADE ,求出DE ,再根据EC ED DC =+求出结论即可.【详解】解:根据题意得,四边形ABCD 是矩形,∴20m, 1.5m,ADBC DC AB ==== 在Rt ADE △中,tan ,DE DAE AD∠=∴tan 200.4008.0m DE AD DAE =∠=×=,∴8.0 1.59.5m EC ED DC =+=+=故答案为:9.5【点睛】此题考查了解直角三角形的应用-仰角俯角问题.此题难度适中,注意能借助仰角构造直角三角形并解直角三角形是解此题的关键. 16. 如图,在O 中,AB 为直径,BD 为弦,点C 为 BD的中点,以点C 为切点的切线与AB 的延长线交于点E .(1)若30,6A AB ∠=°=,则 BD的长是_________(结果保留π); (2)若13CF AF =,则CE AE =_________. 【答案】 ①. 2π ②.12【解析】【分析】(1)连接,OC OD ,根据点C 为 BD 的中点,根据已知条件得出120BOD ∠=°,然后根据弧长公式即可求解;(2)连接OC ,根据垂径定理的推论得出OC BD ⊥,EC 是O 的切线,则OC EC ⊥,得出EC BD ∥,根据平行线分线段成比例得出13EB AB =,设2EB a =,则6AB a =,勾股定理求得EC ,J 进而即可求解.【详解】解:(1)如图,连接,OC OD ,∵点C 为 BD 的中点,∴ BC CD =,又∵30A ∠=°,∴260BOC COD A ∠=∠=∠=°,∴120BOD ∠=°,∵6AB =, ∴132OB AB ==,∴ 120π32π180BD l =××=,故答案为:2π.(2)解:如图,连接OC ,∵点C 为 BD 的中点,∴ BC CD =,∴OC BD ⊥,∵EC 是O 的切线,∴OC EC ⊥,∴EC BD ∥ ∴CF EB AF AB=, ∵13CF AF =, ∴13EB AB =, 设2EB a =,则6AB a =,3,5BO a EO EB BO a ==+=,∴4EC a ===,268AE a a a =+=, ∴4182CEa AE a ==. 故答案为:12.【点睛】本题考查了,熟练掌握是解题的关键.三、解答题(本大题共8小题,满分24分.解答应写出必要的文字说明、证明过程或演算步骤)17.计算:202tan 60)π−°−. 【答案】2【解析】【分析】根据幂的运算,特殊角的函数值,零指数幂的运算,绝对值的化简计算即可.【详解】202tan 601(3)π−°−−−4112=−−=.【点睛】本题考查了幂的运算,特殊角的函数值,零指数幂的运算,绝对值的化简,熟练掌握运算的法则是解题的关键.18. 解不等式组:213,24.x x x x +>+ −< ①②【答案】24x <<【解析】【分析】按照解不等式组的基本步骤求解即可.【详解】∵213,24.x x x x +>+ −<①②,解①的解集为2x >; 解②解集为4x <,∴原不等式组的解集为24x <<.【点睛】本题考查了不等式组的解法,熟练掌握解不等式组的基本步骤是解题的关键. 19. 如图,反比例函数ky x=(k 为常数,0k ≠)与正比例函数y mx =(m 为常数,0m ≠)的图像交于()1,2,A B 两点.(1)求反比例函数和正比例函数的表达式;(2)若y .轴.上有一点()0,,C n ABC △的面积为4,求点C 的坐标. 【答案】(1)2y x=;2y x = (2)()0,4C或()0,4C −【解析】【分析】(1)把()1,2A 分别代入函数的解析式,计算即可.(2)根据反比例函数的中对称性质,得到()1,2B −−,设()0,C n ,根据()12ABC A B S n x x =− ,列式计算即可. 【小问1详解】 ∵反比例函数ky x=(k 为常数,0k ≠)与正比例函数y mx =(m 为常数,0m ≠)的图像交于()1,2,A B 两点,∴2,211km ==×,的解得2,2k m ==, 故反比例函数的表达式为2y x=,正比例函数的表达式2y x =. 【小问2详解】 ∵反比例函数ky x=(k 为常数,0k ≠)与正比例函数y mx =(m 为常数,0m ≠)的图像交于()1,2,A B 两点,根据反比例函数图象的中心对称性质, ∴()1,2B −−,设()0,C n ,根据题意,得()12ABC A B S n x x =− , ∴1242n ×=, 解得4n =或n =−4,故点C 的坐标为()0,4C或()0,4C −.【点睛】本题考查了反比例函数与正比例函数的综合,反比例函数的中心对称性,三角形面积的特殊坐标表示法,熟练掌握反比例函数与正比例函数的综合,反比例函数的中心对称性是解题的关键.20. 为落实中共中央办公厅、国务院办公厅印发的《关于实施中华优秀传统文化传承发展工程意见》,深入开展“我们的节日”A 包粽子,B 腌咸蛋,C 酿甜酒,D 摘艾叶.每人只参加一个社团的情况下,随机调查了部分学生,根据调查结果绘制了两幅不完整的统计图:(1)本次共调查了_________名学生; (2)请补全条形统计图;(3)学校计划从四个社团中任选两个社团进行成果展示,请用列表或画树状图的方法,求同时选中A 和C 两个社团的概率.【答案】(1)100 (2)见解析 (3)16【解析】【分析】(1)根据样本容量=频数÷所占百分数,计算即可. (2)先计算B 的人数,再完善统计图即可. (3)利用画树状图计算即可.小问1详解】∵2525%100÷=(人), 故答案为:100. 【小问2详解】B 的人数:10040251520−−−=(人), 补全统计图如下:.【小问3详解】根据题意,画树状图如下:一共有12种等可能性,选中A ,C 的等可能性有2种, 故同时选中A 和C 两个社团的概率为21126=. 【点睛】本题考查了条形统计图、扇形统计图,画树状图求概率,熟练掌握统计图的意义,准确画树状图是解题的关键.21. 如图,点M 在ABCD 的边AD 上,BM CM =,请从以下三个选项中①12∠=∠;②AM DM =;③34∠∠=,选择一个合适的选项作为已知条件,使ABCD 为矩形.【(1)你添加的条件是_________(填序号); (2)添加条件后,请证明ABCD 为矩形. 【答案】(1)答案不唯一,①或② (2)见解析 【解析】【分析】(1)根据有一个角是直角的平行四边形是矩形进行选取;(2)通过证明ABM DCM △≌△可得A D ∠=∠,然后结合平行线的性质求得90A ∠=°,从而得出ABCD 为矩形.【小问1详解】 解:①或② 【小问2详解】添加条件①,ABCD 为矩形,理由如下: 在ABCD 中AB CD =,AB CD ,在ABM 和DCM △中12AB BM CM =∠=∠ =,∴ABM DCM △≌△ ∴A D ∠=∠, 又∵AB CD , ∴180A D ∠+∠=°, ∴90A D ∠=∠=°, ∴ABCD 为矩形;添加条件②,ABCD 为矩形,理由如下: 在ABCD 中AB CD =,AB CD ,在ABM 和DCM △中AB CD AM DM BM CM == =,∴ABM DCM △≌△ ∴A D ∠=∠, 又∵AB CD , ∴180A D ∠+∠=°, ∴90A D ∠=∠=°, ∴ABCD 为矩形【点睛】本题考查矩形的判定,全等三角形的判定和性质,掌握平行四边形的性质和矩形的判定方法(有一个角是直角的平行四边形是矩形)是解题关键.22. 水碧万物生,岳阳龙虾好.小龙虾产业已经成为岳阳乡村振兴的“闪亮名片”.已知翠翠家去年龙虾的总产量是4800kg ,今年龙虾的总产量是6000kg ,且去年与今年的养殖面积相同,平均亩产量去年比今年少60kg ,求今年龙虾的平均亩产量. 【答案】今年龙虾的平均亩产量300kg . 【解析】【分析】设今年龙虾的平均亩产量是x kg ,则去年龙虾的平均亩产量是()60x −kg ,根据去年与今年的养殖面积相同列出分式方程,解方程并检验即可.【详解】解:设今年龙虾的平均亩产量是x kg ,则去年龙虾的平均亩产量是()60x −kg , 由题意得,6000480060x x =−, 解得300x =,经检验,300x =是分式方程的解且符合题意, 答:今年龙虾的平均亩产量300kg .【点睛】此题考查了分式方程的实际应用,读懂题意,正确列出方程是解题的关键. 23. 如图1,在ABC 中,AB AC =,点,M N 分别为边,AB BC 的中点,连接MN . 初步尝试:(1)MN 与AC 的数量关系是_________,MN 与AC 的位置关系是_________.特例研讨:(2)如图2,若90,BAC BC ∠=°BMN 绕点B 顺时针旋转α(α为锐角),得到BEF △,当点,,A E F 在同一直线上时,AE 与BC 相交于点D ,连接CF .(1)求BCF ∠的度数; (2)求CD 的长.深入探究:(3)若90BAC ∠<°,将BMN 绕点B 顺时针旋转α,得到BEF △,连接AE ,CF .当旋转角α满足0360α°<<°,点,,C E F 在同一直线上时,利用所提供的备用图探究BAE ∠与ABF ∠的数量关系,并说明理由.【答案】初步尝试:(1)12MN AC =;MN AC ∥;(2)特例研讨:(1)30BCF ∠=°;(2)CD =;(3)BAE ABF ∠=∠或180BAE ABF ∠∠=+° 【解析】【分析】(1)AB AC =,点,M N 分别为边,AB BC 的中点,则MN 是ABC 的中位线,即可得出结论; (2)特例研讨:(1)连接EM ,,MF ,证明BME 是等边三角形,BNF 是等边三角形,得出30FCB ∠=°;(2)连接AN ,证明ADN BDE ∽,则DN AN DE BE ==,设DE x =,则DN =,在Rt ABE △中,2,BE AE ==,则AD x =,在Rt ADN △中,222AD DN AN =+,勾股定理求得4x =−,则CD DN CN =+=+=;(3)当点,,C E F 在同一直线上时,且点E 在FC 上时,设ABC ACB θ∠=∠=,则1802BAC θ∠=°−,得出180BEC BAC∠+∠=°,则,,,A B E C 在同一个圆上,进而根据圆周角定理得出EAC EBC αθ∠=∠=−,表示BAE ∠与ABF ∠,即可求解;当F 在EC 上时,可得,,,A B E C 在同一个圆上,设ABC ACB θ∠=∠=,则1802BAC BEF θ∠=∠=°−,设NBF β∠=,则EBM β∠=,则360αβ+°,表示BAE ∠与ABF ∠,即可求解.【详解】初步尝试:(1)∵AB AC =,点,M N 分别为边,AB BC 的中点,∴MN 是ABC 的中位线, ∴12MN AC =;MN AC ∥; 故答案是:12MN AC MN AC = ;;(2)特例研讨:(1)如图所示,连接EM ,,MN MF ,∵MN 是BAC 的中位线, ∴MN AC ∥,∴90BMN BAC ∠=∠=° ∵将BMN 绕点B 顺时针旋转α(α为锐角),得到BEF △,∴,BE BM BF BN ==;90BEF BMN ∠=∠=°∵点,,A E F 在同一直线上时, ∴90AEB BEF ∠=∠=°又∵在Rt ABE △中,M 是斜边AB 的中点,∴12ME AB MB == ∴BM ME BE == ∴BME 是等边三角形,∴60ABE ∠=°,即旋转角60α=° ∴60,NBF BN BF ∠=°= ∴BNF 是等边三角形,又∵,BN NC BN NF ==, ∴NF NC =,∴∠=∠NCF NFC ,∴260BNF NCF NFC NFC ∠=∠+∠=∠=°, ∴30FCB ∠=°(2)如图所示,连接AN ,∵AB AC =,90,BAC BC ∠=°,∴4AB =,45ACB ABC ∠=∠=°,∵,90ADN BDE ANB BED ∠=∠∠=∠=°, ∴ADN BDE ∽∴DNAN DE BE ==,设DE x =,则DN =,在Rt ABE △中,2,BE AE ==,则AD x =−,在Rt ADN △中,222AD DN AN =+,∴())(222x −=+,解得:4x =−或4x −−(舍去)∴CD DN CN =+=+=,(3)如图所示,当点,,C E F 在同一直线上时,且点E 在FC 上时,,,∵AB AC =, ∴A ABC CB =∠∠,设ABC ACB θ∠=∠=,则1802BAC θ∠=°−, ∵MN 是ABC 的中位线, ∴MN AC ∥∴MNB MBN θ∠=∠=,∵将BMN 绕点B 顺时针旋转α,得到BEF △, ∴EBF MBN ≌,MBE NBF α∠=∠=, ∴EBF EFB θ∠=∠= ∴1802BEF θ∠=°−, ∵点,,C E F 在同一直线上, ∴2BEC θ∠=∴180BEC BAC ∠+∠=°, ∴,,,A B E C 在同一个圆上,∴EAC EBC αθ∠=∠=−∴()()1802BAE BAC EAC θαθ∠=∠−∠=°−−−180αθ=°−−∵ABF αθ∠=+, ∴180BAE ABF ∠∠=+°; 如图所示,当F 在EC 上时,∵,BEF BAC BC BC ∠=∠= ∴,,,A B E C 在同一个圆上,设ABC ACB θ∠=∠=,则1802BAC BEF θ∠=∠=°−, 将BMN 绕点B 顺时针旋转α,得到BEF △,设NBF β∠=,则EBM β∠=,则360αβ+°, ∴ABF θβ∠=−, ∵BFE EBF θ∠=∠=,EFB FBC FCB ∠=∠+∠∴ECB FCB EFB FBC θβ∠=∠=∠−∠=−, ∵ EBEB = ∴EAB ECB θβ∠=∠=− ∴BAE ∠ABF =∠综上所述,BAE ABF ∠=∠或180BAE ABF ∠∠=+° 【点睛】本题考查了圆周角定理,圆内接四边形对角互补,相似三角形的性质与判定,旋转的性质,中位线的性质与判定,等腰三角形的性质与判定,三角形内角和定理,三角形外角的性质,勾股定理,熟练掌握以上知识是解题的关键.24. 已知抛物线21:Q y x bx c =−++与x 轴交于()3,0,A B −两点,交y 轴于点()0,3C .(1)请求出抛物线1Q 的表达式.(2)如图1,在y 轴上有一点()0,1D −,点E 在抛物线1Q 上,点F 为坐标平面内一点,是否存在点,E F 使得四边形DAEF 为正方形?若存在,请求出点,E F 的坐标;若不存在,请说明理由.(3)如图2,将抛物线1Q 向右平移2个单位,得到抛物线2Q ,抛物线2Q 的顶点为K ,与x 轴正半轴交于点H ,抛物线1Q 上是否存在点P ,使得CPK CHK ∠=∠?若存在,请求出点P 的坐标;若不存在,请说明理由.【答案】(1)223y x x =−−+(2)()2,3E −;()1,2F(3)点P 的坐标为()10,【解析】【分析】(1)把()()300,3A C −,,代入21:Q y x bx c =−++,求出2,3b c =−=即可; (2)假设存在这样的正方形,过点E 作ER x ⊥于点R ,过点F 作FI y ⊥轴于点I ,证明,EAR AOD FID DOA ≅≅ ,可得3,1,1,2,ER AR FI IO ====故可得()2,3E −,()1,2F ; (3)先求出平移后的抛物线的解析式()214y x =−−+,得()1,4K ,()3,0H ,求出CH 为3y x =−+,分别求出2,2,KS SB CS SH KH CB ====,根据KH KS SH CB CS SB ===KSH CSB ,得CBK CHK ∠=∠,可知当点P 与点B 重合时可得结论.【小问1详解】∵抛物线21:Q y x bx c =−++与x 轴交于()3,0,A −两点,交y 轴于点()0,3C , ∴把()()300,3A C −,,代入21:Q y x bx c =−++,得, 930,3b c c −−+= = 解得,2,3b c =− =∴返回物线的解析式为:223y x x =−−+; 【小问2详解】假设存在这样的正方形DAEF ,如图,过点E 作ER x ⊥于点R ,过点F 作FI y ⊥轴于点I ,∴90,AER EAR∠+∠=°∵四边形DAEF 是正方形,∴,90,AE AD EAD =∠=° ∴90,EAR DAR∠+∠=° ∴,AER DAO ∠=∠ 又90,ERA AOD ∠=∠=° ∴AER DAO ≅ ,∴,,AR DOER AO == ∵()()3,0,0,1,A D −−∴3,1,OA OD == 1,3,AR ER ∴==∴312,OR OA AR =−=−=∴()2,3E −;同理可证明:FID DOA ≅ ,∴1,3,FI DO DI AO ==== ∴312,IO DI DO =−=−=∴()1,2F ;【小问3详解】∵()222314,y x x x =−−+=−++ ∴抛物线的顶点坐标为()14−,,对称轴为直线=1x −, 令0,y =则2x 2x 30−−+=,解得,123,1,x x =−= ∴()1,0,B∴将抛物线的图象右平移2个单位后,则有:()1,4K −,对称轴为直线()121,12,0x H =−+=+,即()3,0,H∴点B 在平移后的抛物线的对称轴上,∴312,4,HB HO OB KB =−=−==∴KH CB =CH ==设直线CH 的解析式为y kx b =+, 把()()3003,,,代入得,30,3k b b += = 解得,1,3k b =− = ∴直线CH 的解析式为3y x =−+, 当1x =时,132,y =−+=∴()1,2,S 此时422,KS =−=∴CS =∴HS CH CS =−=−=又KH KS HS CH CS BS ===∴KHKS HS CH CS BS ===,∴KSH CSB ,∴CBK CHK ∠=∠,所以,当点P 与点B 重合时,即点P 的坐标为()10,,则有CPK CHK ∠=∠.【点睛】本题是二次函数综合题,考查了待定系数法求解析式,二次函数的性质,全等三角形的判定与性质,正方形的性质,相似三角形的判定与性质等知识,运用数形结合思想解决问题是解题的关键.。

湖南省长沙市2018年中考数学试卷及答案解析(word版)

湖南省长沙市2018年中考数学试卷及答案解析(word版)

2018年湖南省长沙市中考数学试卷一、选择题(在下列各题的四个选项中,只有一项是符合要求的,请在答题卡中填涂符合题意的选项,本大题共12个小题,每小题3分,共36分)1.(3.00分)﹣2的相反数是()A.﹣2 B.﹣ C.2 D.2.(3.00分)据统计,2017年长沙市地区生产总值约为10200亿元,经济总量迈入“万亿俱乐部”,数据10200用科学记数法表示为()A.0.102×105B.10.2×103C.1.02×104D.1.02×1033.(3.00分)下列计算正确的是()A.a2+a3=a5 B.3 C.(x2)3=x5D.m5÷m3=m24.(3.00分)下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cm C.5cm,5cm,10cm D.6cm,7cm,14cm5.(3.00分)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.6.(3.00分)不等式组的解集在数轴上表示正确的是()A.B.C.D.7.(3.00分)将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A.B.C.D.8.(3.00分)下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件9.(3.00分)估计+1的值是()A.在2和3之间B.在3和4之间C.在4和5之间D.在5和6之间10.(3.00分)小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是()A.小明吃早餐用了25minB.小明读报用了30minC.食堂到图书馆的距离为0.8kmD.小明从图书馆回家的速度为0.8km/min11.(3.00分)我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为()A.7.5平方千米B.15平方千米 C.75平方千米 D.750平方千米12.(3.00分)若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),则符合条件的点P()A.有且只有1个B.有且只有2个C.有且只有3个D.有无穷多个二、填空题(本大题共6个小题,每小题3分,共18分)13.(3.00分)化简:=.14.(3.00分)某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如下扇形统计图,则“世界之窗”对应扇形的圆心角为度.15.(3.00分)在平面直角坐标系中,将点A′(﹣2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是.16.(3.00分)掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为偶数的概率是.17.(3.00分)已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为.18.(3.00分)如图,点A,B,D在⊙O上,∠A=20°,BC是⊙O的切线,B为切点,OD的延长线交BC于点C,则∠OCB=度.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第22、23题每小题6分,第25、26题每小题6分,共66分。

精品解析:2023年湖南省长沙市开福区青竹湖湘一外国语学校中考三模化学试题(原卷版)

精品解析:2023年湖南省长沙市开福区青竹湖湘一外国语学校中考三模化学试题(原卷版)
②维生素具有维持身体健康的重要作用
A.AB.BC.CD.D
14.同学们学完初中化学后掌握了很多生活除渍或除垢的方法。下列有关说法或做法正确的是
A.可以用盐酸除金属表面的铁锈
B.水垢的主要成分是碳酸钙和氢氧化镁,可以用烧碱溶液除去水垢
C.稀硫酸可以除去油烟机上的油污
D.洗碗时用洗洁精去油污的原理是洗洁精能溶解油污
(3)将乙的饱和溶液变为不饱和溶液的方法有______(写一种)。
19.世界棉花看中国,中国棉花君新疆1新疆长绒棉,世界顶级,长年供不应求。长绒棉可做衣被,暖和、透气、舒适。长绒棉还可以用来制作纸币,人民币的主要成分就有棉花纤维。
(1)棉花、羊毛和涤纶是常见 服装面料纤维,为了鉴别它们,可以分别点燃闻气味,其中燃烧能产生烧焦羽毛气味的纤维是______。
C.乌头碱属于有机物
D.乌头碱中 、 原子个数比为
5.漂白粉可用于自来水的杀菌消毒,其有效成分是次氯酸钙[化学式为Ca(C1O)2]。次氯酸钙可发生如下反应: ,则X的化学式为
A. Cl2B. CO2C. CaCl2D. O2
6.“归纳与比较”是化学学习的主要方法,下列关于 与 的说法正确的是
A.组成:二氧化碳与一氧化碳都由碳元素和氧元素组成
步骤⑤:取少量“暖宝宝”中的粉末于烧杯中,加入一定量的稀盐酸,观察到产生气泡,再次证明“暖宝宝”中含有铁。
(3)小黄发现上述实验步骤⑤中用到了稀盐酸,如果将反应后的废液直接倒入下水道可能会因为盐酸过量导致严重的水污染。小黄取少量步骤⑤实验后得到的废液滴加两滴稀氢氧化钠溶液,观察到无明显现象,则步骤⑤实验后得到的废液中的溶质为_______(填化学式)。小黄于是将上述废液倒入废液桶后集中处理。

精品解析:湖南省长沙市长郡教育集团2022-2023学年八年级上学期期中考试数学试题(解析版)

精品解析:湖南省长沙市长郡教育集团2022-2023学年八年级上学期期中考试数学试题(解析版)
∴ ,故③错误;
故答案为:①②④.
【点睛】此题主要考查等边三角形的性质与判定,全等三角形的性质与判定,角平分线的性质,解题的关键是熟知全等三角形的判定定理与作辅助线的方法.
【详解】解:∵AB⊥BD,ED∥AB,
∴∠B=∠D=90°,
又∵AB=ED,
∴当∠A=∠E时,△ABC≌△EDC(ASA);
当∠ACB=∠ECD时,△ABC≌△EDC(AAS);
当BC=DC时,△ABC≌△EDC(SAS);
当AC=EC时,Rt△ABC≌Rt△EDC(HL);
故答案 ∠A=∠E或∠ACB=∠ECD或BC=DC或AC=AE.
A.54°B.56°C.60°D.66°
【答案】D
【解析】
【分析】根据三角形内角和定理求出 ,根据全等三角形的性质解答即可.
【详解】解:如图,
由三角形内角和定理得, ,
∵两个三角形全等,
∴ ,
故选:D.
【点睛】本题考查的是全等三角形的性质、三角形内角和定理,掌握全等三角形的对应角相等是解本题的关键.
【详解】解:设这个多边形的边数是n,根据题意得:
(n−2)⋅180°=360°×2,
解得:n=6,
故选:D.
【点睛】本题主要考查了多边形的内角和以及外角和,已知多边形的内角和与外角和的关系求边数,可以转化为方程的问题来解决,解题的关键是掌握内角和公式.
9.如图,在等边△ABC中,BD平分∠ABC交AC于点D,过点D作DE⊥BC于点E,且CE=1.5,则AB的长为
∵(2x+m)与(x+3)的乘积中不含x的一次项,
∴6+m=0,
解得:m=-6,
故选:A.
【点睛】本题考查了多项式乘多项式,能正确根据多项式乘多项式法则进行计算是解此题的关键.

精品解析:2022年湖南省益阳市中考数学真题(原卷版)

精品解析:2022年湖南省益阳市中考数学真题(原卷版)
A. B. C. D.
4.若x=﹣1是方程x2+x+m=0的一个根,则此方程的另一个根是( )
A.﹣1B.0C.1D.2
5.已知一个函数的因变量y与自变量x的几组对应值如表,则这个函数的表达式可以是( )
x

﹣1
0
1
2

y

﹣2
0
2
4

A.y=2xB.y=x﹣1C.y= D.y=x2
6.在某市组织的物理实验操作考试中,考试所用实验室共有24个测试位,分成6组,同组4个测试位各有一道相同试题,各组的试题不同,分别标记为A,B,C,D,E,F,考生从中随机抽取一道试题,则某个考生抽到试题A的概率为( )
26.如图,矩形ABCD中,AB=15,BC=9,E是CD边上一点(不与点C重合),作AF⊥BE于F,CG⊥BE于G,延长CG至点C′,使C′G=CG,连接CF,AC′.
(1)直接写出图中与△AFB相似 一个三角形;
A. 5B. 4C. 3D. 2
9.如图,在△ABC中,BD平分∠ABC,以点A为圆心,以任意长为半径画弧交射线AB,AC于两点,分别以这两点为圆心,以适当的定长为半径画弧,两弧交于点E,作射线AE,交BD于点I,连接CI,以下说法错误的是( )
A.I到AB,AC边的距离相等
B CI平分∠ACB
C.I是△ABC的内心
2022年湖南省益阳市中考数学试卷
一、选择题(本题共10个小题,每小题4分,共40分;每小题给出的四个选项中,只有一项是符合题目要求的)
1.四个实数﹣ ,1,2, 中,比0小的数是( )
A.﹣ B.1C.2D.
2.下列各式中,运算结果等于a2 是( )
A.a3﹣aB.a+aC.a•aD.a6÷a3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年湖南省长沙市中考数学试卷
一、选择题(在下列各题的四个选项中,只有一项是符合要求的,请在答题卡中填涂符合题意的选项,本大题共12个小题,每小题3分,共36分)
1. ﹣2的相反数是()
A. ﹣2
B. ﹣
C. 2
D.
2. 据统计,2017年长沙市地区生产总值约为10200亿元,经济总量迈入“万亿俱乐部”,数据10200用科学记数法表示为()
A. 0.102×105
B. 10.2×103
C. 1.02×104
D. 1.02×103
3. 下列计算正确的是()
A. a2+a3=a5
B.
C. (x2)3=x5
D. m5÷m3=m2
4. 下列长度的三条线段,能组成三角形的是()
A. 4cm,5cm,9cm
B. 8cm,8cm,15cm
C. 5cm,5cm,10cm
D. 6cm,7cm,14cm
5. 下列四个图形中,既是轴对称图形又是中心对称图形的是()
A. B. C. D.
6. 不等式组的解集在数轴上表示正确的是()
A. B.
C. D.
7. 将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()
A. B. C. D.
8. 下列说法正确的是()
A. 任意掷一枚质地均匀的硬币10次,一定有5次正面向上
B. 天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨
C. “篮球队员在罚球线上投篮一次,投中”为随机事件
D. “a是实数,|a|≥0”是不可能事件
9. 估计+1的值是()
A. 在2和3之间
B. 在3和4之间
C. 在4和5之间
D. 在5和6之间
10. 小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是()
学.科.网...学.科.网...
A. 小明吃早餐用了25min
B. 小明读报用了30min
C. 食堂到图书馆的距离为0.8km
D. 小明从图书馆回家的速度为0.8km/min
11. 我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为()
A. 7.5平方千米
B. 15平方千米
C. 75平方千米
D. 750平方千米
12. 若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),则符合条件的点
P()
A. 有且只有1个
B. 有且只有2个
C. 有且只有3个
D. 有无穷多个
二、填空题(本大题共6个小题,每小题3分,共18分)
13. 化简:=_____.
14. 某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如下扇形统计图,则“世界之窗”对应扇形的圆心角为_____度.
15. 在平面直角坐标系中,将点A′(﹣2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是_____.
16. 掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为偶数的概率是_____.
17. 已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为_____.
18. 如图,点A,B,D在⊙O上,∠A=20°,BC是⊙O的切线,B为切点,OD的延长线交BC于点C,则∠OCB=_____度.
三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第22、23题每小题6分,第25、26题每小题6分,共66分。

解答时写出必要的文字说明、证明过程或演算步骤)
19. 计算:(﹣1)2018﹣+(π﹣3)0+4cos45°
20. 先化简,再求值:(a+b)2+b(a﹣b)﹣4ab,其中a=2,b=﹣.
21. 为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图(得分为整数,满分为10分,最低分为6分)
请根据图中信息,解答下列问题:
(1)本次调查一共抽取了名居民;
(2)求本次调查获取的样本数据的平均数、众数和中位数;
(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,
帮社区工作人员估计需准备多少份“一等奖”奖品?
22. 为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山.汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.
(1)开通隧道前,汽车从A地到B地大约要走多少千米?
(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:
≈141,≈1.73)
23. 随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.
(1)打折前甲、乙两种品牌粽子每盒分别为多少元?
(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?
24. 如图,在△ABC中,AD是边BC上的中线,∠BAD=∠CAD,CE∥AD,CE交BA的延长线于点
E,BC=8,AD=3.
(1)求CE的长;
(2)求证:△ABC为等腰三角形.
(3)求△ABC的外接圆圆心P与内切圆圆心Q之间的距离.
25. 如图,在平面直角坐标系xOy中,函数y=(m为常数,m>1,x>0)的图象经过点P(m,1)和Q(1,m),直线PQ与x轴,y轴分别交于C,D两点,点M(x,y)是该函数图象上的一个动点,过点M 分别作x轴和y轴的垂线,垂足分别为A,B.
(1)求∠OCD的度数;
(2)当m=3,1<x<3时,存在点M使得△OPM∽△OCP,求此时点M的坐标;
(3)当m=5时,矩形OAMB与△OPQ的重叠部分的面积能否等于4.1?请说明你的理由.
26. 我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.
(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”的有;
②在凸四边形ABCD中,AB=AD且CB≠CD,则该四边形“十字形”.(填“是”或“不是”)
(2)如图1,A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点
E,∠ADB﹣∠CDB=∠ABD﹣∠CBD,当6≤AC2+BD2≤7时,求OE的取值范围;
(3)如图2,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a,b,c为常数,a>0,c<0)与x轴交于A,C 两点(点A在点C的左侧),B是抛物线与y轴的交点,点D的坐标为(0,﹣ac),记“十字形”ABCD的面积为S,记△AOB,△COD,△AOD,△BOC的面积分别为S1,S2,S3,S4.求同时满足下列三个条件的抛
物线的解析式;
①=;②=;③“十字形”ABCD的周长为12.。

相关文档
最新文档