直流电磁铁线圈流计算
电磁铁设计计算书
电磁铁设计计算书河北科技大学电气工程学院 张刚电磁铁设计中有许多计算方法,但有许多计算原理表达的不够清晰,本人参照“电磁铁设计手册”一书,对相关内容进行了整理补充,完成了一个直流110V 拍合式电磁铁的计算。
设计一个拍合式电磁铁,它的额定工作行程为4mm ,该行程时的电磁吸力为0.8公斤,用在电压110V 直流电路上,线圈容许温升为65℃。
1) 初步设计 第一步:计算极靴直径电磁铁的结构因数为:0.82.2FK φδ==≈查空气气隙磁感应强度与结构因数的经济表格,如下图所示:从图中可查得,气隙磁感应强度最好取为p B =2000Gs 。
极靴的表面积为:222500050000.852000n p S F cm B ⎛⎫⎛⎫==⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭极靴直径为:4452.523.14nn S d cm π⨯=== 取n d =2.5cm ,则24.9n S cm =。
磁感应强度p B 增加为2040Gs 。
第二步,计算铁芯直径材料采用低碳钢,其磁感应强度取cm B =11000Gs ,漏磁系数σ取2,则:222040 4.91.1811000p ncm cmB S S cm B σ⨯⨯===铁芯直径为:1.52c d cm ===取 1.5c d cm =,则21.77cm S cm =第三步,计算线圈磁动势线圈的磁动势NI 为工作气隙磁动势、铁芯磁动势和非工作气隙磁动势的和,记为:()()()cm n NI NI NI NI δ=++计算中,可取:()()()cm n NI NI a NI +=这里a=0.15~0.3,也就是铁芯磁动势和非工作气隙磁动势的和约占总磁动势的15%~30%。
因此,线圈的磁动势应为:()()()427102040100.4109321141010.3ppB B NI a a δμδμπ---⋅⨯⨯⨯==⋅=≈--⨯-安匝 系统一般要求电压降到85%U n 时仍能正常工作,在额定电压U n 下的磁动势为:()110950.85NI NI ==安匝计算温升时,一般取额定电压U n 的1.05~1.1倍,此时的磁动势为:()2 1.051150NI NI =⨯=安匝第四步,计算线圈尺寸 1)推导计算线圈厚度公式线圈的温升公式为:m PSθμ=⋅ 这里: θ:温升,单位℃;P :功率,单位W ;m μ:线圈的散热系数,单位2/W cm ⋅℃;S :线圈的散热表面积,单位2cm 。
第一章习题PLC应用技术要点与题解
Kiteptin naami: PLC应用技术要点与题解第一章习题(P8)(第二节习题详解)I-l 简述接触器、继电器各有什么特点?其主要区别是什么?答:接触器是利用电磁力的作用使主触点接通或断开电动机或其他负载主电路的控制电器。
接触器具有比工作电流大数倍的接通能力和分断能力,可以实现频繁的远距离操作。
接触器最主要的用途是控制电动机的启动、正反转、制动和调速等。
继电器是一种根据特定形式的输入信号的变化而动作的自动控制器。
它与接触器不同,主要用于反映控制信号变化,其触点通常接在控制电路中。
继电器与接触器的主要区别:(1)接触器感应固定的电压信号;继电器可感应多种输入信号的变化,包括电压、电流、速度、时间、温度、压力等。
(2)接触器主触点容量大,用于控制主电路;继电器则主要用来实现各种逻辑控制。
(3)接触器均带有灭弧装置,继电器则没有。
1-2交流电磁线圈中通入直流电会发生什么现象?答:交流电磁线圈的特点是匝数少、电阻小,靠感抗限制线圈电流,通入直流电后因感抗为零,将会造成线圈电流过大而烧毁。
1-3直流电磁线圈中通入交流电会发生什么现象?答:直流电磁线圈的特点是匝数多、电阻大,靠电阻限流,而铁心由整块工程纯铁制成,这样通人交流电后,将在铁心中严生较大的磁滞和涡流损耗,间接造成线圈过热而烧毁。
1-4 带有交流电磁机构的接触器,线圈通电后衔铁被卡住,会发生什么现象?为什么?答:根据交流电磁机构的特性可知,交流电磁铁的线圈电流,与工作气隙a成正比,如果线圈通电后衔铁被卡住,工作气隙a-直很大,因此电磁线圈的电流J也一直很大,电磁线圈将被烧毁。
1-5 带有直流电磁机构的接触器是否允许频繁操作?为什么?答:带有直流电磁机构的接触器适于频繁操作,根据直流电磁机构吸力特性可知,直流电磁机构线圈的电流l与工作气隙d无关,因此线圈电流J的大小不受衔铁状态的影响,所以带有直流电磁机构的接触器频繁操作时,不会造成线圈过热。
直流电机的磁化曲线磁化曲线主磁通与励磁磁动势
1 t
pn
Ea t 0 e d t 4Ny 60
44
Ea
4Ny
pn 60
S 2a
pN 60a
n
Cen
对制成的电机,Ce=pN/60a为一个常数,称为电动势常数
若不计饱和影响,有 其中Kf 为比例常数
Kf If
感应电动势的计算公式为
Ea Cen CeK f I f n Gaf I f
枢是转的,当S极下导线转到N极
下如果导线电流的方向不变电磁
力的方向就反了;怎么办呢?
2
• 当安装换向器以后,将直流电压加于电刷 (固定)端,直流电流经电刷流过电枢上的线圈, 则产生电磁转矩,电枢在电磁转矩的作用下就旋 转起来。
由于换向器配合电刷对 电流的换向作用,使得 线圈边只要处在N极下, 其中通过电流的方向总 是由电刷A流入的方向; 而在S极下时,总是从 电刷B流出的方向,就 使电动机能够连续地旋 转。
12.4
C 由
Ea
n
e
,得
Ea Ce n
250 12.4 2850
70.7
104WB
46
二、电磁转矩的计算
一根导体所受的平均电磁力和一根导体所受的平均转矩为:
fav Bavl ia
和
电机总电磁转矩用Te表示,为
Tav
fav
D 2
Te
B l av
Ia
2a
N
D 2
功率输出,在发电机中,指无电功率输出)。所以
直流电机的空载磁场是指励磁磁势单独建立的磁
场。
33
(一)、空载时电机内部磁场的分布情况
直流电磁铁设计
直流电磁铁设计共26页编写: ______________________校对: _______________________直流电磁铁设计电磁铁是一种执行元件,它输入的是电能,输出的是机械能。
电能和机械能的变换是通过具体的电磁铁结构来实现的。
合理的电磁铁结构是能量变换效率提高的保证。
电磁铁设计的任务是合理的确定电磁铁的各种结构参数。
确定电磁铁的各种结构参数是一个相当复杂的任务,下面我们探讨确定电磁铁结构参数的一般方法。
电磁铁吸合过程是一个动态过程,设计是以静态进行计算.一、基本公式和一般概念1、均匀磁场B丄(T)S2、磁势F=NI,电流和匝数的乘积(A)3、磁场强度日二寻(A/m),建立了电流和磁场的关系。
该公式适用于粗细均匀的磁路4、磁导率■二旦建立了磁场强度和磁感应强度(磁通密度)的关系 <H^=4 n X 10-7享/米相对磁导率r='-#05、磁通①二巴R M磁阻R M二+这称为磁路的欧姆定律,由于铁磁材料的磁导率卩不是常数,使用磁阻计算磁路并不方便,磁阻计算一般只用于定性。
真空中无限长螺线管B= — it °nl 。
2磁效率电磁铁工作循环图当电磁铁接上电源,磁力还不足克服反力,按0~2的直线进行磁化,达到期初始工作点2。
当磁力克服反力使气隙减小直至为零时, 工作点由2〜3。
断电后工作点由3〜0。
面积I 为断电后剩留的能量,面积H 为作功前电磁铁储存的能量,面积皿为电磁铁作的功6、磁感应强度的定义式 B=—,磁感应强度与力的关系。
qv7、 B=卩o nl 。
对于长螺线管,端面处的我们的目的是使I和H的面积最小,皿的面积最大。
面积I表示电磁铁作完功后的剩磁,(1)减小面积I可用矫顽力小的电铁。
(2)提咼制造精度,使吸合后气隙最小,但要防止衔铁粘住。
面积H表示作功前所储存的能量,在衔铁位置一定时,取决于漏磁通,漏磁通大,面积H就大。
9、机械效率K i=-AA0A :输出的有效功A0 :电磁铁可能完成的最大功10、重量经济性系数K2= —A0G=电磁铁重量。
磁路、异步电动机及继电器接触控制
磁滞回线
南京航空航天大学
磁路的分析方法
用铁磁材料做成的铁芯线圈,可将磁通基本上都集 中于由铁芯所构成的闭合回路内,形成磁路。各种 电机、电器正是用此原理制成的。 分析磁路的方法主要依据安培环路定律。
南京航空航天大学
磁路的基尔霍夫第二定律
v v H d l = H l + H l u u 0 0 ∫
南京航空航天大学
四、磁导率 磁感应强度B与磁场中的介质的导磁性质有关 铁磁性物质或磁性物质
B µ = H
真空磁导率:
µ 0 = 4π × 10 −7 H m
相对磁导率
µ µr = µ0
磁性材料 非磁性材料
南京航空航天大学
高导磁性 磁饱和性
磁畴理论 磁滞性
Hc称为矫顽磁力。(矫顽力) Br称为剩磁感应强度 磁性材料的分类 1. 软磁材料: 2. 硬磁材料: 3. 矩磁材料:
U 直流电磁铁: , U 为外加直流电压;R I= R
为线圈电阻;吸合前后电流
I
不变。
δ ↓⇒ Rom =
I
δ µo So
↓⇒ IN不变, Φ o ↑⇒ F ↑
U ≈ 4.44 fNΦ om ,U 若不变,吸合 F 交流电磁铁: 前后力不变。
δ ↓⇒ Rom ↓⇒ H omδ ↓⇒ I m
若吸合不上,则过大使线圈发热而烧坏。
南京航空航天大学
交流电磁铁 结论:吸合前的磁动势要比吸合后的磁动势大,因此 ,励磁电流在衔铁吸合前大,在吸合后小,这与直流 电磁铁不一样
1 Φ 10 2 F= = Bom S o 4 µ o S o 16π
2 om 7
Φ om :气隙磁通幅值;
Bom :气隙中磁感应强度幅值
电磁铁的工作原理
电磁铁的工作原理一、引言电磁铁是一种重要的电磁设备,广泛应用于工业生产、科研实验以及日常生活中。
本文将详细介绍电磁铁的工作原理,包括其基本构造、电流通路和磁场产生机制。
二、电磁铁的基本构造1. 线圈:电磁铁的核心部件是由导电线绕成的线圈,一般采用高导电性的铜线。
线圈通常呈现螺旋状,可以根据使用需求设计成不同形状和尺寸。
2. 铁芯:线圈的绕组通常套在一个铁心上,以增加磁场的强度。
铁芯通常采用高磁导率的材料,如铁、镍等。
3. 绝缘材料:为了防止线圈的绕组发生短路,绝缘材料被用于包裹线圈。
常见的绝缘材料包括胶带、橡胶等。
4. 支架:为了保持线圈和铁芯的稳定性,电磁铁还需要支架来固定整个结构。
三、电流通路1. 直流电磁铁:当直流电流通过电磁铁的线圈时,形成一个稳定的电磁场。
直流电流通过线圈的一个端口进入,然后通过线圈绕组,最终离开线圈另一个端口。
这样形成的电流通路使得电磁铁的线圈处于通电状态,产生磁场。
2. 交流电磁铁:当交流电流通过电磁铁的线圈时,电流的方向会周期性地改变。
线圈中的交流电流会产生一个周期性变化的磁场,其强度和方向也随之改变。
这样,电磁铁就可以实现磁场的翻转和变化。
四、磁场的产生机制1. 安培定律:根据安培定律,电流通过线圈时会在其周围产生一个磁场。
电流的强弱和方向决定了磁场的强弱和方向。
电磁铁的磁场主要是由通过线圈的电流产生的。
2. 磁感应强度:电磁铁的磁感应强度与线圈中的电流密切相关。
当电流增大,磁感应强度也随之增大;当电流减小或消失,磁感应强度也随之减小或消失。
3. 磁场的方向:根据右手定则,当右手五指从电流进入线圈的一端指向另一端时,右手大拇指所指的方向就是磁场的方向。
通过控制电流的方向,可以改变磁场的方向。
五、应用领域电磁铁的工作原理使其在许多领域得到广泛应用:1. 电磁铁作为电磁吸盘,可以用于起重、搬运重物等工业应用;2. 电磁铁还可以应用于电动机、发电机等电力设备中,以产生磁场从而实现能量转换;3. 电磁铁在医学影像设备中也有应用,如核磁共振成像等;4. 家用电器中的电磁锁、电磁炉等设备也离不开电磁铁的工作原理。
电磁铁的设计与计算
为了减小交流电磁铁在闭合位置的吸力脉动 一般均在交流电磁铁的磁极面上装置分磁环
第四节 交流电磁铁的设计
➢ 交流电磁铁设计的特点 交流并联电磁铁为恒磁链电磁铁(电压线圈)。
线圈电流随行程减小而减小,在衔铁打开位置与 衔铁闭合位置线圈电流之比,约为几倍至十几 倍。在衔铁闭合位置,为防止剩磁的影响,引 入一个非磁性间隙—去磁间隙
➢ 决定铁心尺寸 对于有两个相同工作气隙的交流电磁铁
F0
Bm 2 2 Ac
40
Ac
20 F0
Bm 2
➢ 决定铁心尺寸 对于有三个工作气隙的交流电磁铁
Ac
40 F0
1
1
2
Bm
2
Ac1
Ac
0.6 ~ 0.7
Ac1 :每个边柱铁心截面积
➢ 计算线圈匝数,在线圈电压为额定电压下, 且衔铁在闭合位置
2rc
➢ 计算线圈高度及厚度 线圈填充系数
d2N
ktc
4 h
初步设计时取 : ktc 0.5
R 2rc N 2
ktc h
散热面积
A A1 k A2
A1 : 线圈外表面积 A2 : 线圈内表面积
k : 线圈内表面与外表面散热率之比(k kT 2 kT1 )
➢ 计算线圈高度及厚度 散热面积
IN U m U U f 1.65 ~ 2.5 U U f
U
m
2
cm Bcm Ac
2
2
Uf
cm Bcm Ac
2 f
2 f
0 Ac
f
0 Ac f
11 1 f
IN
YDF-42 电磁铁的设计计算
F= ( Φ )2
1
14
5000 S(1+ αδ)
忽略铁磁阻和漏磁通 这样气隙中的磁通
=IW.G 108 15
式中
磁导 G =
2
πd c
0
q πRd 2 π × 30 × 0.252
W= 1.28 IW = 1.28 × 961 =1093 匝 jd 2 18 × 0.252
4.7 确定电阻
线圈平均匝长
lcp= π DH + D1 10 2
DH=D1+2b k 11 D1=dc+2 12
=0.785
厘米
2
17
F= ( Φ )2
1
= (14415) 2
1
=8.4 公斤
5000 S(1 + αδ) 5000 0.785(1 + 4 × 0.065)
可见吸力是满足设计要求的
5.2 线圈温升计算
线圈容许温升 =110 查参考资料可得散热系数为
可见是合格的
6 结论
到目前为止 虽然设计电磁铁的方法有许多种 但是都还没有一套既严谨准确又使计
Байду номын сангаас
算简便的方法 很大部分还只能依靠经验数据来选择 经过某些理论计算 最后试制样品
加以验证 证实所设计的结构参数是否合理 必要时作适当修改 本产品试验数据如下
电压 V 工作行程 mm 吸合力 kg 电阻
吸力 F=6.5kg 电阻 R=30
lk
图 1 电磁铁草图 4 设计程序
根据已测绘出的基本尺寸 通过理论计算确定线圈的主要参数 并验算校核所设计出
D3 D2 bk dc
的电磁铁性能 4.1 确定衔铁直径 dc
电磁铁的基本公式及计算
电磁铁的基本公式及计算1.磁路基本计算公式B =μH,φ=ΛIW,∑φ=0IW=∑HL, Λ=μS/LB—磁通密度(T);φ—磁通〔Wb);IW—励磁安匝(A);Λ一磁导(H);L一磁路的平均长度(m) }S—与磁通垂直的截面积(m2);H一磁场强度(A/m);μ一导磁率(H/m) ,空气中的导磁率等于真空中的导磁率μ0=0 .4π×10-8 H/m。
2,电磁铁气隙磁导的计算电磁铁气隙磁导的常用计算公式列于表“气隙磁导的计算公式”中。
表中长度单位用crn,空气中的导磁率μ0为0 .4π×10-8 H/m。
气隙磁导的计算公式3·电磁铁吸力基本计算公式 (1)计算气隙较小时的吸力为10210S392.0⨯=φF式中:F —电磁铁吸力(N); φ—磁极端面磁通(Wb); S —磁极表面的总面积(cm 2)。
(2)计算气隙较大时的吸力为10210)a S(1392.0⨯+=δφF式中:a —修正系数,约为3~5;δ—气隙长度(cm )。
上式适用于直流和交流电磁铁的吸力计算。
交流时,用磁通有效值代入,所得的吸力为平均值。
例:某磁路如图所示。
已知气隙δ为0.04cm ,铁芯截面S 为4.4cm 2,线圈磁势IW 为1200安匝。
试求在气隙中所产生的磁通和作用在衔铁上的总吸力。
解:(1)一个磁极端面上的气隙磁导为000111004.04.4μμδμδ=⨯==S G 由于两个气隙是串联的,所以总磁导为G δ = G δ1/2=55μ0=55×0.4π×10-8=68.75×10-8(H ) (2)气隙中所产生的磁通为φδ=IW G δ =1 200×68.75×10-8 =8 .25×10-4 (Wb) (3)总吸力为)(1213104.425.8392.0210S 392.02102102N F =⨯⨯⨯=⨯⨯=δδφ 式中乘2是因为总吸力是由两个气隙共同作用所产生的。
低压电器中直流电磁铁线圈参数计算
低压电器中直流电磁铁线圈参数计算作者:吴建生曾谊朱千彬陆胜利李钱公陈威挺来源:《科学与财富》2020年第27期摘要:直流电磁铁是低压电器中重要执行元件,将电能转变为机械能的电器或电器部件。
根据实际设计情况快速地计算或修正电磁铁电磁铁线圈尺寸、直流电阻、线圈绕线直径等参数,使电磁吸力及电磁铁的可靠性达到直流电磁铁最优化设计需求。
关键词:磁通势;电磁铁结构;线圈导线匝数;线圈导线直径;线圈导线直流电阻0引言一般地,直流电磁铁磁场与电流大小、线圈绕线匝数及中心的铁磁体有关。
所以设计人员在设计电磁铁时,会注重线圈绕线的分布和铁磁体选择。
低压电器中涉及到的各种形式电磁铁是一种通电后对铁磁物质产生吸力,将电能转变机械能的电器或电器部件。
当在通电螺线管内部插入铁芯后,铁芯被通电螺线管产生的磁场所磁化,即磁化后的铁芯也变成了一个磁体,则大大增强磁场,从而使动铁芯可靠动作,属非永久磁铁,人为地将电磁铁磁性启动或消除。
因此在工业电器设计、制造、检验过程中经常涉及到电磁铁工作气隙、线圈匝数、直流电阻、线圈绕线直径及铁芯尺寸计算,线圈绕线材质、铁芯材质选择。
一般地,电磁铁的磁路及相关理论计算十分复杂和繁琐,通常在实际设计工作中,工程技术人员往往根据电磁铁结构、已知尺寸及参数计算待确定的技术参数。
再对所得数据进行试验验证和数据校核,使新设计的电磁铁具有结构简单、经济、可靠度高、寿命长等优点。
1、电磁铁线圈形状选择应根据实际情况设计成圆形或矩形状,同时应考虑到线圈是否需要骨架及线圈骨架材质选择,具体选择原则如下:矩形线圈主要用于交流电磁铁,交流中的导磁体磁通是交变的,系统中有涡流和磁滞损耗,方形线圈有利于散热,如交流接触器线圈通常设计成矩形;直流电磁铁导磁体多选用电工纯铁材料进行加工,同时圆形棒料有利于机械切削加工,故直流电磁铁线圈及线圈骨架多采用圆形。
2、电磁线圈计算2.1电磁铁计算已知数据(图1所示)①.电磁铁额定工作电压Ue(V)②.铁芯长度LC(m)③.铁芯半径rC(m)④.铁芯直径DC(m)⑤.铁芯与线圈之间间隙ΔC1(m)2.2外形尺寸计算①.线圈厚度 2nrC,n-线圈厚度比值系数,小尺寸电磁铁n=0.5~2.6;;;;;; 线圈绕线匝数计算0.8,大尺寸电磁铁n=0.25~0.5②.内径计算DC1DC2C12rCC1,式中ΔC1-线圈和铁芯之间间隙。
直流电磁铁的励磁电流仅与线圈电阻有关课件
直流电磁铁的吸力
直流电磁铁的吸力依据上述基本公式直接求取。
33
交流电磁铁的吸力
交流电磁铁中磁场是交变的, 设
B0 Bm sin t
则吸力瞬时值为:
吸力的波形:
f
107 8π
B02 S0
107 8π
Bm2 S0
sin2
t
f Fm
Fm sin2 t
1 2
Fm
1 2
Fm
cos2
t
O
t
吸力平均值为:
漏磁产生)。
由于电阻 R1 和感抗 X1 (或漏磁通)较小,其两端
的电压也较小,与主磁电动势 E1比较可忽略不计,
则 U1 E1 U1 E1 4.44 f m N1
10
对二次侧,根据KVL:
E 2
R2 R2
II22
EjXσ22I2U2U 2
式中 R2 为二次绕组的电阻;
i1
u+– 1e+–σe+–11
一次侧接交流电源,
+
u1
–
e+–σe11+–
2 1
二次侧接负载。
N1
i2
+–e2e+–2u+–2 Z N2
dΦ 有载时, 铁心中
u1 i1 ( i1N1)
e1 N1
dt
dΦ
主磁通 是由 一次、二次绕
1
e2 N 2 dt
组磁通势共同 产生的合成磁
eσ1
Lσ1
di1 dt
i2 ( i2N2)
3.电流互感器 实现用低量程的电流表测量大电流
i1 (被测电流)
R 使用注意事项:
N1 (匝数少)
直流电磁铁线圈执行标准
直流电磁铁线圈执行标准
直流电磁铁线圈是一种常见的电磁设备,它通常由绝缘线圈和铁芯组成,通过在线圈中通电产生磁场。
直流电磁铁线圈被广泛应用于工业自动化、电力系统、医疗设备等领域,因此对其执行标准至关重要。
首先,直流电磁铁线圈的执行标准需要确保其安全可靠。
这包括线圈的绝缘性能、耐压能力、接地保护等方面的要求,以确保在使用过程中不会发生漏电、触电等安全事故。
其次,直流电磁铁线圈的执行标准需要满足其在工作性能上的要求。
例如,线圈的电阻、电感、磁场强度等参数需要符合相关标准,以确保其在工作时能够稳定可靠地产生所需的磁场。
另外,直流电磁铁线圈的执行标准还需要考虑其环保性能。
这包括线圈的材料选择、能耗控制等方面的要求,以确保其在生产和使用过程中对环境的影响尽可能小。
总之,直流电磁铁线圈执行标准的制定和执行对于保障设备安全可靠、提高生产效率、保护环境都具有重要意义。
只有严格执行
相关标准,才能确保直流电磁铁线圈在各个领域的应用都能达到预期的效果。
直流电磁阀工作原理
直流电磁阀工作原理
直流电磁阀是一种电磁驱动阀门,通过电磁力控制阀门的开闭。
其工作原理如下:
1. 结构:直流电磁阀通常由一个电磁铁和一个阀体组成。
阀体中包含一个可以开闭的阀门,当电磁阀关闭时,阀门关闭,当电磁阀打开时,阀门打开。
2. 电磁铁:电磁铁由一个线圈和一个可移动的铁芯组成。
当电流通过线圈时,产生的磁场使铁芯受到磁力的作用而被吸引。
当电流停止流动时,磁场消失,铁芯回到初始位置。
3. 工作过程:当电磁阀处于关闭状态时,电流停止流动,电磁铁中的磁场消失,铁芯回到初始位置。
此时,阀门上方的压力使阀门处于关闭状态,液体或气体无法通过。
当电流流经线圈时,产生的磁场使铁芯受到磁力的作用,向下移动。
4. 开启阀门:铁芯的向下移动使阀门打开,允许液体或气体通过。
此时,阀门下方的压力推动液体或气体通过阀门。
5. 关闭阀门:当电流停止流动时,磁场消失,铁芯回到初始位置。
此时,阀门上方的压力使阀门关闭,液体或气体无法通过。
总结:直流电磁阀通过电磁力控制阀门的开闭。
当电流通过线圈时,产生的磁场使铁芯受到磁力的作用,从而打开阀门。
当电流停止流动时,磁场消失,铁芯回到初始位置,从而关闭阀门。
这种开闭过程可以控制流体的通断。