2017年全国Ⅱ高考数学试题(文) (2) 精品

合集下载

2017年高考真题 文科数学(全国II卷)解析版

2017年高考真题 文科数学(全国II卷)解析版

绝密★启用前2017年普通高等学校招生全国统一考试文科数学【试卷点评】【命题特点】2017年高考全国新课标II数学卷,试卷结构在保持稳定的前提下,进行了微调,一是把解答题分为必考题与选考题两部分,二是根据中学教学实际把选考题中的三选一调整为二选一.试卷坚持对基础知识、基本方法与基本技能的考查,注重数学在生活中的应用.同时在保持稳定的基础上,进行适度的改革和创新,与2016年相比难度稳中略有下降.具体来说还有以下几个特点:1.知识点分布保持稳定小知识点如:集合、复数、程序框图、线性规划、向量问题、三视图保持一道小题,大知识点如:三角与数列三小一大,概率与统计一大一小,立体几何两小一大,圆锥曲线两小一大,函数与导数三小一大(或两小一大).2.注重对数学文化与数学应用的考查教育部2017年新修订的《考试大纲(数学)》中增加了对数学文化的考查要求.2017年高考数学全国卷II文科第18题以养殖水产为题材,贴近生活.3.注重基础,体现核心素养2017年高考数学试卷整体上保持一定比例的基础题,试卷注重通性通法在解题中的运用,另外抽象、推理和建模是数学的基本思想,也是数学研究的重要方法,试卷对此都有所涉及.【命题趋势】1.函数与导数知识:函数性质的综合应用、以导数知识为背景的函数问题是高考命题热点,函数性质的重点是奇偶性、单调性及图象的应用,导数重点考查其在研究函数中的应用,注重分类讨论及化归思想的应用.2.立体几何知识:立体几何一般有两道小题一道大题,小题中三视图是必考问题,常与几何体的表面积与体积结合在一起考查,解答题一般分两问进行考查.3.解析几何知识:解析几何试题一般有3道,圆、椭圆、双曲线、抛物线一般都会涉及,双曲线一般作为客观题进行考查,多为容易题,解答题一般以椭圆与抛物线为载体进行考查,运算量较大,不过近几年高考适当控制了运算量,难度有所降低. 4.三角函数与数列知识:三角函数与数列解答题一般轮流出现,若解答题为数列题,一般比较容易,重点考查利用基本量求通项及几种求和方法,若解答题为三角函数,一般是解三角形问题,此时客观题中一般会有一道与三角函数性质有关的题目,同时客观题中会有两道数列题,一易一难,数列客观题一般具有小、巧、活的特点.【试卷解析】一、选择题:本题共12小题,每小题5分,共60分。

2017年高考理科数学全国卷2(含答案解析)

2017年高考理科数学全国卷2(含答案解析)

绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共6页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1.3i 1i +=+ ( )A .12i +B .12i -C .2i +D .2i -2.设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1AB =,则B =( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,53.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π5.设x ,y 满足约束条件2330,2330,30.x y x y y +-⎧⎪-+⎨⎪+⎩≤≥≥则2z x y =+的最小值是( )A .15-B .9-C .1D .9 6.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩8.执行右面的程序框图,如果输入的1a =-,则输出的S =( )A .2B .3C .4D .59.若双曲线2222:1x y C a b-=(0a >,0b >)的一条渐近线被圆22(2)4x y -+=所截得的弦长为2,则C 的离心率为 ( )A .2B .3C .2D .23310.已知直三棱柱111ABC A B C -中,120ABC ∠=︒,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为( )A .32B .155C .105D .3311.若2x =-是函数21()(1)e x f x x ax -=+-的极值点,则()f x 的极小值为 ( ) A .1-B .32e --C .35e -D .112.已知ABC △是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________最小是( ) A .2-B .32-C . 43-D .1-二、填空题:本题共4小题,每小题5分,共20分.13.一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则DX = .14.函数23()sin 4f x x x =+-([0,])2x π∈的最大值是 . 15.等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑. 16.已知F 是抛物线2:8C y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则FN = .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)ABC △的内角A ,B ,C 的对边分别为a ,b ,c 已知2sin()8sin 2B AC +=. (1)求cos B ;(2)若6a c +=,ABC △的面积为2,求b .18.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg ).其频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A 表示事件:“旧养殖法的箱产量低于50 kg ,新养殖法的箱产量不低于50 kg ”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).附:22()()()()()n ad bc K a b c d a c b d -=++++19.(12分)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,o90BAD ABC ∠=∠=,E 是PD 的中点.(1)证明:直线CE ∥平面PAB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为o 45,求二面角M AB D --的余弦值.20.(12分)设O 为坐标原点,动点M 在椭圆22:12xC y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =. (1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .21.(12分)已知函数2()ln f ax a x x x x =--,且()0f x ≥. (1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220e ()2f x --<<.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB △面积的最大值.23.[选修4—5:不等式选讲](10分)已知0a >,0b >,332a b +=.证明:(1)55()()4a b a b ++≥;(2)2a b +≤.姓名________________ 准考证号_____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------2017年普通高等学校招生全国统一考试理科数学答案解析一、选择题 1.【答案】D【解析】试题分析:由复数除法的运算法则有:3i (3i)(1i)2i 1i 2++-==-+,故选D . 名师点睛:复数的代数形式的运算主要有加、减、乘、除.除法实际上是分母实数化的过程.在做复数的除法时,要注意利用共轭复数的性质:若1z ,2z 互为共轭复数,则221212||||z z z z ⋅=⋅,通过分子、分母同乘以分母的共轭复数将分母实数化.【考点】复数的除法 2.【答案】C【解析】试题分析:由{1}AB =得1B ∈,即1x =是方程240x x m -+=的根,所以140m -+=,3m =,{1,3}B =,故选C .名师点睛:集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.两个防范:①不要忽视元素的互异性;②保证运算的准确性. 【考点】交集运算,元素与集合的关系 3.【答案】B【解析】试题分析:设塔的顶层共有灯x 盏,则各层的灯数构成一个首项为x ,公比为2的等比数列,结合等比数列的求和公式有:7(12)38112x -=-,解得3x =,即塔的顶层共有灯3盏,故选B .名师点睛:用数列知识解相关的实际问题,关键是列出相关信息,合理建立数学模型——数列模型,判断是等差数列还是等比数列模型;求解时要明确目标,即搞清是求和、求通项、还是解递推关系问题,所求结论对应的是解方程问题、解不等式问题、还是最值问题,然后将经过数学推理与计算得出的结果放回到实际问题中,进行检验,最终得出结论.【考点】等比数列的应用,等比数列的求和公式4.【答案】B【解析】试题分析:由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱,其体积213436V =π⨯⨯=π,上半部分是一个底面半径为3,高为6的圆柱的一半,其体积221(36)272V =⨯π⨯⨯=π,故该组合体的体积12362763V V V =+=π+π=π.故选B .名师点睛:在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑.求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.【考点】三视图,组合体的体积 5.【答案】A【解析】试题分析:画出不等式组表示的平面区域如下图中阴影部分所示,目标函数即:2y x z =-+,其中z 表示斜率为2k =-的直线系与可行域有交点时直线的纵截距,数形结合可得目标函数在点(6,3)B --处取得最小值,min 2(6)(3)15Z =⨯-+-=-,故选A .名师点睛:求线性目标函数(0)z ax by ab =+≠的最值,当0b >时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当0b <时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.【考点】应用线性规划求最值 6.【答案】D【解析】试题分析:由题意可得,一人完成两项工作,其余两人每人完成一项工作,据此可得,只要把工作分成三份:有24C 种方法,然后进行全排列,由乘法原理,不同的安排方式共有2343C A 36⨯=种.故选D .名师点睛:(1)解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组.注意各种分组类型中,不同分组方法的求解. 【考点】排列与组合,分步乘法计数原理 7.【答案】D【解析】试题分析:由甲的说法可知乙、丙一人优秀一人良好,则甲、丁两人一人优秀一人良好,乙看到丙的成绩则知道自己的成绩,丁看到甲的成绩则知道自己的成绩,即乙、丁可以知道自己的成绩.故选D .名师点睛:合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向.合情推理仅是“合乎情理”的推理,它得到的结论不一定正确.而演绎推理得到的结论一定正确(前提和推理形式都正确的前提下) 【考点】合情推理 8.【答案】B【解析】试题分析:阅读程序框图,初始化数值1a =-,1K =,0S =. 循环结果执行如下:第一次:011S =-=-,1a =,2K =; 第二次:121S =-+=,1a =-,3K =; 第三次:132S =-=-,1a =,4K =;第四次:242S =-+=,1a =-,5K =; 第五次:253S =-=-,1a =,6K =; 第六次:363S =-+=,1a =-,7K =. 结束循环,输出3S =.故选B .名师点睛:识别、运行程序框图和完善程序框图的思路:①要明确程序框图的顺序结构、条件结构和循环结构;②要识别、运行程序框图,理解框图所解决的实际问题;③按照题目的要求完成解答并验证. 【考点】程序框图 9.【答案】A【解析】试题分析:由几何关系可得,双曲线22221x y a b -=(00)a b >>,的渐近线方程为0bx ay ±=,圆心(2,0)到渐近线距离为d ==则点(2,0)到直线0bx ay +=的距离为2bd c=== 即2224()3c a c -=,整理可得224c a =,双曲线的离心率2e =.故选A . 名师点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式ce a=;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合222b c a =-转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或2a 转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).【考点】双曲线的离心率,直线与圆的位置关系,点到直线的距离公式 10.【答案】C【解析】试题分析:如图所示,补成直四棱柱1111ABCD A B C D -,则所求角为1BC D ∠,1=2BC 60=3BD,11=C D AB易得22211=C D BD BC +,因此111cos =5BC BC D C D ∠,故选C .名师点睛:平移法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角; ②认定:证明作出的角就是所求异面直线所成的角; ③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是π(0]2,,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.求异面直线所成的角要特别注意异面直线之间所成角的范围.【考点】异面直线所成的角,余弦定理,补形的应用 11.【答案】A 【解析】试题分析:由题可得12121()(2)e (1)e [(2)1]e x x x f x x a x ax x a x a ---'=+++-=+++-,因为(2)0f '-=,所以1a =-,21()(1)ex f x x x -=--,故21()(2)ex f x x x -'=+-,令()0f x '>,解得2x <-或1x >,所以()f x 在(,2),(1,)-∞-+∞上单调递增,在(2,1)-上单调递减,所以()f x 的极小值为11()(111)e 11f -=--=-,故选A .名师点睛:(1)可导函数()y f x =在点0x 处取得极值的充要条件是0()0f x '=,且在0x 左侧与右侧()f x '的符号不相同;(2)若()f x 在()a b ,内有极值,那么()f x 在()a b ,内绝不是单调函数,即在某区间上单调增或减的函数没有极值.【考点】函数的极值,函数的单调性 12.【答案】B【解析】试题分析:如图,以BC 为x 轴,BC 的垂直平分线DA 为y 轴,D 为坐标原点建立平面直角坐标系,则A ,(1,0)B -,(1,0)C ,设(,)P x y ,所以()PA x y =-,(1,)PB x y =---,(1,)PC x y =--,所以(2,2)PB PC x y +=--,22233()22)22(22PA PB PC x y y x y ⋅+=-=+--≥,当(0P 时,所求最小值为32-,故选B .【名师点睛】平面向量中有关最值问题的求解通常有两种思路:①“形化”,即利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断;②“数化”,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式的解集、方程有解等问题,然后利用函数、不等式、方程的有关知识来解决.【考点】平面向量的坐标运算,函数的最值二、填空题 13.【答案】1.96【解析】试题分析:由题意可得,抽到二等品的件数符合二项分布,即()~100,0.02X B ,由二项分布的期望公式可得(1)1000.020.98 1.96DX np p =-=⨯⨯=.【名师点睛】判断一个随机变量是否服从二项分布,要看两点:①是否为n 次独立重复试验,在每次试验中事件A 发生的概率是否均为p ;②随机变量是否为在这n 次独立重复试验中某事件发生的次数,且()()C 1n kkk n p X k p p -==-表示在独立重复试验中,事件A 恰好发生k 次的概率.【考点】二项分布的期望与方差14.【答案】1【解析】试题分析:化简三角函数的解析式,则22231()1cos cos(cos144f x x x x x x=--=-+=-+由π[0,]2x∈可得cos[0,1]x∈,当cos x=()f x取得最大值1.名师点睛:本题经三角函数式的化简将三角函数的问题转化为二次函数的问题,二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合、密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面进行分析.【考点】三角变换,复合型二次函数的最值15.【答案】21nn+【解析】试题分析:设等差数列的首项为1a,公差为d,由题意有113,4102432,adda+⨯=+=⎧⎪⎨⎪⎩解得11,1,da=⎧⎨=⎩数列的前n项和1(1)(1)(1)11222nn n n n nSnn da n--+++⨯==⨯=,裂项可得12112()(1)1kS k k k k==-++,所以1111111122[(1)()()]2(1)223111nk knS n n n n==-+-++-=-=+++∑.名师点睛:等差数列的通项公式及前n项和公式,共涉及五个量1a,n a,d,n,n S,知其中三个就能求另外两个,体现了用方程的思想解决问题.数列的通项公式和前n项和公式在解题中起到变量代换作用,而1a和d是等差数列的两个基本量,用它们表示已知和未知是常用得方法.使用裂项法求和时,要注意正、负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点.【考点】等差数列前n项和公式,裂项求和.16.【答案】6【解析】试题分析:如图所示,不妨设点M位于第一象限,设抛物线的准线与x轴交于点F',作MB l⊥与点B,NA l⊥与点A,由抛物线的解析式可得准线方程为2x=-,则2AN=,4FF'=在直角梯形ANFF'中,中位线32AN FFBM'+==,由抛物线的定义有:3MF MB==,结合题意,有3MN MF==,故336FN FM NM=+=+=.【考点】抛物线的定义,梯形中位线在解析几何中的应用.【名师点睛】抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离、抛物线上的点到准线的距离)进行等量转化.如果问题中涉及抛物线的焦点和准线,又能与距离联系起来,那么用抛物线定义就能解决问题.因此,涉及抛物线的焦半径、焦点弦问题,可以优先考虑利用抛物线的定义转化为点到准线的距离,这样就可以使问题简单化.三、解答题17.【答案】(1)15cos17B=;(2)2b=.【解析】试题分析:(1)利用三角形内角和定理可知A B C+=,再利用诱导公式化简sin()A C+,利用降幂公式化简21cossin22B B-=,结合22sin cos1B B+=即可求出cos B;(2)利用(1)中结论15cos17B=,结合三角形面积公式可求出ac的值,根据6a c+=,进而利用余弦定理可求出b的值.试题解析:(1)由题设及πA B C ++=,可得2sin 8sin 2BB =,故sin 4(1cos B B =-. 上式两边平方,整理得217cos 32cos 150B B -+=,解得cos 1B =(舍去),15cos 17B =.(2)由15cos 17B =得8sin 17B =,故14=sin 217ABC S ac B ac =△.又=2ABC S △,则172ac =.由余弦定理及6a c +=得:222217152cos ()2(1cos )362(1)4217b ac ac B a c ac B =+-=+-+=-⨯⨯+=,所以2b =.【考点】余弦定理,三角形面积公式【名师点睛】解三角形问题是高考的高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正余弦定理、三角形面积公式等知识进行求解.解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意a c +,ac ,22a c +三者之间的关系,这样的题目小而活,备受命题者的青睐. 18.【答案】(1)0.4092;(2)有99%的把握认为箱产量与养殖方法有关; (3)52.35 kg .【解析】试题分析:(1)利用相互独立事件概率公式即可求得事件A 的概率估计值; (2)写出列联表计算的2K 观测值,即可确定有99%的把握认为箱产量与养殖方法有关; (3)结合频率分布直方图估计中位数为52.35 kg .试题解析:(1)记B 表示事件“旧养殖法的箱产量低于50 kg ”,C 表示事件“新养殖法的箱产量不低于50 kg ”,由题意知()()()()P A P BC P B P C ==,旧养殖法的箱产量低于50 kg 的频率为0.0120.0140.0240.0340.0()4050.62⨯++++=, 故()P B 的估计值为0.62.新养殖法的箱产量不低于50 kg 的频率为0.0680.0460.0100.00850.6)6(+++=⨯, 故()P C 的估计值为0.66.因此,事件A 的概率估计值为0.620.660.4092⨯=. (2)根据箱产量的频率分布直方图得列联表:2K 的观测值22200(62663438)15.70510010096104K ⨯⨯-⨯=⨯⨯⨯≈. 由于15.705 6.635>,故有99%的把握认为箱产量与养殖方法有关.(3)因为新养殖法的箱产量频率分布直方图中,箱产量低于50 kg 的直方图面积为0.0040.0200.04450(.)340.5++⨯=<,箱产量低于55 kg 的直方图面积为0.0040.0200.0440.0685(0.680.)5+++⨯=>, 故新养殖法箱产量的中位数的估计值为0.50.345052.38(kg)0.068-+≈.名师点睛:(1)利用独立性检验,能够帮助我们对日常生活中的实际问题作出合理的推断和预测.独立性检验就是考察两个分类变量是否有关系,并能较为准确地给出这种判断的可信度,随机变量的观测值值越大,说明“两个变量有关系”的可能性越大. (2)利用频率分布直方图求众数、中位数和平均数时,应注意三点:①最高的小长方形底边中点的横坐标即众数;②中位数左边和右边的小长方形的面积和是相等的;③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.【考点】独立事件概率公式,独立性检验原理,频率分布直方图估计中位数 19.【答案】(1)证明:取PA 的中点F ,连结EF ,BF . 因为E 是PD 的中点,所以EF AD ∥,1=2EF AD ,由=90BAD ABC =∠∠得BC AD ∥, 又1=2BC AD ,所以EF BC ∥,四边形BCEF 是平行四边形,CE BF ∥. 又BF ⊂平面PAD ,BCE ∉平面PAB ,故CE ∥平面PAB .(2)由已知得BA AD ⊥,以A 为坐标原点,AB 的方向为x 轴正方向,||AB 为单位长,建立如图所示的空间直角坐标系A xyz -,则(0,0,0)A ,(1,0,0)B ,(1,1,0)C,P,(1,0,PC ,(1,0,0)AB , 设(,,)M x y z ,则(1,,)BM x y z =-,(,1,PM x y z =-,因为BM 与底面ABCD 所成的角为45°,而=(0,0,1)n 是底面ABCD 的法向量, 所以cos ,sin 45BM 〈〉=n2=,即222(1)0x y z -+-=.① 又M 在棱PC 上,设PM PC λ=,则x λ=,1y =,z =.②由①②解得,11,x y z ⎧=+⎪⎪⎪=⎨⎪⎪=⎪⎩(舍去),11,x y z ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩所以(1M -,从而(1AM =. 设000(,,)x y z =m 是平面ABM 的法向量,则0,0,AM AB ⎧⋅=⎪⎨⋅=⎪⎩m m即0000(220,0,x y x ⎧++=⎪⎨=⎪⎩所以可取(0,m .于是cos ,||||⋅〈〉==m n m n m n ,因此二面角M AB D --. 【解析】试题分析:(1)取PA 的中点F ,连结EF ,BF ,由题意证得CE BF ∥,利用线面平行的判断定理即可证得结论;(2)建立空间直角坐标系,求得半平面的法向量:(0,m ,(0,0,1)n ,然后利用空间向量的相关结论可求得二面角M AB D --. 名师点睛:(1)求解本题要注意两点:①两平面的法向量的夹角不一定是所求的二面角,②利用方程思想进行向量运算,要认真细心、准确计算.(2)设m ,n 分别为平面α,β的法向量,则二面角θ与,〈〉m n 互补或相等,故有|cos ,|||o |s |c θ⋅〈〉==m nm n m n .求解时一定要注意结合实际图形判断所求角是锐角还是钝角.【考点】判定线面平行,面面角的向量求法20.【答案】(1)设(,)P x y =,00(,)M x y ,则0(,0)N x ,0(,)NP x x y -,0(0,)NM y .由2NP NM =得0x x =,0y y . 因为00(,)M x y 在C 上,所以22122x y +=.因此点P 的轨迹方程为222x y +=.(2)由题意知(1,0)F =-.设(3,)Q t =-,(,)P m n =,则,(3,)OQ t =-,(1,)PF m n =---,33OQ PF m tn ⋅=+-,(,)OP m n =,(3,)PQ m t n =---.由1OP PQ ⋅=得2231m m tn n --+-=,又由(1)知222m n +=,故330m tn +-=.所以0OQ PF ⋅=,即OQ PF ⊥.又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .【解析】试题分析:(1)设出点P 、M 的坐标,利用2NP NM =得到点P 与点M 坐标之间的关系即可求得轨迹方程为222xy +=;(2)利用1OP PQ ⋅=可得坐标之间的关系:2231m m tn n --+-=,结合(1)中的结论整理可得0OQ PF ⋅=,即OQ PF ⊥,据此即可得出结论. 名师点睛:求轨迹方程的常用方法:(1)直接法:直接利用条件建立x ,y 之间的关系(,)0F x y ==. (2)待定系数法:已知所求曲线的类型,求曲线方程.(3)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程.(4)代入(相关点)法:动点(,)P x y =依赖于另一动点00(,)Q x y 的变化而运动,常利用代入法求动点(,)P x y =的轨迹方程. 【考点】轨迹方程的求解,直线过定点问题 21.【答案】(1)()f x 的定义域为(0,)+∞.设()ln g x ax a x =--,则()()f x xg x =,()0f x ≥等价于()0g x ≥. 因为(1)=0g ,()0g x ≥,故(1)=0g ',而1()g x a x'=-,(1)1g a '=-,得1a -. 若1a -,则1()1g x x'=-.当01x <<时,()0g x '<,()g x 单调递咸; 当1x >时,()0g x '>,()g x 单调递增.所以1x =是()g x 的极小值点,故()(1)0g x g =≥. 综上,1a =.(2)由(1)知2()ln f x x x x x =--,()22ln f x x x '=--.设()22ln h x x x =--,则1()2'x h x=-.当1(0,)2x ∈ 时,()0h'x <;当1(,)2x ∈+∞时,()0h'x >,所以()h x 在1(0,)2上单调递减,在1(,)2+∞上单调递增.又2(e )0h ->,1()02h <,(1)0h =,所以()h x 在1(0,)2有唯一零点0x ,在1[,)2+∞有唯一零点1,且当0(0,)x x ∈时,()0h x >;当0(,1)x x ∈时,()0h x <,当(1,)x ∈+∞时,()0h x >. 因为()()f 'x h x =,所以0x x =是()f x 的唯一极大值点. 由0()0f 'x =得00ln 2(1)x x =-,故000()(1)f x x x =-. 由0(0,1)x ∈得01()4f x <. 因为0x x =是()f x 在(0,1)的最大值点,由1(1)e 0,-∈,1(e )0f '-≠得120()(e )e f x f -->=. 所以220e ()2f x --<<.【解析】试题分析:(1)根据题意结合导函数与原函数的关系可求得1a =,注意验证结果的正确性;(2)结合(1)的结论构造函数()22ln h x x x =--,结合()h x 的单调性和()f x 的解析式即可证得题中的不等式成立.名师点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出.导数专题在高考中的命题方向及命题角度:从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性求参数;(3)利用导数求函数的最值(极值),解决生活中的优化问题;(4)考查数形结合思想的应用. 【考点】利用导数研究函数的单调性,利用导数研究函数的极值 22.【答案】(1)()()22240x y x -+=≠ (2)2【解析】试题分析:(1)设出P 的极坐标,然后利用题意得出极坐标方程,最后转化为直角坐标方程;(2)利用(1)中的结论,设出点的极坐标,然后结合面积公式得到面积的三角函数,结合三角函数的性质可得OAB △面积的最大值.理科数学试卷 第21页(共22页) 理科数学试卷 第22页(共22页) 试题解析:(1)设P 的极坐标为()()0ρθρ,>,M 的极坐标为11()()0ρθρ,>. 由题设知OP ρ=,14cos OM ρθ==. 由16OM OP ⋅=得2C 的极坐标方程为0)4cos (ρθρ=>,因此2C 的直角坐标方程为22(240)()x y x -+=≠.(2)设点B 的极坐标为()(0)B B ραρ,>,由题设知2OA =,4cos B ρα=,于是OAB △的面积1ππsin 4cos sin 2sin 22233B S OA AOB ρααα⎛⎫⎛⎫=⋅⋅∠=⋅-=-+ ⎪ ⎪⎝⎭⎝⎭ 当π12α=-时,S取得最大值2+OAB △面积的最大值为2.名师点睛:本题考查了极坐标方程的求法及应用。

2017年全国高考数学卷2试题及答案

2017年全国高考数学卷2试题及答案

2017年全国高考数学卷Ⅱ试题及答案文11.从分别写有1、2、3、4、5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )A .110B .15C .310D .25 答案:D .命题意图:本题主要考查古典概型概率.总计有25种情况,满足条件的有10种,所以所求概率为255=,故选D . 小结:古典概型中基本事件数的探求方法:(1)列举法;(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法;(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.理13.一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则D X = .答案:1.96.命题意图:本题主要考查二项分布的期望与方差.解:()~100,0.02X B ,所以()11000.020.98 1.96DX np p =-=⨯⨯=,故填1.96.小结:判断一个随机变量是否服从二项分布,要看两点:(1)一是是否为n 次独立重复试验。

在每次试验中事件A 发生的概率是否均为p ;(2)二是随机变量是否为在这n 次独立重复试验中某事件发生的次数。

且()()1n k k k n p X k C p p -==-表示在独立重复试验中,事件A 恰好发生k 次的概率.理18、文19.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比学|,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg )某频率直方图如下:(Ⅰ)设两种养殖方法的箱产量相互独立,记A 表示事件:旧养殖法的箱产量低于kg 50,新养殖法的箱产量不低于kg 50,估计A 的概率;01.0)22()()()()()n ad bc K a b c d a c b d -=++++答案:(Ⅰ)0.4092;(Ⅱ)有99%的把握认为箱产量与养殖方法有关;(Ⅲ)52.35kg .命题意图:本题主要考查以下几点:(1)独立事件概率公式;(2)独立性检验原理;(3)频率分布直方图估计中位数.解题思路:(Ⅰ)由题意可知:)()()()(C P B P BC P A P ==,分布求得发生的频率,即可求得其概率;(Ⅱ)完成2×2列联表:求得观测值,与参考值比较,即可求得有%99的把握认为箱产量与养殖方法有关;(Ⅲ)根据频率分布直方图即可求得其中位数.解:(Ⅰ)记B 表示事件“旧养殖法的箱产量低于kg 50”,C 表示事件“新养殖法的箱产量不低于kg 50”,由)()()()(C P B P BC P A P ==,则旧养殖法的箱产量低于kg 50:62.05)040.0034.0024.0014.0012.0(=⨯++++,故)(B P 的估计值62.0,新养殖法的箱产量不低于kg 50:66.05)008.0010.0046.0068.0(=⨯+++,故)(C P 的估计值为,则事件A 的概率估计值为)()()()(C P B P BC P A P ==4092.066.062.0=⨯=;∴A 发生的概率为4092.0;()222006266343815.70510010096104K ⨯⨯-⨯=≈⨯⨯⨯,由于15.705 6.635>,故有99%的把握认为箱产量与养殖方法有关。

外接球与内切球-2017年高考数学(文)母题题源系列(新课标2专版)含解析

外接球与内切球-2017年高考数学(文)母题题源系列(新课标2专版)含解析

【母题原题1】【2017全国Ⅱ,文15】15.长方体的长,宽,高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为.【答案】14π【解析】球的直径是长方体的体对角线,所以222232114,4π14π.=++===R S R【考点】球的表面积【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.【母题原题2】【2016全国Ⅱ,文4】体积为8的正方体的顶点都在同一球面上,则该球的表面积为(A)12π(B)32π(C)8π3(D)4π【答案】A【考点】 正方体的性质,球的表面积【名师点睛】与棱长为的正方体相关的球有三个: 外接球、内切球和与各条棱都相切的球,其半径分别为32a 、2a 和22a . 【母题原题3】【2015全国Ⅱ,文10】已知B A ,是球O 的球面上两点,︒=∠90AOB ,C 为该球面上的动点.若三棱锥ABC O -体积的最大值为36,则球O 的表面积为( )A .36πB .64π C .144π D . 256π【答案】C 【考点定位】本题主要考查球与几何体的切接问题及空间想象能力.【名师点睛】由于三棱锥O ABC -底面AOB 面积为定值,故高最大时体积最大,本题就是利用此结论求球的半径,然后再求出球O 的表面积,由于球与几何体的切接问题能很好的考查空间想象能力,使得这类问题一直是高考中的热点及难点,提醒考生要加强此方面的训练.【命题意图】主要考查球与几何体的切接问题及空间想象能力、计算求解能力,考查函数与方程思想、等价转换思想在解题中的应用.【命题规律】简单多面体外接球问题是立体几何中的难点和重要的考点,此类问题实质是解决球的半径长或确定球心O 的位置问题,其中球心的确定是关键.【答题模板】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.【方法总结】解决外接球与内切球问题,关键在于解决球体的半径,明确球心位置,以下为确定球心位置与半径的常用方法:一、外接球问题(一)由球的定义确定球心在空间,如果一个定点与一个简单多面体的所有顶点的距离都相等,那么这个定点就是该简单多面体的外接球的球心.由上述性质,可以得到确定简单多面体外接球的球心的如下结论.结论1:正方体或长方体的外接球的球心其体对角线的中点.结论2:正棱柱的外接球的球心是上下底面中心的连线的中点.结论3:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点.结论4:正棱锥的外接球的球心在其高上,具体位置可通过计算找到.结论5:若棱锥的顶点可构成共斜边的直角三角形,则公共斜边的中点就是其外接球的球心.(二)构造正方体或长方体确定球心长方体或正方体的外接球的球心是在其体对角线的中点处.以下是常见的、基本的几何体补成正方体或长方体的途径与方法.途径1:正四面体、三条侧棱两两垂直的正三棱锥、四个面都是是直角三角形的三棱锥都分别可构造正方体.途径2:同一个顶点上的三条棱两两垂直的四面体、相对的棱相等的三棱锥都分别可构造长方体和正方体.途径3:若已知棱锥含有线面垂直关系,则可将棱锥补成长方体或正方体.途径4:若三棱锥的三个侧面两两垂直,则可将三棱锥补成长方体或正方体.(三)由性质确定球心利用球心O与截面圆圆心O的连线垂直于截面圆及球心O与1弦中点的连线垂直于弦的性质,确定球心.二、内切球问题若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球.1、内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等.2、正多面体的内切球和外接球的球心重合.3、正棱锥的内切球和外接球球心都在高线上,但不重合.4、基本方法:构造三角形利用相似比和勾股定理.5、体积分割是求内切球半径的通用做法.1.【2017陕西汉中二模】如图中的三个直角三角形是一个体积为320cm的几何体的三视图,则该几何体外接球的面积(单位:2cm)等于( ).A . 55πB . 75πC . 77πD . 65π【答案】C【解析】2.【2017湖南娄底二模】在体积为V 的球内有一个多面体,该多面体的三视图是如图所示的三个斜边都是2的等腰直角三角形,则V 的最小值是( )A . 43πB . 32πC . 3πD . 12π【答案】B【解析】由多面体的三视图知该多面体是如图所示的三棱锥P ABC PA ABC -⊥,底面, AB BC ⊥,且1PA AB BC ===,当球是这个三棱锥的外接球时其体积V 最小,将这个三棱锥补成正方体,其外接球的直径就是正方体的对角线3PC =,所以3433322min V ππ⎛⎫== ⎪ ⎪⎝⎭,故选B .点睛:1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽",因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.3.【2017福建4月质检】已知三棱锥P ABC -的三条侧棱两两互相垂直,且5,7,2AB BC AC ===,则此三棱锥的外接球的体积为( )A . 83πB . 823πC . 163πD . 323π 【答案】B4.【2017四川宜宾二诊】三棱锥A BCD -内接于半径为的球O , BC 过球心O ,当三棱锥A BCD -体积取得最大值时,三棱锥A BCD -的表面积为A . 643+B . 823+C . 463+D . 843+【答案】D【解析】 由题意得,当底面BCD ∆为等腰直角三角形,且AO ⊥底面BCD 时,此时三棱锥A BCD -的体积最大,所以在等腰直角BCD ∆中,4BC =,且22BD CD ==, 所以BCD ∆面积为11222242S =⨯⨯=, 所以ABC ∆的面积为214242S =⨯⨯=, 其中ABD ∆和ACD ∆为边长为22的等边三角形,此时面积为()234322234S S ==⨯=,此时三棱锥的表面积为123244223843S S S S =++=++⨯=+,故选D .5.【2017安徽马鞍山三模】已知△ABC 的顶点都在半径为R 的球O 的球面上,球心O 到平面ABC 的距离为32R , 3AB BC AC ===O 的体积是( )A . 163πB . 16πC . 323π D . 32π 【答案】C【点睛】本题考查了球与几何体的组合体问题,考查了空间想象能力以及计算能力,球心与截面圆的圆心连线垂直于截面,所以很多求球心问题,可先找底面多边形的外接圆的圆心,过圆心垂直于多边形的直线必过球心,然后再利用球心到所有顶点的距离相等的性质和构造直角三角形求球的半径.6.【2017福建三明5月质检】已知球O 的半径为1, ,A B 是球面上的两点,且3AB =P 是球面上任意一点,则PA PB ⋅的取值范围是( )A . 31,22⎡⎤-⎢⎥⎣⎦B . 13,22⎡⎤-⎢⎥⎣⎦C . 10,2⎡⎤⎢⎥⎣⎦D . 30,2⎡⎤⎢⎥⎣⎦【答案】B【解析】由球O 的半径为1,,A B 是球面上的两点,且3AB =可得211,?11322AOB OAOB π⎛⎫∠==⨯⨯-=- ⎪⎝⎭ , 1,OA OB +=()()()2····PA PB OA OP OB OP OAOB OA OB OP OP=--=-++ 1113cos cos ,2222OA OB OP θθ⎡⎤=-+⋅=-∈-⎢⎥⎣⎦ ,故选B .【方法点睛】本题主要考查向量的基本运算、向量的数量积以及求变量范围问题,属于难题.求求变量范围问题的常见方法有①配方法;②换元法;③不等式法;④单调性法;⑤图像法;⑥三角函数有界性,本题先根据向量数量积的运算即将·PA PB 表示成关于的函数后运用方法⑥解答的.7.【2017黑龙江哈师大附中三模】已知三棱锥—P ABC 的四个顶点均在同一个球面上,底面ABC ∆满足6BA BC ==, π2ABC ∠=,若该三棱锥体积的最大值为3,则其外接球的体积为( ) A . 8π B . 16π C . 16π3 D . 32π3【答案】D8.【2017辽宁考前模拟】正四面体ABCD 的棱长为4, E 为棱AB 的中点,过E 作此正四面体的外接球的截面,则截面面积的最小值是( )A . 4πB . 8πC . 12πD . 16π【答案】A【解析】 将四面体ABCD 放置在正方体中,如图所示,可得正方体的外接球就是四面体ABCD 的外接球, 因为正四面体ABCD 的棱长为4,所以正方体的棱长为22,可得外接球的半径满足222326R =⨯=,即6R =,又E 为BC 的中点,过E 作其外接球的截面,当截面到球心O 的距离最大时,此时截面圆的面积最小,此时球心O 到截面的距离等于正方体棱长的一半,可得截面圆的半径为222r R =-=,得到截面圆的面积的最小值为24S r ππ==,故选A .9.【2017河北唐山三模】直角ABC 的三个顶点都在球O 的球面上,2AB AC ==,若球O 的表面积为12π,则球心O 到平面ABC的距离等于__________.【答案】110.【2017安徽阜阳二模】已知,,,A B C D 是球面上不共面的四点, 3,2,6AB AC BD CD BC =====,平面ABC ⊥平面BCD ,则此球的体积为_________.【答案】823π【解析】解:如图所示,设球心坐标为O ,连结OD ,交BC 于点E ,连结AE ,由题意可知:222OE AE OA += ,设球的半径R OD OA x === ,由题意得方程:2222622x x ⎛⎫⎛⎫-+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,解得: 2x = ,此球的体积为:348233V R ππ==。

2017年高考理科数学全国II卷(含详解)

2017年高考理科数学全国II卷(含详解)

2017年高考理科数学全国II卷(含详解)2017年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2017•新课标Ⅱ)=()A.1+2i B.1﹣2i C.2+i D.2﹣i【解答】解:===2﹣i,故选 D.2.(5分)(2017•新课标Ⅱ)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=()A.{1,﹣3} B.{1,0} C.{1,3} D.{1,5}【解答】解:集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则1∈A且1∈B,可得1﹣4+m=0,解得m=3,即有B={x|x2﹣4x+3=0}={1,3}.故选:C.3.(5分)(2017•新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏【解答】解:设这个塔顶层有a盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,又总共有灯381盏,∴381==127a,解得a=3,则这个塔顶层有3盏灯,故选B.4.(5分)(2017•新课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π【解答】解:由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,V=π•32×10﹣•π•32×6=63π,故选:B.5.(5分)(2017•新课标Ⅱ)设x,y满足约束条件,则z=2x+y的最小值是()A.﹣15 B.﹣9 C.1 D.9【解答】解:x、y满足约束条件的可行域如图:8.(5分)(2017•新课标Ⅱ)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2 B.3 C.4 D.5【解答】解:执行程序框图,有S=0,k=1,a=﹣1,代入循环,第一次满足循环,S=﹣1,a=1,k=2;满足条件,第二次满足循环,S=1,a=﹣1,k=3;满足条件,第三次满足循环,S=﹣2,a=1,k=4;满足条件,第四次满足循环,S=2,a=﹣1,k=5;满足条件,第五次满足循环,S=﹣3,a=1,k=6;满足条件,第六次满足循环,S=3,a=﹣1,k=7;7≤6不成立,退出循环输出,S=3;故选:B.9.(5分)(2017•新课标Ⅱ)若双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,则C的离心率为()A.2 B.C.D.【解答】解:双曲线C:﹣=1(a>0,b>0)的一条渐近线不妨为:bx+ay=0,圆(x﹣2)2+y2=4的圆心(2,0),半径为:2,双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,可得圆心到直线的距离为:=,解得:,可得e2=4,即e=2.故选:A.10.(5分)(2017•新课标Ⅱ)已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A. B.C.D.【解答】解:如图所示,设M、N、P分别为AB,BB1和B1C1的中点,则AB1、BC1夹角为MN和NP夹角或其补角(因异面直线所成角为(0,]),可知MN=AB1=,NP=BC1=;作BC中点Q,则△PQM为直角三角形;∵PQ=1,MQ=AC,△ABC中,由余弦定理得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+1﹣2×2×1×(﹣)=7,∴AC=,∴MQ=;在△MQP中,MP==;在△PMN中,由余弦定理得cos∠MNP===﹣;又异面直线所成角的范围是(0,],∴AB1与BC1所成角的余弦值为.11.(5分)(2017•新课标Ⅱ)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A.﹣1 B.﹣2e﹣3C.5e﹣3D.1【解答】解:函数f(x)=(x2+ax﹣1)e x﹣1,可得f′(x)=(2x+a)e x﹣1+(x2+ax﹣1)e x﹣1,x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,可得:﹣4+a+(3﹣2a)=0.解得a=﹣1.可得f′(x)=(2x﹣1)e x﹣1+(x2﹣x﹣1)e x﹣1,=(x2+x﹣2)e x﹣1,函数的极值点为:x=﹣2,x=1,当x<﹣2或x>1时,f′(x)>0函数是增函数,x∈(﹣2,1)时,函数是减函数,x=1时,函数取得极小值:f(1)=(12﹣1﹣1)e1﹣1=﹣1.故选:A.12.(5分)(2017•新课标Ⅱ)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+)的最小值是()A.﹣2 B.﹣C.﹣D.﹣1【解答】解:建立如图所示的坐标系,以BC中点为坐标原点,则A(0,),B(﹣1,0),C(1,0),设P(x,y),则=(﹣x,﹣y),=(﹣1﹣x,﹣y),=(1﹣x,﹣y),则•(+)=2x2﹣2y+2y2=2[x2+(y﹣)2﹣]∴当x=0,y=时,取得最小值2×(﹣)=﹣,故选:B三、填空题:本题共4小题,每小题5分,共20分.13.(5分)(2017•新课标Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则DX= 1.96 .【解答】解:由题意可知,该事件满足独立重复试验,是一个二项分布模型,其中,p=0.02,n=100,则DX=npq=np(1﹣p)=100×0.02×0.98=1.96.故答案为:1.96.14.(5分)(2017•新课标Ⅱ)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是 1 .【解答】解:f(x)=sin2x+cosx﹣=1﹣cos2x+cosx﹣,令cosx=t且t∈[0,1],则f(t)=﹣t2+t+=﹣(t﹣)2+1,当t=时,f(t)max=1,即f(x)的最大值为1,故答案为:115.(5分)(2017•新课标Ⅱ)等差数列{an }的前n项和为Sn,a3=3,S4=10,则= .【解答】解:等差数列{an }的前n项和为Sn,a3=3,S4=10,S4=2(a2+a3)=10,可得a2=2,数列的首项为1,公差为1,Sn=,=,则=2[1﹣++…+]=2(1﹣)=.故答案为:.16.(5分)(2017•新课标Ⅱ)已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则|FN|= 6 .【解答】解:抛物线C:y2=8x的焦点F(2,0),M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,可知M的横坐标为:1,则M的纵坐标为:,|FN|=2|FM|=2=6.故答案为:6.三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)(2017•新课标Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC面积为2,求b.【解答】解:(1)sin(A+C)=8sin2,∴sinB=4(1﹣cosB),∵sin2B+cos2B=1,∴16(1﹣cosB)2+cos2B=1,∴(17cosB﹣15)(cosB﹣1)=0,∴cosB=;(2)由(1)可知sinB=,∵S=ac•sinB=2,△ABC∴ac=,∴b2=a2+c2﹣2accosB=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.18.(12分)(2017•新课标Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg 箱产量≥50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).附:P(K2≥k)0.0500.010 0.001 K 3.841 6.635 10.828K2=.【解答】解:(1)记B表示事件“旧养殖法的箱产量低于50kg”,C表示事件“新养殖法的箱产量不低于50kg”,由P(A)=P(BC)=P(B)P(C),则旧养殖法的箱产量低于50kg:(0.012+0.014+0.024+0.034+0.040)×5=0.62,故P(B)的估计值0.62,新养殖法的箱产量不低于50kg:(0.068+0.046+0.010+0.008)×5=0.66,故P(C)的估计值为,则事件A的概率估计值为P(A)=P(B)P(C)=0.62×0.66=0.4092;∴A发生的概率为0.4092;(2)2×2列联表:箱产量<50kg箱产量≥50kg 总计旧养殖法 62 38 100新养殖法 34 66 100总计 96 104 200则K2=≈15.705,由15.705>6.635,∴有99%的把握认为箱产量与养殖方法有关;(3)由题意可知:方法一:=5×(37.5×0.004+42.5×0.020+47.5×0.044+52.5×0.068+57.5×0.046+62.5×0.010+67.5×0.008),=5×10.47,=52.35(kg).新养殖法箱产量的中位数的估计值52.35(kg)方法二:由新养殖法的箱产量频率分布直方图中,箱产量低于50kg的直方图的面积:(0.004+0.020+0.044)×5=0.034,箱产量低于55kg的直方图面积为:(0.004+0.020+0.044+0.068)×5=0.68>0.5,故新养殖法产量的中位数的估计值为:50+≈52.35(kg),新养殖法箱产量的中位数的估计值52.35(kg).19.(12分)(2017•新课标Ⅱ)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB ﹣D的余弦值.【解答】(1)证明:取PA的中点F,连接EF,BF,因为E是PD的中点,所以EF AD,AB=BC=AD,∠BAD=∠ABC=90°,∴BC∥AD,∴BCEF是平行四边形,可得CE∥BF,BF⊂平面PAB,CF⊄平面PAB,∴直线CE∥平面PAB;(2)解:四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.取AD的中点O,M在底面ABCD上的射影N在OC上,设AD=2,则AB=BC=1,OP=,∴∠PCO=60°,直线BM与底面ABCD所成角为45°,可得:BN=MN,CN=MN,BC=1,可得:1+BN2=BN2,BN=,MN=,作NQ⊥AB于Q,连接MQ,所以∠MQN就是二面角M﹣AB﹣D的平面角,MQ==,二面角M﹣AB﹣D的余弦值为:=.20.(12分)(2017•新课标Ⅱ)设O为坐标原点,动点M在椭圆C:+y2=1上,过M做x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l 过C的左焦点F.【解答】解:(1)设M(x0,y),由题意可得N(x,0),设P(x,y),由点P满足=.可得(x﹣x0,y)=(0,y),可得x﹣x0=0,y=y,即有x0=x,y=,代入椭圆方程+y2=1,可得+=1,即有点P的轨迹方程为圆x2+y2=2;(2)证明:设Q(﹣3,m),P(cosα,sinα),(0≤α<2π),•=1,可得(cosα,sinα)•(﹣3﹣cosα,m﹣sinα)=1,即为﹣3cosα﹣2cos2α+msinα﹣2sin2α=1,解得m=,即有Q(﹣3,),椭圆+y2=1的左焦点F(﹣1,0),由kOQ=﹣,kPF=,由kOQ •kPF=﹣1,可得过点P且垂直于OQ的直线l过C的左焦点F.21.(12分)(2017•新课标Ⅱ)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x)<2﹣2.【解答】(1)解:因为f(x)=ax2﹣ax﹣xlnx=x(ax﹣a﹣lnx)(x>0),则f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,因为h′(x)=a﹣,且当0<x<时h′(x)<0、当x>时h′(x)>0,所以h(x)min=h(),又因为h(1)=a﹣a﹣ln1=0,所以=1,解得a=1;(2)证明:由(1)可知f(x)=x2﹣x﹣xlnx,f′(x)=2x﹣2﹣lnx,令f′(x)=0,可得2x﹣2﹣lnx=0,记t(x)=2x﹣2﹣lnx,则t′(x)=2﹣,令t′(x)=0,解得:x=,所以t(x)在区间(0,)上单调递减,在(,+∞)上单调递增,所以t(x)min=t()=ln2﹣1<0,从而t(x)=0有解,即f′(x)=0存在两根x0,x2,且不妨设f′(x)在(0,x0)上为正、在(x,x2)上为负、在(x2,+∞)上为正,所以f(x)必存在唯一极大值点x0,且2x﹣2﹣lnx=0,所以f(x0)=﹣x﹣xlnx=﹣x+2x﹣2=x﹣,由x0<可知f(x)<(x﹣)max=﹣+=;由f′()<0可知x<<,所以f(x)在(0,x0)上单调递增,在(x,)上单调递减,所以f(x)>f()=;综上所述,f(x)存在唯一的极大值点x0,且e﹣2<f(x)<2﹣2.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,按所做的第一题计分.[选修4-4:坐标系与参数方程](22.(10分)(2017•新课标Ⅱ)在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB面积的最大值.【解答】解:(1)曲线C1的直角坐标方程为:x=4,设P(x,y),M(4,y0),则,∴y=,∵|OM||OP|=16,∴=16,即(x2+y2)(1+)=16,∴x4+2x2y2+y4=16x2,即(x2+y2)2=16x2,两边开方得:x2+y2=4x,整理得:(x﹣2)2+y2=4(x≠0),∴点P的轨迹C2的直角坐标方程:(x﹣2)2+y2=4(x≠0).(2)点A的直角坐标为A(1,),显然点A在曲线C2上,|OA|=2,∴曲线C2的圆心(2,0)到弦OA的距离d==,∴△AOB的最大面积S=|OA|•(2+)=2+.[选修4-5:不等式选讲]23.(2017•新课标Ⅱ)已知a>0,b>0,a3+b3=2,证明:(1)(a+b)(a5+b5)≥4;(2)a+b≤2.【解答】证明:(1)由柯西不等式得:(a+b)(a5+b5)≥(+)2=(a3+b3)2≥4,当且仅当=,即a=b=1时取等号,(2)∵a3+b3=2,∴(a+b)(a2﹣ab+b2)=2,∴(a+b)[(a+b)2﹣3ab]=2,∴(a+b)3﹣3ab(a+b)=2,∴=ab,由均值不等式可得:=ab≤()2,∴(a+b)3﹣2≤,∴(a+b)3≤2,∴a+b≤2,当且仅当a=b=1时等号成立.参与本试卷答题和审题的老师有:caoqz;双曲线;海燕;whgcn;qiss;742048;maths;sxs123;cst;zhczcb(排名不分先后)菁优网2017年6月12日。

2017年全国高考数学(文科)真题汇总(6套)附答案

2017年全国高考数学(文科)真题汇总(6套)附答案

第 1页(共 15页)
A.60 B.30 C.20 D.10 7.(5 分)设 , 为非零向量,则“存在负数λ,使得 =λ ”是“ • <0”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 8.(5 分)根据有关资料,围棋状态空间复杂度的上限 M 约为 3361,而可观测宇 宙中普通物质的原子总数 N 约为 1080,则下列各数中与 最接近的是( )
当 k=2 时,满足进行循环的条件,执行完循环体后,k=3,S= ,
当 k=3 时,不满足进行循环的条件, 故输出结果为: ,
故选:C. 【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采 用模拟循环的方法解答.
4.(5 分)若 x,y 满足
,则 x+2y 的最大值为( )
A.1 B.3 C.5 D.9 【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最值即 可.
该三棱锥的体积=
=10.
故选:D.
【点评】本题考查了三棱锥的三视图、体积计算公式,考查了推理能力与计算能 力,属于基础题.
7.(5 分)设 , 为非零向量,则“存在负数λ,使得 =λ ”是“ • <0”的( ) A.充分而不必要条件 B.必要而不充分条件
第 6页(共 15页)
C.充分必要条件 D.既不充分也不必要条件 【分析】 , 为非零向量,存在负数λ,使得 =λ ,则向量 , 共线且方向相 反,可得 • <0.反之不成立,非零向量 , 的夹角为钝角,满足 • <0,而
19.(14 分)已知椭圆 C 的两个顶点分别为 A(﹣2,0),B(2,0),焦点在 x 轴上,离心率为 . (Ⅰ)求椭圆 C 的方程; (Ⅱ)点 D 为 x 轴上一点,过 D 作 x 轴的垂线交椭圆 C 于不同的两点 M,N,过 D 作 AM 的垂线交 BN 于点 E.求证:△BDE 与△BDN 的面积之比为 4:5. 20.(13 分)已知函数 f(x)=excosx﹣x. (1)求曲线 y=f(x)在点(0,f(0))处的切线方程; (2)求函数 f(x)在区间[0, ]上的最大值和最小值.

2017年高考理科数学真题全国卷II详细解析图高清可直接印刷

2017年高考理科数学真题全国卷II详细解析图高清可直接印刷
重点考查基本量求通项及几种求和方法,若解答题为三角函数,一般是解三角形问题,此时
客观题中一般会有一道与三角函数性质有关的题目,同时客观题中会有两道数列题,一易一
难,数列客观题一般具有小巧活的特点。
【试卷解析】
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一
项是符合题目要求的。
层灯数是上一层灯数的2倍,则塔的顶层共有灯()
A.1盏B.3盏C.5盏D.9盏
4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平
面将一圆柱截去一部分所得,则该几何体的体积为()
A.90B.63C.42D.36
导数三小一大(或两小一大)。
2.注重对数学文化与数学应用的考查
教育部2017年新修订的《考试大纲(数学)》中增加了数学文化的考查要求。2017高考数学
全国卷II理科第3题以《算法统宗》中的数学问题为进行背景,理科19题、文科18题以以
养殖水产为题材,贴近生活。
3.注重基础,体现核心素养
2017年高考数学试卷整体上保持一定比例的基础题,试卷注重通性通法在解题中的运用,另
的面积与体积结合在一起考查,解答题一般分2进行考查。
3.解析几何知识:解析几何试题一般有3道,圆、椭圆、双曲线、抛物线一般都会涉及,双
曲线一般作为客观题进行考查,多为容易题,解答题一般以椭圆与抛物线为载体进行考查,
运算量较大,不过近几年高考适当控制了运算量,难度有所降低。
4.三角函数与数列:三角函数与数列解答题一般轮流出现,若解答题为数列题,一般比较容易,
2017年普通高等学校招生全国统一考试(新课标II理科)
【试卷点评】
【命题特点】

2017年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2017年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2017年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={x|x<2},B={x|3﹣2x>0},则( )A.A∩B={x|x<}B.A∩B=∅C.A∪B={x|x<}D.A∪B=R2.(5分)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数3.(5分)下列各式的运算结果为纯虚数的是( )A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)4.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.B.C.D.5.(5分)已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x 轴垂直,点A的坐标是(1,3),则△APF的面积为( )A.B.C.D.6.(5分)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )A.B.C.D.7.(5分)设x,y满足约束条件,则z=x+y的最大值为( )A.0B.1C.2D.38.(5分)函数y=的部分图象大致为( )A.B.C.D.9.(5分)已知函数f(x)=lnx+ln(2﹣x),则( )A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+211.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c=,则C=( )A.B.C.D.12.(5分)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是( )A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)二、填空题:本题共4小题,每小题5分,共20分。

2017年全国2卷高考文科数学真题及详细解析(解析版,学生版,精校版,新课标Ⅱ卷)

2017年全国2卷高考文科数学真题及详细解析(解析版,学生版,精校版,新课标Ⅱ卷)

2017年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4}B.{1,2,3}C.{2,3,4}D.{1,3,4} 2.(5分)(1+i)(2+i)=()A.1﹣i B.1+3i C.3+i D.3+3i3.(5分)函数f(x)=sin(2x+)的最小正周期为()A.4πB.2πC.πD.4.(5分)设非零向量,满足|+|=|﹣|则()A.⊥B.||=||C.∥D.||>||5.(5分)若a>1,则双曲线﹣y2=1的离心率的取值范围是()A.(,+∞)B.(,2)C.(1,)D.(1,2)6.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π7.(5分)设x,y满足约束条件,则z=2x+y的最小值是()A.﹣15B.﹣9C.1D.98.(5分)函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是()A.(﹣∞,﹣2)B.(﹣∞,﹣1)C.(1,+∞)D.(4,+∞)9.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩10.(5分)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2B.3C.4D.511.(5分)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.B.C.D.12.(5分)过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴上方),l为C的准线,点N在l上,且MN⊥l,则M到直线NF的距离为()A.B.2C.2D.3二、填空题,本题共4小题,每小题5分,共20分13.(5分)函数f(x)=2cosx+sinx的最大值为.14.(5分)已知函数f(x)是定义在R上的奇函数,当x∈(﹣∞,0)时,f (x)=2x3+x2,则f(2)=.15.(5分)长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为.16.(5分)△ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤,第17至21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.18.(12分)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD面积为2,求四棱锥P﹣ABCD的体积.19.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg箱产量≥50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较.附:P(K2≥K)0.0500.0100.001K 3.841 6.63510.828K2=.20.(12分)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l 过C的左焦点F.21.(12分)设函数f(x)=(1﹣x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求a的取值范围.选考题:共10分。

2017年高考全国理科数学甲卷(新课标Ⅱ)

2017年高考全国理科数学甲卷(新课标Ⅱ)

2017年普通高等学校统一招生考试甲卷(新课标Ⅱ)理科数学第I卷(选择题)一、选择题:共12题每题5分共60分1.3i1i++A .B .C .D .2.设集合{1,2,4}A=,2{|40}B x x x m=-+=,若{1}A B =,则B=A.{1,3}-B.{1,0}C.{1,3}D.{1,5}3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯A.1盏B.3盏C.5盏D.9盏4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为A.90πB.63π.365.设x,y满足约束条件2330233030x yx yy+-⎧⎪-+⎨⎪+⎩≤≥≥,则2z x y=+的最小值是A .B .C .D .6.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有A .12种B .18种C .24种D .36种7.甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则 A .乙可以知道四人的成绩 B .丁可以知道四人的成绩 C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩 8.执行右面的程序框图,如果输入的1a =-,则输出的S=A .2B .3C .4 9.若双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线被圆22(2)4x y -+=所截得的弦长为2,则C 的离心率为A .2 BCD10.已知直三棱柱111ABC A B C-中,120ABC∠=,2AB=,11BC CC==,则异面直线1AB与1BC所成角的余弦值为A.2B.5C.5D.311.若2x=-是函数21()(1)xf x x ax e-=+-的极值点,则21()(1)xf x x ax e-=+-的极小值为A.1-B.32e--C.35e-D.112.已知ABC∆是边长为2的等边三角形,P为平面ABC内一点,则()PA PB PC⋅+的最小值是A.2-B.32-C.43-D.1-第II卷(非选择题)二、填空题:共4题每题5分共20分13.一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,表示抽到的二等品件数,则DX= .14.函数23()sin4f x x x=+-([0,2xπ∈的最大值是.15.等差数列{}n a的前n项和为n S,33a=,410S=,则11nk kS==∑.16.已知F是抛物线C:28y x=的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则||FN=.三、解答题:共7题每题12分共84分17.ABC∆的内角A,B,C的对边分别为a,b,c,已知2sin()8sin2BA C+=.(1)求cos B(2)若6a c+=,ABC∆面积为2,求b.18.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:新养殖法旧养殖法箱产量/kg箱产量/kg (1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01) 附:22()()()()()n ad bcKa b c d a c b d-=++++19.如图,四棱锥P ABCD-中,侧面ABCD,12AB BC AD==,90BAD ABC∠=∠=,E是的中点.EMDCBAP(1)证明:直线CE ∥平面PAB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45,求二面角M AB D --的余弦值20.设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .21.已知函数2()ln f x ax ax x x =--,且()0f x ≥.(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220()2e f x --<<.22.[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程; (2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB ∆面积的最大值.23.[选修4-5:不等式选讲]已知0a >,0b >,332a b +=,证明:(1)55()()4a b a b ++≥; (2)2a b +≤.。

历年高考数学真题汇编专题16 以基本不等式为背景的应用题(解析版)

历年高考数学真题汇编专题16  以基本不等式为背景的应用题(解析版)

历年高考数学真题汇编专题16 以基本不等式为背景的应用题1、【2017年高考江苏卷】某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是___________.【答案】30【解析】总费用为600900464()4240x x x x +⨯=+≥⨯=,当且仅当900x x=,即30x =时等号成立.在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.2、【2010年高考江苏卷】某兴趣小组要测量电视塔AE 的高度H (单位:m).示意图如图所示,垂直放置的标杆BC 的高度h =4 m ,仰角∠ABE =α,∠ADE =β.(1) 该小组已测得一组α,β的值,tan α=1.24,tan β=1.20,请据此算出H 的值;(2) 该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d (单位:m),使α与β之差较大,可以提高测量精确度.若电视塔的实际高度为125 m ,试问d 为多少时,α-β最大?规范解答 (1) 由AB =H tan α,BD =h tan β,AD =H tan β及AB +BD =AD ,得H tan α+h tan β=Htan β, 解得H =h tan αtan α-tan β=4×1.241.24-1.20=124.因此算出的电视塔的高度H 是124 m. (2) (1) 由题知d =AB ,则tan α=H d.由AB =AD -BD =H tan β-h tan β,得tan β=H -hd,所以tan(α-β)=tan α-tan β1+tan αtan β=()h hH H d d-+,当且仅当d =555时取等号. 又0<α-β<π2,所以当d =555时,tan(α-β)的值最大.因为0<β<α<π2,所以当d =555时,α-β的值最大.3、【2013年高考江苏卷】如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1 km.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -120(1+k 2)x 2(k >0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1) 求炮的最大射程;(2) 设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2 km ,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.本小题主要考查函数、方程和基本不等式等基础知识,考查数学阅读能力和解决实际问题的能力.满分14分.规范解答 (1)令y =0,得kx -120(1+k 2)x 2=0,由实际意义和题设条件知x >0,k >0,故x =20k 1+k 2=20k +1k≤202=10,当且仅当k =1时取等号. 所以炮的最大射程为10km.(2) 因为a >0,所以炮弹可击中目标等价于存在k >0,使3.2=ka -120(1+k 2)a 2成立,即关于k 的方程a 2k 2-20ak +a 2+64=0有正根, 所以判别式Δ=(-20a )2-4a 2(a 2+64)≥0, 解得a ≤6,所以0<a ≤6.所以当a 不超过6km 时,炮弹可击中目标.一、解函数应用问题的步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)解模:求解数学模型,得出数学结论;(4)还原:将数学问题还原为实际问题的意义.以上过程用框图表示如下:二、在求实际问题中的最大值或最小值时,一般先设自变量、因变量、建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合.运用基本不等式解决应用题一定要注意满足三个条件:一、正;二、定;三、相等。

2017年高考真题全国2卷文科数学(附答案解析)

2017年高考真题全国2卷文科数学(附答案解析)

uuur uuur uuur BA= λ AC ⇔ OA=
1
uuur OB +
1+ λ
λ
uuur OC .
1+ λ
(2)向量垂直: a ⊥ b ⇔ a ⋅ b = 0 ⇔ x1x2 + y1 y2 = 0 .
(3)向量运算: a ± b = (x1 ± x2 , y1 ± y2 ), a2 = | a |2 , a ⋅ b = | a | ⋅ | b | cos a, b .
y=lnt 为增函数,
故函数 f(x)=ln( x2 − 2x − 8 )的单调递增区间是(4,+∞),
故选 D.
点睛:形如 y = f ( g ( x)) 的函数为 y = g ( x) , y = f ( x) 的复合函数, y = g ( x) 为内层函
数, y = f ( x) 为外层函数.
简称为“同增异减”. 9.A 【解析】 【分析】 根据甲的所说的话,可知乙、丙的成绩中一位优秀、一位良好,再结合简单的合情推理逐一 分析可得出结果. 【详解】 因为甲、乙、丙、丁四位同学中有两位优秀、两位良好, 又甲看了乙、丙的成绩且还不知道自己的成立,即可推出乙、丙的成绩中一位优秀、一位良 好, 又乙看了丙的成绩,则乙由丙的成绩可以推出自己的成绩, 又甲、丁的成绩中一位优秀、一位良好,则丁由甲的成绩可以推出自己的成绩. 因此,乙、丁知道自己的成绩,故选:A. 【点睛】 本题考查简单的合情推理,解题时要根据已知的情况逐一分析,必要时可采用分类讨论的思 想进行推理,考查逻辑推理能力,属于中等题. 10.B 【解析】 【详解】
2 (1)证明:直线 BC / / 平面 PAD ; (2)若△ PCD 面积为 2 7 ,求四棱锥 P − ABCD 的体积.

2017年高考文科数学全国卷2(含详细答案)

2017年高考文科数学全国卷2(含详细答案)

--------------------答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位卷3.考试结束后,将本试卷和答题卡一并交回。

__ __ __ __ __A .1 iB .1 3iC .3 iD . 3 3i__ __ 3的最小正周期为_名 题 A. 1 只有一项A . ( 2, -------------绝密★启用前在2017 年普通高等学校招生全国统一考试--------------------文科数学此注意事项:1.置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择_--------------------题时,将答案写在答题卡上,写在本试卷上无效。

__ _ __ 一、选择题:本题共 35 小题,每小题 4 分,共 140 分。

在每小题给出的四个选项中,号 上 证 --------------------是符合题目要求的.考 准1.设集合 A1,2,3 , B 2,3,4 ,则 A B( )A . 1,2,3,4B . 1,2,3C . 2,3,4D . 1,3,4答--------------------2. (1 i)(2 i)()__ _ 3.函数 f(x) sin 2x() 姓--------------------A . 4πB . 2π C. π D.π24.设非零向量 a , b 满足 a b = a b ,则()无--------------------A . a ⊥ bB. a = bC . a ∥ bD . a >b6.如图,网格纸上小正方形的边长为 1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截取一部分后所得,则该几何体的体积为 ( ) A . 90 π B . 63π C . 42 π D . 36 π2x 3y 3≤0,7.设 x , y 满足约束条件 2x 3y 3≥0,则 z 2x y 的最小值是 ( )y 3≥0,A . 15 B. 9 C .1 D .98.函数 f(x) ln(x 2 2x 8)的单调增区间是 ( )A .( , 2) B.( ,1) C . (1, ) D . (4, )9.甲、乙、丙、丁四位同学一起去向老师咨询成语竞赛的成绩.老师说:你们四人中有 2位优秀,2 位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则 ( ) A .乙可以知道四人的成绩 B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩10.执行右面的程序框图,如果输入的 a 1 ,则输出的 S ( )A .2B .3C .4D .511.从分别写有 1,2,3,4,5 的 5 张卡片中随机抽取 1 张,放回后再随机抽取 1 张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为 ( )1 32 10 B. 5 C. 10 D. 55.若 a >1 ,则双曲线x 2a 2 y 21 的离心率的取值范围是 ( ) 12.过抛物线 C :y2 4x 的焦点 F ,且斜率为3 的直线交 C 于点 M ( M 在 x 轴的上方),效---------------- ) B . ( 2,2) C . (1, 2) D . (1,2)文科数学试卷 第 1 页(共 20 页) l 为 C 的准线,点 N 在 l 上且 MN l ,则 M 到直线 NF 的距离为 ( )A. 5B.2 2C. 2 3 D . 3 3文科数学试卷 第 2 页(共 20 页)n的前n项和为S,等比数列b的前n项和为T,a附:0.0502AD,BAD二、填空题:本题共4小题,每小题5分,共20分.13.函数f(x)2cos x sinx的最大值为.14.已知函数f(x)是定义在R上的奇函数,当x(,0)时f(x)2x3x2,则f(2).15.长方体的长宽高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为.16.△ABC的内角A,B,C的对边分别为a,b,c.若2b cosB a cosC ccos A,则B=.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)19.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取100个网箱,测量各网箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;已知等差数列an n n11,b11,箱产量<50kg箱产量≥50kga 2b22.旧养殖法新养殖法(1)若a3b35,求b的通项公式;n(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.(2)若T321,求S.3P(K2≥k)0.0100.001K2k 3.841 6.63510.828n(ad bc)2(a b)(c d)(a c)(b d)18.(12分)如图,四棱锥P ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB BC 1ABC90.(1)证明:直线BC∥平面PAD;(2)若△PCD的面积为27,求四棱锥P ABCD的体积.文科数学试卷第3页(共20页)文科数学试卷第4页(共20页)(2)设点Q在直线x3上,且OP PQ1.证明:过点P且垂直于OQ的直线l过______号上3,点B在曲线C上,求△OAB面积的最大值.__答__ __ __ __ ___ __名x-------------20.(12分)设O为坐标原点,动点M在椭圆C:在--------------------点P满足NP2NM.x22y21上,过M作x轴的垂线,垂足为N,(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程](10分)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1__ ___ _证考准_姓(1)求点P的轨迹方程;此--------------------C的左焦点F.卷----------------------------------------21.(12分)--------------------设函数f(x)(1x2)e.(1)讨论f(x)的单调性;(2)当x≥0时,若f(x)≤ax1,求a的取值范围.题--------------------无--------------------的极坐标方程为cos 4.(1)M为曲线C上的动点,点P在线段OM上,且满足OM OP16,求点P的1轨迹C的直角坐标方程;2(2)设点A的极坐标为2,223.[选修4—5:不等式选讲](10分)已知a>0,b>0,a3b32.证明:(1)(a b)(a5b5)≥4;(2)a b≤2.效----------------文科数学试卷第5页(共20页)文科数学试卷第6页(共20页)2.∵ a >1 ,∴1<1 <2 ,则1<e < 2 .故选 C.一、选择题1.【答案】A【解析】 A 2017 年普通高等学校招生全国统一考试文科数学答案解析B ={1,2,3} {2,3,4}={1,2,3,4}.故选 A.2.【答案】B【解析】 (1 i)(2 i) 2 i +2i i2 3i 1 1 3i .故选 B.3.【答案】C【解析】最小正周期 T2π 2π.故选 C.4.【答案】A【解析】由 |ab |= |a b |,两边平方得 a 2 2a b b 2a 2 2ab b 2 ,即 a b 0 ,则 a ⊥ b .故选 A.5.【答案】C【解析】 e 2c 2 a 2 1 1 11a 2 a 2 a 2 a 26.【答案】B【解析】由题意,该几何体是一个组合体,下半部分是一个底面半径为3 ,高为4 的圆柱,其体积V1π 32 4 36π,上半部分是一个底面半径为 3,高为 6 的圆柱的一半,其体积V 2 1 2(π 32 6) 27π,∴该组合体的体积V =V7.【答案】A1V =63π.故选 B.2【解析】不等式组表示的可行域如图所示,易求得 A(0,1),B ( 6, 3) ,C (6, 3).目标函数可化为 y由图可知目标函数在点 B 处取得最小值,最小值为 2 ( 6) ( 3) 15 .故选 A.2x z ,S K S ;S 2 3 ,∴ M (3,2 3).由 MN l 可得 N ( 1,2 3),又 F (1,0),则 NF 所在 2【解析】依题意有 x 22x 8>0 ,解得 x < 2 或 x >4 ,易知 f(x)在 ( , 2)单调递减,在 (4, ) 单调递增,所以 f(x)的单调递增区间是 (4, ) .故选 D.9.【答案】D【解析】由甲的说法可知乙、丙 1 人优秀 1 人良好,则甲、丁两人 1 人优秀 1 人良好,乙看到丙的成绩则知道自己的成绩,丁看到甲的成绩知道自己的成绩,即乙、丁可以知道自己的成绩.故选 D.10.【答案】B【解析】第一次循环: S0 1 1,a 1, K 2 ;第二次循环: S 1 2 1, a 1, K 3 ;第三次循环: 1 3 2 ,a 1 , 4 ;第四次循环:2 4 2 ,a 1 ,K 5 第五次循环: 2 5 3,a 1, K 6 ;第六次循环: S3 6 3,a 1, K 7 .结束循环,输出 S3 .故选 B.11.【答案】D【解析】如下表所示,表中的点的横坐标表示第一次取到的数,纵坐标表示第二次取到的数:12345 1(1,1)(2,1)(3,1)(4,1)(5,1) 2(1,2)(2,2)(3,2)(4,2)(5,2) 3(1,3)(2,3)(3,3)(4,3)(5,3) 4(1,4)(2,4)(3,4)(4,4)(5,4) 5(1,5)(2,5)(3,5)(4,5)(5,5)共有 25 种情况,满足条件的有 10 种,所以所求概率为12.【答案】C10 2 25 5.故选 D.【解析】由题知 F (1,0),则 MF 所在直线的方程为 y 3(x 1),与抛物线联立,化简,得3x210x 3 0 ,解得 x1 1 3, x直线的方程为 3x y3 0 ,∴ M 到直线 NF 的距离 d |3 3( 3)2 3 2 3|( 1)=2 3 .故选 C.二、填空题13.【答案】 5【解析】 f(x) 2cosx sinx≤ 22 125 ,∴ f(x)的最大值为 5 .14.【答案】12.n 的公差为 d , b 的公比为 q ,联立①②解得 d 1, 2 AD , BC ∥AD , ABC15.【答案】14 π【解析】设球的半径为 R ,依题意知球的直径为长方形的体对角线,∴ 2R32 22 1214 ,球 O 的表面积 S 4πR 2(2R )2 14π16.【答案】π3【解析】由正弦定理得 2sinB cos BsinA cosCsinC cos Asin(AC ) sinB ,∴ c osB三、解答题17.【答案】(1)设数列 an 1 π,则 B . 2 3则 a2b21 (2 1)d q 2 1 2 ,∴ d q3 .①a3b31 (3 1)d q 315 ,∴ 2d q 26 .②d 3,q 2 或 q 0 (舍去).∴ b 的通项公式为 bnn2n 1 .(2)由 b 11 , T321 得 q 2 q 20 0 .解得 q5或q 4.当q5 时,由①得 d8,S当q 4 时,由①得 d1, S333a13a12 32 d 2 32 d21 .6.18.【答案】(1)在平面 ABCD 内,∵ BADABC 90 ,∴ BC ∥AD .∵ AD 平面 PAD , BC 平面 PAD ,∴ BC ∥平面 PAD .(2)取 AD 的中点 M ,连接 PM , CM .∵ AB BC 190 ,∴四边形 ABCM 为正方形,∴ CMAD .∵侧面 PAD 为等边三角形且垂直于底面 ABCD ,平面 PAD 平面 ABCD AD ,∴ PMAD ,又 AD 底面 ABCD ,∴ PM 底面 ABCD .2x x 2 7 ,解得 x2 (负值舍去),设 BC x ,则 CMx , CD2x , PM3x , PC PD 2x .取 CD 的中点 N ,连接 PN .则 PN CD ,∴ PN 14x.2S △PCD1 142 2∴ AB BC 2 , AD 4 , PM2 3 .∴四棱锥 P ABCD 的体积 VP ABCD1 2 (2 4) 3 22 3 4 3.19.【答案】(1)旧养殖法的箱产量低于 50 kg 的频率为(0.012 0.014 0.024 0.034 0.040) 50.62,∴ A 的概率估计值为 0.62.(2)根据箱产量的频率分布直方图的列联表:箱产量<50 kg箱产量≥50 kg旧养殖法新养殖法6234 3866K 2的观测值 K2200 (62 66 34 38)2 100 100 96 104≈15.705.∵ 15.705>6.635,∴有 99% 的把握认为箱产量与养殖方法有关.(3)箱产量的频率分布直方图表明:新养殖法的箱产量平均值(或中位数)在 50 kg~55 kg 之间,旧养殖法的箱产量平均值(或中位数)在 45k g~50 kg 之间,且新养殖法的箱产量分布集中程度比旧养殖法的箱产量分布集中程度高,∴可以认为新养殖法的箱产量较高且稳定,新养殖法优于旧养殖法.20.【答案】(1)设P(x,y),M(x,y),则N(x,,NP(x x,y),NM(0,y).0)由NP2NM得x0x,y022y.∵M(x,y)在C上,∴00x2y2221,∴点P的轨迹方程为x2y22.(2)由题意知F(1,0).设Q(3,t),P(m,n),则OQ Q(3,t),PF(1m,n),OQ PF33m tn,OP(m,n),PQ(3m,tn).由OP PQ1得3m m2tn n21,由(1)知m2n22,∴33m tn0.∴OQ PF0,即OQ⊥PF.又过点P存在唯一直线垂直于O Q,∴过点P且垂直于OQ的直线l过C的左焦点F.21.【答案】(1)∵f(x)(1x2)e x,∴f(x)(12x x2)e x.令f(x)0得x12或x12.当x(,12)时,f(x)<0;当x(12,12)时,f(x)>0;当x(12,)时,f(x)<0.∴f(x)在(,12)和(12,)单调递减,在(12,12)单调递增.(2)f(x)(1x)(1x)e x.当a≥1时,设函数h(x)(1x)e x,则h(x)xe x<0(x>0),∴h(x)在[0,)单调递减.又h(0)1,∴h(x)≤1,∴f(x)(x1)h(x)≤x1≤ax1.当0<a<1时,设函数g(x)e x x1,则g(x)e x1>0(x>0).g(x)[0,)1) 1) ∴ △OAB 的面积 S 1 B sin AOB 4cos sin 3当 0<x <1时, f(x)>(1 x)(1 x)2 ,(1 x)(1 x)2 ax 1 x(1 a x x 2 ),取x0 5 4a 12 ,则 x 0 (0,.(1 x )(1 x )2 ax0 0 0 1 0 ,∴ f(x )>ax 0 0 1.当 a≤0 a≤0 时,取 x 0 5 1 2 ,则 x 0(0, .f(x )>(1 x )(1 x )21≥ax0 0 0 0 1 .综上, a 的取值范围是[1, ).22.【答案】(1)设 P 的极坐标为 ( , )( >0), M 的极坐标为 ( , )( >0).1 1由题设知 OP , OM1 4 cos .由 OM OP 16 得 C 的极坐标方程为 4cos( >0), 2即 (x 2)2 y 2 4(x 0).(2)设点 B 的极坐标为 ( , )( >0).B B由题设知 OA 2,B 4cos ,ππ 3 OA 2 sin 2≤2 3.2 3 3 2 当 π时, S 取得最大值 2 3 .12∴ △OAB 面积的最大值为 2 3 .23.【答案】(1) (a b)(a 5 b 5 ) a 6 ab 5 a 5b b 6(a 3 b 3)2 2a 3b 3 ab(a 4 b 4 )4 ab(a 2 b 2 )2≥4 .(2)∵ (a b) a 3 3a 2b 3ab 2 b 33(a b)2 2 3ab(a b)≤2 (a b)3(a b)32,4∴(a b)3≤8,a b≤2.。

2017年高考文科数学全国2卷(附答案)

2017年高考文科数学全国2卷(附答案)

12B-SX-0000011绝密★启用前2017年普通高等学校招生全国统一考试文科数学 全国 II卷 A. ( 2, ) C.(1, 2)D. (1,2)6. 如图,网格纸上小正方形的边长为 1,粗实线画出的是某几何体的三视图,该号- 学 (全卷共 10 页) (适用地区:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、陕西、重庆、西藏注意事项:答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在 答题卡上,写在本试卷上无效。

考试结束后,将本试卷和答案卡一并交回。

_ - 一、 选择题:本题共 12 小题,每小题 5 分,共 60 分。

在每个小题给出的四个选 _: - 项中, 只有一项是符合题目要求的。

名 姓 - 1. 设集合 A 1,2,3 ,B 2,3,4 ,则 A B ( ) - 1 2线封密 3- A. 1,2,3,4B. 1,2,3C. 2,3,4_班 -___ - 2. 1 i 2 i ()__年 -- A.1 iB.1 3iC.3 i__ 线 3. 函数 f x sin(2x) 的最小正周期为() __ 封 3密A. 4B. 2C.4. 设非零向量 a,b 满足 a b a b ,则( )D. 1,3,4D.3 3i几何体由一平面将一圆柱截取一部分后所得,则该几何体的体积为( )A. 90B. 63C.42D. 36A. a bB. a bC.a ∥b2x 3y 3 07. 设 x, y 满足约束条件 2x 3y 3 0,则 z 2x y 的最小值为( ) y30A.-15B.-9C.1D.928. 函数 f x ln (x 2 2x 8) 的单调增区间为()A. , 2B. ,1C. 1,D. 4,9. 甲、乙、丙、丁四位同学一起去向老师咨询成语竞赛的成绩.老师说:你们四人中有 2为优秀, 2 位良好,我现在给甲看乙、丙成绩,给乙看丙成绩,给丁看 甲的成绩 .看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()2_ _- 5. 若 a 1 ,则双曲线 2 y 2 1的离心率的取值范围是(): a 2 校- 学-A. 乙可以知道四人的成绩 C.乙、丁可以知道对方的成绩 B.丁可以知道四人的成绩 D.乙、丁可以知道自己的成绩10. 执行如图所示程序框图,如果输入的 a 1 ,则输出的 S ( )12B-SX-0000011A.2B.3C.4D.511. 从分别写有1,2,3,4,5 的 5 张卡片中随机抽取 1 张,放回后再随机抽取 1 张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.1B.1C. 3D.215. 长方体的长宽高分别为3,2,1 ,其顶点都在球O 的球面上,则球O 的表面积为.16. ABC 的内角A, B, C的对边分别为a,b,c. 若2bcosB acosC ccosA ,则B .三、解答题:共70分。

2017新课标全国卷2高考理科数学试题及答案解析

2017新课标全国卷2高考理科数学试题及答案解析

WORD格式整理一、选择题(本大题共12小题,共60。

0分)1。

已知z=(m+3)+(m—1)i在复平面内对应的点在第四象限,则实数m的取值范围是()A。

(—3,1) B。

(-1,3) C。

(1,+∞) D.(—∞,-3)2。

已知集合A={1,2,3},B={x|(x+1)(x—2)<0,x∈Z},则A∪B=()A.{1}B.{1,2}C.{0,1,2,3} D。

{-1,0,1,2,3}3.已知向量=(1,m),=(3,—2),且(+)⊥,则m=( )A。

—8 B.-6 C。

6 D.84。

圆x2+y2—2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=( )A。

— B.- C. D.25.如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24 B。

18 C。

12 D.96.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A。

20π B。

24π C。

28π D.32π7.若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为()A.x=-(k∈Z) B。

x=+(k∈Z) C。

x=—(k∈Z) D.x=+(k∈Z)8.中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=()A.7B.12 C。

17 D。

349。

若cos(—α)=,则sin2α=()A。

B. C.— D。

-10.从区间[0,1]随机抽取2n个数x1,x2,…,x n,y1,y2,…,y n构成n个数对(x1,y1),(x2,y2)…(x n,y n),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为()A。

B. C。

D.11。

已知F1,F2是双曲线E:-=1的左、右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=,则E的离心率为()A。

2017年高考数学文科试卷全国二卷附答案解析

2017年高考数学文科试卷全国二卷附答案解析

2017年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4}B.{1,2,3}C.{2,3,4}D.{1,3,4}2.(5分)(1+i)(2+i)=()A.1﹣i B.1+3i C.3+i D.3+3i3.(5分)函数f(x)=sin(2x +)的最小正周期为()A.4πB.2πC.πD .4.(5分)设非零向量,满足|+|=|﹣|则()A .⊥B.||=||C .∥D.||>||5.(5分)若a>1,则双曲线﹣y2=1的离心率的取值范围是()A.(,+∞)B.(,2)C.(1,)D.(1,2)6.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π7.(5分)设x,y 满足约束条件,则z=2x+y的最小值是()A.﹣15B.﹣9C.1D.98.(5分)函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是()A.(﹣∞,﹣2)B.(﹣∞,﹣1)C.(1,+∞)D.(4,+∞)9.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩10.(5分)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2B.3C.4D.511.(5分)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A .B .C .D .12.(5分)过抛物线C:y2=4x的焦点F ,且斜率为的直线交C于点M(M在x轴上方),l为C 的准线,点N在l上,且MN⊥l,则M到直线NF的距离为()A .B.2C.2D.3二、填空题,本题共4小题,每小题5分,共20分13.(5分)函数f(x)=2cosx+sinx的最大值为.14.(5分)已知函数f(x)是定义在R上的奇函数,当x∈(﹣∞,0)时,f(x )=2x3+x2,则f (2)=.15.(5分)长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为.16.(5分)△ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤,第17至21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.18.(12分)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD面积为2,求四棱锥P﹣ABCD的体积.19.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg箱产量≥50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较.附:P(K2≥K)0.0500.0100.001K 3.841 6.63510.828K2=.20.(12分)设O为坐标原点,动点M在椭圆C :+y2=1上,过M作x轴的垂线,垂足为N,点P 满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.21.(12分)设函数f(x)=(1﹣x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求a的取值范围.选考题:共10分。

2017年黑龙江省高考数学试卷(文科)(全国新课标ⅱ)(解析版)

2017年黑龙江省高考数学试卷(文科)(全国新课标ⅱ)(解析版)

2017年黑龙江省高考数学试卷(文科)(全国新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4}B.{1,2,3}C.{2,3,4}D.{1,3,4} 2.(5分)(1+i)(2+i)=()A.1﹣i B.1+3i C.3+i D.3+3i3.(5分)函数f(x)=sin(2x+)的最小正周期为()A.4πB.2πC.πD.4.(5分)设非零向量,满足|+|=|﹣|则()A.⊥B.||=||C.∥D.||>||5.(5分)若a>1,则双曲线﹣y2=1的离心率的取值范围是()A.(,+∞)B.(,2)C.(1,)D.(1,2)6.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π7.(5分)设x,y满足约束条件,则z=2x+y的最小值是()A.﹣15B.﹣9C.1D.98.(5分)函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是()A.(﹣∞,﹣2)B.(﹣∞,﹣1)C.(1,+∞)D.(4,+∞)9.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩10.(5分)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2B.3C.4D.511.(5分)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.B.C.D.12.(5分)过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴上方),l为C的准线,点N在l上,且MN⊥l,则M到直线NF的距离为()A.B.2C.2D.3二、填空题,本题共4小题,每小题5分,共20分13.(5分)函数f(x)=2cos x+sin x的最大值为.14.(5分)已知函数f(x)是定义在R上的奇函数,当x∈(﹣∞,0)时,f(x)=2x3+x2,则f(2)=.15.(5分)长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为.16.(5分)△ABC的内角A,B,C的对边分别为a,b,c,若2b cos B=a cos C+c cos A,则B =.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤,第17至21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.18.(12分)如图,四棱锥P﹣ABCD中,侧面P AD为等边三角形且垂直于底面ABCD,AB =BC=AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面P AD;(2)若△PCD面积为2,求四棱锥P﹣ABCD的体积.19.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较.附:K2=.20.(12分)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l过C 的左焦点F.21.(12分)设函数f(x)=(1﹣x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求a的取值范围.选考题:共10分。

2017年高考真题全国2卷理科数学(附答案解析)

2017年高考真题全国2卷理科数学(附答案解析)

说不知道自已的成绩,假定丙是优,则乙是良,乙就知道自己成绩.给丁看甲成绩,因
为甲不知道自己成绩,乙丙是一优一良,则甲丁也是一优一良,丁看到甲成绩,假定甲
是优,则丁是良,丁肯定知道自已的成绩了
故选:D.
【点睛】
本题考查了合情推理的问题,关键掌握四人所知只有自己看到,老师所说及最后甲说话,
属于中档题. 8.B
2x + 3y − 3 ≤ 0 作出 2x − 3y + 3 ≥ 0 表示的可行域,如图,
y + 3 ≥ 0
2x + 3y − 3 =0 x = −6

可得

2x − 3y + 3 =0 y = −3
将=z 2x + y 变形为 y =−2x + z , 平移直线 y =−2x + z ,
由图可知当直 y =−2x + z 经过点 (−6, −3) 时,
4 − 2i
=2-i.
2
参考答案
故选 D. 【点睛】 这个题目考查了复数的除法运算,复数常考的还有几何意义,z=a+bi(a,b∈R)与复平面上
uuur 的点 Z(a,b)、平面向量 OZ 都可建立一一对应的关系(其中 O 是坐标原点);复平面内,实
轴上的点都表示实数;虚轴上的点除原点外都表示纯虚数.涉及到共轭复数的概念,一般地, 当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数,复数 z 的共轭
a2 b2

得的弦长为 2,则 C 的离心率为
()
A.2
B. 3
C. 2
D. 2 3 3
10.已知直三棱柱 ΑΒC − Α1Β1C1 中, ∠ΑΒC = 120o, ΑΒ = 2 , ΒC= CC=1 1,则

(完整版)2017年高考理科数学全国卷2试题及答案

(完整版)2017年高考理科数学全国卷2试题及答案

2017年普通高等学校招生全国统一考试理科数学(Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.31ii+=+( ) A .12i + B .12i - C .2i + D .2i -2.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B =I ,则B =( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,53.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏 4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( ) A .90π B .63π C .42π D .36π5.设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C .1D .96.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( ) A .乙可以知道四人的成绩 B .丁可以知道四人的成绩 C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩 8.执行右面的程序框图,如果输入的1a =-,则输出的S =( ) A .2 B .3 C .4 D .59.若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )A .2B .3C .2D .23输出S K=K+1a =a S =S +a ∙K 是否输入a S =0,K =1结束K ≤6开始10.已知直三棱柱111C C AB -A B 中,C 120∠AB =o ,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( ) A.2 B.5 C.5D.3 11.若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( )A.1-B.32e --C.35e -D.112.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+u u u r u u u r u u u r的最小值是( ) A.2- B.32-C. 43- D.1-二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年普通高等数学招生全国统一考试(全国Ⅱ)
文科数学
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.
参考公式:
三角函数的积化和差公式:
[]1
sin cos sin()sin()2αβαβαβ=
++- []1
cos sin sin()sin()2αβαβαβ=+--
[]1
cos cos cos()cos()2αβαβαβ=++-
[]1
sin sin cos()cos()2αβαβαβ=-+--
正棱台、圆台的侧面积公式
1
()2
S c c l =
'+台侧 其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长.
球的体积公式:3
43
V r π=球,其中R 表示球的半径.
第Ⅰ卷(选择题共60分)
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.直线2y x =关于x 对称的直线方程为
A .12
y x =- B .12
y x =
C .2y x =-
D .2y x =
2.(,0)2x π
∈-
,4
cos 5
x =
,则tan 2x = A .724
B .724-
C .247
D .24
7
-
3.抛物线2
y ax =的准线方程是2y =,则a 的值为
A .
18
B .18-
C .8
D .8- 4.等差数列{}n a 中,已知11
3
a =,254a a +=,33n a =,则n 为
A .48
B .49
C .50
D .51
5.双曲线虚轴的一个端点为M ,两个焦点为1F ,2F ,12
120FMF ∠=
,则双曲线的离心率为 A
B
C
D
6.设函数1221,0(),0
x x f x x x -⎧-≤⎪
=⎨⎪>⎩,若0()1f x >,则0x 的取值范围是
A .(1,1)-
B .(1,)-+∞
C .(,2)(0,)-∞-+∞
D .(,1)(1,)-∞-+∞
7.已知5()lg f x x =,则(2)f =
A .lg 2
B .lg 32
C .1
lg 32
D .1lg 25
8.函数sin()(0)y x ϕϕπ=+≤≤是R 上的偶函数,则ϕ
A .0
B .
4
π C .
2
π D .π
9.已知点(,2)(0)a a >到直线:30l x y -+=的距离为1,则a =
A
B
.2C
1
D
1
10.已知圆锥的底面半径为R ,高为3R ,它的内接圆柱的底面半径为
3
4R ,该圆柱的全面积为 A .2
2R π
B .2
94
R π
C .2
83
R π
D .2
52
R π
12.已知长方形的四个顶点(0,0)A ,(2,0)B ,(2,1)C 和(0,1)D ,一质点从AB 的中点0P 沿与
AB 的夹角为θ的方向射到BC 上的点1P 后,依次反射到CD ,DA 和AB 上的点2P ,3P 和4P (入
射角等于反射角),若4P 与0P 重合,则
tan θ= A .
1
3
B .
25
, C .
12
D .1
12
A .3π
B .4π
C

D .6π
第Ⅱ卷(非选择题共90分)
注意事项:用钢笔或圆珠笔直接答在答题卡上.
二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.
13
x 的解集是 .
14.2
9
1()2x x
-
的展开式中9x 的系数是 . 15.在平面几何里,有勾股定理:“设△ABC 的两边AB ,AC 互相垂直,则2
2
2
AB AC BC +=.”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间关系,可以得出的正确结论是:“设三棱锥
A BCD -的三个侧面ABC ,ACD ,AD
B 两两互相垂直,
则 .”
16.如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有 种.(以数字作答)
三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.
17.(本小题满分12分)正四棱柱1111ABCD A BC D -,
1AB =,12AA =,点E 为1CC 的中点,点F 为1BD 的中点.
(1)证明:EF 为1BD 与1CC 的公垂线; (2)求点1D 到平面BDE 的距离.
18.(本小题满分12分)已知复数z 的辐角为60°,且|1|z -是||z 和|2|z -的等比中项,求||z .
19.(本小题满分12分)已知数列{}n a 满足11a =,113(2)n n n a a n --=+≥. (1)求2a ,3a ;
(2)证明:312
n n a -=.
A
B
C
D
A B 1
C 1
D 1
E
F
M
20.(本小题满分12分)已知函数()2sin (sin cos )f x x x x =+. (1)求函数()f x 的最小正周期和最大值; (2)在给出的直角坐标系中,画出函数
()y f x =在区间,22ππ⎡⎤
-⎢⎥⎣⎦
上的图像.
21.(本小题满分12分)某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O (如图)东偏
南(arccos
10
θθ=方向300km 的海面P 处,交以20/km h 的速度向本偏北45°方向移动,台风侵袭的范围为圆形区域,当前半径为60km ,并以10/km h 的速度不断增大,问几小时后该城市开始受到台风的侵袭?
22.(本小题满分14分)已知常数0a >,在矩形ABCD 中,4AB =,4BC a =,O 为AB 的中点,点E ,F ,G 分别在BC ,CD ,DA 上移动,且
BE CF DG
BC CD DA
==,P 为GE 与OF 的交点(如图,问是否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由.


数学试题参考答案
一、选择题,本题考查基础知识,基本概念和基本运算能力
二、填空题.本题考查基础知识,基本概念和基本运算技巧13.14.15.16.
三、解答题
17.。

相关文档
最新文档