2017年高考真题——全国2卷文科标准答案

合集下载

2017年高考文综(全国II卷)含答案

2017年高考文综(全国II卷)含答案

绝密★启用前2017年普通高等学校招生全国统一考试文科综合能力测试本试卷共47题,共300分,共14页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1。

答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2。

选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑字迹的签字笔书写,字体工整,笔迹清楚。

3。

请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.4。

作图可先用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5。

保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本大题共35小题,每小题4分,共140分.在每小题给出的四个选项中,只有一项是符合题目要求的.19世纪50年代,淮河自洪泽湖向南经长江入海;黄河结束夺淮历史,改从山东入海。

1968年,南京长江大桥建成通车;自1999年,江苏境内又陆续建成了多座长江大桥。

江苏习惯上以长江为界分为苏南和苏北两部分(图1)。

据此完成1~3题.1.目前,在洪泽湖以东地区,秦岭—淮河线A.无划分指标依据B.与自然河道一致C.无对应的自然标志D.两侧地理差异显著2。

习惯上苏南、苏北的划分突出体现了长江对两岸地区A.自然地理分异的影响B.人文地理分异的影响C.互相联系的促进作用D.相互联系的阻隔作用3. 进入21世纪,促使苏南、苏北经济合作更加广泛的主导因素是A.市场B.技术C.资金D.交通汽车轮胎性能测试需在不同路面上进行。

芬兰伊瓦洛(位置见图2)吸引了多家轮胎企业在此建设轮胎测试场,最佳测试期为每年11月至次年4月.据此完成4~5题。

4. 推测该地轮胎测试场供轮胎测试的路面是A. 冰雪路面B. 湿滑路面C. 松软路面D. 干燥路面5. 在最佳测试期内,该地轮胎测试场A. 每天太阳从东南方升起B. 有些日子只能夜间进行测试C. 经常遭受东方寒潮侵袭D. 白昼时长最大差值小于12时热带沙漠中的尼罗河泛滥区孕育了古埃及农耕文明。

2017全国2卷高考语文试卷及答案

2017全国2卷高考语文试卷及答案

2017全国2卷高考语文试卷及答案绝密★启用前2017年普通高等学校全国统一考试(新课标II)语文注意事项:1.本试卷分第I卷(阅读题)和第II卷(表达题)两部分。

2.考生务必将自己的姓名、考生号填写在答题卡上。

3.作答时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷阅读题一、现代文阅读(35分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1-3题。

青花瓷发展的黄金时代是明朝永乐、宣德时期,与郑和下西洋在时间上重合,这不能不使我们思考:航海与瓷器同时达到鼎盛,仅仅是历史的偶然吗?从历史事实来看,郑和下西洋为青花瓷的迅速崛起提供了历史契机。

近三十年的航海历程推动了作为商品的青花瓷的大量生产与外销,不仅促进技术创新,使青花瓷达到瓷器新工艺的顶峰,而且改变了中国瓷器发展的走向,带来了人们审美观念的更新。

这也就意味着,如果没有郑和远航带来活跃的对外贸易,青花瓷也许会像在元代一样,只是中国瓷器的诸多品种之一,而不会成为主流,更不会成为中国瓷器的代表。

由此可见,青花瓷崛起是郑和航海时代技术创新与文化交融的硕果,中外交往的繁盛在推动文明大交融的同时,也推动了生产技术与文化艺术的创新发展。

作为中外文明交融的结晶,青花瓷真正成为中国瓷器的主流,则是因为成化年间原料本土化带来2了民窑青花瓷的崛起。

民窑遍地开花,进入商业化模式之后,几乎形成了青花瓷一统天下的局面。

一种海外流行的时尚由此成为中国本土的时尚,中国传统的人物、花鸟、山水,与外来的伊斯兰风格融为一体,青花瓷成为中国瓷器的代表,进而走向世界,最终万里同风,成为世界时尚。

一般来说,一个时代有一个时代的文化,而时尚兴盛则是社会快速变化的标志。

因此,瓷器的演变之所以引人注目,还在于它与中国传统社会从单一向多元社会的转型同步。

瓷器的演变与社会变迁有着千丝万缕的联系,这使我们对明代有了新的思考和认识。

如果说以往人们所了解的明初是一个复兴传统的时代,其文化特征是回归传统,明初往往被认为是保守的,那么青花瓷的例子,则可以使人们对明初文化的兼容性有一个新的认识。

2017年新课标全国卷2高考文科数学试题及答案

2017年新课标全国卷2高考文科数学试题及答案

2017年新课标全国卷2高考文科数学试题及答案2017年普通高等学校招生全国统一考试(新课标II卷)文科数学注意事项:1.在答题卡和试卷上填写姓名和准考证号。

2.选择题用铅笔在答题卡上涂黑对应选项,非选择题写在答题卡上。

3.考试结束后,将试卷和答题卡一并交回。

一、选择题(共12小题,每小题5分,共60分)1.设集合A={1,2,3},B={2,3,4},则A∪B=A。

{1,2,3,4}B。

{1,2,3}C。

{2,3,4}D。

{13,4}2.计算(1+i)(2+i)=A。

1-iB。

1+3iC。

3+iD。

3+3i3.函数f(x)=sin(2x+π/3)的最小正周期为πA。

4πB。

2πC。

πD。

24.设非零向量a,b满足a+b=a-b,则A。

a⊥bB。

a=bC。

a∥bD。

a>b5.若a>1,则双曲线2y=1的离心率的取值范围是aA。

(1,2)B。

(2,+∞)C。

(2,2)D。

(1,2)6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A。

90πB。

63πC。

42πD。

36π7.设x、y满足约束条件2x+3y-3≤02x-3y+3≥0y+3≥0则z=2x+y的最小值是A。

-15B。

-9C。

1D。

98.函数f(x)=ln(x2-2x-8)的单调递增区间是A。

(-∞,-2)B。

(-∞,-1)C。

(1,+∞)D。

(4,+∞)9.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则A。

乙可以知道两人的成绩B。

丁可能知道两人的成绩C。

乙、丁可以知道对方的成绩D。

乙、丁可以知道自己的成绩10.执行右面的程序框图,如果输入的a=-1,则输出的S=A。

2B。

3C。

4D。

511.从五张卡片中随机抽取两次,求第一次抽到的数大于第二次的概率。

2017年全国统一高考新课标版Ⅱ卷全国2卷文科数学试卷及参考答案与解析

2017年全国统一高考新课标版Ⅱ卷全国2卷文科数学试卷及参考答案与解析

2017年全国统一高考新课标版Ⅱ卷全国2卷文科数学试卷及参考答案与解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,2,3},B={2,3,4},则A∪B=( )A.{1,2,3,4}B.{1,2,3}C.{2,3,4}D.{1,3,4}2.(5分)(1+i)(2+i)=( )A.1-iB.1+3iC.3+iD.3+3i3.(5分)函数f(x)=sin(2x+)的最小正周期为( )A.4πB.2πC.πD.4.(5分)设非零向量,满足|+|=|-|则( )A.⊥B.||=||C.∥D.||>||5.(5分)若a>1,则双曲线-y2=1的离心率的取值范围是( )A.(,+∞)B.(,2)C.(1,)D.(1,2)6.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A.90πB.63πC.42πD.36π7.(5分)设x,y满足约束条件,则z=2x+y的最小值是( )A.-15B.-9C.1D.98.(5分)函数f(x)=ln(x2-2x-8)的单调递增区间是( )A.(-∞,-2)B.(-∞,-1)C.(1,+∞)D.(4,+∞)9.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩10.(5分)执行如图的程序框图,如果输入的a=-1,则输出的S=( )A.2B.3C.4D.511.(5分)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )A. B. C. D.12.(5分)过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴上方),l为C 的准线,点N在l上,且MN⊥l,则M到直线NF的距离为( )A. B.2 C.2 D.3二、填空题,本题共4小题,每小题5分,共20分13.(5分)函数f(x)=2cosx+sinx的最大值为.14.(5分)已知函数f(x)是定义在R上的奇函数,当x∈(-∞,0)时,f(x)=2x3+x2,则f(2)=.15.(5分)长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为.16.(5分)△ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤,第17至21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知等差数列{an }的前n项和为Sn,等比数列{bn}的前n项和为Tn,a1=-1,b1=1,a2+b2=2.(1)若a3+b3=5,求{bn}的通项公式;(2)若T3=21,求S3.18.(12分)如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD面积为2,求四棱锥P-ABCD的体积.19.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;.K2=.20.(12分)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=-3上,且•=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.21.(12分)设函数f(x)=(1-x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求a的取值范围.选考题:共10分。

(完整word版)2017年高考语文全国2卷(附答案).docx

(完整word版)2017年高考语文全国2卷(附答案).docx

12B-YW-0000005 _ -绝密★启用前_2017 年普通高等学校招生全国统一考试_- __-_语文 ( 全国 II 卷, 2017.06)__- : 注意事项:号 -学 - 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

_ 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答_-__案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择_-__题时,将答案写在答题卡上。

写在本试卷上无效。

_-_ _3.考试结束后,将本试卷和答题卡一并交回。

__线一、现代文阅读( 35 分)__封__密 (一)论述类文本阅读(本题共3 小题, 9 分)_ __- 阅读下面的文字,完成 1~ 3 题。

_ : - 青花瓷发展的黄金时代是明朝永乐、宣德时期,与郑和下西洋在名 -时间上重合,这不能不使我们思考:航海与瓷器同时达到鼎盛,仅仅 姓- 是历史的偶然吗?从历史事实来看,郑和下西洋为青花瓷的迅速崛起 _ - 提供了历史契机。

近三十年的航海历程推动了作为商品的青花瓷大量-生产与外销,不仅促进技术创新,使青花瓷达到瓷器新工艺的顶峰,班_ - 而且改变了中国瓷器发展的走向,带来了人们审美观念的更新。

这也__-就意味着,如果没有郑和远航带来活跃的对外贸易,青花瓷也许会像_ _- 在元代一样,只是中国瓷器的诸多品种之一,而不会成为主流,更不 年 __会成为中国瓷器的代表。

由此可见,青花瓷崛起是郑和航海时代技术 __线_创新与文化交融的硕果,中外交往的繁盛在推动文明大交融的同时, _封__密也推动了生产技术与文化艺术的创新发展。

_- 作为中外文明交融的结晶,青花瓷真正成为中国瓷器的主流,则_ _-_ 是因为成化年间原料本土化带来了民窑青花瓷的崛起。

民窑遍地开_ __-_ 花,进入商业化模式之后,几乎形成了青花瓷一统天下的局面。

一种 _ _ - 海外流行的时尚由此成为中国本土的时尚,中国传统的人物、花鸟、_ __- 山水,与外来的伊斯兰风格融为一体,青花瓷成为中国瓷器的代表, _ _-_ 进而走向世界,最终万里同风,成为世界时尚。

2017年高考全国Ⅱ卷文数试题(Word版含答案)

2017年高考全国Ⅱ卷文数试题(Word版含答案)

2017年高考全国Ⅱ卷文数试题(Word版含答案)绝密★启用前2017年普通高等学校招生全国统一考试文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合则A. B. C. D.2.(1+i)(2+i)=A.1-iB. 1+3iC. 3+iD.3+3i3.函数的最小正周期为A.4B.2C.D.4.设非零向量,满足则A⊥ B. C. ∥ D.5.若>1,则双曲线的离心率的取值范围是A. B. C. D.6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A.90B.63C.42D.367.设x、y满足约束条件。

则的最小值是A. -15B.-9C. 1 D 98.函数的单调递增区间是A.(-,-2)B. (-,-1)C.(1, +)D. (4, +)9.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则A.乙可以知道两人的成绩B.丁可能知道两人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩10.执行右面的程序框图,如果输入的a=-1,则输出的S=A.2B.3C.4D.511.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A. B. C. D.12.过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴上方),l为C的准线,点N在l上且⊥l,则M到直线NF的距离为A. B. C. D.二、填空题,本题共4小题,每小题5分,共20分.13.函数的最大值为.14.已知函数是定义在R上的奇函数,当x时,,则15.长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为16.△ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=三、解答题:共70分。

2017年高考语文全国卷2含答案

2017年高考语文全国卷2含答案

绝密★启用前2017年普通高等学校全国统一考试语文本试卷共22题,共150分,共12页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.本试卷分第I 卷(阅读题)和第II 卷(表达题)两部分。

2.考生务必将自己的姓名、考生号填写在答题卡上。

3.作答时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

一、现代文阅读(35分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。

青花瓷发展的黄金时代是明朝永乐、宣德时期,与郑和下西洋在时间上重合,这不能不使我们思考:航海与瓷器同时达到鼎盛,仅仅是历史的偶然吗?从历史事实来看,郑和下西洋为青花瓷的迅速崛起提供了历史契机。

近三十年的航海历程推动了作为商品的青花瓷的大量生产与外销,不仅促进技术创新,使青花瓷达到瓷器新工艺的顶峰,而且改变了中国瓷器发展的走向,带来了人们审美观念的更新。

这也就意味着,如果没有郑和远航带来活跃的对外贸易,青花瓷也许会像在元代一样,只是中国瓷器的诸多品种之一,而不会成为主流,更不会成为中国瓷器的代表。

由此可见,青花瓷崛起是郑和航海时代技术创新与文化交融的硕果,中外交往的繁盛在推动文明大交融的同时,也推动了生产技术与文化艺术的创新发展。

作为中外文明交融的结晶,青花瓷真正成为中国瓷器的主流,则是因为成化年间原料本土化带来了民窑青花瓷的崛起。

民窑遍地开花,进入商业化模式之后,几乎形成了青花瓷一统天下的局面。

一种海外流行的时尚由此成为中国本土的时尚,中国传统的人物、花鸟、山水,与外来的伊斯兰风格融为一体,青花瓷成为中国瓷器的代表,进而走向世界,最终万里同风,成为世界时尚。

一般来说,一个时代有一个时代的文化,而时尚兴盛则是社会快速变化的标志。

因此,瓷器的演变之所以引人注目,还在于它与中国传统社会从单一向多元社会的转型同步。

瓷器的演变与社会变迁有着千丝万缕的联系,这使我们对明代有了新的思考和认识。

2017年高考语文全国卷2试题及答案

2017年高考语文全国卷2试题及答案

2017年普通高等学校招生全国统一考试语文本试卷共22题,共150分,共10页.考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、现代文阅读(35分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。

青花瓷发展的黄金时代是明朝永乐、宣德时期,与郑和下西洋在时间上重合,这不能不使我们思考:航海与瓷器同时达到鼎盛,仅仅是历史的偶然吗?从历史事实来看,郑和下西洋为青花瓷的迅速速崛起提供了历史契机。

近三十年的航海历程推动了作为商品的青花瓷大量生产与外销,不仅促进技术创新,使青花瓷达到瓷器新工艺的顶峰,而且改变了中国瓷器发展的走向,带来了人们审美观念的更新。

这也就意味着,如果没有郑和远航带来活跃的对外贸易,青花瓷也许会像在元代一样,只是中国瓷器的诸多品种之一,而不会成为主流,更不会成为中国瓷器的代表.由此可见,青花瓷崛起是郑和航海时代技术创新与文化交融的硕果,中外交往的繁盛在推动文明大交融的同时,也推动了生产技术与文化艺术的创新发展。

作为中外文明交融的结晶,青花瓷真正成为中国瓷器的主流,则是因为成化年间原料本土化带来了民窑青花瓷的崛起。

民窑遍地开花,进入商业化模式之后,几乎形成了青花瓷一统天下的局面。

一种海外流行的时尚由此成为中国本土的时尚,中国传统的人物、花鸟、山水,与外来的伊斯兰风格融为一体,青花瓷成为中国瓷器的代表,进而走向世界,最终万里同风,成为世界时尚。

一般来说,一个时代有一个时代的文化,而时尚兴盛则是社会快速变化的标志。

因此,瓷器的演变之所以引人注目,还在于它与中国传统社会从单一向多元社会的转型同步。

2017年高考真题全国2卷文科数学(附答案解析)

2017年高考真题全国2卷文科数学(附答案解析)

uuur uuur uuur BA= λ AC ⇔ OA=
1
uuur OB +
1+ λ
λ
uuur OC .
1+ λ
(2)向量垂直: a ⊥ b ⇔ a ⋅ b = 0 ⇔ x1x2 + y1 y2 = 0 .
(3)向量运算: a ± b = (x1 ± x2 , y1 ± y2 ), a2 = | a |2 , a ⋅ b = | a | ⋅ | b | cos a, b .
y=lnt 为增函数,
故函数 f(x)=ln( x2 − 2x − 8 )的单调递增区间是(4,+∞),
故选 D.
点睛:形如 y = f ( g ( x)) 的函数为 y = g ( x) , y = f ( x) 的复合函数, y = g ( x) 为内层函
数, y = f ( x) 为外层函数.
简称为“同增异减”. 9.A 【解析】 【分析】 根据甲的所说的话,可知乙、丙的成绩中一位优秀、一位良好,再结合简单的合情推理逐一 分析可得出结果. 【详解】 因为甲、乙、丙、丁四位同学中有两位优秀、两位良好, 又甲看了乙、丙的成绩且还不知道自己的成立,即可推出乙、丙的成绩中一位优秀、一位良 好, 又乙看了丙的成绩,则乙由丙的成绩可以推出自己的成绩, 又甲、丁的成绩中一位优秀、一位良好,则丁由甲的成绩可以推出自己的成绩. 因此,乙、丁知道自己的成绩,故选:A. 【点睛】 本题考查简单的合情推理,解题时要根据已知的情况逐一分析,必要时可采用分类讨论的思 想进行推理,考查逻辑推理能力,属于中等题. 10.B 【解析】 【详解】
2 (1)证明:直线 BC / / 平面 PAD ; (2)若△ PCD 面积为 2 7 ,求四棱锥 P − ABCD 的体积.

2017年高考全国Ⅱ卷文数试题(word版含答案)

2017年高考全国Ⅱ卷文数试题(word版含答案)

绝密★启用前2017年普通高等学校招生全国统一考试文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{}{}123234A B ==,,, ,,, 则=A B A. {}123,4,, B. {}123,, C. {}234,, D. {}134,,2.(1+i )(2+i )=A.1-iB. 1+3iC. 3+iD.3+3i 3.函数()fx =πsin (2x+)3的最小正周期为A.4πB.2πC. πD. 2π4.设非零向量a ,b 满足+=-b b a a 则A a ⊥b B. =b a C. a ∥b D. >b a5.若a >1,则双曲线x y a=222-1的离心率的取值范围是A. ∞)B. )C. (1D. 12(,)6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A.90π B.63π C.42π D.36π7.设x、y满足约束条件2+330233030x yx yy-≤⎧⎪-+≥⎨⎪+≥⎩。

则2z x y=+的最小值是A. -15B.-9C. 1 D 98.函数2()ln(28)f x x x=--的单调递增区间是A.(-∞,-2)B. (-∞,-1)C.(1, +∞)D. (4, +∞)9.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则A.乙可以知道两人的成绩B.丁可能知道两人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩10.执行右面的程序框图,如果输入的a=-1,则输出的S=A.2B.3C.4D.511.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.110B.15C.310D.2512.过抛物线C:y 2=4x 的焦点F 的直线交C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN ⊥l,则M 到直线NF 的距离为B. C. D.二、填空题,本题共4小题,每小题5分,共20分. 13.函数()cos sin =2+fx x x 的最大值为 .14.已知函数()f x 是定义在R 上的奇函数,当x ()-,0∈∞时,()322=+f x x x ,则()2=f15.长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 16.△ABC 的内角A,B,C 的对边分别为a,b,c,若2b cosB=a cosC+c cosA,则B=三、解答题:共70分。

2017年高考文科数学全国卷2(含详细答案)

2017年高考文科数学全国卷2(含详细答案)

--------------------答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位卷3.考试结束后,将本试卷和答题卡一并交回。

__ __ __ __ __A .1 iB .1 3iC .3 iD . 3 3i__ __ 3的最小正周期为_名 题 A. 1 只有一项A . ( 2, -------------绝密★启用前在2017 年普通高等学校招生全国统一考试--------------------文科数学此注意事项:1.置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择_--------------------题时,将答案写在答题卡上,写在本试卷上无效。

__ _ __ 一、选择题:本题共 35 小题,每小题 4 分,共 140 分。

在每小题给出的四个选项中,号 上 证 --------------------是符合题目要求的.考 准1.设集合 A1,2,3 , B 2,3,4 ,则 A B( )A . 1,2,3,4B . 1,2,3C . 2,3,4D . 1,3,4答--------------------2. (1 i)(2 i)()__ _ 3.函数 f(x) sin 2x() 姓--------------------A . 4πB . 2π C. π D.π24.设非零向量 a , b 满足 a b = a b ,则()无--------------------A . a ⊥ bB. a = bC . a ∥ bD . a >b6.如图,网格纸上小正方形的边长为 1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截取一部分后所得,则该几何体的体积为 ( ) A . 90 π B . 63π C . 42 π D . 36 π2x 3y 3≤0,7.设 x , y 满足约束条件 2x 3y 3≥0,则 z 2x y 的最小值是 ( )y 3≥0,A . 15 B. 9 C .1 D .98.函数 f(x) ln(x 2 2x 8)的单调增区间是 ( )A .( , 2) B.( ,1) C . (1, ) D . (4, )9.甲、乙、丙、丁四位同学一起去向老师咨询成语竞赛的成绩.老师说:你们四人中有 2位优秀,2 位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则 ( ) A .乙可以知道四人的成绩 B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩10.执行右面的程序框图,如果输入的 a 1 ,则输出的 S ( )A .2B .3C .4D .511.从分别写有 1,2,3,4,5 的 5 张卡片中随机抽取 1 张,放回后再随机抽取 1 张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为 ( )1 32 10 B. 5 C. 10 D. 55.若 a >1 ,则双曲线x 2a 2 y 21 的离心率的取值范围是 ( ) 12.过抛物线 C :y2 4x 的焦点 F ,且斜率为3 的直线交 C 于点 M ( M 在 x 轴的上方),效---------------- ) B . ( 2,2) C . (1, 2) D . (1,2)文科数学试卷 第 1 页(共 20 页) l 为 C 的准线,点 N 在 l 上且 MN l ,则 M 到直线 NF 的距离为 ( )A. 5B.2 2C. 2 3 D . 3 3文科数学试卷 第 2 页(共 20 页)n的前n项和为S,等比数列b的前n项和为T,a附:0.0502AD,BAD二、填空题:本题共4小题,每小题5分,共20分.13.函数f(x)2cos x sinx的最大值为.14.已知函数f(x)是定义在R上的奇函数,当x(,0)时f(x)2x3x2,则f(2).15.长方体的长宽高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为.16.△ABC的内角A,B,C的对边分别为a,b,c.若2b cosB a cosC ccos A,则B=.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)19.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取100个网箱,测量各网箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;已知等差数列an n n11,b11,箱产量<50kg箱产量≥50kga 2b22.旧养殖法新养殖法(1)若a3b35,求b的通项公式;n(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.(2)若T321,求S.3P(K2≥k)0.0100.001K2k 3.841 6.63510.828n(ad bc)2(a b)(c d)(a c)(b d)18.(12分)如图,四棱锥P ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB BC 1ABC90.(1)证明:直线BC∥平面PAD;(2)若△PCD的面积为27,求四棱锥P ABCD的体积.文科数学试卷第3页(共20页)文科数学试卷第4页(共20页)(2)设点Q在直线x3上,且OP PQ1.证明:过点P且垂直于OQ的直线l过______号上3,点B在曲线C上,求△OAB面积的最大值.__答__ __ __ __ ___ __名x-------------20.(12分)设O为坐标原点,动点M在椭圆C:在--------------------点P满足NP2NM.x22y21上,过M作x轴的垂线,垂足为N,(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程](10分)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1__ ___ _证考准_姓(1)求点P的轨迹方程;此--------------------C的左焦点F.卷----------------------------------------21.(12分)--------------------设函数f(x)(1x2)e.(1)讨论f(x)的单调性;(2)当x≥0时,若f(x)≤ax1,求a的取值范围.题--------------------无--------------------的极坐标方程为cos 4.(1)M为曲线C上的动点,点P在线段OM上,且满足OM OP16,求点P的1轨迹C的直角坐标方程;2(2)设点A的极坐标为2,223.[选修4—5:不等式选讲](10分)已知a>0,b>0,a3b32.证明:(1)(a b)(a5b5)≥4;(2)a b≤2.效----------------文科数学试卷第5页(共20页)文科数学试卷第6页(共20页)2.∵ a >1 ,∴1<1 <2 ,则1<e < 2 .故选 C.一、选择题1.【答案】A【解析】 A 2017 年普通高等学校招生全国统一考试文科数学答案解析B ={1,2,3} {2,3,4}={1,2,3,4}.故选 A.2.【答案】B【解析】 (1 i)(2 i) 2 i +2i i2 3i 1 1 3i .故选 B.3.【答案】C【解析】最小正周期 T2π 2π.故选 C.4.【答案】A【解析】由 |ab |= |a b |,两边平方得 a 2 2a b b 2a 2 2ab b 2 ,即 a b 0 ,则 a ⊥ b .故选 A.5.【答案】C【解析】 e 2c 2 a 2 1 1 11a 2 a 2 a 2 a 26.【答案】B【解析】由题意,该几何体是一个组合体,下半部分是一个底面半径为3 ,高为4 的圆柱,其体积V1π 32 4 36π,上半部分是一个底面半径为 3,高为 6 的圆柱的一半,其体积V 2 1 2(π 32 6) 27π,∴该组合体的体积V =V7.【答案】A1V =63π.故选 B.2【解析】不等式组表示的可行域如图所示,易求得 A(0,1),B ( 6, 3) ,C (6, 3).目标函数可化为 y由图可知目标函数在点 B 处取得最小值,最小值为 2 ( 6) ( 3) 15 .故选 A.2x z ,S K S ;S 2 3 ,∴ M (3,2 3).由 MN l 可得 N ( 1,2 3),又 F (1,0),则 NF 所在 2【解析】依题意有 x 22x 8>0 ,解得 x < 2 或 x >4 ,易知 f(x)在 ( , 2)单调递减,在 (4, ) 单调递增,所以 f(x)的单调递增区间是 (4, ) .故选 D.9.【答案】D【解析】由甲的说法可知乙、丙 1 人优秀 1 人良好,则甲、丁两人 1 人优秀 1 人良好,乙看到丙的成绩则知道自己的成绩,丁看到甲的成绩知道自己的成绩,即乙、丁可以知道自己的成绩.故选 D.10.【答案】B【解析】第一次循环: S0 1 1,a 1, K 2 ;第二次循环: S 1 2 1, a 1, K 3 ;第三次循环: 1 3 2 ,a 1 , 4 ;第四次循环:2 4 2 ,a 1 ,K 5 第五次循环: 2 5 3,a 1, K 6 ;第六次循环: S3 6 3,a 1, K 7 .结束循环,输出 S3 .故选 B.11.【答案】D【解析】如下表所示,表中的点的横坐标表示第一次取到的数,纵坐标表示第二次取到的数:12345 1(1,1)(2,1)(3,1)(4,1)(5,1) 2(1,2)(2,2)(3,2)(4,2)(5,2) 3(1,3)(2,3)(3,3)(4,3)(5,3) 4(1,4)(2,4)(3,4)(4,4)(5,4) 5(1,5)(2,5)(3,5)(4,5)(5,5)共有 25 种情况,满足条件的有 10 种,所以所求概率为12.【答案】C10 2 25 5.故选 D.【解析】由题知 F (1,0),则 MF 所在直线的方程为 y 3(x 1),与抛物线联立,化简,得3x210x 3 0 ,解得 x1 1 3, x直线的方程为 3x y3 0 ,∴ M 到直线 NF 的距离 d |3 3( 3)2 3 2 3|( 1)=2 3 .故选 C.二、填空题13.【答案】 5【解析】 f(x) 2cosx sinx≤ 22 125 ,∴ f(x)的最大值为 5 .14.【答案】12.n 的公差为 d , b 的公比为 q ,联立①②解得 d 1, 2 AD , BC ∥AD , ABC15.【答案】14 π【解析】设球的半径为 R ,依题意知球的直径为长方形的体对角线,∴ 2R32 22 1214 ,球 O 的表面积 S 4πR 2(2R )2 14π16.【答案】π3【解析】由正弦定理得 2sinB cos BsinA cosCsinC cos Asin(AC ) sinB ,∴ c osB三、解答题17.【答案】(1)设数列 an 1 π,则 B . 2 3则 a2b21 (2 1)d q 2 1 2 ,∴ d q3 .①a3b31 (3 1)d q 315 ,∴ 2d q 26 .②d 3,q 2 或 q 0 (舍去).∴ b 的通项公式为 bnn2n 1 .(2)由 b 11 , T321 得 q 2 q 20 0 .解得 q5或q 4.当q5 时,由①得 d8,S当q 4 时,由①得 d1, S333a13a12 32 d 2 32 d21 .6.18.【答案】(1)在平面 ABCD 内,∵ BADABC 90 ,∴ BC ∥AD .∵ AD 平面 PAD , BC 平面 PAD ,∴ BC ∥平面 PAD .(2)取 AD 的中点 M ,连接 PM , CM .∵ AB BC 190 ,∴四边形 ABCM 为正方形,∴ CMAD .∵侧面 PAD 为等边三角形且垂直于底面 ABCD ,平面 PAD 平面 ABCD AD ,∴ PMAD ,又 AD 底面 ABCD ,∴ PM 底面 ABCD .2x x 2 7 ,解得 x2 (负值舍去),设 BC x ,则 CMx , CD2x , PM3x , PC PD 2x .取 CD 的中点 N ,连接 PN .则 PN CD ,∴ PN 14x.2S △PCD1 142 2∴ AB BC 2 , AD 4 , PM2 3 .∴四棱锥 P ABCD 的体积 VP ABCD1 2 (2 4) 3 22 3 4 3.19.【答案】(1)旧养殖法的箱产量低于 50 kg 的频率为(0.012 0.014 0.024 0.034 0.040) 50.62,∴ A 的概率估计值为 0.62.(2)根据箱产量的频率分布直方图的列联表:箱产量<50 kg箱产量≥50 kg旧养殖法新养殖法6234 3866K 2的观测值 K2200 (62 66 34 38)2 100 100 96 104≈15.705.∵ 15.705>6.635,∴有 99% 的把握认为箱产量与养殖方法有关.(3)箱产量的频率分布直方图表明:新养殖法的箱产量平均值(或中位数)在 50 kg~55 kg 之间,旧养殖法的箱产量平均值(或中位数)在 45k g~50 kg 之间,且新养殖法的箱产量分布集中程度比旧养殖法的箱产量分布集中程度高,∴可以认为新养殖法的箱产量较高且稳定,新养殖法优于旧养殖法.20.【答案】(1)设P(x,y),M(x,y),则N(x,,NP(x x,y),NM(0,y).0)由NP2NM得x0x,y022y.∵M(x,y)在C上,∴00x2y2221,∴点P的轨迹方程为x2y22.(2)由题意知F(1,0).设Q(3,t),P(m,n),则OQ Q(3,t),PF(1m,n),OQ PF33m tn,OP(m,n),PQ(3m,tn).由OP PQ1得3m m2tn n21,由(1)知m2n22,∴33m tn0.∴OQ PF0,即OQ⊥PF.又过点P存在唯一直线垂直于O Q,∴过点P且垂直于OQ的直线l过C的左焦点F.21.【答案】(1)∵f(x)(1x2)e x,∴f(x)(12x x2)e x.令f(x)0得x12或x12.当x(,12)时,f(x)<0;当x(12,12)时,f(x)>0;当x(12,)时,f(x)<0.∴f(x)在(,12)和(12,)单调递减,在(12,12)单调递增.(2)f(x)(1x)(1x)e x.当a≥1时,设函数h(x)(1x)e x,则h(x)xe x<0(x>0),∴h(x)在[0,)单调递减.又h(0)1,∴h(x)≤1,∴f(x)(x1)h(x)≤x1≤ax1.当0<a<1时,设函数g(x)e x x1,则g(x)e x1>0(x>0).g(x)[0,)1) 1) ∴ △OAB 的面积 S 1 B sin AOB 4cos sin 3当 0<x <1时, f(x)>(1 x)(1 x)2 ,(1 x)(1 x)2 ax 1 x(1 a x x 2 ),取x0 5 4a 12 ,则 x 0 (0,.(1 x )(1 x )2 ax0 0 0 1 0 ,∴ f(x )>ax 0 0 1.当 a≤0 a≤0 时,取 x 0 5 1 2 ,则 x 0(0, .f(x )>(1 x )(1 x )21≥ax0 0 0 0 1 .综上, a 的取值范围是[1, ).22.【答案】(1)设 P 的极坐标为 ( , )( >0), M 的极坐标为 ( , )( >0).1 1由题设知 OP , OM1 4 cos .由 OM OP 16 得 C 的极坐标方程为 4cos( >0), 2即 (x 2)2 y 2 4(x 0).(2)设点 B 的极坐标为 ( , )( >0).B B由题设知 OA 2,B 4cos ,ππ 3 OA 2 sin 2≤2 3.2 3 3 2 当 π时, S 取得最大值 2 3 .12∴ △OAB 面积的最大值为 2 3 .23.【答案】(1) (a b)(a 5 b 5 ) a 6 ab 5 a 5b b 6(a 3 b 3)2 2a 3b 3 ab(a 4 b 4 )4 ab(a 2 b 2 )2≥4 .(2)∵ (a b) a 3 3a 2b 3ab 2 b 33(a b)2 2 3ab(a b)≤2 (a b)3(a b)32,4∴(a b)3≤8,a b≤2.。

2017全国2卷高考语文试卷及答案

2017全国2卷高考语文试卷及答案

绝密★启用前2017年普通高等学校全国统一考试(新课标II)语文注意事项:1.本试卷分第I卷(阅读题)和第II卷(表达题)两部分。

2.考生务必将自己的姓名、考生号填写在答题卡上。

3.作答时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷阅读题一、现代文阅读(35分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1-3题。

青花瓷发展的黄金时代是明朝永乐、宣德时期,与郑和下西洋在时间上重合,这不能不使我们思考:航海与瓷器同时达到鼎盛,仅仅是历史的偶然吗?从历史事实来看,郑和下西洋为青花瓷的迅速崛起提供了历史契机。

近三十年的航海历程推动了作为商品的青花瓷的大量生产与外销,不仅促进技术创新,使青花瓷达到瓷器新工艺的顶峰,而且改变了中国瓷器发展的走向,带来了人们审美观念的更新。

这也就意味着,如果没有郑和远航带来活跃的对外贸易,青花瓷也许会像在元代一样,只是中国瓷器的诸多品种之一,而不会成为主流,更不会成为中国瓷器的代表。

由此可见,青花瓷崛起是郑和航海时代技术创新与文化交融的硕果,中外交往的繁盛在推动文明大交融的同时,也推动了生产技术与文化艺术的创新发展。

作为中外文明交融的结晶,青花瓷真正成为中国瓷器的主流,则是因为成化年间原料本土化带来了民窑青花瓷的崛起。

民窑遍地开花,进入商业化模式之后,几乎形成了青花瓷一统天下的局面。

一种海外流行的时尚由此成为中国本土的时尚,中国传统的人物、花鸟、山水,与外来的伊斯兰风格融为一体,青花瓷成为中国瓷器的代表,进而走向世界,最终万里同风,成为世界时尚。

一般来说,一个时代有一个时代的文化,而时尚兴盛则是社会快速变化的标志。

因此,瓷器的演变之所以引人注目,还在于它与中国传统社会从单一向多元社会的转型同步。

瓷器的演变与社会变迁有着千丝万缕的联系,这使我们对明代有了新的思考和认识。

如果说以往人们所了解的明初是一个复兴传统的时代,其文化特征是回归传统,明初往往被认为是保守的,那么青花瓷的例子,则可以使人们对明初文化的兼容性有一个新的认识。

2017年高考数学文科试卷全国二卷附答案解析

2017年高考数学文科试卷全国二卷附答案解析

2017年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4}B.{1,2,3}C.{2,3,4}D.{1,3,4}2.(5分)(1+i)(2+i)=()A.1﹣i B.1+3i C.3+i D.3+3i3.(5分)函数f(x)=sin(2x +)的最小正周期为()A.4πB.2πC.πD .4.(5分)设非零向量,满足|+|=|﹣|则()A .⊥B.||=||C .∥D.||>||5.(5分)若a>1,则双曲线﹣y2=1的离心率的取值范围是()A.(,+∞)B.(,2)C.(1,)D.(1,2)6.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π7.(5分)设x,y 满足约束条件,则z=2x+y的最小值是()A.﹣15B.﹣9C.1D.98.(5分)函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是()A.(﹣∞,﹣2)B.(﹣∞,﹣1)C.(1,+∞)D.(4,+∞)9.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩10.(5分)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2B.3C.4D.511.(5分)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A .B .C .D .12.(5分)过抛物线C:y2=4x的焦点F ,且斜率为的直线交C于点M(M在x轴上方),l为C 的准线,点N在l上,且MN⊥l,则M到直线NF的距离为()A .B.2C.2D.3二、填空题,本题共4小题,每小题5分,共20分13.(5分)函数f(x)=2cosx+sinx的最大值为.14.(5分)已知函数f(x)是定义在R上的奇函数,当x∈(﹣∞,0)时,f(x )=2x3+x2,则f (2)=.15.(5分)长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为.16.(5分)△ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤,第17至21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.18.(12分)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD面积为2,求四棱锥P﹣ABCD的体积.19.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg箱产量≥50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较.附:P(K2≥K)0.0500.0100.001K 3.841 6.63510.828K2=.20.(12分)设O为坐标原点,动点M在椭圆C :+y2=1上,过M作x轴的垂线,垂足为N,点P 满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.21.(12分)设函数f(x)=(1﹣x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求a的取值范围.选考题:共10分。

2017年全国高考文科数学试题及答案-全国卷2

2017年全国高考文科数学试题及答案-全国卷2

2017年普通高等学校招生全国统一考试文科数学注意事项:1. 答题前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3. 考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有项是符合题目要求的。

1.设集合A 1,2,3,B 2,3,4,则A U B =A. 1,2,3,4B. 1,2,3C. 2,3,4D. 13,42. ( 1+i)(2+i)=A. 1-iB. 1+3iC. 3+iD.3+3i3.函数f x = sin(2x+3)的最小正周期为A.4B.2C.D. —24.设非零向量a , b满足a+b = a-b则A a 丄b B. a = b C. a // b D. a b2x 2 .5. 若〉1,则双曲线—2 - y 1的离心率的取值范围是aA. C- 2,+ )B. 2,2)C. (1,2)D. (12)6. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A.90B.63C.42D.361 1 1012. 过抛物线C:y 2=4x 的焦点F ,且斜率为.3的直线交C 于点M( M 在x 轴上方),I 为C 的 准线,点N 在I 上且MN L l,则M 到直线NF的距离为2x+3y 3 07.设x 、y 满足约束条件 2x 3y 3 0。

则z 2x y 的最小值是 y 3 0A. -15B.-9C. 1 D 98. 函数f(x)In(x 2 2x 8)的单调递增区间是A.(-,-2) B. (-,-1) C.(1, +) D. (4, +)9. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有 位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后 甲对大家说:我还是不知道我的成绩,根据以上信息,则A.乙可以知道两人的成绩B.丁可能知道两人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩10. 执行右面的程序框图,如果输入的a =-1,则输出的S=A. 2B. 3C. 4D. 511. 从分别写有123,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.—B.5 C.3 2 D. 5A. 5B. 2.2C. 2,3D. 3.3二、填空题,本题共4小题,每小题5分,共20分.13. 函数f x =2cosx sinx的最大值为______________________ _14. 已知函数f x是定义在R上的奇函数,当x - ,0时,f x 2x x ,则f 2 = __________________15. 长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为_________16. △ ABC的内角A,B,C 的对边分别为a,b,c,若2b cosB=a cosC+c cosA,贝U B= _____________三、解答题:共70分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017 年普通高等学校招生全国统一考试(全国Ⅱ卷)
文科数学
12
故其体积为V 1326
2
7. 解析绘制不等式组表示的可行域,结合目标函数的几何意义可得函数在点
z 12 3 15.故选 A.
2或x 4 ,结合二次函数的单调性、对数函数的单
4, .故选 D.
9.解析由甲的说法可知乙、丙一人优秀一人良好,则甲丁一人优秀一人良好,乙看到丙的结果则知道自己的结果,丁看到甲的结果则知道自己的结果.故选 D.
10.解析阅读流程图,初始化数值a 1,k 1,s 0 . 循环结果执行如下:
第一次:S011,a1,k2;第二
次:
S121,a1,k3;
第三
次:S132,a1,k4;第四
次:S242,a1,k5;
第五次:S253,a1,k6;
第六
次:
S363,a1,k7.
1.解析由题意A U B { 1,2,3,4} .故选 A.
2.解析由题意(1 i)(2 i) 2 3i 3i .故选 B.
3.解析由题意T22.故选
C.
4.解析由|a b| |a b| 平方得 2 2a 2
bb
2
a 2a b
b 2 ,即a b 0 ,则a b.故选 A.
2 5.解析由题意
22
c a 1
22
aa
12 ,因为a 1 ,a
所以1 1 2 ,则1 e 2.故选 C.
6.解析由题意,该几何体是由高为 6 的圆柱截取一半后的图形加上高为 4 的圆柱,
6, 3 处取得最小值
324 63 .故选 B.
调性和复合函数同增异减的原则可得函数的单调增区
间为
4 1
21
结束循环,输出 S 3.故选 B.
11.解析
1
2 3 4 5
1 1,1 1,
2 1,
3 1,
4 1,
5 2 2,1 2,2 2,3 2,4 2,5 3 3,1
3,2
3,3
3,4
3,5
4 4,1 4,2 4,3 4,4 4,
5 5
5,1
5,2
5,3
5,4
5,5
总计有 25种情况,满足条件的有 10 种,所以所求概率为
10 2
12.解析由题知 MF :y 3(x 1) ,与抛物线 y 2 4x 联立得3x 2
10x 3 0,解得 x 1 1,x 2 3
3
所以 M(3,2 3),因为 MN l ,所以 N( 1,2 3),因为 F (1,0) ,所以 NF : y 3(x 1)
1π cosB B
23
17.解析 (1)设 {a n } 公差为 d ,{b n } 公比为
所以 M 到 NF 的距离为
| 3(3 1) 2 3 |
2 3 . 故选 C.
13.解析 f(x), 22 1 14.解析 f (2)
f ( 2)
[2 ( 8)
4]
12.
15.解析 球的直径是长方体的体对角线,所以
2R 32 22
1 14 , S 4
πR 2 14π.
16.解析 由正弦定理可得 2sin BcosB sin AcosC
sinC cosA sin(A C) sin B
由等差数列、等比数列的通项公式可得
2d
2
,解得
5
d 1

q2
n1
故 b n 的通项公式为 b n 2n 1
1 2d q
(2) 由(1)及已知得
2
1 q q 2
,解得
q5 d8
q ,
2
5.
12
2
22
是 AB BC 2 , AD 4 , PM
四棱锥 P ABCD 的体积 V 1 2 2
3 2
4 2 3 4 3. 19. 解析 (1)由频率分布直方图知, 旧养殖法的箱产量低于 50kg 的频率为
0.012 0.014 0.024 0.034
0.040 5 0.62,则估计事件 A 的概率

P A 0.62.
箱产量 <50kg 箱产量 ⋯50kg
旧养殖法
62 38 新养殖法 34 66
2)列联表如下:
2
所以 k 2 200(62 66 38 34)2 15.705 10.828 100 100 104 96 所以有 99%的有把握认为箱产量与养殖方法有关 3)由箱产量的频率分布直方图可知,旧养殖法的箱产量均值约在
45 : 50kg ,新养殖法的箱产量约在
50: 55kg 可知新养殖法比旧养殖法的箱产量高
20. 解析 (1)设 P x,y , N x,0 , M x,y 1 , uuur uuuur 由 NP 2NM 知, y 2
又M 点在椭圆 x y 2
2y 1 ,即 y 1 y , 22 1 上,则有 x y 1,即 x 2
y 2 2.
所以 S 3 3a 1
32
6或 S 3 3a 1
32
21.
18. 解析 (1)在平面 ABCD 内,因为 BAD
ABC 90o ,所以 BC//AD .
又 BC 平面 PAD , AD 平面 PAD ,故 BC// 平面 PAD .
2)取 AD 的中点 M ,联结 PM ,CM ,
1o
由 AB BC
AD 及 BC //AD , ABC 90o 得 ABCM 四边形为正方形,则 CM AD . 2
因为侧面 PAD 是等边三角形且垂直于底面 ABCD ,平面 PADI 平面 ABCD AD , 所以 PM AD , PM 底面 ABCD .因为 CM 底面 ABCD ,所以 PM CM . 设 BC x ,则 CM x , CD 2x
取 CD 的中点 N ,联结 PN ,则 PN
PM 3x , PC PD 2x.
CD ,所以 PN 14 x.
2
因为 △PCD 的面积为 2 7 ,所以 1
2
14
2x 214x 2 7,解得 x
2 (舍去) , x 2,
22
3
3
cos , 2sin ,
uuur 则有 OP uuur
PQ 2
cos , 2sin
3
2cos ,t 2sin
2 tsin 2sin 2 1 ,即
3 2 cos 2 tsin
3
0.
uuur uuur
,又 FP OQ 2cos 1, 2sin 3,t 3 2 cos 3
2 tsin 0 ,
2)设 Q 3,t ,P
设椭圆右焦点 F 1,0 3 2cos 2cos 2
uuur uuur 所以 FP OQ .所以过点 P 且垂直于 OQ 的直线 l 过 C 的左焦点 F . 2xe x 1 x 2 x 2 x e 1 2x x e , 令f x
0 得 x 2 2x 1 0 ,解得 x 1 2 1 , x 2 2 1 , 所以 fx 在区间 , 2 1 , 2 1, 是减函数, 在区间 2 1, 2
(2) 因为 x ⋯0 时,
f x, ax 1,所以 1 x 2 e x , ax 1.
所以 2x xe x e ax 1⋯0 ,令 h x x 2e x e x ax 1

即x 0, 时, h x ⋯0 ,而 h 0 0 ,所以 h 0 ⋯0
,所以 a 1⋯0 ,
a ⋯1 ;
再令 x hx 2 x x x
x e 2xe e a , x x 2 4x 1 e x ,
当 x ⋯ 0时, x 0 恒成立 . 所以 h x 在 0, 是增函数,
恒有 hx ⋯0 ,从而 h x 是增函数, h 0 0 , h x ⋯ 0,
21. 解析 (1) f x
1 是增函数 .
在 0, 恒成立,故 a ⋯1 即为所求 . 22.解析(1)设点 P 的极坐标为 ,因为 OM OP 16 ,所以点 M 的极坐标为
16
把点 M 的坐标代入 C 1 : 16 cos 4 中得 : cos 4 ,即 4cos 两边同时乘以
,得 2 4 cos 22 ,化为直角坐标方程为 x 2 y 2
4x 0. 2) C 2的极坐标方程为 4cos ,所以点 B 的极会标可设为 (4cos 又 A 的极坐标为 2, ,所以 S OAB
1
|OA| |OB| sin AOB 1
2 4cos sin
4,
4cos 1sin
3
cos
22 2sin
因为 , ,所以
22 4 ,2
,所以当 2
33
时,
△OAB 的面积取最大值为 3.
23.解析 (1)由柯西不等式得:
a b a
5 b 5

a a
5
2
b b
5
b 3
当且仅当 ab 5 ba 5 ,即 a b 1 时取等号. 2)因为 a b 3 a 3 3a 2b
3ab 2
b 3
2 3ab a
b,2
3
a b 2 4
ab
3
3 a b 3
所以 a b 3, 8 ,所以 a b, 2 .
4,。

相关文档
最新文档