通信原理实验指导书

合集下载

通信原理实验指导书

通信原理实验指导书
表1-4 双4选1模拟开关功能表

INH






HLຫໍສະໝຸດ HHX入
A L H L H X
导通通道
X0 X,Y0 Y X1 X,Y1 Y X2 X,Y2 Y X3 X,Y3 Y

该模块中选X0=0,X1=-1,X2=0,X3=+1;Y0=Y1= Y2=0,Y3=+1; INH=0。B为合路码,A为256kHZ 时钟信 号。
为可控模拟开关。U12A为2/4译码器。U13为4位二进制计数器。由U 6 分频出的32kHZ 方波信号经U13的二、四分频分别得到16kHZ、8kHZ 方 波信号,送U12A的 2/4译码器。其功能表如表1-2所示。
表1-2 2/4译码器功能表








Y0
Y1















验证是否符合其编码规则。 3.观察HDB3编码中的四连零检测、补V、加B补奇、单/双极
性变换的波形,并验证是否符合编码规则。 4.观察并比较单、双极性码(非归零、归零)、时钟信号、时序信号
及双相码的波形和相位特点。 三、基本原理:
本实验使用数字信源模块和HDB3编、译码模块。(两个实验一起做) 1. 数字信源:
1
表1-1 8选1数据选择器功能表




A2 A1
A0
ST

W
XX




LL



通信原理实验指导书

通信原理实验指导书

实验一 HDB3码型变换实验一、实验目的通过本实验,学生应达到以下要求:1、了解二进制单极性码变换为HDB3码的编码规则,掌握它的工作原理和实现方法。

2、通过测试电路,熟悉并掌握分析电路的一般规律与方法,学会分析电路工作原理,画出关键部位的工作波形。

3、了解关于分层数字接口脉冲的国际规定,掌握严格按技术指标研制电路的实验方法。

二、实验内容⏹调测HDB3编、译码电路;⏹调测位定时提取电路及信码再生电路。

各部分的输出信号应达到技术指标的要求,同时做到编、解码无误;⏹利用频谱仪,研究经HDB3编码后的频谱特性(条件允许)。

三、实验原理在数字通信系统中,有时不经过数字基带信号与信道信号之间的变换,只由终端设备进行信息与数字基带信号之间的变换,然后直接传输数字基带信号。

数字基带信号的形式有许多种,在基带传输中经常采用AMI码(传号交替反转码)和HDB3码(三阶高密度双极性码)。

1、传输码型在数字复用设备中,内部电路多为一端接地,输出的信码一般是单极性不归零信码。

当这种码在电缆上长距离转输时,为了防止引进干扰信号,电缆的两根线都不能接地(即对地是平衡的),这里就要选用一种适合线路上传输的码型,通常有以下几点考虑:(1)在选用的码型的频谱中应该没有直流分量,低频分量也应尽量少。

这是因为终端机输出电路或再生中继器都是经过变压器与电缆相连接的,而变压器是不能通过直流分量和低频分量的。

(2)传输型的频谱中高频分量要尽量少。

这是因为电缆中信号线之间的串话在高频部分更为严重,当码型频谱中高频分量较大时,就限制了信码的传输距离或传输质量。

(3)码型应便于再生定时电路从码流中恢复位定时。

若信号中连“0”较长,则等效于一段时间没有收脉冲,恢复位定时就困难,所以应该使变换后的码型中连“0”较少。

(4)设备简单,码型变换容易实现。

(5)选用的码型应使误码率较低。

双极性基带信号波形的误码率比单极性信号的低。

根据这些原则,在传输线路上通常采用AMI码和HDB3码。

通信原理实验指导书

通信原理实验指导书

通信原理实验指导书一、实验目的本实验旨在帮助学生深入理解通信原理的基本概念和原理,通过搭建实验电路和进行实验操作,掌握通信原理的实际应用。

二、实验器材1. 发射器:一台信号发生器2. 接收器:一台示波器3. 连接电缆:适用于信号传输的电缆三、实验步骤1. 准备工作a. 检查实验器材是否齐全,并确保其正常工作。

b. 将信号发生器和示波器连接电源,并确保电源正常。

2. 实验电路的搭建a. 将信号发生器与示波器通过连接电缆连接起来。

b. 确保电缆的连接牢固可靠,避免信号传输过程中出现干扰。

3. 实验操作a. 设置信号发生器的输出频率和幅度,以产生所需的信号波形。

b. 调节示波器的时间和幅度尺度,以正确显示接收到的信号波形。

c. 运行实验电路,观察信号的传输和接收情况。

d. 根据实验结果,记录并分析接收到的信号波形的特点和变化。

四、实验结果记录与分析根据实验操作所得到的结果,记录并分析接收到的信号波形的特点和变化。

可以通过示波器的屏幕截图来展示实验结果,并结合文字对实验结果进行描述和分析。

五、实验总结通过本次实验,我们深入了解了通信原理的基本概念和原理,并通过实验操作掌握了通信原理的实际应用。

通过实验结果的记录和分析,我们对信号的传输和接收过程有了更深入的理解。

本次实验对于我们进一步学习和研究通信原理的知识非常重要,也为今后从事相关工作打下了扎实的基础。

六、实验注意事项1. 在进行实验之前,务必做好准备工作,并确保实验器材的正常工作。

2. 在实验操作过程中,要小心操作,避免对实验器材造成损坏。

3. 注意信号发生器和示波器的连接方式和操作方法,并正确设置参数。

4. 在记录实验结果时,要准确描述实验过程和实验结果,并结合图示进行分析。

5. 在实验结束后,要及时关闭器材电源,并进行相关器材的清理和整理。

七、参考文献[此处请根据实际情况填写所参考的文献或资料]以上为通信原理实验指导书的内容,请照此进行实验操作。

通信原理实验指导书

通信原理实验指导书

实验一信号源实验一、实验目的1.掌握频率连续变化的各种波形的产生方法。

2.掌握用FPGA产生伪随机码的方法。

3.掌握码型可变NRZ码的产生方法。

4.了解用FPGA进行电路设计的基本方法。

5.理解帧同步信号与位同步信号在整个通信系统中的作用。

6.熟练掌握信号源模块的实验方法。

二、实验内容1.观察频率连续可变信号发生器输出的各种波形及7段数码管的显示。

2.观察点频方波信号的输出。

3.观察点频正弦波信号的输出。

4.观察7位、15位、31位伪随机码的输出。

5.拨动拨码开关,观察码型可变NRZ码的输出。

6.观察位同步信号和帧同步信号输出。

7.改变FPGA程序,扩展其他波形。

三、实验器材1. 信号源模块一台2. 20M双踪示波器一台3.频率计(可选)一台4. 连接线若干四、实验原理信号源模块可以大致分为模拟部分和数字部分,分别产生模拟信号和数字信号。

1.模拟信号源部分图1-1 模拟信号源部分原理框图模拟信号源部分可以输出频率和幅度可以任意改变的正弦波(频率变化范围100Hz~10KHz)、三角波(频率变化范围100Hz~1KHz)、方波(频率变化范围100Hz~10KHz)、锯齿波(频率变化范围100Hz~1KHz)以及32KHz、64KHz、1MHz的点频正弦波(幅度可以调节),各种波形的频率和幅度调节方法请参考实验步骤。

该部分电路原理框图如图1-1所示。

在实验前,我们已经将各种波形在不同频段的数据写入了数据存储器U005(2864)并存放在固定的地址中。

当单片机U006(89C51)检测到波形选择开关和频率调节开关送入的信息后,一方面通过预置分频器调整U004(EPM7128STC100-10)中分频器的分频比,分频后的信号频率由数码管M001~M004显示;另一方面根据分频器输出的频率和所选波形的种类,通过地址选择器选中数据存储器U005中对于地址的区间,输出相应的数字信号。

该数字信号经过D/A转换器U007(TLC7528)、开关电容滤波器U008(TLC41CD)后得到所需模拟信号。

通信原理实验指导书(学生)

通信原理实验指导书(学生)

通信原理实验指导书西南大学电子信息工程学院实验教学中心目录前言 .............................................. 错误!未定义书签。

目录 (1)拨码器开关设置一览表 (2)第一部分通信原理预备性实验 (5)实验1 平台介绍及实验注意事项 (5)实验2 DDS信号源实验 (8)第二部分通信原理重要部件实验 (11)实验1 抽样定理及其应用实验 (11)实验2 PCM编译码系统实验 (16)实验3 FSK(ASK)调制解调实验 (20)实验4 PSK DPSK调制解调实验 (25)实验5 位同步提取实验 (33)实验6 眼图观察测量实验 (38)实验7 基带信号的常见码型变换实验 (43)实验8 AMI/HDB3编译码实验 (50)实验9 幅度调制(AM)实验* (54)实验10 幅度解调(AM)实验* (61)实验11 频率调制(PM)实验* (64)实验12 频率解调(PM)实验* (68)第三部分信道复用技术和均衡技术实验 (72)实验1 频分复用/解复用实验 (72)实验2 时分复用/解复用(TDM)实验 (76)拨码器开关设置一览表在本实验平台上,我们采用了红色的拨码器,设置各种实验的项目、信号类型、功能和参数。

拨码器的白色开关上位为1;下位为0。

现将各主要拨码开关功能列表说明如下:注:1. 时钟与基带数据产生模块中各铆孔与测量点说明:4P01为原始基带数据输出铆孔; 4P02为码元时钟输出铆孔;4P03为相对码输出铆孔。

4TP01为码型变换后输出数据测量点;4TP02为编码时钟测量点。

2.以上实验设置的功能和各种参数也可根据学校要求定制。

表0-2“信道编码与ASK。

FSK。

PSK。

QPSK调制”拨码开关SW03状态设置与功能一览表表0-3“基带同步与信道译码模块”拨码开关25SW01状态设置与功能一览表注:译码模块25SW01第一位X为空位待用。

通信原理实验指导书

通信原理实验指导书

实验1 平台介绍及实验注意事项一、实验目的1.了解实验箱的功能分布;2.掌握实验箱的操作习惯;3.掌握实验箱的操作注意事项。

二、实验仪器1.RZ8681实验平台 1台2.各个实验模块配套三、实验原理1. 实验平台整体功能介绍RZ8681型现代通信技术平台是由底板+模块组成的模块化可定制的系统平台,平台底板提供了基本的信源和信宿并预留了外接接口,中间设置了9个模块放置区,在实验时可以通过选择不同的实验模块,完成不同的实验内容,或者通过多个模块的组合完成综合通信实验内容,另外可以为学校提供底板的接口标准,以便学生基于该平台进行设计,开发。

图1-1 RZ8681底板功能分布图实验底板主要由几个部分组成:(1)USB接口:可将电脑端的数据发送到实验箱上进行传输。

(2)DDS信号源:产生常见的各种信号,并且频率幅度可调。

另外为抽样定理实验提供了抽样脉冲信号。

(3)电话接口:产生真实的语音信号。

(4)电源指示:指示不同电压的工作状态,开电后,3个灯常亮为正常状态,闪烁说明有故障。

(5)模块分布图:指示了底板9个模块放置位置的分布图,序号为A-I。

(6)调制接口:外部调制信号输入和输出铆孔。

(7)光纤接口:可选配置接口,可以通过光纤完成系统的全双工通信。

(8)眼图电路:眼图观察电路,相当于一个参数可调的信道。

(9)滤波器及功放:包含一个参数可调(2.6k和5k)的低通滤波器,滤波器输出信号连接到扬声器。

(10)模块安放区:共9个位置,用来放置实验模块,对应上述的模块分布图。

2. 平台操作及教材编写常识在平台研发及教材编写过程中,默认采用了一些习惯用语,下面将部分习惯用法给出说明,以便理解。

(1)在实验中,测量点主要分为两类:Pxx和TPxx。

其中Pxx是指可插线的测量铆孔,而TPxx则是测量针。

(2)实验中连线时需要注意,连线铆孔分输入孔和输出孔,在铆孔上有箭头标注。

不能将两个输出孔或输入孔连接在一起。

(3)实验步骤中,标号一般以“4P01(G)”形式给出,其中标号代表实际操作中对应的连线或测量标号,而后面括号中的“G”是指:按照要求安放模块后,4P01标号会在G号位安放的板子上找到,这样便于操作时查找。

通信原理实验指导书

通信原理实验指导书

通信原理实验指导书信息工程系目录实验一数字信号源实验 (3)实验二数字调制实验 (7)实验三2ASK、2FSK数字解调实验..............................................1 7 实验四PCM编译码及TDM时分复用实验 (23)实验一数字信号源实验一、实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。

2、掌握集中插入帧同步码时分复用信号的帧结构特点。

3、掌握数字信号源电路组成原理。

二、实验内容1、用示波器观察单极性非归零码(NRZ)、帧同步信号(FS)、位同步时钟(BS)。

2、用示波器观察NRZ、FS、BS三信号的对应关系。

3、学习电路原理图。

三、基本原理本模块是实验系统中数字信号源,即发送端,其原理方框图如图1-1所示。

本单元产生NRZ信号,信号码速率约为170.5KB,帧结构如图1-2所示。

帧长为24位,其中首位无定义,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。

此NRZ信号为集中插入帧同步码时分复用信号。

发光二极管亮状态表示‘1’码,熄状态表示‘0’码。

本模块有以下测试点及输入输出点:∙ CLK-OUT 时钟信号测试点,输出信号频率为4.433619MHz ∙ BS-OUT 信源位同步信号输出点/测试点,频率为170.5KHz ∙ FS 信源帧同步信号输出点/测试点,频率为7.1KHz∙ NRZ-OUT NRZ信号输出点/测试点图1-3为数字信源模块的电原理图。

图1-1中各单元与图1-3中的元器件对应关系如下:∙晶振CRY:晶体;U1:反相器7404∙分频器US2:计数器74161;US3:计数器74193;US4:计数器40160∙并行码产生器KS1、KS2、KS3:8位手动开关,从左到右依次与帧同步码、数据1、数据2相对应;发光二极管左起分别与一帧中的24位代码相对应∙八选一US5、US6、US7:8位数据选择器4512∙三选一US8:8位数据选择器4512∙倒相器US10:非门74HC04∙抽样US9:D触发器74HC74图1-1 数字信源方框图图1-2 帧结构下面对分频器,八选一及三选一等单元作进一步说明。

(完整版)通信原理实验指导书SystemView

(完整版)通信原理实验指导书SystemView

实验一图符库的使用一、实验目的1、了解SystemVue图符库的分类2、掌握SystemVue各个功能库常用图符的功能及其使用方法二、实验内容按照实例使用图符构建简单的通信系统,并了解每个图符的功能。

三、基本原理SystemVue的图符库功能十分丰富,一共分为以下几个大类1.基本库SystemView的基本库包括信源库、算子库、函数库、信号接收器库等,它为该系统仿真提供了最基本的工具。

(信源库):SystemView为我们提供了16种信号源,可以用它来产生任意信号(算子库)功能强大的算子库多达31种算子,可以满足您所有运算的要求(函数库)32种函数尽显函数库的强大库容!(信号接收器库)12种信号接收方式任你挑选,要做任何分析都难不倒它2.扩展功能库扩展功能库提供可选择的能够增加核心库功能的用于特殊应用的库。

它允许通信、DSP、射频/模拟和逻辑应用。

(通信库):包含有大量的通信系统模块的通信库,是快速设计和仿真现代通信系统的有力工具。

这些模块从纠错编码、调制解调、到各种信道模型一应俱全。

(DSP库):DSP库能够在你将要运行DSP芯片上仿真DSP系统。

该库支持大多DSP芯片的算法模式。

例如乘法器、加法器、除法器和反相器的图标代表真正的DSP算法操作符。

还包括高级处理工具:混合的Radix FFT、FIR和IIR滤波器以及块传输等。

(逻辑运算库):逻辑运算自然离不开逻辑库了,它包括象与非门这样的通用器件的图标、74系列器件功能图标及用户自己的图标等。

(射频/模拟库):射频/模拟库支持用于射频设计的关键的电子组件,例如:混合器、放大器和功率分配器等。

3.扩展用户库扩展的用户库包括有扩展通信库2、IS95/CDMA、数字视频广播DVB等。

通信库2: 扩展的通信库2主要对原来的通信库加了时分复用、OFDM调制解调、QAM编码与调制解调、卷积码收缩编解码、GOLD码以及各种衰落信道等功能。

4.5版中,通信库2已被合并到基本通信库中。

通信原理实验指导书

通信原理实验指导书

第一章信号源实验实验一CPLD可编程数字信号发生器实验一、实验目的1、熟悉各种时钟信号的特点及波形。

2、熟悉各种数字信号的特点及波形。

二、实验内容1、熟悉CPLD可编程信号发生器各测量点波形。

2、测量并分析各测量点波形及数据。

3、学习CPLD可编程器件的编程操作。

三、实验器材1、信号源模块一块2、连接线若干3、20M 双踪示波器一台四、测试点说明CLK1:第一组时钟信号输出端口,通过拨码开关S4选择频率。

CLK2:第二组时钟信号输出端口,通过拨码开关S5选择频率。

FS:脉冲编码调制的帧同步信号输出。

(窄脉冲,频率为8K)NRZ:24位NRZ信号输出端口,码型由拨码开关S1,S2,S3控制,码速率和第二组时钟速率相同,由S5控制。

PN:伪随机码输出,码型为111100010011010,码速率和第一组时钟速率相同,由S4控制。

NRZIN:解码后NRZ码输入。

BSIN:NRZ码的位同步信号输入。

FSIN:NRZ码的帧同步信号输入。

五、实验步骤1、打开电源开关POWER1,使信号源模块工作。

2、观测时钟信号输出波形。

信号源输出两组时钟信号,对应输出点为“CLK1”和“CLK2”,拨码开关S4的作用是改变第一组时钟“CLK1”的输出频率,拨码开关S5的作用是改变第一组时钟“CLK2”的输出频率。

拨码开关拨上为1,拨下为0,拨码开关和时钟的对应关系如下表所示表1-212)根据表1-2改变S5,用示波器观测第二组时钟信号“CLK2”的输出波形3、用示波器观测帧同步信号输出波形信号源提供脉冲编码调制的帧同步信号,在点“FS”输出,共有三种帧同步信号,分别对应2.048M、256K、64K的位时钟。

将拨码开关S4分别设置为“0100”、“0111”和“1001”,用示波器观测“FS”的输出波形。

4、用示波器观测伪随机信号输出波形伪随机信号码型为111100010011010,码速率和第一组时钟速率相同,由S4控制。

通信原理实验指导书(26页).(DOC)

通信原理实验指导书(26页).(DOC)

实验一HDB3码型变换实验一、实验目的1、了解二进制单极性码变换为HDB3码的编码规则,掌握它的工作原理和实现方法;2、掌握HDB3码的位同步码的提取方法。

二、实验内容1、观察HDB3编译码的各种波形;2、观察全0码和全1码时的HDB3码的编码波形;3、观察从HDB3编码信号中提取位同步信号的过程。

三、实验原理AMI码编码原理:信息代码1变为带有符号的1码即+1或-1,1的符号交替反转;信息代码0仍为0码。

因此,AMI码对应的波形是占空比为0.5的双极性归零码,即脉冲宽度τ与码元宽度(码元周期、码元间隔)Ts的关系是τ=0.5Ts。

AMI码的主要特点是无直流成分,接收端收到的码元极性与发送端完全相反也能正确判断。

译码时只需把AMI码经过全波整流就可以变为单极性码。

HDB3码的编码原理:HDB3码主要解决AMI码在连0过多时同步提取困难的问题。

编码时,将4个连0信息码用取代节000V或B00V代替,当两个相邻V码中间有奇数个信息1码时取代节码000V;有偶数个信息1码(包括0个)时取代节为B00V,其它的信息0码仍为0码。

这样,信息码的1码变为带有符号的1码即+1或-1,HDB3码中1、B的符号符合交替反转原则,而V的符号破坏这种符号交替反转原则,但相邻V码的符号又是交替反转的。

因此,HDB3码是占空比为0.5的双极性归零码。

码如图2-1所示。

设信息码为0000 0110 0001 0000,则NRZ码、AMI码、HDB3信息代码 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0NRZ波形AMI码 0 0 0 0 0 1 -1 0 0 0 0 1 0 0 0 0AMI波形HDB3码 B 0 0 V 0 -1 1 -B 0 0 - V 1 0 0 0 VHDB3波形图1-1 NRZ、AMI、HDB3关系图分析表明,AMI码及HDB3码的功率谱如图1-2所示,它不含有离散谱fs成分(fs=1/T,等于位同步信号的频率)。

通信原理实验指导书

通信原理实验指导书

目录I、模块介绍 (1)1、主控&信号源模块 (2)2、2号模块数字终端&时分多址模块 (9)3、3号模块信源编译码模块 (11)4、6号模块信道编译码模块 (14)5、7号模块时分复用&时分交换模块 (17)6、8号模块基带传输编译码模块 (20)7、9号模块数字调制解调模块 (22)8、13号模块载波同步及位同步模块 (25)9、21号模块 PCM编译码及语音终端模块 (28)II、实验基本操作说明 (30)第一章信源编码技术 (31)实验一抽样定理实验 (31)实验二 PCM编译码实验 (38)实验三 ADPCM编译码实验 (45)实验四△m及CVSD编译码实验 (47)实验五 PAM孔径效应及其应对方法 (53)第二章基带传输编译码技术 (56)实验六 AMI码型变换实验 (56)实验七 HDB3码型变换实验 (61)实验八 CMI/BPH码型变换实验 (66)第三章基本数字调制技术 (70)实验九 ASK调制及解调实验 (70)实验十 FSK调制及解调实验 (72)实验十一 BPSK调制及解调实验 (76)实验十二 DBPSK调制及解调实验 (79)实验十三 QPSK/OQPSK数字调制实验 (82)第四章信道编译码技术 (84)实验十四汉明码编译码实验 (84)实验十五 BCH码编译码实验 (88)实验十六循环码编译码实验 (91)实验十七卷积码编译码实验 (95)实验十八卷积交织及解交织实验 (99)第五章同步技术 (102)实验十九滤波法及数字锁相环法位同步提取实验 (102)实验二十模拟锁相环实验 (110)实验二十一载波同步实验 (112)实验二十二帧同步提取实验 (114)第六章时分复用及解复用技术 (116)实验二十三时分复用与解复用实验 (116)第七章综合实验 (122)实验二十四 HDB3线路编码通信系统综合实验 (122)I、模块介绍本实验平台采用模块化设计。

通信原理实验指导书

通信原理实验指导书

通信原理实验指导书物理与电子电气工程学院二0一一年三月目录实验一、AM调制解调通信系统实验 (3)实验二、数字基带信号实验 (6)实验三、数字调制实验 (15)实验四、数字解调实验 (20)实验一AM调制解调通信系统一、实验目的1. 掌握集成模拟乘法器的基本工作原理;2. 掌握集成模拟乘法器构成的振幅调制电路的工作原理及特点;3. 学习调制系数m及调制特性(m-Uωm )的测量方法,了解m<1 和m=1及 m>1时调幅波的波形特点。

4. 掌握用集成电路实现同步检波的方法。

二、实验仪器1. 双踪示波器一台2. 通信原理Ⅵ型实验箱一台3. M5模拟调制解调模块三、基本原理图1-1 AM调制电路原理图本实验调制部分电路如图1-1所示。

图中MC1496芯片引脚1和引脚4接两个51Ω和两个100Ω电阻及51K电位器用来调节输入馈通电压,调偏RP1,有意引入一个直流补偿电压,由于调制电压uΩ与直流补偿电压相串联,相当于给调制信号uΩ叠加了某一直流电压后与载波电压uc相乘,从而完成普通调幅。

如需要产生抑制载波双边带调幅波,则应仔细调节RP1,使MC1496输入端电路平衡。

另外,调节RP1也可改变调制系数m。

MC1496芯片引脚2和引脚3之间接有负反馈电阻R3,用来扩展uΩ的输入动态范围。

载波电压uc由引脚8输入。

MC1496芯片输出端(引脚12)接有一个三极管组成的射随器,来增加电路的带载能力。

幅度解调实验电路——同步检波器如图1-2所示。

本电路中MC1496构成解调器,载波信号加在8—10脚之间,调幅信号加在1—4脚之间,相乘后信号由12脚输出,经C11、C12、R25、R26、R31和U3组成的低通滤波器输出解调出来的调制信号。

图1-2 AM 解调电路原理图四、实验内容及步骤1、实验连线:a .实验连接线:b. 实验连接线:保持调制实验连接线不变,增加以下连接线2、低频正弦信号源:OUT1输出频率范围为:0-5.5KH Z (通过调节电阻RP1进行调整),幅度范围为:0-15V PP (通过调节电阻RP2进行调整)。

通信原理实验指导书++(凌特修改)

通信原理实验指导书++(凌特修改)

TongXinYuanLiTONGXINYUANLI SHIYANXITONG ZHIDAOSHU高等学校信息工程类专业系列教材通信原理实验系统指导书研发中心编写组编著武汉凌特电子技术有限公司目录实验一CPLD可编程数字信号发生器实验 (1)实验二模拟信号源实验 (7)实验三抽样定理和PAM调制解调实验 (13)实验四脉冲编码调制解调实验 (21)实验五两路PCM时分复用实验 (35)实验六两路PCM解复用实验 (41)实验七振幅键控(ASK)调制与解调实验 (45)实验八移频键控FSK调制与解调实验 (52)实验九移相键控(PSK/DPSK)调制与解调实验 (60)实验十载波同步提取实验 (69)实验十一位同步提取实验 (76)实验十二帧同步提取实验 (86)武汉凌特电子技术有限公司LTE-TX-02E型通信原理实验指导书实验一CPLD可编程数字信号发生器实验一、实验目的1、熟悉各种时钟信号的特点及波形。

2、熟悉各种数字信号的特点及波形。

二、实验内容1、熟悉CPLD可编程信号发生器各测量点波形。

2、测量并分析各测量点波形及数据。

3、学习CPLD可编程器件的编程操作。

三、实验器材1、信号源模块一块2、连接线若干3、20M双踪示波器一台四、实验原理CPLD可编程模块用来产生实验系统所需要的各种时钟信号和各种数字信号。

它由CPLD 可编程器件ALTERA公司的EPM240T100C5、下载接口电路和一块晶振组成。

晶振JZ1用来产生系统内的32.768MHz主时钟。

1、CPLD数字信号发生器包含以下五部分:1)时钟信号产生电路将晶振产生的32.768MH Z时钟送入CPLD内计数器进行分频,生成实验所需的时钟信号。

通过拨码开关S4和S5来改变时钟频率。

有两组时钟输出,输出点为“CLK1”和“CLK2”,S4控制“CLK1”输出时钟的频率,S5控制“CLK2”输出时钟的频率。

2)伪随机序列产生电路通常产生伪随机序列的电路为一反馈移存器。

通信原理实验指导书

通信原理实验指导书
实验注意事项………………………………………………………………………………………………36
实验一码型变换实验
一、实验目的
(1)了解几种常见的数字基带信号;
(2)掌握常用数字基带传输码型的编码规则;
(3)掌握用FPGA实现码型变换的方法。
二、实验仪器
信号源模块、码型变换模块、20M双踪示波器(一台)、连接线(若干)
c、从“BRZ”处观察BRZ编码。(如果发现波形不正确,请按下复位键后继续观察)
(5)BNRZ编码实验
SW01、SW02、SW03设置为10100110 00000000 00000000
a、将“编码方式选择”拨码开关拨为00000100,则编码实验选择为BNRZ方式。
b、将信号源模块与码型变换模块上以下三组输入/输出点用连接线连接:BS与BS、2BS与2BS、NRZ与NRZ。
c、从“编码输出2处”观察AMI编码。(如果发现波形不正确,请按下复位键后继续观察)
5、解码实验:(在每次改变解码方式后,请按下复位键)
(1)RZ解码实验
SW01、SW02、SW03设置为10100110 00000000 00000000
a、将“编码方式选择”拨码开关拨为10000000,则编码实验选择为RZ方式。
(6)HDB3码
HDB3码的全称是三阶高密度双极性码,其编码规则如下:将4个连“0”信息码用取代节“000V”或“B00V”代替,当两个相邻“V”码中间有奇数个信息“1”码时取代节为“000V”;有偶数个信息“1”码(包括0个)时取代节为“B00V”,其它的信息“0”码仍为“0”码,这样,信息码的“1”码变为带有符号的“1”码即“+1”或“-1”。例如:
通信原理实验
指导书

通信原理实验指导书(完整)

通信原理实验指导书(完整)

实验一:抽样定理实验一、实验目的1、熟悉TKCS—AS型通信系统原理实验装置;2、熟悉用示波器观察信号波形、测量频率与幅度;3、验证抽样定理;二、实验预习要求1、复习《通信系统原理》中有关抽样定理的内容;2、阅读本实验的内容,熟悉实验的步骤;三、实验原理和电路说明1、概述在通信技术中为了获取最大的经济效益,就必须充分利用信道的传输能力,扩大通信容量。

因此,采取多路化制式是极为重要的通信手段。

最常用的多路复用体制是频分多路复用(FDM)通信系统和时分多路复用(TDM)通信系统。

频分多路技术是利用不同频率的正弦载波对基带信号进行调制,把各路基带信号频谱搬移到不同的频段上,在同一信道上传输。

而时分多路系统中则是利用不同时序的脉冲对基带信号进行抽样,把抽样后的脉冲信号按时序排列起来,在同一信道中传输。

利用抽样脉冲把一个连续信号变为离散时间样值的过程称为“抽样”,抽样后的信号称为脉冲调幅(PAM)信号。

在满足抽样定理的条件下,抽样信号保留了原信号的全部信息。

并且,从抽样信号中可以无失真地恢复出原信号。

抽样定理在通信系统、信息传输理论方面占有十分重要的地位。

数字通信系统是以此定理作为理论基础的。

在工作设备中,抽样过程是模拟信号数字化的第一步。

抽样性能的优劣关系到整个系统的性能指标。

作为例子,图1-1示意地画出了传输一路语音信号的PCM系统。

从图中可以看出要实现对语音的PCM编码,首先就要对语音信号进行抽样,然后才能进行量化和编码。

因此,抽样过程是语音信号数字化的重要环节,也是一切模拟信号数字化的重要环节。

图1-1 单路PCM系统示意图为了让实验者形象地观察抽样过程,加深对抽样定理的理解,本实验提供了一种典型的抽样电路。

除此,本实验还模拟了两路PAM通信系统,从而帮助实验者初步了解时分多路的通信方式。

2、抽样定理抽样定理指出,一个频带受限信号m(t)如果它的最高频率为f H(即m(t)的频谱中没有f H以上的分量),可以唯一地由频率等于或大于2f H的样值序列所决定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《通信原理》实验指导书适用专业:电子信息工程信息与电气工程学院2010年3月目录实验要求及注意事项 (1)实验一AMI / HDB3码编译码过程实验 (2)实验二眼图观察测量实验 (7)实验三FSK(ASK)调制实验 (11)实验四FSK(ASK)解调实验 (14)实验五二相PSK调制实验 (17)实验六二相PSK解调实验 (22)实验七脉冲编码调制PCM与时分复用 (26)2《通信电子电路》实验指导书实验要求及注意事项1、实验前必须充分预习,完成指定的预习任务。

预习要求如下:1)认真阅读实验指导书,分析、掌握实验电路的工作原理,并进行必要的估算;2)熟悉实验任务;3)复习实验中所用的仪器的使用方法及注意事项。

2、使用仪器前必须了解其性能、操作方法及注意事项,在使用时应严格遵守。

3、实验时接线要认真,相互仔细检查,确定无误后才能接通电源,初学或没有把握应经指导教师审查同意后再接通电源。

4、实验时应注意观察,若发现有破坏性异常现象(例如有元件冒烟、发烫、或有异味)应立即关断电源,保持现场,报告指导教师。

找出原因、排除故障,经指导教师同意后再继续实验。

5、实验过程中需要改变接线时,应关断电源后才能拆、接线。

6、实验过程中应仔细观察实验现象,认真记录实验结果(数据、波形、现象),所记录的实验结果经指导教师审阅签字后再拆除实验线路。

7、实验结束后,必须关断电源、拔出电源插头,并将仪器、设备、工具、导线等按规定整理好。

8、实验后每个同学必须按要求独立完成实验报告。

- 1 -实验一AMI / HDB3码编译码过程实验一、实验目的1.熟悉AMI / HDB3码编译码的原理及工作过程;2.观察AMI / HDB3码码型变换编译码电路的测量点波形。

二、实验工作原理(一)HDB3 / AMI编码原理AMI码的全称是传号交替反转码。

这是一种将消息代码0(空号)和1(传号)按如下规则进行编码的码:代码的0仍变换为传输码的0,而把代码中的1交替的变换为传输码的+1、-1、+1、-1…由于AMI码的信号交替反转,故由它决定的基带信号将出现正负脉冲交替,而0电位保持不变的规律。

由此看出,这种基带信号无直流成分,且只有很小的低频成分,因而它特别适宜在不允许这些成分通过的信道中传输。

从AMI码的编码规则看出,它已从一个二进制符号序列变成了一个三进制符号序列,而且也是一个二进制符号变成一个三进制符号。

把一个二进制符号变换成一个三进制符号所构成的码称为1B/1T码型。

AMI码除有上述特点外,还有编译码电路简单及便于观察误码情况等优点,它是一种基本的线路码,并得到广泛采用。

但是AMI码有一个重要缺点,即当它用来获取定时信息时由于它可能出现长的连0串,因而会造成提取定时信号的困难。

为了保持AMI码的优点而克服其缺点,人们提出了许多改进的方法,HDB3码就是其中有代表性的一种。

HDB3码是三阶高密度码的简称。

HDB3码保留了AMI码所有的优点(如前所述),还可将连“0”码限制在3个以内,克服了AMI码出现长连“0”过多,对提取定时钟不利的缺点。

HDB3码的功率谱基本上与AMI码类似。

由于HDB3码诸多优点,所以CCITT建议把HDB3码作为PCM传输系统的线路码型。

如何由二进制码转换成HDB3码呢?HDB3码编码规则如下:1、二进制序列中的“0”码在HDB3码中仍编为“0”码,但当出现四个连“0”码时,用取代节000V或B00V代替四个连“0”码。

取代节中的V码、B码均代表“1”码,它们可正可负(即V+=+1,V-=-1,B+=+1,B-=-1)。

2、取代节的安排顺序是:先用000V,当它不能用时,再用B00V。

000V取代节的安2《通信原理》实验指导书排要满足以下两个要求:(1) 各取代节之间的V码要极性交替出现(为了保证传号码极性交替出现,不引入直流成份)。

(2) V码要与前一个传号码的极性相同(为了在接收端能识别出哪个是原始传号码,哪个是V码?以恢复成原二进制码序列)。

当上述两个要求能同时满足时,用000V代替原二进制码序列中的4个连“0”(用000V 或000V);而当上述两个要求不能同时满足时,则改用B00V或B00V,实质上是将取代节000V中第一个“0”码改成B码)。

3、HDB3码序列中的传号码(包括“1”码、V码和B码)除V码外要满足极性交替出现的原则。

下面我们举个列子来具体说明一下,如何将二进制码转换成HDB3码。

二进制码序列:1 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1HDB3码码序列:V -1 0 0 0 V +1 0 -1 B 0 0 V 0 -1 +1 -1 0 0 0 V B 0 0 V 0 -1从上例可以看出两点:、(1) 当两个取代节之间原始传号码的个数为奇数时,后边取代节用000V;当两个取代节之间原始传号码的个数为偶数时,后边取代节用B00V。

(2) V码破坏了传号码极性交替出现的原则,所以叫破坏点;而B码未破坏传号码极性交替出现的原则,叫非破坏点。

虽然HDB3码的编码规则比较复杂,但译码却比较简单。

从上述原理看来,每一个破坏符号V总是与前一非0符号同极性(包括B在内)。

这就是说,从收到的符号序列中可以容易地找到破坏点V于是也断定V符号及其前面的3个符号必是连0符号,从而恢复4个连0码,再将所有-1变成+1后便得到原消息代码。

- 3 -4图1-1 NRZ-HDB3码编码工作波形(二)HDB3/AMI 译码原理译码是编码的逆过程。

其波形如图1-2所示。

图1-2 HDB3译码工作波形实验电路工作原理在实验系统中, HDB3/AMI 的编译码由CPLD 完成,U501内部编码程序完成HDB3/AMI 的编码,U501内部译码程序完成HDB3/AMI 译码。

在该电路模块中,没有采用复杂的线圈耦合的方法来实现HDB3码,而是采用U504A(TL082)对HDB3/AMI 码的输出进行变换。

SW501、SW502、SW503使用说明:1.SW501为8比特基带信号设置开关,每位拨上位1,拨下位0,速率为32KHZ (或者64KHZ ),如下图设置《通信原理》实验指导书- 5 -即表示为11100110,速率为64KHZ (或者128KHZ )的数字基带信号。

2.SW502为系统功能设置开关,每位拨上位1,拨下为0。

最左端一位为基带信号选择位,拨上即选择SW501设置的8位数字信号送往编码模块,拨下即选择15位随机码,码序列为111100*********,送往编码模块。

左端第二位为基带信号速率选择位,拨上即选择32KHZ ,拨下即选择64KHZ 。

右端两位为功能设置,全部拨下00,即选择HDB3/AMI 编译码功能(K503的 1-2脚为AMI 编译码,2-3脚为HDB3编译码)。

3.SW503设置确定按钮,每当SW501、SW502设置后,需按SW503确定。

编码部分:完成AMI/HDB3编码实验。

其结构组成框图如下图1-3图1-3 AMI/HDB3编码结构组成框图译码模块:完成AMI/HDB3译码实验。

其结构组成框图如下图1-4图1-4 AMI/HDB3译码结构组成框图三、实验任务1、在RZ8631实验平台的“调制模块”位置插“AMI/HDB3编译码系统模块”。

2、当输入8位码为全“0”、全“1”、伪随机码、任意码时,分析AMI / HDB3码型变换结果。

3、观测AMI / HDB3码型变换波形,验证你的分析结果。

四、测量点说明TP501:数字基带信号;TP502:编码时钟;TP503:AMI/HDB3正极性编码;TP504:AMI/HDB3负极性编码;TP505:AMI/HDB3编码输出;TP506:译码输出,波形应与PT501同。

五、实验报告要求1、根据实验结果,画出AMI/HDB3码编译码电路的测量点波形图。

2、写出AMI/HDB3码编译码的工作过程。

6《通信原理》实验指导书实验二眼图观察测量实验一、实验目的学会观察眼图及其分析方法。

二、实验电路工作原理我们知道衡量整个通信系统的传输质量,最直观的方法就是用眼图来衡量传输畸变和噪声干扰的方法。

我们知道,在实际的通信系统中,数字信号经过非理想的传输系统必定要产生畸变,信号通过信道后,也会引入噪声和干扰,也就是说,总是在不同程度上存在码间串扰的。

在码间串扰和噪声同时存在情况下,系统性能很难进行定量的分析,常常甚至得不到近似结果。

为了便于实际评价系统的性能,常用所谓“眼图”。

眼图可以直观地估价系统的码间干扰和噪声的影响,是一种常用的测试手段。

什么是眼图?所谓“眼图”,就是由解调后经过低通滤波器输出的基带信号,以码元定时作为同步信号在示波器屏幕上显示的眼图波形。

从这个称为眼图的图形上可以估计出系统的性能(指码间串扰和噪声的大小)。

另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输特性。

在图2-1中画出两个无噪声的波形和相应的“眼图”,一个无失真,另一个有失真(码间串扰)。

图2-1中可以看出,眼图是由虚线分段的接收码元波形叠加组成的。

眼图中央的垂直线表示取样时刻。

当波形没有失真时,眼图是一只“完全张开”的眼睛。

在取样时刻,所有可能的取样值仅有两个:+1或-1。

当波形有失真时,在取样时刻信号取值分布在小于+1或大于-1附近,“眼睛”部分闭合。

这样,保证正确判决所容许的噪声电平就减小了。

换言之,在随机噪声的功率给定时,将使误码率增加。

“眼睛”张开的大小就指明失真的严重程度。

为便于说明眼图和系统性能的关系,我们将它简化成图2-2的形状。

由此图可以看出:(1)最佳取样时刻应选择在眼睛张开最大的时刻;(2)眼睛闭合的速率,即眼图斜边的斜率,表示系统对定时误差灵敏的程度,斜边愈陡,对定位误差愈敏感;(3)在取样时刻上,阴影区的垂直宽度表示最大信号失真量;(4)在取样时刻上,上下两阴影区的间隔垂直距离之半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决;(5)阴影区与横轴相交的区间表示零点位置变动范围,它对于从信号平均零点位置提- 7 -8取定时信息的解调器有重要影响。

实验室理想状态下的眼图如图2-3所示。

衡量眼图质量的几个重要参数有: 1. 眼图开启度(U-2△U )/U指在最佳抽样点处眼图幅度“张开”的程度。

无畸变眼图的开启度应为100﹪。

图2-1 无失真及有失真时的波形及眼图 (a )无码间串扰时波形;无码间串扰眼图 (b )有码间串扰时波形;有码间串扰眼图图2-2 眼图的重要性质《通信原理》实验指导书其中U=U++U-2.“眼皮”厚度2△U/U指在最佳抽样点处眼图幅度的闭合部分与最大幅度之比,无畸变眼图的“眼皮”厚度应等于0。

相关文档
最新文档