数学人教版九年级上册公式法教案.2.2 公式法 教案
人教初中数学九年级上册 21.2.2 公式法教案
【问题】(学生总结,老师点评)
1.用配方法解下列方程
(1)6x2-7x+1=0(2)4x2-3x=52
2.总结用配方法解一元二次方程的步骤。
(1)移项;
(2)化二次项系数为1;
(3)方程两边都加上一次项系数的一半的平方;
(4)原方程变形为(x+m)2=n的形式;
(5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.
四、巩固练习分三个层次单一知识 点相对应练习、知识点综合训练、拔高训练,习题设计有选择余地
教材P12练习第1、2题.
补充习题:
用公式法解下列方程.
(1)x2-5x-6=0(2)7x2+2x-1=0(3)3x2-5x+2=0
(4)5x2+2x-6=0(5)4x2-7x+2=0(6)2x2- x- =0
(2)要使它为一元一次方程,必须满足:
① 或
② 或
③
解:(1)存在.根据题意得:m2+1=2
m2=1 m=±1
当m=1时,m+1=1+1=2≠0
当m=-1时,m+1=-1+1=0(不合题意,舍去)
∴当m=1 时,方程为2x2-1-x=0
a=2,b=-1,c=-1
b2-4ac=(-1)2-4×2×(-1)=1+8=9
例:某数学兴趣小组对关于x的方程(m+1) +(m-2)x-1=0提出了下列问题.
(1)若 使方程为一元二次方程,m是否存在?若存在, 求出m并解此方程.
(2)若使方程为一元二次方程m是否存在?若存在,请求出.
你能解决这个问题吗?
数学人教版九年级上册《21.2.2 公式法》教学设计.2.2 公式法》教学设计
21.2.2 公式法版本:人民教育出版社 执教:甘肃省陇南市武都区两水中学 唐小平教学目标知识与技能1. 理解一元二次方程求根公式的推导过程.2. 会利用求根公式解简单数字系数的一元二次方程.过程与方法1. 经历探索求根公式的过程,激发学生的探究欲望和探究热情,培养学生的推理能力.2. 培养学生的运算能力,并让学生养成良好的运算习惯.情感态度与价值观1. 通过运用公式法解一元二次方程,提高学生的运算能力.2. 培养学生积极探索、勇于创新的精神.3. 让学生学会和他人合作,分享合作学习的乐趣、体会发现知识后的成就感,建立学好数学的自信心.重点难点重点 求根公式的推导和公式法的运用.难点 一元二次方程求根公式的推导.教学方法 启发式、探究式、讲练结合式.教具学具教具:彩笔、多媒体教学平台.学具:笔、学生学案.教材分析本节课选自2013年教育部审定通过的义务教育教科书《数学》编著开发中心中学数学课程教材研究材研究所人民教育出版社课程教的九年级上册“第二十一章 一元二次方程”第二节“21.2 解一元二次方程”第二课时“21.2.2 公式法”的内容.一元二次方程的解法在初中数学教学中占有重要的位置,也是每年中考的热点考题之一,研究它很有现实意义和探索价值,讨论它是增进学生对数学知识理解并应用的很好素材.学情分析本节课的内容继 “21.2.1 配方法”后,又在“21.2.3 因式分解法”之前,根据维果斯基的“最近发展区理论”,学生已经掌握了用配方法解具体的数字系数的一元二次方程,对于一般形式的一元二次方程,02=++c bx ax 学生可以根据用配方法解具体数字系数的一元二次方程的经验可能化成22244)2(aac b a b x -=+的形式(即学生可能的发展水平),至于要用到分类讨论的数学思想,这要通过教师引导、启发学生才能获得这方面的能力.所以本节课估计学生在学习过程中感到困难之处是:讨论当,042>-ac b ,042=-ac b042<-ac b 时,一元二次方程02=++c bx ax 的实数根的情况.教学环节一、创设情境 导入新课1.用配方法解方程.08922=+-x x2.能否也可以用配方法解一般形式的一元二次方程02=++c bx ax 呢?(设计意图:通过复习引入,让学生先回忆配方法的解题思路,并通过练习题巩固所学知识,同时为本节课的学习做好铺垫.)二、探究新知 进行新课根据用配方法解具体数字系数的一元二次方程的经验解一般形式的一元二次方程 .02=++c bx ax二次项系数化为1,得.02=++ac x a b x 移项,得.2ac x a b x -=+ 配方,得,)2()2(222a b a c a b x a b x +-=++即 .44)2(222aac b a b x -=+ ① 因为,0≠a 所以.042>a 式子ac b 42-的值有以下三种情况:(1)当042>-ac b 时,,04422>-a ac b 由①得 .2422aac b a b x -±=+ 方程有两个不相等的实数根.24,242221aac b b x a ac b b x ---=-+-=(2) 当042=-ac b 时,,04422=-a ac b 由①可知方程有两个相等的实数根 .221ab x x -== (3)当042<-ac b 时,,04422<-a ac b 由①可知,0)2(2<+a b x 而x 取任何实数都不能使,0)2(2<+ab x 因此方程无实数根. 一般地,对于一元二次方程02=++c bx ax ,当042≥-ac b 时,它的实数根是aac b b x 242-±-= 这个式子叫做一元二次方程02=++c bx ax 的求根公式.利用求根公式解一元二次方程的方法叫做公式法.用公式法解一元二次方程时需要注意两点:①必须是一般形式的一元二次方程;02=++c bx ax ② .042≥-ac b(设计意图:让学生亲自动手实验,探究结论,激发兴趣.培养学生爱动脑思考的好习惯.)三、运用新知 巩固新课例1 用公式法解方程.12452=-x x (2016·中考)例2 用公式法解方程.8110442x x x -=++例 3 用公式法解方程.01252=+-x x(设计意图:加深对一元二次方程02=++c bx ax 求根公式的理解.)思考:以上三个例题中方程的根有什么规律?一元二次方程02=++c bx ax 的根有三种情况:当042>-ac b 时,方程)0(02≠=++a c bx ax 有两个不相等的实数根;当042=-ac b 时,方程)0(02≠=++a c bx ax 有两个相等的实数根;当042<-ac b 时,方程)0(02≠=++a c bx ax 无实数根.一般地,式子ac b 42-叫做一元二次方程02=++c bx ax 根的判别式,通常用希腊字母”“∆表示它,即.42ac b -=∆四、回顾内容 小结新课师:通过这节课的学习,同学们都有哪些收获?生1:……生2:………………………………………………………………………………………………………………师:……用公式法解一元二次方程的一般步骤:①把方程化成一般形式,并写出 c b a ,,的值;②求出ac b 42-的值(特别注意:当042<-ac b 时无实数解);③代入求根公式;a ac b b x 242-±-= ④写出方程的解.21x x ,(设计意图:梳理学习内容、方法、思路,养成系统整理知识的习惯,形成知识体系.)五、布置作业 结束新课1. 预习教材第12----14页;2. 课外作业教材第17页习题21.2第4,5题.3. m 取什么值时,方程04)12(22=-+++m x m x 有两个实数根.4. 关于x 的一元二次方程,02=++c bx ax 当c b a ,,满足什么条件时,方程的两个实数根互为相反数?(设计意图:教师分层要求,学生课下完成,巩固所学知识.)六、教后反思本节课的教学采取了以学生为主体、教师为主导的方式,让学生尽可能地参与到教学的全过程中.通过学生的观察、发现、学生与学生的讨论交流、教师与学生的密切合作,有意识地培养了学生的一些能力(如口头表达能力、运算能力、归纳总结能力等);通过多媒体辅助教学,教学内容与中考题挂钩,启发、引导学生勤于思考问题,激发了学生的探究欲望、探究热情和求知欲望,另外,教师给学生逐步设疑,组织学生积极回答、学习,然后肯定其成绩,这样,学生既有成就感,也能加深其印象,更能增强他们学习数学的信心,学习效果比教师硬塞给学生现成的结论要好得多.七、板书设计。
《21.2解一元二次方程——21.2.2公式法》教学设计【初中数学人教版九年级上册】
第二十一章一元二次方程21.2解一元二次方程公式法教学设计一、教学目标1.探索利用公式法解一元二次方程的一般步骤.2.能够利用公式法解一元二次方程.二、教学重点及难点重点:用公式法解一元二次方程.难点:用公式法解一元二次方程三、教学用具多媒体课件。
四、相关资源《复习配方法解一元二次方程》动画。
五、教学过程【温故知新,提出问题】XE燃解方程s h+2s+c=0此图片是动画绪略图,此处插入交互动画《【数学探完】一元二次方程的儿何解法》,可以通过几何的方法展现一元二次方程的解法。
问题1你能用配方法解卜列方程吗?(1)m+ll=O;(2)9/=12x+14.解:<1)移项,得x2 -7入=一11.配方,得x2-7a-+^|J=-11+r2>7即七2=5 3开方,得x—;=±g.7-757+必所以X]=—-—•^2=—5-(2)移项,得9F-12x=14・,414系数化为1,得『一二工二方.配方,得广一§+仲卜?+停).即厂:<--2=2.开方,得x-|=±>/2,所以“甲®夸问题2用配方法解一元二次方程的步骤?化:把原方程化成r+p.x+q=O的形式.移项:把常数项移到方程的右边,如F+px=迫.配方:方程两边都加上一次项系数一半的平方,如/+px+(W)2=-g+(S(x+S=F+(9求解:解一元一次方程.定解:写出原方程的解.师生活动:学生独立完成,复习归纳。
(X潞瘢配方法任何一个一元二次方程都可以写成一般形式十取-c-m z=0),能否用配方法俾出能否用配方法街出or2me=O(aMO)的观]一元二次方程M+既13(/0)的二次坎系救u,—次敏卒致b以及常敏项c.<1>移项;将方程中含有耒知数的氐移对方程的左边.巧常数璜玛勤方程的右边.ar2—fez=—cQ)二次项系散化为卜若二次项的系敢不为1.划在方程两边同时序以二次项的系敷.将二次项的系敖化为I.X2+-Z=—-a aU>配方,方程的两边鄙加上一次咬系?I一半的平方鸟方程靛左遮配成一个完全平方式・/十打十(粉2=弋十(粉2flHk整电饵(工+y=静因为a*0.4a2>0,代数式62-iac来决定一元二次方程+hx+c=Oia^O)根的唁况.此图片是动画垸略图,此处插入交互动画《【教学探究】配方法》,可以逐步展现配方法的步曜.设计意图:通过复习,巩固旧知,钠垫新知,设置问题,引出新课.【合作探究,形成知识】问题2—元二次方程的一般形式是什么?你能否也用配方法解出方程的根呢?杯+皈+^=0(醇0)己知a『+M+c=0(再0),请用配方法推导出它的两个根.解:移项,得ar2+fer=-c.K c二次项系数化为1,得《?+-X=——.a a配方,得+-X+(A)2=-£+(A)2…gp(X+=)2=\二"(JI).a la a2a2。
人教版九年级数学上册教案-公式法1
21.2.2 公式法1.知道一元二次方程根的判别式的概念.2.会用判别式判断一元二次方程的根的情况及根据一元二次方程的根的情况确定字母的取值范围.3.经历求根公式的推导过程并会用公式法解简单的一元二次方程.一、情境导入老师写了4个一元二次方程让同学们判断它们是否有解,大家都才解第一个方程呢,小强突然站起来说出每个方程解的情况,你想知道他是如何判断的吗?二、合作探究探究点一:一元二次方程的根的情况 【类型一】判断一元二次方程根的情况不解方程,判断下列方程的根的情况.(1)2x 2+3x -4=0;(2)x 2-x +14=0; (3)x 2-x +1=0.解析:根据根的判别式我们可以知道当b 2-4ac ≥0时,方程才有实数根,而b 2-4ac <0时,方程没有实数根.由此我们不解方程就能判断一元二次方程根的情况.解:(1)2x 2+3x -4=0,a =2,b =3,c =-4,∴b 2-4ac =32-4×2×(-4)=41>0.∴方程有两个不相等的实数根.(2)x 2-x +14=0,a =1,b =-1,c =14.∴b 2-4ac =(-1)2-4×1×14=0.∴方程有两个相等的实数根.(3)x 2-x +1=0,a =1,b =-1,c =1.∴b 2-4ac =(-1)2-4×1×1=-3<0.∴方程没有实数根.方法总结:给出一个一元二次方程,不解方程,可由b 2-4ac 的值的符号来判断方程根的情况.当b 2-4ac >0时,一元二次方程有两个不相等的实数根;当b 2-4ac =0时,一元二次方程有两个相等的实数根;当b 2-4ac <0时,一元二次方程无实数根.【类型二】由一元二次方程根的情况确定字母系数的取值已知关于x 的一元二次方程(a -1)x 2-2x +1=0有两个不相等的实数根,则a 的取值范围是( )A .a >2B .a <2C .a <2且a ≠1D .a <-2解析:由于一元二次方程有两个不相等的实数根,判别式大于0,得到一个不等式,再由二次项系数不为0知a -1不为0.即4-4(a -1)>0且a -1≠0,解得a <2且a ≠1.选C.方法总结:若方程有实数根,则b 2-4ac ≥0.由于本题强调说明方程是一元二次方程,所以,二次项系数不为0.因此本题还是一道易错题.【类型三】说明含有字母系数的一元二次方程根的情况已知:关于x 的方程2x 2+kx -1=0,求证:方程有两个不相等的实数根.证明:Δ=k 2-4×2×(-1)=k 2+8,无论k 取何值,k 2≥0,所以k 2+8>0,即Δ>0,∴方程2x 2+kx -1=0有两个不相等的实数根.方法总结:要说明一个含字母系数的一元二次方程的根的情况,只需求出该方程根的判别式,分析其正、负情况,即可得出结论.【类型四】一元二次方程的根的情况的实际应用小林准备进行如下操作实验:把一根长为40cm 的铁丝剪成两段,并把每一段各围成一个正方形.小峰对小林说:“这两个正方形的面积之和不可能等于48cm 2”,他的说法对吗?请说明理由.解:假设能围成.设其中一个正方形的边长为x ,则另一个正方形的边长是(10-x ),由题可得,x 2+(10-x )2=48.化简得x 2-10x +26=0.因为b 2-4ac =(-10)2-4×1×26=-4<0,所以此方程没有实数根.所以小峰的说法是对的.探究点二:公式法解一元二次方程 【类型一】用公式法解一元二次方程用公式法解下列方程:(1)2x 2+x -6=0;(2)x 2+4x =2;(3)5x 2-4x +12=0;(4)4x 2+4x +10=1-8x .解析:方程(1)(3)是一元二次方程的一般形式,可以直接确定a ,b ,c 的值,并计算b 2-4ac 的值,然后代入求根公式,即可求出方程的根;方程(2)(4)则需要先化成一般形式,再求解.解:(1)这里a =2,b =1,c =-6,b 2-4ac =12-4×2×(-6)=1+48=49.∴x =-b ±b 2-4ac 2a =-1±492×2=-1±74,即原方程的解是x 1=-2,x 2=32. (2)将方程化为一般形式,得x 2+4x -2=0.∵b 2-4ac =24,∴x =-4±242=-2± 6.∴原方程的解是x 1=-2+6,x 2=-2- 6.(3)∵b 2-4ac =-224<0,∴原方程没有实数根.(4)整理,得4x 2+12x +9=0.∵b 2-4ac =0,∴x 1=x 2=-32. 方法总结:用公式法解一元二次方程时,一定要先将方程化为一般形式,再确定a ,b ,c的值.【类型二】一元二次方程解法的综合运用三角形的两边分别为2和6,第三边是方程x2-10x+21=0的解,则第三边的长为( )A.7 B.3C.7或3 D.无法确定解析:解一元二次方程x2-10x+21=0,得x1=3,x2=7.根据三角形三边的关系,第三边还应满足4<x<8.所以第三边的长x=7.故选A.方法总结:解题的关键是正确求解一元二次方程,并会运用三角形三边的关系进行取舍.三、板书设计教学过程中,强调用判别式去判断方程根的情况,首先需把方程化为一般形式.同时公式法的得出是通过配方法来的,用公式法解方程∴前提是Δ≥0.。
21.2.2公式法(同步教学设计)2024-2025学年九年级数学上册同步精品课堂(人教版)
- 自主学习法:引导学生自主完成作业和拓展学习。
- 反思总结法:引导学生对自己的学习过程和成果进行反思和总结。
作用与目的:
- 巩固学生在课堂上学到的公式法知识点和技能。
- 通过拓展学习,拓宽学生的知识视野和思维方式。
- 通过反思总结,帮助学生发现自己的不足并提出改进建议,促进自我提升。
5. 练习题库:准备一些与本节课内容相关的练习题,包括不同类型的一元二次方程求解题目,以及一些实际问题的解决题目。这样可以帮助学生巩固所学知识,并进行实际应用。
6. 教学工具:准备黑板、粉笔、多媒体投影仪等教学工具,以便进行讲解和展示。
7. 教学课件:制作与本节课内容相关的教学课件,包括教学目标、教学内容、实例讲解、练习题等,以便进行多媒体教学。
- 帮助学生提前了解本节课的课题,为课堂学习做好准备。
- 培养学生的自主学习能力和独立思考能力。
2. 课中强化技能
教师活动:
- 导入新课:通过一个实际问题案例,引出公式法的重要性,激发学生的学习兴趣。
- 讲解知识点:详细讲解公式法的推导过程和应用步骤,结合实例帮助学生理解。
- 组织课堂活动:设计小组讨论,让学生共同探讨如何应用公式法解决实际问题。
- 鼓励学生进行自我评估和反思,总结自己的学习成果和不足,制定改进计划,不断提高自己的学习效果。
- 鼓励学生参加数学竞赛或挑战赛,如数学奥林匹克、数学挑战赛等,以提高自己的数学水平和竞争力。
2. 拓展要求:鼓励学生利用课后时间进行自主学习和拓展。教师可提供必要的指导和帮助,如推荐阅读材料、解答疑问等。
- 要求学生阅读《数学之美》一书中关于一元二次方程的章节,并回答相关问题,以加深对一元二次方程和公式法的理解。
九年级数学上册《公式法》教案、教学设计
(五)总结归纳
1.教师引导学生回顾本节课所学内容,总结公式法的基本概念、原理、步骤及应用。
2.学生分享自己在学习公式法过程中的收获和感悟,提出改进意见和建议。
3.教师对学生的总结进行补充和归纳,强调公式法在数学学习和实际应用中的重要性,鼓励学生在课后继续探索和巩固所学知识。
2.学生在小组内展开讨论,分享各自的想法,共同探讨解决问题的方法。
3.教师巡回指导,关注每个小组的讨论进度,适时给予提示和引导,帮助学生找到解决问题的思路。
(四)课堂练习
1.教师设计具有针对性的练习题,涵盖本节课所学知识点,让学生独立完成。
2.学生在练习过程中,尝试运用公式法解决实际问题,提高解题能力。
(二)讲授新知
1.教师讲解公式法的基本概念、原理和步骤,如平方差公式、完全平方公式的推导和应用。
2.教师通过具体的例子,演示如何运用公式法解决实际问题,强调公式法在简化计算过程和提高解题效率方面的优势。
3.学生跟随教师的讲解,认真听讲、思考,积极参与课堂互动,提出自己的疑问。
(三)学生小组讨论
1.教师将学生分成若干小组,每组选择一个具有挑战性的问题进行讨论,如“如何用公式法求解两个连续自然数的平方和?”
4.通过对公式法的学习,使学生具备一定的数学建模能力,能够将现实生活中的问题转化为数学问题,并运用公式法进行求解。
(二)过程与方法
在本章节的教学过程中,教师应注重以下过程与方法:
1.采用启发式教学法,引导学生通过观察、分析、总结等环节,自主发现公式法的规律和特点。
2.创设生活情境,让学生在实际问题中感受公式法的价值和作用,培养学生的数学应用意识。
人教版九上数学21.2.2公式法教案
作
业
习题20.1 1. 3.
7、设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根.
(1)试用含有a,b,c的式子表示x1+x2,x1x2;
(2)求代数式a(x +x )+b(x +x )+c(x1+x2)的值.
板
书
设
计
21.2.2公式法
1.求根公式的概念及其推导过程.
2.公式法的概念.
3.应用公式法解一元二次方程.
过渡语:齐读配方法解一元二次方程的步骤。
互助探究二
例1、用公式法解方程5x2-4x-12=0
1.变形:化已知方程为一般形式;
2.确定系数:用a,b,c写出各项系数;
3.计算: b2-4ac的值;
4.代入:把有关数值代入公式计算;
5.定根:写出原方程的根.
四、拓展提高
1、在什么情况下,一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根?有两个相等的实数根?没有实数根?
过渡语:今天我们一起来学习一元二次方程的万能解法。
二、自主学习(自学课本9—12页内容,注意圈点勾画)
1、结合互助探究一,理解公式法的探究过程并识记求根公式。
2、一元二次方程的解有几种情况,谁决定方程解的情况?
3、结合例2认真思考用公式法解一元二次方程的一般步骤。
过渡语:下面我们共同来解决在自学中遇到的问题。
教学过程
复备
一、复习导入
1、若二次项系数不是1,把二次项系数化为1(方程两边都除以二次项系数);
2、把常数项移到方程右边;
3、在方程的两边各加上一次项系数的一半的平方,使左边成为完全平方;
4、如果方程的右边整理后是非负数,用直接开平方法解之,如果右边是个负数,则指出原方程无实根。
人教版数学九年级上册21.2.2公式法解一元二次方程 教案
21.2公式法解一元二次方程教学设计学情分析本节是在学生已经掌握了配方法解一元二次方程的基础上,从问题入手,推导求根公式,并能用公式法解简单系数的一元二次方程教学目标知识目标1.理解求根公式的推导过程和判别公式;2.使学生能熟练地运用公式法求解一元二次方程.能力目标1.通过由配方法推导求根公式,培养学生推理能力和由特殊到一般的数学思想.2.结合的使用求根公式解一元二次方程的练习,培养学生运用公式解决问题的能力,全面培养学生解方程的能力,使学生解方程的能力得到切实的提高。
德育目标让学生体验到所有一元二次方程都能运用公式法去解,形成全面解决问题的积极情感,感受公式的对称美、简洁美,产生热爱数学的情感.教学的重、难点教学的重点1.掌握公式法解一元二次方程的一般步骤.2.熟练地用求根公式解一元二次方程。
教学的难点:理解求根公式的推导过程及判别公式的应用。
教学过程一.情境设计上课开始,通过提问让学生回忆一元二次方程的概念及配方法解一元二次方程的一般步骤。
利用昨天所学“配方法”解一元二次方程,达到“温故而知新”的目的和总结配方法的一般步骤,为下一步解一般形式的一元二次方程做准备。
然后让学生思考对于一般形式的一元二次方程ax 2+bx+c=0(a ≠0) 能否用配方法求出它的解?引出本节课的内容。
(学生活动)用配方法解下列方程(1)6x 2-7x+1=0 (2)4x 2-3x=52(学生独立完成,老师点评)总结用配方法解一元二次方程的步骤(学生总结,老师点评).(1)移项;(2)化二次项系数为1;(3)方程两边都加上一次项系数的一半的平方;(4)原方程变形为(x+m )2=n 的形式;(5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.二、探索新知如果这个一元二次方程是一般形式a x 2+bx+c=0(a ≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax 2+bx+c=0(a ≠0)且b 2-4ac ≥0,试推导它的两个根x 1x 2 分析:因为前面具体数字已做得很多,我们现在不妨把a 、b 、c•也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:a x 2+bx=-c二次项系数化为1,得x 2+b a x=-c a配方,得:x 2+b a x+(2b a )2=-c a+(2b a )2即(x+2b a)2=2244b ac a - ∵b 2-4ac ≥0且4a 2>0∴2244b ac a-≥0直接开平方,得:x+2b a =±2a即x=2b a-±∴x 1=2b a -,x 2=2b a- 由上可知,一元二次方程a x 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b-4ac≥0时,•将a 、b 、c 代入式子 (2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.(4)由求根公式可知,一元二次方程最多有两个实数根.三、例题讲解例1.用公式法解下列方程.(1)2x 2-4x-1=0 (2)5x+2=3x 2(3)(x-2)(3x-5)=0 (4)4x 2-3x+1=0(学生独立完成,教师指名学生上台板书,教师巡视并指导)分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.四、针对练习不解下列方程,直接说出a 、b 、c 以及b2-4ac 的值①2x2+x −6 = 0; ②x2+4x = 2;③5x2−4x −12 = 0; ④4x2+4x+10 = 1−8x教学要点:(1)对于方程②和④,首先要把方程化为一般形式;②强调确定a 、b 、c 值时,不要把它们的符号弄错;③先计算b2−4ac 的值,五、达标测试1、x2+4x =22、6t2 -5 =13t3、x ² - x -1= 04、2x ² - 4x+2= 05、3x(x-3)=2(x-1)(x+1)6、4x2-3x-1=x-2六、归纳小结本节课应掌握:(1)求根公式的概念及其推导过程;(2)公式法的概念;(3)应用公式法解一元二次方程;(4)初步了解一元二次方程根的情况.七、布置作业八、板书设计1.(回顾旧知识)配方法的一般步骤2.(讲授新课)推导求根公式3.(总结归纳)用公式法解一元二次方程的步骤4.例题讲解九、教学反思本节课在学生有了认识了配方法的作基础,再讨论如何用配方法解一元二次方程的一般形式ax2+bx+c=0(a≠0),就得到一元二次方程的求根公式,于是有了直接利用公式的公式法,并引出用判别式确定一元二次方程的根的情况. 利用求根公式解一元二次方程的一般步骤:1. 找出a,b,c的相应的数值2. 判别式是否大于等于03. 当判别式的数值符合条件,可以利用公式求根.学生第一次接触求根公式,学生可以说非常陌生,由于过高估计学生的能力,结果出现错误较多.主要的有:1. a,b,c的符号问题出错,在方程中学生往往在找某个项的系数时总是丢掉前面的符号 2. 求根公式本身就很难,形式复杂,代入数值后出错很多.通过本节课的教学,总体感觉调动了学生的积极性,能够充分发挥学生的主体作用,激发了学生思维的火花,具体有以下几个特点:1.让学生由浅入深,由易到难,也让学生解决问题的能力提高,这是这节课中的一大亮点,在讲完例题的基础上,将更多的时间留给学生,这样学生感觉到成功的机会增加,从而有一种积极的学习态度,同时学生在学习中相互交流,相互学习,共同提高。
人教版数学九年级上册22.2.2《公式法》教学设计
人教版数学九年级上册22.2.2《公式法》教学设计一. 教材分析人教版数学九年级上册22.2.2《公式法》是二次函数章节的一部分,主要介绍了公式法在解决二次函数问题中的应用。
本节课的内容包括:二次函数的顶点式、对称轴公式、开口方向与判别式的关系等。
通过本节课的学习,学生能够掌握公式法在解决二次函数问题中的应用,提高解决问题的能力。
二. 学情分析九年级的学生已经学习了二次函数的基本概念和性质,对二次函数的图像有一定的了解。
但是,学生在解决实际问题时,往往不知道如何运用公式法进行解答。
因此,在教学过程中,教师需要引导学生运用已学的知识解决实际问题,提高学生的解决问题的能力。
三. 教学目标1.理解二次函数的顶点式、对称轴公式、开口方向与判别式的关系。
2.学会运用公式法解决二次函数问题。
3.提高学生解决实际问题的能力。
四. 教学重难点1.二次函数的顶点式、对称轴公式、开口方向与判别式的关系的理解。
2.公式法在解决二次函数问题中的应用。
五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等,引导学生通过自主学习、合作交流,掌握公式法在解决二次函数问题中的应用。
六. 教学准备1.教学PPT。
2.练习题。
3.教学素材。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的主题,引导学生思考如何解决这个问题。
例如:已知二次函数的图像经过点(1,2)和(3,4),求该二次函数的解析式。
2.呈现(10分钟)教师通过PPT呈现二次函数的顶点式、对称轴公式、开口方向与判别式的关系等知识点,引导学生自主学习。
3.操练(10分钟)教师给出几个例题,让学生运用公式法解决。
教师引导学生注意观察例题的解题步骤,总结解题方法。
4.巩固(10分钟)教师给出一些练习题,让学生独立完成。
教师选取部分学生的作业进行讲评,指出解题中存在的问题,并进行解答指导。
5.拓展(10分钟)教师给出一些拓展问题,引导学生进行思考。
例如:如何运用公式法解决二次函数的最值问题?6.小结(5分钟)教师引导学生总结本节课所学的内容,巩固知识点。
人教版数学九年级上册(新)教案:21.2《公式法》
(2)平方差公式的适用范围:学生需要理解平方差公式仅适用于形如a²-b²的差平方形式,而不仅仅是数字,也可以是含有变量的表达式。
举例:解释为什么x²-y²可以因式分解为(x+y)(x-y),而x²+y²则不能。
(3)立方和与立方差公式的复杂性:这些公式相对复杂,学生需要克服对立方项分解的恐惧,理解并掌握公式的结构。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解公式法的基本概念。公式法是指利用已知的数学公式来简化代数表达式或解决方程问题。它是数学中非常重要的一环,可以帮助我们快速准确地解决各种数学问题。
2.案例分析:接下来,我们来看一个具体的案例。比如,利用完全平方公式将x²+6x+9分解为(x+3)²。这个案例展示了公式法在实际中的应用,以及它如何帮助我们解决问题。
举例:如x²+6x+9的因式分解,应能迅速识别为(x+3)²。
(2)平方差公式的应用:关键是掌握a²-b²=(a+b)(a-b)公式的适用条件,能够解决形如x²-4、9x²-16等类型的因式分解问题。
举例:如x²-9的因式分解,应能迅速得到(x+3)(x-3)。
(3)立方和与立方差公式的理解:重点在于掌握a³+b³=(a+b)(a²-ab+b²)和a³-b³=(a-b)(a²+ab+b²)两个公式的推导和应用,能够处理相应的因式分解问题。
学生小组讨论的部分,我尝试让每个小组记录并分享他们的讨论成果,这样的方式既能促进学生之间的交流,也能让全班同学从中受益。但我也发现,部分学生在表达自己的观点时还不够自信,可能是因为他们对知识的掌握还不够扎实。因此,我计划在接下来的课程中,多给予学生表达的机会,鼓励他们大胆地说出自己的想法。
最新人教版初中九年级上册数学《公式法》教案
21.2.2 公式法【知识与技能】1.理解并掌握求根公式的推导过程;2.能利用公式法求一元二次方程的解.【过程与方法】经历探索求根公式的过程,加强推理技能,进一步发展逻辑思维能力.【情感态度】用公式法求解一元二次方程的过程中,锻炼学生的运算能力,养成良好的运算习惯,培养严谨认真的科学态度.【教学重点】用公式法解一元二次方程.【教学难点】推导一元二次方程求根公式的过程.一、情境导入,初步认识我们知道,对于任意给定的一个一元二次方程,只要方程有解,都可以利用配方法求出它的两个实数根.事实上,任何一个一元二次方程都可以写成ax2+bx+c=0的形式,我们是否也能用配方法求出它的解呢?想想看,该怎样做?【教学说明】让学生回顾用配方法解一元二次方程的一般过程,从而尝试着求ax2+bx+c=0(a≠0)的方程的解,导入新课,教学时,应给予足够的思考时间,让学生自主探究.二、思考探究,获取新知通过问题情境思考后,师生共同探讨方程ax2+bx+c=0(a≠0)的解.由ax2+bx+c=0(a≠0),移项,ax2+bx=-c.二次项系数化为1,得x2+bax=-ca.配方,得x2+bax+2()2ba=-ca+2()2ba,即2224(42)b aa abxc-+=.至此,教师应作适当停顿,提出如下问题,引导学生分析、探究:(1)两边能直接开平方吗?为什么?(2)你认为下一步该怎么办?谈谈你的看法.【教学说明】设置停顿并提出两个问题的目的在于纠正学生的盲目行为,引导学生正确认识代数式b2-4ac的取值与此方程的解之间的关系,加深认知.教学时,应让学生积极主动思考,畅所欲言,在相互交流中促进理解.师生共同完善认知:一般地,式子b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)根的判别式,通常用Δ表示,即Δ=b2-4ac.从而有:①当Δ=b2-4ac>0时,方程ax2+bx+c=0(a≠0)有两个不相等的实数根;当Δ=b2-4ac=0时,方程ax2+bx+c=0(a≠0)有两个相等实数根;当Δ=b2-4ac<0时,方程ax2+bx+c=0(a≠0)没有实数解;②当Δ≥0时,方程ax2+bx+c=0(a≠0)的两个实数根可写成x=242b b aca-±-,这个式子叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式.三、典例精析,掌握新知例1不解方程,判别下列各方程的根的情况.(1)x2+x+1=0; (2)x2-3x+2=0; (3)3x22分析:找出方程中二次项系数、一次项系数和常数项,利用b2-4ac与0的大小关系可得结论.注意:在确定方程中a、b、c的值时,一定要先把方程化为一般式后才能确定,否则会出现失误.解:(1)∵a=1,b=1,c=1,∴Δ=b2-4ac=12-4×1×1=-3<0,∴原方程无实数解;(2)∵a=1,b=-3,c=2,∴Δ=b2-4ac=(-3)2-4×1×2=1>0,∴原方程有两个不相等实数根;(3)原方程可化为3x2-2x-2=0,∴a=3,b=-2,c=-2,∴Δ=b2-4ac=(-2)2-4×3×(-2)=2+24=26>0.∴原方程有两个不相等的实数根.例2用公式法解下列方程:(1)x2-4x-7=0; (2)2x2-22x+1=0; (3)5x2-3x=x+1; (4)x2+17=8x分析:将方程化为一般形式后,找出a、b、c的值并计算b2-4ac后,可利用公式求出方程的解.【教学说明】以上两例均可让学生自主完成,同时选派同学上黑板演算.教师巡视,针对学生的困惑及时予以指导,最后共同评析黑板上作业,一方面引导学生关注其解答是否正确,同时还应注意其解答格式是否规范,查漏补缺,深化理解.教师接着引导学生阅读第12页有关引言中问题的解答,向学生提问:(1)什么情况下根的取值为正数?(2)列方程解决实际问题在取值时应注意什么?四、运用新知,深化理解1.关于x的方程x2-2x+m=0有两个实数根,则m的取值范围是.2.如果关于x的一元二次方程k2x2-(2k+1)x+1=0有两个不相等实数根,那么k 的取值范围是()A.k>-1 4B.k>-14且k≠0C.k<-1 4D.k≥-14且k≠03.x2=0的根是()A.x1,x2B.x1=6, x2C.x1, x2D.x1=x24.关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一个根为0,试求m的值.(注:5~6题为教材第12页练习)5.解下列方程:(1)x2+x-6=0; (2)x2(3)3x2-6x-2=0;(4)4x2-6x=0; (5)x2+4x+8=4x+11; (6)x(2x-4)=5-8x.6.求第21.1节中问题1的答案.【教学说明】通过练习可进一步理解和掌握本节知识,在学中练、练中学的活动中得到巩固和提高.【答案】1.m≤12.B3.D4.把x=0代入方程,得m2+2m-3=0,解得m1=1,m2=-3,又∵m-1≠0,即m≠1,故m的值为-3.5~6略五、师生互动,课堂小结通过这节课的学习,你有哪些收获和体会?说说看.【教学说明】在学生回顾与反思本节课的学习过程中,进一步完善认知,师生共同归纳总结.1.布置作业:从教材“习题21.2”中选取.2.完成创优作业中本课时练习的“课时作业”部分.1.本课容量较大,难度较大,计算的要求较高,因此在教学设计各环节均围绕着利用公式法解一元二次方程这一重点内容展开,问题设计,课堂学习有利于学生强化运算能力,掌握基本技能,也有利于教师发现教学中存在的问题.2.在教学设计中,引导学生自主探索一元二次方程的求根公式,在师生讨论中发现求根公式,并学会利用公式解一元二次方程.3.整个课堂都以学生动手训练为主,让学生积极介入探索活动,体验到成功的喜悦.4.公式法是在配方法的基础上推出的一种解一元二次方程的基本方法,它使解一元二次方程更加简便,在公式的运用中,涉及到根的判别式,使公式法解一元二次方程得到延续和深化.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6课时21.2.2 公式法
教学内容
1.一元二次方程求根公式的推导过程;
2.公式法的概念;
3.利用公式法解一元二次方程.
教学目标
理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.
复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)•的求根公式的推导公式,并应用公式法解一元二次方程.
重难点关键
1.重点:求根公式的推导和公式法的应用.
2.难点与关键:一元二次方程求根公式法的推导.
教学过程
一、复习引入
1.前面我们学习过解一元二次方程的“直接开平方法”,比如,方程
(1)x2=4 (2)(x-2) 2=7
提问1 这种解法的(理论)依据是什么?
提问2 这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊二次
方程有效,不能实施于一般形式的二次方程。
)
2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式。
)
(学生活动)用配方法解方程2x2+3=7x
(老师点评)略
总结用配方法解一元二次方程的步骤(学生总结,老师点评).
(1)现将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;
(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;
(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.
二、探索新知
用配方法解方程
(1)ax2-7x+3 =0 (2)a x2+bx+3=0
(3)如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步
骤求出它们的两根,请同学独立完成下面这个问题.
问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x1=
24
2
b b ac
a
-+-
,
x2=
24
2
b b ac
a
---
(这个方程一定有解吗?什么情况下有解?)
分析:因为前面具体数字已做得很多,我们现在不妨把a 、b 、c •也当成一个具体数字,根据上面的解题步骤就可以一直推下去.
解:移项,得:ax 2+bx=-c
二次项系数化为1,得x 2+
b a x=-
c a
配方,得:x 2+b a x+(2b a )2=-c a +(2b a
)2 即(x+2b a )2=2244b ac a
- ∵4a 2>0,4a2>0, 当b 2-4ac ≥0时2244b ac a -≥0 ∴(x+2b a )2=(242b ac a
-)2 直接开平方,得:x+2b a =±242b ac a - 即x=242b b ac a
-±- ∴x 1=242b b ac a -+-,x 2=242b b ac a
--- 由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因此:
(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b 2-4ac ≥0时,
•将a 、b 、c 代入式子x=242b b ac a -±-就得到方程的根.(公式所出现的运算,恰好包括了所学过的六中运算,加、减、乘、除、乘方、开方,这体现了公式的统一性与和谐性。
)
(2)这个式子叫做一元二次方程的求根公式.
(3)利用求根公式解一元二次方程的方法叫公式法.
公式的理解
(4)由求根公式可知,一元二次方程最多有两个实数根.
例1.用公式法解下列方程.
(1)2x 2-x-1=0 (2)x 2+1.5=-3x (3) x 2-2x+ 12
=0 (4)4x 2-3x+2=0 分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.
补:(5)(x-2)(3x-5)=0
三、巩固练习
教材P 42 练习1.(1)、(3)、(5)或(2) 、(4) 、(6)
四、应用拓展
例2.某数学兴趣小组对关于x 的方程(m+1)22m x ++(m-2)x-1=0提出了下列问题.
(1)若使方程为一元二次方程,m 是否存在?若存在,求出m 并解此方程.
(2)若使方程为一元二次方程m 是否存在?若存在,请求出.
你能解决这个问题吗?
分析:能.(1)要使它为一元二次方程,必须满足m 2+1=2,同时还要满足(m+1)≠
0.
(2)要使它为一元一次方程,必须满足:
①
211
(1)(2)0
m
m m
⎧+=
⎨
++-≠
⎩
或②
210
20
m
m
⎧+=
⎨
-≠
⎩
或③
10
20
m
m
+=
⎧
⎨
-≠
⎩
五、归纳小结
本节课应掌握:
(1)求根公式的概念及其推导过程;(2)公式法的概念;
(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0.2)找出系数a,b,c,注意各项的系数包括符号。
3)计算b2-4ac,若结果为负数,方程无解,4)若结果为非负数,代入求根公式,算出结果。
(4)初步了解一元二次方程根的情况.
六、布置作业
教材复习巩固4.。