34063AP111

合集下载

34063技术手册

34063技术手册

MC34063ADC-DC CONVERTER CONTROL CIRCUITS®April 2000sOUTPUT SWITCH CURRENT IN EXCESS OF 1.5As 2%REFERENCE ACCURACYs LOW QUIESCENT CURRENT:2.5mA (TYP.)s OPERATING FROM 3V TO 40Vs FREQUENCY OPERATION TO 100KHz sACTIVE CURRENT LIMITINGDESCRIPTIONThe MC34063A series is a monolithic control circuit delivering the main functions for DC-DC voltage converting.The device contains an internal temperature compensated reference,comparator,duty cycle controlled oscillator with an active current limit circuit,driver and high current output switch.Output voltage is adjustable through two external resistors with a 2%reference accuracy.Employing a minimum number of external components the MC34063A devices series is designed for Step-Down,Step-Up and Voltage-Inverting applications.BLOCK DIAGRAMDIP-8SO-81/15ABSOLUTE MAXIMUM RATINGSSymbol ParameterValue Unit V CC Power Supply Voltage50V V ir Comparator Input Voltage Range -0.3to 40V V SWC Switch Collector Voltage40V V SWE Switch Emitter Voltage (VSWC =40V)40V V CE Switch Emitter to Collector Voltage 40V V d c Driver Collector Voltage 40V I dc Driver Collector Current 100mA I SW Switch Current1.5A P tot Power Dissipation at T amb =25o C (for Plastic Package )(for SOIC Package ) 1.250.625WT op Operating Ambient Temperature Range (for AC SERIES )(for AB SERIES )0to 70-40to 85o C o C T st gStorage Temperature Range-40to 150oCAbsolute Maximum Rating are those values beyond which damage to the device may occur.Functional operation under these condition is not implied.THERMAL DATASymbolParameterDIP-8SO-8UnitR thj-amb Thermal Resistance Junction-ambient (*)Max100160oC/W(*)This value depends from thermal design of PCB on which the device is mounted.ORDERING NUMBERSTypeDIP-8SO-8SO-8(tape &reel)MC34063AB MC34063ABN MC34063ABD MC34063ABD-TR MC34063ACMC34063ACNMC34063ACDMC34063ACD-TRCONNECTION DIAGRAM (top view)PIN CONNECTIONSPin No Symbol Name and Function 1SWC Switch Collector 2SWE Switch Emitter 3TC Timing Capacitor 4GND Ground5CII Comparator Inverting Input 6V CC Voltage Supply 7I pk I pk Sense8DRCVoltage Driver CollectorMC34063A2/15ELECTRICAL CHARACTERISTICS(Refer to the test circuits,V CC=5V,T a=T LOW to T HIGH,unless otherwise specified,see note2)OSCILLATORSymbol Parameter Test Conditions Min.Typ.Max.Unitf OSC Frequency V pin5=0V C T=1nF T a=25o C243342KHzI ch g Charge Currernt V CC=5to40V T a=25o C243342µAI dischg Discharge Current V CC=5to40V T a=25o C140200260µA I d is chg/I chg Discharge to ChargeCurrent RatioPin7=V CC T a=25o C 5.2 6.27.5V i pk(sense)Current Limit Sense Voltage I chg=I dischg T a=25o C250300350mV OUTPUT SWITCHSymbol Parameter Test Conditions Min.Typ.Max.Unit V CE(sat)Saturation Voltage,Darlington ConnectionI SW=1A Pins1,8connected1 1.3VV CE(sat)Saturation Voltage I SW=1A R pin8=82Ωto V CC,Forcedβ~200.450.7Vh F E DC Current Gain I SW=1A V CE=5V T a=25o C50120I C(off)Collector Off-State Current V CE=40V0.01100µA COMPARATORSymbol Parameter Test Conditions Min.Typ.Max.UnitV t h Threshold Voltage T a=25o CT a=T LOW to T HIGH 1.2251.211.25 1.2751.29VVReg li ne Threshold Voltage LineRegulationV CC=3to40V15mVI I B Input Bias Current V IN=0V-5-400nA TOTAL DEVICESymbol Parameter Test Conditions Min.Typ.Max.UnitI CC Supply Current V CC=5to40V C T=1nFPin7=V CC V pin5>V th Pin2=GNDRemaining pins open2.54mANOTES:1)Maximum package power dissipation limit must be observed.2)T LOW=0o C,T HIGH=70o C(AC series);T LOW=-40o C,T HIGH=85o C(AB series).3)If Darlington configuration is not used,care must be taken to avoid deep saturation of output switch.The resulting switch-off time may be adversely affected.In a Darlington configuration the following output driver condition is suggested:Forcedβ of output current switch=I COUTPUT/(I CDRIVER-1mA*)≥10*Current less due to a built in1KΩantileakage resistor.MC34063A3/15Common Emitter Configuration Output Switch Saturation Voltage vs Collector Current Power Collector Emitter Saturation Voltage (V CE(sat))vs Temperature Darlington Configuration Collector Emitter Saturation Voltage(V CE(sat))vs Temperature Current Limit Sense Voltage Voltage(V ipk)vs TemperatureEmitter Follower Configuration Output Saturation Voltage vs Emitter Current Output Switch ON-OFF Time vs Oscillator Timing CapacitorTYPICAL ELECTRICAL CHARACTERISTICS MC34063A4/15MC34063ATYPICAL ELECTRICAL CHARACTERISTICS(Continued)Reference Voltage vs Temperature Bias Current vs TemperatureSupply Current vs Temperature Supply Current vs Input Voltage5/15MC34063ATYPICAL APPLICATION CIRCUITStep-Up ConverterPrinted DemoboardSymbol PinVout1GND2GND3Vin4Test Condition(V OUT=28V)Test Conditions Value(Typ.)Unit Line Regulation V IN=8to16V,I O=175mA30mV Load Regulation V IN=12V,I O=75to175mA10mV Output Ripple V IN=12V,I O=175mA300mV Efficency V IN=12V,I O=175mA89%6/15MC34063A Step-Down ConverterPrinted DemoboardSymbol PinVout1GND2GND3Vin4Test Condition(V OUT=5V)Test Conditions Value(Typ.)Unit Line Regulation V IN=15to25V,I O=500mA5mV Load Regulation V IN=25V,I O=50to500mA30mV Output Ripple V IN=25V,I O=500mA100mV Efficency V IN=25V,I O=500mA80%I SC V IN=25V,R LOAD=0.1Ω 1.2A7/15MC34063AVoltage Inverting ConverterPrinted DemoboardSymbol PinVout1GND2GND3Vin4Test Condition(V OUT=-12V)Test Conditions Value(Typ.)Unit Line Regulation V IN=4.5to6V,I O=100mA15mV Load Regulation V IN=5V,I O=10to100mA20mV Output Ripple V IN=5V,I O=100mA230mV Efficency V IN=5V,I O=100mA58% I SC V IN=5V,R lLOAD=0.1Ω0.9A8/15CalculationParameter Step-Up(Discontinuos mode)Step-Down(Continuos mode)Voltage Inverting(Discontinuos mode)t on/t off V out+V F−V in(min)V i n(min)−V sa tV out+V FV i n(min)−V sat−V out|V out|+V FV in−V s at(t on+t off)max1/f min1/f min1/f mi nC T 4.5x10-5t on 4.5x10-5t on 4.5x10-5t o nI PK(switch)2I ou t(max)[(t o n/t off)+1]2I out(max)2I out(max)[(t on/t off)+1] R SC0.3/I PK(switc h)0.3/I PK(switc h)0.3/I PK(switch)C O≅I out t onV ri pple(p−p)I PK(s witc h)(t on+t off)8V ri pple(p−p)≅I out t o nV ripp le(p−p)L(min)V in(mi n)−V s atI PK(swit ch)t o n(max)V in(min)−V sa t−V o utI PK(swit ch)t on(max)V in(mi n)−V satI PK(s witch)t on(ma x)NOTES:V sat=Saturation voltage of the output switchV F=Foward voltage drop of the output rectifierTHE FOLLOWING POWER SUPPLY CHARACTERISTICS MUST BE CHOSEN:V in=Nominal input voltageV out=Desired output voltage,|V out|=1.25(1+R2/R1)I out=Desired output currentf min=Minimum desired output switching frequency at the selected values of Vin and IoV ripple=Desired peak to peak output ripple voltage.In practice,the calculaed capacitor value will and to be increased due to its equivalent series resistance and board layout.The ripple voltage should be kept to a low value since it will directly affect the line and load regulation. Step-up With External NPN SwitchMC34063A9/15MC34063AStep-down With External NPN Switch Step-down With External PNP Switch 10/15Voltage Inverting With External NPN SwitchVoltage Inverting With External PNP Saturated Switch11/15Dual Output VoltageHigher Output Power,Higher Input Voltage 12/15Plastic DIP-8MECHANICAL DATAmm inchDIM.MIN.TYP.MAX.MIN.TYP.MAX.A 3.30.130a10.70.028B 1.39 1.650.0550.065B10.91 1.040.0360.041b0.50.020b10.380.50.0150.020D9.80.386E8.80.346e 2.540.100e37.620.300e47.620.300F7.10.280I 4.80.189L 3.30.130Z0.44 1.60.0170.063P001F13/15SO-8MECHANICAL DATAmm inch DIM.MIN.TYP.MAX.MIN.TYP.MAX.A 1.750.068a10.10.250.0030.009 a2 1.650.064 a30.650.850.0250.033 b0.350.480.0130.018 b10.190.250.0070.010 C0.250.50.0100.019 c145(typ.)D 4.8 5.00.1880.196E 5.8 6.20.2280.244e 1.270.050e3 3.810.150F 3.8 4.00.140.157L0.4 1.270.0150.050 M0.60.023 S8(max.)0016023 14/15Information furnished is believed to be accurate and reliable.However,STMicroelectroni c s assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use.No license is granted by implication or otherwise under any patent or patent rights of STMicroelectroni c s.Specification mentioned in this publication are subject to change without notice.This publication supersedes and replaces all informati o n previously supplied.STMicroelectronics products are not authorized for use as critical components in life support devices or systems withoutexpress written approval of STMicroelectronics.The ST logo is a registered trademark of STMicroelectronics©2000STMicroelectronics–Printed in Italy–All Rights ReservedSTMicroelectronics GROUP OF COMPANIESAustralia-Brazil-China-Finland-France-Germany-Hong Kong-India-Italy-Japan-Malaysia-Malta-MoroccoSingapore-Spain-Sweden-Switzerland-United Kingdom-U.S.A..15/15。

34063AP1

34063AP1

34063ADC-TO-DC CONVERTER CONTROL CIRCUITSThe 34063A is a monolithic control circuit containing the primary functions required for DC-to-DC converters.These devices consist of an internal temperature compensated reference, comparator, controlled duty cycleoscillator with an active current limit circuit, driver and high current output switch. This series was specificallydesigned to be incorporated in Step-Down and Step-Up and Voltage-Inverting applications with a minimum numberof external components.FEATURESFUNCTIONAL BLOCK DIAGRAM• Operation from 3.0 V to 40 V Input • Low Standby Current • Current Limiting • Output Switch Current to 1.5 A • Output Voltage Adjustable • Frequency Operation to 100 kHz • Precision 2% ReferenceMAXIMUM RATINGSRating Symbol Value Unit Power Supply Voltage V CC 40 VdcComparator Input Voltage Range V IR -0.3 to +40VdcSwitch Collector Voltage V C(switch) 40 VdcSwitch Emitter Voltage (Vpin 1 = 40 V) V E(switch) 40 VdcSwitch Collector to Emitter Voltage V CE(switch) 40 VdcDriver Collector Voltage I C(driver) 40 VdcDriver Collector Current (Note 1) I C(driver) 100 mASwitch Current I SW 1.5 APower Dissipation and Thermal Characteristics Ceramic Package, U Suffix T A = +25°C Thermal Resistance Plastic Package, P Suffix T A = +25°C Thermal Resistance SOIC Package, D Suffix TA = +25°C Thermal Resistance P D R θJAP D R θJA P D R θJA1.25 100 1.25 100 625 160W°C/W W °C/W mW °C/W Operating Junction Temperature TJ +150 °COperating Ambient Temperature Range T A 0 to +70 °CStorage Temperature Range Tstg -65to+150°CORDERING INFORMATIONDevice TemperatureRange Package 34063AD 0° to +70°CSO-8 34063AP1Plastic DIPELECTRICAL CHARACTERICISTICS (V CC = 5.0 V, T A = 0 to +70o C unless otherwise specified.)Characteristics Symbol Min Typ Max UnitOSCILLATORFrequency (V Pin 5 = 0 V, C T = 1.0 nF, T A = 25°C) f osc 24 33 42 kHzCharge Current (V CC = 5.0 V to 40 V, T A = 25°C) I chg 24 33 42 µADischarge Current (V CC = 5.0 V to 40 V, T A = 25°C) I dischg 140 200 260 µADischarge to Charge Current Ratio (Pin7 to Vcc, T A =25°C) I dischg /I chg 5.2 6.2 7.5 —Current Limit Sense Voltage (Ichg = Idischg, T A = 25°C) V lpk (sense) 250300 350 mV OUTPUT SWITCH (Note 3)Saturation Voltage, Darlington Connection (I SW = 1.0 A, Pins 1, 8 connected)V CE (sat) — 1.0 1.3 V Saturation Voltage (I SW = 1.0 A, R Pin 8 = 82 Ω to V CC . Forced β = 20) V CE (sat) — 0.45 0.7 VDC Current Gain (I SW = 1.0 A, V CE = 5.0 V, T A = 25°C) h FE 50 120 — —Collector Off-State Current (V CE = 40V) I C (off) — 0.01 100 µACOMPARATORThreshold Voltage (T A = 25°C) (T A = T LOW to T HIGH ) Vth 1.225 1.21 1.25 — 1.275 1.29V Threshold Voltage (T A = 25°C) ** Vth 1.2375 1.251.2625 VThreshold Voltage Line Regulation (V CC = 3.0 V to 40 V) V REG line 1.4 5.0 mVInput Bias Current (Vin=0V) I IB — -40 -400 nATOTAL DEVICESupply Current (V CC = 5 0 V to 40 V, C T = 1 0 nF, V pin7 = V CC . V Pin5 > Vth, Pin 2 = Gnd, Remaining pins open) I CC2.5 4.0 mANOTES:1. Maximum package power dissipation limits must be observed.2. Low duty cycle pulse techniques are used during test to maintain Junction temperature as close to ambienttemperature as possible3. If the output switch is driven into hard saturation (non Darlington configuration) at low switch currents (< 300 mA) andhigh driver currents (>30 mA), it may take up to 2.0 µs to come out of saturation This condition will shorten the off' timeat frequencies > 30 kHz, and is magnified at high temperatures This condition does not occur with a Darlington configuration,since the output switch cannot saturate If a non Darlington configuration is used, the following output drive condition isrecommendedForced β of output switch = I C , output/(Ic, driver -7.0 mA*) > 10*The 100 Ω. resistor in the emitter of the driver device requires about 7.0 mA before the output switch conducts**Possible version for shipmentPin connection。

MC34063A芯片典型升降压电路外围元件计算器

MC34063A芯片典型升降压电路外围元件计算器

The maximum ambient temperayellow table. The value of maxitemperature Tj = 150°C.(DO NOT CHANGE)2) Input Conduction Loss Parameters from Free-wheeling Diode Datasheets- Found in Electrical Characteristics of Datasheet,Darlington Configuration3) Set D IL/IL(avg)For Maximum Output Current it is suggested that ΔIL should be chosen to be less than 10% of the average inductor curre This will help prevent Ipk (sw) from reaching the current limit threshold set by RSC. If the design goal isinductance value, let ΔIL = 2*IL(avg). This will proportionally reduce output current capability.D IL / IL(avg)D IL4) Input target frequency5) The spreadsheet calculates key parameters for the remaining component selec∆i L* increasing inductance decreas 6) Efficiency / Power Lossximum ambient temperature is related to one-layer PCB with parameters mentioned in the aboveyellow table. The value of maximum ambient temperature is calculated for maximum allowable junction temperature Tj = 150°C.Input Voltage: 4V < Vin < 40VOutput Voltage: 1.25V < Vout < (Vin*Dmax)4%of Datasheet,0% of the average inductor current, IL(avg).oal is to use a minimumponent selectionerter this equals Ioutthis equals Iout + Iripple/2* increasing inductance decreases ripple current ata sheet or measurement).data sheet. Leave blank if not available.Rev 0.1 7/22/09。

mc33063中文资料【范本模板】

mc33063中文资料【范本模板】

低成本开关电源芯片MC34063A (MC33063)中文资料该器件本身包含了DC/DC变换器所需要的主要功能的单片控制电路且价格便宜.它由具有温度自动补偿功能的基准电压发生器、比较器、占空比可控的振荡器,R—S触发器和大电流输出开关电路等组成。

该器件可用于升压变换器、降压变换器、反向器的控制核心,由它构成的DC/DC变换器仅用少量的外部元器件.在各类电子产品中均非常广泛的应用.MC34063主要特性:输入电压范围:2、5~40V输出电压可调范围:1.25~40V最大输出电流:1.5A最大开关频率:100kHz低静态电流短路电流限制可实现升压或降压电源变换器MC34063的内部结构,引脚图及引脚功能:图1 MC34063内部结构及引脚图1脚:开关管T1集电极引出端;2脚:开关管T1发射极引出端;3脚:定时电容ct接线端;调节ct可使工作频率在100—100kHz范围内变化;4脚:电源地;5脚:电压比较器反相输入端,同时也是输出电压取样端;使用时应外接两个精度不低于1%的精密电阻;6脚:电源端;7脚:负载峰值电流(Ipk)取样端;6,7脚之间电压超过300mV时,芯片将启动内部过流保护功能;8脚:驱动管T2集电极引出端。

MC34063A在线电源计算器—Online Power calculationMC34063主要参数:项目条件参数单位Power Supply V oltage 电源电压VCC40VdcComparator Input V oltage Range 比较器输入电压范围VIR0。

3—+40VdcSwitch Collector V oltage 集电极电压开关VC(switch)40VdcSwitch Emitter V oltage (VPin 1 = 40 V) 发射极电压开关VE(switch)40VdcSwitch Collector to Emitter V oltage 开关电压集电极到发射极VCE(switch)40VdcDriver Collector V oltage 驱动集电极电压VC(driver)40VdcDriver Collector Current (Note 1)驱动集电极电流IC(driver)100mASwitch Current 开关电流ISW1.5AOperating Junction Temperature工作结温TJ+150℃Operating Ambient Temperature Range操作环境温度范围TAMC34063A0-70℃MC33063A V40—125MC33063A40—85Storage Temperature Range 储存温度范围Tstg65—150℃MC34063应用电路图图2 MC34063电压逆变器图3 MC34063降压电路图4 NPN三极管扩流升压转换器图5 NPN三极管扩流降压转换器图6 升压转换器MC34063的工作原理MC34063组成的降压电路MC34063组成的降压电路原理如图7。

mc33063中文资料

mc33063中文资料

低成本开关电源芯片MC34063A(MC33063)中文资料之五兆芳芳创作该器件自己包含了DC/DC变换器所需要的主要功效的单片控制电路且价钱廉价.它由具有温度自动抵偿功效的基准电压产生器、比较器、占空比可控的振荡器,R—S触发器和大电流输出开关电路等组成.该器件可用于升压变换器、降压变换器、反向器的控制焦点,由它组成的DC/DC变换器仅用少量的外部元器件.在各类电子产品中均很是普遍的应用.MC34063主要特性:输入电压规模:2、5~40V输出电压可调规模:1.25~40V最大输出电流:1.5A最大开关频率:100kHz低静态电流短路电流限制可实现升压或降压电源变换器MC34063的内部结构,引脚图及引脚功效:图1 MC34063内部结构及引脚图1脚:开关管T1集电极引出端;2脚:开关管T1发射极引出端;3脚:定时电容ct接线端;调节ct可使任务频率在100—100kHz规模内变更;4脚:电源地;5脚:电压比较器反相输入端,同时也是输出电压取样端;使用时应外接两个精度不低于1%的精密电阻;6脚:电源端;7脚:负载峰值电流(Ipk)取样端;6,7脚之间电压超出300mV时,芯片将启动内部过流庇护功效;8脚:驱动管T2集电极引出端.MC34063A在线电源计较器-Online Power calculationMC34063主要参数:项目条件参数单位Power Supply Voltage 电源电压VCC40VdcComparator Input Voltage Range 比较器输入电压规模VIR0.3-+40VdcSwitch Collector Voltage 集电极电压开关VC(switch)40VdcSwitch Emitter Voltage (VPin 1 = 40 V) 发射极电压开关VE(switch)40VdcSwitch Collector to Emitter Voltage 开关电压集电极到发射极 VCE(switch)40VdcDriver Collector Voltage 驱动集电极电压VC(driver)40VdcDriver Collector Current (Note 1) 驱动集电极电流IC(driver)100mASwitch Current 开关电流ISW1.5AOperating Junction Temperature任务结温TJ+150℃Operating Ambient Temperature Range操纵情况温度规模 TAMC34063A0-70℃MC33063AV40-125MC33063A40-85Storage Temperature Range 储存温度规模Tstg65-150℃MC34063应用电路图图2 MC34063电压逆变器图3 MC34063降压电路图4 NPN三极管扩流升压转换器图5 NPN三极管扩流降压转换器图6 升压转换器MC34063的任务原理MC34063组成的降压电路MC34063组成的降压电路原理如图7.任务进程:1.比较器的反相输入端(脚5)通过外接分压电阻R1、R2*输出电压 .其中,输出电压U.=1.25(1+ R2/R1)由公式可知输出电压 .仅与R1、R2数值有关,因1.25V为基准电压,恒定不变.若R1、R2阻值稳定,U.亦稳定.2.脚5电压与内部基准电压1.25V同时送人内部比较器进行电压比较.当脚5的电压值低于内部基准电压(1.25V)时,比较器输出为跳变电压,开启R—S触发器的S脚控制门,R—S触发器在内部振荡器的驱动下,Q端为“1”状态(高电平),驱动管T2导通,开关管T1亦导通,使输入电压Ui向输出滤波器电容Co充电以提高U.,达到自动控制U.稳定的作用.3.当脚5的电压值高于内部基准电压(1.25V)时,R—S触发器的S脚控制门被封闭,Q端为“0”状态(低电平),T2截止,T1亦截止.4. 振荡器的Ipk 输入(脚7)用于*开关管T1的峰值电流,以控制振荡器的脉冲输出到R—S触发器的Q端.5. 脚3外接振荡器所需要的定时电容Co电容值的大小决定振荡器频率的凹凸,亦决定开关管T1的通断时间.图7 MC34063 降压电路MC34063 升压电路MC34063组成的降压电路原理如图8,当芯片内开关管(T1)导通时,电源经取样电阻Rsc、电感L1、MC34063的1脚和2脚接地,此时电感L1开始存储能量,而由C0对负载提供能量.当T1断开时,电源和电感同时给负载和电容Co 提供能量.电感在释放能量期间,由于其两端的电动势极性与电源极性相同,相当于两个电源串联,因而负载上得到的电压高于电源电压.开关管导通与关断的频率称为芯片的任务频率.只要此频率相对负载的时间常数足够高,负载上便可取得连续的直流电压.图8 MC34063 升压电路MC34063组成的电压反向电路图9为采取MC34063芯片组成的开关反压电路.当芯片内部开关管T1导通时,电流经MC34063的1脚、2脚和电感Ll 流到地,电感Ll存储能量.此时由Co向负载提供能量.当T1断开时,由于流经电感的电流不克不及突变,因此,续流二极管D1导通.此时,Ll经D1向负载和Co供电(经公共地),输出负电压.这样,只要芯片的任务频率相对负载的时间常数足够高,负载上便可取得连续直流电压.图9 开关反压电路非隔离型变压器初级线圈驱动电路图10为采取MC34063芯片组成的非隔离型变压器初级线圈驱动电路.当芯片内部的开关管T1导通时,电流经变压器初级线圈、T1的集电极和发射极流到地,变压器初级线圈储存能量.当T1断开时,变压器初级线圈回路断开,能量耦合到变压器的次级线圈.对变压器次级的输出电压进行取样,并将取样电压经R1、R2分压后送到MC34063的5脚,可以确保输出电压的稳定.图10 非隔离型变压器初级线圈驱动电路隔离高压大电流变压器初级线圈驱动电路图11为采取MC34063芯片组成的隔离高压大电流变压器初级线圈驱动电路.当芯片内部的开关管导通时,MC34063的2脚将呈现高电平,外部P型三极管Q1截止,N型MOSFET管Q2导通.电流经变压器初级线圈和Q2到地,初级线圈储存能量.当内部开关管关断时,MC34063的2脚为低电平,Q1导通,Q2截止,初级线圈回路断开.能量耦合到变压器的次级线圈.从变压器的另一次级线圈对输出电压进行取样,然后经分压后送到MC34063的5脚可包管输出电压的稳定.该电路中次级主输出端为浮地电源输出,很是适合医疗等要求浮地的系统使用.非隔离、隔离在此指输出信号是否和变压器输入部分相连.图12 隔离高压大电流变压器初级线圈驱动电路。

DC--DC转换器34063的应用

DC--DC转换器34063的应用

DC/DC转换器34063的应用34063由于价格便宜,开关峰值电流达1.5A,电路简单且效率满足一般要求,所以得到广泛使用。

在ADSL 应用中,34063的开关频率对传输速率有很大影响,在器件选择及PCB设计时需要仔细考虑。

线性稳压电源效率低,所以通常不适合于大电流或输入、输出电压相差大的情况。

开关电源的效率相对较高,而且效率不随输入电压的升高而降低,电源通常不需要大散热器,体积较小,因此在很多应用场合成为必然之选。

开关电源按转换方式可分为斩波型、变换器型和电荷泵式,按开关方式可分为软开关和硬开关。

斩波型开关电源斩波型开关电源按其拓扑结构通常可以分为3种:降压型(Buck)、升压型(Boost)、升降压型(Buck-boost)。

降压型开关电源电路通常如图1所示。

图1中,T为开关管,L1为储能电感,C1为滤波电容,D1为续流二极管。

当开关管导通时,电感被充磁,电感中的电流线性增加,电能转换为磁能存储在电感中。

设电感的初始电流为iL0,则流过电感的电流与时间t的关系为:iLt= iL1+(Vi-Vo-Vs)t/L,Vs为T的导通电压。

当T关断时,L1通过D1续流,从而电感的电流线性减小,设电感的初始电流为iL1,则则流过电感的电流与时间t的关系:iLt=iL1-(V o+Vf)t/L,Vf为D1的正向饱和电压。

图1降压型开关电源基本电路34063的特殊应用●扩展输出电流的应用DC/DC转换器34063开关管允许的峰值电流为1.5A,超过这个值可能会造成34063永久损坏。

由于通过开关管的电流为梯形波,所以输出的平均电流和峰值电流间存在一个差值。

如果使用较大的电感,这个差值就会比较小,这样输出的平均电流就可以做得比较大。

例如,输入电压为9V,输出电压为3.3V,采用220μH的电感,输出平均电流达到900mA,峰值电流为1200mA。

单纯依赖34063内部的开关管实现比900mA更高的输出电流不是不可以做到,但可靠性会受影响。

升压芯片之34063A_DataSheet

升压芯片之34063A_DataSheet

34063ADC-TO-DC CONVERTER CONTROL CIRCUITSThe 34063A is a monolithic control circuit containing the primary functions required for DC-to-DC converters.These devices consist of an internal temperature compensated reference, comparator, controlled duty cycleoscillator with an active current limit circuit, driver and high current output switch. This series was specificallydesigned to be incorporated in Step-Down and Step-Up and Voltage-Inverting applications with a minimum numberof external components.FEATURESFUNCTIONAL BLOCK DIAGRAM• Operation from 3.0 V to 40 V Input • Low Standby Current • Current Limiting • Output Switch Current to 1.5 A • Output Voltage Adjustable • Frequency Operation to 100 kHz • Precision 2% ReferenceMAXIMUM RATINGS Rating Symbol Value Unit Power Supply Voltage V CC 40 VdcComparator Input Voltage Range V IR -0.3 to +40VdcSwitch Collector Voltage V C(switch) 40 VdcSwitch Emitter Voltage (Vpin 1 = 40 V) V E(switch) 40 VdcSwitch Collector to Emitter Voltage V CE(switch) 40 VdcDriver Collector Voltage I C(driver) 40 VdcDriver Collector Current (Note 1) I C(driver) 100 mASwitch Current I SW 1.5 APower Dissipation and Thermal Characteristics Ceramic Package, U Suffix T A = +25°C Thermal Resistance Plastic Package, P Suffix T A = +25°C Thermal Resistance SOIC Package, D Suffix TA = +25°C Thermal Resistance P D R θJAP D R θJA P D R θJA1.25 100 1.25 100 625 160W°C/W W °C/W mW °C/W Operating Junction Temperature TJ +150 °COperating Ambient Temperature Range T A 0 to +70 °CStorage Temperature Range Tstg -65to+150°CORDERING INFORMATIONDevice Temperature RangePackage 34063AD 0° to +70°CSO-8 34063AP1Plastic DIPELECTRICAL CHARACTERICISTICS (V CC = 5.0 V, T A = 0 to +70o C unless otherwise specified.)Characteristics Symbol Min Typ Max UnitOSCILLATORFrequency (V Pin 5 = 0 V, C T = 1.0 nF, T A = 25°C) f osc 24 33 42 kHzCharge Current (V CC = 5.0 V to 40 V, T A = 25°C) I chg 24 33 42 µADischarge Current (V CC = 5.0 V to 40 V, T A = 25°C) I dischg 140 200 260 µADischarge to Charge Current Ratio (Pin7 to Vcc, T A =25°C) I dischg /I chg 5.2 6.2 7.5 —Current Limit Sense Voltage (Ichg = Idischg, T A = 25°C) V lpk (sense) 250300 350 mV OUTPUT SWITCH (Note 3)Saturation Voltage, Darlington Connection (I SW = 1.0 A, Pins 1, 8 connected)V CE (sat) — 1.0 1.3 V Saturation Voltage (I SW = 1.0 A, R Pin 8 = 82 Ω to V CC . Forced β = 20) V CE (sat) — 0.45 0.7 VDC Current Gain (I SW = 1.0 A, V CE = 5.0 V, T A = 25°C) h FE 50 120 — —Collector Off-State Current (V CE = 40V) I C (off) — 0.01 100 µACOMPARATORThreshold Voltage (T A = 25°C) (T A = T LOW to T HIGH ) Vth 1.225 1.21 1.25 — 1.275 1.29V Threshold Voltage (T A = 25°C) ** Vth 1.2375 1.251.2625 VThreshold Voltage Line Regulation (V CC = 3.0 V to 40 V) V REG line 1.4 5.0 mVInput Bias Current (Vin=0V) I IB — -40 -400 nATOTAL DEVICESupply Current (V CC = 5 0 V to 40 V, C T = 1 0 nF, V pin7 = V CC . V Pin5 > Vth, Pin 2 = Gnd, Remaining pins open) I CC2.5 4.0 mANOTES:1. Maximum package power dissipation limits must be observed.2. Low duty cycle pulse techniques are used during test to maintain Junction temperature as close to ambienttemperature as possible3. If the output switch is driven into hard saturation (non Darlington configuration) at low switch currents (< 300 mA) andhigh driver currents (>30 mA), it may take up to 2.0 µs to come out of saturation This condition will shorten the off' timeat frequencies > 30 kHz, and is magnified at high temperatures This condition does not occur with a Darlington configuration,since the output switch cannot saturate If a non Darlington configuration is used, the following output drive condition isrecommendedForced β of output switch = I C , output/(Ic, driver -7.0 mA*) > 10*The 100 Ω. resistor in the emitter of the driver device requires about 7.0 mA before the output switch conducts**Possible version for shipmentPin connection。

TS34063A中文资料

TS34063A中文资料

TS34063AADc to Dc Converter ControllerSupply Voltage Range 3 V to 40V Output Driving Current 1.5A Oscillator Frequency up to 100KHzGeneral DescriptionThe TS34063A is a monolithic switching regulator and subsystem intended for use as DC to DC converter. It contains an internal temperature compensated reference, comparator, controlled duty cycle oscillator with an active peak current limit circuit, drive and a high current output switch.The TS34063A is specifically designed to be incorporated in step-up, step-down and voltage inverting converter applications.The TS34063A is offered in SOP-8 and DIP-8 package.FeaturesPower forward control circuit Operating voltage form 3V to 40V Low standby current Current limit adjustable Output switch current up to 1.5AVariable oscillator frequency up to 100KHz (max)Output voltage adjustablePin DescriptionsName DescriptionSC Switch CollectorSE Switch Emitter CT Timing Capacitor Gnd Ground Comp. Comparator Inverting Input Vcc Vcc Collector Ipk Ipk Sense Vdriver DriverApplicationsChargerxD-ROM, xDSL productDC to DC converter sOrdering InformationPart No.Operating Temp.(Ambient)PackageTS34063ACD DIP-8 TS34063ACS-20 ~ +85 oCSOP-8Block DiagramPin assignment:1. SC 2. SE 3. CT 4. Gnd 5. Comp. 6. Vcc 7. Ipk 8. VdriverAbsolute Maximum RatingSupply Voltage V CC 40 V Comparator Input Voltage Range V FB- 0.3 ~ 40 VSwitch Collector Output Voltage V C(SW) 40 V Switch Emitter Voltage V E(SW) 40 V Switch Collector to Emitter Voltage V CE(SW) 40 V Driver Collector Voltage Vc(driver) 40 VDriver Collector Current (note 1) Ic(driver) 100 mAOutput Switching Current I SW 1.5 APower Dissipation DIP-8SOP-8 Pd1.00.5WOperating Junction Temperature Range T J-0 ~ +125 o C Storage Temperature Range T STG-65 ~ +150 o C Note: Maximum package power dissipation limits must be observedElectrical Characteristics (VCC=5V, Ta =25 o C; unless otherwise specified.)Parameter SymbolTestConditionsMinTypMaxUnit Oscillator (OSC)Frequency F OSC C T = 1nF, Vpin5= 0V 24 33 42 KHz Charge Current I CHARGE V CC = 5V ~ 40V -- 30 -- uA Discharge Current I DISCHARGE V CC = 5V ~ 40V -- 200 -- uADischarge to Charge current ratio I DISCHARGE/ I CHARGEPin7 to Vcc -- 6.5 -- --Current Limit Sense Voltage V IPK(SENSE)I DISCHARGE = I CHARGE 250--350mV Output switch (note1)Saturation Voltage V CE(SAT)I SW= 1A, pin1,8 connected) -- 1.0 1.3 VSaturation Voltage V CE(SAT)I SW= 1A, Id=50mA -- 0.45 0.7 VDC current gain H FE I SW = 1A, Vce= 0.5V -- 75 -- --Collector off-state current I C(OFF)Vce= 40V -- 0.01 100 uA ComparatorThreshold Voltae V REF 1.225 1.25 1.275 VLine regulation RegLine V CC = 3V ~ 40V -- -- 6 mVTotal deviceSupply Current I CC V CC = 5V ~ 40V, C T = 1nF,pin7=Vcc, pin5>Vth,pin2=Gnd, remaining pinsopen-- 1.6 3 mANote: 1. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible2. If the output switch is driven into hard saturation (non-Darlington configuration) at low switch currents (<=300mA)and high driver currents (>=30mA), it may take up to 2uS for it to come out of saturation. This condition will shorten the off time at frequencies >= 30KHz, and is magnified at high temperature. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a non-Darlington configuration is used, the following output drive condition is recommended:Forced Bata of output switch: Ic output / (Ic driver – 7mA*) >= 10* The 100ohm resistor in the emitter of the driver divide requires about 7mA before the output switch conducts.Circuit DescriptionTypical Application CircuitFigure 7. Step Up ConverterResults Test ConditionsLINE REGULATION Vin= 8V~16V, Io= 175mA 30mV +/- 0.05%Load Regulation Vin= 12V, Io= 75mA to 175mA 10mV +/- 0.017%Output Ripple Vin=12V, Io= 175mA 400mVppEfficiency Vin=12V, Io= 175mA 87.7%Output Ripple with Optional Filter Vin=12V, Io= 175mA 40mVppTypical Application Circuit (continues)Figure 9. Step Down ConverterResults Test ConditionsLine Regulation Vin= 15V~25V, Io= 500mA 12mV +/- 0.12%Load Regulation Vin= 25V, Io= 50mA to 500mA 3mV +/- 0.03%Output Ripple Vin= 25V, Io= 500mA 120mVppShort Circuit Current Vin= 25V, RL= 0.1ohm 1.1AEfficiency Vin= 25V, Io= 500mA 83.7%Output Ripple with Optional Filter Vin= 25V, Io= 500mA 40mVppTypical Application Circuit (continues)Figure 11. Voltage Inverting ConverterResults Test ConditionsLine Regulation Vin= 4.5V~6.0V, Io= 100mA 3mV +/- 0.012%Load Regulation Vin= 5V, Io= 10mA to 100mA 22mV +/- 0.09%Output Ripple Vin= 5V, Io= 100mA 500mVppShort Circuit Current Vin= 5V, RL= 0.1ohm 900mAEfficiency Vin= 5V, Io= 100mA 62.2%Output Ripple with Optional Filter Vin= 5V, Io= 100mA 70mVpp。

MC34063中文资料

MC34063中文资料

MC34063A,MC33063A,SC34063A,SC33063A, NCV33063A1.5A, 升压、降压转换用开关调整器。

MC34063A系列是包含DC-DC转换器基本功能的单片集成控制电路。

该器件的内部组成包括带温度补偿的参考电压、比较器、带限流电路的占空比控制振荡器、驱动器、大电流输出开关。

该器件专用于降压、升压以及电压极性反转场合,可以减少外部元件的使用数量。

获取更详细的设计参考信息,可参阅应用笔记“AN920A/D”或“AN954/D”.特性●工作输入电压3.0V-40V●低静态电流●具有限流功能●输出开关电流可达1.5A●输出电压可调●工作频率可至100kHz●参考电压精度2%●支持无铅封装封装印记说明:x = 3或4A = 封装地区L,WL = 晶片批号Y,YY = 年份W,WW = 周次G或■ = 无铅封装本手册封装尺寸部分有关于订货、包装的详细信息。

“”(底部视图)该器件包含79个有源晶体管图1 等效原理图MC34063A,MC33063A,SC34063A,SC33063A,NCV33063A图2 引脚分布强制性地超出极限参数将损坏器件。

极限参数只是强制性参数,不代表正常工作要超出推荐工作条件,长期超出推荐工作条件的操作将影响器件的可靠性。

1.必须注意封装的最大功耗限制。

2.该系列器件具备静电放电防护,并通过了以下试验:人体放电模式4000V,美军标MIL-STD-883,3015方式.机械模式400V.3.NCV前缀系列用于汽车电子。

电气特性(VCC=5.0V,T=T至T【注4】,除非另有说明。

)4.对于MC34063,SC34063,Tlow=0℃;对于MC33063,SC33063,MC33063V,NCV33063,Tlow=-40℃;对于MC34063,SC34063,Thigh =+70℃;对于MC33063,SC33063,Thigh=+85℃;对于MC33063V,NCV33063,Thigh =+125.℃5.测试时采用了低占空比以保证结温尽可能接近环境温度。

34063升压电路报告

34063升压电路报告

题目名称:降压型变换电源摘要:该降压电源变换器电路采用MC34063芯片作为其电路构成的核心部分,用以对5V的输入电压经过升压电源电路升至20V;定时电容Ct用以控制振荡器的频率,电感L和电阻R1、R2则是用以控制输出端电压;调节电感L的电感量以及电阻R2与R1比值即可控制输出端的电压输出,该电路设计则是输出端的电压升至20V;且要求在输出端带负载时的电压压降尽量小,同时要求输出端的纹波也尽量小。

关键字:升压型变换电源MC34063 5V升至20VEnglish subject:Buck type transform power supply Abstract:The buck power converter circuit adopts MC34063 chip as its core part of a circuit, which is applied to the 5 V input voltage power supply circuit after the boost to 20 V; Timing capacitance Ct can control the oscillator frequency, inductance L and resistance R1, R2 is used to control the output voltage of the; Adjust the inductance load and inductance L resistance and can control the ratio R2 R1 is the output voltage output, this circuit design is the output voltage to 20 V; And require in the output voltage of the load to bring pressure drop as low as possible, also asked the output ripple also as low as possible.Keywords:The boost the power of transformation MC34063 5 V to 20 V目录一.理论分析 (3)1、MC34063芯片简介: (3)1.1.1 MC34063的结构组成: (3)1.1.2 MC34063的内部结构图: (3)1.1.3 MC34063的引脚: (4)1.1.4 MC34063的内部电路原理: (5)1.1.5 MC34063芯片的主要电路应用有以下几个方面: (5)2.用MC34063制作的升压型变换电源的设计思路 (5)1.2.1 设计题目基本要求: (5)1.2.2 用MC34063制作降压型变换电源的设计思路 (6)二.方案设计与论证 (7)2.1.1、设计12V/5V降压电源变换器的思路 (7)2.1.2、12V/5V降压电源变换器的电路原理图设计 (7)2.1.3 、12V/5V降压电源变换器电路相关参数计算 (8)三. 系统硬件电路设计和实现 (9)四.系统测试 (9)4.1.1、调试中用到的仪器: (9)4.1.2、调试方法: (9)4.1.3、调试中出现的问题: (10)4.1.4、调试问题的解决方案: (10)4.1.5、误差分析: (11)五. 结论 (11)六. 系统使用说明 (11)七. 参考文献 (11)一.理论分析1、MC34063芯片简介:1.1.1 MC34063的结构组成:MC34063是一种开关型高效DC/DC变换集成电路。

电源芯片34063api(免费)

电源芯片34063api(免费)

34063ADC-TO-DC CONVERTER CONTROL CIRCUITSThe 34063A is a monolithic control circuit containing the primary functions required for DC-to-DC converters.These devices consist of an internal temperature compensated reference, comparator, controlled duty cycleoscillator with an active current limit circuit, driver and high current output switch. This series was specificallydesigned to be incorporated in Step-Down and Step-Up and Voltage-Inverting applications with a minimum numberof external components.FEATURESFUNCTIONAL BLOCK DIAGRAM• Operation from 3.0 V to 40 V Input • Low Standby Current • Current Limiting • Output Switch Current to 1.5 A • Output Voltage Adjustable • Frequency Operation to 100 kHz • Precision 2% ReferenceMAXIMUM RATINGS Rating Symbol Value Unit Power Supply Voltage V CC 40 VdcComparator Input Voltage Range V IR -0.3 to +40VdcSwitch Collector Voltage V C(switch) 40 VdcSwitch Emitter Voltage (Vpin 1 = 40 V) V E(switch) 40 VdcSwitch Collector to Emitter Voltage V CE(switch) 40 VdcDriver Collector Voltage I C(driver) 40 VdcDriver Collector Current (Note 1) I C(driver) 100 mASwitch Current I SW 1.5 APower Dissipation and Thermal Characteristics Ceramic Package, U Suffix T A = +25°C Thermal Resistance Plastic Package, P Suffix T A = +25°C Thermal Resistance SOIC Package, D Suffix TA = +25°C Thermal Resistance P D R θJAP D R θJA P D R θJA1.25 100 1.25 100 625 160W°C/W W °C/W mW °C/W Operating Junction Temperature TJ +150 °COperating Ambient Temperature Range T A 0 to +70 °CStorage Temperature Range Tstg -65to+150°CORDERING INFORMATIONDevice Temperature RangePackage 34063AD 0° to +70°CSO-8 34063AP1Plastic DIPELECTRICAL CHARACTERICISTICS (V CC = 5.0 V, T A = 0 to +70o C unless otherwise specified.)Characteristics Symbol Min Typ Max UnitOSCILLATORFrequency (V Pin 5 = 0 V, C T = 1.0 nF, T A = 25°C) f osc 24 33 42 kHzCharge Current (V CC = 5.0 V to 40 V, T A = 25°C) I chg 24 33 42 µADischarge Current (V CC = 5.0 V to 40 V, T A = 25°C) I dischg 140 200 260 µADischarge to Charge Current Ratio (Pin7 to Vcc, T A =25°C) I dischg /I chg 5.2 6.2 7.5 —Current Limit Sense Voltage (Ichg = Idischg, T A = 25°C) V lpk (sense) 250300 350 mV OUTPUT SWITCH (Note 3)Saturation Voltage, Darlington Connection (I SW = 1.0 A, Pins 1, 8 connected)V CE (sat) — 1.0 1.3 V Saturation Voltage (I SW = 1.0 A, R Pin 8 = 82 Ω to V CC . Forced β = 20) V CE (sat) — 0.45 0.7 VDC Current Gain (I SW = 1.0 A, V CE = 5.0 V, T A = 25°C) h FE 50 120 — —Collector Off-State Current (V CE = 40V) I C (off) — 0.01 100 µACOMPARATORThreshold Voltage (T A = 25°C) (T A = T LOW to T HIGH ) Vth 1.225 1.21 1.25 — 1.275 1.29V Threshold Voltage (T A = 25°C) ** Vth 1.2375 1.251.2625 VThreshold Voltage Line Regulation (V CC = 3.0 V to 40 V) V REG line 1.4 5.0 mVInput Bias Current (Vin=0V) I IB — -40 -400 nATOTAL DEVICESupply Current (V CC = 5 0 V to 40 V, C T = 1 0 nF, V pin7 = V CC . V Pin5 > Vth, Pin 2 = Gnd, Remaining pins open) I CC2.5 4.0 mANOTES:1. Maximum package power dissipation limits must be observed.2. Low duty cycle pulse techniques are used during test to maintain Junction temperature as close to ambienttemperature as possible3. If the output switch is driven into hard saturation (non Darlington configuration) at low switch currents (< 300 mA) andhigh driver currents (>30 mA), it may take up to 2.0 µs to come out of saturation This condition will shorten the off' timeat frequencies > 30 kHz, and is magnified at high temperatures This condition does not occur with a Darlington configuration,since the output switch cannot saturate If a non Darlington configuration is used, the following output drive condition isrecommendedForced β of output switch = I C , output/(Ic, driver -7.0 mA*) > 10*The 100 Ω. resistor in the emitter of the driver device requires about 7.0 mA before the output switch conducts**Possible version for shipmentPin connection。

MC34063芯片原理与应用技巧

MC34063芯片原理与应用技巧

34063由于价格便宜,开关峰值电流达1.5A,电路简单且效率满足一般要求,所以得到广泛使用。

1. MC34063 DC/DC变换器控制电路简介:MC34063是一单片双极型线性集成电路,专用于直流-直流变换器控制部分。

片内包含有温度补偿带隙基准源、一个占空比周期控制振荡器、驱动器和大电流输出开关,能输出1.5A的开关电流。

它能使用最少的外接元件构成开关式升压变换器、降压式变换器和电源反向器。

特点:*能在3.0-40V的输入电压下工作*短路电流限制*低静态电流*输出开关电流可达1.5A(无外接三极管)*输出电压可调*工作振荡频率从100HZ到100KHZ2.MC34063引脚图及原理框图3 MC34063应用电路图:3.1 MC34063大电流降压变换器电路3.2 MC34063大电流升压变换器电路3.3 MC34063反向变换器电路3.4 MC34063降压变换器电路3.5 MC34063升压变换器电路MC34063 电路原理振荡器通过恒流源对外接在CT 管脚(3 脚)上的定时电容不断地充电和放电以产生振荡波形。

充电和放电电流都是恒定的,振荡频率仅取决于外接定时电容的容量。

与门的C 输入端在振荡器对外充电时为高电平,D 输入端在比较器的输入电平低于阈值电平时为高电平。

当C 和D输入端都变成高电平时触发器被置为高电平,输出开关管导通;反之当振荡器在放电期间,C 输入端为低电平,触发器被复位,使得输出开关管处于关闭状态。

电流限制通过检测连接在VCC(即6脚)和7 脚之间采样电阻(Rsc)上的压降来完成,当检测到电阻上的电压降接近超过300 mV 时,电流限制电路开始工作,这时通过CT 管脚(3 脚) 对定时电容进行快速充电以减少充电时间和输出开关管的导通时间,结果是使得输出开关管的关闭时间延长。

线性稳压电源效率低,所以通常不适合于大电流或输入、输出电压相差大的情况。

开关电源的效率相对较高,而且效率不随输入电压的升高而降低,电源通常不需要大散热器,体积较小,因此在很多应用场合成为必然之选。

APW34063_DataSheet

APW34063_DataSheet

Parameter Power Supply Voltage Comparator Input Voltage Range Switch Collector Voltage Switch Emitter Voltage (VPIN1=40V) Switch Collector to Emitter Voltage Driver Collector Voltage Driver Collector Current Switch Current Power Dissipation PDIP-8 SOP-8
General Description
The APW34063 is a monolithic control circuit containing the primary functions required for DC-to-DC converters. This device consists of an internal temperature compensated reference, comparator, controlled duty cycle oscillator with an active current limit circuit, driver and high current output switch. This device was specifically designed to be incorporated in Step-Down and Step-Up and Voltage-Inverting applications with a minimum number of external components.
(Note1)
Value 40 -0.3 to +40 40 40 40 40 100 1.5 1.25 625

34063中文资料

34063中文资料

34063 双极型线性集成电路-------深圳市高地电子有限公司HIGHLAND SHENZHEN ELECTRONICS CO., LTD ELECTRONICS CO., LTD---------------------1DC/DC 变换器控制电路34063是一单片双极型线性集成电路专用于直流直流变换器控制部分片内包含有温度补偿带隙基准源一个占空比周期控制振荡器驱动器和大电流输出开关 能输出1.5A 的开关电流它能使用最少的外接元件构成开 关式升压变换器降压式变换器和电源反向器34063的封装形式为塑封双列8引线直插式特点能在3.040V 的输入电压下工作 短路电流限制低静态电流输出开关电流可达1.5A(无外接三极管) 输出电压可调工作振荡频率从100HZ 至100KHZ 可构成升压降压或反向电源变换器内部框图V+地定时电容开关管发射极开关管集电极比较器反相输入电流检测«34063 双极型线性集成电路-------深圳市高地电子有限公司HIGHLAND SHENZHEN ELECTRONICS CO., LTD ELECTRONICS CO., LTD---------------------2极限参数参 数符号数 值单 位电源电压 V+ 40 V 比较器输入电压范围 V I(COMP)-0.3+40V开关管集电极电压 V C(SW) 40 V 开关管发射极电压 V E(SW) 40 V 开关管集电极发射极电压V CE(SW) 40 V 驱动管集电极电压V C(DR) 40 V 开关管电流I SW 1.5A电参数除非特别说明V+=5V,Ta=0+70参 数符号 测 试 条 件最小值 典型值 最大值 单 位振荡器部分充电电流 I CHG V CC =540V,T A =25 22 31 42 A 放电电流 I DISCHG V CC =540V,T A =25140 190 260 A 振荡幅度 V (OSC) T A =25 0.5 V 放电与充电电流之比 K V7=V CC ,T A =25 5.2 6.1 7.5 电流限制检测电压 V SENSE(C.L)I CHG =I DISCHG ,T A =25 250 300 350 mV 输出开关部分饱和电压1 V CE(SAT)1 I SW =1.0A,V C(DR)=V C(SW) 0.951.3 V 饱和电压2 V CE(SAT)2 I SW =1.0A,V C(DR )=5.0V 0.45 0.7 V 直流电流增益 G I(DC) I SW =1.0A,V CE =5.0V,T A =2550 180 关态集电极电流 I C(OFF) V CE =40V,T A =2510 100 nA比较器部分阈值电压 V TH 1.21 1.24 1.29 V 阈值电压的电源调整率V TH V CC =340V2.0 5.0 mV输入偏置电流 I BIAS V1=0V 50 400 nA器件总体电源电流I CCV CC =540V,CT=0.001FV7=V CC ,V5>V TH ,2脚接地2.7 4.0 mA34063 双极型线性集成电路-------深圳市高地电子有限公司HIGHLAND SHENZHEN ELECTRONICS CO., LTD ELECTRONICS CO., LTD---------------------3工作原理由于内置有大电流的电源开关34063能够控制的开关电流达到1.5A 内部线路包含有参考电压源振荡器转换器逻辑控制线路和开关晶体管参考电压源是温度补偿的带隙基准源振荡器的振荡频率由3脚的外接定时电容决定.开关晶体管由比较器的反向输入端和与振荡器相连的逻辑控制线路置成ON 并由与振荡器输出同步的下一个脉冲置成OFF4-54-5410-5t I SAT 输出开关管饱和电压 t ON 输出开关管导通时间V F 整流二极管正向压降 t OFF 输出开关管关闭时间电路原理内部框图中所表示的电路解释如下振荡器通过恒流源对外接在CT 管脚(3脚)上的定时电容不断地充电和放电以产生振荡波形充电和放电电流都是恒定的所以振荡频率仅取决于外接定时电容的容量与门的C 输入端在振荡器对外充电时为高电平D 输入端在比较器的输入电平低于阈值 电平时为高电平当C 和D 输入端都变成高电平时触发器被置为高电平输出开关管导通反之当振荡器在放电期间C 输入端为低电平触发器被复位使得输出开关管处于关闭状态电流限制SI 检测端(5脚)通过检测连接在V+和5脚之间电阻上的压降来完成功能当检测到电阻上的电压降接近超过300mV 时电流限制电路开始工作这时通过CT 管脚(3脚)对定时电容进行快速充电以减少充电时间和输出开关管的导通时间结果是使得输出开关管的关闭时间延长典型参数曲线34063 双极型线性集成电路-------深圳市高地电子有限公司HIGHLAND SHENZHEN ELECTRONICS CO., LTD ELECTRONICS CO., LTD---------------------4集电极电流 Ic(A)开关饱和压降 V s a t (V )开关饱和压降与集电极电流关系(达林顿方式 )102510410310定时电容 CT(pF)1010010001开关时间与定时电容关系开关时间 t o n , to f f ( s )100定时电容 CT(pF)振荡频率 f o s c (k H z )振荡频率与定时电容关系10101010电源电压 V+(V)电源电流 I c c (m A )电源电流与电源电压关系集电极电流 Ic(A)开关饱和压降 V s a t (V )开关饱和压降与集电极电流关系典型参数与温度关系曲线34063 双极型线性集成电路-------深圳市高地电子有限公司HIGHLAND SHENZHEN ELECTRONICS CO., LTD ELECTRONICS CO., LTD---------------------50环境温度 Ta( )饱和压降 (2)与温度关系饱和压降 (2)环境温度 Ta( )饱和压降 (1)与温度关系饱和压降 (1)-50-25255075100125环境温度 Ta( )电源电流与温度关系电源电流 I c c (m A)-50-25255075100125环境温度 Ta( )充放电流之比与温度关系充放电流之比环境温度 Ta( )域值电压与温度关系域值电压 V i n (V )典型应用线路34063 双极型线性集成电路-------深圳市高地电子有限公司HIGHLAND SHENZHEN ELECTRONICS CO., LTD ELECTRONICS CO., LTD---------------------6FF图1 升压变换器 图2 降压变换器图3 升压变换器 ( 大电流 图4 降压变换器( 大电流图5 反向变换器应用特性曲线34063 双极型线性集成电路-------深圳市高地电子有限公司HIGHLAND SHENZHEN ELECTRONICS CO., LTD ELECTRONICS CO., LTD---------------------71.升压变换器1020304040302010输出电压与输入电压关系输出电压 V o u t (V )输入电压 Vin(V)101001000120253035输出电压与输出电流关系输出电压 V o u t (V )输出电流 Io(mA)2.降压变换器102030400123456输出电压与输入电压关系输出电压 V o u t (V )输入电压 Vin(V)1101001000输出电压 V o u t (V )输出电流 Io(mA)输出电压与输出电流关系。

M1831MK2维修手册

M1831MK2维修手册

第一章概述M1831MK2/M1941MK2船用导航雷达具有多种功能而且所有的功能都能根据操作者的要求作出快速反应每次按下一个键在屏幕上可以看到相应的变化M1831MK2/M1941MK2船用导航雷达具有以下特点专为小型船舶设计的高亮度显示雷达体积小重量轻价格低高可靠性高质量雷达对目标进行8级量化以提高目标清晰度所有操作信息都以文字方式在屏幕上显示报警功能监视目标进入或退出报警区可在10V至40VDC电压范围下工作功率50W当输入NMEA0183格式船所处的经纬度船速以及船到航路点的距离方位等可在屏幕下方文字区域内显示具有两个NMEA输入端口可向助航系统输出目标的方位数据M1831MK2/M1941MK2船用导航雷达分为两个单元显示单元和收发单元二者之间由一根信号电缆连接其连线图见参考资料第二章显示单元2•1概述显示单元由电源板PTU-9093显示板A1Q9DSP46信号处理板SPU-9096*和面板PNL-9097 + VOL-9098等组成其连线图见参考资料电源板PTU-9093为M1831MK2/M1941MK2船用导航雷达整机提供全部所需要的电源它将输入的DC10V-DC40V的电源电压变换成整机所需的+12V-12V+5V等不同的电压值提供给显示器和收发机操作者对机器的操作通过面板PNL-9097 + VOL-9098上的旋钮电位器和按键将操作功能转换成数字信号经过P24送到信号处理板SPU-9096*上的J53由信号处理板进行处理信号处理板SPU-9096*完成全部的信号处理发射机及接收机控制回波显示及控制并将产生的视频信号及行场同步信号送给显示板A1Q9DSP46显示板A1Q9DSP46将信号处理板SPU-9096*送来的视频信号及行场同步信号进行处理送到CRT显示2•2电源板PTU-90932•2•1概述一M1831MK2/M1941MK2雷达的电源电路主要由输入滤波回路50kHz脉宽调制变换器PWM及保护电路等组成它通常工作于船电DC10.2V~40.0V船电与船体采用浮接形式安全可靠二滤波板FIL-9094作为电源输入电路其主要功能是进一步滤掉船电交流成份防止共模干扰串入雷达中同时避免雷达的高频成份反串入电源电路中影响其它船用电子设备的正常使用FIL-9094上的CR1是保护二极管用来防止电源极性偶然反接而造成的损坏当电源反接时CR1导通烧掉保险丝立即切断电源三电源板PTU-9093通过开关调整技术来达到稳压目的它主要由一个主变换器和一个次级变换器组成主变换器产生从主输入处独立的线电压+12V天线+12V和-12V天线-12V分变换器从主变换器的+12V 输出中产生+5V和+32V它们分别为雷达的其它电路板提供稳定而可靠的工作电压2•2•2 工作原理电源板PTU-9093的原理图参见图1-1其大致工作原理如下一电源开/关控制U1K1K1是由瞬间通过SET或RESET线圈的电流而保持开或关状态的锁定继电器如果只按POWER键电源控制逻辑电路U1激励K1的SET线圈从而使继电器打开相反如果同时按POWER和STBY/TX键U1激励RESET线圈将继电器关闭按这种方式瞬时功率开关PWR/TX以及K1/U1作为一个触发开关即使主电源失去时依然保持开或关的状态二初级电源+10V调整器当K1打开后船电输入送至+10V调整器+10V 调整器是一个单纯的串通调整器它将电源送至PWM控制器U3保护控制器U2以及工作在主变换器驱动初级部分的其它组件上三主变换器当功率送到PWM控制器U3时它开始工作交替打开和关闭连在T1初级线圈上的2个开关FET Q2/Q3次级线圈产生的合成交流电压被整流平滑至+12V和-12V并送到机器中的其它电路上从+12V取出的电压通过电压调节器VR1误差放大器Q31/CR33和光耦U5反馈至PWM控制器以保持+12V的稳定输出四次级变换器U6/Q32和其相关电路组成一个+5V和+32V的PWM开关整流器取自+5V 线的电压通过电压调节器VR2反馈至U6以保持+5V的稳定输出五天线电机电源在M1831MK2/M1941MK2中使用+12V和-12V输出天线+12V/天线-12V来驱动24V天线电机而在M1831MK2中天线电机仅使用天线+12V/地来自处理板的ANT SW信号控制由Q33三极管驱动的继电器K2开启和关闭天线+12V线六保护电源电路的保护是通过断掉停止开关FET Q2/Q3上的驱动信号来实现的CR34和U7光耦检测+5V线输出上的过载如果+5V端由于重负载的原因而降低时则U7导通并通过U2和U3使PWM控制器失效R3//R4和U4检测主电源输入线上的过流如果变换器过载或输入电压过低则R3//R4上的压降变大当压降超过一定电平则过流检测器U4使PWM变换器U3失效U2内的比较器COMPARATOR检测电源输入的过压调节VR3以使过压保护门限电平达到40.0V2•2•3主要部件的功能分析本节介绍电源板PTU-9093上主要元器件的原理.其主要元件如下名称主要功能RC-7105开机关机RC-6220脉宽调制RC-9116保护稳压RC-9083输出场效应管保护MC-34063AP1电压变换器+12V转换为 +5V一U1RC-7105内部功能简介1RC-7105主要管脚功能管脚作用管脚作用#1船电(+)#11RESET线圈驱动#3船电(-)#12SET线圈驱动#4TX(K)#1310V滤波#5POWER2.作用:用来控制开关机通过#11#12输出为线圈提供驱动电流真值表如下#4#5Q2#12Q3#11A H H OFF OFFB H L ON OFFC L H OFF OFFD L L OFF ONE H L OFF ONPOWER ONPOWER OFF3.原理分析及内部功能介绍图1-2 RC-7105内部图RC-7105的作用是用来开机和关机的其实质是在线圈S和R中产生电流从而吸合断开开关K1其内部电路如图1-2所示1开机过程分析RC-7105中的IC1为四个与非门IC2为四个或非门电路首先在开机之前IC1的#1#2及IC2的#8#9#12均为高电平H由此可以推导出IC1#12为L按一次POWER键RC-7105的#5接地因此IC1#2及IC2#9#12变为L由此可以推导出IC1#5#6均为H则IC1#4为L因此Q2导通导致继电器K1的S线圈内有电流通过#7和#12吸合使船电加到Q1b这时随意按POWER/OFF或TX/OFF键均不起作用即继电器K1保持吸合状态2关机过程分析同时按下POWER/OFF和TX/OFF键则RC-7105的#4#5同时接地使得IC1#1#2及IC2的#8#9#12均为低电平L可以推出IC1#6变为L而IC1#4为H则Q2截止K1内的S中失去电流而此时IC2#5#6为高电平H因此IC2的#4变为低电平L Q3导通K1内的R线圈中有电流通过因此K1断开船电无法进入下一级3RC-7105内的Q1及外围件构成稳压电路将船电+24VDC变换成该厚膜内MOS集成电路电源二RC-6220PWM脉宽调制变换器1主要管脚功能管脚作用管脚作用#1过压过流等保护端#8输出#2电压调整输入端#9DC-#3#4外接滤波电容#10输出#5为死区电压#11电源输入端#6定时电容#12+5V输出#7定时电阻2基本原理RC-6220内部电路参见图1-3#2和#1分别是比较器A1和A2的采样输入它们分别和恒定输入相比较只要这二者其一变高,则在#10和#8输出波形宽度变窄从而控制连在#10和#8上的开关FET Q2和Q3的导通时间变短最终变压器T1的输出电压经整流后变低由于Q2和Q3是间歇工作的因此T1将输出一个正负相间的波形如图1-4所示该波形的频为50KHz当脉宽变窄时经整流得到的电压将降低反之输出电压升高3内部功能介绍1基准振荡器可以产生锯齿波振荡频率由外接电容Ct和Rt来确定f =1.1~1.2/(Ct*Rt)=100KHz2)PWM中比较器B1B2是过零比较器即当A点电压超过B或C时则输出低电平反之则输出高电平3A1A2是运算放大器工作在线性放大区输出分别是随入端IC1的#1和#16的增大而增大的假设A1输出A2输出则D1导通D2截止即Vc取决于采样输入端IC1的#1和#16的大小4脉冲控制触发器由D 触发器及与门或非门组成I C1的#13端是方式控制端其为0时IC1的#9和#10端出现同步输出电流很大其为1时#9和#10端将异步输出这是本机所需要的5基准电压电路是提供一个稳定的5V电压也为误差放大器A1A2提供+2.5V 的基准电压由分压器二分压图1-5在图1-5中画出了RC-6220内部各点工作波形图中Vd是死区控制电压约为0.2V VC是随外加电压即IC1的#1和#16改变而改变的通过波形可以看出当VC 升高或降低时E8和E9的输出脉冲宽度将发生变化当VC 超过锯齿波电压时输出将变为零4RC-6220的稳压及保护原理分析RC-6220的#1和#2端为采样输入端如果输入船电电压或输出端电压发生改变则其#1#2端的输入将改变而这两端的输入电压控制着RC-6220输出端#10和#8的输出脉冲宽度从而控制整流后输出电压的高低另外#11端为该厚膜的电源输入端是由RC-9116的#1端所提供的+10V 电压以保持该厚膜正常工作如果该电压失去该厚膜将停止工作a当输出端负载增加或减小时+12V端输出电压将变化从而改变光电管U5的电流使RC-6220的#2端电位改变若+12V变低光电管电流小RC-6220的#2端电压下降Vc下降在RC-6220#10和#8端输出脉宽变宽整流后电压变高相反如果+12V 输出电压变高则RC-6220内的Vc升高输出脉宽变窄迫使整流后电压变低若输出电压进一步变高使Vc进一步提高最后RC-6220#10和#8端无脉冲输出从而保护后续电路b如果输入直流电压船电变化电源稳压的工作原理同上具体分析如下当电源输入小于10.2V时RC-9116 中+10V稳压无法建立则RC-6220的#11无电源输入不能维持该厚膜正常工作因此RC-6220的#10和#8无输出PTU-9093电源板停止工作当电源输入超过40V时则经RC-6220的#1外围电路上R6VR3的分压后加到RC-6220#1上的采样输入电压将超过门限电压2.5V使得V电压超出锯齿波电压的最高值从而在RC-6220的输出端#10和#8 C无脉冲输出保护后续电路三RC-9116稳压保护1主要管脚功能管脚作用管脚作用#1+10V输出#10稳压输出#3为U5提供电源#11+5V输入#6外接电容缓启动用#12船电-#7船电+输入#13保护输出#9保护输入端二主要功能介绍RC-9116主要是产生稳定的+10V电压此外其#9端输入电平的高低控制#13端的输出电平高低从而影响RC-6220#1端的采样输入RC-9116的内部电路图如图1-6所示其具体的工作原理如下1内部的串联稳压电源提供+10V电压RC-9116#7为电源输入端开机后船电通过继电器K1和Q1加以该脚通过内部的ZD1Q1等的稳压在#1产生+10V电压为RC-6220和本厚膜提供工作电源2+5V输出端的过流保护RC-9116#9外接光耦U7该光耦检测+5V端的输出电压正常情况下U7无耦合输出因此RC-9116#9维持高电平其内部的截止端输出低电平正常工作当端过载时内二极管中的电流增大使其耦合输出端导通由于接因此变为低电平也为低电平从而内部的导通而使其变为高电平这样的采样输入变高迫使其输出脉冲宽度变窄经整流后的输出电压变低图1-6 RC-9116内部图3天线的过流保护当天线端过载时其保护原理同端的保护原理相类似只不过这时是检测天线输出端电压的光耦在起作用当天线过载时的耦合输出端导通其端电压升高使连接端上的导通从而使端变为低电平端变高四输出场效应管保护1主要管脚功能管脚作用管脚作用#2+10V输入#6输入#3输出#7#8外接电阻#5船电2主要功能介绍RC-9083内部图参见图1-7图1-7 RC-9083内部图它含有一个运算放大器及一个比较器它的#6端外围电路中连接着R3R4R11RC-9083的主要作用是将这三个电阻所检测到的毫伏级电压放大当该电压超过门限电平时其内部的第二个比较器输出变低RC-9083#3输出变低送到RC-9116的#9端并通过RC-6220控制输出脉冲宽度从而保护输出场效应管Q2和Q3具体分析如下如果通过场效应管Q2和Q3的电流增大则RC-9083#6端的电压将升高因此RC-9083内部的比较器U1的#3端电压升高当其超过U1的另一比较输入端#2的电压时该比较器的输出#1电压则变高当该电压超过U1的#5端电压时则第二个比较器的输出端#7变低因此RC-9083的#3也变低RC-9083测定方法如下:测试规格SW1SW2输出电压V测试1a a+3.250.20测试2b+2.700.2测试3b c+9.00以上测试4c c+1.50以下测定电路图1-8五MC34063AP1+12V +5V变换1主要管脚功能管脚作用管脚作用#1开关管集电极#5比较反馈输入#2开关管发射极#6VCC#3定时电容#7电流峰值检测#4GND地#8驱动集电极VOUT=1.25(1+R2/R1)这里,R2相对应于PTU-9093图中的R39 和VR2;R1相对应于PTU-9093图中的R40二主要功能介绍U6的内部原理图参见图1-9U6MC34063AP1同外围电路中的Q32CR36T2一起构成次级变换电路进行降压变换将+12V电压变为+5V即这是一个DC-DC变换器另外R39R40VR2构成反馈输入电路将+5V电压反馈至图1-9U6#5进行比较以控制U6#1的输出电压U6的工作原理同U3RC-6220相类似图1-3 RC-6220内部图172•3显示板CRT组件显示器CRT组件任务雷达显示器是雷达的终端设备其任务是将回波信号清楚的显示在屏幕上并显示其位置及各种数据信号雷达显示器的种类很多本雷达为高亮度平面位置显示方式能在屏幕上直接读出目标的距离和方位作为本雷达的定位和避碰的依据2•3•1主要技术指标行频15.77KHz场频60.09Hz输入信号视频信号0.7V~3.6V正极性行同步信号负极性场同步信号负极性输入信号的输入阻抗视频信号约400行同步信号约5K场同步信号约20K 输入电源电压 DC12V0.24V消耗功率: 12W以下2•3•2 显示器的组成CRT电路组成主要由视频放大电路行扫描电路场扫描电路高压电路组成2•3•3视频放大电路电路如图2.3-1所示图2.3-1 视频放大电路从信号处理板来的视频信号经过VR1后加到Q1的基极经Q1Q2放大后信号由约3.6V被放大到30~40V倒相后加到显像管阴极VR1为对比度调整电位器Q1静态工作点电压仅供参考为#b约5.1V, #c约5.2V, #e约0V Q2静态工作点电压仅供参考为#b约5.3V, #c 约74V~80V, #e约5.2V2•3•4行扫描电路行扫描电路的作用为行偏转线圈提供线性良好频率稳定幅度足够的锯齿波电流以产生垂直方向上的偏转磁场控制显像管中的电子束沿水平方向作均速扫描运动----即行扫描利用行扫描回扫期产生的高压脉冲通过行输出变压器升压产生显像管阳极所需的高压及其它电路所需的各种电压与SPU电路送来的信号同步并且同步稳定可靠抗干扰能力强行扫描电路的组成主要由IC1pc1379c,Q5Q6及行偏转线圈组成IC1主要是产生行振荡AFC和行同步信号Q5为行扫描推动级Q6为行扫描输出级2•3•4•1行振荡AFC自动频率控制和行同步信号IC1内部含有一个振荡器当加电后就产生振荡振荡频率为15.77KHz若振荡频率偏离15.77KHz时IC1内部与之相连的AFC电路立即产生控制信号控制其振荡确保振荡器振荡频率为15.77KHz不变从SPU板来的行同步信号H-SYNC通过IC1#15加到IC1内部AFC电路中同样从行输出端Q6极电极反馈回来的信号通过IC1#14也加到IC1内部AFC电路中作为比较信号与从SPU板来的行同步信号进行比较若两个信号同频同相则AFC电路无输出说明行振荡器荡频率与从SPU板来的行同步信号同频同相不用修正行振荡器按固有频率振荡若两个信号不同频或不同相则AFC电路输出一控制电压加到行振荡电路中去控制行振荡器为压控振荡器的振荡频率使行振荡器的振荡频率与SPU板来的行同步信号同步2•3•4•2行扫描推动级行扫描推动级主要由Q3Q4Q5和T1组成从IC1的#9输出的行扫描信号分别加入Q3集电极和Q4基极使Q3Q4导通行扫描信号经Q3, Q4整形放大后,由Q4的发射极(射随器输出,有较强的带载能力)加到Q5的基极Q5与T1构成功放电路, 对行扫描信号进行功率放大, 最后将一个幅度足够,波形良好的开关信号提供给行输出级, 使行输出管充分工作于截止和饱和状态,它是通过变压器T1去推动行输出级工作的,其静态工作点电压仅供参考为Q3 #b约0.22V, #c约2.4V,#e约0V Q4 #b约2.4V, #c约12V, #e约2.2V Q5#b约0.3V, #c 约10V, #e约0V波形如图2.3-2所示仅供参考2•3•4•3行输出级行输出级电路如图2.3-3a所示电路主要由Q6C12C13及偏转线圈等组成Q6为行输出管本身含有阻尼二极管C38为S校正电容C12C13为行逆程电容DY-1605为行偏转线圈L2为行幅调整电感L3行扫描失真补偿电感变压器T1输入一个起开关作用的脉冲信号行输出管Q6的+12V工作电压由处理板经D8及行输出变压器T2提供等效电路如图2.3-3b所示图a 图b图2.3-3 行输出电路及行输出级等效电路Q6相当于开关K和阻尼二极管D C12, C13等效为电容C,行偏转线圈DY - 1605 等效为电感L,+12V电压等效为电源Ec, 行输出电路工作过程如下见图2.3-41) 在t0~ t1期间Q6饱和导通相当于开关K接通Ec (+12V)直接加到L两端由于电感电流不能突变因此L上电流iL逐渐线性增加,此时Q6集电极电流iC = iL2)在t1~ t2期间Q6 截止,相当于开关K断开,由于电感电流不能突变而产生一个反电动势与Ec一起给电容充电iL逐渐减小,此时电感L与电容 C 产生自由振荡称为行逆程振荡, 当iL减小到0时,电容C两端电压最大,此时电容C开始放电3在t2~ t3期间Q6 截止,电容C通过L和Ec开始放电,iL开始产生反向电流即iL由0向负方增加,当电容C 放电完毕时U c=0V iL 负向最大行逆程结束4在t3~ t4期间Q6仍处于截止期在t= t3时i L 负向最大,U c=0V此时iL由反方向最大开始减小由于电感电流不能突变因此iL 逐渐减小, 如果没有阻尼二极管D则iL向电容C反向充电使电容C上出现反向电压但由于阻尼二极管 D 的存在,使电容 C上出现0.7V反向电压后阻尼二极管 D导通电感 L上的能量通过阻尼二极管 D电源Ec释放电感和电容所产生的LC 自由荡结束U c被阻尼二极管D钳位在-0.7V上当t=t4时电感L上的能力释放完毕电流iL减小到0Q6饱和导通电路又开始重复上述过程行扫描失真补偿行扫描线性主要取决于行输出级, 与前级关系不大,在t0~ t1期间Q6饱和导通Ec 直接加到 L 两端电感 L上电流iL 逐渐增加但电流变化线性不是很好因此串入 L3可保持电流iL 直线上升由于荧光屏的曲率半径大于扫描电子束的曲率半径而出现延伸性失真串入C38实现S校正即C38与偏转线圈组成串联谐振使扫描正程两端电流变化放慢补偿了延时失真VR2行同步调整电位器L2行幅度调整电感2•3•5 场扫描电路场扫描主要由IC1来完成的场扫描电路的任务就是为场偏转线圈提供线性良好频率稳定幅度足够的场扫描信号以产生水平方向上的偏转磁场控制显像管中的电子束沿垂直方向作均速扫描运动----即场扫描场扫描振荡直接由SPU来的场同步信号控制以实现场同步为什么行同步不直接用SPU来的同步信号控制以实现行同步因为行同步信号为窄脉冲而一般的干扰信号也为窄脉冲很难区别开来因此行同步直接用SPU来的同步信号同步干扰严重图像不稳从SPU板来的场同步信号经Q7倒相整形后加到IC1的#1去控制IC1内部场振荡器振荡IC1的#2和#3为场振荡端C19为振荡器外接电容#4为振荡器电源#5#7为振荡器自举电压#6场反馈#8为场输出输出为线性良好频率稳定幅度足够的场扫描信号VR5场同步调整VR6场幅度调整VR7场线性调整2•3•6 高压电路如图2•3•5所示高压电路主要是由行输出变压器T2及二极管整流电流组成其主要任务是将扫描逆程脉冲升压以获得显像管所需要的阳极高压以及其它电路所需的各种电压从上面行扫描输出电路分析可知在行扫描逆程时输出一个较高的脉冲电压若130V左右为行输出变压器的输入电压经升压整流后输出约12000V高压经高压帽加到显像管的阳极同时行输出变压器还有三路输出一路经D3整流后输出约580V电压为显像管加速极提供加速电压D4整流后输出约75V电压为视放电路提供直流工作电压D5整流后输出约-90V电压与D4输出的75V电压分别加到VR3两端为显像管提供辉亮电压到控制极阳极高压到视放到加速极图2.3-5高压电路VR3辉亮调整电位器VR4聚焦电位器IC1各管脚参考波形及参考电压#1=5.3V; #2=7.2V; #3=3.6V; #4=11V; #5=1.6V; #6=2.1V; #7=11.5V; #8=5.9V#9=2.4V; #10=6.9V; #11=0V; #12=3.6V; #13=3.9V; #14=2.4V; #15=4.7V; #16=0.9V#1~#8为场扫描信号电路#9~#16为行扫描信号电路波形图如下(见下页)IC1各管脚参考波形及参考电压24信号处理SPU-9096*241概述SPU-9096是M1831MK2/M1941MK2的信号处理单元S inginP rocessce U nit FURUNO生产的"1"系列雷达均采用SPU-9096板只不过不同的机种所采用的设置及连接线路不同SPU-9096主要分为四大部分一是CPU控制部分二是视频信号放大部分三是信号处理与存储控制部分四是图形显示控制部分四部分相互作用共同完成本单元全部的功能下图为信号处理单元S inginP rocessce U nit的信号流程框图为了完成上述信号流程的功能CPU控制部分视频信号放大部分信号处理与存储控制部分及图形显示控制部分相互作用共同完成本单元全部的功能其相互作用的功能框图如下图241 CPU 控制控制部分部分CPU 控制部分由U33M37702M2社内型号03S9170U39µΡD27C100-15U35MB84256-10LLPF U9M51953BFPU32TD62504F 及外围元件等组成该电路用以完成机种模式设定复位控制罗经GYRO及定位信号NMEA0183信号输入按键输入及控制信号输出等全部电路如下图A 单片机M37702M2单片机M37702M2是准16位单片机FURUNO 公司的社内型号03S9170下图为M37702M2的引脚图俯视图03S9170M37702M2引脚功能图M37702M2AXXXFP M37702M2BXXFP M37702S1AFP及M37702S1BFP几种型号引脚数和功能均相同其各自的内部ROM的容量和时钟频率不同如下表型号内部ROM容量外部输入时钟频率M37702M2AXXXFP16K位16MHzM37702M2BXXXFP25K位25MHzM37702AFP外部16MHzM37702BFP外部25MHzFURUNO从三菱购入M37702M2A138FP后写入16K位的内部操作指令后该芯片被定名为03S9170因此03S9170具有很强的保密性不易被仿制M37702M2A138FP具有以下几个功能单电源供电5V±10%低功耗60mW中断19个7级多功能16位定时器5+3个8BIT A/D转换器8个可编程输入/输出接口P0P1P2P3P4P5P6P7P8共68个M37702M2A138FP的内部逻辑框图如下单片机的基本构成是CPU U33程序存储器U39随机存取存储器U35外设U27U30U34U24等组成CPU的时钟由外部时钟提供M1830雷达CPU的时钟由外接晶振9.2MHz和CPU内部反馈电路组成由U37的#4提供时钟至CPU 的#29U37的这个时钟是它分频得出的原始频率源来自于U34U34里有二套时钟Y1和Y2Y1为读写时钟Y2为采样时钟M51953FP是一个小型的复位器件外引脚外型有两种见下图一种为ZIP封装后缀为BL单列直插式M1830雷达的电脑板的复位元件使用的就是这种芯片另外一种引脚封装形式为BFP表面贴装M1831MK2/M1941MK2使用的就是这种芯片M51953分A型和B型A型为恒流输出型B型为集电级开路输出型当电源电压在开机时电压自0V升至4.25V时开始对电容充电,延迟一段时间td,输出一个高电平(如图), td=0.34*Cd PF uS应用电路如图由图可以看出U9U8构成一个系统复位电路整机+5V上电以后U9M51953FP的6脚输出一个大于100ms的延迟高电平用于复位整个系统由电路图可以看到U33M37702M2的18~22脚P44~P47外接一个拨动开关S1CPU M37702M2每次开机首先访问P4的这四个口来确定机种最大量程设定语言等具体见SW设定一揽表M37702M2端口7为A/D口即模拟输入/输出口其比较电压输入为71脚的Vref为8bit的A/D口即P70-P77八个口中每个口均能独立分辨Vref/256=0.02V的变化这一点要比M1830系列先进的多M1830系列每个口仅能独立分辨Vref/16的变化因此M1831MK2将面板上的按键值用模拟量输入P71-P73其中P71P72作为KEY-IN1和KEY-IN2输入P73的KEY-IN3作为扩展功能使用M1941R遥控器用P70作为调谐指示输入功能使用P74作为PLL-INH功能使用其它几个口分别为回波扩展功能ES脉冲转换PW-AMP自动海浪抑制AC-AUTO2B. GYRO和NAV输入电路.NAV输入电路采用标准的光藕隔离输入电路NAV数据输入口有两个J54和J100但这两个数据输入口不能同时读CPU每隔5秒自动的在这两个数据输入口转换读取数据但这一切是在开机3分以后进行.GYRO输入电路也采用标准的光藕隔离输入电路GYRO输入是通过J58输入的J58的34脚CLK-H为同步信号输入端和信号地CLK-C CLK-E自CLK-H输入标准的时钟该时钟为200ms或50ms然后在该时钟的同步下输入GYRO的BCD码C自动调谐电路自动调谐有两种方式全程搜索和局部搜索全程搜索:是指调谐电压由7V至27V范围全程搜索一遍如下图确定调谐点@局部搜索是指调谐电压以调谐点@为中心的!2.5V范围内的精调调谐电压点在关机以后不保存因此每次开机由ST-BY到发射时进行一次全程搜索或调谐方式由手动调谐方式转为自动调谐方式菜单选项时进行一次全程搜索当量程改变时脉冲宽度由窄脉冲变成宽脉冲例如。

贴片AP34063

贴片AP34063

UNIVERSAL DC/DC CONVERTERDescriptionThe AP34063 Series is a monolithic control circuit containing the primary functions required for DC-to-DC converters. These devices consist of an internal temperature compensated reference, comparator, controlled duty cycle oscillator with an active current limit circuit, driver and high current output switch. This series is specifically designed for incorporating in Step-Down and Step-Up and Voltage-Inverting applications with a minimum number of external components.Features•Operation from 3.0V to 40V Input•Low Standby Current• CurrentLimiting•Output Switch Current to 1.6A•Output Voltage Adjustable•Frequency Operation to 100 kHz•Precision 2% Reference•SO-8 packageTotally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)Halogen and Antimony Free. “Green” Device (Note 3) •PDIP-8 and SO-8 packageTotally Lead-Free; RoHS Compliant (Notes 1 & 2) Pin AssignmentsSO-8V CCComparatorInvertingInputDriverCollectorI pkSenseSwitchCollectorSwitchEmitterTimingCapacitorGnd( Top View )PDIP-812348765V CCComparatorInvertingInputDriverCollectorI pkSenseSwitchCollectorSwitchEmitterTimingCapacitorGnd( Top View )Notes: 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant.2. See for more information about Diodes Incorporated’s definitions of Halogen- and Antimony-free, "Green" and Lead-free.3. Halogen- and Antimony-free "Green” products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and<1000ppm antimony compounds.Typical Applications CircuitOptional FilterTest Conditions ResultsLine Regulation V IN = 9V to 12V, I O = 200mA 20mV = ±0.035%Load Regulation V IN = 12V, I O = 50mA to 200mA 15mV = ±0.035%Output Ripple V IN = 12V, I O = 200mA 500mV PPEfficiency V IN = 12V, I O = 200mA 80%Typical Applications Circuit (cont.)(2) Step-Down ConverterOptional FilterTest Conditions ResultsLine Regulation V IN = 12V to 24V, I O = 500mA 20mV = ±0.2%Load Regulation V IN = 24V, I O = 50mA to 500mA 5mV = ±0.05%Output Ripple V IN = 24V, I O = 500mA 160mV PPEfficiency V IN = 24V, I O = 500mA 82%Typical Applications Circuit (cont.)(3) Voltage Inverting ConverterTest Conditions Results Line Regulation V IN = 4.5V to 6.0V, I O = 100mA 20mV = ±0.08%Load Regulation V IN = 5.0V, I O = 20mA to 100mA 30mV = ±0.12%Output Ripple V IN = 5.0V, I O = 100mA 500mV PPEfficiency V IN = 5.0V, I O = 100mA 60%Absolute Maximum Ratings (@T A = +25°C, unless otherwise specified.)Stresses greater than the 'Absolute Maximum Ratings' specified above, may cause permanent damage to the device. These are stress ratings only; functionaloperation of the device at these or any other conditions exceeding those indicated in this specification is not implied. Device reliability may be affected by exposure toabsolute maximum rating conditions for extended periods of time.Symbol Parameter ValueUnit V CC Power Supply Voltage 40 VV IR Comparator Input Voltage Range -0.3 to +40 VV C(SWITCH)Switch Collector Voltage 40 VV E(SWITCH)Switch Emitter Voltage (V PIN 1 = 40V) 40 VV CE(SWITCH)Switch Collector to Emitter Voltage 40 VV C(DRIVER)Driver Collector Voltage 40 VI C(DRIVER)Driver Collector Current 100 mAI SW Switch Current 1.6 AP D Power Dissipation (Note 4) SO-8: T A = +25°C 600 mW PDIP-8: T A = +25°C 1.25 WθJAThermal Resistance SO-8 117°C/WPDIP-8 138θJC SO-8 19 PDIP-8 25T MJ Maximum Junction Temperature (Note 5) +150 °CT OP Operating Junction Temperature Range 0 to +105 °CT stg Storage Temperature Range -65 to +150 °CNotes: 4. Maximum package power dissipation limits must be observed.5. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.Electrical Characteristics (V CC = 5.0V, unless otherwise specified.)Symbol Parameter MinTypMaxUnit OSCILLATORf OSC Frequency(V PIN 5 = 0V, C T = 1.0ηF, T A = +25°C) 24 33 42 kHzI CHG ChargeCurrent(V CC = 5.0V to 40V, T A = +25°C) 24 30 42 µAI DISCHG Discharge Current (V CC = 5.0V to 40V, T A = +25°C) 140 200 260 µAI DISCHG / I CHG Discharge to Charge Current Ratio (Pin 7 to V CC, T A = +25°C) 5.2 6.5 7.5 —V ipk (SENSE)Current Limit Sense Voltage (I CHG = I DISCHG, T A = +25°C) 300 400 450 mVOUTPUT SWITCH (Note 3)V CE (sat)Saturation Voltage, Darlington Connection(I SW = 1.0A, Pins 1, 8 connected)— 1.0 1.3 VV CE (sat)Saturation Voltage, Darlington Connection(I SW = 1.0A, I D = 50mA, Forced β≈ 20)— 0.45 0.7 Vh FE DC Current Gain (I SW = 1.0A, V CE = 5.0V, T A = +25°C) 50 75 — —I C(off)Collector Off-State Current (V CE = 40V) — 0.01 100 µA COMPARATORV th Threshold VoltageT A = +25°CT A = 0°C to +70°C — — — V— 1.225 1.25 1.275 — — 1.21 — 1.29 — Reg LINE Threshold Voltage Line Regulation (V CC = 3.0V to 40V) — 1.4 6.0 mV TOTAL DEVICEI CC Supply Current (V CC = 5.0V to 40V, C T =1.0ηF, Pin 7 = V CC,V PIN 5 > V TH Pin 2 = Gnd, remaining pins open)— — 3.5 mARepresentative Schematic Diagram(Bottom View)Gnd Timing Capacitor Switch Emitter Switch CollectorDriveCollectorI pkSenseV CC ComparatorInvertingInputTypical Performance CharacteristicsFigure 1.Vce(sat) versus le0.60.811.21.40.20.40.60.811.21.41.6Ie, Emitter Current (A)V c e (s a t ), S a t u r a t i o n V o l t a g e (V)102030405060708090100Temperature (o C)R e f e r e n c e V o l t a g e (V )Figure 2. Reference Voltage versus Temp.Figure 4. Standby Supply Current0.00.51.01.52.02.53.03.54.00510152025303540Vcc, Supply Voltage (V)I c c , S u p p l y C u r r e n t (m A )100300500700900110013001500I E (mA)V C E (s a t ), (V )Figure 5. Emitter Follower ConfigurationOutput Saturation Voltage vs. Emitter Current1100.010.1110C T , Oscillator Timing Capacitor (nF)t o n -o f f , O u t p u t S w i t c h O n -O f f T i m e (u s )Figure 6.Output Switch On-Off Time versusFigure 3. Current Limit Sense Voltageversus Temperature320340360380400420440102030405060708090100Temperature (o C)C u r r e n t S e n s e V o l t a g e (m V )Design Formula TableCalculation Step-Up Step-Down Voltage-Invertingt ON / t OFF V OUT + V F –V IN(MIN)V OUT + V F IV OUT l + V F V IN(MIN) – V SAT V IN(MIN) – V SAT – v OUT V IN(MIN) – V SAT( t ON + t OFF ) 1/f 1/f 1/ft OFFt ON + t OFF t ON + t OFF t ON + t OFF t ON+1t ON+1t ON+1t OFF t OFF t OFFt ON (t ON +t OFF ) – t OFF (t ON +t OFF ) – t OFF (t ON +t OFF ) – t OFFC T 4.0 × 10-5tON 4.0× 10-5t ON 4.0× 10-5t ONI PK (switch) 2I OUT(MAX) (t ON / t OFF +1) 2I OUT(MAX) 2I OUT(MAX) (t ON / t OFF +1)R SC0.3 / I PK (SWITCH)0.3 / I PK (SWITCH)0.3 / I PK (SWITCH)L (MIN)( V IN(MIN) – V SAT )t ON(MAX)(V IN(MIN) – V SAT – V OUT)t ON(MAX)( V IN(MIN) – V SAT )t ON(MAX)I PK (SWITCH)I PK (SWITCH)I PK (SWITCH)C O9I OUT t ON I PK (SWITCH) (t ON + t OFF)9I OUT t ONV RIPPLE (pp)8V RIPPLE (pp)V RIPPLE (pp) V SAT = Saturation voltage of the output switch.V F = Forward voltage drop of the output rectifier.The following power supply characteristics must be chosen:V IN - Nominal input voltage.V OUT - Desired output voltage, |V OUT| = 1.25 (1+R2/R1)I OUT - Desired output current.F MIN - Minimum desired output switching frequency at the selected values of V IN and I O.V RIPPLE(pp) - Desired peak-to-peak output ripple voltage. In practice, the calculated capacitor value will need to be increased due to its equivalent series resistance and board layout. The ripple voltage should be kept to a low value since it will directly affect the line and load regulation.Ordering InformationPackage PackingLead FreeL : Lead FreeG : GreenS8 : SO-8N8 : PDIP-8U : Tube13 : Tape & ReelAP 34063 XX X-XPart NumberPackageCodePackagingTube 13” Tape and ReelQuantityPart NumberSuffixQuantity Part Number Suffix AP34063S8L-13 S8 SO-8 NA NA 2500/Tape & Reel -13AP34063S8G-13 S8 SO-8 NA NA 2500/Tape & Reel -13AP34063N8L-U N8 PDIP-8 60 -U NA NAPbLead-FreePbLead-FreeMarking Information(1) SO-8( Top View )AP34063Logo Part No Year : "08" = 2008"09" = 2009~G : Green L : Lead Free(2) PDIP-8( Top View )Logo Part No Internal codeYear : "08" = 2008"09" = 2009Xth week = 01~52~L : Lead FreePackage Outline Dimensions (All dimensions in mm.)Please see AP02002 at /datasheets/ap02002.pdf for latest version.(1) SO-8(2) PDIP-8SO-8Dim Min Max A - 1.75 A1 0.10 0.20 A2 1.30 1.50 A3 0.15 0.25 b 0.3 0.5 D 4.85 4.95 E 5.90 6.10 E1 3.85 3.95 e 1.27 Typ h - 0.35 L 0.62 0.82θ0° 8° All Dimensions in mmPDIP-8Dim Min Max A 9.02 9.53 B 6.15 6.35 C 3.10 3.50 D 0.36 0.56 F 1.40 1.65 G 2.54 typ. H 0.71 0.97 J 0.20 0.36 K 2.92 3.81 L 7.62 8.26 M ⎯15° N0.38 (min) All Dimensions in mmGauge Plane Seating PlaneDetail ‘A’AP34063Document number: DS31004 Rev. 6 - 211 of 11September 2012© Diodes IncorporatedSuggested Pad LayoutPlease see AP02001 at /datasheets/ap02001.pdf for the latest version.(1) SO-8IMPORTANT NOTICEDIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.LIFE SUPPORTDiodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:A. Life support devices or systems are devices or systems which: 1. are intended to implant into the body, or2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in thelabeling can be reasonably expected to result in significant injury to the user.B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.Copyright © 2012, Diodes IncorporatedDimensionsValue (in mm)X 0.60 Y 1.55 C1 5.4 C2 1.27XC2Y。

34063cn电压变换

34063cn电压变换

8 7
6 4
100 F
1 D1(SBD) 2 R2
850 5 3
90 H
CT
R1
8.2k
Vout=-12V 1000 F
图5 反向变换器
双极型线性集成电路
Rsc
100 H
Vin
0.33
25V
8 7
6 4
100 F
1 2
5 3 470pF
220 H
R2 3.6k
V0=5.0V
R1
470 F
1.2K
D1(SBD)
电流限制SI检测端(5脚)通过检测连接在V+和5脚之间电阻上的压降来完成功能 当检测到电阻上的电压降接近超过300mV 时 电流限制电路开始工作 这时通过CT管脚(3脚)对定时电容进行快速充电 以减少充电时间和输出开关管的导通时间 结 果是使得输出开关管的关闭时间延长
典型参数曲线
-------深圳市高地电子有限公司HIGHLAND SHENZHEN ELECTRONICS CO., LTD------3
CO
输出开关管饱和电压 整流二极管正向压降
升压变换
+ − VOUT VF VIN(MAX) − VIN(MAX ) VSAT
1/fMIN 4 10-5 tON(MAX)
tO N− tOFF 2* IO UT(MAX ) *
tOFF VIPK(SENSE)/IPK(SENSE)
VIN(MAX) − VSAT * tON(MAX)
30
40
50
电源电压 V+(V)
开关饱和压降与集电极电流关系 2.0
1.5
Vin= 5V
Pin7=V+
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DC-TO-DC CONVERTER CONTROL CIRCUITS
The SL34063A is a monolithic control circuit containing the primary functions required for DC-to-DC converters. These devices consist of an internal temperature compensated reference, comparator, controlled duty cycle oscillator with an active current limit circuit, driver and high current output switch. This series was specifically designed to be incorporated in Step-Down and Step-Up and Voltage-Inverting applications with a minimum number of external components.
FEATURES
FUNCTIONAL BLOCK DIAGRAM
• Operation from 3.0 V to 40 V Input • Low Standby Current • Current Limiting
• Output Switch Current to 1.5 A • Output Voltage Adjustable
• Frequency Operation to 100 kHz •
Precision 2% Reference
MAXIMUM RATINGS
Rating
Symbol Value
Unit Power Supply Voltage
V CC 40 Vdc Comparator Input Voltage Range V IR -0.3 to +40 Vdc Switch Collector Voltage
V C(switch) 40 Vdc Switch Emitter Voltage (Vpin 1 = 40 V) V E(switch) 40 Vdc Switch Collector to Emitter Voltage V CE(switch) 40 Vdc Driver Collector Voltage
I C(driver) 40 Vdc Driver Collector Current (Note 1) I C(driver) 100 mA Switch Current
I SW 1.5 A Power Dissipation and Thermal Characteristics Ceramic Package, U Suffix T A = +25°C Thermal Resistance
Plastic Package, P Suffix T A = +25°C Thermal Resistance
SOIC Package, D Suffix TA = +25°C Thermal Resistance
P D R θJA P D R θJA P D R θJA 1.25 100 1.25 100 625 160 W °C/W W °C/W mW °C/W Operating Junction Temperature
TJ +150 °C Operating Ambient Temperature Range T A 0 to +70 °C Storage Temperature Range Tstg -65to+150 °C
SL34063A
SL34063A ORDERING INFORMATION
Device Temperature Range Package
34063AD 0° to +70°C SO-8
34063AP1 Plastic DIP
ELECTRICAL CHARACTERICISTICS
(V CC= 5.0 V, T A= 0 to +70o C unless otherwise specified.) Characteristics Symbol
Min Typ Max
Unit
OSCILLATOR
Frequency (V Pin 5 = 0 V, C T= 1.0 nF, T A= 25°C) fosc 24 33 42 kHz Charge Current (V CC= 5.0 V to 40 V, T A= 25°C) Ichg 24 33 42 µA Discharge Current (V CC= 5.0 V to 40 V, T A= 25°C) Idischg 140 200 260 µA Discharge to Charge Current Ratio (Pin7 to Vcc, T A=25°C) Idischg/Ichg 5.2 6.2 7.5 — Current Limit Sense Voltage (Ichg = Idischg, T A= 25°C)Vlpk(sense) 250 300 350 mV
OUTPUT SWITCH (Note 3)
Saturation Voltage, Darlington Connection (I SW = 1.0 A,
Pins 1, 8 connected)
V CE(sat) — 1.0 1.3 V Saturation Voltage (I SW = 1.0 A, R Pin 8 = 82 Ω to V CC.
Forced β = 20)
V CE(sat) — 0.45 0.7 V DC Current Gain (I SW = 1.0 A, V CE= 5.0 V, T A= 25°C) h FE50 120 — — Collector Off-State Current (V CE= 40V) I C(off) — 0.01 100 µA
COMPARATOR
Threshold Voltage (T A= 25°C)
(T A= T LOW to T HIGH) Vth 1.225
1.21
1.25

1.275
1.29
V
Threshold Voltage (T A= 25°C) ** Vth 1.2375 1.25 1.2625 V
Threshold Voltage Line Regulation (V CC= 3 0 V to 40 V) Regime 1.4 5.0 mV
Input Bias Current (Vin=0V) I IB— -40 -400 nA
TOTAL DEVICE
Supply Current (V CC= 5 0 V to 40 V, C T= 1 0 nF, V pin7 = V CC.
V Pin5 > Vth, Pin 2 = Gnd, Remaining pins open)
I CC 2.5 4.0 mA
NOTES:
1. Maximum package power dissipation limits must be observed.
2.Low duty cycle pulse techniques are used during test to maintain Junction temperature as close to ambient temperature as possible
3.If the output switch is driven into hard saturation (non Darlington configuration) at low switch currents (< 300 mA) and high driver currents (>30 mA), it may take up to 2.0 µs to come out of saturation This condition will shorten the off' time at frequencies > 30 kHz, and is magnified at high temperatures This condition does not occur with a Darlington configuration, since the output switch cannot saturate If a non Darlington configuration is used, the following output drive condition is recommended
Forced β of output switch = I C, output/(Ic, driver -7.0 mA*) > 10
*The 100 Ω. resistor in the emitter of the driver device requires about 7.0 mA before the output switch conducts
**Possible version for shipment
Pin connection。

相关文档
最新文档