普通物理学第五版第1章质点的运动答案精品PPT课件
普通物理学第一章课件
平均加速度(average acceleration):
a
v
t
瞬时加速度(instantaneous acceleration):
a lt i0m vt d dvt d d2 tr2
直角坐标系中:
a
dv
dvxidvy
jdvz
k
dt dt dt dt
dd2tx2 idd2t2yjdd2t2zk
空间(space)反映了物质的广延性,与物体 的体积和位置的变化联系在一起。
时间(time)反映物理事件的顺序性和持续性。
目 前 的 时 空 范 围 : 宇 宙 的 尺 度 1026m(~20 亿 光 年 ) 到 微 观 粒 子 尺 度 10-15m , 从 宇 宙 的 年 龄
1018s(~200亿年)到微观粒子的最短寿命10-24s。
v d d r t d d t(x i y j z k ) v x i v y j v z k
vxd dx t , vyd dy t , vzd dz t
速度的大小:
vv
vx 2vy 2vz2
八、加速度 加速度是反映速度变化的物理量。
t 时间内,速度增量为: vvBvA
包括速度方向的变化和速度量值的变化。
矢量的几何表示:一个矢量可用一条有方向的线段来表示
矢量的代数表示: AeAAeA A
矢量的大小或模: A A
A
矢量的单位矢量: e A
A A
常矢量:大小和方向均不变的矢量。
矢量的几何表示
注意:单位矢量不一定是常矢量。
矢量加、减,满足平行四边形法则。
A
两矢量的加、减在几何上是以这两矢量
质点在某一时刻所具有的速度(简称速度)。
大学物理上册课件:第1章 质点运动学
x2 y2 A2 B2 1
质点的运动轨迹为椭圆。
例题1-4 一质点沿 x 轴正向运动,其加速度与位置的关系
为 a = 3 + 2x。若在 x = 0处,其速度v0 = 5m/s,求质点运
动到 x = 3m处时所具有的速度v。
解 由加速度的定义式得 dv a 3 2x dt
作变换
dv dv dx vdv 3 2x dt dx dt dx
坐标系:为了定量描述物体的运动,在参考系上固定一 个坐标系。
最常见的坐标是直角坐标系、自然坐标系、极坐标系等
z
P( x, y,z )
O
y
x 直角坐标系
et P
en
O 自然坐标系
P( , )
O
极坐标系 x
二、时间和空间的计量 1、时间及其计量
时间表征物理事件的顺序性和物质运动的持续性。
微观粒子的最短寿命是10-24 s,宇宙的年龄大约是1018 s。 2、空间及其计量
v
•
a
0
[(R
s
int
)i
(R
cos
t
)
j]
•
[(
2
R
cos
t
)i
(
2
R
s
int
)
j
]
0
结论
质点做匀速率圆周运动。质点的速度沿圆的切线方
向,加速度沿半径指向圆心;速度和加速度互相垂直。
例题1-2 一质点作平面运动,已知加速度为 ax A2 cost,
ay B2 sint ,其中A、B、ω均为正常数,且A≠B, A≠0,
位置矢量的大小:
rr
x2 y2 z2
大学物理上第一章质点运动学ppt
加法法则
当有两个或多个质点同时运动时,它们的速 度可以通过矢量加法进行合成。
速率
速度的大小称为速率,用标量符号表示。
04 质点的加速度
瞬时加速度
定义
瞬时加速度是指在某一时刻, 质点运动速度的变化率。
计算公式
$a = frac{dv}{dt}$,其中$a$是 瞬时加速度,$v$是质点的速度, $t$是时间。
定义
平均速度是指在一段时间内质点位移量与时间的比值。
关系
瞬时速度是平均速度在时间趋于零时的极限值,即平 均速度的极限状态就是瞬时速度。
应用
在分析质点运动规律时,通常先求平均速度,再通过 极限思想求得瞬时速度。
速度的矢量性质
矢量表示
速度是一个矢量,具有大小和方向,可以用 矢量符号表示。
方向与正方向
速度的方向与质点运动的方向一致,通常规 定正方向为速度的方向。
重力加速度,大小为 $9.8m/s^{2}$,方向竖 直向下。
圆周运动
圆周运动的定义
质点在平面或空间以一定半径作圆周运动的运动形式。
圆周运动的描述参数
线速度、角速度、周期和频率。
圆周运动的向心加速度
大小为$a = v^{2}/r$,方向指向圆心。
相对运动
相对运动的定义
01
两个物体相对于第三个参照物的运动。
质点运动学的基本概念
质点
没有大小、形状,只有质量的 理想化模型,用于描述实际物 体的运动。
速度
描述质点运动快慢和方向的物 理量。
参考系
用来确定质点位置和描述其运 动的参照物。
位移
质点在空间中的位置变化量。
加速度
描述质点速度变化快慢和方向 的物理量。
第1章 质点运动学优秀课件
时间 :1秒(1s)
1967年以前,规定地球自转的平均太阳日(24小 时)的1/86400;
1967年13th 计量大会,1s=Ce133原子基态的两个 超精细能级之间跃迁辐射周期的 9 192 631 700 倍的 持续时间,(即铯钟)。
质量 :1千克(1kg)
1901年3rd 计量大会规定,巴黎度量局保存的国际 “千克器”的质量=1kg;
1967年,13th 计量大会规定了“原子质量单位”: 1u = 碳的同位素C12原子质量的1/12为一个原子质 量单位,即1.66056510-27kg。1kg随之定义
二、质点运动的描述
对象的描述
参考系
描述方式
质点:无形状、大小,具有一定质量 m 并在空间占有
某一位置的点。是实际物体的一个理想模型(物体大 小比问题涉及距离小的多,考虑物体整体移动,不考 虑其转动和形状的变化)。
显然,1)任何一个物理量都必须有确定的量纲 2)只有量纲相同的物理量才能进行比较,或加减操作 3)任何物理方程,左右两边的量纲也必须相同
物理量的可测性
物理上,采用操作定义来确定其测量值,力学3个 基本单位的定义: 长度:1米 / 1m 时间:1秒 / 1s 质量:1千克 / 1kg 其他:位置:定义空间参考点后,
质点问题 变速运动
矢量性:运动学、动力学
物理量( r
v
a
F )的规律
瞬时性:变力问题,微积分
相对性:惯性、非惯性系 质点系问题 质心运动定律
Ft mv2 mv1
合外力为零时,系统动量守恒
质 (碰撞心的)
动量及动量守恒定律 角动量定理及角动量守恒定律
➢ 动能定理和机械能守恒定律 转 动能定理及机械能守恒定律
大学物理学第五版上册第一章
第一章 质点运动学1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v ,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v .(1) 根据上述情况,则必有( )(A) |Δr |= Δs = Δr(B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r(C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s(D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s(2) 根据上述情况,则必有( )(A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v(C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故t s t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故ts t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x . 下述判断正确的是( )(A) 只有(1)(2)正确 (B) 只有(2)正确(C) 只有(2)(3)正确 (D) 只有(3)(4)正确分析与解 tr d d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;td d r 表示速度矢量;在自然坐标系中速度大小可用公式t s d d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D).1 -3 质点作曲线运动,r 表示位置矢量, v 表示速度,a 表示加速度,s 表示路程, a t表示切向加速度.对下列表达式,即(1)d v /d t =a ;(2)d r /d t =v ;(3)d s /d t =v ;(4)d v /d t |=a t.下述判断正确的是( )(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的(C) 只有(2)是对的 (D) 只有(3)是对的分析与解td d v 表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;tr d d 在极坐标系中表示径向速率v r (如题1 -2 所述);t s d d 在自然坐标系中表示质点的速率v ;而td d v 表示加速度的大小而不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D).1 -4 一个质点在做圆周运动时,则有( )(A) 切向加速度一定改变,法向加速度也改变(B) 切向加速度可能不变,法向加速度一定改变(C) 切向加速度可能不变,法向加速度不变(D) 切向加速度一定改变,法向加速度不变分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).*1 -5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v 0 收绳,绳不伸长且湖水静止,小船的速率为v ,则小船作( )(A) 匀加速运动,θcos 0v v = (B) 匀减速运动,θcos 0v v =(C) 变加速运动,θcos 0v v = (D) 变减速运动,θcos 0v v =(E) 匀速直线运动,0v v =分析与解 本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船的绳长为l ,则小船的运动方程为22h l x -=,其中绳长l 随时间t而变化.小船速度22d d d d h l t llt x -==v ,式中t l d d 表示绳长l 随时间的变化率,其大小即为v 0,代入整理后为θl h l cos /0220v v v =-=,方向沿x 轴负向.由速度表达式,可判断小船作变加速运动.故选(C).讨论 有人会将绳子速率v 0按x 、y 两个方向分解,则小船速度θcos 0v v =,这样做对吗?1 -6 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m,t 的单位为 s .求:(1) 质点在运动开始后4.0 s 内的位移的大小;(2) 质点在该时间内所通过的路程;(3) t =4 s 时质点的速度和加速度.分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:0Δx x x t -=,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据0d d =tx 来确定其运动方向改变的时刻t p ,求出0~t p 和t p ~t 内的位移大小Δx 1 、Δx 2 ,则t 时间内的路程21x x s ∆+∆=,如图所示,至于t =4.0 s 时质点速度和加速度可用tx d d 和22d d t x 两式计算. 解 (1) 质点在4.0 s 内位移的大小m 32Δ04-=-=x x x(2) 由 0d d =tx 得知质点的换向时刻为s 2=p t (t =0不合题意)则m 0.8Δ021=-=x x xm 40Δ242-=-=x x x所以,质点在4.0 s 时间间隔内的路程为m 48ΔΔ21=+=x x s(3) t =4.0 s 时1s0.4s m 48d d -=⋅-==t t x v2s0.422m.s 36d d -=-==t t x a 1 -7 一质点沿x 轴方向作直线运动,其速度与时间的关系如图(a)所示.设t =0 时,x =0.试根据已知的v -t 图,画出a -t 图以及x -t 图.分析 根据加速度的定义可知,在直线运动中v -t 曲线的斜率为加速度的大小(图中AB 、CD 段斜率为定值,即匀变速直线运动;而线段BC 的斜率为0,加速度为零,即匀速直线运动).加速度为恒量,在a -t 图上是平行于t 轴的直线,由v -t 图中求出各段的斜率,即可作出a -t 图线.又由速度的定义可知,x -t 曲线的斜率为速度的大小.因此,匀速直线运动所对应的x -t 图应是一直线,而匀变速直线运动所对应的x –t 图为t 的二次曲线.根据各段时间内的运动方程x =x (t ),求出不同时刻t 的位置x ,采用描数据点的方法,可作出x -t 图.解 将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为2s m 20-⋅=--=AB A B AB t t a v v (匀加速直线运动) 0=BC a (匀速直线运动)2s m 10-⋅-=--=CD C D CD t t a v v (匀减速直线运动) 根据上述结果即可作出质点的a -t 图[图(B)].在匀变速直线运动中,有2021t t x x ++=v 由此,可计算在0~2s和4~6s时间间隔内各时刻的位置分别为用描数据点的作图方法,由表中数据可作0~2s和4~6s时间内的x -t 图.在2~4s时间内, 质点是作1s m 20-⋅=v 的匀速直线运动, 其x -t 图是斜率k =20的一段直线[图(c)].1 -8 已知质点的运动方程为j i r )2(22t t -+=,式中r 的单位为m,t 的单位为s.求:(1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr ;*(4) 2 s 内质点所走过的路程s .分析 质点的轨迹方程为y =f (x ),可由运动方程的两个分量式x (t )和y (t )中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,可根据其定义计算.其中对s 的求解用到积分方法,先在轨迹上任取一段微元d s ,则22)d ()d (d y x s +=,最后用⎰=s s d 积分求s.解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为2412x y -= 这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为j r 20= , j i r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置.(3) 由位移表达式,得j i j i r r r 24)()(Δ020212-=-+-=-=y y x x其中位移大小m 66.5)(Δ)(ΔΔ22=+=y x r而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r *(4) 如图(B)所示,所求Δs 即为图中PQ 段长度,先在其间任意处取AB 微元d s ,则22)d ()d (d y x s +=,由轨道方程可得x x y d 21d -=,代入d s ,则2s内路程为m 91.5d 4d 402=+==⎰⎰x x s s Q P1 -9 质点的运动方程为23010t t x +-=22015t t y -=式中x ,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为t tx x 6010d d +-==v t ty y 4015d d -==v 当t =0 时, v o x =-10 m·s-1 , v o y =15 m·s-1 ,则初速度大小为 120200s m 0.18-⋅=+=y x v v v设v o 与x 轴的夹角为α,则23tan 00-==x yαv v α=123°41′(2) 加速度的分量式为2s m 60d d -⋅==ta x x v , 2s m 40d d -⋅-==t a y y v 则加速度的大小为222s m 1.72-⋅=+=y x a a a 设a 与x 轴的夹角为β,则32tan -==x y a a β β=-33°41′(或326°19′)1 -10 一升降机以加速度1.22 m·s-2上升,当上升速度为2.44 m·s-1时,有一螺丝自升降机的天花板上松脱,天花板与升降机的底面相距2.74 m .计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离.分析 在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y 1 =y 1(t )和y 2 =y 2(t ),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为20121at t y +=v20221gt t h y -+=v 当螺丝落至底面时,有y 1 =y 2 ,即20202121gt t h at t -+=+v v s 705.02=+=ag h t (2) 螺丝相对升降机外固定柱子下降的距离为m 716.021202=+-=-=gt t y h d v 解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a ′=g +a ,螺丝落至底面时,有2)(210t a g h +-= s 705.02=+=ag h t (2) 由于升降机在t 时间内上升的高度为2021at t h +='v 则 m 716.0='-=h h d1 -11 一质点P 沿半径R =3.0 m 的圆周作匀速率运动,运动一周所需时间为20.0s,设t =0 时,质点位于O 点.按(a )图中所示Oxy 坐标系,求(1) 质点P 在任意时刻的位矢;(2)5s时的速度和加速度.分析 该题属于运动学的第一类问题,即已知运动方程r =r (t )求质点运动的一切信息(如位置矢量、位移、速度、加速度).在确定运动方程时,若取以点(0,3)为原点的O′x′y′坐标系,并采用参数方程x′=x′(t )和y′=y′(t )来表示圆周运动是比较方便的.然后,运用坐标变换x =x 0 +x ′和y =y 0 +y ′,将所得参数方程转换至Oxy 坐标系中,即得Oxy 坐标系中质点P 在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.解 (1)如图(B)所示,在O′x′y′坐标系中,因t Tθπ2=,则质点P 的参数方程为t TR x π2sin =', t T R y π2cos -=' 坐标变换后,在O x y 坐标系中有t T R x x π2sin ='=, R t TR y y y +-=+'=π2cos 0 则质点P 的位矢方程为j i r ⎪⎭⎫ ⎝⎛+-+=R t T R t T R π2cos π2sin j i )]π1.0(cos 1[3)π1.0(sin 3t t -+=(2) 5s时的速度和加速度分别为j j i r )s m π3.0(π2sin π2π2cos π2d d 1-⋅=+==t TT R t T T R t v i j i r a )s m π03.0(π2cos )π2(π2sin )π2(d d 222222-⋅-=+-==t TT R t T T R t 1 -12 地面上垂直竖立一高20.0 m 的旗杆,已知正午时分太阳在旗杆的正上方,求在下午2∶00 时,杆顶在地面上的影子的速度的大小.在何时刻杆影伸展至20.0 m ?分析 为求杆顶在地面上影子速度的大小,必须建立影长与时间的函数关系,即影子端点的位矢方程.根据几何关系,影长可通过太阳光线对地转动的角速度求得.由于运动的相对性,太阳光线对地转动的角速度也就是地球自转的角速度.这样,影子端点的位矢方程和速度均可求得.解 设太阳光线对地转动的角速度为ω,从正午时分开始计时,则杆的影长为s =h tg ωt ,下午2∶00 时,杆顶在地面上影子的速度大小为132s m 1094.1cos d d --⋅⨯===tωωh t s v 当杆长等于影长时,即s =h ,则 s 606034πarctan 1⨯⨯===ωh s ωt 即为下午3∶00 时.1 -13 质点沿直线运动,加速度a =4 -t2 ,式中a 的单位为m·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m·s-1 ,求质点的运动方程.分析 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由t a d d v =和t x d d =v 可得t a d d =v 和t x d d v =.如a =a (t )或v =v (t ),则可两边直接积分.如果a 或v 不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.解 由分析知,应有⎰⎰=tt a 0d d 0vv v 得 03314v v +-=t t(1)由 ⎰⎰=txx t x 0d d 0v 得 00421212x t t t x ++-=v (2) 将t =3s时,x =9 m,v =2 m·s-1代入(1) (2)得v 0=-1 m·s-1,x 0=0.75 m .于是可得质点运动方程为75.0121242+-=t t x 1 -14 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a =A -B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程.分析 本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式d v =a (v )d t 分离变量为t a d )(d =v v 后再两边积分.解 选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知 v v B A t a -==d d (1)用分离变量法把式(1)改写为t B A d d =-vv (2) 将式(2)两边积分并考虑初始条件,有⎰⎰=-t t B A 0d d d 0v v v vv得石子速度 )1(Bt e BA --=v 由此可知当,t →∞时,B A →v 为一常量,通常称为极限速度或收尾速度.(2) 再由)1(d d Bt e BA t y --==v 并考虑初始条件有 t e BA y t Bt y d )1(d 00⎰⎰--= 得石子运动方程)1(2-+=-Bt e B A t B A y 1 -15 一质点具有恒定加速度a =6i +4j ,式中a 的单位为m·s-2 .在t =0时,其速度为零,位置矢量r 0 =10 m i .求:(1) 在任意时刻的速度和位置矢量;(2) 质点在Oxy 平面上的轨迹方程,并画出轨迹的示意图.分析 与上两题不同处在于质点作平面曲线运动,根据叠加原理,求解时需根据加速度的两个分量a x 和a y 分别积分,从而得到运动方程r 的两个分量式x (t )和y (t ).由于本题中质点加速度为恒矢量,故两次积分后所得运动方程为固定形式,即20021t a t x x x x ++=v 和20021t a t y y y y ++=v ,两个分运动均为匀变速直线运动.读者不妨自己验证一下.解 由加速度定义式,根据初始条件t 0 =0时v 0 =0,积分可得⎰⎰⎰+==t t t t 000)d 46(d d j i a v v j i t t 46+=v 又由td d r =v 及初始条件t =0 时,r 0=(10 m)i ,积分可得 ⎰⎰⎰+==tt rr t t t t 00)d 46(d d 0j i r v j i r 222)310(t t ++=由上述结果可得质点运动方程的分量式,即x =10+3t 2y =2t 2消去参数t ,可得运动的轨迹方程3y =2x -20 m这是一个直线方程.直线斜率32tan d d ===αx y k ,α=33°41′.轨迹如图所示.1 -16 一质点在半径为R 的圆周上以恒定的速率运动,质点由位置A 运动到位置B,OA 和OB 所对的圆心角为Δθ.(1) 试证位置A 和B 之间的平均加速度为)Δ(/)Δcos 1(22θR θa v -=;(2) 当Δθ分别等于90°、30°、10°和1°时,平均加速度各为多少? 并对结果加以讨论.分析 瞬时加速度和平均加速度的物理含义不同,它们分别表示为t d d v =a 和tΔΔv =a .在匀速率圆周运动中,它们的大小分别为Ra n 2v =,t a ΔΔv = ,式中|Δv |可由图(B)中的几何关系得到,而Δt 可由转过的角度Δθ 求出.由计算结果能清楚地看到两者之间的关系,即瞬时加速度是平均加速度在Δt →0 时的极限值.解 (1) 由图(b)可看到Δv =v 2 -v 1 ,故θΔcos 2Δ212221v v v v -+=v)Δcos 1(2θ-=v而vv θR s t ΔΔΔ== 所以θR θt a Δ)cos Δ1(2ΔΔ2v -==v (2) 将Δθ=90°,30°,10°,1°分别代入上式,得R a 219003.0v ≈,Ra 229886.0v ≈ R a 239987.0v ≈,Ra 24000.1v ≈ 以上结果表明,当Δθ→0 时,匀速率圆周运动的平均加速度趋近于一极限值,该值即为法向加速度R2v . 1 -17 质点在Oxy 平面内运动,其运动方程为r =2.0t i +(19.0 -2.0t 2 )j ,式中r 的单位为m,t 的单位为s .求:(1)质点的轨迹方程;(2) 在t 1=1.0s 到t 2 =2.0s 时间内的平均速度;(3) t 1 =1.0s时的速度及切向和法向加速度;(4) t =1.0s 时质点所在处轨道的曲率半径ρ.分析 根据运动方程可直接写出其分量式x =x (t )和y =y (t ),从中消去参数t ,即得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变化率,即tΔΔr =v ,它与时间间隔Δt 的大小有关,当Δt →0 时,平均速度的极限即瞬时速度t d d r =v .切向和法向加速度是指在自然坐标下的分矢量a t 和a n ,前者只反映质点在切线方向速度大小的变化率,即t t te a d d v =,后者只反映质点速度方向的变化,它可由总加速度a 和a t 得到.在求得t 1 时刻质点的速度和法向加速度的大小后,可由公式ρa n 2v =求ρ.解 (1) 由参数方程 x =2.0t , y =19.0-2.0t 2消去t 得质点的轨迹方程:y =19.0 -0.50x 2(2) 在t 1 =1.00s 到t 2 =2.0s时间内的平均速度j i r r 0.60.2ΔΔ1212-=--==t t t r v (3) 质点在任意时刻的速度和加速度分别为j i j i j i t ty t x t y x 0.40.2d d d d )(-=+=+=v v v j j i a 222220.4d d d d )(-⋅-=+=s m ty t x t 则t 1 =1.00s时的速度v (t )|t =1s=2.0i -4.0j切向和法向加速度分别为t t y x t t t tt e e e a 222s 1s m 58.3)(d d d d -=⋅=+==v v v n n t n a a e e a 222s m 79.1-⋅=-=(4) t =1.0s质点的速度大小为122s m 47.4-⋅=+=y x v v v则m 17.112==na ρv 1 -18 飞机以100 m·s-1 的速度沿水平直线飞行,在离地面高为100 m 时,驾驶员要把物品空投到前方某一地面目标处,问:(1) 此时目标在飞机正下方位置的前面多远? (2) 投放物品时,驾驶员看目标的视线和水平线成何角度?(3) 物品投出2.0s后,它的法向加速度和切向加速度各为多少?分析 物品空投后作平抛运动.忽略空气阻力的条件下,由运动独立性原理知,物品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动.到达地面目标时,两方向上运动时间是相同的.因此,分别列出其运动方程,运用时间相等的条件,即可求解.此外,平抛物体在运动过程中只存在竖直向下的重力加速度.为求特定时刻t 时物体的切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间的夹角α或β.由图可知,在特定时刻t ,物体的切向加速度和水平线之间的夹角α,可由此时刻的两速度分量v x 、v y 求出,这样,也就可将重力加速度g 的切向和法向分量求得.解 (1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为x =v t , y =1/2 gt 2飞机水平飞行速度v =100 m·s -1 ,飞机离地面的高度y =100 m,由上述两式可得目标在飞机正下方前的距离m 4522==gy x v (2) 视线和水平线的夹角为 o 5.12arctan==x y θ (3) 在任意时刻物品的速度与水平轴的夹角为vv v gt αx yarctan arctan == 取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为2s m 88.1arctan sin sin -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a t 2s m 62.9arctan cos cos -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a n 1 -19 如图(a)所示,一小型迫击炮架设在一斜坡的底端O 处,已知斜坡倾角为α,炮身与斜坡的夹角为β,炮弹的出口速度为v 0,忽略空气阻力.求:(1)炮弹落地点P 与点O 的距离OP ;(2) 欲使炮弹能垂直击中坡面.证明α和β必须满足αβtan 21tan =并与v 0 无关. 分析 这是一个斜上抛运动,看似简单,但针对题目所问,如不能灵活运用叠加原理,建立一个恰当的坐标系,将运动分解的话,求解起来并不容易.现建立如图(a)所示坐标系,则炮弹在x 和y 两个方向的分运动均为匀减速直线运动,其初速度分别为v 0cos β和v 0sin β,其加速度分别为g sin α和gcos α.在此坐标系中炮弹落地时,应有y =0,则x =OP .如欲使炮弹垂直击中坡面,则应满足v x =0,直接列出有关运动方程和速度方程,即可求解.由于本题中加速度g 为恒矢量.故第一问也可由运动方程的矢量式计算,即20g 21t t +=v r ,做出炮弹落地时的矢量图[如图(B)所示],由图中所示几何关系也可求得OP (即图中的r 矢量).(1)解1 由分析知,炮弹在图(a)所示坐标系中两个分运动方程为αgt βt x sin 21cos 20-=v (1) αgt βt y cos 21sin 20-=v (2) 令y =0 求得时间t 后再代入式(1)得)cos(cos sin 2)sin sin cos (cos cos sin 2220220βααg ββαβααg βx OP +=-==v v 解2 做出炮弹的运动矢量图,如图(b)所示,并利用正弦定理,有βgt αt βαsin 212πsin 2πsin 20=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛--v r 从中消去t 后也可得到同样结果.(2) 由分析知,如炮弹垂直击中坡面应满足y =0 和v x =0,则0sin cos 0=-=αgt βx v v (3)由(2)(3)两式消去t 后得αβsin 21tan = 由此可知.只要角α和β满足上式,炮弹就能垂直击中坡面,而与v 0 的大小无关.讨论 如将炮弹的运动按水平和竖直两个方向分解,求解本题将会比较困难,有兴趣读者不妨自己体验一下.1 -20 一直立的雨伞,张开后其边缘圆周的半径为R ,离地面的高度为h ,(1) 当伞绕伞柄以匀角速ω旋转时,求证水滴沿边缘飞出后落在地面上半径为g ωh R r /212+=的圆周上;(2) 读者能否由此定性构想一种草坪上或农田灌溉用的旋转式洒水器的方案?分析 选定伞边缘O 处的雨滴为研究对象,当伞以角速度ω旋转时,雨滴将以速度v 沿切线方向飞出,并作平抛运动.建立如图(a)所示坐标系,列出雨滴的运动方程并考虑图中所示几何关系,即可求证.由此可以想像如果让水从一个旋转的有很多小孔的喷头中飞出,从不同小孔中飞出的水滴将会落在半径不同的圆周上,为保证均匀喷洒对喷头上小孔的分布还要给予精心的考虑.解 (1) 如图(a)所示坐标系中,雨滴落地的运动方程为t ωR t x ==v (1)h gt y ==221 (2) 由式(1)(2)可得 gh ωR x 2222= 由图(a)所示几何关系得雨滴落地处圆周的半径为22221ωgh R R x r +=+= (2) 常用草坪喷水器采用如图(b)所示的球面喷头(θ0 =45°)其上有大量小孔.喷头旋转时,水滴以初速度v 0 从各个小孔中喷出,并作斜上抛运动,通常喷头表面基本上与草坪处在同一水平面上.则以φ角喷射的水柱射程为gR 2sin 0v = 为使喷头周围的草坪能被均匀喷洒,喷头上的小孔数不但很多,而且还不能均匀分布,这是喷头设计中的一个关键问题.1 -21 一足球运动员在正对球门前25.0 m 处以20.0 m·s-1 的初速率罚任意球,已知球门高为3.44 m .若要在垂直于球门的竖直平面内将足球直接踢进球门,问他应在与地面成什么角度的范围内踢出足球? (足球可视为质点)分析 被踢出后的足球,在空中作斜抛运动,其轨迹方程可由质点在竖直平面内的运动方程得到.由于水平距离x 已知,球门高度又限定了在y 方向的范围,故只需将x 、y 值代入即可求出.解 取图示坐标系Oxy ,由运动方程θt x cos v =, 221sin gt θt y -=v 消去t 得轨迹方程222)tan 1(2tan x θg θx y +-=v以x =25.0 m,v =20.0 m·s-1 及3.44 m≥y ≥0 代入后,可解得71.11°≥θ1 ≥69.92°27.92°≥θ2 ≥18.89°如何理解上述角度的范围?在初速一定的条件下,球击中球门底线或球门上缘都将对应有两个不同的投射倾角(如图所示).如果以θ>71.11°或θ <18.89°踢出足球,都将因射程不足而不能直接射入球门;由于球门高度的限制,θ 角也并非能取71.11°与18.89°之间的任何值.当倾角取值为27.92°<θ <69.92°时,踢出的足球将越过门缘而离去,这时球也不能射入球门.因此可取的角度范围只能是解中的结果.1 -22 一质点沿半径为R 的圆周按规律2021bt t s -=v 运动,v 0 、b 都是常量.(1) 求t 时刻质点的总加速度;(2) t 为何值时总加速度在数值上等于b ?(3) 当加速度达到b 时,质点已沿圆周运行了多少圈?分析 在自然坐标中,s 表示圆周上从某一点开始的曲线坐标.由给定的运动方程s =s (t ),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量a t,而加速度的法向分量为a n =v 2 /R .这样,总加速度为a =a te t+a n e n .至于质点在t 时间内通过的路程,即为曲线坐标的改变量Δs =s t -s 0.因圆周长为2πR,质点所转过的圈数自然可求得.解 (1) 质点作圆周运动的速率为bt t s -==0d d v v 其加速度的切向分量和法向分量分别为b t s a t -==22d d , Rbt R a n 202)(-==v v 故加速度的大小为R )(402222bt b a a a a t tn -+=+=v其方向与切线之间的夹角为⎥⎦⎤⎢⎣⎡--==Rb bt a a θt n 20)(arctan arctan v (2) 要使|a |=b ,由b bt b R R=-+4022)(1v 可得 bt 0v = (3) 从t =0 开始到t =v 0 /b 时,质点经过的路程为b s s s t 2200v =-= 因此质点运行的圈数为bRR s n π4π220v == 1 -23 一半径为0.50 m 的飞轮在启动时的短时间内,其角速度与时间的平方成正比.在t =2.0s 时测得轮缘一点的速度值为4.0 m·s-1.求:(1) 该轮在t′=0.5s的角速度,轮缘一点的切向加速度和总加速度;(2)该点在2.0s内所转过的角度.分析 首先应该确定角速度的函数关系ω=kt 2.依据角量与线量的关系由特定时刻的速度值可得相应的角速度,从而求出式中的比例系数k ,ω=ω(t )确定后,注意到运动的角量描述与线量描述的相应关系,由运动学中两类问题求解的方法(微分法和积分法),即可得到特定时刻的角加速度、切向加速度和角位移.解 因ωR =v ,由题意ω∝t 2 得比例系数322s rad 2-⋅===Rtt ωk v 所以 22)(t t ωω== 则t ′=0.5s 时的角速度、角加速度和切向加速度分别为12s rad 5.02-⋅='=t ω2s rad 0.24d d -⋅='==t tωα 2s m 0.1-⋅==R αa t总加速度n t t n R ωR αe e a a a 2+=+= ()()2222s m 01.1-⋅=+=R ωR αa在2.0s内该点所转过的角度rad 33.532d 2d 203202200====-⎰⎰t t t t ωθθ 1 -24 一质点在半径为0.10 m 的圆周上运动,其角位置为342t θ+=,式中θ 的单位为rad,t 的单位为s.(1) 求在t =2.0s时质点的法向加速度和切向加速度.(2) 当切向加速度的大小恰等于总加速度大小的一半时,θ 值为多少?(3) t 为多少时,法向加速度和切向加速度的值相等?分析 掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到.解 (1) 由于342t θ+=,则角速度212d d t t θω==.在t =2 s 时,法向加速度和切向加速度的数值分别为22s 2s m 30.2-=⋅==ωr a t n2s2s m 80.4d d -=⋅==t ωr a t t (2) 当22212/t n t a a a a +==时,有223n t a a =,即 ()()422212243t r rt = 得 3213=t此时刻的角位置为 rad 15.3423=+=t θ(3) 要使t n a a =,则有()()422212243t r rt = t =0.55s1 -25 一无风的下雨天,一列火车以v 1=20.0 m·s-1 的速度匀速前进,在车内的旅客看见玻璃窗外的雨滴和垂线成75°角下降.求雨滴下落的速度v2 .(设下降的雨滴作匀速运动)分析 这是一个相对运动的问题.设雨滴为研究对象,地面为静止参考系S,火车为动参考系S′.v 1 为S′相对S 的速度,v 2 为雨滴相对S的速度,利用相对运动速度的关系即可解.解 以地面为参考系,火车相对地面运动的速度为v 1 ,雨滴相对地面竖直下落的速度为v 2 ,旅客看到雨滴下落的速度v 2′为相对速度,它们之间的关系为1'22v v v += (如图所示),于是可得1o 12s m 36.575tan -⋅==v v 1 -26 如图(a)所示,一汽车在雨中沿直线行驶,其速率为v 1 ,下落雨滴的速度方向偏于竖直方向之前θ 角,速率为v 2′,若车后有一长方形物体,问车速v 1为多大时,此物体正好不会被雨水淋湿?分析 这也是一个相对运动的问题.可视雨点为研究对象,地面为静参考系S,汽车为动参考系S′.如图(a)所示,要使物体不被淋湿,在车上观察雨点下落的方向(即雨点相对于汽车的运动速度v 2′的方向)应满足hl αarctan ≥.再由相对速度的矢量关系122v v v -=',即可求出所需车速v 1.解 由122v v v -='[图(b)],有θθαcos sin arctan 221v v v -= 而要使hlαarctan ≥,则hl θθ≥-cos sin 221v v v ⎪⎭⎫ ⎝⎛+≥θh θl sin cos 21v v 1 -27 一人能在静水中以1.10 m·s-1 的速度划船前进.今欲横渡一宽为1.00 ×103 m 、水流速度为0.55 m·s-1 的大河.(1) 他若要从出发点横渡该河而到达正对岸的一点,那么应如何确定划行方向? 到达正对岸需多少时间? (2)如果希望用最短的时间过河,应如何确定划行方向? 船到达对岸的位置在什么地方?分析 船到达对岸所需时间是由船相对于岸的速度v 决定的.由于水流速度u 的存在, v 与船在静水中划行的速度v ′之间有v =u +v ′(如图所示).若要使船到达正对岸,则必须使v 沿正对岸方向;在划速一定的条件下,若要用最短时间过河,则必须使v 有极大值.解 (1) 由v =u +v ′可知v '=u αarcsin ,则船到达正对岸所需时间为s 1005.1cos 3⨯='==αd d t v v (2) 由于αcos v v '=,在划速v ′一定的条件下,只有当α=0 时, v 最大(即v =v ′),此时,船过河时间t ′=d /v ′,船到达距正对岸为l 的下游处,且有m 100.52⨯='='=v d u t u l 1 -28 一质点相对观察者O 运动, 在任意时刻t , 其位置为x =v t , y =gt 2 /2,质点运动的轨迹为抛物线.若另一观察者O′以速率v 沿x 轴正向相对于O 运动.试问质点相对O′的轨迹和加速度如何?。
大学物理第一章课后习题答案
第一章质点运动学1.1一质点沿y 方向运动,它在任意时刻t 的位置由式1052+=t y 给出,式中t 以s 计,y 以m 计算下列各段时间内质点的平均速度大小:(1)2s 到3s (2)2s 到2.1s (3)2s 到2.001s (4)2s 到2.0001s 解:(1)令质点的始末时刻为s t 21=,s t 32=,则质点的平均速度大小为:{}sm sm t t y y /25)23(]10)2(5[10)3(5221212=−+−+=−−=υ(2)令质点的始末时刻为s t 21=,s t 1.22=,则质点的平均速度大小为:{}sm sm t t y y /5.20)21.2(]10)2(5[10)1.2(5221211=−+−+=−−=υ(3)令质点的始末时刻为s t 21=,s t 001.22=,则质点的平均速度大小为:{}sm smt t y y /005.20)2001.2(]10)2(5[10)001.2(5221212=−+−+=−−=υ(4)令质点的始末时刻为s t 21=,s t 0001.22=,则质点的平均速度大小为:sm smt t y y /0005.20)20001.2(]10)2(510)0001.2(5[221212=−−−+=−−=υ1.2一质点沿Ox 轴运动,其运动方程为2653t t x +−=;式中t 以s 计,x 以m 计,试求:(1)质点的初始位置和初始速度;(2)质点在任一时刻的速度和加速度;(3)质点做什么运动;(4)做出t x −图和t −υ图;(5)质点做匀加速直线运动吗?解:(1)设质点初始时刻00=t ,则质点的初始位置为:mm x 3]06053[20=×+×−=即质点的初始位置在Ox 轴正方向3m 处。
因为质点的速度为:tdt dx125+−==υ所以质点的初始速度为:220/5/)0125(s m s m dt dxt −=×+−===υ质点的初始速度大小为2/5s m ,方向沿Ox 轴负方向。
普通物理学第五版质点的运动答案省公开课获奖课件市赛课比赛一等奖课件
h l
db dt
=
h h
l
v0
结束 目录
1-6 长度为5m旳梯子,顶端斜靠在竖直
旳墙上。设 t =0 时,顶端离地面4m,当顶端
以2m/s旳速度沿墙面匀速下滑时,求:
(1)梯子下端旳运动方程;并画出x~t 图
和v~t图(设梯子下端与上端离墙角旳距离
分别为 x 和 y )。
(2)在 t =1s 时,
计算:
(1)在最初2s内旳平均速度,2s末旳瞬时
速度;
(2)1s末到3s末旳位移、平均速度;
(3)1s末到3s末旳平均加速度;此平均加
速度是否可用
a
=
a 1+ a 2 2
计算?
(4)3s末旳瞬时速度。
结束 目录
解: x = 4t - 2t3
(1)Δx = x 0 = 4t - 2t3= 4×2 2×23 = 8 m
求:质点旳速度和轨道方程。
结束 目录
已知:x =ae kt
dy dt
=
b k e kt
y =b t =0
解: dy = b k e kt dt
y = dy = b k e kt dt +c = b e kt +c
当 t=0
y
t
=
=0
b
+
c
=b
... c =0
轨迹方程: {
x =aekt y=be kt
t/s 1.0 1.5 2.0 2.5 3.0 x/m 3.00 3.14 3.29 3.42 3.57
(1)画出位置对时间旳曲线; (2)求质点在1秒到3秒时间内旳平均速度; (3)求质点在t =0时旳位置。
第1章 质点的的运动 普通物理学 程守珠.
lim
(t Δ t
Δ
Δr
) t
r(t
)
r
(t
P1
)
o
rr(Pt(t2P20P2P)tP)2 2PP2 2PP22 r (t t)
Δ t 0 Δ t
dr
dt
速度
瞬时速度是矢量,直角坐标系中分量形式:
dt vx d x
dt vy
dy
dt vz d z
大小:
v v
vx vy vz
质点作匀加速直线运动,加速度为正。
质点作匀加速直线运动,加速度为负。
质点作变加速直线运动,加速度为正。
质点作变加速直线运动,加速度为负。
例1-1 已知质点作匀加速直线运动,加速度为a,求
该质点的运动方程。
解:已知a速 度或ddv加t 速度求d运v 动方a程d,t 采用积分法:
对于作直线运动的质点,采用标量形式
例题2一质点沿半径为r的圆周按规律运动vbrbtbrbt线量与角量之间的关系线量与角量之间的关系线量与角量之间的关系线量与角量之间的关系线量与角量之间的关系线量与角量之间的关系质点作匀变速圆周运动则切向加速度的大小和方向都在变化法向加速度的大小和方向都在变化切向加速度的方向变化大小不变切向加速度的方向不变大小变化质点作匀变速圆周运动速度的大小方向都在变化
av
v a
v a
加速度
加速度与速度的夹角大于90,速率减小。
加速度与速度的夹角等于90,速率不变。
v g v v
v g v
v
g g g g g
g g g
远日点 v v
近日点
v
v
思考题
思考题
质点作曲线运动,判断下列说法的正误。
第1章-质点运动学ppt课件
§1-1 参考系
Function of Motion of a Particle
参考系
在描述物体运动时,必须指定其他物体或物体系 作为参考,这就是参考系〔或称参照系)。
例如: 以固定在地面上的某标志物为参考——地面参考系; 以实验室的墙壁地板为参考——实验室参考系; 研究行星运动时以恒星为参考——恒星参考系。
1. 平均加速度
速度质改点变在量t时与v间该里时的间
间隔的比值,即
a v
t
z
vA
A
vB
B
O
y
x
vA
vvB
v A
vB
称为质点在 t时间里的平均加速度
平均加速度是对一段时间而言的,它只能粗略地 表示质点速度变化的情况。
2. 瞬时加速度
当 t 0
,
v
alaim
t 0 t
d v dt
d
2
r
dt 2
v2 练习 :从加速度定义出发,导出 a n R
2. 变速圆周运动的加速度
加速度定义:a Av
v
lim
t0 t
lti m 0vt1lti m 0vt2
R B v
v
v v 1v 2
O
v v1
v2
v
v1 AB vv R
v2 v v v
v1
AB v R
a lim v1
lim v2
法向加速度分量 切向加速度分量
v2 dv a n t
R dt
说明
切向加速度反映了速度大小变化的快慢; 法向加速度反映了速度方向变化的快慢。
(匀速率圆周运动只有法向加速度,且大小不变
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
得:
c=
3 2
b
代入式(1)得:
结束 目录
m
...
(v + c)2 + t 2= (v0+ c)2
(1)
得: c
=
3 2
b
v0 = b 代入(1)化简后得:
v 2+ 3bv + t 2 = 4b2
(2)
解得: v = 3b
25b2 4t 2 2
式中取正号,对 t 求导后得:
a=
dv dt
=
2t 25b2 4t 2
v/(m.s-1)
-10
o
t/s 10 20 30 40 50 60
-10
-10
结束 目录
解:由v~t 图的总面积可得到路程为:
S
=
1 2
(30+10)×5
+
1 2
(20×10)
=200(m)
总位移为:
Δx
=
1 2
(30+10)×5
所以平均速度也为零
1 2
(20×10)
=0
结束 目录
1-4.直线 1与圆弧 2分别表示两质点A、B
aA =
dvA dt
= 0.7
m
s2
(3) 当 v A = v B 时有:
0.7t =
3b 2
+
1 2
25b2 4t 2
解得:
t = 1.07b
结束 目录
1-5 路灯高度为h,人高度为l,步行速度为 v0 .试求:(1)人影中头顶的移动速度; (2)影子长度增长的速率。
结束 目录
解:
h x+b
=
下端的速度。
5m
4m v0
结束 目录
y=y0=4
t=0
dy dt
=
v0
y=y0 v 0t
A
l = 5m
y
v0
B
x 2+y2= l 2 将此式微分得:
0.5 1.0 1.5 2.0 2.5 3.0 t/s
结束 目录
(2)质点在1秒到3秒5-3.00 3.0-1.0
=0.285(m/s)
(3)由作图法可得到质点在t =0时的位置为:
x =2.71m
结束 目录
1-2.质点沿x 轴运动,坐标与时间的关系为:
x = 4t - 2t3,式中x、t分别以m、s为单位。试
v
(1)求B在时刻 t 的加速度。 在 v´~t 坐标系中质点2的
b v´ B
A
运动方程为: v´2+ t 2 = (v0+ c)2
v 2b o c v´ t
因为 v´= v + c
o´
t´
在 v ~t 坐标系中质点2的运动方程为:
(v + c)2 + t 2= (v0+ c)2
(1)
当 t = 2b,v = 0 ;且 v0 =b 代入式(1)
l b
hb = l (x+b)
上式两边微分得到:
h
db dt
=l
d (x+b) dt
=l
dx dt
+l
db dt
而
dx dt
=
v0
影子长度增长速率为:
db dt
=
l h
l v0
h l bx
结束 目录
...
hb = l (x+b)
db dt
=
l h
l v0
所以人影头顶移动速度为:
d
(x dt
+
b)
=
从同一地点出发,沿同一方向做直线运动的
v-t 图。已知B的初速v0=b m/s,它的速率由
v0变为0所化的时间为t1= 2bs,
(1)试求B在时刻 t
的加速度;
v
(2)设在B停止时,
A恰好追上B,求A的速 b
1
度;
(3)在什么时候,
2
A、B的速度相同?
o
2b t 结束 目录
v0 =b m/s,t1= 2bs, v0=0
t/s 1.0 1.5 2.0 2.5 3.0 x/m 3.00 3.14 3.29 3.42 3.57
(1)画出位置对时间的曲线; (2)求质点在1秒到3秒时间内的平均速度; (3)求质点在t =0时的位置。
结束 目录
解:
x/m
3.60
3.45
. .
3.30
.
3.15 3.00
. .
2.85 2.70
计算:
(1)在最初2s内的平均速度,2s末的瞬时
速度;
(2)1s末到3s末的位移、平均速度;
(3)1s末到3s末的平均加速度;此平均加
速度是否可用
a
=
a 1+ a 2 2
计算?
(4)3s末的瞬时速度。
结束 目录
解: x = 4t - 2t3
(1)Δx = x 0 = 4t - 2t3= 4×2 2×23 = 8 m
a=
v3 t3
v1 t1
=
50 ( 2 ) 31
= 24 m s2
(4)
a
=
dv dt
=
12t =
12 ×3
= 36 m s2
结束 目录
1-3 一辆汽车沿笔直的公路行驶,速度 和时间的关系如图中折线OABCDEF所示。
(1)试说明图中OA、AB、BC、CD、 DE、EF等线段各表示什么运动?
(2)根据图中的曲线与数据,求汽车在整 个行驶过程中所走的路程、位移和平均速度。
h l
db dt
=
h h
l
v0
结束 目录
1-6 长度为5m的梯子,顶端斜靠在竖直
的墙上。设 t =0 时,顶端离地面4m,当顶端
以2m/s的速度沿墙面匀速下滑时,求:
(1)梯子下端的运动方程;并画出x~t 图
和v~t图(设梯子下端与上端离墙角的距离
分别为 x 和 y )。
(2)在 t =1s 时,
v
=
Δx Δt
=
8 2
=
4m s
v=
dx dt
=4
6t 2 =4
6×22 =
20 m s
(2) Δx = x3 x2
= (4×3 2×33) (4×1 2×13)
= 44 m
v
=
Δx Δt
=
44 31
=
22 m s
结束 目录
(3) v1 = 4 6t 2 = 4 6×12 = 2 m s
v3 = 4 6t 2 = 4 6×32 = 50 m s
2
+
1 2
sinφ
cosφ
]
arc
0
sin
4 5
= 8.79 b2
结束 目录
Δx B= 3b2 + 8.79 b2 = 1.40 b2
设A的速度为: v A =kt
Δx A
=
v
dt
=
2b 0
kt
dt
=
2k b2
相遇时A与B的位移相等 :ΔxA =Δx B
1.40 b2= 2kb2 k = 0.7 v A =kt = 0.7t
结束 目录
(2)当 t = 2b 时B静止
v
A追上B,A的位移等于B的位移 B的位移:
b
Δx B= v dt
o
A B 2b t
= 20b(
3b 2
+
1 2
25b2 4t 2 ) dt
=
3 2
b.2b
+
2b 1 02
25b2 4t 2 dt
其中: 2b 0
25b2
4t 2 dt
=
25 2
b2[
φ
这里是普通物理学第五版
1、本答案是对普通物理学第五版第一章的 答案,本章共5节内容,习题有28题,希 望大家对不准确的地方提出宝贵意见 。
2、答案以ppt的格式,没有ppt的童鞋请自 己下一个,有智能手机的同学可以下一 个软件在手机上看的哦,亲们,赶快行 动吧。
1-1质点按一定规律沿轴作直线运动,在 不同时刻的位置如下: