【中考模拟】2018届江苏省中考猜题数学试卷含答案

合集下载

江苏省2018届数学中考押题卷及参考答案

江苏省2018届数学中考押题卷及参考答案
连OD,在OD上画出点P,使OP的长等于 ,请写出画法,并说明理由.
26. 如图,抛物线
与x轴交于A、B两点,其中点
,交y轴于点
直线
过点B
与y轴交于点N,与抛物线的另一个交点是D,点P是直线BD下方的抛物线上一动点 不与点B、D重合 ,过点P作y轴的平
行线,交直线BD于点E,过点D作
轴于点M.
(1) 求抛物线
(1) 不妨设该种品牌玩具的销售单价为x元
,请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得
利润w元,并把结果填写在表格中:
销售单价 元
x
销售量 件
销售玩具获得利润 元
(2) 在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.
(3) 在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求
22. 有两个构造完全相同(除所标数字外)的转盘A、B.
(1) 单独转动A盘,指向奇数的概率是; (2) 小红和小明做了一个游戏,游戏规定,转动两个转盘各一次,两次转动后指针指向的数字之和为奇数则小红获
胜,数字之和为偶数则小明获胜,请用树状图或列表说明谁获胜的可能性大.
23. 如图,甲、乙两渔船同时从港口O出发外出捕鱼,乙沿南偏东 方向以每小时15海里的速度航行,甲沿南偏西
的平分线,
,则
________°
15. 如图, 的直径AB与弦CD相交于点
,则
________.
16. 如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数
左向右第3个正方形中的一个顶点A的坐标为
,阴影三角形部分的面积从左向右依次记为 、 、

2018年江苏省中考数学试卷含答案解析

2018年江苏省中考数学试卷含答案解析

2018年江苏省中考数学试卷含答案解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣B.C.﹣D.2.(3分)今年一季度,江苏省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×10113.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=15.(3分)江苏省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是06.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.7.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=08.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)10.(2018.江苏.10)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:|﹣5|﹣=.12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为.13.(3分)不等式组的最小整数解是.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.18.(9分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.19.(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE 为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)85 95 105 115日销售量y(个)175 125 75 m日销售利润w(元)875 1875 1875 875 (注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x=元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.2018年江苏省中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(2018.江苏.1)﹣的相反数是()A.﹣B.C.﹣D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣的相反数是:.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)今年一季度,江苏省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:214.7亿,用科学记数法表示为2.147×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=1【分析】分别根据幂的乘方、同类项概念、同底数幂相乘及合并同类项法则逐一计算即可判断.【解答】解:A、(﹣x2)3=﹣x6,此选项错误;B、x2、x3不是同类项,不能合并,此选项错误;C、x3•x4=x7,此选项正确;D、2x3﹣x3=x3,此选项错误;故选:C.【点评】本题主要考查整式的运算,解题的关键是掌握幂的乘方、同类项概念、同底数幂相乘及合并同类项法则.5.(4分)江苏省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是0【分析】直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案.【解答】解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B、众数是15.3%,正确;C、(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C错误;D、∵5个数据不完全相同,∴方差不可能为零,故此选项错误.故选:B.【点评】此题主要考查了方差的意义以及平均数的求法和中位数、众数的定义,正确把握相关定义是解题关键.6.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.【分析】设设合伙人数为x人,羊价为y线,根据羊的价格不变列出方程组.【解答】解:设合伙人数为x人,羊价为y线,根据题意,可列方程组为:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系是解题的关键.7.(4分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0【分析】根据一元二次方程根的判别式判断即可.【解答】解:A、x2+6x+9=0△=62﹣4×9=36﹣36=0,方程有两个相等实数根;B、x2=xx2﹣x=0△=(﹣1)2﹣4×1×0=1>0两个不相等实数根;C、x2+3=2xx2﹣2x+3=0△=(﹣2)2﹣4×1×3=﹣8<0,方程无实根;D、(x﹣1)2+1=0(x﹣1)2=﹣1,则方程无实根;故选:B.【点评】本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.8.(4分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.【分析】直接利用树状图法列举出所有可能进而求出概率.【解答】解:令3张用A1,A2,A3,表示,用B表示,可得:,一共有12种可能,两张卡片正面图案相同的有6种,故从中随机抽取两张,则这两张卡片正面图案相同的概率是:.故选:D.【点评】此题主要考查了树状图法求概率,正确列举出所有的可能是解题关键.9.(4分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)【分析】依据勾股定理即可得到Rt△AOH中,AO=,依据∠AGO=∠AOG,即可得到AG=AO=,进而得出HG=﹣1,可得G(﹣1,2).【解答】解:∵▱AOBC的顶点O(0,0),A(﹣1,2),∴AH=1,HO=2,∴Rt△AOH中,AO=,由题可得,OF平分∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO=,∴HG=﹣1,∴G(﹣1,2),故选:A.【点评】本题主要考查了角平分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.10.(4分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【解答】解:过点D作DE⊥BC于点E由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2.∴AD=a∴∴DE=2当点F从D到B时,用s∴BD=Rt△DBE中,BE=∵ABCD是菱形∴EC=a﹣1,DC=aRt△DEC中,a2=22+(a﹣1)2解得a=故选:C.【点评】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(4分)计算:|﹣5|﹣=2.【分析】直接利用二次根式以及绝对值的性质分别化简得出答案.【解答】解:原式=5﹣3=2.故答案为:2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为140°.【分析】直接利用垂直的定义结合互余以及互补的定义分析得出答案.【解答】解:∵直线AB,CD相交于点O,EO⊥AB于点O,∴∠EOB=90°,∵∠EOD=50°,∴∠BOD=40°,则∠BOC的度数为:180°﹣40°=140°.故答案为:140°.【点评】此题主要考查了垂直的定义、互余以及互补的定义,正确把握相关定义是解题关键.13.(3分)不等式组的最小整数解是﹣2.【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.【解答】解:∵解不等式①得:x>﹣3,解不等式②得:x≤1,∴不等式组的解集为﹣3<x≤1,∴不等式组的最小整数解是﹣2,故答案为:﹣2.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为π.【分析】利用弧长公式L=,计算即可;【解答】解:△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',此时点A′在斜边AB上,CA′⊥AB,∴∠ACA′=∠BCA′=45°,∴∠BCB′=135°,∴S阴==π.【点评】本题考查旋转变换、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为4或4.【分析】当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,根据对称的性质和平行线可得:A'C=A'E=4,根据直角三角形斜边中线的性质得:BC=2A'B=8,最后利用勾股定理可得AB的长;②当∠A'FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.【解答】解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'B=8,由勾股定理得:AB2=BC2﹣AC2,∴AB==4;②当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4或4;故答案为:4或4;【点评】本题考查了三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.【分析】根据分式的运算法则即可求出答案,【解答】解:当x=+1时,原式=•=1﹣x=﹣【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.(6分)每到春夏交替时节,雌性梧桐树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少梧桐树新增面积,控制梧桐树每年的栽种量B.调整树种结构,逐渐更换现有梧桐树C.选育无絮梧桐品种,并推广种植D.对雌性梧桐树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有2000人;(2)扇形统计图中,扇形E的圆心角度数是28.8°;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.【分析】(1)将A选项人数除以总人数即可得;(2)用360°乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.【解答】解:(1)本次接受调查的市民人数为300÷15%=2000人,故答案为:2000;(2)扇形统计图中,扇形E的圆心角度数是360°×=28.8°,故答案为:28.8°;(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为70×40%=28(万人).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(6分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.【分析】(1)将P点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.【解答】解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y=;(2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.【点评】本题考查了作图﹣应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质,正确求出反比例函数的解析式是解题的关键.19.(19分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为30°时,四边形ECFG为菱形;②当∠D的度数为22.5°时,四边形ECOG为正方形.【分析】(1)连接OC,如图,利用切线的性质得∠1+∠4=90°,再利用等腰三角形和互余证明∠1=∠2,然后根据等腰三角形的判定定理得到结论;(2)①当∠D=30°时,∠DAO=60°,证明△CEF和△FEG都为等边三角形,从而得到EF=FG=GE=CE=CF,则可判断四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,利用三角形内角和计算出∠COE=45°,利用对称得∠EOG=45°,则∠COG=90°,接着证明△OEC≌△OEG得到∠OEG=∠OCE=90°,从而证明四边形ECOG为矩形,然后进一步证明四边形ECOG为正方形.【解答】(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而AB为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°﹣67.5°﹣67.5°=45°,∴∠AOC=45°,∴∠COE=45°,利用对称得∠EOG=45°,∴∠COG=90°,易得△OEC≌△OEG,∴∠OEG=∠OCE=90°,∴四边形ECOG为矩形,而OC=OG,∴四边形ECOG为正方形.故答案为30°,22.5°.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了菱形和正方形的判定.20.(7分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE 为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)【分析】利用锐角三角函数,在Rt△ACE和Rt△DBF中,分别求出AE、BF的长.计算出EF.通过矩形CEFH得到CH的长.【解答】解:在Rt△ACE中,∵tan∠CAE=,∴AE==≈≈21(cm)在Rt△DBF中,∵tan∠DBF=,∴BF==≈=40(cm)∵EF=EA+AB+BF≈21+90+40=151(cm)∵CE⊥EF,CH⊥DF,DF⊥EF∴四边形CEFH是矩形,∴CH=EF=151cm答:高、低杠间的水平距离CH的长为151cm.【点评】本题考查了锐角三角函数解直角三角形.题目难度不大,注意精确度.21.(12分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)85 95 105 115日销售量y(个)175 125 75 m日销售利润w(元)875 1875 1875 875 (注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是80元,当销售单价x=100元时,日销售利润w最大,最大值是2000元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【分析】(1)根据题意和表格中的数据可以求得y关于x的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.【解答】解;(1)设y关于x的函数解析式为y=kx+b,,得,即y关于x的函数解析式是y=﹣5x+600,当x=115时,y=﹣5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85﹣a),得a=80,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x=100时,w取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b元,当x=90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.【点评】本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为1;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC∽△BOD,则∠AMB=90°,,可得AC的长.【解答】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.【点评】本题是三角形的综合题,主要考查了三角形全等和相似的性质和判定,几何变换问题,解题的关键是能得出:△AOC∽△BOD,根据相似三角形的性质,并运用类比的思想解决问题,本题是一道比较好的题目.23.(12分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.【分析】(1)利用一次函数解析式确定C(0,﹣5),B(5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程﹣x2+6x﹣5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以AM=2,接着根据平行四边形的性质得到PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到PD=PQ=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),讨论:当P点在直线BC上方时,PD=﹣m2+6m ﹣5﹣(m﹣5)=4;当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5),然后分别解方程即可得到P点的横坐标;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM1B=2∠ACB,再确定N(3,﹣2),AC的解析式为y=5x﹣5,E点坐标为(,﹣),利用两直线垂直的问题可设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入求出b得到直线EM1的解析式为y=﹣x﹣,则解方程组得M1点的坐标;作直线BC上作点M1关于N点的对称点M2,如图2,利用对称性得到∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),根据中点坐标公式得到3=,然后求出x即可得到M2的坐标,从而得到满足条件的点M的坐标.【解答】解:(1)当x=0时,y=x﹣5=﹣5,则C(0,﹣5),当y=0时,x﹣5=0,解得x=5,则B(5,0),。

2018年江苏省南京市联合体中考一模数学试卷含答案 精

2018年江苏省南京市联合体中考一模数学试卷含答案 精

2018年中考模拟试卷(一)数 学注意事项:1.本试卷共6页。

全卷满分120分。

考试时间为120分钟。

考生答题全部答在答题卡上,答在本试卷上无效。

2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、考试证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上。

3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑。

如需改动,请用橡皮擦干净后,再选涂其他答案。

答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效。

4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚。

一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.2的算术平方根是A .4B .2C .-2D .±22.计算(﹣ab 2)3的结果是A .a 3b 5B .﹣a 3b 5C .﹣a 3b 6D .a 3b 63.下列图形中,既是轴对称图形,又是中心对称图形的是A .正五边形B .正方形C .平行四边形D .等边三角形 4.已知反比例函数的图像经过点P (a ,a ),则这个函数的图像位于A .第一、三象限B .第二、三象限C .第二、四象限D .第三、四象限5.如图,给出下列四个条件,AB =DE ,BC =EF ,∠B =∠E ,∠C =∠F ,从中任选三个条件能使△ABC ≌△DEF 的共有6.已知 A (x 1,y 1)是一次函数y =﹣x +b +1图像上一点,若x 1<0,y 1<0,则b 的取值范围是A .b <0B .b >0C .b >―1D .b <―1二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡...相应位置....上) 7.﹣3的相反数为 ▲ ;﹣3的倒数为 ▲ . 8.计算12-13的结果是 ▲ . 9.函数y =x1-x中,自变量x 的取值范围是 ▲ .10.2018年春节放假期间,夫子庙游客总数达到1800000人,将1800000用科学记数法表示为 ▲ .A .1组B .2组C .3组D .4组ABC DEF(第5题)11. 某公司全体员工年薪的具体情况如下表:则该公司全体员工年薪的中位数比众数多 ▲ 万元.12.已知关于x 的方程x 2-3x+1=0的两个根为x 1、x 2,则x 1+ x 2-x 1x 2= ▲ .13.如图,在△ABC 中,DE ∥BC ,AD =2BD ,则S △ADES △ABC = ▲ .14.如图,在⊙O 的内接五边形ABCDE 中,∠B +∠E = 222°,则∠CAD = ▲ °.15.如图,在△ABC 中,∠C =90°,BC =3,AC =4,BD 平分∠ABC 交AC 于点D ,则点D 到AB 的距离为 ▲ . 16.如图,抛物线y =﹣x 2﹣2x +3与x 轴交于点A 、B ,把抛物线在x 轴及其上方的部分记作C 1,将C 1关于点B 的中心对称得C 2,C 2与x 轴交于另一点C ,将C 2关于点C 的中心对称得C 3,连接C 1与C 3的顶点,则图中阴影部分的面积为 ▲ .三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(6分)解不等式组⎩⎪⎨⎪⎧2-x >0,5x +12+1≥2x -13,并把解集在数轴上表示出来.18.(6分)化简(x +2 x2-2x -x -1x 2-4x +4)÷x -4x .0 1 2 3 4 5-5 -4 -3 -2 -1 (第17题)(第14题)(第15题)写出下列命题的已知、求证,并完成证明过程.命题:如果一个三角形的两条边相等,那么这两条边所对的角也相等(简称:“等边对等角”). 已知: ▲ . 求证: ▲ . 证明:20.(8分)小明和小红、小兵玩捉迷藏游戏.小红、小兵可以在A 、B 、C 三个地点中任意一处藏身,小明去寻找他们.(1)求小明在B 处找到小红的概率;(2)求小明在同一地点找到小红和小兵的概率. 21.(8分)某校课外活动小组采用简单随机抽样的方法,对本校九年级学生的睡眠时间(单位:h )进行了调查,并将所得数据整理后绘制出频数分布直方图的一部分(如图).设图中从左到右前5个小组的频率分别为0.04,0.08,0.24,0.28,0.24,第2 小组的频数为4(每组只含最小值,不含最大值).(1)该课外活动小组抽取的样本容量是多少?请补全图中的频数分布直方图. (2)样本中,睡眠时间在哪个范围内的人数最多?这个范围的人数是多少?(3)设该校有九年级学生900名,若合理的睡眠时间范围为7≤h <9,你对该校九年级学生的睡眠时间做怎样的分析、推断?B A C(第21题)如图,在四边形ABCD 中,AD =CD =8,AB =CB =6,点E 、F 、G 、H 分别是DA 、AB 、BC 、CD 的中点. (1)求证:四边形EFGH 是矩形;(2)若DA ⊥AB ,求四边形EFGH 的面积..23.(9分)甲、乙两公司为“见义勇为基金会”各捐款60000元,已知乙公司比甲公司人均多捐40元,甲公司的人数比乙公司的人数多20%.请你根据以上信息,提出一个用分式方程....解决的问题,并写出解答过程.24.(8分)一艘船在小岛A 的南偏西37°方向的B 处,AB =20海里,船自西向东航行1.5小时后到达C 处,测得小岛A 在点C 的北偏西50°方向,求该船航行的速度(精确到0.1海里/小时?).(参考数据:sin37°=cos53°≈0.60,sin53°=cos37°≈0.80,tan37°≈0.75,tan53°≈1.33,tan40°≈0.84,tan50°≈1.19)25.(9分)已知二次函数y =-x 2+mx +n .(1)若该二次函数的图像与x 轴只有一个交点,请用含m 的代数式表示n ;(2)若该二次函数的图像与x 轴交于A 、B 两点,其中点A 的坐标为(-1,0),AB =4.请求出该二次函数的表达式及顶点坐标.(第22题)HG FE D CBA如图①,C 地位于A ,B 两地之间,甲步行直接从C 地前往B 地;乙骑自行车由C 地先回A 地,再从A 地前往B 地(在A 地停留时间忽略不计).已知两人同时出发且速度不变,乙的速度是甲的2.5倍.设出发x min 后甲、乙两人离C 地的距离分别为y 1 m 、y 2 m ,图②中线段OM 表示y 1与x 的函数图像.(1)甲的速度为 m/min ,乙的速度为 m/ min ; (2)在图②中画出y 2与x 的函数图像; (3)求甲乙两人相遇的时间;(4)在上述过程中,甲乙两人相距的最远距离为 m.27.(9分)已知⊙O 的半径为5,且点O 在直线l 上,小明用一个三角板学具(∠ABC =90°,AB =BC =8)做数学实验:(1)如图①,若A 、B 两点在⊙O 上滑动,直线BC 分别与⊙O 、l 相交于点D 、E .①求BD 的长; ②当OE =6时,求BE 的长.(2)如图②,当点B 在直线l 上,点A 在⊙O 上,BC 与⊙O 相切于点P 时,则切线长PB = ▲ .Bl图①图②2018年中考数学模拟试题(一)参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)三、解答题(本大题共11小题,共88分)17.解:解不等式①,得x <2. …………………………………………………………………………2分解不等式②,得x ≥-1.………………………………………………………………………4分 所以,不等式组的解集是-1≤x <2.…………………………………………………………5分 数轴表示略 ………………………………………………………………………………………6分18.解:原式=(x +2 x ( x -2)-x -1(x -2) 2)×xx -4…………………………………………………………3分 =((x +2) ( x -2) x ( x -2)2-x (x -1) x (x -2) 2)×xx -4 ……………………………………………………4分 = x -4 x (x -2)2×xx -4……………………………………………………………………………5分=1(x -2) 2……………………………………………………………………………………6分19.已知:在△ABC 中,AB =AC .…………………………………………………………………2分求证:∠B =∠C ………………………………………………………………………………3分 证法一:过点A 作AD ⊥BC ,垂足为D . …………………………………………………………4分在△ABD 和△ACD 中,∵∠ADB =∠ADC=90°,AB =AC ,AD =AD ,∴△ABD ≌△ACD . …………………………………………………………………………7分 ∴∠B =∠C . ……………………………………………………………………………8分 证法二:作∠BAC 的平分线AD ,交BC 于点D . ………………………………………………4分在△ABD 和△ACD 中,∵AB =AC ,∠BAD =∠CAD ,AD =AD ,∴△ABD ≌△ACD . ………………………………………………………………………7分 ∴∠B =∠C………………………………………………………………………………8分20. 解:(1)有A 、B 、C 3种等可能的藏身处,所以P(小明在B 处找到小红)=.31……………3分 (2)该实验有9种等可能性的结果,其中小红和小兵藏在一起的有3种情况,………………6分 所以P (小明在同一地点找到小红和小兵)=.31 ………………………………………………8分21.解:(1)样本容量为4÷0.08=50;……………………………………………………………………1分第6小组频数为50×(1-0.04-0.08-0.24-0.28-0.24)=6,补全图形 ………………3分(2)睡眠时间在6-7小时内的人数最多;………………………………………………………4分这个范围的人数为50×0.28=14人; ………………………………………………………5分 (3)因为在7≤h <9范围内数据的频率为0.24+0.12=0.36,…………………………………6分所以推断近 23的学生睡眠不足. ……………………………………………………………8分22.证明:(1)连接AC 、BD∵点E 、F 、G 、H 分别是DA 、AB 、BC 、CD 的中点. ∴EF 是△ABD 的中位线∴EF ∥BD …………………………………………………………2分 同理可得:EF ∥BD ∥HGEH ∥AC ∥FG∴四边形EFGH 是平行四边形…………………………………3分 ∵AD=CD ,AB=BC ,且BD=BD ∴△ADB ≌△CDB ∴∠ADB=∠CDB∴∠DPA=90°……………………………………………………4分 ∴∠HEF=∠DME=∠DPA=90°∴四边形EFGH 是矩形…………………………………………5分 (2)∵DA ⊥AB ,AD =8,AB =6∴DB=10=2EF , ∴EF=5……………………………………6分 ∴AP=AD ×AB ÷DB=4.8 ∴EH=12AC=AP=4.8……………………………………………7分 ∴矩形EFGH 的面积等于24.…………………………………8分M PAB CD E FG H23.问题:求甲、乙两公司的人数分别是多少? ………………………………………2分解:设乙公司的人数为x 人,则甲公司的人数为(1+20%)x 人,由题意得60000 x -60000(1+20%)x=40……………………………………………5分解得,x =250………………………………………………………………………7分经检验x =250是方程的解. 则(1+20%)x =300答: 甲公司有300人,乙公司有250人. …………………………………………9分 解法二:问题:求甲、乙两公司的人均捐款分别是多少元? ………………………2分 解:设甲公司的人均捐款为x 元,则乙公司的人均捐款为(x +40)元,由题意得60000 x =(1+20%)60000x+40…………………………………………5分解得,x =200…………………………………………………………………7分经检验x =200是方程的解. 则x +40=240答: 甲公司的人均捐款是200元,乙公司的人均捐款是240元.………………9分24.解:过点A 作AD ⊥BC 垂足为D ,∴∠ADB =∠ADC =90°. 由题意得:∠BAD =37°,∠C AD =50°. 在Rt △ABD 中,∠BAD =37°, ∴sin ∠BAD =BD AB ,cos ∠BAD =AD AB;∴BD =AB •sin ∠BAD =20• sin37°=20×0.6=12;AD =AB •cos ∠BAD =20• cos37°=20×0.8=16.………………………………………4分 在Rt △ACD 中,∠C AD =50°; ∴tan ∠C AD =CD AD;∴CD =AD • tan ∠C AD =16• tan 50°=16×1.19=19.04.……………………………………6分 ∴BC =BD +CD =12+19.04=31.04. ∴小船航行的速度为31.04÷1.5≈20.7.答:小船航行的速度为20.7海里/小时.……………………………………………………8分25.解:(1)∵二次函数y =-x 2+mx +n 的图像与x 轴只有一个交点,∴△=m 2+4n =0…………………………………………………………………… 2分 ∴n =-14m 2……………………………………………………………………… 3分 (2)A (-1,0),AB =4,∴B (3,0)或(-5,0).…………………………………… 4分 将A (-1,0),B (3,0)或A (-1,0),(-5,0)代入y =-x 2+mx +n 得23m n =⎧⎨=⎩或65m n =-⎧⎨=-⎩,……………………………………………………………… 6分 ∴二次函数的关系式为223y x x =-++或265y x x =---.…………………… 7分 顶点坐标分别为(1,4)、(-3,4) …………………………………………………9分26.(1)80;200;……………………………………… 2分 (2)如图 …………………………………………… 4分 (3)80x +1200=200 x ,解得x =10;……………… 7分 解法二:求得y 1=80x ,y 2=200 x -1200…………6分解方程组得x =10.…………………………7分(4)960. ……………………………………………… 9分27.(1)①连接AD ,∵∠ABC =90°,∴AD 为⊙O 的直径,∴AD =10,∵AB =8,∴BD =6. …………………………………………………………………… 3分 ②如图①,作OF ⊥BE 于F ,∵BD =6,半径为5,则OF =4∵OE =6,∴ EF =25,∴BE=25+3……………………………………… 5分如图②,作OF ⊥BD 于F ,∵BD =6,半径为5,则OF =4∵OE =6,∴ EF =25,∴BE=25-3……………………………………… 7分当BC 的延长线与l 相交于点E 时,不满足条件OE =6.(2)4. …………………………………………………………………………………………… 9分提示:解法一:如图③连接OP ,OA ,作OQ ⊥AB 于Q ,易证BPOQ 为矩形, ∴BQ =5,∴AQ =3,∴OQ =4=BP .解法二:如图④连接PO ,并延长交⊙O 于点Q ,连AQ ,AP ,证△ABP ∽△P AQ , ∴P A 2=80,∴BP =4.Bl图①DC图②图④图③。

苏科版2018年江苏南京市九年级中考模拟数学试卷及答案解析

苏科版2018年江苏南京市九年级中考模拟数学试卷及答案解析

2018年九年级中考数学模拟试卷试卷满分120分,时间120分钟.1.计算│-4+1│的结果是( ▲ )A .-5B .-3C .3D .5 2.计算(-xy 2)3的结果是( ▲ )A .x 3y 6B .-x 3y 6C .-x 4y 5D . x 4y 53.与17 最接近的整数为( ▲ )A .2B .3C .4D .54.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F .AC 与DF 相交于点H ,且AH =2,HB =1,BC =5,则 DEEF 的值为( ▲ )A .23B .25C .13D .355. 若一组数据2,4,6,8,x 的方差比另一组数据5,7,9,11,13的方差大,则 x 的值可以为( ▲ )A .12B .10C .2D .0 6.如图,在Rt △ABC 中,∠C =90°,AD 是△ABC 的角平分线,若CD=4,AC=12,则△ABC 的面积 为( ▲ )A .48B .50C .54D .60二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.9的平方根是 ▲ ;9的立方根是 ▲ . 8.使x +1 有意义的x 的取值范围是 ▲ .9.2016年南京全市完成全社会固定资产投资约55000000万元,将55000000用科学记数法表示为 ▲ .10.分解因式x 3+6x 2+9x 的结果是 ▲ .(第4题) A BCD (第6题)11.计算 33-13的结果是 ▲ .12.已知关于x 的方程x 2-3x +m =0的一个根是2,则它的另一个根是 ▲ ,m 的值是▲ .13.如图,∠A =∠C ,只需补充一个条件 ▲ ,就可得△ABD ≌△CDB .14. 如图,在△ABC 中,AB 、AC 的垂直平分线l 1、l 2相交于点O ,若∠BAC 等于82°,则∠OBC = ▲ °.15.已知点A (-1,-2)在反比例函数y =k x 的图像上,则当x >1时,y 的取值范围是 ▲ . 16.如图,在半径为2的⊙O 中,弦AB =2,⊙O 上存在点C ,使得弦AC =22,则∠BOC = ▲ °.三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤17.(6分)解不等式组⎩⎪⎨⎪⎧ x +1≥ 0,x -12< x 3. ,并写出它的整数解.18.(7分)化简:( 2m m 2-4- 1 m +2 )÷1 m 2-2m .(第14题)A BD(第13题)(第16题)19.(8分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m ),绘制出如下两幅统计图.请根据相关信息,解答下列问题:(1)扇形统计图中a = ▲ ,初赛成绩为1.70m 所在扇形图形的圆心角为 ▲ °; (2)补全条形统计图;(3)这组初赛成绩的众数是 ▲ m ,中位数是 ▲ m ;(4)根据这组初赛成绩确定8人进入复赛,那么初赛成绩为1.60m 的运动员杨强能否进入复赛?为什么?20.(8分)在一个不透明袋子中有1个红球、1 个绿球和n 个白球,这些球除颜色外都相同.(1)从袋中随机摸出1个球,记录下颜色后放回袋子中并搅匀,不断重复该试验.发现摸到白球的频率稳定在0.75,则n 的值为 ▲ ;(2)当n =2时,把袋中的球搅匀后任意摸出2个球,求摸出的2个球颜色不同的概率.21.(8分)如图,将矩形ABCD 绕点C 旋转得到矩形FECG ,点E 在AD 上,延长ED 交FG 于点H .(1)求证:△EDC ≌△HFE ;AD GFE H(2)连接BE 、CH .①四边形BEHC 是怎样的特殊四边形?证明你的结论.②当AB 与BC 的比值为 ▲ 时,四边形BEHC 为菱形.22.(8分)据大数据统计显示,某省2014年公民出境旅游人数约100万人次,2015年与2016年两年公民出境旅游总人数约264万人次. 若这两年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年该省公民出境旅游人数的年平均增长率;(2)如果2017年仍保持相同的年平均增长率,请你预测2017年该省公民出境旅游人数约多少万人次?23.(8分)如图,小明要测量河内小岛B 到河边公路AD 的距离,在点A 处测得∠BAD =37°,沿AD 方向前进150米到达点C ,测得∠BCD =45°. 求小岛B 到河边公路AD 的距离. (参考数据:sin37°≈ 0.60,cos37° ≈ 0.80,tan37° ≈0.75)BC A (第22题) D24.(8分)已知二次函数y =x 2-2m x +m 2+m +1的图像与x 轴交于A 、B 两点,点C 为顶点.(1)求m 的取值范围;(2)若将二次函数的图像关于x 轴翻折,所得图像的顶点为D ,若CD =8.求四边形ACBD 的面积。

苏科版2018 年中考数学模拟测试题及答案

苏科版2018 年中考数学模拟测试题及答案

2018 年数学中考模拟测试卷(满分150 分、时间120 分钟)1.x 的取值范围是(▲)A.x < 1B.x ≥ 1C.x ≤-1D.x <-12.中国超级计算机神威“太湖之光”,峰值计算速度达每秒12.5 亿亿次,为世界首台每秒超10 亿亿次运算的计算机,用科学记数法表示12.5 亿亿次/秒为(▲)亿次/秒A.12.5 ⨯108B.12.5⨯109C.1.25 ⨯108D.1.25 ⨯1093.如图,小聪把一块含有60 角的直角三角板的两个顶点放在直尺的对边上,并测得∠1 = 25 ,则∠2 的度数是(▲)A.25 B.30 C.35 D.604.下面调查方式中,合适的是(▲)A.调查你所在班级同学的身高,采用抽样调查方式B.调查通榆河的水质情况,采用抽样调查的方式C.调查CCTV-5《NBA 总决赛》栏目在我市的收视率,采用普查的方式D.要了解全市初中学生的业余爱好,采用普查的方式5.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016 年年收入200 美元,预计2018 年年收入将达到1000 美元,设2016 年到2018 年该地区居民年人均收入平均增长率为x ,可列方程为:(▲)A.200 (1 + 2 x)=1000B.200 (1+x )2 = 1000 C.200 (1 +x2 )=1000D.200 + 2 x= 10006.下列命题是假命题的是(▲)A.不在同一直线上的三点确定一个圆B.角平分线上的点到角两边的距离相等C.正六边形的内角和是720 D.对角线相等的四边形是矩形二、填空题(本大题共有10 小题,每空3 分,共30 分.不需写出解答过程,请把答案直接填写在答.题.纸.相.应.位.置.上)7相反数▲ .8. 若2x-=,则x+y= ▲(3)09.抛物线y=x2﹣2x﹣4 的顶点坐标是▲.10.分解因式:m2+4m= ▲.11.若正多边形的一个外角是45°,则该正多边形的边数是▲.12.一元二次方程x2 +mx + 3 = 0 的一个根为-1,则m= ▲.13.已知扇形的面积为3π,圆心角为120°,则它的半径为▲.14.过三点A(2,2),B(6,2),C(4,5)的圆的圆心坐标为▲.15.如图为两正方形 ABCD ,BPQR 重叠的情形,其中 R 点在 AD 上,CD 与 QR 相交于 S 点.若两正方形 ABCD 、BPQR 的面积分别为 16、25,则四边形 RBCS 的面积为 ▲ .第 15 题图第 16 题图16.我们把 1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作 90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结 P 1P 2,P 2P 3,P 3P 4,…得到螺旋折线(如图),若已知点 P 1(0,1),P 2(﹣1,0), P 3(0,﹣1),则该折线上的点 P 11的坐标为 ▲ . 三、解答题(本大题共有 11 小题,共 102 分.请在答题卡指定区域内作答,解答时应写 出必要的文字说明、证明过程或演算步骤) 17.(12分)(1)计算:21012()2c o s 603--+-+-(2)-18.(8 分)解不等式组,把解集在数轴上表示出来。

2018年江苏省南京市鼓楼区中考数学一模试卷及答案详解

2018年江苏省南京市鼓楼区中考数学一模试卷及答案详解

2018年江苏省南京市鼓楼区中考数学一模试卷一、选择题(本大题共6小题,每小题2分,共12分)1.(2分)如图图标,是轴对称图形的是()A.B.C.D.2.(2分)如图,数轴上的点A,B分表表示实数a,b,则下列式子的值一定是正数的是()A.b+a.B.b﹣a C.a b D.3.(2分)关于代数式x+2的值,下列说法一定正确的是()A.比2大B.比2小C.比x大D.比x小4.(2分)如图,二次函数y=ax2+bx+c的图象经过点(1,1)和点(3,0).关于这个二次函数的描述:①a<0,b>0,c<0;②当x=2时,y的值等于1;③当x>3时,y的值小于0.正确的是()A.①②B.①③C.②③D.①②③5.(2分)计算999﹣93的结果更接近()A.999B.998C.996D.9336.(2分)如图,点P是⊙O外任意一点,PM、PN分别是⊙O的切线,M、N是切点.设OP与⊙O交于点K.则点K是△PMN的()A.三条高线的交点B.三条中线的交点C.三个角的角平分线的交点D.三条边的垂直平分线的交点二、填空题(本大题共10题,每小题2分,共20分)7.(2分)的相反数是,的倒数是.8.(2分)若△ABC∽△DEF,请写出2 个不同类型的正确的结论、.9.(2分)如果﹣2x m y3与xy n是同类项,那么2m﹣n的值是.10.(2分)分解因式:2x2y﹣4xy+2y=.11.(2分)已知x1、x2是一元二次方程x2+x﹣3=0的两个根,则x1+x2﹣x1x2=.12.(2分)用半径为4的半圆形纸片恰好围成一个圆锥侧面,则这个圆锥的底面半径为.13.(2分)如图,点A在函数y=(x>0)的图象上,点B在x轴正半轴上,△OAB是边长为2的等边三角形,则k的值为.14.(2分)如图,在▱ABCD中,E、F分别是AB、CD的中点,AF、DE交于点G,BF、CE交于点H.当▱ABCD满足,四边形EHFG是菱形.15.(2分)如图,一次函数y=﹣x+8的图象与x轴、y轴分别交于A、B两点.P是x轴上一个动点,若沿BP将△OBP翻折,点O恰好落在直线AB上的点C处,则点P的坐标是.16.(2分)如图,将一副三角板的直角顶点重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB的位置保持不动,将三角板DCE绕其直角顶点C顺时针旋转一周.当△DCE 一边与AB平行时,∠ECB的度数为.三、解答题(本大题共11小题,共88分)17.(6分)求不等式的负整数解18.(7分)(1)化简:(2)方程的=解是.19.(7分)小莉妈妈的支付宝用来生活缴费和网购,如图是小莉妈妈2017年9月至12月支付宝消费情况的统计图(单位:元).(1)11月支出较多,请你写出一个可能的原因;(2)求这4个月小莉妈妈支付宝平均每月消费多少元.(3)用(2)中求得的平均数来估计小莉妈妈支付宝2018年平均每月的消费水平,你认为合理吗?为什么?20.(8分)我们学习等可能条件下的概率时,常进行转转盘和摸球试验.(1)如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.小莉让转盘自由转动2次,求指针2次都落在黑色区域的概率.(2)小刚在一个不透明的口袋中,放入除颜色外其余都相同的18个小球,其中4个白球,6个红球,8个黄球,搅匀后,从中任意摸出1个球,若事件A的概率与(1)中概率相同,请写出事件A.21.(9分)春天来了,石头城边,秦淮河畔,鸟语花香,柳条飘逸.为给市民提供更好的休闲锻炼环境,决定对一段总长为1800米的外秦淮河沿河步行道出新改造,该任务由甲、乙两工程队先后接力完成.甲工程队每天改造12米,乙工程队每天改造8米,共用了200天.(1)根据题意,小莉、小刚两名同学分别列出了尚不完整的方程组如下:小莉:小刚:根据两名同学所列的方程组,请你分别指出未知数x、y表示的意义,然后补全小莉、小刚两名同学所列的方程组:小莉:x表示,y表示;小刚:x表示,y表示;(2)求甲、乙两工程队分别出新改造步行道多少米.22.(7分)如图,爸爸和小莉在两处观测气球(P)的仰角分别为α、β,两人的距离(BD)是100m,如果爸爸的眼睛离地面的距离(AB)为1.6m,小莉的眼睛离地面的距离(CD)为1.2m,那么气球的高度(PQ)是多少?(用含α、β的式子表示).23.(9分)南京、上海相距300km,快车与慢车的速度分别为100km/h和50km/h,两车同时从南京出发,匀速行驶,快车到达上海后,原路返回南京,慢车到达上海后停止.设两车出发后的时间为xh,快车、慢车行驶过程中离南京的距离分别为y1、y2km.(1)求y1、y2与x之间的函数表达式,并在所给的平面直角坐标系中画出它们的图象;(2)若镇江与南京相距80km,求两车途经镇江的时间间隔;(3)直接写出出发多长时间,两车相距100km.24.(7分)如图,△ABC中,AD⊥BC,垂足为D.小莉说:当AB+BD=AC+CD时,△ABC 是等腰三角形,她的说法正确吗?如正确,请证明;如不正确,请举反例说明.25.(8分)国际慢城,闲静高淳,景区内有一块矩形油菜花田地(数据如图示单位:m),现在其中修建一条观花道(阴影所示),供游人赏花.设改造后剩余油菜花地所占面积为ym2.(1)求y与x的函数表达式;(2)若改造后观花道的面积为13m2,求x的值;(3)若要求0.5≤x≤1,求改造后剩余油菜花地所占面积的最大值.26.(9分)已知:如图,O为正方形ABCD的中心,E为AB边上一点,F为BC边上一点,△EBF的周长等于BC的长.(1)求∠EOF的度数.(2)连接OA、OC.求证:△AOE∽△CFO.(3)若OE=OF,求的值.27.(11分)在解决数学问题时,我们常常从特殊入手,猜想结论,并尝试发现解决问题的策略与方法.【问题提出】求证:如果一个定圆的内接四边形的对角线互相垂直,那么这个四边形的对边的平方和是一个定值.【从特殊入手】我们不妨设定圆O的半径是R,四边形ABCD是⊙O的内接四边形,AC⊥BD.请你在图①中补全特殊位置时的图形,并借助所画图形探究问题的结论.【问题解决】已知:如图②,定圆O的半径是R,四边形ABCD是⊙O的内接四边形,AC⊥BD.求证:.证明:2018年江苏省南京市鼓楼区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分)1.(2分)如图图标,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,进而得出答案.【解答】解:A、不是轴对称图形,故A错误;B、不是轴对称图形,故B错误;C、不是轴对称图形,故C错误;D、是轴对称图形,故D正确.故选:D.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(2分)如图,数轴上的点A,B分表表示实数a,b,则下列式子的值一定是正数的是()A.b+a.B.b﹣a C.a b D.【分析】根据有理数的运算,可得答案.【解答】解:由数轴,得a<0<b,|a|>|b|.A、b+a<0,故A不符合题意;B、b﹣a>0,故B符合题意;C、b是奇数时,a b是负数,b是偶数时,a b是正数,故C不符合题意;D、<0,故D不符合题意;故选:B.【点评】本题考查了实数与数轴,利用数轴得出a<0<b,|a|>|b|是解题关键,又利用了有理数的运算.3.(2分)关于代数式x+2的值,下列说法一定正确的是()A.比2大B.比2小C.比x大D.比x小【分析】根据不等式的性质即可求出答案.【解答】解:由于2>0,∴x+2>x,故选:C.【点评】本题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于基础题型.4.(2分)如图,二次函数y=ax2+bx+c的图象经过点(1,1)和点(3,0).关于这个二次函数的描述:①a<0,b>0,c<0;②当x=2时,y的值等于1;③当x>3时,y的值小于0.正确的是()A.①②B.①③C.②③D.①②③【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①如图所示,抛物线开口方向向下,则a<0.对称轴在y轴的右侧,则a、b异号,即b>0.抛物线与y轴交于负半轴,则b<0.综上所述,a<0,b>0,c<0.故①正确;②∵抛物线与x轴另一交点横坐标0<x<1,∴抛物线的顶点横坐标<x<2.∵抛物线开口向下,且过点(1,1),∴点(1,1)关于对称轴对称的点的横坐标大于2,∴当x=2时,y的值大于1,故②错误;③观察函数图象,可知:当x>3时,y的值小于0,故③正确;故选:B.【点评】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,观察函数图象,逐一分析四个选项的正误是解题的关键.5.(2分)计算999﹣93的结果更接近()A.999B.998C.996D.933【分析】根据因式分解解答即可.【解答】解:999﹣93=93(996﹣1)≈999,故选:A.【点评】此题考查因式分解,关键是根据提公因式法解答.6.(2分)如图,点P是⊙O外任意一点,PM、PN分别是⊙O的切线,M、N是切点.设OP与⊙O交于点K.则点K是△PMN的()A.三条高线的交点B.三条中线的交点C.三个角的角平分线的交点D.三条边的垂直平分线的交点【分析】连接OM、ON、MK、NK,根据切线长定理得出PM=PN,易证得△POM≌△PON,得出OP是∠MPN的平分线,然后根据圆周角定理证得∠PMK=∠MOK,∠PNK =∠NOK,∠NMK=∠NOK,∠MNK=∠MOK,即可证得∠PMK=∠NMK=∠PNK=∠MNK,从而证得结论.【解答】解:连接OM、ON、MK、NK,∵PM、PN分别是⊙O的切线,∴PM=PN,∴∠PMN=∠PNM,∵OM=ON易证△POM≌△PON,∴OP是∠MPN的平分线,由圆周角定理可得∠PMK=∠MOK,∠PNK=∠NOK,∠NMK=∠NOK,∠MNK =∠MOK,∴∠PMK=∠NMK=∠PNK=∠MNK,∴点K是△PMN的三个角的角平分线的交点,故选:C.【点评】本题考查了切线的性质,三角形全等的判定和性质,圆周角定理的应用等,熟练掌握性质定理是解题的关键.二、填空题(本大题共10题,每小题2分,共20分)7.(2分)的相反数是﹣,的倒数是3.【分析】直接利用相反数以及倒数的定义得出答案.【解答】解:的相反数是:﹣,的倒数是:3.故答案为:﹣,3.【点评】此题主要考查了倒数和相反数,正确把握相关定义是解题关键.8.(2分)若△ABC∽△DEF,请写出2 个不同类型的正确的结论∠ABC=∠DEF、==.【分析】根据相似三角形的对应角相等、对应边的比相等写出结论.【解答】解:∵△ABC∽△DEF,∴∠ABC=∠DEF,==,故答案为:∠ABC=∠DEF;==.【点评】本题考查的是相似三角形的性质,掌握相似三角形的对应角相等、对应边的比相等是解题的关键.9.(2分)如果﹣2x m y3与xy n是同类项,那么2m﹣n的值是﹣1.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),求出n,m的值,再代入代数式计算即可.【解答】解:∵﹣2x m y3与xy n是同类项,∴m=1,n=3,∴2m﹣n=2﹣3=﹣1,故答案为:﹣1.【点评】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.10.(2分)分解因式:2x2y﹣4xy+2y=2y(x﹣1)2.【分析】根据提公因式法,可得完全平方公式,根据完全平方公式,可得答案.【解答】解:原式=2y(x2﹣2x+1),=2y(x﹣1)2,故答案为:2y(x﹣1)2.【点评】本题考查了分解因式,利用提公因式法得出完全平方公是解题关键,注意分解要彻底.11.(2分)已知x1、x2是一元二次方程x2+x﹣3=0的两个根,则x1+x2﹣x1x2=2.【分析】根据根与系数的关系可得出x1+x2=﹣1、x1x2=﹣3,将其代入x1+x2﹣x1x2中即可求出结论.【解答】解:∵x1、x2是一元二次方程x2+x﹣3=0的两个根,∴x1+x2=﹣1,x1x2=﹣3,∴x1+x2﹣x1x2=﹣1﹣(﹣3)=2.故答案为:2.【点评】本题考查了根与系数的关系,牢记两根之和等于﹣、两根之积等于是解题的关键.12.(2分)用半径为4的半圆形纸片恰好围成一个圆锥侧面,则这个圆锥的底面半径为2.【分析】设圆锥的底面圆半径为r,根据圆锥的底面圆周长=扇形的弧长,列方程求解.【解答】解:设圆锥的底面圆半径为r,依题意,得2πr=4π,解得r=2.故答案为:2.【点评】本题考查了圆锥的计算.圆锥的侧面展开图为扇形,计算要体现两个转化:1.圆锥的母线长为扇形的半径,2.圆锥的底面圆周长为扇形的弧长.13.(2分)如图,点A在函数y=(x>0)的图象上,点B在x轴正半轴上,△OAB是边长为2的等边三角形,则k的值为.【分析】根据等边三角形的性质和特殊角的三角函数值可以求得点A的坐标,再根据点A在函数y=(x>0)的图象上,从而可以求得k的值.【解答】解:∵点A在函数y=(x>0)的图象上,点B在x轴正半轴上,△OAB是边长为2的等边三角形,∴OA=2,∠AOB=60°,∴点A的横坐标是:2×cos60°=1,总坐标是:2×sin60°=,∴点A的坐标为(1,),∴,得k=,故答案为:.【点评】本题考查反比例函数图象上点的坐标特征、等边三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14.(2分)如图,在▱ABCD中,E、F分别是AB、CD的中点,AF、DE交于点G,BF、CE交于点H.当▱ABCD满足AB⊥BC,四边形EHFG是菱形.【分析】当平行四边形ABCD是矩形时,通过证明有一组邻边相等,可得平行四边形EHFG 是菱形;【解答】解:当平行四边形ABCD是矩形时,平行四边形EHFG是菱形.∵四边形ABCD是矩形∴∠ABC=∠DCB=90°,∵E是AB中点,F是CD中点,∴BE=CF,在△EBC与△FCB中,∵,∴△EBC≌△FCB,∴CE=BF,∴∠ECB=∠FBC,∴BH=CH,∴EH=FH,∴平行四边形EHFG是菱形,故答案为:AB⊥BC.【点评】考查了平行四边形的判定与性质,菱形的判定,注意找准条件,有一定的难度.15.(2分)如图,一次函数y=﹣x+8的图象与x轴、y轴分别交于A、B两点.P是x 轴上一个动点,若沿BP将△OBP翻折,点O恰好落在直线AB上的点C处,则点P的坐标是(,0)或(﹣24,0).【分析】分两种情况讨论:当点P在OA上时,由O与C关于PB对称,可得OP=CP,BC=OB=8;当点P在AO延长线上时,由O与C关于PB对称,可得OP=CP,BC=OB=8,分别依据勾股定理得到方程,即可得到点P的坐标.【解答】解:由一次函数y=﹣x+8的图象与x轴、y轴分别交于A、B两点,可得AO=6,BO=8,AB=10,分两种情况:①当点P在OA上时,由O与C关于PB对称,可得OP=CP,BC=OB=8,设OP=CP=x,则AP=6﹣x,AC=10﹣8=2,在Rt△ACP中,由勾股定理可得x2+22=(6﹣x)2,解得x=,∴P(,0);②当点P在AO延长线上时,由O与C关于PB对称,可得OP=CP,BC=OB=8,设OP=CP=x,则AP=6+x,AC=10+8=18,在Rt△ACP中,由勾股定理可得x2+182=(6+x)2,解得x=24,∴P(﹣24,0);故答案为:(,0)或(﹣24,0).【点评】本题主要考查了折叠问题以及一次函数的图象,解题的关键是设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.16.(2分)如图,将一副三角板的直角顶点重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB的位置保持不动,将三角板DCE绕其直角顶点C顺时针旋转一周.当△DCE 一边与AB平行时,∠ECB的度数为15°、30°、60°、120°、150°或165°.【分析】△CDE的每条边与AB平行都有两种情况,共有6种不同情况,然后利用平行线的性质分别计算6种情况对应的∠ECB的度数.【解答】解:当CD与AB平行时,则∠ACD=30°或∠ACD=150°,所以∠ECB=30°或∠ECB=150°;当DE与AB平行时,则∠ECB=165°或∠ECB=15°;当CE与AB平行时,则∠ECB=120°或∠ECB=60°.故答案为15°、30°、60°、120°、150°、165°.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了平行线的性质.三、解答题(本大题共11小题,共88分)17.(6分)求不等式的负整数解【分析】等式两边乘以6去分母后,移项合并,将x系数化为1求出解集,找出解集中的非负整数解即可.【解答】解:2x≤6+3(x﹣1),2x≤6+3x﹣3,2x﹣3x≤6﹣3,﹣x≤3,x≥﹣3,∴不等式的负整数解为﹣3、﹣2、﹣1.【点评】此题考查了一元一次不等式的整数解,求出不等式的解集是解本题的关键.18.(7分)(1)化简:(2)方程的=解是x=﹣4.【分析】(1)先通分化为同分母分式相减,再根据法则计算可得;(2)根据解分式方程的步骤计算可得.【解答】解:(1)原式=﹣==﹣;(2)两边都乘以2(x+2)(x﹣2),得:8﹣2(x+2)=(x+2)(x﹣2),整理,得:x2+2x﹣8=0,解得:x=2或x=﹣4,检验:x=2时,2(x+2)(x﹣2)=0,舍去;x=﹣4时,2(x+2)(x﹣2)=24≠0,所以原分式方程的解为x=﹣4,故答案为:x=﹣4.【点评】本题主要考查解分式方程,解题的关键是熟练掌握分式的加减运算及解分式方程的基本步骤.19.(7分)小莉妈妈的支付宝用来生活缴费和网购,如图是小莉妈妈2017年9月至12月支付宝消费情况的统计图(单位:元).(1)11月支出较多,请你写出一个可能的原因;(2)求这4个月小莉妈妈支付宝平均每月消费多少元.(3)用(2)中求得的平均数来估计小莉妈妈支付宝2018年平均每月的消费水平,你认为合理吗?为什么?【分析】(1)结合实际生活常识解答即可;(2)根据算术平均数定义列式计算可得;(3)根据算术平均数的局限性解答即可.【解答】解:(1)11月支出较多,可能由于“双11”活动;(2)这4个月小莉妈妈支付宝平均每月消费=848元;(3)不合理,理由:个别数据过大,样本太小.【点评】本题主要考查折线统计图,解题的关键是根据折线统计图得出解题所需数据及算术平均数的定义及其局限性.20.(8分)我们学习等可能条件下的概率时,常进行转转盘和摸球试验.(1)如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.小莉让转盘自由转动2次,求指针2次都落在黑色区域的概率.(2)小刚在一个不透明的口袋中,放入除颜色外其余都相同的18个小球,其中4个白球,6个红球,8个黄球,搅匀后,从中任意摸出1个球,若事件A的概率与(1)中概率相同,请写出事件A.【分析】(1)记白色区域为A、黑色区域为B,将B区域平分成两部分,然后根据题意画树状图,由树状图求得所有等可能的结果与两次指针都落在B区域的情况,再利用概率公式即可求得答案.(2)根据概率公式求出摸出的球是黄球的概率即可得.【解答】解:(1)记白色区域为A、黑色区域为B,将B区域平分成两部分,画树状图得:∵共有9种等可能的结果,两次指针都落在B区域的有4种情况,∴指针2次都落在黑色区域的概率为;(2)∵袋子中共有18个小球,其中黄球有8个,∴从中任意摸出1个球,是黄球的概率为=,故事件A为从中任意摸出1个球是黄球.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.21.(9分)春天来了,石头城边,秦淮河畔,鸟语花香,柳条飘逸.为给市民提供更好的休闲锻炼环境,决定对一段总长为1800米的外秦淮河沿河步行道出新改造,该任务由甲、乙两工程队先后接力完成.甲工程队每天改造12米,乙工程队每天改造8米,共用了200天.(1)根据题意,小莉、小刚两名同学分别列出了尚不完整的方程组如下:小莉:小刚:根据两名同学所列的方程组,请你分别指出未知数x、y表示的意义,然后补全小莉、小刚两名同学所列的方程组:小莉:x表示甲工程队改造天数,y表示乙工程队改造天数;小刚:x表示甲工程队改造的长度,y表示乙工程队改造的长度;(2)求甲、乙两工程队分别出新改造步行道多少米.【分析】(1)根据题意和小莉和小刚列出的方程组可以解答本题;(2)利用小刚列出的方程组可以解答本题.【解答】解:(1)由题意可得,小莉的:设甲工程队改造x天,乙工程队改造y天,,小刚的:设甲工程队改造长度x米,乙工程队改造长度y米,,故答案为:200、1800;1800、200;甲工程队改造天数,乙工程队改造天数;甲工程队改造的长度,乙工程队改造的长度;(2)设甲工程队改造长度x米,乙工程队改造长度y米,,解得,,答:甲、乙两工程队分别出新改造步行道600米、1200米.【点评】本题考查二元一次方程组的应用,解答本题的关键是明确题意,列出相应的方程组,利用方程的思想解答.22.(7分)如图,爸爸和小莉在两处观测气球(P)的仰角分别为α、β,两人的距离(BD)是100m,如果爸爸的眼睛离地面的距离(AB)为1.6m,小莉的眼睛离地面的距离(CD)为1.2m,那么气球的高度(PQ)是多少?(用含α、β的式子表示).【分析】过点A作AE⊥PQ于点E,过点C作CF⊥PQ于点F,设PQ=xm,用x表示出PE、PF,根据正切的概念表示出AE、CF,根据题意列式计算即可.【解答】解:过点A作AE⊥PQ于点E,过点C作CF⊥PQ于点F,设PQ=xm,则PE=(x﹣1.6)m,PF=(x﹣1.2)m.在△PEA中,∠PEA=90°.则tan∠P AE=.∴AE=.在△PCF中,∠PFC=90°.则tan∠PCF=.∴CF=.∵AE﹣CF=BD.∴.解,得x=.答:气球的高度是m.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.23.(9分)南京、上海相距300km,快车与慢车的速度分别为100km/h和50km/h,两车同时从南京出发,匀速行驶,快车到达上海后,原路返回南京,慢车到达上海后停止.设两车出发后的时间为xh,快车、慢车行驶过程中离南京的距离分别为y1、y2km.(1)求y1、y2与x之间的函数表达式,并在所给的平面直角坐标系中画出它们的图象;(2)若镇江与南京相距80km,求两车途经镇江的时间间隔;(3)直接写出出发多长时间,两车相距100km.【分析】(1)根据各数量间的关系,即可找出y1、y2与x之间的函数表达式,再函数函数图象即可;(2)代入y=80求出两车经过镇江的时间,二者做差即可得出结论;(3)分0≤x≤3和3<x≤6两种情况考虑,根据两车相距100km,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:(1)根据题意得:y1=;y2=50x(0≤x≤6).画出函数图象,如图所示.(2)当y1=80时,有100x=80或﹣100x+600=80,解得:x=0.8或x=5.2;当y2=80时,有50x=80,解得:x=1.6.∵1.6﹣0.8=0.8h,5.2﹣1.6=3.6h,∴两车途经镇江的时间间隔为0.8h或者3.6h.(3)根据题意得:当0≤x≤3时,100x﹣50x=100,解得:x=2;当3<x≤6时,|﹣100x+600﹣50x|=100,解得:x1=,x2=.综上所述:出发2h、h或h,两车相距100km.【点评】本题考查了一次函数的应用、一次函数图象上点的坐标以及解一元一次方程,解题的关键是:(1)根据各数量间的关系找出函数关系式;(2)利用一次函数图象上点的坐标特征,求出两车经过镇江的时间;(3)分0≤x≤3和3<x≤6两种情况,找出关于x的一元一次方程.24.(7分)如图,△ABC中,AD⊥BC,垂足为D.小莉说:当AB+BD=AC+CD时,△ABC 是等腰三角形,她的说法正确吗?如正确,请证明;如不正确,请举反例说明.【分析】根据等腰三角形的判定解答即可.【解答】解:正确,理由如下:在Rt△ADB与Rt△ADC中,由勾股定理可得:AB2﹣BD2=AD2,AC2﹣CD2=AD2,∴AB2﹣BD2=AC2﹣CD2,即(AB+BD)(AB﹣BD)=(AC+CD)(AC﹣CD∵AB+BD=AC+CD,∴AB﹣BD=AC﹣CD,两式相加,AB=AC,则△ABC为等腰三角形.【点评】此题考查等腰三角形的判定,关键是根据勾股定理解答.25.(8分)国际慢城,闲静高淳,景区内有一块矩形油菜花田地(数据如图示单位:m),现在其中修建一条观花道(阴影所示),供游人赏花.设改造后剩余油菜花地所占面积为ym2.(1)求y与x的函数表达式;(2)若改造后观花道的面积为13m2,求x的值;(3)若要求0.5≤x≤1,求改造后剩余油菜花地所占面积的最大值.【分析】(1)直接利用直角三角形面积求法得出答案;(2)利用已知得出y=35,进而解方程得出答案;(3)利用配方法得出函数顶点式,再利用二次函数增减性得出答案.【解答】解:(1)由题意可得:y=(8﹣x)(6﹣x)=x2﹣14x+48(0<x<6);(2)由题意可得:y=48﹣13=35,则x2﹣14x+48=35,即(x﹣1)(x﹣13)=0,解得:x1=1,x2=13,经检验得:x=13不合题意,舍去,答:x的值为1;(3)y=x2﹣14x+48=(x﹣7)2﹣1当0.5≤x≤1时,y随x的增大而减小,故当x=0.5时,y最大,y=m2.【点评】此题主要考查了一元二次方程以及二次函数的应用,正确得出函数关系式是解题关键.26.(9分)已知:如图,O为正方形ABCD的中心,E为AB边上一点,F为BC边上一点,△EBF的周长等于BC的长.(1)求∠EOF的度数.(2)连接OA、OC.求证:△AOE∽△CFO.(3)若OE=OF,求的值.【分析】(1)在FC上截取FM=FE,连接OB,OM,OC.首先证明∠EOM=90°,再证明△OFE≌△OFM(SSS)即可解决问题;(2)想办法证明∠FOC=∠AEO,又∠EAO=∠OCF=45°,可得△AOE∽△CFO;(3)由△AOE∽△CFO,推出===,推出AE=OC,AO=CF,由AO=CO,可得AE=×CF=CF,由此即可解决问题;【解答】(1)解:在FC上截取FM=FE,连接OB,OM,OC.∵C△EBF的周长=BE+EF+BF=BC,则BE+EF+BF=BF+FM+MC,∴BE=MC,∵O为正方形中心,∴OB=OC,∠OBE=∠OCM=45°,在△OBE和△OCM中,,∴△OBE≌△OCM,∴∠EOB=∠MOC,OE=OM,∴∠EOB+∠BOM=∠MOC+∠BOM,即∠EOM=∠BOC=90°,在△OFE与△OFM中,,∴△OFE≌△OFM(SSS),∴∠EOF=∠MOF=∠EOM=45°.(2)证明:由(1)可知:∠EOF=45°,∴∠AOE+∠FOC=135°,∵∠EAO=45°,∴∠AOE+∠AEO=135°,∴∠FOC=∠AEO,∵∠EAO=∠OCF=45°,∴△AOE∽△CFO.(3)解:∵△AOE∽△CFO,∴===,∴AE=OC,AO=CF,∵AO=CO,∴AE=×CF=CF,∴=.【点评】本题考查正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,属于中考常考题型.27.(11分)在解决数学问题时,我们常常从特殊入手,猜想结论,并尝试发现解决问题的策略与方法.【问题提出】求证:如果一个定圆的内接四边形的对角线互相垂直,那么这个四边形的对边的平方和是一个定值.【从特殊入手】我们不妨设定圆O的半径是R,四边形ABCD是⊙O的内接四边形,AC⊥BD.请你在图①中补全特殊位置时的图形,并借助所画图形探究问题的结论.【问题解决】已知:如图②,定圆O的半径是R,四边形ABCD是⊙O的内接四边形,AC⊥BD.求证:AB2+CD2=AD2+BC2=4R2.证明:【分析】【从特殊入手】:根据正方形的性质、勾股定理计算;【问题解决】:根据题意写出已知、求证,连接CO并延长交定圆O于E,连接DE,根据圆周角定理证明∠ACB=∠DCE,得到AB=DE,根据勾股定理计算.【解答】解:【从特殊入手】如图,AC、BD是互相垂直的直径,∴四边形ABCD是正方形,∴AB2=2R2,CD2=2R2,∴AB2+CD2=4R2,同理,AD2+BC2=4R2,∴AB2+CD2=AD2+BC2=4R2;【问题解决】已知:如图②,定圆O的半径是R,四边形ABCD是⊙O的内接四边形,AC⊥BD.求证:AB2+CD2=AD2+BC2=4R2,证明:连接CO并延长交定圆O于E,连接DE,∵AC⊥BD,∴∠DBC+∠ACB=90°,。

2018年江苏泰州中考数学模拟试题及答案解析

2018年江苏泰州中考数学模拟试题及答案解析

三、解答题(本大题共有 10 题,共 102 分.请在答题卡指定区域内作答,解答 时应写出必要地文字说明、证明过程或演算步骤) xHAQX74J0X 17.( 12 分)( 1)计算: π0+2cos30°﹣ | 2﹣ | ﹣( ) ﹣2;
( 2)化简:(2﹣ )÷

3 / 31
个人收集整理 仅供参考学习
他明天将参加一场比赛,下面几种说法正确地是(
) b5E2RGbCAP
A.小亮明天地进球率为 10%
B.小亮明天每射球 10 次必进球 1 次
C.小亮明天有可能进球
D.小亮明天肯定进球 5.(3 分)已知 x1、x2 是关于 x 地方程 x2﹣ax﹣ 2=0 地两根,下列结论一定正确
地是( )
A.x1≠ x2 B.x1+x2>0 C.x1?x2>0 D.x1<0,x2< 0
4 / 31
个人收集整理 仅供参考学习
( 1)试判断 DE 与⊙ O 地位置关系,并说明理由; ( 2)过点 D 作 DF⊥AB 于点 F,若 BE=3 ,DF=3,求图中阴影部分地面积.
23.( 10 分)日照间距系数反映了房屋日照情况.如图①,当前后房屋都朝向正 南时,日照间距系数 =L:(H﹣H1),其中 L 为楼间水平距离, H 为南侧楼房高度, H1 为北侧楼房底层窗台至地面高度. SixE2yXPq5
6.(3 分)如图,平面直角坐标系 xOy 中,点 A 地坐标为( 9, 6),AB⊥y 轴,
垂足为 B,点 P 从原点 O 出发向 x 轴正方向运动,同时,点 Q 从点 A 出发向点 B
运动,当点 Q 到达点 B 时,点 P、Q 同时停止运动,若点 P 与点 Q 地速度之比为
1:2,则下列说法正确地是(

2018年江苏省扬州市江都区中考数学模拟试卷(4月份)--有答案

2018年江苏省扬州市江都区中考数学模拟试卷(4月份)--有答案

2018 年江苏省扬州市江都区中考数学模拟试卷(4 月份)一.选择题(共 8 小题,满分 24 分)1. ﹣3的倒数是()A .3B .C .﹣D .﹣32.下列图形中,既是中心对称,又是轴对称的是()A. B . C . D .3. 下列计算中,正确的是( )A .(2a )3=2a 3B .a 3+a 2=a 5C .a 8÷a 4=a 2D .(a 2)3=a 64. 如图所示几何体的主视图是()A.B .C .D .5. 某小组8名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是( )A .中位数是4,众数是4 B .中位数是3.5,众数是4C .平均数是3.5,众数是4D .平均数是4,众数是3.5 6.如图,⊙O中,弦AB 、CD 相交于点P ,若∠A=30°,∠APD=70°,则∠B等 于()劳动时间(小时)3 3.54 4.5 人数1132A.30°B.35°C.40°D.50°7.已知一次函数y=kx+b的大致图象如图所示,则关于x的一元二次方程x2﹣2x+kb+1=0的根的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.有一个根是08.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5 B.y=(x﹣4)2+5C.y=(x﹣8)2+3 D.y=(x﹣4)2+3二.填空题(共 10 小题,满分 30 分,每小题 3 分)9..亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为.10.在函数中,自变量x的取值范围是.11.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是.12.若两个关于x,y的二元一次方程组与有相同的解,则mn的值为.13.如图,已知圆锥的母线SA的长为4,底面半径OA的长为2,则圆锥的侧面积等于.14.如图,已知AE∥BD,∠1=130°,∠2=28°,则∠C的度数为.15.如图,直角△ABC中,AC=3,BC=4,AB=5,则内部五个小直角三角形的周长为.16.如图,四边形OABC是矩形,四边形ADEF是正方形,点A、D在x轴的负半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=(k 为常数,k≠0)的图象上,正方形ADEF的面积为4,且BF=2AF,则k值为.17.如图,⊙C经过原点且与两坐标轴分别交于点A与点B,点B的坐标为(﹣,0),M是圆上一点,∠BMO=120°.⊙C圆心C的坐标是.18.如图,线段AB的长为4,C为AB上一个动点,分别以AC、BC为斜边在AB 的同侧作两个等腰直角三角形ACD和BCE,连结DE,则DE长的最小值是.三.解答题(共 10 小题,满分 96 分)19.(8分)(1)计算:﹣22+| ﹣4|+()﹣1+2tan60°(2)求不等式组的解集. 20.(8分)先化简,再求值:,其中a是方程a2+a﹣6=0 的解.21.(8分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?22.(8分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).23.(10分)在某校举办的2012年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品200个以上可以按折扣价出售;购买200个以下(包括200 个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要1050元;若多买35个,则按折扣价付款,恰好共需1050元.设小王按原计划购买纪念品x个.(1)求x的范围;(2)如果按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同,那么小王原计划购买多少个纪念品?24.(10分)在如图的正方形网格中,每一个小正方形的边长均为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(﹣2,0),(﹣3,3).(1)请在图中的网格平面内建立平面直角坐标系,写出点B的坐标;(2)把△ABC绕坐标原点O顺时针旋转90°得到△A1B1C1,画出△A1B1C1,写出点B1的坐标;(3)以坐标原点O为位似中心,相似比为2,把△A1B1C1放大为原来的2倍,得到△A2B2C2画出△A2B2C2,使它与△AB1C1在位似中心的同侧;(4)请在x轴上求作一点P,使△PBB1的周长最小,并写出点P的坐标.25.(10分)如图,AB为⊙O的直径,点C,D在⊙O上,且点C是的中点,过点C作AD的垂线EF交直线AD于点E.(1)求证:EF是⊙O的切线;(2)连接BC,若AB=5,BC=3,求线段AE的长.26.(10分)已知抛物线y=﹣x2﹣4x+c经过点A(2,0).(1)求抛物线的解析式和顶点坐标;(2)若点B(m,n)是抛物线上的一动点,点B关于原点的对称点为C.①若 B、C 都在抛物线上,求 m 的值;②若点 C 在第四象限,当 AC2 的值最小时,求 m 的值.27.(12分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.28.(12分)如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y 轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB= ,BC= ,AC= ;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE 交 AB 于点 D,交 AC 于点 E,连接 CD,如图 2.请从下列A、B两题中任选一题作答,我选择题.A:①求线段 AD 的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段 DE 的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案一.选择题1.解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:C.2.解:A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误.故选:C.3.解:A、(2a)3=8a3,故本选项错误;B、a3+a2 不能合并,故本选项错误;C、a8÷a4=a4,故本选项错误;D、(a2)3=a6,故本选项正确;故选:D.4.解:几何体的主视图为,故选:B.5.解:这组数据中4出现的次数最多,众数为4,∵共有 7 个人,∴第4个人的劳动时间为中位数,所以中位数为4,故选:A.6.解:∵∠APD是△APC的外角,∴∠APD=∠C+∠A;∵∠A=30°,∠APD=70°,∴∠C=∠APD﹣∠A=40°;∴∠B=∠C=40°;故选:C.7.解:根据图象可得k>0,b<0,所以kb<0,因为△=(﹣2)2﹣4(kb+1)=4﹣4kb﹣4=﹣4kb,所以△>0,所以方程有两个不相等的实数根.故选:A.8.解:y=x2﹣6x+21=(x2﹣12x)+21=[(x﹣6)2﹣36]+21=(x﹣6)2+3,故y=(x﹣6)2+3,向左平移2个单位后,得到新抛物线的解析式为:y=(x﹣4)2+3.故选:D.二.填空题(共 10 小题,满分 30 分,每小题 3 分)9.解:44000000=4.4×107,故答案为:4.4×107.10.解:根据二次根式有意义,分式有意义得:1﹣x≥0且x+2≠0,解得:x≤1且x≠﹣2.故答案为:x≤1 且x≠﹣2.11.解:设多边形的边数为n,根据题意,得(n﹣2)•180=3×360,解得 n=8.则这个多边形的边数是八.12.解:联立得:,①×2+②,得:10x=20,解得:x=2,将x=2代入①,得:6﹣y=6,解得:y=0,则,将x=2、y=0代入,得:,解得:,则 mn=6,故答案为:6.13.解:侧面积=4×4π÷2=8π.故答案为8π.14.解:∵AE∥BD,∠1=1 30°,∠2=28°,∴∠CBD=∠1=130°,∠CDB=∠2=28°,∴∠C=180°﹣∠CBD﹣∠CDB=180°﹣130°﹣28°=22°.故答案为:22°15.解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为AC+BC+AB=12.故答案为:12.16.解:∵正方形ADEF的面积为4,∴正方形 ADEF 的边长为 2,∴BF=2AF=4,AB=AF+BF=2+4=6.设B点坐标为(t,6),则E点坐标(t﹣2,2),∵点B、E在反比例函数y=的图象上,∴k=6t=2(t﹣2),解得t=﹣1,k=﹣6.故答案为﹣6.17.解:连接AB,OC,∵∠AOB=90°,∴AB 为⊙C 的直径,∵∠BMO=120°,∴∠BAO=60°,∴∠BCO=2∠BAO=120°,过C作CD⊥OB于D,则OD=OB,∠DCB=∠DCO=60°,∵B(﹣,0),∴BD=OD=在Rt△COD中.CD=OD•tan30°=,∴C(﹣,),故答案为:C(﹣,).18.解:设AC=x,BC=4﹣x,∵△CDA,△BCE 均为等腰直角三角形,∴CD=x,CE=(4﹣x),∵∠ACD=45°,∠BCE=45°,∴∠DCE=90°,∴DE2=CD2+CE2= x2+(4﹣x)2=x2﹣4x+8=(x﹣2)2+4,∵根据二次函数的最值,∴当x取2时,DE取最小值,最小值为:2.故答案为:220.解:= =三.解答题(共 10 小题,满分 96 分) 19.解:(1)原式=﹣4+4﹣2+3+2=3;(2)由①得:x <3;由②得:x≥﹣1;所以不等式组的解集是:﹣1≤x<3.= =,由 a 2+a ﹣6=0,得 a=﹣3 或 a=2, ∵a﹣2≠0, ∴a≠2, ∴a=﹣3,当 a=﹣3 时,原式 = = . 21.解:(1)∵总人数为18÷45%=40人,∴C 等级人数为 40﹣(4+18+5)=13 人, 则C 对应的扇形的圆心角是360°×=117°,故答案为:117;(2) 补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21 个数据均落在B 等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.(4)估计足球运球测试成绩达到A级的学生有300×=30人.22.解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,∴指针所指扇形中的数字是奇数的概率为,故答案为:;(2)列表如下:由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3 种,所以这两个数字之和是3的倍数的概率为=.23.解:(1)根据题意得:0<x≤200,且x∈N;(2)设小王原计划购买x个纪念品,根据题意得:×5=×6,整理得:5x+175=6x,解得:x=175,经检验x=175是分式方程的解,且满足题意,则小王原计划购买175个纪念品.24.解:(1)如图所示,点B的坐标为(﹣4,1);(2)如图,△A1B1C1即为所求,点B1的坐标(1,4);(3)如图,△A2B2C2即为所求;(4)如图,作点B关于x轴的对称点B',连接B'B1,交x轴于点P,则点P即为所求,P(﹣3,0).25.(1)证明:连接OC,∵OA=OC,∴∠OCA=∠BAC,∵点C是的中点,∴∠EAC=∠BAC,∴∠EAC=∠OCA,∴OC∥AE,∵AE⊥EF,∴OC⊥EF,即 EF 是⊙O 的切线;(2)解:∵AB 为⊙O 的直径,∴∠BCA=90°,∴AC==4,∵∠EAC=∠BAC,∠AEC=∠ACB=90°, ∴△AEC∽△ACB,26.解:(1)∵抛物线y=﹣x 2﹣4x+c 经过点A (2,0), ∴﹣4﹣8+c=0,即 c=12,∴抛物线解析式为y=﹣x 2﹣4x+12=﹣(x+2)2+16,则顶点坐标为(﹣2,16);(2)①由 B (m ,n )在抛物线上可得:﹣m 2﹣4m+12=n , ∵点 B 关于原点的对称点为 C , ∴C(﹣m ,﹣n ), ∵C 落在抛物线上,∴﹣m 2+4m+12=﹣n ,即 m 2﹣4m ﹣12=n ,解得:﹣m 2+4m+12=m 2﹣4m ﹣12, 解得:m=2或m=﹣2;②∵点 C (﹣m ,﹣n )在第四象限, ∴﹣m >0,﹣n <0,即 m <0,n >0, ∵抛物线顶点坐标为(﹣2,16), ∴0<n≤16,∵ 点 B 在抛物线上, ∴﹣m 2﹣4m+12=n , ∴m 2+4m=﹣n+12,∵A(2,0),C (﹣m ,﹣n ),∴AC 2=(﹣m ﹣2)2+(﹣n )2=m 2+4m+4+n 2=n 2﹣n+16=(n ﹣)2+ ,∴ = , ∴AE== .当 n= 时,AC2 有最小值,∴﹣m2﹣4m+12= ,解得:m=,∵m<0,∴m=不合题意,舍去,则m的值为.27.(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AB=BC,∠ABP=∠CBP,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴PC=PE,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD,∴∠CPF=∠EDF∵∠ABC=∠ADC=120°,∴∠CPF=∠EDF=180°﹣∠ADC=60°,∴△EPC 是等边三角形,∴PC=CE,∴AP=CE;28.解:(1)∵一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,∴A(4,0),C(0,8),∴OA=4,OC=8,∵AB⊥x 轴,CB⊥y 轴,∠AOC=90°,∴四边形 OABC 是矩形,∴AB=OC=8,BC=OA=4,在Rt△ABC中,根据勾股定理得,AC==4,故答案为:8,4,4;(2)A、①由(1)知,BC=4,AB=8,由折叠知,CD=AD,在Rt△BCD中,BD =AB﹣AD=8﹣AD,根据勾股定理得,CD2=BC2+BD2,即:AD2=16+(8﹣AD)2,∴AD=5,②由①知,D(4,5),设P(0,y),∵A(4,0),∴AP2=16+y2,DP2=16+(y﹣5)2,∵△APD 为等腰三角形,∴Ⅰ、AP=AD,∴16+y2=25,∴y=±3,∴P(0,3)或(0,﹣3)Ⅱ、AP=DP,∴16+y2=16+(y﹣5)2,∴y=,∴P(0,),Ⅲ、AD=DP,25=16+(y﹣5)2,∴y=2 或 8,∴P(0,2)或(0,8).B、①、由A①知,AD=5,由折叠知,AE=AC=2 ,DE⊥AC于E,在Rt△ADE中,DE==,②、∵以点 A,P,C 为顶点的三角形与△ABC 全等,∴△APC≌△ABC,或△CPA≌△ABC,∴∠APC=∠ABC=90°,∵四边形OABC是矩形,∴△ACO≌△CAB,此时,符合条件,点P和点O重合,即:P(0,0),如图 3,过点O作ON⊥AC于N,易证,△AON∽△ACO,∴∴AN= ,∴ ,,过点 N 作 NH⊥OA, ∴NH∥OA, ∴△ANH∽△ACO, ∴, ∴,∴NH=,AH=, ∴OH=, ∴N(,),而点 P 2 与点 O 关于 AC 对称, ∴P 2(,),同理:点B 关于AC 的对称点P 1,同上的方法得,P 1(﹣,),即:满足条件的点P 的坐标为:(0,0),(, ),(﹣ , ).。

江苏省苏州市2018届数学中考模拟试卷(5)及参考答案

江苏省苏州市2018届数学中考模拟试卷(5)及参考答案

万元)与进货量 (t)近似满足函数关系
;乙种水果的销售利润 (万元)与进货量 (t)近似满足函数关系
(其中 , 、 为常数),且进货量 为1t时,销售利润 为1. 4万元;进货量 为2t时,销售利润 为2. 6万元.
(1) 求 (万元)与 (t)之间的函数关系式; (2) 如果市场准备进甲、乙两种水果共10t,设乙种水果的进货量为 (t),请你写出这两种水果所获得的销售利润之 和 (万元)与 (t)之间的函数关系式.并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少. 23. 某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动.在活动期间,加入该网站的人数变化情况 如下表所示:
的概率是;
(2) 从A、D、E、F四个点中先后任意取两个不同的点,以所取的这两点及点B、C为顶点画四边形,求所画四边形
是平行四边形的概率。(用树状图或列表法求解).
25. 如图,菱形
的边长为2,对角线
, 、 分别是 、 上的两个动点,且满足
.
(1) 求证:
;
(2) 判断
的形状,并说明理由,同时指出
是由
射线 夹角为 的方向运动到 上的点 处;接着又从 点出发,沿着射线
上的点 处,再向左沿着与 方向运动到 上的点 处
,再向左沿着与射线
间的距离是( )
夹角为
的方向运动到
上的点 处;…按此规律运动到点A2018处,则点A2018与点
A.4B. C. D.0
二、 填空题
11. 化简:
=________.
12. 天宫二号在太空绕地球一周大约飞行42500千米,将42500用科学记数法表示为________.
13. 若分式

2018年江苏省中考模拟数学试卷及答案解析

2018年江苏省中考模拟数学试卷及答案解析
2018 年江苏省中考模拟数学试卷及答案解析
绝密★启用前|

注意事项:
学 试 卷
试卷满分:120 分)
A.4π+2 3 C.
B.
(考试时间:120 分钟
16 π2 3 3
16 π–2 3 3
D.4π
6.如图,P 为正方形 ABCD 的对角线 BD 上任一点,过点 P 作 PE⊥BC 于点 E,PF⊥CD 于点 F,连接 EF.给出以 下 4 个结论:①△FPD 是等腰直角三角形;②AP=EF;③AD=PD;④∠PFE=∠BAP.其中,所有正确的结论是
2a 2 a2 1 ,然后 a 在–1、1、2 三个数中任选一个合适的数代入求 ÷(a+1)+ 2 a 1 a 2a 1
23.(本小题满分 8 分)如图,一辆摩拜单车放在水平的地面上,车把头下方 A 处与坐垫下方 B 处在平行于地面的 水平线上,A、B 之间的距离约为 49cm,现测得 AC、BC 与 AB 的夹角分别为 45°与 68°,若点 C 到地面的距离 CD 为 28cm,坐垫中轴 E 处与点 B 的距离 BE 为 4cm,求点 E 到地面的距离(结果保留一位小数).(参考数 据:sin68°≈0.93,cos68°≈0.37,tan22°≈0.40)
Байду номын сангаас
(1)求 k 的值及点 E 的坐标; (2)若点 F 是 OC 边上一点,且△FBC∽△DEB,求直线 FB 的解析式. 22.(本小题满分 8 分)如图,已知△ABC 中,AB=AC,把△ABC 绕 A 点沿顺时针方向旋转得到△ADE,连接 BD, CE 交于点 F.21 教育名师原创作品 (1)求证:△AEC≌△ADB; 三、解答题(本大题共 11 小题,共 88 分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分 7 分)计算:2cos30°+( 3 –2)–1+|– (2)若 AB=2,∠BAC=45°,当四边形 ADFC 是菱形时,求 BF 的长.

江苏省无锡市2018届数学中考模拟试卷-有参考答案

江苏省无锡市2018届数学中考模拟试卷-有参考答案

江苏省无锡市2018届数学中考模拟试卷一、选择题1.的倒数是()A. 2B.C.D.【答案】C【考点】有理数的倒数【解析】【解答】解:-2的倒数是-故答案为:C【分析】求一个数的倒数就是用1除以这个数。

2.式子在实数范围内有意义,则x的取值范围是()A. >1B. ≥1C. <1D. ≤1【答案】B【考点】二次根式有意义的条件【解析】【解答】解:根据题意得x-1≥0解之:x≥1故答案为:B【分析】要使二次根式有意义,则被开方数是非负数,列不等式,求解即可。

3.下列运算正确的是()A. a2·a3﹦a6B. a3+ a3﹦a6C. |-a2|﹦a2D. (-a2)3﹦a6【答案】C【考点】绝对值及有理数的绝对值,同底数幂的乘法,幂的乘方与积的乘方,合并同类项法则及应用【解析】【解答】解:A、a2·a3﹦a5,故A不符合题意;B、a3+ a3﹦2a3,故B不符合题意;C、|-a2|﹦a2,故C符合题意;D、(-a2)3﹦-a6,故D不符合题意;故答案为:C【分析】根据同底数幂相乘,底数不变指数相加,可对A作出判断;利用合并同类项的法则,可对B作出判断;根据绝对值的意义,可对C作出判断;利用幂的乘方的法则,可对D作出判断;即可得出答案。

4.一元二次方程x2+5x+7=0解的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定【答案】C【考点】一元二次方程根的判别式及应用【解析】【解答】解:∵b2-4ac=25-28=-3<0∴此方程没有实数根。

故答案为:C【分析】先求出b2-4ac的值,再根据其值可判断方程根的情况。

5.若二次函数y=(a-1)x2+3x+a2-1的图象经过原点,则a的值必为()A. 1或-1B. 1C. -1D. 0【答案】C【考点】二次函数的定义,二次函数图象上点的坐标特征【解析】【解答】解:∵二次函数y=(a-1)x2+3x+a2-1的图象经过原点∴a2-1=0且a-1≠0解之:a=±1,a≠1∴a=-1故答案为:C【分析】根据二次函数的定义及二次函数的图像经过原点,得出a2-1=0且a-1≠0,即可求出a 的值。

2018年江苏中考数学试题与答案

2018年江苏中考数学试题与答案

2018年苏州市初中毕业暨升学考试试卷数学注意事项:1.答题前,考生务必将自己地姓名、考点名称、考场号、座位号用0.5毫M黑色墨水签字笔填写在答题卡地相应位置上,并认真核对条形码上地准考号、姓名是否与本人相符合;3.答选择题必须用2B铅笔把答题卡上对应题目地答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题须用0.5毫M黑色墨水签字笔填写在答题卡指定地位置上,不在答题区域内地答案一律无效,不得用其他笔答题;4.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出地四个选项中,只有一项是符合题目要求地.请将选择题地答案用2B铅笔涂在答题卡相对应地位置上............1.地结果是A.-4 B.-1 C. D.2.△ABC地内角和为A.180°B.360°C.540°D.720°3.已知地球上海洋面积约为316 000 000km2,316 000 000这个数用科学记数法可表示为 A.3.61×106B.3.61×107C.3.61×108D.3.61×1094.若m·23=26,则m等于A.2 B.4 C.6 D.85.有一组数据:3,4,5,6,6,则下列四个结论中正确地是A.这组数据地平均数、众数、中位数分别是4.8,6,6B.这组数据地平均数、众数、中位数分别是5,5,5C.这组数据地平均数、众数、中位数分别是4.8,6,5D.这组数据地平均数、众数、中位数分别是5,6,66.不等式组地所有整数解之和是A.9 B.12 C.13 D.157.已知,则地值是A.B.-C.2 D.-28.下列四个结论中,正确地是A.方程有两个不相等地实数根B.方程有两个不相等地实数根C.方程有两个不相等地实数根D.方程<其中a为常数,且)有两个不相等地实数根9.如图,在四边形ABCD中,E、F分别是AB、AD地中点.若EF=2,BC=5,CD=3,则tan C等于A.B.C.D.10.如图,已知A点坐标为<5,0),直线与y轴交于点B,连接AB,∠a=75°,则b地值为A.3 B.C.4 D.二、填空题:本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相对应地.......位置上.....11.分解因式:▲.12.如图,在四边形ABCD中,AB∥CD,AD∥BC,AC、BD相交于点O.若AC=6,则线段AO地长度等于▲.13.某初中学校地男生、女生以及教师人数地扇形统计图如图所示,若该校男生、女生以及教师地总人数为1200人,则根据图中信息,可知该校教师共有▲人.14.函数地自变量x地取值范围是▲.15.已知a、b是一元二次方程地两个实数根,则代数式地值等于▲.16.如图,已知AB是⊙O地一条直径,延长AB至C点,使得AC=3BC,CD与⊙O相切,切点为D.若CD=,则线段BC地长度等于▲.17.如图,已知△ABC是面积为地等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF地面积等于▲<结果保留根号).18.如图,已知点A地坐标为<,3),AB⊥x轴,垂足为B,连接OA,反比例函数<k>0)地图象与线段OA、AB分别交于点C、D.若AB=3BD,以点C为圆心,CA地倍地长为半径作圆,则该圆与x轴地位置关系是▲<填“相离”、“相切”或“相交”).三、解答题:本大题共11小题,共76分,把解答过程写在答题卡相对应地位置上,解答时应写出必要地计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.<本题满分5分)计算:.20.<本题满分5分)解不等式:.21.<本题满分5分)先化简,再求值:,其中.22.<本题满分6分)如图,已知四边形ABCD是梯形,AD∥BC,∠A=90°,BC=BD,CE⊥BD,垂足为E.(1>求证:△ABD≌△ECB;(2>若∠DBC=50°,求∠DCE地度数.24.<本题满分6分)如图所示地方格地面上,标有编号1、2、3地3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同.(1>一只自由飞行地小鸟,将随意地落在图中所示地方格地面上,求小鸟落在草坪上地概率;(2>现准备从图中所示地3个小方格空地中任意选取2个种植草坪,则编号为1、2地2个小方格空地种植草坪地概率是多少<用树状图或列表法求解)?25.<本题满分5分)如图,小明在大楼30M高<即PH=30M)地窗口P处进行观测,测得山坡上A处地俯角为15°,山脚B处地俯角为60°,已知该山坡地坡度i<即tan∠ABC)为1:,点P、H、B、C、A在同一个平面上.点H、B、C在同一条直线上,且PH⊥HC.(1>山坡坡角<即∠ABC)地度数等于▲度;(2>求A、B两点间地距离<结果精确到0.1M,参考数据:≈1.732).26.<本题满分8分)如图,已知AB是⊙O地弦,OB=2,∠B=30°,C是弦AB上地任意一点<不与点A、B重合),连接CO并延长CO交于⊙O于点D,连接AD.(1>弦长AB等于▲<结果保留根号);(2>当∠D=20°时,求∠BOD地度数;(3>当AC地长度为多少时,以A、C、D为顶点地三角形与以B、C、O为顶点地三角形相似?请写出解答过程.27.<本题满分8分)已知四边形ABCD是边长为4地正方形,以AB为直径在正方形内作半圆,P是半圆上地动点<不与点A、B重合),连接PA、PB、PC、PD.(1>如图①,当PA地长度等于▲时,∠PAB=60°;当PA地长度等于▲时,△PAD是等腰三角形;(2>如图②,以AB边所在直线为x轴、AD边所在直线为y轴,建立如图所示地直角坐标系<点A即为原点O),把△PAD、△PAB、△PBC地面积分别记为S1、S2、S3.坐标为<a,b),试求2 S1 S3-S22地最大值,并求出此时a,b地值.28.<本题满分9分)如图①,小慧同学把一个正三角形纸片<即△OAB)放在直线l1上,OA边与直线l1重合,然后将三角形纸片绕着顶点A按顺时针方向旋转120°,此时点O运动到了点O1处,点B运动到了点B1处;小慧又将三角形纸片AO1B1绕点B1按顺时针方向旋转120°,此时点A运动到了点A1处,点O1运动到了点O2处<即顶点O经过上述两次旋转到达O2处).小慧还发现:三角形纸片在上述两次旋转地过程中,顶点O运动所形成地图形是两段圆弧,即和,顶点O所经过地路程是这两段圆弧地长度之和,并且这两段圆弧与直线l1围成地图形面积等于扇形AOO1地面积、△AO1B1地面积和扇形B1O1O2地面积之和.小慧进行类比研究:如图②,她把边长为1地正方形纸片OABC放在直线l2上,OA 边与直线l2重合,然后将正方形纸片绕着顶点^按顺时针方向旋转90°,此时点O 运动到了点O1处<即点B处),点C运动到了点C1处,点B运动到了点B1处;小慧又将正方形纸片AO1C1B1绕顶点B1按顺时针方向旋转90°,……,按上述方法经过若干次旋转后.她提出了如下问题:问题①:若正方形纸片OABC接上述方法经过3次旋转,求顶点O经过地路程,并求顶点O在此运动过程中所形成地图形与直线l2围成图形地面积;若正方形纸片OA BC按上述方法经过5次旋转,求顶点O经过地路程;问题②:正方形纸片OABC按上述方法经过多少次旋转,顶点O经过地路程是请你解答上述两个问题.29.<本题满分10分)已知二次函数地图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线地顶点.(1>如图①,连接AC,将△OAC沿直线AC翻折,若点O地对应点O'恰好落在该抛物线地对称轴上,求实数a地值;(2>如图②,在正方形EFGH中,点E、F地坐标分别是<4,4)、<4,3),边HG位于边EF地右侧.小林同学经过探索后发现了一个正确地命题:“若点P是边EH或边HG上地任意一点,则四条线段PA、PB、PC、PD不能与任何一个平行四边形地四条边对应相等<即这四条线段不能构成平行四边形).”若点P是边EF或边FG上地任意一点,刚才地结论是否也成立?请你积极探索,并写出探索过程;(3>如图②,当点P在抛物线对称轴上时,设点P地纵坐标t是大于3地常数,试问:是否存在一个正数a,使得四条线段PA、PB、PC、PD与一个平行四边形地四条边对应相等<即这四条线段能构成平行四边形)?请说明理由.申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途.。

江苏省南通市2018届九年级中考模拟考试三数学试题(解析版)

江苏省南通市2018届九年级中考模拟考试三数学试题(解析版)

九年级数学模拟试卷一、选择题(每小题3分,共30分)1.)A.±B. C. ±2 D. 2【答案】D【解析】分析:根据立方根的定义求解即可,如果一个数x 的立方等于a ,即x 3=a ,那么x 叫做a 的立方根,即x故选D. 点睛:本题考查了立方根的求法,熟练掌握立方根的定义是解答本题的关键.2. 太阳半径约为696 000 km ,将696 000用科学记数法表示为( )A. 6.96×105B. 69.6×104C. 6.96×103D. 0.696×108【答案】A【解析】 试题解析:696000=6.96×105. 故选A3. 下列计算,正确的是( )A. a 2-a =aB. a 2·a 3=5aC. a 9÷a 3=a 3D. (a 3)2=5a【答案】B【解析】 分析:根据合并同类项、同底数幂的乘法、同底数幂的除法、积的乘方运算法则逐项及计算即可得到答案. 详解:A. ∵ a 2与a 不是同类项,不能合并,故不正确;B. ∵ a 2·a 3=5a ,故正确;C. ∵ a 9÷a 3=a 6 ,故不正确;D. (a 3)2=6a ,故不正确;故选B.点睛:本题考查了整式的运算,熟练掌握合并同类项、同底数幂的乘法、同底数幂的除法、积的乘方运算法则是解答本题的关键.4. 下列图形中既是轴对称图形又是中心对称图形的是()A. 正五角星B. 等腰梯形C. 平行四边形D. 矩形【答案】A【解析】分析:根据轴对称图形和中心对称图形的定义逐项分析即可.详解:A. 正五角星既是轴对称图形又是中心对称图形,故正确;B. 等腰梯形是轴对称图形,不是中心对称图形,故不正确;C. 平行四边形不是轴对称图形,是中心对称图形,故不正确;D. 矩形是轴对称图形,不是中心对称图形,故不正确;故选A.点睛:本题考查了轴对称图形和中心对称图形的识别.在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形.一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.5. 一个几何体的三视图如图所示,则这个几何体是()A. 球体B. 圆锥C. 棱柱D. 圆柱【答案】D【解析】试题分析:观察可知,这个几何体的俯视图为圆,主视图与左视图都是矩形,所以这个几何体是圆柱,故答案选D.考点:几何体的三视图.6. 如图,圆锥的底面半径为3,母线长为6,则侧面积为()A. 8πB. 6πC. 12πD. 18π【答案】D【解析】分析:把圆锥的底面半径为3,母线长为6,代入圆锥的侧面积公式S=πrl计算即可.详解:由题意得,S=π×3×6=18π.故选D.点睛:本题考查了圆锥的侧面积计算公式,熟练掌握圆锥的侧面积公式S=πrl是解答本题的关键.7. 如图,用尺规作出∠OBF=∠AOB,所画痕迹MN是()A. 以点B为圆心,OD为半径的弧B. 以点C为圆心,DC为半径的弧C. 以点E为圆心,OD为半径的弧D. 以点E为圆心,DC为半径的弧【答案】D【解析】分析:根据题意,所作出的是∠OBF=∠AOB,,根据作一个角等于已知角的作法,MN是以点E为圆心,DC为半径的弧.故选D.8. 在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】试题解析:在两人出发后0.5小时之前,甲的速度小于乙的速度,0.5小时到1小时之间,甲的速度大于乙的速度,故①错误;由图可得,两人在1小时时相遇,行程均为10km,故②正确;甲的图象的解析式为y=10x,乙AB段图象的解析式为y=4x+6,因此出发1.5小时后,甲的路程为15千米,乙的路程为12千米,甲的行程比乙多3千米,故③正确;甲到达终点所用的时间较少,因此甲比乙先到达终点,故④正确.故选C.9. 如图,在等腰直角△ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是()A.53B.35C.222D.23【答案】B【解析】【分析】先根据翻折变换的性质得到△DEF≌△AEF,再根据等腰三角形的性质及三角形外角的性质可得到∠BED=CDF,设CD=1,CF=x,则CA=CB=2,再根据勾股定理即可求解.【详解】∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,设CD=1,CF=x,则CA=CB=2,∴DF=FA=2-x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得:x=34,∴sin∠BED=sin∠CDF=35 CFDF.故选B.【点睛】本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中.10. 如图,点C为线段AB的中点,E为直线AB上方的一点,且满足CE=CB,连接AE,以AE为腰,A为顶角顶点作等腰Rt△ADE,连接CD,当CD最大时,∠DEC的度数为()A. 60°B. 75°C. 90°D. 67.5°【答案】D【解析】分析:由题意知,当CD⊥CE时,CD取得最大值,此时A、C、E、D共圆,由AC=C E可得∠ADC=∠CDE,从而可求出∠CDE的度数,再根据直角三角形两直角互余求出∠DEC的度数.详解::由题意知,当CD⊥CE时,CD取得最大值,此时A、C、E、D共圆.∵点C为线段AB的中点,∴AC=BC.∵CE=CB,∴AC=CE,∴∠ADC=∠CDE,∵∠ADE=45º,∴∠DEC=45º÷2=22.5º,∴∠DEC =90º-22.5º=67.5º.故选D.点睛:本题考查了共圆的条件,圆周角定理的推论,直角三角形两锐角互余,判断出A 、C 、E 、D 共圆是解答本题的关键.二、填空题(每小题3分,共24分)11. 单项式3x 2y 的次数为 _____.【答案】3【解析】单项式.【分析】根据单项式的概念,把原题单项式变为数字因式与字母因式的积,其中数字因式即为单项式的系数,所以单项式3x 2y 的系数为3.12. 分解因式:3m (2x ―y )2―3mn 2=______.【答案】()()322m x y n x y n -+--.【解析】先提取公因式3m ,再根据平方差公式进行二次分解.平方差公式:a 2-b 2=(a-b )(a+b ).解:3m (2x-y )2-3mn 2=3m[(2x-y )2-n 2]=3m (2x-y-n )(2x-y+n ).故答案为3m (2x-y-n )(2x-y+n ).本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.13. 如图,△ABC 中,D 是BC 上一点,AC =AD =DB ,∠BAC =102°,则∠ADC =________度.【答案】52【解析】分析:因为AC =AD =DB ,所以可设∠B =x °,即可表示∠BAD =x °,∠ADC =∠ACD =2x °; 根据三角形的内角和等于180°,列方程求得x 的值,便可得到∠ADC 的度数.详解:∵AC =AD =DB ,∴∠B =∠BAD ,∠ADC =∠C .∵∠ADC =∠B +∠BAD ,∴∠ADC =∠C =2∠B .设∠B =x °,则∠C =2x °.∵在△ABC 中,∠BAC +∠B +∠C =180°,∴x +2x +102=180.解得:x =26.∴∠ADC =2x =52°.故答案为52.点睛:本题考查了等腰三角形的性质,三角形外角的性质及三角形内角和的问题,解答本题的关键是熟练掌握等腰三角形的性质和三角形外角的性质.14. 设一元二次方程x 2-3x -1=0的两根分别为x 1,x 2,则x 1+x 2(x 22-3x 2)=____.【答案】3【解析】试题解析:有题意可知,222310,x x --=2223 1.x x ∴-= 由韦达定理可得,12123, 1.b c x x x x a a+=-=⋅==-2122212(3)x x x x x x --=-===故答案为 点睛:一元二次方程20(a 0)++=≠ax bx c 根与系数的关系满足: 1212,.b c x x x x a a+=-⋅= 15. 如图,在矩形纸片ABCD 中,AB =2cm ,点E 在BC 上,且AE =CE .若将纸片沿AE 折叠,点B 恰好与AC 上的点B 1重合,则AC =_____cm .【答案】4【解析】【分析】【详解】∵AB=2cm ,AB=AB 1,∴AB 1=2cm ,∵四边形ABCD 是矩形,AE=CE,∴∠ABE=∠AB 1E=90°∵AE=CE∴AB 1=B 1C∴AC=4cm .16. 如图,已知⊙C 的半径为3,圆外一点O 满足5OC =,点P 为⊙C 上一动点,经过点O 的直线l 上有两点A 、B ,且OA OB =,90APB ∠=°,l 不经过点C ,则AB 的最小值为_____.【答案】4【解析】分析:连接OP 、OC 、PC ,如图所示,则有OP ≥OC -PC ,当O 、P 、C 三点共线时,OP =OC -PC ; 由∠APB =90°可知点P 在以AB 为直径的圆上,则⊙O 与⊙C 相切时,OP 取得最小值,据此求解即可. 详解:连接OP 、OC 、PC ,如图所示,则有OP ≥OC -PC ,当O 、P 、C 三点共线时,OP =OC -PC . ∵∠APB =90°,OA =OB ,∴点P 在以AB 为直径的圆上,∴⊙O 与⊙C 相切时,OP 取得最小值,则OP ′=OC -CP ′=2,∴AB =2OP ′=4.故答案为4.点睛:本题考查了圆与圆的位置关系,两点之间线段最短,判断出当⊙O与⊙C相切时,OP取得最小值是解答本题的关键.17. 已知实数m,n满足m-n2=2,则代数式m2+2n2+4m-1的最小值等于______.【答案】11【解析】分析:已知等式变形后代入原式,利用完全平方公式变形,根据完全平方式恒大于等于0,即可确定出最小值.详解:∵m-n2=2,即n2=m-2≥0,m≥2,∴原式=m2+2m-4+4m-1=m2+6m+9-14=(m+3)2-14,∴代数式m2+2n2+4m-1的最小值等于(2+3)2-14=11.故答案为11.点睛:此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.18. 当实数b0=_______,对于给定的两个实数m和n,使得对任意的实数b,有(m-b0)²+(n-b0)²≤(m-b)²+(n-b)².【答案】m n 2【解析】分析:由于b是任意的,所以可令b=x,把(m-b)²+(n-b)²整理配方,根据二次函数的性质即可求得答案. 详解:令b=x,则(m-b)²+(n-b)²=(m-x)²+(n-x)²=2x2-2mx-2nx+m2+n2=2x2-2mx-2nx+m2+n2=2[x2-(m+n)x] +m2+n2=2(x -2m n +)2 +m 2+n 2-2()2m n + =2(x -2m n +)2 + 2()2m n -, ∴当x =2m n +时,2(x -2m n +) + 2()2m n -取得最小值, ∴当b 0=2m n +时,有(m -b 0)²+(n -b 0)²≤ (m -b )²+(n -b )²总成立. 故答案为2m n +. 点睛:本题考查了配方法的应用和利用二次函数求最值,熟练掌握配方的方法和二次函数的性质是解答本题的关键.三、解答题(本大题共10小题,共96分)19. (1)计算(-2)2-tan45°+(-3)0-21()3-; (2)先化简,再求值:(4ab 3-8a 2b 2)÷4ab +(2a +b )(2a -b ),其中a =2,b =1.【答案】(1)5;(2)12. 【解析】分析:(1)根据乘方的意义、特殊角的三角函数值、零指数幂和负整数幂的意义计算即可;(2)按照先算乘除,后算加减的顺序计算,根据多项式除以单项式的法则结算(4ab 3-8a 2b 2)÷4ab ,根据平方差公式计算(2a +b )(2a -b ),合并同类项后把a =2,b =1代入求值.详解:(1).原式=4-1+1-9=-5( 2).原式=b 2-2ab+4a 2-b2=4a 2-2ab ,当a=2,b=1时,原式=4×22-2×2×1=12点睛:本题考查了实数的运算和整式的混合运算,熟练掌握实数的运算法则是解(1)的关键,熟练掌握整式的运算法则是解(2)的关键. 20. 若关于x 的不等式组()x x 10{233x 544x 13a a++>++>++恰有三个整数解,求实数a 的取值范围. 【答案】312a <≤【解析】【分析】根据不等式组恰有三个整数解,即可确定不等式组的解集,从而即可得到一个关于a 不等式组,解之即可.【详解】解:解x x 1023++>得:2x 5>-; 解()3x 544x 13a a ++>++得:x 2a <.∴不等式组的解为2x 25a -<<. ∵关于x 的不等式组()x x 10233x 544x 13a a +⎧+>⎪⎨⎪++>++⎩恰有三个整数解,∴223a <≤,解得312a <≤. ∴实数a 的取值范围为312a <≤. 21. 为增强学生环保意识,某中学组织全校3000名学生参加环保知识大赛,比赛成绩均为整数.从中抽取部分同学的成绩进行统计,并绘制成如下统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第二组(69.5~79.5)”的扇形的圆心角 度;(2)若成绩在90分以上(含90分)的同学可获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为多少?【答案】(1)72°;(2)960名;(3)23.【解析】 试题分析:(1)由第三组(79.5~89.5)的人数即可求出其扇形的圆心角;(2)首先求出50人中成绩在90分以上(含90分)的同学可以获奖的百分比,进而可估计该校约有多少名同学获奖;(3)列表得出所有等可能的情况数,找出选出的两名主持人“恰好为一男一女”的情况数,即可求出所求的概率.试题解析:(1)由直方图可知第三组(79.5~89.5)所占的人数为20人,所以“第三组(79.5~89.5)”的扇形的圆心角=2050×360°=144°, (2)估计该校获奖的学生数=16100%50×2000=640(人); (3)列表如下:所有等可能的情况有12种,其中选出的两名主持人“恰好为一男一女”的情况有8种,则P (选出的两名主持人“恰好为一男一女”)=812=23.故答案为23. 22. 如图,某测量船位于海岛P 的北偏西60°方向,距离海岛200海里的A 处,它沿正南方向航行一段时间后,到达位于海岛P 的西南方向上的B 处.求测量船从A 处航行到B 处的路程(结果保留根号). 【答案】3)海里.【解析】解直角三角形的应用(方向角问题),锐角三角函数定义,特殊角的三角函数值.【分析】构造直角三角形,将AB 分为AE 和BE 两部分,分别在Rt△BEP 和Rt△BEP 中求解.23. 从三角形一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的优美线.(1)如图,在△ABC 中,AD 为角平分线,∠B=50°,∠C=30°,求证:AD 为△ABC 的优美线;(2)在△ABC 中,∠B=46°,AD 是△ABC 的优美线,且△ABD 是以AB 为腰的等腰三角形,求∠BAC 的度数;(3)在△ABC 中,AB=4,AC=2,AD 是△A B C 的优美线,且△ABD 是等腰三角形,直接写出优美线AD 的长.【答案】(1)证明见解析;(2)113°.(3)优美线AD 433或2-4 【解析】 试题分析:(1)根据三角形的优美线的定义,只要证明△ABD 是等腰三角形,△CAD ∽△CBA 即可解决问题,(2)如图2中,分两种情形讨论求解①若AB =AD ,△CAD ∽△CBA ,则∠B =∠ADB =∠CAD ,则AC ∥BC ,这与△ABC 这个条件矛盾, ②若AB =BD , △CAD ∽△CBA ,(3)如图3中,分三种情形讨论①若AD =BD , △CAD ∽△CBA ,则,AD CD AC AB AC BC==设BD =AD =x ,CD =y ,可得242x y x y ==+,解方程即可, ②若AB =AD =4,由AD CD AC AB AC BC==,设BD =AD =x ,CD =y ,可得2424x y y ==+,解方程即可, ③若AB =AD ,显然不可能.(1)证明:∵∠B=50°,∠C=30°,∴∠BAC=100°, ∵AD 平分∠BAC ,∴∠BAD=∠DAC=50°, ∴∠B=∠BAD=50°,∴DB=DA , ∴△ABD 是等腰三角形,∵∠C=∠C ,∠DAC=∠B=50°, ∴△CAD ∽△CBA ,∴线段AD 是△ABC 的优美线.(2)若AB=AD ,舍去,(理由若△CAD ∽△CBA ,则∠B=∠ADB=∠CAD ,则AC ∥BC ,)若AB=BD,∠B=46°,∴∠BAD=∠BDA=67°,∵△CAD∽△CBA,∴∠CAD=∠B=46°,∴∠BAC=67°+46°=113°.(3)43AD=或42-4AD=.24. 如图1,已知抛物线2y ax bx c=++与y轴交于点A(0,﹣4),与x轴相交于B(﹣2,0)、C(4,0)两点,O为坐标原点.(1)求抛物线的解析式;(2)设点E在x轴上,∠OEA+∠OAB=∠ACB,求BE的长;(3)如图2,将抛物线y=ax2+bx+c向右平移n(n>0)个单位得到的新抛物线与x轴交于M、N(M在N左侧),P为x轴下方的新抛物线上任意一点,连PM、PN,过P作PQ⊥MN于Q,PQ PQMQ NQ+是否为定值?请说明理由.图1 图2【答案】(1)y=12x2-x-4;(2)14或10;(3)是定值,理由见解析.【解析】分析:(1)由题意设抛物线解析式为y=a(x+2)(x-4),把(0,-4)代入求出a即可.(2)由tan∠ACB=OAOC=1,tan∠OAB=OBOA=12,可得tan∠OEA=13,即OAOE=13,从而根据正切函数的定义求出OE的值,进而可求BE的值;(3)设平移后的解析式为y=12(x+2-n)(x-4-n) ,点P的坐标为P(t,12(t+2-n)(t-4-n)),表示出PQ、MQ、NQ后,代入PQMQ+PQNQ化简即可.详解:设(1)y=a(x+2)(x-4),将(0,-4)代入,得-8a=-4a,∴a=12,∴y=12(x+2)(x-4),即y=12x2-x-4;(2). Rt△AOC中,tan∠ACB=OAOC=1;Rt△AOC中,tan∠OAB=OBOA=12,∵∠OEA=∠ACB-∠OAB,∴tan∠OEA=112111x2-+=13,即OAOE=13,∵OA=4,∴OE=12,∴BE=12+2=14或BE=12-2=10,答:BE的长为14或10;(3)平移后:y=12(x+2-n)(x-4-n) ,∴ M(-2+n,0), N(4+n,0),设P(t,12(t+2-n)(t-4-n)),则PQ=-12(t+2-n)(t-4-n),MQ=t-(-2-n)=t+2-n, NQ=4+n-t,∴PQMQ+PQNQ=()()1t2n t4n2t2n-+---+-+()()1t2n t4n24n t-+---+-=-12(t-4-n)+12(t+2-n)=3为定值.点睛:本题是二次函数综合题,考查了待定系数法求函数解析式,锐角三角函数的定义及性质,二次函数的平移变换,题目比较难,属于中考压轴题.。

2018届江苏省中考数学猜题试卷含答案

2018届江苏省中考数学猜题试卷含答案

2018届江苏省中考数学猜题试卷(含答案)绝密★启用前|数学(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:中考全部内容。

第Ⅰ卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.计算2–(–3)×4的结果是A.20B.–10C.14D.–202.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为A.1.05×105B.0.105×10–4C.1.05×10–5D.105×10–73.一元二次方程的根的情况是A.方程没有实数根B.方程有两个相等的实数根C.方程有两个不相等的实数根D.无法判断方程实数根情况4.下列运算正确的是A.2a–a=2B.2a+b=2abC.–a2b+2a2b=a2bD.3a2+2a2=5a45.如图,将斜边长为4,∠A为30°角的Rt△ABC绕点B 顺时针旋转120°得到△A′C′B,弧、是旋转过程中A、C的运动轨迹,则图中阴影部分的面积为A.4π+2B.C.D.4π6.如图,P为正方形ABCD的对角线BD上任一点,过点P 作PE⊥BC于点E,PF⊥CD于点F,连接EF.给出以下4个结论:①△FPD是等腰直角三角形;②AP=EF;③AD=PD;④∠PFE=∠BAP.其中,所有正确的结论是A.①②B.①④C.①②④D.①③④第Ⅱ卷二、填空题(本大题共10小题,每小题2分,共20分)7.在实数范围内因式分解:__________.8.不等式组的解集是__________.9.已知一组数据1,2,0,–1,x,1的平均数是1,则这组数据的中位数为__________.10.若与互为相反数,则x+y的值为__________.11.若m、n是一元二次方程x2–5x–2=0的两个实数根,则m+n–mn=__________.12.设,,且,用“”号把,,,连接起来为__________.13.如图,AB为⊙O的直径,CD为⊙O的弦,∠ACD=54°,则∠BAD=__________.14.如图,直线a∥b,点A,B位于直线a上,点C,D位于直线b上,且AB∶CD=1∶2,若三角形ABC的面积为6,则三角形BCD的面积为__________.15.如图,已知菱形OABC的两个顶点O(0,0),B(2,2),若将菱形绕点O以每秒45°的速度逆时针旋转.若旋转了2019秒,则此时菱形两对角线交点D的坐标为__________.16.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A,B,C,D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2–2x–3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为__________.三、解答题(本大题共11小题,共88分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分7分)计算:2cos30°+(–2)–1+|–|.18.(本小题满分7分)求不等式组.19.(本小题满分7分)先化简÷(a+1)+,然后a在–1、1、2三个数中任选一个合适的数代入求值.20.(本小题满分8分)如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连接AE、DE、DC.2-1-c-n-j-y(1)求证:△ABE≌△CBD;(2)若∠CAE=30°,求∠ACD的度数.21.(本小题满分8分)如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(2,3).双曲线的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB的解析式.22.(本小题满分8分)如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.23.(本小题满分8分)如图,一辆摩拜单车放在水平的地面上,车把头下方A处与坐垫下方B处在平行于地面的水平线上,A、B之间的距离约为49cm,现测得AC、BC 与AB的夹角分别为45°与68°,若点C到地面的距离CD为28cm,坐垫中轴E处与点B的距离BE为4cm,求点E到地面的距离(结果保留一位小数).(参考数据:sin68°≈0.93,cos68°≈0.37,tan22°≈0.40)24.(本小题满分8分)如图,AB是以BC为直径的半圆O的切线,D为半圆上一点,AD=AB,AD、BC的延长线相交于点E.(1)求证:AD是半圆O的切线;(2)连接CD,求证:∠A=2∠CDE.25.(本小题满分8分)某中学的“周末远道生管理”是学校的一大特色,为了增强远道生的体质,丰富远道生的周末生活,学校决定开设以下体育活动项目:A.篮球;B.乒乓球;C.羽毛球;D.足球.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有__________人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球活动项目中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).26.(本小题满分8分)某电子厂生产一种新型电子产品,每件制造成本为20元,试销过程中发现,每月销售量y (万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=–2x+100.(利润=售价–制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月获得的利润为400万元?(3)根据相关部门规定,这种电子产品的销售单价不能高于40元,如果厂商每月的制造成本不超过520万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?【来源:21世纪教育网】27.(本小题满分11分)平面上,Rt△ABC与直径为CE 的半圆O如图1摆放,∠B=90°,AC=2CE=m,BC=n,半圆O交BC边于点D,将半圆O绕点C按逆时针方向旋转,点D随半圆O旋转且∠ECD始终等于∠ACB,旋转角记为α(0°≤α≤180°).(1)当α=0°时,连接DE,则∠CDE=__________°,CD=__________;(2)试判断:旋转过程中的大小有无变化?请仅就图2的情形给出证明;(3)若m=10,n=8,当α=∠ACB时,求线段BD的长;(4)若m=6,n=4,当半圆O旋转至与△ABC的边相切时,直接写出线段BD的长.。

2018年江苏省苏州市吴中区中考数学模拟试卷(4月份)有答案AUAMlq

2018年江苏省苏州市吴中区中考数学模拟试卷(4月份)有答案AUAMlq

2018年江苏省苏州市吴中区中考数学模拟试卷(4月份)一.选择题(共10小题,满分30分)1.如果m的倒数是﹣1,那么m2018等于()A.1B.﹣1C.2018D.﹣20182.工信部发布《中国数字经济发展与就业白皮书(2018)》)显示,2017年湖北数字经济总量1.21万亿元,列全国第七位、中部第一位.“1.21万”用科学记数法表示为()A.1.21×103B.12.1×103C.1.21×104D.0.121×105 3.下列运算正确的是()A.a2+a3=a5B.(a3)2÷a6=1C.a2•a3=a6D.(+)2=5 4.在一次体育测试中,10名女生完成仰卧起坐的个数如下:38,52,47,46,50,50,61,72,45,48.则这10名女生仰卧起坐个数不少于50个的频率为()A.0.3B.0.4C.0.5D.0.65.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°6.如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x轴,且AC=BC,则AB等于()A.B.2C.4D.37.在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示成绩(米) 4.50 4.60 4.65 4.70 4.75 4.80人数232341则这些运动员成绩的中位数、众数分别是()A.4.65、4.70B.4.65、4.75C.4.70、4.75D.4.70、4.70 8.如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.米D.米9.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC =2S四边形AEPF,上述结论正确的有()A.1个B.2个C.3个D.4个10.已知反比例函数y=,下列结论不正确的是()A.图象经过点(﹣2,1)B.图象在第二、四象限C.当x<0时,y随着x的增大而增大D.当x>﹣1时,y>2二.填空题(共8小题,满分24分,每小题3分)11.分解因式:x2﹣1=.12.某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同、方差分别为S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,二月份白菜价格最稳定的市场是.13.若正多边形的一个外角是40°,则这个正多边形的边数是.14.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.15.如图,在△ABC中,DE∥BC,若AD=1,DB=2,则的值为.16.已知关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根,则a的取值范围是.17.如图,已知长方体的三条棱AB、BC、BD分别为4,5,2,蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是.18.如图,将边长为的正方形ABCD绕点A逆时针方向旋转30°后得到正方形A′B′C′D′,则图中阴影部分面积为平方单位.三.解答题(共10小题,满分76分)19.(8分)(1)计算:|﹣3|﹣﹣2sin30°+(﹣)﹣2(2)化简:.20.(8分)(1)解方程:x2﹣4x﹣3=0;(2)解不等式组:21.(6分)如图,四边形ABCD是边长为2的正方形,以点A,B,C为圆心作圆,分别交BA,CB,DC的延长线于点E,F,G.(1)求点D沿三条圆弧运动到点G所经过的路线长;(2)判断线段GB与DF的长度关系,并说明理由.22.(6分)一个不透明的袋子中,装有标号分别为1、﹣1、2的三个小球,他们除标号不同外,其余都完全相同;(1)搅匀后,从中任意取一个球,标号为正数的概率是;(2)搅匀后,从中任取一个球,标号记为k,然后放回搅匀再取一个球,标号记为b,求直线y=kx+b经过一、二、三象限的概率.23.(6分)已知,在菱形ABCD中,∠ADC=60°,点H为CD上任意一点(不与C、D重合),过点H作CD的垂线,交BD于点E,连接AE.(1)如图1,线段EH、CH、AE之间的数量关系是;(2)如图2,将△DHE绕点D顺时针旋转,当点E、H、C在一条直线上时,求证:AE+EH=CH.24.(8分)某农机租赁公司共有50台收割机,其中甲型20台,乙型30台,现将这50台联合收割机派往A,B两地区收割水稻,其中30台派往A地区,20台派往B地区,两地区与该农机公司商定的每天租赁价格如表:每台甲型收割机的租金每台乙型收割机的租金A地1800元1600元区B地区1600元1200元(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y元,求y关于x的函数关系式;(2)若使农机租赁公司这50台收割机一天所获租金不低于79600元,试写出满足条件的所有分派方案;(3)农机租赁公司拟出一个分派方案,使该公司50台收割机每天获得租金最高,并说明理由.25.(8分)如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为63.4°,沿山坡向上走到P处再测得该建筑物顶点A的仰角为53°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度i=5:12.(1)求此人所在位置点P的铅直高度.(结果精确到0.1米)(2)求此人从所在位置点P走到建筑物底部B点的路程(结果精确到0.1米)(测倾器的高度忽略不计,参考数据:tan53°≈,tan63.4°≈2)26.(8分)如图,正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C上y轴上,点B在反比例函数y=(k>0,x>0)的图象上,点E从原点O出发,以每秒1个单位长度的速度向x轴正方向运动,过点E作x的垂线,交反比例函数y=(k>0,x>0)的图象于点P,过点P作PF⊥y轴于点F;记矩形OEPF和正方形OABC不重合部分的面积为S,点E的运动时间为t 秒.(1)求该反比例函数的解析式.(2)求S与t的函数关系式;并求当S=时,对应的t值.(3)在点E的运动过程中,是否存在一个t值,使△FBO为等腰三角形?若有,有几个,写出t值.27.(8分)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:PC=PF;(3)若tan∠ABC=,AB=14,求线段PC的长.28.(10分)如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C 的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.参考答案一.选择题1.解:∵m的倒数是﹣1,∴m=﹣1,∴m2018=1.故选:A.2.解:1.21万=1.21×104,故选:C.3.解:A、a2与a3不能合并,所以A选项错误;B、原式=a6÷a6=1,所以A选项正确;C、原式=a5,所以C选项错误;D、原式=2+2+3=5+2,所以D选项错误.故选:B.4.解:仰卧起坐个数不少于50个的有52、50、50、61、72共5个,所以,频率==0.5.故选:C.5.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选:B.6.解:点C在双曲线y=上,AC∥y轴,BC∥x轴,设C(a,),则B(3a,),A(a,),∵AC=BC,∴﹣=3a﹣a,解得a=1,(负值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2,故选:B.7.解:这些运动员成绩的中位数、众数分别是4.70,4.75.故选:C.8.解:在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB==.故选:D.9.解:∵AB=AC,∠BAC=90°,点P是BC的中点,∴AP⊥BC,AP=PC,∠EAP=∠C=45°,∴∠APF+∠CPF=90°,∵∠EPF是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF,在△APE和△CPF中,,∴△APE≌△CPF(ASA),∴AE=CF,故①②正确;∵△AEP≌△CFP,同理可证△APF≌△BPE,∴△EFP是等腰直角三角形,故③错误;∵△APE≌△CPF,∴S△APE=S△CPF,∴四边形AEPF =S△AEP+S△APF=S△CPF+S△BPE=S△ABC.故④正确,故选:C.10.解:A、把(﹣2,1)代入解析式得:左边=右边,故本选项正确,不符合题意;B、因为﹣2<0,图象在第二、四象限,故本选项正确,不符合题意;C、当x<0,且k<0,y随x的增大而增大,故本选项正确,不符合题意;D、在第三象限时,当x>﹣1时,y>2,故本选项错误,符合题意.故选:D.二.填空题(共8小题,满分24分,每小题3分)11.解:x2﹣1=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).12.解:∵S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,∴S乙2<S丁2<S甲2<S丙2,∴二月份白菜价格最稳定的市场是乙;故答案为:乙.13.解:多边形的每个外角相等,且其和为360°,据此可得=40,解得n=9.故答案为9.14.解:∵袋中装有6个黑球和n个白球,∴袋中一共有球(6+n)个,∵从中任摸一个球,恰好是黑球的概率为,∴=,解得:n=2.故答案为:2.15.解:∵DE∥BC,∴=,∵AD=1,BD=2,∴AB=3,∴=,故答案为:.16.解:∵关于x的一元二次方程(a﹣1)x2﹣2x+l=0有两个不相等的实数根,∴△=b2﹣4ac>0,即4﹣4×(a﹣1)×1>0,解这个不等式得,a<2,又∵二次项系数是(a﹣1),∴a≠1.故a的取值范围是a<2且a≠1.17.解:如图①:AM2=AB2+BM2=16+(5+2)2=65;如图②:AM2=AC2+CM2=92+4=85;如图③:AM2=52+(4+2)2=61.∴蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是:61.故答案为:61.18.解:设B′C′和CD的交点是O,连接OA,∵AD=AB′,AO=AO,∠D=∠B′=90°,∴Rt △ADO ≌Rt △AB′O , ∴∠OAD=∠OAB′=30°, ∴OD=OB′=,S 四边形AB′OD =2S △AOD =2××=2,∴S 阴影部分=S 正方形﹣S 四边形AB′OD =6﹣2.三.解答题(共10小题,满分76分) 19.解:(1)原式=3﹣4﹣2×+4=2; (2)原式=•=x ﹣y .20.解:(1)x 2﹣4x=3, x 2﹣4x +4=7 (x ﹣2)2=7 x=2±(2)由x ﹣3(x ﹣2)≤4,解得x ≥1, 由>x ﹣1,解得x <4∴不等式组的解集为:1≤x <4 21.解:(1)∵AD=2,∠DAE=90°, ∴弧DE 的长 l 1==π,同理弧EF 的长 l 2==2π,弧FG 的长 l 3==3π,所以,点D 运动到点G 所经过的路线长l=l 1+l 2+l 3=6π. (2)GB=DF .理由如下:延长GB 交DF 于H . ∵C D=CB ,∠DCF=∠BCG ,CF=CG ,∴△FDC≌△GBC.∴GB=DF.22.解:(1)从中任意取一个球,可能的结果有3种:1、﹣1、2,其中为正数的结果有2种,∴标号为正数的概率是,故答案为:;(2)列表如下:1﹣121y=x+1y=x﹣1y=x+2﹣1y=﹣x+1y=﹣x﹣1y=﹣x+22y=2x+1y=2x﹣1y=2x+2其中直线y=kx+b经过一、二、三象限的有4种情况,∴一次函数y=kx+b的图象经过一,二,三象限的概率=.23.解:(1)EH2+CH2=AE2,如图1,过E作EM⊥AD于M,∵四边形ABCD是菱形,∴AD=CD,∠ADE=∠CDE,∵EH⊥CD,∴∠DME=∠DHE=90°,在△DME与△DHE中,,∴△DME≌△DHE,∴EM=EH,DM=DH,∴AM=CH,在Rt△AME中,AE2=AM2+EM2,∴AE2=EH2+CH2;故答案为:EH2+CH2=AE2;(2)如图2,∵菱形ABCD,∠ADC=60°,∴∠BDC=∠BDA=30°,DA=DC,∵EH⊥CD,∴∠DEH=60°,在CH上截取HG,使HG=EH,∵DH⊥EG,∴ED=DG,又∵∠DEG=60°,∴△DEG是等边三角形,∴∠EDG=60°,∵∠EDG=∠ADC=60°,∴∠EDG﹣∠ADG=∠ADC﹣∠ADG,∴∠ADE=∠CDG,在△DAE与△DCG中,,∴△DAE≌△DCG,∴AE=GC,∵CH=CG+GH,∴CH=AE+EH.24.解:(1)设派往A地区x台乙型联合收割机,则派往B地区x台乙型联合收割机为(30﹣x)台,派往A、B地区的甲型联合收割机分别为(30﹣x)台和(x﹣10)台,∴y=1600x+1200(30﹣x)+1800(30﹣x)+1600(x﹣10)=200x+74000(10≤x ≤30);(2)由题意可得,200x+74000≥79600,得x≥28,∴28≤x≤30,x为整数,∴x=28、29、30,∴有三种分配方案,方案一:派往A地区的甲型联合收割机2台,乙型联合收割机28台,其余的全派往B地区;方案二:派往A地区的甲型联合收割机1台,乙型联合收割机29台,其余的全派往B地区;方案三:派往A地区的甲型联合收割机0台,乙型联合收割机30台,其余的全派往B地区;(3)派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高,理由:∵y=200x+74000中y随x的增大而增大,∴当x=30时,y取得最大值,此时y=80000,∴派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高.25.解:(1)过点P作PE⊥AB于E,PH⊥BD于H,设PH=5x米,CH=12x米,在Rt△ABC中,∠ACB=63.4°,BC=90米,则tan63.4°=,AB=180米,在Rt△AEP中,∠APE=53°,=,解得x=,5x=5×=≈14.3.故此人所在位置点P的铅直高度约是14.3米;(2)在Rt△PHC中,PC==13x=,故此人从所在位置点P走到建筑物底部B点的路程是+90=≈127.1米.26.解:(1)∵正方形OABC的面积为9,∴点B的坐标为:(3,3),∵点B在反比例函数y=(k>0,x>0)的图象上,∴3=,即k=9,∴该反比例函数的解析式为:y=(x>0);(2)根据题意得:P(t,),分两种情况:①当点P1在点B的左侧时,S=t•(﹣3)=﹣3t+9(0≤t≤3);若S=,则﹣3t+9=,解得:t=;②当点P2在点B的右侧时,则S=(t﹣3)•=9﹣;若S=,则9﹣=,解得:t=6;∴S与t的函数关系式为:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);当S=时,对应的t值为或6;(3)存在.若OB=BF=3,此时CF=BC=3,∴OF=6,∴6=,解得:t=;若OB=OF=3,则3=,解得:t=;若BF=OF,此时点F与C重合,t=3;∴当t=或或3时,使△FBO为等腰三角形.27.(1)证明:∵PD切⊙O于点C,∴OC⊥PD,又∵AD⊥PD,∴OC∥AD,∴∠ACO=∠DAC.∵OC=OA,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB;(2)证明:∵AD⊥PD,∴∠DAC+∠ACD=90°.又∵AB为⊙O的直径,∴∠ACB=90°.∴∠PCB+∠ACD=90°,∴∠DAC=∠PCB.又∵∠DAC=∠CAO,∴∠CAO=∠PCB.∵CE平分∠ACB,∴∠ACF=∠BCF,∴∠CAO+∠ACF=∠PCB+∠BCF,∴∠PFC=∠PCF,∴PC=PF;(3)解:∵∠PAC=∠PCB,∠P=∠P,∴△PAC∽△PCB,∴.又∵tan∠ABC=,∴,∴,设PC=4k,PB=3k,则在Rt△POC中,PO=3k+7,OC=7,∵PC2+OC2=OP2,∴(4k)2+72=(3k+7)2,∴k=6 (k=0不合题意,舍去).∴PC=4k=4×6=24.28.解:(1)将A、C两点坐标代入抛物线,得,解得:,∴抛物线的解析式为y=﹣x2+x+8;(2)①∵OA=8,OC=6,∴AC==10,过点Q作QE⊥BC与E点,则sin∠ACB===,∴=,∴QE=(10﹣m),∴S=•CP•QE=m×(10﹣m)=﹣m2+3m;②∵S=•CP•QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,∴当m=5时,S取最大值;在抛物线对称轴l上存在点F,使△FDQ为直角三角形,∵抛物线的解析式为y=﹣x2+x+8的对称轴为x=,D的坐标为(3,8),Q(3,4),当∠FDQ=90°时,F1(,8),当∠FQD=90°时,则F2(,4),当∠DFQ=90°时,设F(,n),则FD2+FQ2=DQ2,即+(8﹣n)2++(n﹣4)2=16,解得:n=6±,∴F3(,6+),F4(,6﹣),满足条件的点F共有四个,坐标分别为F1(,8),F2(,4),F3(,6+),F4(,6﹣).。

2018年江苏省连云港市中考数学模拟试题-有答案

2018年江苏省连云港市中考数学模拟试题-有答案

yx O-1 2 2018年中考数学模拟试题一、选择题:(本大题共有8个小题,每小题3分,共24分)1.计算-2的相反数是 ( )A .-2B .2C .-12D .12【命题意图】考查相反数的概念,让学生区别倒数、相反数、绝对值的不同,简单,注重基础。

【参考答案】B 【试题来源】:原创 2.下列计算正确的一个是 ( )A . a 5+ a 5 =2a 10B . a 3·a 5= a 15C .(a 2b)3=a 2b 3D .(2)(2)a a +-= 24a - 【命题意图】考查学生幂的有关运算,区别幂的四则混合运算法则,简单,重视基础。

【参考答案】D 【试题来源】原创3.某几何体的三视图如左图所示,则此几何体是( )A .正三棱柱 B .圆柱 C .长方 D .圆锥【命题意图】本题比较容易,考查三视图。

讲评时根据主 视图、俯视图和左视图,很容易得出这个几何体是正三 棱柱。

【参考答案】A 【试题来源】原创4.在ABC ∆中, ︒=∠90C ,13=AB ,12=BC ,则A tan 的值为( )A .1312 B . 135C . 512D . 125【命题意图】考查直角三角形中正切问题及勾股定理运用。

【参考答案】 C 【试题来源】原创5.二次函数22y x x =--的图象如图所示,则函数值y <0时,x 的取值范围是( )A .x <-1B .x >2C .-1<x <2D .x <-1或x >2【命题意图】以坐标图形为依托,着重考查学生对二次函数性质的理解。

渗透了数形结合的数学思想。

【参考答案】C 【试题来源】原创6.截至2014度,我国人口已超过13亿人.数据“13亿”用科学记数可表示为( )第3题图B F CE DAA .1.3×108B .13×108C .13×109D .1.3×109【命题意图】在现实背景下考查学生对科学记数法的理解及百、千、万、亿等与数之间的互化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前|
数学
(考试时间:120分钟试卷满分:120分)
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:中考全部内容。

第Ⅰ卷
一、选择题(本大题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一个选项是符合题目要求
的)
1.计算2–(–3)×4的结果是
A.20 B.–10
C.14 D.–20
2.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为
A.1.05×105B.0.105×10–4
C.1.05×10–5D.105×10–7
3.一元二次方程2
22350
x x
-+=的根的情况是
A.方程没有实数根B.方程有两个相等的实数根
C.方程有两个不相等的实数根D.无法判断方程实数根情况
4.下列运算正确的是
A.2a–a=2 B.2a+b=2ab
C.–a2b+2a2b=a2b D.3a2+2a2=5a45.如图,将斜边长为4,∠A为30°角的Rt△ABC绕点B顺时针旋转120°得到△A′C′B,弧 AA'、 CC'是旋转过程中A、C的运动轨迹,则图中阴影部分的面积为
A.4π+23B .
16
π–23
3
C .
16
π23
3
+D.4π
6.如图,P为正方形ABCD的对角线BD上任一点,过点P作PE⊥BC于点E,PF⊥CD于点F,连接EF.给出以下4个结论:①△FPD是等腰直角三角形;②AP=EF;③AD=PD;④∠PFE=∠BAP.其中,所有正确的结论是
A.①②B.①④C.①②④D.①③④
第Ⅱ卷
二、填空题(本大题共10小题,每小题2分,共20分)
7.在实数范围内因式分解:23
x y y
-=__________.
8.不等式组()
11
2333
x
x x
+≥
+->



的解集是__________.
9.已知一组数据1,2,0,–1,x,1的平均数是1,则这组数据的中位数为__________.
10.若29
x y
-+与3
x y
--互为相反数,则x+y的值为__________.
11.若m、n是一元二次方程x2–5x–2=0的两个实数根,则m+n–mn=__________.
12.设0
a<,0
b>,且a b
>,用“<”号把a,a
-,b,b-连接起来为__________.
13.如图,AB为⊙O的直径,CD为⊙O的弦,∠ACD=54°,则∠BAD=__________.
14.如图,直线a∥b,点A,B位于直线a上,点C,D位于直线b上,且AB∶CD=1∶2,若三角形ABC的面积为
6,则三角形BCD的面积为__________.
15.如图,已知菱形OABC的两个顶点O(0,0),B(2,2),若将菱形绕点O以每秒45°的速度逆时针旋转.若旋转了2019秒,则此时菱形两对角线交点D的坐标为__________.
16.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A,B,C,D分别是“果圆”
与坐标轴的交点,抛物线的解析式为y=x2–2x–3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为__________.
三、解答题(本大题共11小题,共88分.解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分7分)计算:2cos30°+(3–2)–1+|–1
2 |.
18.(本小题满分7分)求不等式组
322
13
11
22
x x
x x
->+
-≤-



⎪⎩



19.(本小题满分7分)先化简22
1
a
a
+
-
÷(a+1)+
2
2
1
21
a
a a
-
-+
,然后a在–1、1、2三个数中任选一个合适的数代入求
值.
20.(本小题满分8分)如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且
BE=BD,连接AE、DE、DC.2-1-c-n-j-y
(1)求证:△ABE≌△CBD;
(2)若∠CAE=30°,求∠ACD的度数.
21.(本小题满分8分)如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(2,3).双曲线(0)
k
y x
x
=>的图象经过BC的中点D,且与AB交于点E,连接DE.
(1)求k的值及点E的坐标;
(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB的解析式.
22.(本小题满分8分)如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.
(1)求证:△AEC≌△ADB;
(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.
23.(本小题满分8分)如图,一辆摩拜单车放在水平的地面上,车把头下方A处与坐垫下方B处在平行于地面的水平线上,A、B之间的距离约为49cm,现测得AC、BC与AB的夹角分别为45°与68°,若点C到地面的距离CD为28cm,坐垫中轴E处与点B的距离BE为4cm,求点E到地面的距离(结果保留一位小数).(参考数据:sin68°≈0.93,cos68°≈0.37,tan22°≈0.40)
24.(本小题满分8分)如图,AB 是以BC 为直径的半圆O 的切线,D 为半圆上一点,AD =AB ,AD 、BC 的延长线
相交于点E . (1
)求证:AD 是半圆O 的切线;
(2)连接CD ,求证:∠A =2∠CDE .
25.(本小题满分8分)某中学的“周末远道生管理”是学校的一大特色,为了增强远道生的体质,丰富远道生的
周末生活,学校决定开设以下体育活动项目: A
.篮球 ;B .乒乓球;C .羽毛球;D .足球.
为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题: (1)这次被调查的学生共有__________人; (2)请你将条形统计图(2)补充完整; (3)在平时的乒乓球活动项目中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答). 26.(本小题满分8分)某电子厂生产一种新型电子产品,每件制造成本为20元,试销过程中发现,每月销售量y
(万件)与销售单价x (元)之间的关系可以近似地看作一次函数y =–2x +100.(利润=售价–制造成本) (1)写出每月的利润z (万元)与销售单价x (元)之间的函数关系式; (2)当销售单价为多少元时,厂商每月获得的利润为400万元?
(3)根据相关部门规定,这种电子产品的销售单价不能高于40元,如果厂商每月的制造成本不超过520万元,
那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?【来源:21·世纪·教育·网】
27.(本小题满分11分)平面上,Rt △ABC 与直径为CE 的半圆O 如图1摆放,∠B =90°,AC =2
CE =m ,BC =n ,半
圆O 交BC 边于点D ,将半圆O 绕点C 按逆时针方向旋转,点D 随半圆O 旋转且∠ECD 始终等于∠ACB ,旋转角记为α(0°≤α≤180°). (1)当α=0°时,连接DE ,则∠CDE =__________°,CD =__________; (2)试判断:旋转过程中BD AE 的大小有无变化?请仅就图2的情形给出证明; (3)若m =10,n =8,当α=∠ACB 时,求线段BD 的长; (4)若m =6,n =42,当半圆O 旋转至与△ABC 的边相切时,直接写出线段BD 的长.。

相关文档
最新文档