高三2月月考理科数学试卷

合集下载

高三数学理科第二次月考试题及答案

高三数学理科第二次月考试题及答案

从化中学高三数学月考理科试题(/9)命题:黄小斌 审题: 李希胜一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、若i 为虚数单位,图中复平面内点Z 表示复数Z , 则表示复数的点是( ) (A) E (B) F (C) G (D) H2、若集合,则=A C R ( )(A ) (B ) (C ) (D ) 3、设是首项大于零的等比数列,则“”是“数列是递增数列”的( ) (A )充分而不必要条件 (B)必要而不充分条件(C)充分必要条件 (D)既不充分也不必要条件4、 下列函数中,周期为,且在上为减函数的是( ) (A ) (B ) (C ) (D )5、已知和点M 满足.若存在实数m 使得成立,则m 的值为( )(A) 2 (B )3 (C )4 (D )56、设0a >,0b >,则以下不等式中,不恒成立的是( )(A) 114a b a b++≥()() (B)22b ba a+>+ (C)111a b a b a b a b+<+++++ (D)a b b aa b a b ≥7、在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为( )(A) 10 (B) 11 (C) 12 (D) 151zi+121log 2A x x ⎧⎫⎪⎪=≥⎨⎬⎪⎪⎩⎭2(,0],2⎛⎫-∞+∞ ⎪ ⎪⎝⎭22⎛⎫+∞ ⎪ ⎪⎝⎭2(,0][,)2-∞+∞2)2+∞{}n a 12a a <{}n a π[,]42ππsin(2)2y x π=+cos(2)2y x π=+sin()2y x π=+cos()2y x π=+ABC ∆0MA MB MC --→--→--→+=+AB AC AM m --→--→--→+=8、已知,函数,若满足关于的方程,则下列选项的命题中为假命题的是( )(A )(B )(C ) (D )二、填空题:本大题共7小题.考生作答6小题.每小题5分,满分30分(一) 必做题(9~13题)9、若点p (m ,3)到直线的距离为4,且点p 在不等式<3表示的平面区域内,则m= 。

数学理科月考试卷

数学理科月考试卷

数学理科月考试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把答案填涂在答题纸的相应位置. 1.在复平面内,复数323Z i i=+-对应的点位于 ( ) A .第四象限 B .第三象限 C .第二象限 D .第一象限 2.已知集合1|lg x M x y x -⎧⎫==⎨⎬⎩⎭,{}2|23N y y x x ==++,则N M C R )(( )A .{x |0<x <1}B .{x |x >1}C .{x |x ≥2}D .{x |1<x <2} 3.设f (x )是定义在R 上的奇函数,当0<x 时,f (x )=x x e -- (e 为自然对数的底数),则(ln 6)f 的值为 ( )A .ln6+6B . ln6-6C . -ln6+6D .-ln6-64.已知等差数列{}n a 的n 前项和为n S ,其中10150,25,n S S S ==则取得最小值时n 的值是( )A .4B .5C .6D .75.过抛物线2y =4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是原点,若|AF |=3,则△AOB 的面积为( ) ABCD .6.执行右边的程序框图,若输出的S 是127,则判断框内应该是( )A .n ≤5B .n ≤6C .n ≤7D .n ≤87.函数sin(),0,02y x πωϕωϕ=+><<() 在一个周期内的图象如图所示, A ,06π⎛⎫- ⎪⎝⎭,B 在y 轴上,C 为图象上的最低点,E 为该函数图象的一个对称中心,B 与D 关于点E 对称,CD 在x 轴上的投影为π12,则ω,φ的值为( )A .ω=2,φ=π3B .ω=2,φ=π6C .ω=12,φ=π3D .ω=12,φ=π68.一个四面体的四个顶点在空间直角坐标系xyz O -中的坐标分别是(0,0,0),(1,2,0),(0,2,2),(3,0,1),则该四面体中以yOz 平面为投影面的正视图的面积为A .3B .25C .2D .279.函数的部分图象为10.三棱锥S —ABC 中,∠SBA =∠SCA =90°,△ABC 是斜边AB =a 的等腰直角三角形,则以下结论中:①异面直线SB 与AC 所成的角为90°. ②直线SB ⊥平面ABC ; ③平面SBC ⊥平面SAC ;④点C 到平面SAB 的距离是12a .其中正确的个数是( ). A.1 B.2 C.3 D.411已知H 是球O 的直径AB 上一点,AH:HB =1:2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为A .53π B .4πC .92π D .14435π12.设()ln f x x =,若函数()()g x f x ax =-在区间(]0,3上有三个零点,则实数a 的取值范围是A.10,e ⎛⎫ ⎪⎝⎭B.ln 3,3e ⎛⎫⎪⎝⎭C.ln 30,3⎛⎤⎥⎝⎦D.ln 31,3e ⎡⎫⎪⎢⎣⎭ 二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知在正方体1111ABCD A BC D -中,点E 是棱11A B 的中点,则 直线AE 与平面11BDD B 所成角的正切值是 . 14.己知x>0,y>0,且 115x y x y+++=,则x+y 的最大值是______. 15.4D ABC DA ABC ABC DA -⊥=三棱锥中,底面,底面为等边三角形,,AB=3,D ABC -则三棱锥的外接球体积为 。

河北省唐山高三数学第二次月考试题(理科)

河北省唐山高三数学第二次月考试题(理科)

河北省唐山地区2007-2008学年度高三数学第二次月考试题(理科)总分:150分 考试时间:120分钟第Ⅰ卷(选择题 共50分)一、选择题(每小题5分,共50分) 1.已知)4tan(,43tan παα+-=则等于 ( )A .71 B .7C .-71 D .-7 2.函数2cos 2sin 1xx y -=的图象( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于2π=x 轴对称3.已知0)3(:,1|32:|<-<-x x q x p ,则p 是q 的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件 4.函数)23sin(2x y -=π单调增区间为( )A .]125,12[ππππ+-k k B .]1211,125[ππππ++k kC .]6,3[ππππ+-k kD .Z k k k ∈++其中]32,6[ππππ5.设向量,,2),4,3(),2,1(-==若表示向量的有向线段首位相接能够成三角形,则向量为( )A .(4,6)B .(-4,6)C .(-4,-6)D .(4,-6)6.下列函数中,图象的一部分如右图所示的是( )A .⎪⎭⎫⎝⎛+=6sin πx y B .⎪⎭⎫ ⎝⎛-=62sin πx yC .⎪⎭⎫⎝⎛-=34cos πx y D .⎪⎭⎫⎝⎛-=62cos πx y 7.已知O 为△ABC 所在平面内一点,满足OA OC OC OB OB OA ⋅=⋅=⋅,则O 为△ABC的 ( )A .外心B .内心C .垂心D .重心 8.若互不相等的实数a ,b ,c 成等差数列,c ,a ,b 成等比数列,且103=++c b a ,则a=( )A .4B .2C .-4D .-29.已知实数a ,b 均不为零,ab,6,tan sin cos cos sin 则且παββαααα=-=-+b a b a 等于( )A .3B .33 C .-3D .-33 10.有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的 中点.已知 最底层正方体的棱长为2,且该塔形的表面积 (含最底层正方体的底面面积)超过39,则该塔形中正方 体的个数至少是 ( ) A .5; B .6; C .7;D .8;第Ⅱ卷(非选择题 共100分)二、填空题(每小题4分,共24分)11.设1,0≠>a a ,函数)32(log )(2+-=x x x f a 有最小值,则不等式0)1(log >-x a 的解集为 .12.若2tan =θ,则θθθcos sin 3sin 22-= .13.把函数)3cos(π+=x y 的图象向左平移m 个单位(m >0),所得图象关于y 轴对称,则m的最小值是 .14.在等差数列}{n a 中,7413,0a a a =>,前n 项和为S n ,若S n 取得最大值,则n= .15.在△ABC 中,A ,B ,C 成等差数列,则2tan 2tan 32C tan 2tan CA A ++= . 16.①存在31cos sin )2,0(=+∈a a 使πα ②存在区间(a,b )使x y cos =为减函数而0sin <x ③x y tan =在其定义域内为增函数 ④)2sin(2cos x x y -+=π即有最大、最小值,又是偶函数⑤|62|sin π+=x y 最小正周期为π以上命题错误的为 .三、解答题(17—20每题13分,21—22每题12分,共76分)17.已知}5|21||{},0,0944|{22≤-=>≤-+-=x x B m m x x x A ,若A 是B 的真子集,求实数m 的取值范围.18.若函数)2cos(2sin )2sin(42cos 1)(x x a x x x f --++=ππ(1)若3=a ,求)(x f 的单调增区间.(2)若)(x f 的最大值为2,试确定常数a 的值.19.(13分)在△ABC 中,∠A 、∠B 、∠C 的对边分别为a ,b ,c ,且满足.cos cos )2(C b B c a =- (1)求角B 的大小.(2)设k k A A ⋅>==),1)(1,4(),2cos ,(sin 的最大值为5,求k 的值.20.已知x=1是函数1)1(3)(23+++-=nx x m mx x f 的一个极值点,其中0,,<∈m R n m (1)求m 与n 的关系表达式;(2)当]1,1[-∈x 时,函数y=)(x f 的图象上任意一点的切线斜率恒大于3m ,求m 的取值范围.21.设函数)(x f 的定义域为(0,+∞),且对任意的正实数x,y 都有)()()(y f x f xy f +=恒成立.已知0)(,1,1)2(>>=x f x f 且.(1)判断),0()(+∞=在x f y 上的单调性,并说明理由. (2)一个各项为正数的数列}{n a 满足*)(1)1()()(N n a f a f s f n n n ∈-+==,其中n s 是数列}{n a 的前n 项的和,求数列的通项n a .22.(12分)设数列}{n a 的前n 项和,...3,2,1,32231341=+⨯-=+n a S n n n (1)求首项a 1; (2)求数列的通项a n ;(3)设∑=<==ni i n n n T n S T 1.23,...,3,2,1,2求证参考答案一、选择题1.A 2.D 3.B 4.B 5.C 6.D 7.C 8.C 9.B 10.B1. A 解析:,71tan 1tan 1)4tan(,43tan =-+=+-=ααπαα选A. 6. D 解析:从图象看出,,461241πππ=+=T 所以函数的最小正周期为π,函数应为x y 2sin =向左平移了6π个单位, 即)32sin()6(2sin ππ+=+=x x y)322cos(ππ++-=x),62cos(π-=x 选D.8. D 解:由互不相等的实数a ,b ,c 成等差数列可设a=b -d ,c=b +d ,由103=++c b a 可得b=2,所以a=2-d ,c=2+d ,又c,a,b 成等比数列可得d=6,所以a=-4,选D. 9.Bβααααtan sin cos cos sin =-+b a b aαβαβcos cos cos cos b a +⇒ αβαβsin sin sin cos b a -= )sin sin sin (cos αβαβ+⇒b )sin cos cos (sin αβαβ-=a )sin()cos(αβαβ-=-⇒a b336tan )tan(==-=⇒παβa b 10.解:一个正方体时表面记为24,二个正方体时表面记为24+4×;32)2(2=三个正方体时表面记为24+4×;3614)2(2=⨯+-d四个正方体时表面记为24+4×;38)22(414)2(22=⨯+⨯+五个正方体时表面记为.39)21(4)22(414)2(424222=⨯+⨯+⨯+⨯+ 二、填空题11.}2|{>x x 12.52 13.32π14.8 15.3 16.①②③⑤ 15.解:)2tan 2tan 1)(22tan(2tan2tan CA C A C A -+=+ )2tan 2tan 1(60tan CA -︒=)2tan 2tan 1(3CA -= 3=∴原式16.①当)2,0(πα∈时,1cos sin >+αα故错; ②x y cos = 为减函数时,)2,2(πππ+∈k k x 0sin >∴x 故错;③错;④1cos cos 22-+=x x y 故对; ⑤无周期.三、解答题17.解:集合A :;2332+≤≤-m x m集合B :32≤≤-x⎩⎨⎧=+-=-323232m m 时,m 无解, 3100323232≤<∴>⎩⎨⎧≤+-≥-∴m m m m 且18.解:(1))6sin(sin 23cos 212cos 2sin cos 4cos 2)(2π+=+=+=x x x x x a x x x f 又0cos ≠x2ππ=≠∴k x)(x f ∴的单调增区是为Z k k k k k ∈+-⋃--),32,22()22,322(ππππππππ(2))sin(441sin 2cos 212cos 2sin cos 4cos 2)(22ϕ++=+=+=x a x a x x x a x x x f由已知有,54412=+a 解之得15±=a 19.解:(1).cos cos )2(Cb Bc a =-C B B C A cos sin cos )sin sin 2(⋅=-∴整理得A C B B C C B B A sin )sin(cos sin cos sin cos sin 2=+=⋅+= ),,0(π∈A 0s i n ≠∴A321cos π=∴=∴B B(2))32,0(,1sin 4sin 22cos sin 42π∈++-=+=⋅A A k A A A k n m 其中 设]1,0(sin ∈=t A ,则]1,0(.1422∈++-=⋅t kt t ∵对称轴,1>=k t∴当t=1时,⋅取得最大值. 即23,5142==++-k k 解得 20.解:(1),)1(63)(2n x m mx x f ++-='0)1(='f0)1(63=++-∴n m m 63+=∴m n(2)02)1(2,3)(2>++->'x m mx m x f 即0<m]1,1[,02)1(22-∈<++-∴x mx m m x设mx m m x x g 2)1(2)(2++-=⎩⎨⎧<<-∴0)1(0)1(g g⎪⎩⎪⎨⎧<-<+++∴0102221mm 34<∴m 又034,0<<-∴<m m 21.解:(1)设)()()()(),,0(,11211222121x f x xf x x x f x f x x x x +=⋅=<+∞∈则且 0)(1>>x f x 时)(),()(0)(1212x f x f x f x x f 故>>∴为增函数.(2)由)()(1)(1++=+n n n a f a f s f)()()2()(1++==∴n n n a f a f f s f ,2,21时当≥⋅=∴+n a a s n n n ,211n n n a a s ⋅=∴--两式相减得:12122----+=n n n n n a a a a a)2(0)1)((11≥=--+∴--n a a a a n n n n n a n a a n n n =∴≥=-∴-)2(1122.(1)324313432231341111+⨯-==+⨯-=+a S a a S n n n 得 21=∴a 再由)2(322313411≥+⨯-=--n a S n n n)22(31)(34111n n n n n n n a a S S a -⨯--=-=∴+--整理得)2(4211--+=+n n n n a a}2{n n a +∴是首项为421=+a ,公比为4的等比数列.即n n n a 44421=⨯=+-*.24N n a n n n ∈-=∴(2)将32231)24(34,241+⨯--=-=+n n n n nnn S a 代入 )12)(12(32)22)(12(31111--=--=+++n n n n)121121(23)12)(2(223211---=-⨯==∴++n n n n n n n n S T23)121121(23)121121(2311111<---=---=+=+=∑∑n n i i i ni Ti。

2020-2021学年湖南省雅礼中学高三(下)第二次月考数学试卷(理科) Word版含解析

2020-2021学年湖南省雅礼中学高三(下)第二次月考数学试卷(理科) Word版含解析

2022-2021学年湖南省雅礼中学高三(下)其次次月考数学试卷(理科)一.选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的.把答案填在答题卡中对应题号的框框内.)1.已知集合A={﹣2,﹣1,0,1,2,3},集合,则A∩B等于()A.{﹣2,﹣1,0,1} B.{﹣1,0,1} C.{﹣1,0,1,2} D.{﹣1,0,1,2,3}2.若A、B均是非空集合,则A∩B≠∅是A⊆B的()A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件3.(中诱导公式、基本公式)已知,且,则tan(2π﹣α)的值为()A.B.C.D.4.如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥面A1B1C1,正视图是边长为2的正方形,俯视图为一个等边三角形,该三棱柱的左视图面积为()A.2B.C.2D.45.已知向量满足:,与的夹角为,则=()A.2 B.4 C.2D.86.设x,y 满足约束条件,则目标函数z=的最小值为()A.2 B.1 C.D.﹣27.设f(x)定义如下面数表,{x n}满足x0=5,且对任意自然数n均有x n+1=f(x n),则x2022的值为()x 1 234 5f(x)4 135 2A.4 B.1 C.3 D.28.如图,长沙河西先导区某广场要划定一矩形区域ABCD,并在该区域内开拓出三块外形大小相同的矩形绿化区,这三块绿化区四周和绿化区之间设有1米宽的走道.已知三块绿化区的总面积为800平方米,则该矩形区域ABCD占地面积的最小值为()平方米.A.900 B.920 C.948 D.9689.已知函数,若存在x1<x2,使得f(x1)=f(x2),则x1•f(x2)的取值范围为()A.B.C.D.10.设定义在R上的偶函数f(x)满足f(x+2)=f(x),f′(x)是f(x)的导函数,当x∈[0,1]时,0≤f(x)≤1;当x∈(0,2)且x≠1时,x(x﹣1)f′(x)<0.则方程f(x)=lg|x|根的个数为()A.12 B.1 6 C.18 D.20二.填空题:本大题共1小题,考生作答5小题,每小题5分,共25分,把答案填在答题卡中对应题号后的横线上.(一)选做题(请考生在第11、12、13题中任选两题作答,假如全做,则按前两题给分)【几何证明选讲】11.如图,PC切⊙O于点C,割线PAB经过圆心O,弦CD⊥AB于点E,已知⊙O的半径为3,PA=2,则OE=.【极坐标系与参数方程选讲】12.已知曲线C的参数方程为(θ为参数),直线l的极坐标方程为,它们的交点在平面直角坐标系中的坐标为.【不等式选讲】1011•天津)已知集合A={x∈R||x+3|+|x﹣4|≤9},B=,则集合A∩B=.(二)必做题(14~16题)14.设(其中e为自然对数的底数),则的值为.15.动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间t=0时,点A的坐标是,则当0≤t≤12时,动点A的纵坐标y关于t(单位:秒)的函数的单调递增区间是.16.已知数列{a n}的前n项和S n=(﹣1)n •n,若对任意正整数n,(a n+1﹣p)(a n﹣p )<0恒成立,则实数P 的取值范围是.三.解答题:本大题共6小题,共75分.解答应写出必要的文字说明,证明过程或演算步骤.17.设函数.(Ⅰ)求f(x)的最小正周期;(Ⅱ)当时,求函数f(x)的最大值和最小值.18.设数列{a n}的前n项和为S n,已知对任意正整数n,都有S n+2=2a n成立.(1)求数列{a n}的通项公式;(2)设,数列{b n}的前n项和为T n,求证:T n<3.19.如图所示,在平面四边形ABCD中,,与的夹角为,与的夹角为.(1)求△CDE的面积S;(2)求.20.已知函数f(x )=lnx﹣ax+﹣1(a∈R)(1)当a=﹣1时,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)当a≤时,争辩f(x)的单调性.21.若数列{a n}(n∈N*)满足:①a n≥0;②a n﹣2a n+1+a n+2≥0;③a1+a2+…+a n≤1,则称数列{a n}为“和谐”数列.(1)已知数列{a n},(n∈N*),推断{a n}是否为“和谐”数列,说明理由;(2)若数列{a n}为“和谐”数列,证明:.(n∈N*)22.已知函数f(x)=(1)当x>0时,证明:f(x)>;(2)当x>﹣1且x≠0时,不等式f(x)<恒成立,求实数k的值.2022-2021学年湖南省雅礼中学高三(下)其次次月考数学试卷(理科)参考答案与试题解析一.选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的.把答案填在答题卡中对应题号的框框内.)1.已知集合A={﹣2,﹣1,0,1,2,3},集合,则A∩B等于()A.{﹣2,﹣1,0,1} B.{﹣1,0,1} C.{﹣1,0,1,2} D.{﹣1,0,1,2,3}考点:交集及其运算.专题:集合.分析:依据集合的基本运算进行求解即可.解答:解:∵A={﹣2,﹣1,0,1,2,3},集合,∴A∩B={﹣1,0,1},故选:B点评:本题主要考查集合的基本运算,比较基础.2.若A、B均是非空集合,则A∩B≠∅是A⊆B的()A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件考点:必要条件、充分条件与充要条件的推断.专题:规律型.分析:推断出“A∩B≠∅”成立推不出“A⊆B”反之,若“A⊆B”成立,则能推出A∩B≠∅”确定成立,利用充要条件的有关定义得到结论.解答:解:若“A∩B≠∅”成立推不出“A⊆B”反之,若“A⊆B”成立,则有A∩B=A≠∅,所以A∩B≠∅”确定成立,所以A∩B≠∅是A⊆B的必要不充分条件,故选B.点评:本题考查推断一个条件是另一个的什么条件,应当先化简各个条件,若条件是数集的形式,常转化为推断集合间的包含关系.3.(中诱导公式、基本公式)已知,且,则tan(2π﹣α)的值为()A.B.C.D.考点:同角三角函数基本关系的运用.专题:计算题.分析:先依据诱导公式化简已知条件,得到sinα的值,然后由α的范围,利用同角三角函数间的基本关系求出cosα的值,把所求的式子利用诱导公式化简后,再依据同角三角函数间的基本关系把切化弦后,将sinα和cosα的值代入即可求出值.解答:解:由,又,得,则.故选B点评:此题考查同学机敏运用诱导公式及同角三角函数间的基本关系化简求值,是一道中档题.同学在求cosα的值时应留意α的范围.4.如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥面A1B1C1,正视图是边长为2的正方形,俯视图为一个等边三角形,该三棱柱的左视图面积为()A.2B.C.2D.4考点:简洁空间图形的三视图.专题:计算题;空间位置关系与距离.分析:三棱柱的左视图是一个矩形,矩形的长是三棱柱的侧棱长,宽是底面三角形的一条边上的高,在边长是2的等边三角形中做出底边上的高的长度,得到结果.解答:解:由题意知三棱柱的左视图是一个矩形,矩形的长是三棱柱的侧棱长,宽是底面三角形的一条边上的高,在边长是2的等边三角形中,底边上的高是,∴侧视图的面积是2故选:A.点评:本题考查简洁的空间图形三视图,考查三视图的面积的计算,考查通过原图观看三视图的大小,比较基础.5.已知向量满足:,与的夹角为,则=()A.2 B.4 C.2D.8考点:平面对量数量积的运算.。

广东省佛山市石门中学2014届高三上学期第二次月考理科数学试卷(解析版)

广东省佛山市石门中学2014届高三上学期第二次月考理科数学试卷(解析版)

广东省佛山市石门中学2014届高三上学期第二次月考理科数学试卷(解析版)一、选择题1.()tan 600-的值等于( )A. B.3-C.D.3【答案】A 【解析】 试题分析:()()tan 600tan 600tan 318060tan 603-=-=-⨯+=-=-,选A.考点:诱导公式2.函数()412x xf x +=的图象( ) A.关于原点对称 B.关于直线y x =对称 C.关于x 轴对称 D.关于y 轴对称 【答案】D 【解析】试题分析:()241212222x xx xx xf x -++===+,定义域为R,()()()2222x x x x f x f x -----=+=+=,故函数()f x 为偶函数,其图象关于y 轴对称,选D.考点:函数的奇偶性3.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真命题的是( )A.①和②B.②和③C.③和④D.②和④【答案】D【解析】试题分析:对于命题①,当平面内的两条平行直线垂直两个平面的交线时,则这两条直线与另一个平面平行,但是这两个平面相交,命题①错误;对于命题②,根据平面与平面垂直的判定定理知,命题②正确;对于命题③,若直线a ⊥平面α,直线b α⊂,直线c α⊂,则a b ⊥,a c ⊥,但这两条直线b 与c 平面或相交,故命题③错误;对于命题④,对于平面α和平面β,αβ⊥,l αβ=,a α⊂,直线a 与直线l 不垂直,假设a β⊥,由于l αβ=,则l β⊂,则a l ⊥,这与“直线a 与直线l 不垂直矛盾”,故命题④正确,故选D.考点:1.平面与平面的平行的判定定理;2.平面与平面垂直的判定与性质定理4.设x 、y 满足001x y x y ≥⎧⎪≥⎨⎪+≤⎩,则2x y x +-的取值范围是( )A.[]0,1B.[]1,0- C.(),-∞+∞ D.[]2,2- 【答案】B 【解析】 试题分析:()2221222x y x y y x x x -++++==+---,令22y z x +=-,则12x yz x +=+-,则目标函数22y z x +=-表示可行域中的动点(),P x y 与点()2,2B -连线的斜率,作不等式组001x y x y ≥⎧⎪≥⎨⎪+≤⎩所表示的可行域如下图所示,当点P 在可行域中运动时,直线PB 的倾斜角为钝角,当点P 与坐标原点重合时,直线PB 的倾斜角最大,此时z 取最大值,则2x y x +-亦取最大值,即max000202x y x ++⎛⎫== ⎪--⎝⎭,当点P 与点A 重合时,直线PB 的倾斜角最小,此时z 取最小值,则2x yx +-亦取最小值,即min 101212x y x ++⎛⎫==- ⎪--⎝⎭,则2x y x +-的取值范围是[]1,0-,选B.考点:1.线性规划;2.直线的斜率5.设()[)[]2,0,12,1,2x x f x x x ⎧∈⎪=⎨-∈⎪⎩,则()20f x dx ⎰的值为( )A.34 B.45 C.56 D.76【答案】C 【解析】 试题分析:()()212231010011113522232326f x dx x dx x dx xx x ⎛⎫⎛⎫=+-=+-=+-= ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰,选C.考点:1.分段函数;2.定积分6.已知:231p x ->,()22:log 50q x x +-<,则p ⌝是q ⌝的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件【答案】A 【解析】试题分析:解不等式231x ->,得1x <-或2x >,所以:12p x ⌝-≤≤,解不等式()214log 50x x +-<,得251x x +->,即260x x +->,解得3x <-或2x >,故:32q x ⌝-≤≤,因此p ⌝是q ⌝的充分不必要条件,选A.考点:1.不等式的解法;2.充分必要条件 7.函数()2s i n 5fx x x π=-的零点个数是( ) A.4 B.6 C.7 D.8【答案】C 【解析】试题分析:在同一直角坐标系中作出函数()sin g x x =与()25h x x π=的图象,由图象知,函数()sin g x x =与()25h x x π=的图象有且只有7个公共点,故函数()2sin 5f x x x π=-的零点个数为7,选C.考点:1.函数的零点个数;2.函数的图象 8.数列{}n a 前n 项和为n S ,已知113a =,且对任意正整数m 、n ,都有m n m n a a a +=⋅,若n S a <恒成立则实数a 的最小值为( ) A.12 B.23 C.32 D.2【答案】A 【解析】试题分析:对任意正整数m 、n ,都有m n m n a a a +=⋅,取1m =,则有111113n n n n a a a a a a ++=⋅⇒==,故数列{}n a 是以13为首项,以13为公比的等比数列,则111111*********n n n S ⎛⎫- ⎪⎛⎫⎝⎭==-< ⎪⎝⎭-,由于n S a <对任意n N *∈恒成立,故12a ≥,即实数a的最小值为12,选A. 考点:1.等比数列的定义;2.等比数列求和;3.不等式恒成立二、填空题 9.设复数z 满足12ii z+=,则z =___________. 【答案】2i -. 【解析】 试题分析:12122i ii z i z i++=⇒==-. 考点:复数的除法10.若关于x 的不等式()2121x x a a x R ---≥++∈的解集为空集,则实数a 的取值范围是 . 【答案】()(),10,-∞-+∞.【解析】试题分析:令()12f x x x =---,由于不等式()2121x x a a x R ---≥++∈的解集为空集,这说明不等式2121x x a a ---<++在R 上恒成立在,则()2max 1a a f x ++>,由绝对值的几何意义知,函数()f x 的最小值为1,因此有211a a ++>,即20a a +>,解得1a <-或0a >,故实数a 的取值范围是()(),10,-∞-+∞.考点:1.含绝对值的不等式;2.不等式恒成立11.在直角ABC ∆ 中,90C ∠=,30A ∠=, 1BC = ,D 为斜边AB 的中点,则AC BD ⋅= .【答案】32-. 【解析】试题分析:由于ABC ∆为直角三角形,且30A ∠=,90C ∠=,所以60B ∠=,由正弦定理得s i n1i n602sin sin sin sin 302BC AC BC B AC A B A ⨯=⇒====,()1122BD BA CA CB ==- 1122CA CB =-,222111111222222AC BD AC CA CB AC AC CB AC ⎛⎫∴⋅=⋅-=--⋅=-=-⨯⎪⎝⎭32=-.考点:1.正弦定理;2.平面向量的数量积12.下面为某一几何体的三视图,则该几何体的体积为【答案】43π. 【解析】试题分析:由三视图知,该几何体是由一个14球与一个圆柱拼接而成,且14球所在的球的半径为1,圆柱的底面圆的半径为1,高为1,故该几何体的体积为32144111433V πππ=⨯⨯+⨯⨯=.考点:1.三视图;2.球体与柱体的体积 13.数列{}n a 满足:12a =,()1112,3,4,n n a n a -=-=,若数列{}n a 有一个形如()sin n a n ωϕ=+12+的通项公式,其中ω、ϕ均为实数,且0ω>,2πϕ<,则ω=________,ϕ= .【答案】23π,3π-.【解析】试题分析:根据题意知,12a =,211111122a a =-=-=,3211121a a =-=-=-,4311112a a =-=+=, 3n n a a +∴=,即数列{}n a 的周期为3,23πω∴=,2132n n a πϕ⎛⎫∴=++ ⎪⎝⎭,则121232a πϕ⎛⎫=++= ⎪⎝⎭,解得2sin 3πϕ⎛⎫+=⎪⎝⎭,由于22ππϕ-<<,所以27636πππϕ<+<,因此2333πππϕϕ+=⇒=-. 考点:1.数列的递推式;2.数列的周期性;3.三角函数的解析式 14.在极坐标系(),ρθ中,过点4π⎛⎫⎪⎝⎭作圆4sin ρθ=的切线,则切线的极坐标方程为_______________. 【答案】cos 2ρθ=. 【解析】试题分析:点4π⎛⎫⎪⎝⎭的直角坐标为()2,2,将圆4sin ρθ=的方程化为直角坐标方程为224x y y +=,化为标准式得()2224x y +-=,圆心坐标为()0,2,半径长为2,而点()2,2在圆()2224x y +-=上,圆心与点4π⎛⎫⎪⎝⎭之间连线平行于x 轴,故所求的切线方程为2x =,其极坐标方程为cos 2ρθ=.考点:1.极坐标与直角坐标之间的转化;2.圆的切线方程15.如图所示,AB 、CD 是半径为2的圆O 的两条弦,它们相交于P ,且P 是AB 的中点,43PD =,30OAP ∠=,则CP =____.【答案】94. 【解析】试题分析:由于圆O 是半径为2的圆,则2OA =,由于点P 为弦AB 的中点,所以OP AB ⊥,AP ∴=BP cos 2cos303OA OAP =∠==,由相交弦定理得243A PB PC P P DA PB PC P PD⋅⋅=⋅⇒==39344=⨯=. 考点:1.垂径定理;2.相交弦定理三、解答题16.数列{}n a 中,11a =,前n 项的和是n S ,且21n n S a =-,n N *∈.(1)求数列{}n a 的通项公式;(2)记()2log 2n n b a =,求123n n T b b b b =++++.【答案】(1)12n n a -=;(2)()12n n n T +=.【解析】试题分析:(1)先利用n a 与n S 之间的关系11,1,2n nn S n a S S n -=⎧=⎨-≥⎩对2n ≥时,利用1n n n a S S -=-求出数列{}n a 在2n ≥时的表达式,然后就11a =进行检验,从而求出数列{}n a 的通项公式;(2)在(1)的基础下,先求出数列{}n b 的通项公式,然后利用公式法求出数列{}n b 的通项公式.试题解析:(1)当2n ≥且n N *∈时,由21n n S a =-,得1121n n S a --=-,上述两式相减得11222n n n n n a a a a a --=-⇒=,12nn a a -∴=, 故数列{}n a 是以1为首项,以2为公比的等比数列,11122n n n a --∴=⨯=; (2)()()1222log 2log 22log 2n n n n b a n -==⋅==,()12311232n n n n T b b b b n +∴=++++=++++=. 考点:1.定义法求数列通项;2.等差数列求和17.如图,已知点()3,4A ,()2,0C ,点O 为坐标原点,点B 在第二象限,且3OB =,记AOC θ∠=.(1)求sin 2θ的值;(2)若7AB =,求BOC ∆的面积. 【答案】(1)24sin 225θ=;(2)AOB S ∆= 【解析】试题分析:(1)先利用三角函数的定义求出cos θ和sinθ的值,然后利用二倍角公式求出sin 2θ的值;(2)先在AOB ∆中利用余弦定理求出cos AOB ∠的值,求出AOB ∠,再由面积公式求出AOB ∆的面积.试题解析:(1)由三角函数定义得3cos 5θ==,4sin 5θ==,4324sin 22sin cos 25525θθθ∴==⨯⨯=;(2)5OA =,且3OB =,7AB =,由余弦定理得2222225371cos 22532OA OB AB AOB OA OB +-+-∠===-⋅⨯⨯, 0AOB π<∠<,所以23AOB π∠=, 设点B的坐标为(),x y ,则2222sin 3sin 3sin cos cos sin 3333y OB ππππθθθθ⎛⎫⎛⎫⎛⎫=+=+=+ ⎪⎪⎪⎝⎭⎝⎭⎝⎭4133525⎡⎛⎫=⨯⨯-+=⎢ ⎪⎝⎭⎣⎦11222BOC S OC y ∆∴=⋅=⨯=. 考点:1.三角函数的定义;2.二倍角公式;3.余弦定理;4.两角和的正弦公式;5.三角形的面积18.已知多面体ABCDE 中,AB ⊥平面A C D ,DE ⊥平面A C D ,AC AD CD ===2DE =,1AB =,F 为CE 的中点.(1)求证:AF CD ⊥;(2)求直线AC 与平面CBE 所成角的余弦值的大小.【答案】(1)详见解析;(2)直线AC 与平面CBE . 【解析】试题分析:(1)取CD 的中点G ,连接AG 、FG ,证明CD ⊥平面AFG ,进而得到AF CD ⊥;(2)法一是利用四边形ABFG 为平行四边形得到//AG BF ,于是得到点A 和点G 到平面CBE 的距离相等,证明DF ⊥平面CBE ,由于点G 为CD 的中点,由中位线原理得到点G 到平面CBE 的距离为线段DF 长度的一半,于是计算出点A 到平面CBE 的距离,根据直线与平面所成角的原理计算出直线AC 与平面CBE 所成角的正弦值,进一步求出该角的余弦值;法二是分别以GD 、GF 、GA 为x 、y 、z 轴建立空间直角坐标系G xyz -,利用空间向量法求出直线AC 与平面CBE 所成角的正弦值,再根据同角三角函数的平方关系求出这个角的余弦值.试题解析:(1)如下图所示,取CD 的中点G ,连接AG 、BF 、FG ,GFEDCBAG 、F 分别为CD 、CE 的中点,则1//2GF DE , 由于AB ⊥平面ACD ,DE ⊥平面ACD ,//AB DE ∴,又1AB =,2DE =,12AB DE ∴=,1//2AB DE ∴,所以//AB FG ,FG ∴⊥平面ACD , CD ⊂平面ACD ,CD FG ∴⊥,AC AD =,且点G 为CD 的中点,所以AG CD ⊥, AG FG G ∴=,CD ∴⊥平面AFG , AF ⊂平面AFG ,AF CD ∴⊥;(2)法一:由(1)知//AB FG ,故四边形ABFG 为平行四边形,//AG BF ∴, 故点A 到平面CBE 的距离等于点G 到平面CBE 的距离,如下图所示,连接DF 、BD , 取CF 的中点N ,连接GN ,N GFEDCBA由于AB ⊥平面ACD ,且AD ⊂平面ACD ,AB AD ∴⊥,BD ∴==,同理DE CD ⊥,CE ∴===,因为点F 为CE的中点,1122DF CE ∴==⨯= 由于2AC AD CD ===,故ACD ∆为等边三角形,G 为CD 的中点,AG CD ∴⊥,AG ∴=,由于四边形ABFG 为平行四边形,所以BF AG ==,222BF DF BD ∴+=,DF BF ∴⊥,CD DE =,点F 为CE 的中点,DF CE ∴⊥, 因为BF CE E =,DF ∴⊥平面CBE ,G 、N 分别为CD 、CF 的中点,//GN DF ∴,GN ∴⊥平面CBE ,且122GN DF ==,故点A 到平面CBE的距离为2, 设直线AC 与平面CBE 所成的角为θ,则1sin 224GN AC θ===,cos 4θ∴===,故直线AC 与平面CBE所成角的余弦值为 法二:分别以GD 、GF 、GA 为x 、y 、z 轴建立如图空间直角坐标系G xyz -,则(B ,()1,0,0C -,()1,2,0E,(CB =,()2,2,0CE =,(CA =,设平面CBE 的法向量为(),,n x y z =,则0220n CB x y n CE x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,设1x =,则()1,1,0n =-,2cos ,n CA n CA n CA⋅==⋅, 设直线AC 与平面CBE 所成角为θ,则14cos ,4n CAθ==, 所以直线AC 与平面CBE 考点:1.直线与平面垂直;2.直线与平面所成的角;3.空间向量法19.如图,已知半径为1的⊙1O 与x 轴交于A 、B 两点,OM 为⊙1O 的切线,切点为M ,且M 在第一象限,圆心1O 的坐标为()2,0,二次函数2y x bx c =-++的图象经过A 、B 两点.(1)求二次函数的解析式;(2)求切线OM 的函数解析式;(3)线段OM 上是否存在一点P ,使得以P 、O 、A 为顶点的三角形与1OO M ∆相似.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.【答案】(1)二次函数的解析式为243y x x =-+-;(2)切线OM的函数解析式为y x =; (3)点P的坐标为⎛ ⎝⎭或34⎛ ⎝⎭. 【解析】试题分析:(1)先求出圆1O 的方程,并求出圆1O 与x 轴的交点A 和B 的坐标,然后将点A 和B 的坐标代入二次函数2y x bx c =-++中解出b 和c 的值,从而确定二次函数的解析式;(2)由于切线OM 过原点,可设切线OM 的函数解析式为y kx =,利用直线OM 与圆1O 求出k 值,结合点M 的位置确定切线OM 的函数解析式;(3)对1AOP OO M ∠=∠或1AOP OMO ∠=∠进行分类讨论,充分利用几何性质,从而确定点P 的坐标.试题解析:(1)由题意知,圆1O 的方程为()2221x y -+=,令0y =,解得1x =或3x =,故点A 的坐标为()1,0,点B 的坐标为()3,0,由于二次函数2y x bx c =-++经过A 、B 两点,则有22110330b c b c ⎧-+⨯+=⎨-+⨯+=⎩,解得43b c =⎧⎨=-⎩,故二次函数的解析式为243y x x =-+-;(2)设直线OM 所对应的函数解析式为y kx =,由于点M 在第一象限,则0k >, 由于直线OM 与圆1O1==,解得k =, 故切线OM 的函数解析式为3y x =; (3)由图形知,在1OO M ∆中,130MOO ∠=,160OO M ∠=,190OMO ∠=, 在AOP ∆中,30AOP ∠=,由于1AOPOO M ∆∆,因为130AOP MOO ∠=∠=,则必有190OAP OMO ∠=∠=或160OAP OO M ∠=∠=,联立()2221y x x y ⎧=⎪⎨⎪-+=⎩,解得322x y ⎧=⎪⎪⎨⎪=⎪⎩,故点M 的坐标为3,22⎛ ⎝⎭, 当190OAP OMO ∠=∠=时,直线AP 的方程为1x =,联立1x y x =⎧⎪⎨=⎪⎩,于是点P 的坐标为⎛ ⎝⎭;当160OAP OO M ∠=∠=时,1//AP O M ,由于点A 为线段1OO 的中点,故点P 为线段OM 的中点,此时点P 的坐标为34⎛⎝⎭.综上所述,当点P 的坐标为⎛ ⎝⎭或34⎛ ⎝⎭时,1AOP OO M ∆∆.考点:1.二次函数的解析式;2.直线与圆的位置关系;3.相似三角形 20.已知曲线:1C xy =,过C 上一点(),n n n A x y 作一斜率为12n n k x =-+的直线交曲线C 于另一点()111,n n n A x y +++(1n n x x +≠且0n x ≠,点列{}n A 的横坐标构成数列{}n x ,其中1117x =. (1)求n x 与1n x +的关系式;(2)令1123n n b x =+-,求证:数列{}n b 是等比数列; (3)若3n n n c b λ=-(λ为非零整数,n N *∈),试确定λ的值,使得对任意n N *∈,都有1n n c c +>成立. 【答案】(1)12n n nx x x ++=;(2)详见解析;(3)1λ=-. 【解析】试题分析:(1)先根据直线1n n A A +的斜率为n k ,利用斜率公式与n k 构建等式,通过化简得到n x 与1n x +的关系式;(2)在(1)的基础上,将12n n nx x x ++=代入1n b +,通过化简运算得出1n b +与n b 之间的等量关系,然后根据等比数列的定义证明数列{}n b 是等比数列;(3)先求出数列{}n b 的通项公式,进而求出数列{}n c 的通项公式,将1n n c c +>进行作差得到10n n c c +->,对n 为正奇数和正偶数进行分类讨论,结合参数分离法求出λ在相应条件的取值范围,最终再将各范围取交集,从而确定非零整数λ的值.试题解析:(1)由题意知1111111112n n n n n n n n n n n n y y x x k x x x x x x x +++++--===-=---+,所以12n n nx x x ++=; (2)由(1)知12n n nx x x ++=,11111111223323232n n n n n n n nx x b x x x x x ++=+=+=+=-++--+--()22121221112223232323n n n n n n x b x x x x -+⎛⎫=-+=--+=--=-+=- ⎪----⎝⎭, 12n nb b +∴=-,故数列{}n b 是以2-为公比的等比数列;(3)111111712112333327b x =+=+=-+=---,()()1222n n n b -∴=-⨯-=-, ()332nn n n n c b λλ∴=-=-⋅-,()()()111323223320n n n n n n n n c c λλλ+++⎡⎤⎡⎤-=-⋅---⋅-=⋅+⋅->⎣⎦⎣⎦,当n 为正奇数时,则有123323320322n n nnnλλ-⋅⎛⎫⋅-⋅>⇒<= ⎪⋅⎝⎭,由于数列132n n c -⎛⎫= ⎪⎝⎭对任意正奇数n 单调递增,故当1n =时,n c 取最小值1,所以1λ<;当n 为正偶数时,则有123323320322n n n nn λλ-⋅⎛⎫⋅+⋅>⇒>-=- ⎪⋅⎝⎭,而数列132n n d -⎛⎫=- ⎪⎝⎭对任意正偶数n 单调递减,故当2n =时,n d 取最大值32-,所以32λ>-,综上所述,312λ-<<,由于λ为非零整数,因此1λ=- 考点:1.直线的斜率;2.数列的递推式;3.等比数列的定义;4.数列的单调性;5.不等式恒成立21.已知函数()11ln f x m x x m x⎛⎫=++- ⎪⎝⎭,(其中常数0m >). (1)当2m =时,求()f x 的极大值; (2)试讨论()f x 在区间()0,1上的单调性;(3)当[)3,m ∈+∞时,曲线()y f x =上总存在相异两点()()11,P x f x 、()()22,Q x f x ,使得曲线()y f x =在点P 、Q 处的切线互相平行,求12x x +的取值范围.【答案】(1)函数()f x 的极大值为53ln 222-;(2)详见解析;(3)12x x +的取值范围是6,5⎛⎫+∞ ⎪⎝⎭. 【解析】试题分析:(1)将2m =代入函数()f x 的解析式,利用导数求出函数()f x 的极大值即可;(2)先求出导数()f x ',并求出方程()f x '的两根1x m =和21x m=,对这两根的大小以及两根是否在区间()0,1进行分类讨论,并借助导数正负确定函数()f x 在区间()0,1上的单调区间;(3)先利用函数()f x 在P 、Q 两点处的切线平行得到()()12f x f x ''=,通过化简得到121212111x x m m x x x x ++=+=,利用基本不等式转化为 12121214x x m m x x x x ++=>+在[)3,+∞上恒成立,于是有min1241m x x m ⎛⎫<+ ⎪+⎝⎭,进而求出12x x +的取值范围.试题解析:(1)当2m =时,()51ln 2f x x x x=+-,定义域为()0,+∞, 所以()()()2222212512521222x x x x f x x x x x ---+'=--=-=-, 令()0f x '=,解得1x =或2x =,列表如下: 故函数()f x 在2x =处取得极大值,即()()2ln 22f x f ==-极大值;(2)()()2222111111111f x m x m x x m x m x x x m x m ⎡⎤⎛⎫⎛⎫⎛⎫'=+⋅--=--++=--- ⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 由于0m >,解方程()0f x '=,得1x m =,21x m=, ①当01m <<时,则有101m m<<<, 当0x m <<时,()0f x '<;当1m x <<时,()0f x '>,即函数()f x 在区间()0,1上的单调递减区间为()0,m ,单调递增区间为(),1m ; ②当1m =时,1m m =,则()()22110f x x x'=--<在区间()0,1上恒成立,故函数()f x 在区间()0,1上单调递减;③当1m >时,则有101m m<<<, 当10x m <<,()0f x '<;当11x m<<时,()0f x '>,故函数()f x 在区间()0,1上的单调递减区间为10,m ⎛⎫ ⎪⎝⎭,单调递增区间为1,1m ⎛⎫ ⎪⎝⎭; (3)由(2)知,()2111f x m m x x⎛⎫'=+⋅- ⎪⎝⎭, 由于()()12f x f x ''=,从而有221122111111m m m x x m x x ⎛⎫⎛⎫+-=+- ⎪ ⎪⎝⎭⎝⎭,化简得12111m x x m+=+, 即12121x x m x x m +=+,由于1212212121242x x x x x x x x x x ++>=++⎛⎫⎪⎝⎭,则有12121214x x m m x x x x ++=>+, 令()1g m m m =+,故有()124g m x x <+对任意[)3,m ∈+∞恒成立, 而()()()2211110m m g m m m-+'=-=>在()3,+∞上恒成立, 故函数()g m 在[)3,+∞上单调递增,则函数()g m 在3m =处取得最小值,即()()m i n 1033g m g ==, 因此124103x x <+,所以1265x x +>,因此12x x +的取值范围是6,5⎛⎫+∞ ⎪⎝⎭.考点:1.利用导数求函数的极值;2.导数的几何意义;3.函数的单调区间;4.分类讨论。

成都市双流中学高2012级(理科)数学高三下学期2月月考试题(含参考答案)

成都市双流中学高2012级(理科)数学高三下学期2月月考试题(含参考答案)

成都市双流中学2012届高三下期2月月考试题数 学(理工农医类)2012。

2。

16本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,考试结束后,将本试卷和答题卡一并交回.全卷满分为150分,完成时间为120钟.第I 卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.记集合2{|2},{|30}M x x N x x x =>=-≤,则N M = ( )A .{|23}x x <≤B .{|02}x x x ><-或C .{|23}x x -<≤D .{|02}x x <<2.已知复数11z i=-,则z 在复平面上对应的点位于 ( )A .第一象限B .第二象限C .第三象限D .第四3.123,,l l l 是空间三条不同的直线,则下列命题正确的是( )A .122313,//l l l l l l ⊥⊥⇒B .122313,//l l l l l l ⊥⇒⊥C .123123////,,l l l l l l ⇒共面D .123,,l l l 共点123,,l l l ⇒共面4.“函数()f x 在0x x =点处连续”是“()f x 在0x x =点处有极限”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件5.函数y =f (x )在定义域(-32,3)内的图像如图所示.记y =f (x )的导函数为y =f '(x ),则不等式f '(x )≤0的解集为( )A .[-1,12]∪[43,83]B .[-13,1]∪[2,3)C .[-32,12]∪[1,2)D .(-32,-13]∪[12,43]∪[43,3)6.已知点O 为坐标原点,A (-1,1),若点(,)M x y 为平面区域212x y x y +≥⎧⎪≤⎨⎪≤⎩上的一个动点,则OA OM ⋅的取值范围为 ( )A .[]1,0-B .[]1,2-C .[]0,1D .[]0,2 7.已知数列{}{},n n a b 满足112a =,1n n a b +=,121n n nb b a +=-,则2012b =( ) A .20112012 B .20122011 C .20122013 D .201320128.设12,F F 为椭圆的两个焦点,若椭圆上存在点P ,使12120F PF ∠=,则椭圆离心率e 的范围( )A.0,2⎛⎫ ⎪ ⎪⎝⎭B.2⎛⎫⎪ ⎪⎝⎭ C.2⎫⎪⎪⎣⎭ D.0,2⎛ ⎝⎦ 9.把函数2sin 216y x π⎛⎫=-- ⎪⎝⎭的图象按向量,16a π⎛⎫=- ⎪⎝⎭平移后得到()y g x =的图象,则()y g x =的图象在,64ππ⎡⎤⎢⎥⎣⎦的最小值为( ) A .0 B .1 C. D .-1 10.有5本不同的书,其中语文书2本,数学书2本,物理书1本,若将其随机地并排摆放到书架的同一层上,则同一科目的书都不相邻的概率是( ) A .15 B .25 C .35 D .4511.已知定义在[)0,∞上的函数()f x 满足()()32f x f x =+,当[)0,2x ∈时,()22f x x x=-+,设()f x 在[)22,2n n -上的最大值为()n a n N *∈,且{}n a 的前n 项和为n S ,则lim n n S →∞( )A .32 B .52C .2D .3 12.已知实数满足方程组332cos 2082cos 230x x x y y y ⎧++-=⎪⎨-++=⎪⎩,则()cos 2x y += A .0 B .13 C .12D .1成都市双流中学2012届高三2月月考试题数学(理)答题卷一、选择题答题卡:每小题5分,共60分第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在对应横线上. 13.随机变量()~1,4N ξ,则()2D ξ= .14.已知直线0ax by c ++=与圆22:1O x y +=相交于A 、B 两点,且AB =,则OA OB ⋅= .15.已知A 、B 两地位于北纬45的纬线上,且两地的经度之差为90,设地球的半径为R km ,则轮船以每小时20km 的速度从地A 到B 地,最少需要 小时.16.对具有相同定义域I 的函数()f x 和()g x ,如果对任意x I ∈有()()1f x g x -≤成立,则称()f x 和()g x 是I 上“密切函数对”.现给定义域均为[]0,4I =,下列四对函数如下:①()()ln 1f x x =+,()22x g x x =+;②()3f x x =,()31g x x =-;③()2xf x e x =-,()2g x x =-;④()2538f x x =-,()g x =。

【解析版】2012-2013学年广东省肇庆市广宁中学高三(下)2月月考数学试卷(理科)

【解析版】2012-2013学年广东省肇庆市广宁中学高三(下)2月月考数学试卷(理科)

2012-2013学年广东省肇庆市广宁中学高三(下)2月月考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8个小题,每小题5分,共40分.1.(5分)已知全集U=R,集合A={y|y=2x,x∈R},则∁U A=()2.(5分)已知a,b是实数,则“”是“a+b>5”的()”””“3.(5分)若某程序框图如图所示,则该程序运行后输出的值是()5.(5分)已知i是虚数单位,复数=()B解:==6.(5分)函数y=sin(2x+)的图象可由函数y=sin2x的图象()向左平移个单位长度而得到向右平移个单位长度而得到向左平移个单位长度而得到向右平移个单位长度而得到2x+2x+)==的图象向左平移个单位长度得到函数2x+7.(5分)若实数x,y满足不等式组,则2x+4y的最小值是()解:作出不等式组表示的平面区域,(﹣,﹣)8.(5分)对于直角坐标平面内的任意两点A(x1,y1)、B(x2,y2),定义它们之间的一种“距离”:‖AB‖=+,给出下列三个命题:①若点C在线段AB上,则‖AC‖+‖CB‖=‖AB‖;②在△ABC中,若∠C=90°,则‖AC‖+‖CB‖=‖AB‖;③在△ABC中,‖AC‖+‖CB‖>‖AB‖.其中真命题的个数为()+ =二、填空题:(一)必做题(9-13题)9.(5分)函数的导数为.解:∵y'==故答案为:10.(5分)在递增等比数列{a n}中,a2=2,a4﹣a3=4,则公比q=2.30人,结果合唱社被抽出12人,则这三个社团人数共有150.=,属于基础题.=12.(5分)在△ABC中,内角A,B,C的对边分别为a,b,c,已知C=,b=3,若△ABC的面积为,则c=.结合已知可求cosC===∴cosC==,解得c=故答案为:13.(5分)(2013•济南二模)已知F1,F2是双曲线C:(a>0,b>0)的左、右焦点,过F1的直线l与C的左、右两支分别交于A,B两点.若|AB|:|BF2|:|AF2|=3:4:5,则双曲线的离心率为.=故答案为:.三、填空题(选做题)(共1小题,每小题0分,满分0分)15.(2012•肇庆一模)(几何证明选讲选做题)如图,PAB、PCD为⊙O的两条割线,若PA=5,AB=7,CD=11,AC=2,则BD等于6.∴,即三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(12分)(2012•南京二模)设向量=(2,sinθ),=(1,cosθ),θ为锐角.(1)若•=,求sinθ+cosθ的值;(2)若∥,求sin(2θ+)的值..再由同角三角函数的平方关系,可得)的值.)∵•=2+sin,∴.)∵∥=,==.+=+×+(﹣17.(12分)某中学校本课程共开设了A,B,C,D共4门选修课,每个学生必须且只能选修1门选修课,现有该校的甲、乙、丙3名学生:(1)求这3名学生选修课所有选法的总数;(2)求恰有2门选修课没有被这3名学生选择的概率;(3)求A选修课被这3名学生选择的人数的数学期望.(=,==,=,×+1×+2×+3×=(18.(14分)已知某几何体的直观图和三视图如下图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形(1)求证:BC∥平面C1B1N;(2)求证:BN⊥平面C1B1N;(3)设M为AB中点,在BC边上找一点P,使MP∥平面CNB1,并求的值.证出=0•,得知⊥∵•上一点,则∴⊥⇒•∴…19.(14分)已知等差数列{a n}的公差大于0,且a3>a5是方程x2﹣14x+45=0的两根,数列{b n}的前n项的和为S n,且(n∈N*).(1)求数列{a n},{b n}的通项公式;(2)记c n=a n b n,求证:c n+1≤c n..,当时,有,∴时,有,,∵,∴为首项,以为公比的等比数列.∴,∴,=20.(14分)已知椭圆c:=1(a>b>0),左、右两个焦点分别为F1、F2,上顶点A(0,b),△AF1F2是正三角形且周长为6.(1)求椭圆C的标准方程及离心率;(2)O为坐标原点,P是直线F1A上的一个动点,求的最小值,并求出此时点P的坐标.b=((﹣,)(,的方程为;k=tan=y=,则,,可得,(解得,)的最小值为,此时点的坐标为(﹣,21.(14分)已知函数f(x)=+2x,g(x)=lnx.(1)如果函数y=f(x)在[1,+∞)上是单调减函数,求a的取值范围;(2)是否存在实数a>0,使得方程=f(x)﹣(2a+1)在区间(,e)内有且只有两个不相等的实数根?若存在,请求出a的取值范围;若不存在,请说明理由.)把方程)整理为,,)上是单调减函数,则﹣)把方程)整理为,)﹣=,令﹣)在(,,所以,解得.)。

2024-2025学年湖南省长沙市长郡中学大联考高三(上)月考数学试卷(二)(含答案)

2024-2025学年湖南省长沙市长郡中学大联考高三(上)月考数学试卷(二)(含答案)

2024-2025学年湖南省长沙市长郡中学大联考高三(上)月考数学试卷(二)一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知集合A ={x||x|⩽2},B ={t|1⩽2t ⩽8(t ∈Z)},则A ∩B =( )A. [−1,3]B. {0,1}C. [0,2]D. {0,1,2}2.已知复数z 满足|z−i|=1,则|z|的取值范围是( )A. [0,1]B. [0,1)C. [0,2)D. [0,2]3.已知p :f(x)=ln(21−x +a)(−1<x <1)是奇函数,q :a =−1,则p 是q 成立的( )A. 充要条件 B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件4.若锐角α满足sinα−cosα=55,则sin (2α+π2)=( )A. 45B. −35 C. −35或35D. −45或455.某大学在校学生中,理科生多于文科生,女生多于男生,则下述关于该大学在校学生的结论中,一定成立的是( )A. 理科男生多于文科女生B. 文科女生多于文科男生C. 理科女生多于文科男生D. 理科女生多于理科男生6.如图,某车间生产一种圆台形零件,其下底面的直径为4cm ,上底面的直径为8cm ,高为4cm ,已知点P 是上底面圆周上不与直径AB 端点重合的一点,且AP =BP ,O 为上底面圆的圆心,则OP 与平面ABC 所成的角的正切值为( )A. 2B. 12C.5D.557.在平面直角坐标系xOy 中,已知直线l :y =kx +12与圆C :x 2+y 2=1交于A ,B 两点,则△AOB 的面积的最大值为( )A. 1B. 12C.32D.348.设函数f(x)=(x 2+ax +b)lnx ,若f(x)≥0,则a 的最小值为( )A. −2B. −1C. 2D. 1二、多选题:本题共3小题,共18分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

甘肃省天祝县第一中学高三数学试卷(理)
第I 卷(选择题,共60分)
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

本题满分60分。

1、已知z =i (1+i )(i 为虚数单位),则复数z 在复平面内所对应的点位于( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限
2、若集合{}|(21)0A x x x =->,{})1(log 3x y x B -==,则A B =( )
A 、φ B.1,12⎛⎫ ⎪⎝⎭ C 、()1,0,12⎛⎫
-∞ ⎪⎝⎭
D 、1,12⎛⎤ ⎥⎝⎦
3、函数()34x f x x =+的零点所在的区间是 ( ) A 、(一2,一1) B 、(一1,0) C 、(0,1) D 、(1,2)
4、对于数列{a n },“),2,1(1 =>+n a a n n ”是“{a n }为递增数列”的( )
A 、必要不充分条件
B 、充分不必要条件
C 、充要条件
D 、既不充分也不必要条件
5、设O 为坐标原点,点M 坐标为()2,1,若(,)N x y 满足不等式组:430
21201x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩,
则OM ON 的最大值为 ( )
A 、12
B 、8
C 、6
D 、4 6、如果过曲线x x y -=4上点P 处的切线平行于直线23+=x y 那么点P 的坐标为 ( ) A 、()1,0 B 、()0,1- C 、()0,1 D 、()1,0-
7、若9
21ax x ⎛
⎫- ⎪⎝⎭
的展开式中常数项为84,其展开式中各项系数之和为( ).
A 、1-
B 、0
C 、1
D 、29 8、从如图所示的长方形区域内任取一个点(
)y x M ,, 则点M 取自阴影部分的概率为( )
A 、12
B 、
13 C 、33 D 、
3
2
9、为得到函数cos(2)3
y x =+
π
的图像,只需将函数sin 2y x =的图像 ( )
A 、 向右平移
56π个长度单位 B 、 向左平移56π
个长度单位 C 、 向右平移512π个长度单位 D 、 向左平移512π
个长度单位
10、某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相
同的牌照号码共有( )
A 、24
2610A A 个 B 、242610A 个 C 、()2
142610C 个 D 、()2
142610
C A 个 11、在ABC ∆中,内角,,A B C 的对边分别是,,a b c .若223a b bc -=,sin 23sin C B =,则A =( )
A 、30o
B 、60o
C 、120o
D 、150o
12、已知双曲线E 的中心为原点,()3,0F 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(12,15)N --,则E 的方程式为 ( )
A 、
22136x y -= B 、22145x y -= C 、22163x y -= D 、22
154
x y -= 第Ⅱ卷(非选择题,共90分)
本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答,第22题为选考题,考生根据要求做答。

二、填空题:本大题共4小题,每小题5分。

本题满分20分。

13、已知程序框图如右,则输出的i = .
14、如图是一个正三棱柱的三视图,若三棱柱的体积是3
8则=a __ .
15. 若直线220ax by +-=(,(0,))a b ∈+∞平分圆224260x y x y +---=,则
12
a b
+的最小值是 .
16.函数)(x f 的定义域为A ,若A x x ∈21,且)()(21x f x f =时总有21x x =,则称)(x f 为单函数.例如,函数)(12)(R x x x f ∈+=是单函数.下列命题:
① 函数)()(2R x x x f ∈=是单函数;
侧视图
a
23
俯视图正视图开始
1S =结束
3
i =100?
S ≥i
输出2
i i =+*S S i =是

x
y O 1 3 2
3x y =
D
A
F
E
O
B
C ② 若)(x f 为单函数,A x x ∈21,且21x x ≠则)()(21x f x f ≠;
③ 若f :A →B 为单函数,则对于任意b ∈B ,它至多有一个原象;
④ 函数)(x f 在某区间上具有单调性,则)(x f 一定是该区间上的单函数. 其中的真命题是 .(写出所有真命题的编号) 三、解答题:本题满分70分,解答应写出文字说明,证明过程和演算步骤。

17、(本小题满分12分)在等比数列{}n a 中,23532,32.a a a == (Ⅰ)求数列{}n a 的通项公式;
(Ⅱ)设数列{}n a 的前n 项和为n S ,求122.n S S nS +++ 18、(本小题满分12分) 如图,在四棱锥ABCD P -中,侧棱⊥PA 底面ABCD ,底面ABCD 为矩形,PA AB AD 22==,E 为PD 的上一点,且ED PE 2=,F 为PC 的中点.
(Ⅰ)求证://BF 平面AEC ;
(Ⅱ)求二面角D AC E --的余弦值.
19、(本小题满分12分)某班同学利用假期进行社会实践,对[25,55]岁的人群随机抽取n 人进
行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
(Ⅰ)补全频率分布直方图并求n 、a 、p 的值;
(Ⅱ)从[40,50)岁年龄段的“低碳族”中采用分层抽样法抽取18人参加户外低碳体验活动,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁的人数为X ,求X 的分布列和期望EX 。

20、(本小题满分12分)在直角坐标系xOy 中,椭圆C 1:22
22b
y a x +=1(a >b >0)的左、
右焦点分别为F 1,F 2.F 2也是抛物线C 2:24y x =的焦点,点M 为C 1与C 2在第一象
限的交点,且|MF 2|=3
5

(Ⅰ)求C 1的方程;
(Ⅱ)平面上的点N 满足21MF MF MN +=,直线l ∥MN ,且与C 1交于A ,B 两点,若0OA OB =,求直线l 的方程. 21、(本小题满分12分)已知函数()x x x f ln =. (Ⅰ)求函数()f x 的单调区间;
(Ⅱ)若k 为正常数,设()()()g x f x f k x =+-,求函数()g x 的最小值;
(Ⅲ)若0a >,0b >,证明:()()()()2f a a b ln f a b f b +++-≥.
四、选考题(本小题满分10分)(请考生在22,23,24三题中任选一题做答,如果多
做,则按所做的第一题记分.) 22.选修4—1:几何证明选讲
如图,AB 是⊙O 的直径,C ,F 是⊙O 上的点,OC 垂直于直径AB ,过F 点作⊙O 的切线交
AB 的延长线于D .连结CF 交AB 于E 点. (1)求证:DE 2=DB ·DA ;
(2)若⊙O 的半径为23,OB =3OE ,求EF 的长.
23.选修4-4:坐标系与参数方程
已知直线l 的参数方程是)(24222
2
是参数t t y t x ⎪⎪⎩
⎪⎪⎨
⎧+==
,圆C 的极坐标方程为)4
c o s (2π
θρ+=.
(Ⅰ)求圆心C 的直角坐标;
(Ⅱ)由直线l 上的点向圆C 引切线,求切线长的最小值.
24.选修4-5:不等式选讲 已知1|2|1<-x ,1|2|2<-x .
(Ⅰ)求证:6221<+<x x ,2||21<-x x ;
(Ⅱ)若1)(2+-=x x x f ,求证:||5|)()(|||212121x x x f x f x x -<-<-.
A
P C B
D
E F。

相关文档
最新文档