数学选修2-2练习题与答案

合集下载

高中数学选修2-2综合测试试题及答案解析

高中数学选修2-2综合测试试题及答案解析

高中数学选修2-2综合测试试题及答案解析时间120分钟,满分150分.一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.曲线y =4x -x 3在点(-1,-3)处的切线方程是导学号 10510897( ) A .y =7x +4 B .y =x -4 C .y =7x +2D .y =x -22.设x =3+4i ,则复数z =x -|x |-(1-i)在复平面上的对应点在导学号 10510898( ) A .第一象限 B .第二象限 C .第三象限D .第四象限3.若函数f (x )=x 2+bx +c 的图象的顶点在第四象限,则函数f ′(x )的图象是导学号 10510899( )4.定义复数的一种运算z 1*z 2=|z 1|+|z 2|2(等式右边为普通运算),若复数z =a +b i ,z -为z 的共轭复数,且正实数a ,b 满足a +b =3,则z *z -的最小值为导学号 10510900( )A.92B.322C.32D .945.(2016·宜春高二检测)已知函数f (x )=sin x +e x +x 2015,令f 1(x )=f ′(x ),f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),则f 2016(x )=导学号 10510901( )A .sin x +e xB .cos x +e xC .-sin x +e xD .-cos x +e x6.函数f (x )=3x -4x 3(x ∈[0,1])的最大值是导学号 10510902( ) A.12 B .-1 C .0D .17.(2016·哈尔滨质检)在平面直角坐标系中,横、纵坐标均为整数的点叫做格点.若函数图象恰好经过k 个格点,则称函数为k 阶格点函数.已知函数:①y =sin x; ②y =cos(x +π6);③y =e x -1;④y =x 2.其中为一阶格点函数的序号为导学号 10510903( ) A .①② B .②③ C .①③D .②④8.(2016·淄博高二检测)下列求导运算正确的是导学号 10510904( ) A .(2x )′=x ·2x -1 B .(3e x )′=3e xC .(x 2-1x )′=2x -1x2D .(xcos x )′=cos x -x sin x (cos x )29.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是导学号 10510905( )A .289B .1024C .1225D .137810.若曲线y =x -12在点(a ,a -12)处的切线与两个坐标围成的三角形的面积为18,则a =导学号 10510906( )A .64B .32C .16D .811.(2016·全国卷Ⅲ理,12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数,若m =4,则不同的“规范01数列”共有导学号 10510907( )A .18个B .16个C .14个D .12个12.当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是导学号 10510908( )A .[-5,-3]B .[-6,-98]C .[-6,-2]D .[-4,-3]二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.对任意非零实数a 、b ,若a ⊗b 的运算原理如图所示,则2⊗⎠⎛0πsin x d x =________.导学号 1051090914.请阅读下列材料:若两个正实数a 1、a 2满足a 21+a 22=1,那么a 1+a 2≤ 2.证明:构造函数f (x )=(x -a 1)2+(x -a 2)2=2x 2-2(a 1+a 2)x +1.因为对一切实数x ,恒有f (x )≥0,所以Δ≤0,从而得4(a 1+a 2)2-8≤0,所以a 1+a 2≤ 2.类比上述结论,若n 个正实数满足a 21+a 22+…+a 2n =1,你能得到的结论为________.导学号 1051091015.对大于或等于2的自然数m 的n 次方幂有如下分解方式:导学号 10510911 22=1+3,32=1+3+5,42=1+3+5+7; 23=3+5,33=7+9+11,43=13+15+17+19.根据上述分解规律,若n 2=1+3+5+…+19,m 3(m ∈N *)的分解中最小的数是21,则m +n 的值为________.16.(2016·全国卷Ⅱ理,16)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.导学号 10510912三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)(2016·大连高二期中)已知z 1、z 2为复数,i 为虚数单位,z 1·z -1+3(z 1+z -1)+5=0,z 2+3z 2-3为纯虚数,z 1、z 2在复平面内对应的点分别为P 、Q .导学号 10510913(1)求点P 的轨迹方程; (2)求点Q 的轨迹方程; (3)写出线段PQ 长的取值范围.18.(本题满分12分)设函数f (x )=sin x -cos x +x +1,0<x <2π,求函数f (x )的单调区间与极值.导学号 1051091419.(本题满分12分)已知A n (n ,a n )为函数y 1=x 2+1图象上的点,B n (n ,b n )为函数y 2=x 的图象上的点,设c n =a n -b n ,其中n ∈N *.导学号 10510915(1)求证:数列{c n }既不是等差数列也不是等比数列; (2)试比较c n 与c n +1的大小.20.(本题满分12分)设函数f (x )=x ln x .导学号 10510916 (1)求f (x )的单调区间;(2)求f (x )在区间[18,12]上的最大值和最小值.21.(本题满分12分)(2016·贵州高二检测)已知点列A n (x n,0),n ∈N *,其中x 1=0,x 2=a (a >0),A 3是线段A 1A 2的中点,A 4是线段A 2A 3的中点,…,A n 是线段A n -2A n -1的中点,….导学号 10510917(1)写出x n 与x n -1、x n -2之间的关系式(n ≥3);(2)设a n =x n +1-x n ,计算a 1、a 2、a 3,由此推测数列{a n }的通项公式,并加以证明.22.(本题满分12分)(2016·北京文,20)设函数f (x )=x 3+ax 2+bx +c .导学号 10510918 (1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值范围; (3)求证:a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.高中数学选修2-2综合测试试题答案解析1.[答案] D[解析] y ′|x =-1=(4-3x 2)|x =-1=1, ∴切线方程为y +3=x +1,即y =x -2.2. [答案] B[解析] ∵x =3+4i ,∴|x |=32+42=5, ∴z =3+4i -5-(1-i)=(3-5-1)+(4+1)i =-3+5i. ∴复数z 在复平面上的对应点在第二象限,故应选B.3. [答案] A[解析] ∵f ′(x )=2x +b 为增函数,∴排除B 、D ; 又f (x )的顶点在第四象限,∴-b2>0,∴b <0,排除C ,故选A.4.[答案] B[解析] 由题意可得z *z -=|a +b i|+|a -b i|2=a 2+b 2+a 2+(-b )22=a 2+b 2,∵正实数a ,b 满足a +b =3,∴b =3-a ,∴a 2+b 2=a 2+(3-a )2=2a 2-6a +9,由二次函数可知当a =32时,上式取最小值322.故选B.5.[答案] A[解析] f 1(x )=f ′(x )=cos x +e x +2015x 2014,f 2(x )=f 1′(x )=-sin x +e x +2015× 2014x 2013, f 3(x )=f 2′(x )=-cos x +e x +2015×2014×2013x 2012,…,∴f 2016(x )=sin x +e x .6.[答案] D[解析] 由f ′(x )=3-12x 2=0得,x =±12,∵x ∈[0,1],∴x =12,∵当x∈[0,12],f ′(x )>0,当x ∈[12,1]时,f ′(x )<0,∴f (x )在[0,12]上单调递增,在[12,1]上单调递减,故x =12时,f (x )取到极大值也是最大值,f (12)=3×12-4×(12)3=1,故选D.7. [答案] C[解析] 对于①,注意到y =sin x 的值域是[-1,1];当sin x =0时,x =k π(k ∈Z ),此时相应的整数x =0;当sin x =±1时,x =k π+π2(k ∈Z ),此时没有相应的整数x ,因此函数y =sin x 仅过唯一的整点(0,0),该函数是一阶格点函数.同理可知,对于②,函数y =cos(x +π6)不是一阶格点函数.对于③,令y =e x -1=k (k ∈Z )得e x =k +1>0,x =ln(k +1),仅当k =0时,x =0∈Z ,因此函数y =e x -1是一阶格点函数.对于④,注意到函数y =x 2的图象经过多个整点,如点(0,0),(1,1),因此函数y =x 2不是一阶格点函数.综上所述知选C.8.[答案] B[解析] 对于A ,(2x )′=2x ln2;对于B ,(3e x )′=3e x ;对于C ,(x 2-1x)′=2x +1x 2;对于D ,(xcos x )′=cos x +x sin x (cos x )2;综上可知选B.9.[答案] C[解析] 图1中满足a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n ,以上累加得a n -a 1=2+3+…+n ,a n =1+2+3+…+n =n ·(n +1)2,图2中满足b n =n 2,一个数若满足三角形数,其必能分解成两个相邻自然数乘积的一半; 一个数若满足正方形数,其必为某个自然数的平方. ∵1225=352=49×502,∴选C.10.[答案] A[解析] y ′=-12x -32,∴k =-12a -32,切线方程是y -a -12=-12a -32(x -a ),令x =0,y =32a -12,令y =0,x =3a ,∴三角形的面积是S =12·3a ·32a -12=18,解得a =64.11. [答案] C[解析] 由题意可得a 1=0,a 8=1,a 2,a 3,…,a 7中有3个0、3个1,且满足对任意k ≤8,都有a 1,a 2,…,a k 中0的个数不少于1的个数,利用列举法可得不同的“规范01数列”有00001111,00010111,00011011,00011101,00100111,00101011,00101101,00110011,00110101,01000111,01001011,01001101,01010011,01010101,共14个.12.[答案] C[解析] ax 3≥x 2-4x -3恒成立.当x =0时式子恒成立.∴a ∈R , 当x >0时,a ≥1x -4x 2-3x 3恒成立.令1x =t ,x ∈(0,1],∴t ≥1.∴a ≥t -4t 2-3t 3恒成立.令g (t )=t -4t 2-3t 3,g ′(t )=1-8t -9t 2=(t +1)(-9t +1), ∴函数g ′(t )在[1,+∞)上为减函数 而且g ′(1)=-16<0,∴g ′(t )<0在[1,+∞)上恒成立. ∴g (t )在[1,+∞)上是减函数, ∴g (t )max =g (1)=-6,∴a ≥-6; 当x <0时,a ≤1x -4x 2-3x 3恒成立,∵x ∈[-2,0),∴t ≤-12,令g ′(t )=0得,t =-1,∴g (t )在(-∞,-1]上为减函数,在(-1,-12]上为增函数,∴g (t )min =g (-1)=-2,∴a ≤-2.综上知-6≤a ≤-2. 13. [答案]22[解析] ∵⎠⎛0πsin x d x =-cos x |π0=2>2, ∴2⊗⎠⎛0πsin x d x =2⊗2=2-12=22.14.[答案] a 1+a 2+…+a n ≤n (n ∈N *)[解析] 构造函数f (x )=(x -a 1)2+(x -a 2)2+…+(x -a n )2=nx 2-2(a 1+a 2+…+a n )x +1, ∵f (x )≥0对任意实数x 都成立,∴Δ=4(a 1+a 2+…+a n )2-4n ≤0, ∵a 1,a 2,…,a n 都是正数,∴a 1+a 2+…+a n ≤n .15. [答案] 15[解析] 依题意得n 2=10×(1+19)2=100,∴n =10.易知m 3=21m +m (m -1)2×2,整理得(m -5)(m +4)=0,又m ∈N *,所以m =5,即53=21+23+25+27+29,所以m +n =15.16. [答案] 1-ln2[解析] 设y =kx +b 与y =ln x +2和y =ln(x +1)的切点分别为(x 1,ln x 1+2)和(x 2,ln(x 2+1)).则切线分别为y -ln x 1-2=1x 1(x -x 1),y -ln(x 2+1)=1x 2+1(x -x 2),化简得y =1x 1x +ln x 1+1,y =1x 2+1x -x 2x 2+1+ln(x 2+1),依题意,⎩⎨⎧1x 1=1x 2+1ln x 1+1=-x 2x 2+1+ln (x 2+1),解得x 1=12,从而b =ln x 1+1=1-ln2.17. [解析] (1)设z 1=x +y i ,(x 、y ∈R ),由z 1·z -1+3(z 1+z -1)+5=0得x 2+y 2+6x +5=0,整理得(x +3)2+y 2=4,∴点P 的轨迹方程为(x +3)2+y 2=4. (2)设z 2=x +y i ,(x 、y ∈R ), z 2+3z 2-3=x +3+y i x -3+y i =x 2+y 2-9-6y i(x -3)2+y 2, ∵z 2+3z 2-3为纯虚数,∴x 2+y 2=9且y ≠0, ∴点Q 的轨迹方程为x 2+y 2=9(y ≠0). (3)PQ 长的取值范围是[0,8). ∵两圆相交,∴PQ 长的最小值为0,又两圆圆心距为3,两圆半径分别为2和3,∴PQ 长的最大值为8,但点Q 的轨迹方程中y ≠0,∴|PQ |<8,∴线段PQ 长的取值范围是[0,8).18. [解析] f ′(x )=cos x +sin x +1=2sin(x +π4)+1 (0<x <2π),令f ′(x )=0,即sin(x +π4)=-22,解之得x =π或x =3π2.x ,f ′(x )以及f (x )变化情况如下表:∴f (x )的单调增区间为(0,π)和(3π2,2π),单调减区间为(π,3π2).f 极大(x )=f (π)=π+2,f 极小(x )=f (3π2)=3π2.19. [解析] (1)证明:依题意,a n =n 2+1,b n =n ,c n =n 2+1-n . 假设{c n }是等差数列,则2c 2=c 1+c 3,∴2(5-2)=2-1+10-3. ∴25=2+10,产生矛盾, ∴{c n }不是等差数列.假设{c n }是等比数列,则c 22=c 1c 3,即(5-2)2=(2-1)(10-3).有6=65-32-10,产生矛盾, ∴{c n }也不是等比数列.(2)解:∵c n +1=(n +1)2+1-(n +1)>0,c n =n 2+1-n >0, ∴c n +1c n =(n +1)2+1-(n +1)n 2+1-n =n 2+1+n(n +1)2+1+(n +1), 0<n 2+1<(n +1)2+1, 又0<n <n +1,∴n 2+1+n <(n +1)2+1+n +1, ∴0<n 2+1+n(n +1)2+1+(n +1)<1,∴c n +1c n<1,即c n +1<c n . 20. [解析] (1)由题意知,函数的定义域为(0,+∞). ∵f (x )=x ln x ,∴f ′(x )=ln x +1,令f ′(x )=0,得x =1e ,令f ′(x )>0,得x >1e ,令f ′(x )<0,得0<x <1e,∴f (x )的单调递增区间为(1e ,+∞),单调递减区间为(0,1e ).(2)∵f (18)=18ln 18=38ln 12,f (12)=12ln 12,f (1e )=1e ln 1e =-1e , 又12ln 12<38ln 12, ∴求f (x )在区间[18,12]的最大值为38ln 12,最小值为-1e .21. [解析] (1)由题意,当n ≥3时,x n =12(x n -1+x n -2)(2)x 1=0,x 2=a ,x 3=12(x 2+x 1)=a 2,x 4=12(x 3+x 2)=3a4,∴a 1=x 2-x 1=a ,a 2=x 3-x 2=-a 2,a 3=x 4-x 3=a4,推测a n =a(-2)n -1.方法一证明:对于任意n ∈N *,a n =x n +1-x n ,a n +1=x n +2-x n +1=12(x n +1+x n )-x n +1=-12(x n +1-x n )=-12a n ,又∵a 1=a >0,∴{a n }是以a 为首项,以-12为公比的等比数列.故a n =a ·(-12)n -1=a(-2)n -1. 方法二下面用数学归纳法证明:①当n =1时,a 1=a =a ·(-12)1-1,结论a n =a (-2)n -1成立. ②假设当n =k (k ≥1,k ∈N )时,a n =a (-2)n -1成立,即a k=a ·(-12)k -1, 则当n =k +1时,a k +1=x k +2-x k +1=x k +x k +12-x k +1=x k -x k +12=-12a k =(-12)·a ·(-12)k -1=a ·(-12)(k +1)-1,所以n =k +1时,a n =a(-2)n -1成立. 由①②可知,数列{a n }的通项公式为a n =a ·(-12)n -1,n ∈N *.22. [解析] (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b . 因为f (0)=c ,f ′(0)=b ,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c . (2)当a =b =4时,f (x )=x 3+4x 2+4x +c , 所以f ′(x )=3x 2+8x +4.令f ′(x )=0,得3x 2+8x +4=0,解得x =-2或x =-23.f (x )与f ′(x )在区间(-∞,+∞)上的情况如下:所以,当c >0且c -3227<0时,存在x 1∈(-4,-2),x 2∈(-2,-23),x 3∈(-23,0),使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈(0,3227)时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点.(3)当Δ=4a 2-12b <0时,f ′(x )=3x 2+2ax +b >0,x ∈(-∞,+∞),此时函数f (x )在区间(-∞,+∞)上单调递增,所以f (x )不可能有三个不同零点. 当Δ=4a 2-12b =0时, f ′(x )=3x 2+2ax +b 只有一个零点,记作x 0. 当x ∈(-∞,x 0)时, f ′(x )>0,f (x )在区间(-∞,x 0)上单调递增;当x ∈(x 0,+∞)时, f ′(x )>0,f (x )在区间(x 0,+∞)上单调递增;所以f (x )不可能有三个不同零点.综上所述,若函数f (x )有三个不同零点,则必有Δ=4a 2-12b >0. 故a 2-3b >0是f (x )有三个不同零点的必要条件.当a =b =4,c =0时,a 2-3b >0,f (x )=x 3+4x 2+4x =x (x +2)2只有两个不同零点,所以a 2-3b >0不是f (x )有三个不同零点的充分条件.因此a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.。

高中数学选修2-2综合测试题(全册含答案)

高中数学选修2-2综合测试题(全册含答案)

高中数学选修2-2综合测试题(全册含答案)1.复数就像平面上的点,有实部和虚部。

2.复数就像向量,有大小和方向。

3.复数就像计算机中的复数类型,有实部和虚部。

4.复数就像两个数字的有序对,有序对的第一个数字是实部,第二个数字是虚部。

改写:关于复数的四种类比推理,可以用不同的比喻来描述复数的实部和虚部。

一种比喻是将复数看作平面上的点,实部和虚部分别对应点的横坐标和纵坐标;另一种比喻是将复数看作向量,实部和虚部分别对应向量的大小和方向;还可以将复数看作计算机中的复数类型,实部和虚部分别对应类型中的两个数;最后一种比喻是将复数看作有序对,实部和虚部分别对应有序对的第一个数字和第二个数字。

①复数的加减法运算可以类比多项式的加减法运算法则。

②由向量a的性质|a|²=a²,可以类比得到复数z的性质:|z|²=z²。

③方程ax²+bx+c=0 (a,b,c∈R,且a≠0)有两个不同的实数根的条件是b²-4ac>0,类比可得方程ax²+bx+c=0 (a,b,c∈C且a≠0)有两个不同的复数根的条件是b²-4ac>0.④由向量加法的几何意义,可以类比得到复数加法的几何意义。

其中类比得到的结论正确的是:A。

①③B。

②④C。

②③D。

①④2.删除明显有问题的段落。

3.填空题:11.若复数z满足z+i=0,则|z|=1.12.直线y=kx+1与曲线y=x³+ax+b相切于点A(1,3),则2a+b的值为4.13.第n个正方形数是n²。

14.++=AA′BB′CC′;+++=AA′BB′CC′DD′。

4.解答题:15.1) F(x)的单调区间为(-∞。

0)和(2.+∞)。

2) F(x)在[1,5]上的最小值为-5,最大值为9.16.因为AD⊥BC,所以AB²=AD²+DB²。

又因为AB⊥AC,所以AC²=AD²+DC²。

高二理科数学选修2-2测试题及答案

高二理科数学选修2-2测试题及答案

高二理科数学选修2-2测试题及答案高二选修2-2理科数学试卷第I卷选择题(共12小题,每小题5分,共60分)1.下列复数中,与5-2i共轭的是()。

A。

5+2i B。

5-2i C。

-5+2i D。

-5-2i2.已知f(x)=3x·sinx,则f'(1)=()。

A。

1/3+cos1 B。

11/3sin1+cos1 C。

3sin1-cos1 D。

sin1+cos13.设a∈R,函数f(x)=ex-ae-x的导函数为f'(x),且f'(x)是奇函数,则a为()。

A。

0 B。

1 C。

2 D。

-14.定积分∫1x(2x-e)dx的值为()。

A。

2-e B。

-e C。

e D。

2+e5.利用数学归纳法证明不等式1+1/2+1/3+…+1/(2n-1)<f(n)(n≥2,n∈N*)的过程中,由n=k变到n=k+1时,左边增加了()项。

A。

1项 B。

k项 C。

2k-1项 D。

2k项6.由直线y=x-4,曲线y=2x以及x轴所围成的图形面积为()。

A。

40/3 B。

13 C。

25/2 D。

157.函数f(x)=x^3-ax^2-bx+a^2在x=1处有极值10,则点(a,b)为()。

A。

(3,-3) B。

(-4,11) C。

(3,-3)或(-4,11) D。

不存在8.函数f(x)=x^2-2lnx的单调减区间是()。

A。

(0,1] B。

[1,+∞) C。

(-∞,-1]∪(0,1] D。

[-1,0)∪(0,1]9.已知f(x+1)=2f(x)/(f(x)+2),f(1)=1(x∈N*),猜想f(x)的表达式是()。

A。

f(x)=4/(2x+2) B。

f(x)=2^(12/(x+1)) C。

f(x)=(x+1)/2 D。

f(x)=(2x+1)/210.若f(x)=-1/(2x^2+bln(x+2))在(-1,+∞)上是减函数,则b的取值范围是()。

A。

[-1,+∞) B。

(-1,+∞) C。

人教a版数学【选修2-2】练习:3.2.1复数代数形式的加减运算及其几何意义(含答案)

人教a版数学【选修2-2】练习:3.2.1复数代数形式的加减运算及其几何意义(含答案)

选修2-2 第三章 3.2 3.2.1一、选择题1.设z 1=2+b i ,z 2=a +i ,当z 1+z 2=0时,复数a +b i 为( ) A .1+i B .2+i C .3 D .-2-i[答案] D[解析] ∵z 1+z 2=(2+b i)+(a +i) =(2+a )+(b +1)i =0,∴⎩⎪⎨⎪⎧ 2+a =0,b +1=0,∴⎩⎪⎨⎪⎧a =-2,b =-1.∴a +b i =-2-i.2.已知|z |=4,且z +2i 是实数,则复数z =( ) A .23-2i B .-23-2i C .±23-2i D .23±2i[答案] C[解析] ∵z +2i 是实数,可设z =a -2i(a ∈R ), 由|z |=4得a 2+4=16, ∴a 2=12,∴a =±23, ∴z =±23-2i.3.(2014·浙江台州中学期中)设x ∈R ,则“x =1”是“复数z =(x 2-1)+(x +1)i 为纯虚数”的( )A .充分必要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件[答案] A[解析] z 是纯虚数⇔⎩⎪⎨⎪⎧x 2-1=0,x +1≠0,⇔x =1,故选A.4.若复数z 满足z +(3-4i)=1,则z 的虚部是( ) A .-2 B .4 C .3 D .-4[答案] B[解析] z =1-(3-4i)=-2+4i ,故选B.5.若z 1=2+i ,z 2=3+a i(a ∈R ),且z 1+z 2所对应的点在实轴上,则a 的值为( )A .3B .2C .1D .-1[答案] D[解析] z 1+z 2=2+i +3+a i =(2+3)+(1+a )i =5+(1+a )i. ∵z 1+z 2所对应的点在实轴上, ∴1+a =0,∴a =-1.6.▱ABCD 中,点A 、B 、C 分别对应复数4+i 、3+4i 、3-5i ,则点D 对应的复数是( ) A .2-3i B .4+8i C .4-8i D .1+4i[答案] C[解析] AB →对应的复数为(3+4i)-(4+i)=(3-4)+(4-1)i =-1+3i , 设点D 对应的复数为z ,则DC →对应的复数为(3-5i)-z . 由平行四边形法则知AB →=DC →, ∴-1+3i =(3-5i)-z ,∴z =(3-5i)-(-1+3i)=(3+1)+(-5-3)i =4-8i.故应选C. 二、填空题7.在复平面内,若OA →、OB →对应的复数分别为7+i 、3-2i ,则 |AB →|=________. [答案] 5[解析] |AB →|对应的复数为3-2i -(7+i)=-4-3i ,所以|AB →|=(-4)2+(-3)2=5. 8.(2014·揭阳一中期中)已知向量OA →和向量OC →对应的复数分别为3+4i 和2-i ,则向量AC →对应的复数为________.[答案] -1-5i[解析] ∵AC →=OC →-OA →,∴AC →对应复数为(2-i)-(3+4i)=-1-5i.9.在复平面内,O 是原点,O A →、O C →、A B →对应的复数分别为-2+i 、3+2i 、1+5i ,那么B C →对应的复数为________________.[答案] 4-4i[解析] B C →=O C →-O B →=O C →-(O A →+A B →) =3+2i -(-2+i +1+5i) =(3+2-1)+(2-1-5)i=4-4i. 三、解答题10.已知平行四边形ABCD 中,A B →与A C →对应的复数分别是3+2i 与1+4i ,两对角线AC 与BD 相交于P 点.(1)求A D →对应的复数; (2)求D B →对应的复数; (3)求△APB 的面积.[分析] 由复数加、减法运算的几何意义可直接求得A D →,D B →对应的复数,先求出向量P A →、P B →对应的复数,通过平面向量的数量积求△APB 的面积.[解析] (1)由于ABCD 是平行四边形,所以A C →=A B →+A D →,于是A D →=A C →-A B →,而(1+4i)-(3+2i)=-2+2i ,即A D →对应的复数是-2+2i.(2)由于D B →=A B →-A D →,而(3+2i)-(-2+2i)=5, 即D B →对应的复数是5.(3)由于P A →=12C A →=-12A C →=⎝⎛⎭⎫-12,-2, PB →=12D B →=⎝⎛⎭⎫52,0, 于是P A →·P B →=-54,而|P A →|=172,|PB →|=52,所以172·52·cos ∠APB =-54, 因此cos ∠APB =-1717,故sin ∠APB =41717, 故S △APB =12|P A →||PB →|sin ∠APB=12×172×52×41717=52. 即△APB 的面积为52.[点评] (1)根据复数加减法运算的几何意义可以把复数的加减法运算转化为向量的坐标运算.(2)复数加减法运算的几何意义为应用数形结合思想解决复数问题提供了可能.一、选择题11.已知复数z 1=3+2i ,z 2=1-3i ,则复数z =z 1-z 2在复平面内对应的点Z 位于复平面内的( )A .第一象限B .第二象限C .第三象限D .第四象限[答案] A[解析] ∵z 1=3+2i ,z 2=1-3i ,∴z =z 1-z 2=3+2i -(1-3i)=(3-1)+(2+3)i =2+5i.∴点Z 位于复平面内的第一象限.故应选A.12.若复数(a 2-4a +3)+(a -1)i 是纯虚数,则实数a 的值为( ) A .1 B .3 C .1或3 D .-1[答案] B[解析] 由条件知⎩⎪⎨⎪⎧a 2-4a +3=0,a -1≠0.∴a =3.13.(2014·新乡、许昌、平顶山调研)复数z 1、z 2满足z 1=m +(4-m 2)i ,z 2=2cos θ+(λ+3sin θ)i(m 、λ、θ∈R ),并且z 1=z 2,则λ的取值范围是( )A .[-1,1]B .[-916,1]C .[-916,7]D . [916,1][答案] C[解析] ∵z 1=z 2,∴⎩⎪⎨⎪⎧m =2cos θ,4-m 2=λ+3sin θ. ∴λ=4sin 2θ-3sin θ=4(sin θ-38)2-916,∵sin θ∈[-1,1],∴λ∈[-916,7].二、填空题14.在复平面内,z =cos10+isin10的对应点在第________象限. [答案] 三[解析] ∵3π<10<7π2,∴cos10<0,sin10<0,∴z 的对应点在第三象限.15.若|z -1|=|z +1|,则|z -1|的最小值是________________. [答案] 1[解析] 解法一:设z =a +b i ,(a ,b ∈R ), 则|(a -1)+b i|=|(a +1)+b i|. ∴(a -1)2+b 2=(a +1)2+b 2, 即a =0,∴z =b i ,b ∈R ,∴|z -1|m i n =|b i -1|m i n =(-1)2+b 2, 故当b =0时,|z -1|的最小值为1. 解法二∵|z -1|=|z +1|,∴z 的轨迹为以(1,0),(-1,0)为端点的线段的垂直平分线,即y 轴,|z -1|表示,y 轴上的点到(1,0)的距离,所以最小值为1.三、解答题16.已知z 1=(3x +y )+(y -4x )i ,z 2=(4y -2x )-(5x +3y )i(x ,y ∈R ),设z =z 1-z 2,且z =13-2i ,求z 1、z 2.[解析] z =z 1-z 2=(3x +y )+(y -4x )i -[(4y -2x )-(5x +3y )i]=[(3x +y )-(4y -2x )]+[(y -4x )+(5x +3y )]i =(5x -3y )+(x +4y )i ,又因为z =13-2i ,且x 、y ∈R ,所以⎩⎪⎨⎪⎧ 5x -3y =13,x +4y =-2,解得⎩⎪⎨⎪⎧x =2,y =-1.所以z 1=(3×2-1)+(-1-4×2)i =5-9i , z 2=4×(-1)-2×2-[5×2+3×(-1)]i =-8-7i.*17.已知关于t 的方程t 2+2t +2xy +(t +x -y )i =0(x 、y ∈R ),求使该方程有实根的点(x ,y )的轨迹方程.[解析] 设原方程的一个实根为t =t 0,则有(t 20+2t 0+2xy )+(t 0+x -y )i =0.根据复数相等的充要条件有⎩⎪⎨⎪⎧t 20+2t 0+2xy =0, ①t 0+x -y =0, ② 把②代入①中消去t 0,得(y -x )2+2(y -x )+2xy =0, 即(x -1)2+(y +1)2=2.故所求点的轨迹方程为(x -1)2+(y +1)2=2.[点评] 因为t 0为实数,故根据复数相等的充要条件让实部与虚部分别为0,而要求的是点(x ,y )的轨迹方程,故应用代入消元法将t 0消去整理即可.。

高二数学选修2-2练习题.doc.docx

高二数学选修2-2练习题.doc.docx
0.2
0.3
0.4
⑶P(2
x<4)
P( x
2)
P( x
3)
0.20.3
0.5
B组答案
13—17. BABDD 18.
16
19. 15
21
22、解:(1)由题知,总得分X的概率分布列为:
2
3
21. 0.135
X-300-100100300
P
0.23
C320.220.8 C320.2 0.82
0.83
∴EX=3000.23( 100) C320.220.8100 C320.2 0.82300 0.83
X的数学期望EX
6
X
0
1
2
3
P
a
1
1
b
3
6
则a=_____
___.
9、一个袋中有
10个大小相同的小球,其中
6个红球,4个白球,现从中摸
3个,至少摸到2
个白球的概率是__________________.
三.解答题:本大题共
3小题,共
41分,解答题应写出文字说明、证明过程或演算步骤
.
10、(本题
12分)有品,其中
21、已知Y~N(3,1),P(4<Y<5)=_____________.
六、解答 :本大 共3小 ,共41分,解答 写出文字 明、 明 程或演算步 。
22、某考生参加一种 ,需回答三个 , 定:每 回答正确得
100分,回答不正确得
-100
分。已知 考生每 回答正确的概率都是
0.8,且各 回答正确与否相互之 没有
∴所求概率P(A)=19
36
(2)由 分析知,X的可能取0,1,2,

高中数学选修2-2分章节测试卷(含答案)

高中数学选修2-2分章节测试卷(含答案)

第一章 综合能力检测一、选择题:本大题共12小题,每小题5分,共60分. 1.函数y =sin(π4-x )的导数为( )A .-cos(π4+x )B .cos(π4-x )C .-sin(π4-x )D .-sin(x +π4)2.(2009·广东三校联考)函数f (x )=a ln x +x 在x =1处取得极值,则a 的值为( ) A.12B .-1C .0D .-123.如果f (x )为定义在R 上的偶函数,且导数f ′(x )存在,则f ′(0)的值为( ) A .2B .1C .0D .-14.(2009·全国卷Ⅰ)已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1B .2C .-1D .-25.已知f (x )=(x -1)2+2,g (x )=x 2-1,则f [g (x )]( ) A .在(-2,0)上递增 B .在(0,2)上递增 C .在(-2,0)上递增 D .在(0,2)上递增6.已知三次函数f (x )=13x 3-(4m -1)x 2+(15m 2-2m -7)x +2在R 上是增函数,则m 的取值范围是( )A .m <2或m >4B .-4<m <-2C .2<m <4D .2≤m ≤47.(2009·江西高考)若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或78.若f (x )=-12x 2+b ln(x +2)在(-1,+∞)上是减函数,则b 的取值范围是( )A .[-1,+∞)B .(-1,+∞)C .(-∞,-1]D .(-∞,-1) 9.由y =sin x ,y =cos x ,x =0,x =π所围成图形的面积可表示为( ) A.⎠⎛0π(sin x -cos x )dxC.⎠⎛0π(cos x -sin x )dx10.已知f (a )=⎠⎛01(2ax 2-a 2x )dx ,则f (a )的最大值为( )A .-12B.19C.29D .不存在11.(2009·青岛模拟)如右图,在一个长为π,宽为2的矩形OABC 内,由曲线y =sin x (0≤x ≤π)与x 轴围成如图所示的阴影部分,向矩形OABC 内随机投一点(该点落在矩形OABC 内任何一点是等可能的),则所投的点落在阴影部分的概率是( )A.1πB.2πC.3πD.π412.f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意正数a ,b ,若a <b ,则必有( )A .af (b )≤bf (a )B .bf (a )≤af (b )C .af (a )≤f (b )D .bf (b )≤f (a ) 二、填空题:本大题共4小题,每小题5分,共20分. 13.⎠⎛02(2x -e x )dx =________.14.(2009·海淀区模拟)已知函数f (x )=sin(ωx +φ)(ω>0,|φ|<π2)的导函数y=f ′(x )的部分图象如右图所示,且导函数f ′(x )有最小值-2,则ω=________,φ=________.15.若函数y =a (x 3-x )的单调递减区间为(-33,33),则a 的取值范围是________. 16.物体A 以速度v =3t 2+1在一直线上运动,在此直线上物体A 出发的同时,物体B 在物体A 的正前方5 m 处以v =10t 的速度与A 同向运动,当t =________ s 时,两物体相遇,相遇时物体A 走过________m.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)(2009·浙江高考)已知函数f(x)=x3+(1-a)x2-a(a+2)x+b(a,b∈R).(1)若函数f(x)的图象过原点,且在原点处的切线斜率是-3,求a,b的值;(2)若函数f(x)在区间(-1,1)上不单调...,求a的取值范围.18.(本小题满分12分)已知F(x)=⎠⎛x-1t(t-4)dt,x∈(0,+∞).(1)求F(x)的单调区间;(2)求函数F(x)在[1,5]上的最值.19.(本小题满分12分)已知f(x)=ax3+bx2+cx(a≠0)在x=±1时取得极值,且f(1)=-1.(1)试求常数a,b,c的值;(2)试判断x=±1是函数的极小值点还是极大值点,并说明理由.20.(本小题满分12分)求函数y=x3-3ax+2的极值,并说明方程x3-3ax+2=0何时有三个不同的实根?何时有唯一的实根?(其中a>0)21.(本小题满分12分)已知函数f(x)=13ax3-bx2+(2-b)x+1,在x=x1处取得极大值,在x=x2处取得极小值,且0<x1<1<x2<2.(1)证明a>0;(2)求z=a+2b的取值范围.22.(本小题满分12分)(2009·湖北黄冈模拟)已知函数f(x)=12x2-a ln x(a∈R).(1)若f(x)在x=2时取得极值,求a的值;(2)求f(x)的单调区间;(3)求证:当x>1时,12x2+ln x<23x3.第二章 综合能力检测一、选择题:本大题共12小题,每小题5分,共60分.1.所有自然数都是整数,4是自然数,所以4是整数,以上三段推理( ) A .正确 B .推理形式不正确 C .两个“自然数”概念不一致 D .两个“整数”概念不一致 2.若a >0,b >0,则有( )A.b 2a >2b -aB.b 2a <2b -aC.b 2a ≥2b -a D.b 2a≤2b -a 3.设S (n )=1n +1n +1+1n +2+1n +3+…+1n 2,则( )A .S (n )共有n 项,当n =2时,S (2)=12+13B .S (n )共有n +1项,当n =2时,S (2)=12+13+14C .S (n )共有n 2-n 项,当n =2时,S (2)=12+13+14D .S (n )共有n 2-n +1项,当n =2时,S (2)=12+13+144.F (n )是一个关于自然数n 的命题,若F (k )(k ∈N *)真,则F (k +1)真,现已知F (7)不真,则有:①F (8)不真;②F (8)真;③F (6)不真;④F (6)真;⑤F (5)不真;⑥F (5)真.其中为真命题的是( )A .③⑤B .①②C .④⑥D .③④5.若x ,y ∈R ,且2x 2+y 2=6x ,则x 2+y 2+2x 的最大值为( ) A .14B .15C .16D .176.设f (x )(x ∈R )为奇函数,f (1)=12,f (x +2)=f (x )+f (2),则f (5)等于( )A .0B .1 C.52D .57.若O 是平面上一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP →=OA →+λ(AB →|AB →|+AC→|AC →|),λ∈[0,+∞),则动点P 的轨迹一定通过△ABC 的( ) A .外心 B .内心 C .重心D .垂心8.如图所示为某旅游区各景点的分布图,图中一支箭头表示一段有方向的路,试计算顺着箭头方向,从A 到H 有几条不同的旅游路线可走( )A .15B .16C .17D .189.对于直角坐标平面内的任意两点A (x 1,y 1)、B (x 2,y 2)定义它们之间的一种“距离”:||AB ||=|x 2-x 1|+|y 2-y 1|.给出下列三个命题:①若点C 在线段AB 上,则||AC ||+||CB ||=||AB ||; ②在△ABC 中,若∠C =90°,则||AC ||2+||CB ||2=||AB ||2; ③在△ABC 中,||AC ||+||CB ||>||AB ||. 其中真命题的个数为( ) A .0B .1C .2D .310.已知a ,b ,c ,d 是正实数,P =a a +b +c +b a +b +d +c c +d +a +d c +d +b ,则有( )A .0<P <1B .1<P <2C .2<P <3D .3<P <411.一个等差数列{a n },其中a 10=0,则有a 1+a 2+…+a n =a 1+a 2+…+a 19-n (1≤n ≤19).一个等比数列{b n },其中b 15=1.类比等差数列{a n }有下列结论,正确的是( )A .b 1b 2…b n =b 1b 2…b 29-n (1≤n ≤29,n ∈N *)B .b 1b 2…b n =b 1b 2…b 29-nC .b 1+b 2+…+b n =b 1+b 2+…+b 29-n (1≤n ≤29,n ∈N *)D .b 1+b 2+…+b n =b 1+b 2+…+b 29-n 12.观察数表1 2 3 4 …第一行 2 3 4 5 …第二行 3 4 5 6 …第三行 4 5 6 7 …第四行 … … … …第一列 第二列 第三列 第四列根据数表中所反映的规律,第n 行与第n 列的交叉点上的数应该是( ) A .2n -1 B .2n +1 C .n 2-1D .n 2二、填空题:本大题共4小题,每小题5分,共20分.13.若三角形内切圆的半径为r ,三边长分别为a ,b ,c ,则三角形的面积S =12r (a +b +c ),根据类比推理的方法,若一个四面体的内切球的半径为R ,四个面的面积分别为S 1,S 2,S 3,S 4,则四面体的体积V =________.14.若符号“*”表示求实数a 与b 的算术平均数的运算,即a *b =a +b2,则两边均含有运算符号“*”和“+”,且对于任意3个实数a 、b 、c 都能成立的一个等式可以是________.15.把数列{2n +1}依次按第一个括号一个数,第二个括号两个数,第三个括号三个数,第四个括号四个数,第五个括号一个数……循环下去,如:(3),(5,7),(9,11,13),(15,17,19,21),…,则第104个括号内各数字之和为________.16.已知n 次多项式P n (x )=a 0x n +a 1x n -1+…+a n -2x 2+a n -1x +a n .如果在一种算法中,计算x k 0(k =2,3,4,…,n )的值需要k -1次乘法,计算P 3(x 0)的值共需要9次运算(6次乘法,3次加法),那么计算P n (x 0)的值共需要________次运算.下面给出一种减少运算次数的算法:P 0(x )=a 0,P k +1(x )=xP k (x )+a k +1(k =0,1,2,…,n -1).利用该算法,计算P 3(x 0)的值共需要6次运算,计算P n (x 0)的值共需要________次运算.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)证明对于任意实数x ,y 都有x 4+y 4≥12xy (x +y )2.18.(本小题满分12分)(2009·江苏高考)如右图,在直三棱柱ABC -A 1B 1C 1中,E ,F 分别是A 1B ,A 1C 的中点,点D 在B 1C 1上,A 1D ⊥B 1C .求证:(1)EF ∥平面ABC ; (2)平面A 1FD ⊥平面BB 1C 1C .19.(本小题满分12分)求证:y =ax 2+2bx +c ,y =bx 2+2cx +a ,y =cx 2+2ax +b (a ,b ,c 是互不相等的实数)这三条抛物线中,至少有一条与x 轴有两个交点.20.(本小题满分12分)已知函数f(n)(n∈N*),满足条件:①f(2)=2,②f(xy)=f(x)·f(y),③f(n)∈N*,④当x>y时,有f(x)>f(y).(1)求f(1),f(3)的值;(2)由f(1),f(2),f(3)的值,猜想f(n)的解析式;(3)证明你猜想的f(n)的解析式的正确性.21.(本小题满分12分)已知数列a1,a2,…,a30,其中a1,a2,…,a10是首项为1,公差为1的等差数列;a10,a11,…,a20是公差为d的等差数列;a20,a21,…a30是公差为d2的等差数列(d≠0).(1)若a20=40,求d;(2)试写出a30关于d的关系式,并求a30的取值范围;(3)续写已知数列,使得a30,a31,a40是公差为d3的等差数列,…,依次类推,把已知数列推广为无穷数列.提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?22.(本小题满分12分)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=x2+abx-c(b,c∈N)有且只有两个不动点0,2,且f(-2)<-12.(1)求函数f(x)的解析式;(2)已知各项均不为零的数列{a n}满足4S n·f(1a n)=1,求数列的通项a n;(3)如果数列{a n}满足a1=4,a n+1=f(a n),求证当n≥2时,恒有a n<3成立.第三章 综合能力检测一、选择题:本大题共12小题,每小题5分,共60分. 1.一个实数x 与一个虚数y 的和x +y 必为( )A .实数B .虚数C .可能实数也可能是虚数D .纯虚数 2.复数4+3i1+2i 的实部是( )A .-2B .2C .3D .43.复数z =m -2i1+2i (m ∈R ,i 为虚数单位)在复平面上的对应点不可能位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.若复数a +3i1+2i (a ∈R ,i 为虚数单位)是纯虚数,则实数a 的值为( )A .-2B .4C .-6D .65.若3+2i 是关于x 的方程2x 2+px +q =0(p ,q ∈R )的一个根,则q 的值是( ) A .26B .13C .6D .56.已知z 1=2-5i ,z 2=-3+i ,z 1,z 2的对应点分别为P 1,P 2,则向量P 2P 1→对应的复数为( ) A .-5+6iB .5-6iC .5+6iD .-1-4i7.已知m1+i =1+n i ,其中m ,n 是实数,i 是虚数单位,则m +n i 的值为( )A .1+2iB .1-2iC .2+iD .2-i8.复数z 满足|3z +1|=|z -i|,则复数z 对应点的轨迹是( ) A .直线B .正方形C .圆D .椭圆9.“复数z =12+32i ”是“z +1z ∈R ”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件10.复数-35+2i 2+35i +(21+i )2008的虚部为( )A .-1B .1C .-iD .i11.设f (n )=(1+i 1-i )n +(1-i 1+i )n(n ∈N *),则集合{x |x =f (n )}中的元素有( )A .1个B .2个C .3个D .无穷多个12.若复数z ,a ,x 满足x =a -z 1-a z,且|z |=1,则|x |等于( )A .0B .1C .|a |D.12二、填空题:本大题共4小题,每小题5分,共20分.13.已知复数z 0=3+2i ,复数z 满足z ·z 0=3z +z 0,则复数z =________. 14.复数z 满足|z +2+2i|=|z |,那么|z -1+i|的最小值是________. 15.i 是虚数单位,若1+7i 2-i=a +b i(a ,b ∈R ),则乘积ab =________.16.对于n 个复数z 1,z 1,…,z n ,如果存在n 个不全为零的实数k 1,k 2,…,k n ,使得k 1z 1+k 2z 2+…+k n z n =0,就称z 1,z 2,…,z n 线性相关.若要说明复数z 1=1+2i ,z 2=1-i ,z 3=-2线性相关,那么可取{k 1,k 2,k 3}=________.(只要写出满足条件的一组值即可)三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)(1)设复数z 1=1+i ,z 2=x +2i(x ∈R ).若z 1z 2为实数,求实数x ; (2)计算:(4-i 5)(6+2i 7)+(7-i 11)(4-3i).18.(本小题满分12分)在复数范围内解方程|z 2|+(z +z )i =3-i2+i .(i 为虚数单位)19.(本小题满分12分)已知z =(-1+3i)(1-i)-(1+3i)i ,ω=z +a i(a ∈R ),当|ωz |≤2时,求a的取值范围.20.(本小题满分12分)已知z ∈C ,z -1z +1是纯虚数,求|z 2-z +2|的最小值.21.(本小题满分12分)设虚数z 满足|2z +5|=|z +10|. (1)求|z |的值;(2)若z m +mz为实数,求实数m 的值;(3)若(1-2i)z 在复平面上对应的点在第一、三象限的角平分线上,求复数z .22.(本小题满分12分)对任意一个非零复数α,定义M α={ω|ω=α2n -1,n ∈N *}.(1)设α是方程x +1x =2的一个根,试用列举法表示集合M α.若在M α中任取两个元素,求其和为零的概率P ;(2)若集合M α中只有三个元素,试写出满足条件的一个α值,并说明理由.第一章 综合能力检测答案一、选择题:1.解析:y ′=-cos(π4-x )=-sin[π2-(π4-x )]=-sin(π4+x ). 答案:D2.解析:f ′(x )=ax +1,令f ′(x )=0,得x =-a ,由题知当a =-1时,原函数在x =1处取得极值. 答案:B3.解析:偶函数的导数为奇函数,即f ′(x )为奇函数,故f ′(0)=0. 答案:C4.解析:y ′=1x +a ,设直线y =x +1与曲线y =ln(x +a )相切的切点为(x 0,x 0+1),则1x 0+a =1,∴x 0=1-a ,∴ln(1-a +a )=2-a ,∴e 2-a =1, ∴a =2. 答案:B5.解析:F (x )=f [g (x )]=x 4-4x 2+6,F ′(x )=4x 3-8x .令F ′(x )>0,得-2<x <0或x >2,∴F (x )在(-2,0)上递增. 答案:C6.解析:由题意,得f ′(x )=x 2-2(4m -1)x +(15m 2-2m -7),由于f ′(x )≥0恒成立,故Δ≤0,解得2≤m ≤4. 答案:D7.解析:设直线与曲线y =x 3的切点为P (x 0,y 0), 则⎩⎪⎨⎪⎧y 0=x 30y 0x 0-1=3x 20⇒切线斜率k =3x 20=0或k =274. 若k =0,切线方程为y =0. 由⎩⎪⎨⎪⎧y =0,y =ax 2+154x -9, 消去y ,得ax 2+154x -9=0,其判别式Δ=0⇒a =-2564;若k =274,切线方程为y =274(x -1),由⎩⎨⎧y =274(x -1),y =ax 2+154x -9消去y ,得ax 2-3x -94=0,其判别式Δ=0⇒a =-1. 答案:A8. 解析:∵f ′(x )=-x +b x +2,由题知,f ′(x )<0在(-1,+∞)上恒成立,即-x +bx +2<0,∴b <x (x +2)=(x +1)2-1. ∴b <-1.又当b =-1时,f ′(x )=-x -1x +2=-x (x +2)+1x +2=-(x +1)2x +2<0,∴b ≤-1. 答案:C9.解析:由y =sin x ,y =cos x ,x =0,x =π所围成的图形,如下图的阴影部分.答案:B10.解析:⎠⎛01(2ax 2-a 2x )dx=(23ax 3-12a 2x 2)|10=23a -12a 2, 即f (a )=23a -12a 2=-12(a 2-43a +49)+29=-12(a -23)2+29,∴当a =23时,f (a )有最大值29. 答案:C11.解析:根据几何概型的意义,所投的点落在阴影部分的概率是S 阴影S 矩形,由S 阴影=⎠⎛0πsin xdx =(-cos x )|π0=2,所求概率为S 阴影S 矩形=22π=1π. 答案:A 12.解析:设函数F (x )=xf (x ),∴F ′(x )=[xf (x )]′=f (x )+xf ′(x )≤0,∴F (x )=xf (x )在(0,+∞)上单调递减.∵a <b ,∴F (a )≥F (b ),即af (a )≥bf (b ).又∵0<a <b ,f (b )≥0,∴af (a )≤bf (a ),bf (b )≥af (b ).∴bf (a )≥af (b ). 答案:A二、填空题:13.解析:⎠⎛02(2x -e x )dx =(x 2-e x )|20=4-e 2+1=5-e 2. 答案:5-e 214.解析:f ′(x )=ωcos(ωx +φ), 依题意,得ω=2,2cos(π3+φ)=-1,解得φ=π3.答案:2 π315.解析:∵y ′=a (3x 2-1),令y ′<0,当a >0时,不等式的解集为(-33,33); 当a <0时,不等式的解集为(-∞,-33)∪(33,+∞).∵已知函数y =a (x 3-x )在(-33,33)上单调递减, ∴a >0. 答案:a >016.解析:设A 追上B 时,所用的时间为t 0,依题意有s A =s B +5,即10tdt+5,t 30+t 0=5t 20+5,即t 0(t 20+1)=5(t 20+1),解得t 0=5 s .所以s A =5t 20+5=130(m). 答案:130三、解答题:17.解:(1)由函数f (x )的图象过原点,得b =0, 又f ′(x )=3x 2+2(1-a )x -a (a +2), f (x )在原点处的切线斜率是-3, 则-a (a +2)=-3,所以a =-3,或a =1.(2)由f ′(x )=0,得x 1=a ,x 2=-a +23.又f (x )在(-1,1)上不单调,即⎩⎨⎧-1<a <1,a ≠-a +23,或⎩⎪⎨⎪⎧-1<-a +23<1,a ≠-a +23.解得⎩⎪⎨⎪⎧ -1<a <1,a ≠-12,或⎩⎪⎨⎪⎧-5<a <1,a ≠-12,所以a 的取值范围是(-5,-12)∪(-12,1).18.解:F (x )=⎠⎛x -1(t 2-4t )dt =(13t 3-2t 2)|x -1=13x 3-2x 2-(-13-2)=13x 3-2x 2+73(x >-1). (1)F ′(x )=x 2-4x ,由F ′(x )>0,即x 2-4x >0,得-1<x <0或x >4,由F ′(x )<0,即x 2-4x <0,得0<x <4,∴F (x )的单调递增区间为(-1,0)∪(4,+∞),单调递减区间为(0,4).(2)由(1)知F (x )在[1,4]上递减,[4,5]上递增.又∵F (1)=13-2+73=23,F (4)=13×43-2×42+73=-253,F (5)=13×53-2×52+73=-6,∴F (x )在[1,5]上的最大值为23,最小值为-253. 19.解:(1)f ′(x )=3ax 2+2bx +c ,因为x =±1是函数f (x )的极值点,所以x =±1是方程f ′(x )=0即3ax 2+2bx +c =0的两根.由根与系数的关系,得⎩⎨⎧-2b3a =0,①c3a =-1,②又f (1)=-1,所以a +b+c =-1.③ 由①②③,解得a =12,b =0,c =-32.(2)因为f (x )=12x 3-32x ,所以f ′(x )=32x 2-32=32(x -1)·(x +1).当x <-1或x >1时,f ′(x )>0,当-1<x <1时,f ′(x )<0.所以函数f (x )在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上是减函数.所以当x =-1时,函数取得极大值f (-1)=1,当x =1时,函数取得极小值f (1)=-1.20.解:函数的定义域为R ,其导函数为y ′=3x 2-3a .由y ′=0,得x=±a ,列表讨论如下:x (-∞,-a ) -a(-a ,a ) a (a ,+∞) f ′(x ) +0 -0 +f (x )极大值极小值由此可得,函数x =-a 处取得极大值2+2a 32;在x =a 处取得极小值2-2a 32.根据列表讨论,可作出函数的草图(如右图所示),因为极大值f (-a )=2+2a 32>0,故当极小值f (a )=2-2a 32<0,即a >1时,方程x 3-3ax +2=0有三个不同的实根;当极小值f (a )=2-2a 32>0,即0<a <1时,方程x 3-3ax +2=0有唯一的实根.21.解:求函数f (x )的导数得 f ′(x )=ax 2-2bx +2-b .(1)证明:由函数f (x )在x =x 1处取得极大值,在x =x 2处取得极小值,知x 1,x 2是f ′(x )=0的两个根.所以f ′(x )=a (x -x 1)(x -x 2). 当x <x 1时,f ′(x )>0,函数为增函数, 由x -x 1<0,x -x 2<0得a >0. (2)在题设下,0<x 1<1<x 2<2等价于⎩⎨⎧f ′(0)>0,f ′(1)<0,f ′(2)>0.即⎩⎪⎨⎪⎧2-b >0,a -2b +2-b <0,4a -4b +2-b >0.化简得⎩⎪⎨⎪⎧2-b >0,a -3b +2<0,4a -5b +2>0.此不等式组表示的区域为平面aOb 上三条直线2-b =0,a -3b +2=0,4a -5b +2=0所围成的△ABC 的内部,其三个顶点分别为A (47,67),B (2,2),C (4,2).z 在这三点的值依次为167,6,8.所以z 的取值范围为(167,8).22.解:(1)f ′(x )=x -ax ,∵x =2是一个极值点,∴2-a2=0.∴a =4.此时f ′(x )=x -4x =x 2-4x =(x -2)(x +2)x.∵f (x )的定义域是{x |x >0},∴当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0. ∴当a =4时,x =2是f (x )的极小值点.∴a =4. (2)∵f ′(x )=x -ax,∴当a ≤0时,f (x )的单调递增区间为(0,+∞).当a >0时,f ′(x )=x -a x =x 2-a x =(x -a )(x +a )x,令f ′(x )>0有x >a ,∴函数f (x )的单调递增区间为(a ,+∞); 令f ′(x )<0有0<x <a ,∴函数f (x )的单调递减区间为(0,a ). (3)证明:设g (x )=23x 3-12x 2-ln x ,则g ′(x )=2x 2-x -1x,∵当x >1时,g ′(x )=(x -1)(2x 2+x +1)x >0,∴g (x )在(1,+∞)上是增函数. ∴g (x )>g (1)=16>0.∴当x >1时,12x 2+ln x <23x 3.第二章 综合能力检测答案一、选择题:1.解析:三段论中的大前提、小前提及推理形式都是正确的. 答案:A 2.解析:∵b 2a -(2b -a )=b 2-2ab +a 2a =(b -a )2a ≥0,∴b 2a≥2b -a . 答案:C 3.解析:从n 到n 2共有n 2-n +1个自然数,即S (n )共有n 2-n +1项.故选D. 4.解析:若F (k )真,则F (k +1)一定真,其逆否命题为F (k +1)不真,则F (k )不真. ∴F (7)不真,则F (6)不真;F (6)不真,则F (5)不真. 答案:A5.解析:x 2+y 2+2x =x 2+(6x -2x 2)+2x =-x 2+8x =-(x -4)2+16≤16. 答案:C6.解析:∵f (x +2)=f (x )+f (2) ∴令x =-1则有 f (1)=f (-1)+f (2) ∴f (2)=2f (1)又∵f (1)=12,∴f (2)=1∴f (5)=f (2+3)=f (2)+f (3) =f (2)+f (2)+f (1) =2f (2)+f (1)=2+12=52. 答案:C7.解析:OP →=OA →+λ(AB →|AB →|+AC →|AC →|),AP →=λ(AB →|AB →|+AC →|AC →|)=λ(e 1+e 2),∴AP 是∠A 的内角平分线.答案:B8.解析:这是图论中的一个问题,如果一条一条的去数,由于道路错综复杂,哪些已算过,哪些没有算过就搞不清了,所以我们换一个思路,用分析法来试试.要到H 点,需从F 、E 、G 走过来,F 、E 、G 各点又可由哪些点走过来,……,这样一步步倒推,最后归结到A ,然后再反推过去得到如下的计算法:A 至B 、C 、D 的路数记在B 、C 、D 圆圈内,B 、C 、D 分别到F 、E 、G 的路数亦记在F 、E 、G 圆圈内,最后F 、E 、G 各个路数之和,即得至H 的总路数如答图1所示. 答案:C9.解析:①当点C 在线段AB 上时,可知||AC ||+||CB ||=||AB ||,故①是正确的.②取A (0,0),B (1,1),C (1,0),则||AC ||2=1,||BC ||2=1,||AB ||2=(1+1)2=4,故②是不正确的.③取A (0,0),B (1,1),C (1,0),证明||AC ||+||CB ||=||AB ||,故③不正确.故选B. 10.解析:P =a a +b +c +b a +b +d +c c +d +a +dc +d +b>a a +b +c +d +b a +b +d +c +c c +d +a +b +d c +d +b +a =1, P =a a +b +c +b a +b +d +c c +d +a +dc +d +b<a a +b +b a +b +c c +d +d c +d =2, ∴1<P <2. 答案:B11. 解析:在等差数列{a n }中,a 10=0,知以a 10为等差中项的项和为0,如a 9+a 11=a 8+a 12=…=a 2+a 18=a 1+a 19=0.而在等比数列{b n }中,b 15=1,类比地有b 1b 29=b 2b 28=…=b 14b 16=1.从而类似地总结规律应为各项之积.∵等差数列{a n }中a 10=0,∴a 1+a 19=a 2+a 18=…=a 8+a 12=a 9+a 11=0. 即:a 19-n +a n +1=0, a 18-n +a n +2=0, a 17-n +a n +3=0, …∴a 1+a 2+…+a n =a 1+a 2+…+a n +a n +1+a n +2+…+a 19-n . ∵b 15=1,∴b 1b 29=b 2b 28=…=b 14b 16=1. 即b 29-n b n +1=b 28-n b n +2=…=b 14b 16=1.∴b 1b 2…b n =b 1b 2…b 29-n (1≤n ≤29,n ∈N *).故选A.12.解析:根据数表可知,第1行第1列上的数为1,第2行第2列上的数为3,第3行第3列上的数为5,第4行第4列上的数为7,那么,由此可以推导出第n 行第n 列交叉点上的数应该是2n -1. 答案:A二、填空题:13.解析:由平面图形到空间图形的类比过程中,边长→面积,面积→体积. 答案:13R (S 1+S 2+S 3+S 4)14.解析:答案不唯一.因为a +(b *c )=a +b +c 2=2a +b +c 2,又(a +b )*(a +c )=(a +b )+(a +c )2=2a +b +c2,因此答案成立.同时:(a *b )+c =(a *c )+(b *c );a *(b +c )=(a +b )*c =(b +c )*a =(a +c )*b ;(a *b )+c =(b *a )+c 也符合题意. 答案:a +(b *c )=(a +b )*(a +c )15.解析:前面103个括号中共用了256个数,第104个括号有4个数分别是515,517,519,521,其和为2072. 答案:207216.解析:P n (x 0)=a 0x n -10+…+a n -2x 20+a n -1x 0+a n ,共需n 次加法运算,每个小因式中所需乘法运算依次为n ,n -1,…,1.故共需计算次数为n +n (n +1)2=12n (n +3).第二种运算中,P 0(x 0)=a 0,不需要运算,P 1(x 0)=x 0P 0(x 0)+a 1,需2次运算.P 2(x 0)=x 0P 1(x 0)+a 2,需2+2次运算,依次往下,P n (x 0)需2n 次运算. 答案:12n (n +3) 2n三、解答题:17.证明:(分析法)要证x 4+y 4≥12xy (x +y )2,只需证明2(x 4+y 4)≥xy (x +y )2, 即证2(x 4+y 4)≥x 3y +xy 3+2x 2y 2.只需x 4+y 4≥x 3y +xy 3与x 4+y 4≥2x 2y 2同时成立即可. 又知x 4+y 4-2x 2y 2=(x 2-y 2)2≥0,即x 4+y 4≥2x 2y 2成立, 只需再有x 4+y 4≥x 3y +xy 3成立即可. 由于x 4+y 4-x 3y -xy 3=(x -y )(x 3-y 3), ∵x -y 与x 3-y 3同号,∴(x -y )(x 3-y 3)≥0,即x 4+y 4≥x 3y +xy 3成立.∴对于任意实数x ,y 都有x 4+y 4≥12xy (x +y )2成立.18.证明:(1)因为E 、F 分别是A 1B 、A 1C 的中点,所以EF ∥BC ,EF ⊄面ABC ,BC ⊂面ABC .所以EF ∥平面ABC .(2)因为三棱柱ABC -A 1B 1C 1为直三棱柱, 所以BB 1⊥面A 1B 1C 1,BB 1⊥A 1D , 又A 1D ⊥B 1C ,所以A 1D ⊥平面BB 1C 1C , 又A 1D ⊂平面A 1FD , 所以平面A 1FD ⊥平面BB 1C 1C .19.证明:假设三条抛物线均与x 轴无两交点,则Δ1=4b 2-4ac ≤0,Δ2=4c 2-4ab ≤0,Δ3=4a 2-4bc ≤0,∴a 2+b 2+c 2-ab -ac -bc ≤0,即12[(a -b )2+(b -c )2+(c -a )2]≤0,∴a =b =c ,与a ,b ,c 是互不相等的实数矛盾.故三条抛物线中,至少有一条与x 轴有两个交点.20.解:(1)∵f (2)=f (2×1)=f (2)·f (1),又f (2)=2,∴f (1)=1.又∵f (4)=f (2·2)=f (2)·f (2)=4,2=f (2)<f (3)<f (4)=4,且f (3)∈N *.∴f (3)=3.(2)由f (1)=1,f (2)=2,f (3)=3,猜想f (n )=n (n ∈N *).(3)用数学归纳法证明:(ⅰ)当n =1时,f (1)=1,函数解析式成立. (ⅱ)假设n =k 时,f (k )=k ,函数解析式成立.①若k +1=2m (m ∈N *),f (k +1)=f (2m )=f (2)·f (m )=2m =k +1. ②若k +1=2m +1(m ∈N *),f (2m +2)=f [2(m +1)]=f (2)·f (m +1)=2(m +1)=2m +2,2m =f (2m )<f (2m +1)<f (2m +2)=2m +2. ∴f (2m +1)=2m +1=k +1.即当n =k +1时,函数解析式成立. 综合(ⅰ)(ⅱ)可知,f (n )=n (n ∈N *)成立. 21.解:(1)a 10=10,a 20=10+10d =40, ∴d =3.(2)a 30=a 20+10d 2=10(1+d +d 2)(d ≠0), a 30=10[(d +12)2+34],当d ∈(-∞,0)∪(0,+∞)时,a 30∈[7.5,+∞);(3)所给数列可推广为无穷数列{a n },其中a 1,a 2,…,a 10是首项为1,公差为1的等差数列,当n ≥1时,数列a 10n ,a 10n +1,…,a 10(n +1)是公差为d n 的等差数列.研究的问题可以是:试写出a 10(n +1)关于d 的关系式,并求a 10(n +1)的取值范围 研究的结论可以是:由a 40=a 30+10d 3=10(1+d +d 2+d 3), 依次类推可得a 10(n +1)=10(1+d +…+d n ) =⎩⎪⎨⎪⎧10×1-d n +11-d ,d ≠1,10(n +1),d =1.当d >0时,a 10(n +1)的取值范围为(10,+∞). 22.解:(1)依题意有x 2+a bx -c=x ,化简为(1-b )x 2+cx +a =0,由根与系数的关系得⎩⎪⎨⎪⎧2+0=-c 1-b,2·0=a 1-b,解得⎩⎪⎨⎪⎧a =0,b =1+c 2,代入表达式得f (x )=x 2(1+c 2)x -c ,由f (-2)=-21+c <-12,得c <3.又因为c ∈N ,b ∈N ,若c =0,b =1,f (x )=x 不止有两个不动点,若c =1,b =32,则f (x )=x只有一个不动点,所以c =2,b =2,故f (x )=x 22(x -1)(x ≠1).(2)由题设得4S n ·(1a n)22(1a n-1)=1,得2S n =a n -a 2n ,(*) 且a n ≠1,把n -1代入得2S n -1=a n -1-a 2n -1.(**)由(*)与(**)两式相减得2a n =(a n -a n -1)-(a 2n -a 2n -1),即(a n +a n -1)(a n -a n -1+1)=0,所以a n =-a n -1或a n -a n -1=-1,把n =1代入(*)得2a 1=a 1-a 21,解得a 1=0(舍去)或a 1=-1.由a 1=-1,a n =-a n -1,得a 2=1,这与a n ≠1矛盾,所以a n -a n -1=-1,即{a n }是以-1为首项,-1为公差的等差数列,所以a n =-n .(3)证明:(采用反证法)假设a n ≥3(n ≥2),则由(1)知a n +1=f (a n )=a 2n2a n -2,所以a n +1a n =a n 2(a n -1)=12·(1+1a n -1)≤12(1+12)=34<1,即a n +1<a n (n ≥2,n ∈N ),有a n <a n -1<…<a 2,而当n =2时,a 2=a 212a 1-2=168-2=83<3,所以a 2<3.这与假设矛盾,故假设不成立,所以a n <3.第三章 综合能力检测答案一、选择题:1.解析:由复数的概念可知x +y 仍是虚数. 答案:B2. 解析:4+3i 1+2i =(4+3i)(1-2i)1+22=(4+6)+(3-8)i5=2-i. 答案:B3.解析:m -2i 1+2i =(m -2i)(1-2i)(1+2i)(1-2i)=(m -4)-2(m +1)i5,对于m 的值,不存在m 使m -4>0且m+1<0,故对应的点不可能在第一象限. 答案:A4.解析:∵z =(a +3i)(1-2i)(1+2i)(1-2i)=a +65+(3-2a )i 5.若z 为纯虚数,则⎩⎪⎨⎪⎧a +6=0,3-2a ≠0⇒⎩⎪⎨⎪⎧a =-6,a ≠32.答案:C5.解析:由于实系数一元二次方程的虚根成对出现,是互为共轭复数的,故另一根为3-2i ,则(3+2i)·(3-2i)=q2=13.故选A.6.解析:∵P 2P 1→=OP 1→-OP 2→,∴P 2P 1→对应的复数为z 1-z 2=(2-5i)-(-3+i)=5-6i. 答案:B7.解析:由m1+i =1+n i 得m =(1+i)(1-n i)=(1+n )+(1-n )i ,∴⎩⎪⎨⎪⎧ m =1+n ,0=1-n ,∴⎩⎪⎨⎪⎧m =2,n =1,∴m +n i =2+i. 答案:C8.解析:设z =x +y i ,则|3x +3y i +1|=|x +y i -i|. ∴(3x +1)2+9y 2=x 2+(y -1)2, 即4x 2+4y 2+3x +y =0.∴复数z 对应点Z 的轨迹为圆.故选C.9.解析:由z =12+32i 可得,z +1z =12+32i +12-32i =1∈R . ∴z =12+32i 是z +1z ∈R 的充分条件.但z +1z ∈R ⇒|z |=1z =12+32i ,所以z =12+32i 是z +1z∈R 的充分非必要条件. 答案:A10.解析:-35+2i 2+35i +(21+i )2008=i(35i +2)2+35i +1i1004=i +1. 答案:B11.解析:f (n )=(1+i 1-i )n +(1-i1+i )n =i n +(-i)n (n ∈N *),根据i n 取值的周期性,给n 赋值发现集合{x |x =f (n )}={0,-2,2},故应选C.12.解析:由|z |=1,得|z |2=1,即z ·z =1,所以x =a -z z z -a z =a -zz (z -a )=-1z=-z ,所以|x |=|-z |=1. 答案:B二、填空题:13.解析:由已知得z =z 0z 0-3=3+2i 2i =1-32i. 答案:1-32i14.解析:设z =x +y i(x ,y ∈R ),由|z +2+2i|=|z |得(x +2)2+(y +2)2=x 2+y 2,即x +y +2=0,点(1,-1)到直线x +y +2=0的距离为d =|1-1+2|2=2,∴|z -1+i|的最小值为 2. 答案: 215.解析:1+7i 2-i =(1+7i)(2+i)4+1=-1+3i由-1+3i =a +b i 得a =-1,b =3 ∴ab =-3 答案:-316.解析:由k 1z 1+k 2z 2+k 3z 3=0得k 1(1+2i)+k 2(1-i)+k 2·(-2)=0, 即(k 1+k 2-2k 3)+(2k 1-k 2)i =0,∴⎩⎪⎨⎪⎧k 1+k 2-2k 3=0,2k 1-k 2=0.∴k 1∶k 2∶k 3=1∶2∶32.(答案不唯一,只需满足1∶2∶32的任何一组都行) 答案:{1,2,32}三、解答题:17.解:(1)z 1z 2=(1+i)(x +2i)=x +2i +x i -2=(x -2)+(2+x )i ,因为z 1z 2是实数,所以x +2=0,所以x =-2.(2)原式=2(4-i)(3-i)+(7-i)(4-3i)=2(12-3i -4i 2)+(28-4i -21i +3i 2)=2(11-7i)+25(1-i)=47-39i.18.解:原方程化简为|z |2+(z +z )i =1-i ,设z =x +y i(x 、y ∈R ),代入上述方程;得x 2+y 2+2x i =1-i ,所以⎩⎪⎨⎪⎧x 2+y 2=1,2x =-1.解得⎩⎨⎧x =-12,y =±32.所以原方程的解是z =-12±32i.19.解:z =2+4i -(1+3i)i =1+i i =-i(1+i)=1-i ,ω=1+(a -1)i ,ωz =1+(a -1)i1-i=[1+(a -1)i](1+i)2=2-a +a i 2,由|ωz |≤2,得(2-a 2)2+(a2)2≤2,解得1-3≤a ≤1+ 3.故a 的取值范围是[1-3,1+3].20.解:设z =x +y i(x ,y ∈R ),则z -1z +1=(x -1)+y i (x +1)+y i =x 2+y 2-1+2y i(x +1)2+y 2是纯虚数,∴x2+y 2=1且y ≠0,于是-1<x <1.而|z 2-z +2|=|(x +y i)2-(x +y i)+2|=|(x 2-y 2-x +2)+y (2x -1)i|=(x 2-y 2-x +2)2+y 2(2x -1)2=8x 2-6x +2=8(x -38)2+78,∴当x =38时,|z 2-z +2|取得最小值144. 21.解:(1)设z =x +y i(x ,y ∈R ,且y ≠0),则 (2x +5)2+(2y )2=(x +10)2+y 2. 化简得x 2+y 2=25.∴|z |=5. (2)∵z m +m z =x +y i m +m x +y i=(x m +mx x 2+y 2)+(y m -myx 2+y2)i 为实数,∴y m -myx 2+y 2=0. 又y ≠0,且x 2+y 2=25, ∴1m -m25=0,解得m =±5. (3)(1-2i)z =(1-2i)(x +y i)=(x +2y )+(y -2x )i ,依据题意,得x +2y =y -2x . ∴y =-3x .①又∵|z |=5,即x 2+y 2=25.② 由①、②得⎩⎨⎧x =102,y =-3102或⎩⎨⎧x =-102,y =3102.∴z =102-3102i 或z =-102+3102i. 22.解:(1)解方程x +1x =2,得x =22±22i.当α1=22+22i 时,ω=α2n -11=(α21)nα1=[(22+22i)2]n α1=in α1.由i n 的周期性知,ω有四个值,n =1时,ω=22+22i ;n =2时,ω=-22+22i ;n =3时,ω=-22-22i ;n =4是,ω=22-22i. 当α2=22-22i 时,ω=α2n -12=(α22)n α2=(-i)nα2.当n =1时,ω=22-22i ;n =2时,ω=-22-22i ;n =3时,ω=-22+22i ;n =4时,ω=22+22i.∴不论α=22+22i 还是α=22-22i ,都有 M α={22+22i ,22-22i ,-22+22i ,-22-22i},P =2C 24=13. (2)取α=-12+32i ,则α3=1,α5=-12-32i ,于是M α={α,α3,α5}={-12+32i,1,-12-32i}.(或取α=-12-32i ,则α3=1,α5=-12+32i)。

人教a版数学【选修2-2】练习:1.2.2基本初等函数的导数公式(一)(含答案)

人教a版数学【选修2-2】练习:1.2.2基本初等函数的导数公式(一)(含答案)

选修2-2 第一章 1.2 1.2.2 第1课时一、选择题1.若曲线y =x 4的一条切线l 与直线x +4y -8=0垂直,则l 的方程为( ) A .4x -y -3=0 B .x +4y -5=0 C .4x -y +3=0 D .x +4y +3=0[答案] A[解析] ∵直线x +4y -8=0的斜率k =-14,∴直线l 的斜率为4,而y ′=4x 3,由y ′=4得x =1而x =1时,y =1,故直线l 的方程为:y -1=4(x -1)即4x -y -3=0.2.已知f (x )=ax 3+9x 2+6x -7,若f ′(-1)=4,则a 的值等于( ) A .193B .163C .103D .133[答案] B[解析] ∵f ′(x )=3ax 2+18x +6,∴由f ′(-1)=4得,3a -18+6=4,即a =163.∴选B.3.(2014·山师附中高二期中)设f (x )=sin x -cos x ,则f (x )在x =π4处的导数f ′(π4)=( )A . 2B .- 2C .0D .22[答案] A[解析] ∵f ′(x )=cos x +sin x , ∴f ′(π4)=cos π4+sin π4=2,故选A.4.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,则x 1·x 2·…·x n的值为( )A .1nB .1n +1C .n n +1D .1[答案] B[解析] 对y =x n +1(n ∈N *)求导得y ′=(n +1)x n ,令x =1得在点(1,1)处的切线的斜率k=n +1,在点(1,1)处的切线方程为y -1=(n +1)(x n -1).令y =0,得x n =nn +1.则x 1·x 2·…·x n =12×23×34×…×n -1n ×n n +1=1n +1,故选B.5.(2014·合肥一六八高二期中)下列函数中,导函数是奇函数的是( ) A .y =sin x B .y =e x C .y =ln x D .y =cos x -12[答案] D[解析] 由y =sin x 得y ′=cos x 为偶函数,故A 错;又y =e x 时,y ′=e x 为非奇非偶函数,∴B 错;C 中y =ln x 的定义域x >0,∴C 错;D 中y =cos x -12时,y ′=-sin x 为奇函数,∴选D.6.已知物体的运动方程是s =14t 4-4t 3+16t 2(t 表示时间,s 表示位移),则瞬时速度为0的时刻是( )A .0秒、2秒或4秒B .0秒、2秒或16秒C .2秒、8秒或16秒D .0秒、4秒或8秒 [答案] D[解析] 显然瞬时速度v =s ′=t 3-12t 2+32t =t (t 2-12t +32),令v =0可得t =0,4,8.故选D.二、填空题7.过曲线y =cos x 上点P ⎝⎛⎭⎫π3,12且与在这点的切线垂直的直线方程为________. [答案] 2x -3y -2π3+32=0[解析] ∵y =cos x ,∴y ′=-sin x , 曲线在点P ⎝⎛⎭⎫π3,12处的切线斜率是 y ′|x =π3=-sin π3=-32.∴过点P 且与切线垂直的直线的斜率为23, ∴所求的直线方程为y -12=23⎝⎛⎭⎫x -π3, 即2x -3y -2π3+32=0.[点评] 在确定与切线垂直的直线方程时,应注意考察函数在切点处的导数y ′是否为零,当y ′=0时,切线平行于x 轴,过切点P 垂直于切线的直线斜率不存在.8.(2014·杭州质检)若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为________. [答案] (2,+∞)[解析] 由f (x )=x 2-2x -4ln x ,得函数定义域为(0,+∞),且f ′(x )=2x -2-4x =2x 2-2x -4x =2·x 2-x -2x =2·(x +1)(x -2)x ,f ′(x )>0,解得x >2,故f ′(x )>0的解集为(2,+∞).9.在曲线y =4x 2上求一点P ,使得曲线在该点处的切线的倾斜角为135°,则P 点坐标为________.[答案] (2,1)[解析] 设P (x 0,y 0),∵y ′=⎝⎛⎭⎫4x 2′=(4x -2)′=-8x -3,tan135°=-1, ∴-8x -30=-1.∴x 0=2,y 0=1.三、解答题10.求下列函数的导数:(1)y =x (x 2+1x +1x 3);(2)y =(x +1)(1x -1);(3)y =sin 4x 4+cos 4x4;(4)y =1+x 1-x +1-x 1+x .[解析] (1)∵y =x ⎝⎛⎭⎫x 2+1x +1x 3=x 3+1+1x 2, ∴y ′=3x 2-2x 3.(2)∵y =(x +1)⎝⎛⎭⎫1x -1=-x 12+x -12,∴y ′=-12x -12-12x -32=-12x ⎝⎛⎭⎫1+1x . (3)∵y =sin 4x 4+cos 4x4=⎝⎛⎭⎫sin 2x 4+cos 2x 42-2sin 2x 4cos 2x4=1-12sin 2x 2=1-12·1-cos x 2=34+14cos x ,∴y ′=-14sin x .(4)∵y =1+x 1-x +1-x 1+x =(1+x )21-x +(1-x )21-x=2+2x 1-x =41-x-2, ∴y ′=⎝⎛⎭⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2.一、选择题11.(2014·长春市期末调研)已知直线y =kx 是y =ln x 的切线,则k 的值为( ) A .-e B .e C .-1eD .1e[答案] D[解析] y ′=1x =k ,∴x =1k ,切点坐标为⎝⎛⎭⎫1k ,1, 又切点在曲线y =ln x 上,∴ln 1k =1,∴1k =e ,k =1e.12.(2014·山师附中高二期中)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b 的值为( )A .2B .-1C .1D .-2 [答案] C[解析] 由条件知,点A 在直线上,∴k =2,又点A 在曲线上,∴a +b +1=3,∴a +b =2.由y =x 3+ax +b 得y ′=3x 2+a ,∴3+a =k ,∴a =-1,∴b =3,∴2a +b =1.13.若函数f (x )=e x sin x ,则此函数图象在点(4,f (4))处的切线的倾斜角为( ) A .π2B .0C .钝角D .锐角 [答案] C[解析] y ′|x =4=(e x sin x +e x cos x )|x =4=e 4(sin4+cos4)=2e 4sin(4+π4)<0,故倾斜角为钝角,选C.14.设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,则f 2013(x )等于( )A .sin xB .-sin xC .cos xD .-cos x[答案] C[解析]f0(x)=sin x,f1(x)=f0′(x)=(sin x)′=cos x,f2(x)=f1′(x)=(cos x)′=-sin x,f3(x)=f2′(x)=(-sin x)′=-cos x,f4(x)=f3′(x)=(-cos x)′=sin x,∴4为最小正周期,∴f2013(x)=f1(x)=cos x.故选C.二、填空题15.等比数列{a n}中,a1=2,a8=4,函数f(x)=x(x-a1)(x-a2)…(x-a8),则f′(0)=________.[答案]212[解析]f′(x)=x′·[(x-a1)(x-a2)…(x-a8)]+[(x-a1)(x-a2)…(x-a8)]′·x=(x-a1)(x-a2)…(x-a8)+[(x-a1)(x-a2)…(x-a8)]′·x,所以f′(0)=(0-a1)(0-a2)...(0-a8)+[(0-a1)(0-a2)...(0-a8)]′.0=a1a2 (8)因为数列{a n}为等比数列,所以a2a7=a3a6=a4a5=a1a8=8,所以f′(0)=84=212.16.(2014·宁夏三市联考)经过点P(2,1)且与曲线f(x)=x3-2x2+1相切的直线l的方程是________.[答案]4x-y-7=0或y=1[解析]设切点为(x0,x30-2x20+1),由k=f′(x0)=3x20-4x0,可得切线方程为y-(x30-2x20+1)=(3x20-4x0)(x-x0),代入点P(2,1)解得:x0=0或x0=2.当x0=0时切线方程为y=1;当x0=2时切线方程为4x-y-7=0.综上得直线l的方程是:4x-y-7=0或y=1.三、解答题17.已知两条曲线y=sin x、y=cos x,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.[解析]由于y=sin x、y=cos x,设两条曲线的一个公共点为P(x0,y0),∴两条曲线在P(x0,y0)处的斜率分别为k1=y′|x=x0=cos x0,k2=y′|x=x0=-sin x0.若使两条切线互相垂直,必须cos x0·(-sin x0)=-1,即sin x0·cos x0=1,也就是sin2x0=2,这是不可能的,∴两条曲线不存在公共点,使在这一点处的两条切线互相垂直.18.已知函数f (x )=ax -6x 2+b 的图象在点M (-1,f (-1))处的切线的方程为x +2y +5=0,求函数的解析式.[分析] f (x )在点M 处切线方程为x +2y +5=0有两层含义,(一)是点M 在f (x )的图象上,且在直线x +2y +5=0上,(二)是f ′(-1)=-12.[解析] 由条件知,-1+2f (-1)+5=0, ∴f (-1)=-2, ∴-a -61+b=-2,(1) 又直线x +2y +5=0的斜率k =-12,∴f ′(-1)=-12,∵f ′(x )=-ax 2+12x +ab(x 2+b )2,∴-a -12+ab (1+b )2=-12,(2) 由(1)(2)解得,a =2,b =3.(∵b +1≠0,∴b =-1舍去). ∴所求函数解析式为f (x )=2x -6x 2+3.。

高中数学(人教A版选修2-2)练习:1.5.3 定积分的概念

高中数学(人教A版选修2-2)练习:1.5.3 定积分的概念

课时提升作业(十)定积分的概念一、选择题(每小题3分,共12分)1.(2014·广州高二检测)关于定积分m=dx,下列说法正确的是( )A.被积函数为y=-xB.被积函数为y=-C.被积函数为y=-x+C,D.被积函数为y=-x3【解析】选B.由定积分的定义知,被积函数为y=-.2.定积分f(x)dx(f(x)>0)的积分区间是( )A.[-2,2]B.[0,2]C.[-2,0]D.不确定【解析】选A.由定积分的概念得定积分f(x)dx的积分区间是[-2,2].3.设f(x)=则f(x)dx的值是( )A.x2dxB.2x dxC.x2dx+2x dxD.2x dx+x2dx【解析】选D.因为f(x)在不同区间上的解析式不同,所以积分区间应该与对应的解析式一致.利用定积分的性质可得正确答案为D.4.(2014·南昌高二检测)下列等式不成立的是( )A.[mf(x)+ng(x)]dx=m f(x)dx+n g(x)dxB.[f(x)+1]dx=f(x)dx+b-aC.f(x)g(x)dx=f(x)dx·g(x)dxD.sinxdx=sinxdx+sinxdx【解析】选C.由定积分的性质知选项A,B,D正确.【误区警示】应用定积分的性质计算定积分时,要特别注意积分区间及被积函数的符号.二、填空题(每小题4分,共8分)5.(2014·长春高二检测)定积分(-3)dx=__________.【解析】3dx表示图中阴影部分的面积S=3×2=6,(-3)dx=-3dx=-6.答案:-66.计算:(1-cosx)dx=________.【解题指南】根据定积分的几何意义,运用余弦曲线的对称性计算,或通过补形转化为矩形的面积计算.【解析】根据定积分的几何意义,得1dx=2π,cosxdx=cosxdx+cosxdx+cosxdx+cosxdx=cosxdx-cosxdx-cosxdx+cosxdx=0,所以(1-cosx)dx=1dx-cosxdx=2π-0=2π.答案:2π【一题多解】在公共积分区间[0,2π]上,(1-cosx)dx表示直线y=1与余弦曲线y=cosx在[0,2π]上围成封闭图形的面积,如图,由于余弦曲线y=cosx在[0,π]上关于点中心对称,在上关于点中心对称,所以区域①与②的面积相等,所求平面图形的面积等于边长分别为1,2π的矩形的面积,其值为2π.所以(1-cosx)dx=2π.答案:2π三、解答题(每小题10分,共20分)7.(2014·济南高二检测)已知x3dx=,x3dx=,x2dx=,x2dx=,求:(1)3x3dx.(2)6x2dx.(3)(3x2-2x3)dx.【解析】(1)3x3dx=3x3dx=3=3=12.(2)6x2dx=6x2dx=6(x2dx+x2dx)=6=126.(3)(3x2-2x3)dx=3x2dx-2x3dx=3×-2×=-.8.求定积分(-x)dx的值.【解析】(-x)dx表示圆(x-1)2+y2=1(y≥0)的一部分与直线y=x所围成的图形(图中阴影部分)的面积,故原式=×π×12-×1×1=-.【拓展延伸】1.利用定积分的几何意义求定积分的方法步骤(1)确定被积函数和积分区间.(2)准确画出图形.(3)求出各部分的面积.(4)写出定积分,注意当f(x)≥0时,S=f(x)dx,而当f(x)≤0时,S=-f(x)dx.2.利用定积分的几何意义求定积分的注意点准确理解其几何意义,同时要合理利用函数的奇偶性、对称性来解决问题.另外,要注意结合图形的直观辅助作用.一、选择题(每小题4分,共12分)1.(2014·黄冈高二检测)设曲线y=x2与直线y=x所围成的封闭区域的面积为S,则下列等式成立的是( )A.S=(x2-x)dxB.S=(x-x2)dxC.S=(y2-y)dyD.S=(y-)dy【解析】选B.将曲线方程y=x2与直线方程y=x联立方程组,解得x=0或x=1,结合图形可得B正确.2.如图所示,图中曲线方程为y=x2-1,用定积分表示围成封闭图形(阴影部分)的面积是( )A.B.(x2-1)dxC.|x2-1|dxD.(x2-1)dx+(x2-1)dx【解题指南】由定积分的几何意义及性质即可得出.【解析】选 C.由定积分的几何意义和性质可得:图中围成封闭图形(阴影部分)的面积S=(1-x2)dx+(x2-1)dx=|x2-1|dx,故选C.【举一反三】将本题中的函数改为f(x)=x-1,则(x-1)dx=__________.【解析】直线y=x-1,与x=0,x=1.y=0围成的图形为三角形,面积为S=×1×1=.由定积分的几何意义得(x-1)dx=-.答案:-3.(2013·天津高二检测)曲线y=与直线y=x,x=2所围成的图形面积用定积分可表示为( )A.dxB.dxC.dxD.dx【解析】选A.如图所示,阴影部分的面积可表示为xdx-dx=dx.二、填空题(每小题4分,共8分)4.(2014·深圳高二检测)定积分2014dx=__________.【解析】根据定积分的几何意义2014dx表示直线x=2014,x=2015,y=0,y=2014围成的图形的面积,故2014dx=2014×(2015-2014)=2014.答案:20145.定积分(2+)dx=________.【解题指南】利用定积分的几何意义先分别求出2dx,dx.再由性质求和.【解析】原式=2dx+dx.因为2dx=2,dx=,所以(2+)dx=2+.答案:2+三、解答题(每小题10分,共20分)6.(2014·青岛高二检测)根据定积分的几何意义求下列定积分的值:(1)xdx.(2)cosxdx.(3)|x|dx.【解析】(1)如图(1),xdx=-A1+A1=0.(2)如图(2),cosxdx=A1-A2+A3=0.(3)如图(3),因为A1=A2,所以|x|dx=2A1=2×=1.(A1,A2,A3分别表示图中相应各处面积)【拓展延伸】利用几何意义求定积分的注意点(1)关键是准确确定被积函数的图象,以及积分区间.(2)正确利用相关的几何知识求面积.(3)不规则的图形常用分割法求面积,注意分割点的准确确定.7.一辆汽车的速度——时间曲线如图所示,求汽车在这一分钟内行驶的路程.【解析】依题意,汽车的速度v与时间t的函数关系式为v(t)=所以该汽车在这一分钟内所行驶的路程为s=v(t)dt=tdt+(50-t)dt+10dt=300+400+200=900(米).关闭Word文档返回原板块。

(必考题)高中数学高中数学选修2-2第四章《定积分》测试题(答案解析)

(必考题)高中数学高中数学选修2-2第四章《定积分》测试题(答案解析)

一、选择题1.给出下列函数:①()()2ln 1f x x x =+-;②()3cos f x x x =;③()xf x e x =+.0a ∃>使得()0aaf x dx -=⎰的函数是( )A .①②B .①③C .②③D .①②③2.已知71()x x +展开式中,5x 的系数为a ,则62axdx =⎰( )A .10B .11C .12D .133.如图,由曲线21y x =-直线0,2x x ==和x 轴围成的封闭图形的面积是( )A .1B .23C .43D .24.已知函数()2ln 2f x mx x x =+-在定义域内存在单调递减区间,则实数m 的取值范围是( ) A .12m ≥B .12m < C .1m ≥ D .1m < 5.3侧面与底面所成的角是45︒,则该正四棱锥的体积是( ) A .23B .43C .23D .236.22221231111,,,x S x dx S dx S e dx x ===⎰⎰⎰若 ,则s 1,s 2,s 3的大小关系为( )A .s 1<s 2<s 3B .s 2<s 1<s 3C .s 2<s 3<s 1D .s 3<s 2<s 17.曲线3y x =在点()1,1处的切线与x 轴、直线2x =所围成的三角形的面积为( ) A .83B .73C .53D .438.已知1(1)1x f x x e ++=-+,则函数()f x 在点(0,(0))f 处的切线l 与坐标轴围成的三角形的面积为 A .14 B .12C .1D .29.一物体在力(单位:N)的作用下沿与力相同的方向,从x=0处运动到(单位:)处,则力做的功为( ).A .44B .46C .48D .50 10.已知10(31)()0ax x b dx ,,a b ∈R ,则⋅a b 的取值范围为( )A .1,9B .1,1,9C .1,[1,)9D .()1,+∞11.定义{},,min ,,,a ab a b b a b ≤⎧=⎨>⎩设31()min ,f x x x ⎧⎫=⎨⎬⎩⎭,则由函数()f x 的图象与x 轴、直线4x =所围成的封闭图形的面积( ) A .12ln 26+ B .12ln 24+ C .1ln 24+ D .1ln 26+ 12.某几何体的三视图如图所示,则该几何体的体积为( )A .4B .2C .43D .23二、填空题13.若112lim 22n nn n n t t +-→+∞-=+ ,则实数t 的取值范围是_____________.14.曲线,,0x y e y e x ===围成的图形的面积S =______15.曲线()sin 0πy x x =≤≤与x 轴围成的封闭区域的面积为__________. 16.已知函数()323232t f x x x x t =-++在区间()0,∞+上既有极大值又有极小值,则实数t 的取值范围是__________. 17.定积分()12xx e dx +=⎰__________.18.曲线2y x =与直线230x y --=所围成的平面图形的面积为________.19.二项式33()6a x -的展开式的第二项的系数为,则的值为______.20.若,则的值是__________.三、解答题21.已知二次函数()f x 满足(0)0f =,且对任意x 恒有(1)()22f x f x x +-=+. (1)求()f x 的解析式;(2)设函数()()'()g x f x f x λ=-,其中'()f x 为()f x 的导函数.若对任意[0,1]x ∈,函数()y g x =的图象恒在x 轴上方,求实数λ的取值范围.22.为了降低能源消耗,某冷库内部要建造可供使用20年的隔热层,每厘米厚的隔热层建造成本为4万元,又知该冷库每年的能源消耗费用c (单位:万元)与隔热层厚度x (单位:cm )满足关系()(010)25kc x x x =≤≤+,若不建隔热层,每年能源消耗为8万元.设()f x 为隔热层建造费用与20年的能源消耗费用之和. (1)求k 的值及()f x 的表达式;(2)隔热层修建多厚时,总费用()f x 达到最小?并求最小值. 23.已知函数()32f x x ax =+图像上一点()1,P b 的切线斜率为3-,()()()3261302t g x x x t x t -=+-++> (Ⅰ)求,a b 的值;(Ⅱ)当[]1,4x ∈-时,求()f x 的值域;(Ⅲ)当[]1,4x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围. 24.计算曲线223y x x =-+与直线3y x所围图形的面积.25.在(332x x11的展开式中任取一项,设所取项为有理项的概率为α,求1x α⎰d x26.已知()ln f x x x mx =+,2()3g x x ax =-+-(1)若函数()f x 在(1,)+∞上为单调函数,求实数m 的取值范围;(2)若当0m =时,对任意(0,),2()()x f x g x ∈+∞≥恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A【分析】利用定义判断①②中的函数为奇函数,根据奇函数和定积分的性质,判断①②;利用反证法,结合定积分的性质,判断③. 【详解】对①,()f x 的定义域为R1())))()f x x x x f x --===-=-即函数()f x 为奇函数,则0a ∃>使得()0aaf x dx -=⎰对②,()f x 的定义域为R33()cos()cos ()f x x x x x f x -=--=-=-,即函数()f x 为奇函数,则0a ∃>使得()0aaf x dx -=⎰对③,若0a ∃>,使得()0aaf x dx -=⎰成立则()2102aax x a aa a e x dx e x e e ---⎛⎫+=+- ⎪⎝==⎭⎰,解得0a =,与0a >矛盾,则③不满足 故选:A 【点睛】本题主要考查了定积分的性质以运用,属于中档题.2.D解析:D 【分析】利用二项式的通项公式求得7a =,从而求得762xdx ⎰的值.【详解】在71()x x +展开式中,得二项式的通项公式7721771rr r r r r T C x C x x --+⎛⎫== ⎪⎝⎭,令725r -=,解得1r =,所以5x 的系数为177C =,即7a =.所以7267662213axdx xdx x ===⎰⎰.故选:D 【点睛】本题主要考查二项式展开式的通项公式,求展开式中某项的系数,二项式系数的性质,求定积分的值,属于中档题.3.D解析:D 【解析】由曲线21y x =-直线0,2x x ==和x 轴围成的封闭图形的面积是122201(1)(1)S x dx x dx =---⎰⎰31320111281()|()|2133333x x x x -+-=+--+ 4.B解析:B【解析】求导函数,可得()1'220f x mx x x=+->,,函数()2ln 2f x mx x x =+-在定义域内是增函数,所以()'0f x < 成立,即1220(0)mx x x+-<>恒成立,所以21211m x ⎛⎫->-- ⎪⎝⎭,所以21m ->-,所以12m < 时,函数()f x 在定义域内是增函数.故选B .5.B解析:B 【解析】设底面边长为a ,依据题设可得棱锥的高2ah =,底面中心到顶点的距离2d =,由勾股定理可得2221()()22a a +=,解之得2a =,所以正四棱锥的体积21242323V =⨯⨯=,故应选答案B .6.B解析:B 【解析】3221321322217ln |ln 2||,.11133x S x S x S e e e S S S ==<==<==-∴<<选B.考点:此题主要考查定积分、比较大小,考查逻辑推理能力.7.A解析:A 【解析】 试题分析:()'323x x=,所以切线方程为13(1),32y x y x -=-=-,所以切线与x 轴、直线2x =所围成的三角形的面积()2238323S x dx =-=⎰.考点:1、切线方程;2、定积分.【易错点晴】本题易错点有三个,一个是切线方程,错解为看成过()1,1的切线方程;第二个错误是看成与y 轴围成的面积,()()22320328103232333S x dx x dx =--+-=+=⎰⎰;第三个是没有将切线与x 轴的交点求出来,导致没有办法解决题目.切线的常见问题有两种,一种是已知切点求切线方程;另一种是已知切线过一点求切线方程,两种题目都需要我们认真掌握.8.A解析:A 【解析】试题分析:由1(1)1x f x x e ++=-+知()2x f x x e =-+,则()1(0)2x f x e f ''=+⇒=,而(0)1f =-,即切点坐标为()0,1-,切线斜率(0=2k f '=),则切线()():12021l y x y x --=-⇒=-,切线l 与坐标轴的交点分别为1,02⎛⎫⎪⎝⎭和()0,1-,则切线l 与坐标轴围成的三角形的面积为1111224S =⋅⋅-= 考点:函数在某点处的切线9.B解析:B 【解析】由定积分的物理意义,得,即力做的功为46.考点:定积分的物理意义.10.C解析:C 【分析】本题可以先根据定积分的运算法则建立a 与b 的等量关系,然后设abt ,则312t a b,再然后根据构造法得出a 、b 为方程23102t xx t 的根,最后根据判别式即可得出结果. 【详解】112(31)()(33)ax x b dx ax abx x b dx 1223331()02222abx x ab ax bx a b =+++=+++=,即3210ab a b,设ab t ,则312t a b,a 、b 为方程23102t xx t 的根,有231402t t ,解得19t 或1t ≥, 所以1,[1,)9a b ,故选C .【点睛】本题考查定积分的运算法则以及构造法,能否根据被积函数的解析式得出原函数的解析式是解决本题的关键,考查韦达定理的使用,是中档题.11.B解析:B 【解析】由31x x=,得1x =±,则图象的交点为(1,1)--,(1,1) ∵()31min ,f x x x ⎧⎫=⎨⎬⎩⎭∴根据对称性可得函数()f x 的图象与x 轴、直线4x =所围成的封闭图形的面积为143401141111|ln |ln 42ln 201444x dx dx x x x +=+=+=+⎰⎰ 故选B12.D解析:D 【分析】根据三视图可得到该几何体的直观图,进而可求出该几何体的体积. 【详解】根据三视图可知该几何体为四棱锥E ABCD -,四边形ABCD 是边长为1的正方形,BE ⊥平面ABCD ,2BE =,则四棱锥E ABCD -的体积为1233ABCD V S BE =⋅=. 故选D.【点睛】本题考查了三视图,考查了四锥体的体积的计算,考查了学生的空间想象能力,属于基础题.二、填空题13.【分析】利用数列的极限的运算法则转化求解即可【详解】解:当|t|≥2时可得可得t =﹣2当|t|<2时可得:综上可得:实数t 的取值范围是:﹣22)故答案为﹣22)【点睛】本题考查数列的极限的运算法则的 解析:[)2,2-【分析】利用数列的极限的运算法则,转化求解即可. 【详解】解:当|t |≥2时,n+1nn n-1n 2-t lim =22+t→∞,可得2n 22()11t lim 2121n t t t→∞⨯--==⎛⎫+ ⎪⎝⎭ ,可得t =﹣2. 当|t |<2时,n+1nn n-1n 2-t lim =22+t→∞可得: 22()2lim 211?()2n n tt t →∞+=+ , 综上可得:实数t 的取值范围是:[﹣2,2). 故答案为[﹣2,2). 【点睛】本题考查数列的极限的运算法则的应用,考查计算能力.14.【解析】【分析】先求出两曲线的交点再由面积与定积分的关系利用定积分即可求解【详解】由题意令解得交点坐标为所以曲线围成的图形的面积【点睛】本题主要考查了利用定积分求解曲边形的面积其中解答中根据题设中的 解析:1【解析】 【分析】先求出两曲线,x y e y e ==的交点,再由面积与定积分的关系,利用定积分即可求解. 【详解】由题意,令x y ey e=⎧⎨=⎩,解得交点坐标为(1,)e , 所以曲线,,0xy e y e x ===围成的图形的面积110()()|1x xS e e dx ex e =-=-=⎰.【点睛】本题主要考查了利用定积分求解曲边形的面积,其中解答中根据题设中的条件建立面积的积分表达式,利用定积分的计算准确求解是解答的关键,着重考查了运算与求解能力,属于基础题.15.2【解析】与轴所围成的封闭区域的面积故答案为2解析:2 【解析】sin (0π)y x x =≤≤与x 轴所围成的封闭区域的面积ππsin d cos cos πcos020S x x x==-=-+=⎰,故答案为2.16.【解析】由题意可得在有两个不等根即在有两个不等根所以解得填解析:90,8⎛⎫⎪⎝⎭【解析】2()32f x tx x -'=+,由题意可得()0f x '=在()0,+∞有两个不等根,即2320tx x -+=在()0,+∞有两个不等根,所以302980tt ⎧>⎪⎨⎪∆=->⎩,解得908t <<,填90,8⎛⎫⎪⎝⎭ 17.e 【解析】点睛:1求曲边图形面积的方法与步骤(1)画图并将图形分割为若干个曲边梯形;(2)对每个曲边梯形确定其存在的范围从而确定积分的上下限;(3)确定被积函数;(4)求出各曲边梯形的面积和即各积分解析:e 【解析】1212120(2)()|(1)(0)x x x e dx x e e e e +=+=+-+=⎰. 点睛:1.求曲边图形面积的方法与步骤 (1)画图,并将图形分割为若干个曲边梯形;(2)对每个曲边梯形确定其存在的范围,从而确定积分的上、下限; (3)确定被积函数;(4)求出各曲边梯形的面积和,即各积分的绝对值的和.2.利用定积分求曲边图形面积时,一定要找准积分上限、下限及被积函数.当图形的边界不同时,要分不同情况讨论.18.【解析】试题分析:联立交点所以围成的图形为直线的左上方和曲线所围成的区域面积为考点:1定积分的应用---求曲边梯形的面积;2微积分基本定理【方法点晴】求曲边梯形的步骤:①画出草图在直角坐标系中画出直 解析:323【解析】 试题分析:联立2{230y x x y =--=,交点(1,1)A -,(9,3)B ,所以围成的图形为直线的左上方和曲线所围成的区域,面积为322332111132(23)(3)|(399)(13)333S y y dy y y y --=+-=+-=+---+=⎰.考点:1.定积分的应用---求曲边梯形的面积;2.微积分基本定理.【方法点晴】求曲边梯形的步骤:①画出草图,在直角坐标系中画出直线或曲线的大致图象;②联立方程,求出交点坐标,确定积分的上、下限;③把曲边梯形的面积表示为若干个定积分的和;④计算定积分,写出答案.由于本题中,若对x 进行定积分,2,y x y x ==±,有些麻烦,这里就转化为对y 进行定积分,要容易很多.19.或【解析】试题分析:展开后第二项系数为时时考点:1定积分;2二项式定理解析:3或73【解析】试题分析:展开后第二项系数为233122a a -=-∴=±,1a =时3121|33x -==,1a =-时 31217|33x --== 考点:1.定积分;2.二项式定理20.2【解析】试题分析:∵易得故答案为考点:定积分的计算解析:2 【解析】 试题分析:∵,易得,故答案为.考点:定积分的计算.三、解答题21.(1)()2f x x x =+;(2){|0}λλ<【解析】分析:(1)设2()f x ax bx c =++,代入已知,由恒等式知识可求得,,a b c ; (2)由(1)得()g x ,题意说明()0<g x 在[0,1]x ∈上恒成立,由分离参数法得221x x x λ+<+,问题转化为求22([0,1])21x x x x +∈+的最小值. 详解:(1)设()()20f x ax bx c a =++≠,()00f =,0c ∴=. 于是()()()()22111f x f x a x b x ax bx +-=+++--222ax a b x =++=+.解得1a =,1b =.所以()2f x x x =+. (2)由已知得()()221g x x x x λ=+-+ 0>在[]0,1x ∈上恒成立. 即221x x x λ+<+在[]0,1x ∈上恒成立. 令()221x x h x x +=+,[]0,1x ∈ 可得()()()()()22222212221'02121x x x x x h x x x +-+++==>++. ∴函数()h x 在[]0,1单调递增,∴ ()()min 00h x h ==.∴ λ的取值范围是{|0}λλ<.点睛:本题考查用导数研究不等式恒成立问题,不等式恒成立问题通常伴随着考查转化与化归思想,例如常用分离参数法化为()()g h x λ≤,这样只要求得()h x 的最小值min ()h x ,然后再解min ()()g h x λ≤,即得λ范围.22.(1)800()4(010)25f x x x x =+≤≤+;(2)当隔热层修建7.5cm 厚时,总费用最小,最小费用70万元.【解析】试题分析:(I )根据c (0)=8计算k ,从而得出f (x )的解析式;(II )利用基本不等式得出f (x )的最小值及等号成立的条件.试题(1)当0x =时,()085k c ==,∴40k =. 由题意知,()4020425f x x x ⨯=++,即()()800401025f x x x x =+≤≤+. (2)∵()()800401025f x x x x =+≤≤+∴()()21600'425f x x -=++,令()'0f x =,即()242516000x +-=, ∴7.5x =. 当[)0,7.5x ∈时,()'0f x <,当(]7.5,10x ∈时,()'0f x >,当7.5x =时,()f x 取得最小值. ()min 80047.57027.55f x =⨯+=⨯+. 所以,当隔热层修建7.5cm 厚时,总费用最小,最小费用70万元. 23.(Ⅰ)3a=-,2b =-;(Ⅱ)[]4,16-;(Ⅲ)124t ≤≤ 【解析】试题分析:(Ⅰ)由导函数研究原函数切线的方法得到关于实数a,b 的方程组,求解方程组可得3a =-,2b =-;(Ⅱ)将不等式恒成立的问题分类讨论可得实数t的取值范围是124t ≤≤+ 试题(Ⅰ)()232f x x ax '=+ ∴()1323f a =+=-' ∴3a =- ∴()323f x x x =-因为()113f b =-= ∴2b =- (Ⅱ)由(Ⅰ)得()323f x x x =- ∴()236f x x x '=- 令()0f x '= 解得120,2x x ==()()()()14,00,24,416f f f f -=-==-=∴()f x 的值域是[]4,16- (Ⅲ)因为[]1,4x ∈时,不等式()()f x g x ≤恒成立∴()22160tx t x -++≥在[]1,4上恒成立,令()()2216h x tx t x =-++ 对称轴为1t x t +=因为0t >∴11t x t+=> ∴()21441240t t t t +⎧<⎪⎨⎪∆=+-≤⎩或()()144168160t t h t t +⎧≥⎪⎨⎪=-++≥⎩ 解得:t的取值范围为124t ≤≤+ 24.92. 【解析】【详解】试题分析:利用定积分计算曲线所围成面积,先画出图象,再找到图象交点的横坐标,然后写出定积分式子,注意被积函数为上方的图象对应的函数减图象在下方的函数. 试题由23{23y x y x x =+=-+解得03x x ==及.从而所求图形的面积332200[(3)(23)](3)S x x x dx x x dx =+--+=-+⎰⎰3230139=|322x x ⎛⎫-+= ⎪⎝⎭. 考点:定积分. 25.67 【分析】 先求()332x x -11展开式的通项公式,其中有2项有理项,确定概率1α6=,根据定积分的计算法则,先求出被积函数x α的原函数,再分别将积分上下限代入求差,即可求出结果.【详解】解:T r +1=11r C ·(3x )11-r ·()32x -r =11r C ·311-r ·(-2)r ·,r =0,1,…,11,共12项其中只有第4项和第10项是有理项,故所求概率为21α126==. 111716600066=|=77x dx x dx x α∴=⎰⎰ 【点睛】本题考查利用二项展开式的通项公式解决二项式展开式的特定项问题、考查古典概型的概率公式,考查定积分的计算.解题关键是熟练应用二项式展开式的通项公式,找出符合条件的项数.26.(1)1m ≤-;(2)4a ≤.【解析】试题分析:(1)求导,利用导数对t 的范围进行分类讨论求最值.(2)本小题实质是22ln 3x x x ax ≥-+-在()0,x ∈+∞上恒成立,进一步转化为3 2ln a x x x ≤++在()0,x ∈+∞上恒成立,然后构造函数()32ln (0)h x x x x x=++>利用导数研究h(x)的最小值即可.注意不要忽略x>0的条件,导致求导数的方程时产生增根. 试题(1)()f x 定义域为()0,+∞,()()ln 1f x x m '=++,因为()f x 在()1,+∞上为单调函数,则方程()ln 10x m ++=在()1,+∞上无实根. 故10m +≥,则1m ≤-.(2)22ln 3x x x ax ≥-+-,则32ln a x x x ≤++,对一切()0,x ∈+∞恒成立. 设()32ln (0)h x x x x x =++>,则()()()231'x x h x x +-=, 当()()()0,1,'0,x h x h x ∈<单调递减,当()()()1,,'0,x h x h x ∈+∞>单调递增.()h x 在()0,+∞上,有唯一极小值()1h ,即为最小值.所以()()min 14h x h ==,因为对任意()()()0,,2x f x g x ∈+∞≥恒成成立,故4a ≤.点睛:利用导数解决不等式恒成立问题的“两种”常用方法(1)分离参数法:将原不等式分离参数,转化为不含参数的函数的最值问题,利用导数求该函数的最值,根据要求得所求范围.一般地,f(x)≥a 恒成立,只需f(x)min≥a 即可;f(x)≤a 恒成立,只需f(x)max≤a 即可.(2)函数思想法:将不等式转化为某含待求参数的函数的最值问题,利用导数求该函数的极值(最值),然后构建不等式求解.。

数学选修2-2第一章测试题及答案

数学选修2-2第一章测试题及答案

第一章测试题一、选择题1. 已知函数f (x )=ax 2+c ,且(1)f '=2,则a 的值为 ( ) A.1B.2C.-1D. 02. 函数y =(2x +1)3在x =0处的导数是 ( ) A.0 B.1 C.3 D.6 3.函数)0,4(2cos π在点x y =处的切线方程是( )A .024=++πy xB .024=+-πy xC .024=--πy xD .024=-+πy x4.设函数()f x 是R 上以5为周期的可导偶函数,则曲线()y f x =在5x =处的切线的斜率为( ) A.15-B.0C.15D.55. 给出以下命题:⑴若()0b af x dx >⎰,则f (x )>0; ⑵20sin 4x dx =⎰π;⑶f (x )的原函数为F (x ),且F (x )是以T 为周期的函数,则()()a a T Tf x dx f x dx +=⎰⎰;其中正确命题的个数为 ( )A. 1B. 2C. 3D. 06.函数313y x x =+- 有 ( ) A.极小值-1,极大值1 B. 极小值-2,极大值3 C. 极小值-1,极大值3 D. 极小值-2,极大值2 7.若函数f(x)=x 3-3b 2x +3b 在(0,1)内有极小值,则 ( )A.0<b<2B.b<2C.b>0D.0<b<218、由曲线1xy =,直线,3y x y ==所围成的平面图形的面积为( )A .329B .2ln3-C .4ln3-D .4ln3+9. 已知自由下落物体的速度为V=gt ,则物体从t=0到t 0所走过的路程为( ) A .2012gt B .20gt C . 2013gt D .2014gt 10.设函数()f x 的导函数为()f x ',且()()221f x x x f '=+⋅,则()0f '等于 ( )A 、0B 、-4C 、-2D 、211Oyx11.已知函数(1)()y x f x'=-的图象如图所示,其中()f x'为函数()f x的导函数,则()y f x=的大致图象是( )12.设0<a<b,且f (x)=xx++11,则下列大小关系式成立的是( ).A.f (a)< f (2ba+)<f (ab) B. f (2ba+)<f (b)< f (ab)C. f (ab)< f (2ba+)<f (a) D. f (b)< f (2ba+)<f (ab)二、填空题(共4小题,每小题5分,共20分)13.一物体在力⎩⎨⎧>+≤≤=)2(,43)20(,10)(xxxxF(单位:N)的作用下沿与力F相同的方向,从0=x处运动到4=x(单位:m)处,则力)(xF做的功为焦。

(完整版)数学选修2-2练习题及答案

(完整版)数学选修2-2练习题及答案

目录:数学选修2-2第一章 导数及其应用 [基础训练A 组] 第一章 导数及其应用 [综合训练B 组] 第一章 导数及其应用 [提高训练C 组] 第二章 推理与证明 [基础训练A 组] 第二章 推理与证明 [综合训练B 组]第二章 推理与证明 [提高训练C 组] 第三章 复数 [基础训练A 组] 第三章 复数 [综合训练B 组]第三章 复数 [提高训练C 组](数学选修2-2)第一章 导数及其应用[基础训练A 组]一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f xB .'02()f xC .'02()f x - D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3.函数3yx x 的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316C .313 D .310 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件6.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0二、填空题1.若3'0(),()3f x x f x ==,则0x 的值为_________________;2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________; 3.函数sin xy x=的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________; 5.函数5523--+=x x x y 的单调递增区间是___________________________。

期末高二数学选修2-2、2-3测试题(含答案)

期末高二数学选修2-2、2-3测试题(含答案)

高二数学选修2-2、2-3期末检测试题命题:伊宏斌 命题人:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试用时120分钟.第Ⅰ卷(选择题,共50分)一.选择题(本大题共10小题,每小题5分,共50分)1.过函数x y sin =图象上点O (0,0),作切线,则切线方程为 ( ) A .x y = B .0=y C .1+=x y D .1+-=x y 2.设()121222104321x a x a x a a x x x ++++=+++ ,则=0a ( )A .256B .0C .1-D .1 3.定义运算a cad bc b d=-,则ii 12(i 是虚数单位)为 ( ) A .3 B .3- C .12-i D .22+i4.任何进制数均可转换为十进制数,如八进制()8507413转换成十进制数,是这样转换的:()1676913818487808550741323458=+⨯+⨯+⨯+⨯+⨯=,十六进制数1444706165164163162)6,5,4,3,2(23416=+⨯+⨯+⨯+⨯=,那么将二进制数()21101转换成十进制数,这个十进制数是 ( )A .12B .13C .14D .155.用数学归纳法证明:“两两相交且不共点的n 条直线把平面分为)(n f 部分,则2)1(1)(++=n n n f 。

”在证明第二步归纳递推的过程中,用到)()1(k f k f =++ 。

( ) A .1-k B .k C .1+k D .2)1(+k k6.记函数)()2(x fy =表示对函数)(x f y =连续两次求导,即先对)(x f y =求导得)('x f y =,再对)('x f y =求导得)()2(x fy =,下列函数中满足)()()2(x f x f=的是( )7.甲、乙速度v 与时间t 的关系如下图,)(b a 是b t =时的加速度,)(b S 是从0=t 到b t =的路程,则)(b a 甲与)(b a 乙,)(b S 甲与)(b S 乙的大小关系是 ( )A .)()(b a b a 乙甲>,)()(b S b S 乙甲>B .)()(b a b a 乙甲<,)()(b S b S 乙甲<C .)()(b a b a 乙甲<,)()(b S b S 乙甲>D .)()(b a b a 乙甲<,)()(b S b S 乙甲< 8.如图,蚂蚁从A 沿着长方体的棱以 的方向行走至B ,不同的行走路线有( )A .6条B .7条C .8条D .9条9、等比数列{a }n 中,120143,9a a ==,122014(x)(x a )(x a )....(x )f x a =---,'(x)f 为函数(x)f 的导函数,则'(0)f =( )A 0B 10073C 20163D 3021310.设{}10,9,8,7,6,5,4,3,2,1=M ,由M 到M 上的一一映射中,有7个数字和自身对应的映射个数是 ( )A .120B .240C .710 D .360B第8题图第Ⅱ卷(非选择题 共100分)二.填空题(本大题4个小题,每小题5分,共25分) 11(15)如果5025001250(12)(1)(1)(1)x a a x a x a x +=+-+-++-,那么1349a a a +++= .12.设复数z 满足条件1z =,那么z i +取最大值时的复数z 为 . 13.已知数列{}a n 为等差数列,则有,02321=+-a a a 0334321=-+-a a a aa a a a a 123454640-+-+=类似上三行,第四行的结论为__________________________。

高二数学选修2-2(B版)_同步练习:数学归纳法2

高二数学选修2-2(B版)_同步练习:数学归纳法2

数学归纳法一、选择题1.用数学归纳法证明1+q +q 2+…+q n +1=q n +2-qq -1(n ∈N *,q ≠1),在验证n=1等式成立时,等式左边的式子是( )A .1B .1+qC .1+q +q 2D .1+q +q 2+q 3[答案] C[解析] 左边=1+q +q 1+1=1+q +q 2.故选C.2.用数学归纳法证明(n +1)(n +2)(n +3)…(n +n )=2n ·1·3·…·(2n -1)(n ∈N *),从n =k 到n =k +1,左边的式子之比是( )A.12k +1B .122k +1C.2k +1k +1D .2k +3k +1[答案] B [解析] k +1k +2k +3…k +k k +1+1k +1+2…k +1+k +1=k +1k +2k +3…2k k +2k +3…2k 2k +12k +2=122k +1.故选B.3.用数学归纳法证明1n +1+1n +2+…+12n >1314(n ≥2,n ∈N *)的过程中,由n =k 递推到n =k +1时不等式左边( )A .增加了一项12k +1B .增加了两项12k +1+12k +2C .增加了B 中两项但减少了一项1k +1D .以上各种情况均不对 [答案] C[解析] n =k 时,左边=1k +1+1k +2+…+12k ,n =k +1时,左边=1k +2+1k +3+…+12k +12k +1+12k +2∴增加了12k +1+12k +2,减少了一项1k +1. 故选C.4.用数学归纳法证明1+a +a 2+…+a n +1=1-an +21-a(n ∈N *,a ≠1),在验证n=1时,左边所得的项为( )A .1B .1+a +a 2C .1+aD .1+a +a 2+a 3[答案] B[解析] 因为当n =1时,a n +1=a 2,所以此时式子左边=1+a +a 2.故应选B.5.某个与正整数n 有关的命题,如果当n =k (k ∈N *)时该命题成立,则可推得n =k +1时该命题也成立,现已知n =5时命题不成立,那么可推得( )A .当n =4时该命题不成立B .当n =6时该命题不成立C .当n =4时该命题成立D .当n =6时该命题成立 [答案] A[解析] 由命题及其逆否命题的等价性知选A. 6.等式12+22+32+…+n 2=12(5n 2-7n +4)( ) A .n 为任何正整数都成立 B .仅当n =1,2,3时成立C .当n =4时成立,n =5时不成立D .仅当n =4时不成立 [答案] B[解析] 经验证,n =1,2,3时成立,n =4,5,…不成立.故选B.7.用数学归纳法证明某命题时,左式为12+cosα+cos3α+…+cos(2n-1)α(α≠kπ,k∈Z,n∈N*),在验证n=1时,左边所得的代数式为()A.1 2B.12+cosαC.12+cosα+cos3αD.12+cosα+cos3α+cos5α[答案] B[解析]令n=1,左式=12+cosα.故选B.8.用数学归纳法证明“n3+(n+1)3+(n+2)3(n∈N*)能被9整除”,要利用归纳假设证n=k+1时的情况,只需展开()A.(k+3)3B.(k+2)3C.(k+1)3D.(k+1)3+(k+2)3[答案] A[解析]因为从n=k到n=k+1的过渡,增加了(k+1)3,减少了k3,故利用归纳假设,只需将(k+3)3展开,证明余下的项9k2+27k+27能被9整除.二、填空题9.用数学归纳法证明“1+2+22+…+2n-1=2n-1(n∈N+)”的过程中,第二步n=k时等式成立,则当n=k+1时应得到________.[答案]1+2+22+…+2k-1+2k=2k+1-110.用数学归纳法证明当n∈N+时,1+2+22+23+…+25n-1是31的倍数时,当n=1时原式为__________,从k→k+1时需增添的项是________.[答案]1+2+22+23+2425k+25k+1+25k+2+25k+3+25k+411.使不等式2n>n2+1对任意n≥k的自然数都成立的最小k值为________.[答案] 5[解析]25=32,52+1=26,对n≥5的所有自然数n,2n>n2+1都成立,自己用数学归纳法证明之.三、解答题12.用数学归纳法证明:(n+1)(n+2)…(n+n)=2n·1·3·5·…·(2n-1)(n∈N*).[证明](1)当n=1时,等式左边=2,右边=2×1=2,∴等式成立.(2)假设n=k (k∈N*)时等式成立.即(k+1)(k+2)…(k+k)=2k·1·3·5·…·(2k-1)成立.那么当n=k+1时,(k+2)(k+3)…(k+k)(2k+1)(2k+2)=2(k+1)·(k+2)·(k+3)·…·(k+k)·(2k+1)=2k+1·1·3·5·…·(2k-1)[2·(k+1)-1]即n=k+1时等式成立.由(1)、(2)可知,对任何n∈N*等式均成立.一、选择题1.用数学归纳法证明“(n+1)(n+2)…(n+n)=2n×1×3…(2n-1)(n∈N+)”,则“从k到k+1”左端需乘的代数式为()A.2k+1 B.2(2k+1)C.2k+1k+1D.2k+3k+1[答案] B[解析]n=k时左式=(k+1)(k+2)(k+3)n=k+1时左式=(k+2)(k+3)…(2k+1)(2k+2)故“从k到k+1”左端需乘2k+12k+2k+1=2(2k+1).故选B.2.已知数列{a n},a1=1,a2=2,a n+1=2a n+a n-1(k∈N*),用数学归纳法证明a4n能被4整除时,假设a4k能被4整除,应证()A.a4k+1能被4整除B.a4k+2能被4整除C.a4k+3能被4整除D.a4k+4能被4整除[答案] D[解析]在数列{a4n}中,相邻两项下标差为4,所以a4k后一项为a4k+4.故选D.3.凸n边形有f(n)条对角线,则凸n+1边形的对角线的条数f(n+1)为() A.f(n)+n+1 B.f(n)+nC.f(n)+n-1 D.f(n)+n-2[答案] C[解析]由凸n边形变为凸n+1边形后,应加一项,这个顶点与不相邻的(n -2)个顶点连成(n-2)条对角线,同时,原来的凸n边形的那条边也变为对角线,故有f(n+1)=f(n)+(n-2)+1.故选C.4.用数学归纳法证明(n+1)(n+2)…(n+n)=2n·1·3…(2n-1)(n∈N*)时,从“n =k到n=k+1”左边需增乘的代数式为()A.2k+1 B.2(2k+1)C.2k+1k+1D.2k+3k+1[答案] B[解析]n=k时,等式为(k+1)(k+2)…(k+k)=2k·1·3·…·(2k-1),n=k+1时,等式左边为(k+1+1)(k+1+2)…(k+1+k+1)=(k+2)(k+3)…(2k)·(2k+1)·(2k+2),右边为2k+1·1·3·…·(2k-1)(2k+1).左边需增乘2(2k+1),故选B.二、填空题5.用数学归纳法证明关于n的恒等式时,当n=k时,表达式为1×4+2×7+…+k(3k+1)=k(k+1)2,则当n=k+1时,待证表达式应为________.[答案]1×4+2×7+…+k(3k+1)+(k+1)(3k+4)=(k+1)(k+2)26.用数学归纳法证明:1+2+22+…+2n-1=2n-1(n∈N*)的过程如下:①当n=1时,左边=20=1,右边=21-1=1,不等式成立;②假设n=k时,等式成立,即1+2+22+…+2k-1=2k-1.则当n=k+1时,1+2+22+…+2k-1+2k=1-2k+11-2=2k+1-1,所以n=k+1时等式成立.由此可知对任意正整数n,等式都成立.以上证明错在何处?____________. [答案] 没有用上归纳假设[解析] 由数学归纳法证明步骤易知其错误所在.7.设S 1=12,S 2=12+22+12,…,S n =12+22+32+…+n 2+…+22+12.用数学归纳法证明S n =n 2n +12时,第二步从k 到k +1应添加的项为________.[答案]k +2·2k +12[解析] S k +1-S k =k +12k +1+12-k 2k +12=k +2·2k +12.三、解答题8.在数列{a n }中,a 1=a 2=1,当n ∈N *时,满足a n +2=a n +1+a n ,且设b n =a 4n ,求证:{b n }的各项均为3的倍数.[证明] (1)∵a 1=a 2=1, 故a 3=a 1+a 2=2,a 4=a 3+a 2=3.∴b 1=a 4=3,当n =1时,b 1能被3整除. (2)假设n =k 时,即b k =a 4k 是3的倍数. 则n =k +1时,b k +1=a 4(k +1)=a (4k +4)=a 4k +3+a 4k +2 =a 4k +2+a 4k +1+a 4k +1+a 4k =3a 4k +1+2a 4k .由归纳假设,a 4k 是3的倍数,故可知b k +1是3的倍数. ∴n =k +1时命题正确.综合(1)、(2)可知,对于任意正整数n ,数列{b n }的各项都是3的倍数. 9.数列{a n }满足S n =2n -a n (n ∈N *). (1)计算a 1、a 2、a 3,并猜想a n 的通项公式; (2)用数学归纳法证明(1)中的猜想.[证明] (1)当n =1时,a 1=S 1=2-a 1,∴a 1=1; 当n =2时,a 1+a 2=S 2=2×2-a 2,∴a 2=32;当n =3时,a 1+a 2+a 3=S 3=2×3-a 3,∴a 3=74. 由此猜想a n =2n -12n -1(n ∈N *)(2)证明:①当n =1时,a 1=1结论成立, ②假设n =k (k ≥1,且k ∈N *)时结论成立, 即a k =2k -12k -1,当n =k +1时,a k +1=S k +1-S k =2(k +1)-a k +1-2k +a k =2+a k -a k +1,∴2a k +1=2+a k ∴a k +1=2+a k 2=2k +1-12k =2k +1-12k +1-1,∴当n =k +1时结论成立,于是对于一切的自然数n ∈N *,a n =2n -12n -1成立.。

(完整版)高中数学选修2-2综合测试题(附答案)

(完整版)高中数学选修2-2综合测试题(附答案)

高二数学选修2-2综合测试题一、选择题:1、i 是虚数单位。

已知复数413(1)3iZ i i+=++-,则复数Z 对应点落在( ) A .第四象限 B .第三象限 C .第二象限 D .第一象限2、在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,…这些数叫做三角形数,因为这些数对应的点可以排成一个正三角形1 3 6 10 15 则第n 个三角形数为( ) A .n B .2)1(+n n C .12-n D .2)1(-n n 3、求由曲线y x =2y x =-+及y 轴所围成的图形的面积错误..的为( ) A.4(2)x x dx -+⎰B.0xdx ⎰C.222(2)y y dy ---⎰ D.022(4)y dy --⎰4、设复数z 的共轭复数是z ,且1z =,又(1,0)A -与(0,1)B 为定点,则函数()f z =(1)z +()z i -︱取最大值时在复平面上以z ,A,B 三点为顶点的图形是A,等边三角形 B,直角三角形 C,等腰直角三角形 D,等腰三角形5、函数f(x)的定义域为R ,f(-1)=2,对任意x R ∈,'()2f x >,则()24f x x >+的解集为(A)(-1,1) (B)(-1,+∞) (c)(-∞,-l) (D)(-∞,+∞)6、用数学归纳法证明412135()n n n +++∈N 能被8整除时,当1n k =+时,对于4(1)12(1)135k k +++++可变形为A.41412156325(35)k k k +++++·B.441223355k k ++··C.412135k k +++D.412125(35)k k +++7、设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且(3)0g -=,则不等式f (x )g (x )<0的解集是( ) A. (-3,0)∪(3,+∞) B. (-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D. (-∞,-3)∪(0,3) 8、已知函数2()f x x bx =+的图象在点(1,(1))A f 处的切线的斜率为3,数列⎭⎬⎫⎩⎨⎧)(1n f的前n 项和为n S ,则2011S 的值为( )20122011.20112010.20102009.20092008.D C B A9、设函数f(x)=kx 3+3(k -1)x 22k -+1在区间(0,4)上是减函数,则k 的取值范围是 ( )A.13k <B.103k <≤C.103k ≤≤D.13k ≤10、函数()y f x =在定义域3(,3)2-内可导,其图象如图所示,记()y f x =的导函数为()y f x '=,则不等式()0f x '≤的解集为 ( ) A .[)1,12,33⎡⎤-⎢⎥⎣⎦ B .[]481,2,33⎡⎤-⎢⎥⎣⎦C .[]31,1,222⎡⎤-⎢⎥⎣⎦D .3148,1,,32233⎛⎤⎡⎤⎡⎫-- ⎪⎥⎢⎥⎢⎝⎦⎣⎦⎣⎭11、 已知函数)(131)(23R b a bx ax x x f ∈+-+=、在区间[-1,3]上是减函数,则b a +的最小值是A.32B.23C.2D. 312、函数32()393,f x x x x =--+若函数()()[2,5]g x f x m x =-∈-在上有3个零点,则m 的取值范围为( ) A .(-24,8) B .(-24,1]C .[1,8]D .[1,8)高二数学选修2-2综合测试题(答题卡)一、选择题(60分)。

数学选修2-2定积分的简单应用练习题含答案

数学选修2-2定积分的简单应用练习题含答案

数学选修2-2定积分的简单应用练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 曲线y=sin x与x轴在区间[0, 2π]上所围成阴影部分的面积为()A.−4B.−2C.2D.42. 由直线x=0,x=2,y=0和抛物线x=√1−y所围成的平面图形绕x轴旋转所得几何体的体积为()A.46 15πB.43π C.1615π D.83π3. 由直线x=1,x=2,y=0与抛物线y=x2所围成的曲边梯形的面积为()A.1 3B.53C.73D.1134. 由曲线y=x2+2与y=3x,x=0,x=1所围成的平面图形的面积为()A.5 6B.1C.53D.25. 曲线y=x2和y2=x所围成的平面图形绕x轴旋转一周后,所形成的旋转体的体积为()A.3π10B.π2C.π5D.7π106. 函数y=sin x,y=cos x在区间(π4,5π4)内围成图形的面积为()A.√2B.2√2C.3√2D.4√27. 一物体在力F(x)=3+e2x(x的单位:m,F的单位:N)的作用下,沿着与力F相同的方向,从x=0处运动到x=1处,力F(x)所做的功为()A.(3+e2)JB.(3+12e2)J C.(52+12e2)J D.(2+e2)J8. 由曲线y=√x,y=x−2及x轴所围成的封闭图形的面积是()A.4B.103C.163D.1549. 下列表示图中f(x)在区间[a, b]上的图象与x 轴围成的面积总和的式子中,正确的是( )A.∫f ba (x)dx B.|∫f ba (x)dx|C.∫f c 1a (x)dx +∫f c 2c 1(x)dx +∫f cc 2(x)dxD.∫f c 1a (x)dx −∫f c 2c 1(x)dx +∫f cc2(x)dx10. 直线y =x 与曲线y =√x 3围成的平面图形的面积是.( ) A.14 B.2 C.1D.1211. 设函数f(x)=ax 2+c(a ≠0),若∫f 10(x)dx =f(x 0),0≤x 0≤1,则x 0的值为________.12. y =cos x 与直线x =0,x =π及x 轴围成平面区域面积为________.13. 由曲线y =|x|,y =−|x|,x =2,x =−2合成的封闭图形绕y 轴旋转一周所得的旋转体的体积为V ,则V =________.14. 两曲线x −y =0,y =x 2−2x 所围成的图形的面积是________.15. 由曲线y =x 2和直线x =0,x =1,以及y =0所围成的图形面积是________. 16.若在平面直角坐标系xOy 中将直线y =x 2与直线x =1及x 轴所围成的图形绕x 轴旋转一周得到一个圆锥,则该圆锥的体积V 圆锥=∫π10(x 2)2dx =π12x 3|10=π12据此类比:将曲线y =x 2与直线y =9所围成的图形绕y 轴旋转一周得到一个旋转体,则该旋转体的体积V =________.17. 在直角坐标平面内,由直线x=1,x=2,y=0和曲线y=1所围成的平面区域的x面积是________.18. 在xOy平面上,将抛物线弧y=1−x2(0≤x≤1)、x轴、y轴围成的封闭图形记为D,如图中曲边三角形OAB及内部.记D绕y轴旋转一周而成的几何体为Ω,过点(0, y)(0≤y≤1)作Ω的水平截面,所得截面面积为(1−y)π,试构造一个平放的直三棱柱,利用祖暅原理得出Ω的体积值为________.19. 函数f(x)=x3−x2+x+1在点(1, 2)处的切线与函数g(x)=x2−x围成的图形的面积等于________.2ax2−a2x)dx,则f(a)的最大值为________.20. 已知f(a)=∫(1x2在第一象限内的交点为P.21. 已知曲线C1:y2=2x与C2:y=12(1)求曲线C2在点P处的切线方程;(2)求两条曲线所围成图形的面积S.22. 求由曲线y=x2+2与y=3x,x=0,x=2所围成的平面图形的面积.23. 已知曲线C:y=x2(x≥0),直线l为曲线C在点A(1, 1)处的切线.(1)求直线l的方程;(2)求直线l与曲线C以及x轴所围成的图形的面积.24. 如图一是火力发电厂烟囱示意图.它是双曲线绕其一条对称轴旋转一周形成的几何体,烟囱最细处的直径为10m,最下端的直径为12m,最细处离地面6m,烟囱高14m,试求该烟囱占有空间的大小.(精确到0.1m3)25.(1)已知复数z的共轭复数是z¯,且z⋅z¯−3iz=10,求z;1−3ix所围成的平面图形的面积.(2)求曲线y=√x与直线x+y=2,y=−1326.(1)已知(√x +2√x4)n 展开式的前三项系数成等差数列.求n .(2)如图所示,在一个边长为1的正方形AOBC 内,曲线y =x 2和曲线y =√x 围成一个叶形图(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点是等可能的),求所投的点落在叶形图内部的概率.27. 求由下列给出的边界所围成的区域的面积: (1)y =sin x(π4≤x ≤π),x =π4,y =0;(2)y =x 2,y =2x 2,x =1;(3)y =x 2,y =√x .28. 求由y =4−x 2与直线y =2x −4所围成图形的面积.29. 已知曲线y =sin x 和直线x =0,x =π,及y =0所围成图形的面积为S 0. (1)求S 0.(2)求所围成图形绕ox 轴旋转所成旋转体的体积.30. 已知函数y =f(x)的图形如图所示,给出y =f(x)与x =10和x 轴所围成图形的面积估计值;要想得到误差不超过1的面积估计值,可以怎么做?31. 已知曲线C:y =√x 和直线:x −2y =0由C 与围成封闭图形记为M . (1)求M 的面积;(2)若M 绕x 轴旋转一周,求由M 围成的体积.32. 已知f(x)为一次函数,且f(x)=x ∫f 20(t)dt +1, (1)求函数f(x)的解析式;(2)若g(x)=x ⋅f(x),求曲线y =g(x)与x 轴所围成的区域绕x 轴旋转一周所得到的旋转体的体积.33. 已知圆锥的高为ℎ,底半径为r ,用我们计算抛物线下曲边梯形面积的思路,推导圆锥体积的计算公式. [提示:(1)用若干张平行于圆锥底面的平面把它切成n 块厚度相等的薄片;(2)用一系列圆柱的体积近似地代替对应的薄片,圆柱的高为ℎn ,底半径顺次为:rn ,2r n,3r n…,(n−1)r n,r ;(3)问题归结为计算和式V(n)=ℎn ×(12+22+...+n 2)×πr 2n 2,当n 越来越大时所趋向的值.].34. 求曲线y =√x(0≤x ≤4)上的一条切线,使此切线与直线x =0,x =4以及曲线y =√x 所围成的平面图形的面积最小.35. 过点(0, 1)作曲线L:y =ln x 的切线,切点为A .又L 与x 轴交于B 点,区城D 由L 、x 轴与直线AB 围成,求区域D 的面积及D 绕x 轴旋转一周所得旋转体的体积.36. 求曲线y =2x −x 2,y =2x 2−4x 所围成图形的面积.37. 已知∫(103ax +1)(x +b)dx =0,a ,b ∈R ,试求ab 的取值范围.38. 求下列曲线所围成图形的面积:曲线y=cos x,x=π2,x=3π2,y=0.39. 求曲线y=sin x与直线x=−π2,x=5π4,y=0所围成的平面图形的面积.40. 如图,直线y=kx分抛物线y=x−x2与x轴所围图形为面积相等的两部分,求k的值.参考答案与试题解析数学选修2-2定积分的简单应用练习题含答案一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 1.【答案】 D【考点】定积分在求面积中的应用 【解析】由积分的几何意义可得,S =2∫sin π0xdx ,即可得出结论. 【解答】解:由积分的几何意义可得,S =2∫sin π0xdx =(−cos x)|0π=4. 故选:D . 2.【答案】 A【考点】用定积分求简单几何体的体积 【解析】由题意此几何体的体积可以看作是∫π20(1−x 2)2dx ,求出积分即得所求体积. 【解答】解:由题意几何体的体积; ∫π20(1−x 2)2dx=π(x −23x 3+15x 5)|02=π(2−23×23+15×25) =4615π 故选A . 3. 【答案】 C【考点】定积分在求面积中的应用 【解析】先根据题意画出区域,然后依据图形利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可. 【解答】解:直线x =1,x =2,y =0与抛物线y =x 2所围成的曲边梯形的面积为S =∫x 221dx =13x 3|12=83−13=73,故选:C .4.【答案】 A【考点】定积分的简单应用 【解析】因为所求区域均为曲边梯形,所以使用定积分方可求解,然后求出曲线y =x 2+2与y =3x 的交点坐标,然后利用定积分表示所围成的平面图形的面积,根据定积分的定义解之即可. 【解答】解:联立{y =x 2+2y =3x,解得x 1=1,x 2=2∴ S =∫(10x 2+2−3x)d x =[13X 3+2X −32X 2]01=56 故选:A 5.【答案】 A【考点】用定积分求简单几何体的体积 【解析】欲求曲线y =x 2和y 2=x 所围成的平面图形绕x 轴旋转一周后所形成的旋转体的体积,可利用定积分计算,即求出被积函数y =π(x −x 4)在0→1上的积分即可. 【解答】解:设旋转体的体积为V ,则v =∫π10(x −x 4)dx =π(12x 2−15x 5)|01=3π10.故旋转体的体积为:3π10. 故选A . 6. 【答案】 B【考点】定积分在求面积中的应用 【解析】根据定积分的几何意义,所求面积为S =∫(5π4π4sin x −cos x)dx ,然后利用公式求出sin x −cos x 的原函数F(x),算出F(5π4)−F(π4)的值,即为所求图形的面积. 【解答】解:根据题意,所求面积为S =∫(5π4π4sin x −cos x)dx =(−cos x −sin x +C)|π45π4 (其中C 为常数) ∴ S =(−cos 5π4−sin5π4+C)−(−cos π4−sin π4+C)=(√22+√22+C)−(−√22−√22+C)=2√2 故选B 7.【答案】 C【考点】定积分的简单应用 【解析】先根据题意建立关系式∫(103+e 2x )dx ,然后根据定积分的计算法则求出定积分的值即可. 【解答】解:根据题意可知F(x)所做的功为∫(103+e 2x )dx =(3x +12e 2x )|01=3+12e 2−12=52+12e 2故选C .8.【答案】 B【考点】定积分在求面积中的应用 【解析】根据定积分的几何意义,先求出积分的上下限,即可求出所围成的图形的面积 【解答】解:联立直线y =x −2,曲线y =√x 构成方程组,解得{x =4,y =2,联立直线y =x −2,y =0构成方程组,解得{x =2,y =0,如图所示:∴曲线y=√x,y=x−2及x轴所围成的封闭图形的面积S=∫√x40dx−∫(42x−2)dx=2x32|04 −(1x2−2x)|24=163−2=103.故选B.9.【答案】D【考点】定积分在求面积中的应用定积分定积分的简单应用【解析】先根据定积分的几何意义可知将区间[a, b]分成三段,然后利用上方曲线方程减下方的曲线方程,求积分即为面积,从而求出所求.【解答】解:根据定积分的几何意义可知将区间[a, b]分成三段利用上方曲线方程减下方的曲线方程,求积分即为面积S=∫fc1a (x)dx−∫fc2c1(x)dx+∫fcc2(x)dx故选:D10.【答案】D【考点】定积分在求面积中的应用【解析】先画出画出直线y=x与曲线y=√x3围成的平面图形,然后求出交点横坐标得到积分上下限,然后利用定积分表示出图形的面积,根据定积分的运算法则进行求解即可.【解答】解:画出直线y=x与曲线y=√x3围成的平面图形图形关于原点对称,交点的横坐标为−1,1∴直线y=x与曲线y=√x3围成的平面图形的面积是∫(1−1√x3−x)dx=2∫(1√x3−x)dx=2(34x43−12x2)|01=2(34−12−0)=12故选D .二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 11.【答案】 √33【考点】定积分的简单应用 【解析】求出定积分∫f 10(x)dx ,根据方程ax 02+c =∫f 10(x)dx 即可求解.【解答】解:∵ f(x)=ax 2+c(a ≠0),∴ f(x 0)=∫f 10(x)dx =[ax 33+cx]01=a3+c .又∵f(x 0)=ax 02+c .∴ x 02=13,∵ x 0∈[0, 1]∴ x 0=√33. 12.【答案】2【考点】定积分在求面积中的应用 【解析】本题利用直接法求解,根据三角函数的对称性知,曲线y =cos x 与直线x =0,x =π所围成的平面区域的面积S 为:曲线y =cos x 与直线x =0,x =π2所围成的平面区域的面积的两倍,最后结合定积分计算面积即可. 【解答】解:根据对称性,得:曲线y =cos x 与直线x =0,x =π所围成的平面区域的面积S 为:曲线y =cos x 与直线x =0,x =π2所围成的平面区域的面积的两倍, ∴ S =2∫cos π20xdx =2 故答案为2.13.【答案】323π【考点】旋转体(圆柱、圆锥、圆台)用定积分求简单几何体的体积【解析】作出曲线围成的封闭图象,根据旋转得到旋转体的结构即可得到结论.【解答】解:曲线y=|x|,y=−|x|,x=2,x=−2合成的封闭图形绕y轴旋转一周所得的旋转体为底面半径为2,高为4的圆柱,去掉2个底面半径为2,高为2的圆锥,则对应的体积为π×42−2×13π×22×2=16π−16π3=323π,故答案为:323π14.【答案】92【考点】定积分在求面积中的应用【解析】先根据题意画出区域,然后依据图形得到积分上限为3,积分下限为0,从而利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可.【解答】解:先根据题意画出图形,得到积分上限为3,积分下限为0;两曲线x−y=0,y=x2−2x所围成的图形的面积是∫(33x−x2)dx而∫(303x−x2)dx=(32x2−13x3)|03=272−9=92∴曲边梯形的面积是92故答案为92.15. 【答案】13【考点】定积分在求面积中的应用 【解析】作出两个曲线的图象,求出它们的交点,由此可得所求面积为函数y =x 2在区间[0, 1]上的定积分的值,再用定积分计算公式加以运算即可得到本题答案. 【解答】解:∵ 曲线y =x 2和直线L:x =1的交点为A(1, 1),∴ 曲线C:y =x 2、直线L:x =1与x 轴所围成的图形面积为 S =∫x 210dx =13x 3|01=13.故答案为:13.16. 【答案】81π2【考点】用定积分求简单几何体的体积 【解析】根据类比推理,结合定积分的应用,即可求出旋转体的体积. 【解答】解:根据类比推理得体积V =∫π90(√y)2dy =∫π90ydy =12πy 2|09=81π2,故答案为:81π2.17.【答案】 ln 2【考点】定积分在求面积中的应用 【解析】先根据所围成图形的面积利用定积分表示出来,然后根据定积分的定义求出面积即可. 【解答】解:由题意,S =∫1x 21dx =ln x|12=ln 2.故答案为:ln 2. 18. 【答案】√34π 【考点】用定积分求简单几何体的体积 【解析】(1−y)π看作是把一个底面边长为1,高为π的直三棱柱平放得到的,根据祖暅原理,每个平行水平面的截面积相等,故它们的体积相等,即可得出结论. 【解答】解:(1−y)π看作是把一个底面边长为1,高为π的直三棱柱平放得到的, 根据祖暅原理,每个平行水平面的截面积相等,故它们的体积相等, 即Ω的体积为π⋅√34=√34π. 故答案为√34π. 19. 【答案】92【考点】定积分在求面积中的应用 【解析】求出函数的切线方程,利用积分的几何意义即可求出区域的面积. 【解答】解:函数的导数为f′(x)=3x 2−2x +1,则在(1, 2)处的切线斜率k =f′(1)=3−2+1=2, 则对应的切线方程为y −2=2(x −1),即y =2x , 由{y =x 2−x y =2x,解得x =3或x =0,则由积分的几何意义可得阴影部分的面积S =∫(302x −x 2+x)dx =(32x 2−13x 3)| 30 =92,故答案为:92.20. 【答案】29【考点】定积分的简单应用 【解析】先根据定积分的运算公式求出f(a)的解析式,然后利用二次函数的图象和性质即可求出f(a)的最大值. 【解答】解:f(a)=∫(102ax 2−a 2x)dx =(23ax 3−12a 2x 2)|01=23a −12a 2∴ 当a =23时,f(a)取最大值,最大值为29 故答案为:29三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 ) 21.【答案】解:(1)∵ 交点为P(2,2),∴ 曲线C 2的导函数为:y ′=x ∴ 切点坐标为(2,2),故该点的切线方程为:2x −y −2=0. (2)两曲线交点坐标(0,0),(2,2), S ∈∫(√2x −12x 2)20dx =43.【考点】定积分在求面积中的应用利用导数研究曲线上某点切线方程 【解析】 此题暂无解析 【解答】解:(1)∵ 交点为P(2,2),∴ 曲线C 2的导函数为:y ′=x ∴ 切点坐标为(2,2),故该点的切线方程为:2x −y −2=0. (2)两曲线交点坐标(0,0),(2,2), S ∈∫(√2x −12x 2)20dx =43. 22. 【答案】解:联立{y =x 2+2y =3x,解得x 1=1,x 2=2∴ S =∫(10x 2+2−3x)d x +∫(213x −x 2−2)d x =[13X 3+2X −32X 2]01+[32X 2−13X 3−2X]12=1【考点】定积分的简单应用 【解析】因为所求区域均为曲边梯形,所以使用定积分方可求解. 【解答】解:联立{y =x 2+2y =3x,解得x 1=1,x 2=2∴ S =∫(10x 2+2−3x)d x +∫(213x −x 2−2)d x =[13X 3+2X −32X 2]01+[32X 2−13X 3−2X]12=1 23. 【答案】解:(1)由y′=2x ,则切线l 的斜率k =y′|x=1=2×1=2,切线l 的方程为y −1=2(x −1)即2x −y −1=0;(2)如图,所求的图形的面积s =∫x 2120dx +∫[112x 2−(2x −1)]dx =112.【考点】定积分在求面积中的应用利用导数研究曲线上某点切线方程【解析】(1)根据导数的几何意义即可求出切线方程;(2)根据定积分的几何意义即可求出所围成的图形的面积. 【解答】解:(1)由y′=2x ,则切线l 的斜率k =y′|x=1=2×1=2,切线l 的方程为y −1=2(x −1)即2x −y −1=0;(2)如图,所求的图形的面积s =∫x 2120dx +∫[112x 2−(2x −1)]dx =112.24.【答案】解:由题意,将烟囱横截面按照如图放置,建立坐标系如图,双曲线的短轴长为2A =10,并且过(−6, 6),所以双曲线方程为y 225−11x 225×36=1,所以V =π∫(8−611x 236+25)dx =1659.2m 3【考点】用定积分求简单几何体的体积 双曲线的特性【解析】由题意建立坐标系,得到如图的双曲线,烟囱最细处的直径为10m 即2a =10,最下端的直径为12m ,最细处离地面6m ,即双曲线经过(−6, 6),烟囱高14m ,即自变量范围为−6到8,由此利用定积分的值得到体积. 【解答】解:由题意,将烟囱横截面按照如图放置,建立坐标系如图,双曲线的短轴长为2A =10,并且过(−6, 6), 所以双曲线方程为y 225−11x 225×36=1,所以V =π∫(8−611x 236+25)dx =1659.2m 325.【答案】解:(1)设z =a +bi (a,b ∈R ), 则z ¯=a −bi ,∴ z ⋅z ¯−3iz =a 2+b 2+3b −3ai . 又∵ z ⋅z ¯−3iz =101−3i =1+3i , ∴ {a 2+b 2+3b =1,−3a =3,解得 {a =−1,b =0,或{a =−1,b =−3,∴ z =−1或z =−1−3i . (2)由{y =√x ,x +y =2,解得{x =1,y =1,即曲线y =√x 与直线x +y =2的交点坐标为(1,1), 同理可得,曲线y =√x 与直线y =−13x 的交点坐标为(0,0),直线x +y =2与直线y =−13x 的交点坐标为(3,−1),所以围成的平面图形的面积为: S =∫(√x +13x)10dx +∫(2−x +13x)31dx=(23x 32+16x 2)|01+(2x −13x 2)|13=136.【考点】 复数的运算 共轭复数复数代数形式的混合运算 定积分在求面积中的应用 【解析】 此题暂无解析 【解答】解:(1)设z =a +bi (a,b ∈R ), 则z ¯=a −bi ,∴ z ⋅z ¯−3iz =a 2+b 2+3b −3ai . 又∵ z ⋅z ¯−3iz =101−3i =1+3i , ∴ {a 2+b 2+3b =1,−3a =3,解得 {a =−1,b =0,或{a =−1,b =−3,∴ z =−1或z =−1−3i . (2)由{y =√x ,x +y =2,解得{x =1,y =1,即曲线y =√x 与直线x +y =2的交点坐标为(1,1), 同理可得,曲线y =√x 与直线y =−13x 的交点坐标为(0,0), 直线x +y =2与直线y =−13x 的交点坐标为(3,−1),所以围成的平面图形的面积为: S =∫(√x +13x)10dx +∫(2−x +13x)31dx=(23x 32+16x 2)|01+(2x −13x 2)|13=136.26. 【答案】解:(1)∵ (√x 2x4)n 展开式的前三项系数成等差数列,∴ C n 0+C n 2(12)2=2C n 1⋅12…∴ 1+n(n−1)2×14=n ,整理得n 2−9n +8=0,n 1=1(舍) n 2=8…(2)所投的点落在叶形图内记为事件A ,由几何概型的概率公式得: P(A)=叶形图面积AOBC 的面积=∫(10√x−x 2)dx1=(23x 32−13x 3)|01=13…【考点】二项式定理的应用定积分在求面积中的应用 等差数列的性质几何概型计算(与长度、角度、面积、体积有关的几何概型) 【解析】(1)由题意可得,C n 0+C n 2(12)2=2C n 1⋅12,解关于n 的方程即可;(2)由几何概型的概率公式可知,需求叶形图的面积,利用定积分∫(10√x −x 2)dx 可求叶形图的面积,从而使问题解决. 【解答】解:(1)∵ (√x 2√x4)n 展开式的前三项系数成等差数列,∴ C n 0+C n 2(12)2=2C n 1⋅12…∴1+n(n−1)2×14=n,整理得n2−9n+8=0,n1=1(舍)n2=8…(2)所投的点落在叶形图内记为事件A,由几何概型的概率公式得:P(A)=叶形图面积AOBC的面积=∫(1√x−x2)dx1=(23x32−13x3)|01=13…27.【答案】利用S=∫ππ4sin xdx=(−cos x)|π4π=1+√22.利用S=∫10(2x2−x2)dx=23x3|01−13x3|01=13.由于{y=x2y=√x,解得{x=0y=0或{x=1y=1,所以S=∫10(√x−x2)dx=23x32|01−13x3|01=23−13=13.【考点】定积分的简单应用【解析】首先求出被积函数的原函数,进一步利用定积分知识求出结果.【解答】利用S=∫ππ4sin xdx=(−cos x)|π4π=1+√22.利用S=∫10(2x2−x2)dx=23x3|01−13x3|01=13.由于{y=x2y=√x,解得{x=0y=0或{x=1y=1,所以S=∫10(√x−x2)dx=23x32|01−13x3|01=23−13=13.28.【答案】解:由y=4−x2与直线y=2x−4联立,可得交点(−4, −12),(2, 0),∴y=4−x2与直线y=2x−4所围成图形的面积S=∫(2−44−x2−2x+4)dx=(−13x3−x2+8x)|−42=36.【考点】定积分在求面积中的应用【解析】先联立方程,组成方程组,求得交点坐标,可得被积区间,再用定积分表示出y=4−x2与直线y=2x−4所围成图形的面积,即可求得结论.【解答】解:由y=4−x2与直线y=2x−4联立,可得交点(−4, −12),(2, 0),∴y=4−x2与直线y=2x−4所围成图形的面积S=∫(2−44−x2−2x+4)dx=(−13x 3−x 2+8x)|−42=36.29. 【答案】解:(1)S 0=∫sin π0xdx =[−cos x]0π=(−cos π)−(−cos 0)=1+1=2 (2)V =π∫sin 2π0xdx =π[x2−14sin 2x]0π=π(π2−14×0)=π22【考点】用定积分求简单几何体的体积 定积分在求面积中的应用【解析】(1)根据题意可知曲线y =sin x 和直线x =0,x =π,及y =0所围成图形的面积为S 0=∫sin π0xdx ,解之即可;(2)所围成图形绕ox 轴旋转所成旋转体的体积为V =π∫sin 2π0xdx ,根据定积分的定义解之即可. 【解答】解:(1)S 0=∫sin π0xdx =[−cos x]0π=(−cos π)−(−cos 0)=1+1=2 (2)V =π∫sin 2π0xdx=π[x 2−14sin 2x]0π=π(π2−14×0)=π2230.【答案】解:设f(x)=ax 3+bx 2+cx +d ,则f′(x)=3ax 2+2bx +c , 由图象可知{ f(0)=0f(1)=1f′(4)=0f′(7)=0,即{ d =0a +b +c =0c 3a =28−2b 3a =11,解得{ a =2137b =−33137c =168137d =0, ∴ f(x)=2137x 3−33137x 2+168137x . ∴ S =∫f 100(x)dx =(2137×x 44−33137×x 33+168137×x 22)|10≈17.5. 若要想得到误差不超过1的面积估计值,可使用分段函数求出f(x)的解析式,然后使用定积分求出面积. 【考点】定积分在求面积中的应用 【解析】设f(x)=ax 3+bx 2+cx +d ,利用待定系数法确定函数关系式,利用定积分求出面积估计值;若要误差小可分段求出f(x)的解析式,然后使用定积分求出面积. 【解答】解:设f(x)=ax 3+bx 2+cx +d ,则f′(x)=3ax 2+2bx +c ,由图象可知{ f(0)=0f(1)=1f′(4)=0f′(7)=0,即{ d =0a +b +c =0c 3a =28−2b 3a =11,解得{ a =2137b =−33137c =168137d =0, ∴ f(x)=2137x 3−33137x 2+168137x . ∴ S =∫f 100(x)dx=(2137×x 44−33137×x 33+168137×x 22)|10≈17.5. 若要想得到误差不超过1的面积估计值,可使用分段函数求出f(x)的解析式,然后使用定积分求出面积. 31. 【答案】解:(1)曲线C:y =√x 和直线:x −2y =0联立,可得交点坐标为(4, 2),则 S =∫(40√x −12x)dx =(23x 32−x 24)|04=43;(2)V =∫[40π(√x)2−π(x2)2]dx =π(x 22−x 312)|04=8π3.【考点】用定积分求简单几何体的体积 旋转体(圆柱、圆锥、圆台)【解析】(1)求得交点坐标,可得积分区间,即可求M 的面积; (2)旋转一周所得旋转体的体积应该用定积分来求.【解答】 解:(1)曲线C:y =√x 和直线:x −2y =0联立,可得交点坐标为(4, 2),则 S =∫(40√x −12x)dx =(23x 32−x 24)|04=43; (2)V =∫[40π(√x)2−π(x2)2]dx=π(x 22−x 312)|04=8π3.32.【答案】 解:(1)设f(x)=kx +b , ∵ f(x)=x ∫f 20(t)dt +1, ∴ kx +b =x •(kt 22+bt)|02+1,∴ kx +b =(2k +2b)x +1,∴ k =−2,b =1, ∴ f(x)=−2x +1,;2)g(x)=xf(x)=−2x 2+x , ∴ V =π∫[120xf(x)]2dx =π240. 【考点】用定积分求简单几何体的体积定积分【解析】(1)利用待定系数法,结合定积分的定义求函数f(x)的解析式;(2)求出g(x),应用定积分来求旋转体的体积.【解答】解:(1)设f(x)=kx+b,∵f(x)=x∫f2(t)dt+1,∴kx+b=x•(kt22+bt)|02+1,∴kx+b=(2k+2b)x+1,∴k=−2,b=1,∴f(x)=−2x+1,;2)g(x)=xf(x)=−2x2+x,∴V=π∫[120xf(x)]2dx=π240.33.【答案】解:(1)若干张平行于圆锥底面的平面把它切成n块厚度相等的薄片;(2)用一系列圆柱的体积近似地代替对应的薄片,圆柱的高为ℎn ,底半径顺次为:rn,2r n ,3rn…,(n−1)rn,r;(3)问题归结为计算和式V(n)=ℎn ×(12+22+...+n2)×πr2n2,当n越来越大时所趋向的值.(对V求极限V=limn→∞ℎn×(12+22+...+n2)×πr2n2=lim n→∞ℎn⋅16n(n+1)(2n+1)⋅πr2n2=ℎπr26limn→∞2n2+3n+1n2=πr2ℎ3=13S底ℎ故圆锥的体积等于13的圆柱体的体积【考点】用定积分求简单几何体的体积【解析】利用极限的定义进行分割、近似代换和求极限的方法,进行推到【解答】解:(1)若干张平行于圆锥底面的平面把它切成n块厚度相等的薄片;(2)用一系列圆柱的体积近似地代替对应的薄片,圆柱的高为ℎn ,底半径顺次为:rn,2r n ,3rn…,(n−1)rn,r;(3)问题归结为计算和式V(n)=ℎn ×(12+22+...+n2)×πr2n2,当n越来越大时所趋向的值.(对V求极限V=limn→∞ℎn×(12+22+...+n2)×πr2n2=lim n→∞ℎ⋅1n(n+1)(2n+1)⋅πr22=ℎπr26limn→∞2n2+3n+1n2=πr2ℎ3=13S底ℎ故圆锥的体积等于13的圆柱体的体积34.【答案】解:设(x0, y0)为曲线y=√x(0≤x≤4)上任一点,得曲线于该点处的切线方程为:y−y0=2√x −x0)即y=y02+2√x.得其与x=0,x=4的交点分别为(0,y02),(4,y02+2y0)于是由此切线与直线x=0,x=4以及曲线y=√x所围的平面图形面积为:S=∫(4 0y022x√x)dx=2y0+x−163=2√x0x−163应用均值不等式求得x0=2时,S取得最小值.即所求切线即为:y=22+√22.【考点】定积分在求面积中的应用【解析】先根据导数的几何意义求出曲线y=√x(0≤x≤4)上任一点处的切线方程,再求出积分的上下限,然后利用定积分表示出图形面积,最后利用定积分的定义进行求解即可.【解答】解:设(x0, y0)为曲线y=√x(0≤x≤4)上任一点,得曲线于该点处的切线方程为:y−y0=2x −x0)即y=y02+2x.得其与x=0,x=4的交点分别为(0,y02),(4,y02+2y0)于是由此切线与直线x=0,x=4以及曲线y=√x所围的平面图形面积为:S=∫(4 0y022√x√x)dx=2y0+√x−163=2√x0√x−163应用均值不等式求得x0=2时,S取得最小值.即所求切线即为:y=2√2+√22.35.【答案】解:设切线方程为y =kx +1,切点坐标为(a, b), 则{k =1aka +1=b ln a =b ,解得a =e 2,b =2,∴ 切线方程为y =1e 2x +1.将y =0代入y =1e 2x +1得x =−e 2,∴ B(−e 2, 0). ∴区域D 的面积为∫(e 2−e 21e 2x+1)dx −∫ln e 21xdx=x 22e 2+x|e 2−e 2−x(ln x −1)|e 21=2e 2+e 2=3e 2.区域D 绕x 轴旋转一周所得几何体体积为13⋅π⋅22⋅2e 2−π⋅∫(e 21ln x)2dx =8πe 23−π⋅x[(ln x)2−2ln x +2]|e 21=8πe 23−(2e 2−2)⋅π=2πe 23+2π.【考点】用定积分求简单几何体的体积 【解析】求出A 的坐标和切线方程,则所求面积和体积均可用两个定积分的差来表示. 【解答】解:设切线方程为y =kx +1,切点坐标为(a, b), 则{k =1aka +1=b ln a =b,解得a =e 2,b =2,∴ 切线方程为y =1e 2x +1.将y =0代入y =1e 2x +1得x =−e 2,∴ B(−e 2, 0). ∴区域D 的面积为∫(e 2−e 21e 2x+1)dx −∫ln e 21xdx=x 22e 2+x|e 2−e 2−x(ln x −1)|e 21=2e 2+e 2=3e 2.区域D 绕x 轴旋转一周所得几何体体积为13⋅π⋅22⋅2e 2−π⋅∫(e 21ln x)2dx=8πe 23−π⋅x[(ln x)2−2ln x +2]|e 21=8πe 23−(2e 2−2)⋅π=2πe 23+2π.36. 【答案】解:由{y =2x −x 2y =2x 2−4x ,得{x =0y =0或{x =2y =0, ∴ 所求图象的面积为:∫[20(2x −x 2)−(2x 2−4x)]dx =∫(206x −3x 2)dx =(3x 2−x 3)|02=3×22−23=12−8=4. 【考点】定积分在求面积中的应用 【解析】先求出两曲线的交点坐标,利用定积分的应用即可求出对应图形的面积. 【解答】解:由{y =2x −x 2y =2x 2−4x ,得{x =0y =0或{x =2y =0, ∴ 所求图象的面积为:∫[20(2x −x 2)−(2x 2−4x)]dx =∫(206x −3x 2)dx =(3x 2−x 3)|02=3×22−23=12−8=4. 37. 【答案】解:∫(103ax +1)(x +b)dx =∫[103ax 2+(3ab +1)x +b]dx=[ax 3+12(3ab +1)x 2+bx]|01 =a +12(3ab +1)+b =0即3ab +2(a +b)+1=0 设ab =t ∴ a +b =−3t+12则a ,b 为方程x 2+3t+12x +t =0两根△=(3t+1)24−4t ≥0∴ t ≤19或t ≥1∴ a ⋅b ∈(−∞, 19]∪[1, +∞) 【考点】定积分的简单应用 【解析】先根据定积分的运算法则建立a 与b 的等量关系,然后设ab =t 则a +b =−3t+12,再利用构造法构造a ,b 为方程x 2+3t+12x +t =0两根,然后利用判别式可求出a .b 的取值范围. 【解答】解:∫(103ax +1)(x +b)dx =∫[103ax 2+(3ab +1)x +b]dx=[ax 3+12(3ab +1)x 2+bx]|01 =a +12(3ab +1)+b =0即3ab +2(a +b)+1=0 设ab =t ∴ a +b =−3t+12则a ,b 为方程x 2+3t+12x +t =0两根△=(3t+1)24−4t ≥0∴ t ≤19或t ≥1∴ a ⋅b ∈(−∞, 19]∪[1, +∞) 38.【答案】解:根据对称性,得: 曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的平面区域的面积S 为:曲线y =cos x与直线x =π2,x =π所围成的平面区域的面积的二倍, ∴ S =−2∫cos ππ2xdx =−2sin x =2.故曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的面积为2.【考点】定积分在求面积中的应用 【解析】本题利用直接法求解,根据三角函数的对称性知,曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的平面区域的面积S 为:曲线y =cos x 与直线x =π2,x =π所围成的平面区域的面积的二倍,最后结合定积分计算面积即可. 【解答】解:根据对称性,得: 曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的平面区域的面积S 为:曲线y =cos x与直线x =π2,x =π所围成的平面区域的面积的二倍, ∴ S =−2∫cos ππ2xdx =−2sin x =2.故曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的面积为2.39. 【答案】解:s =∫|5π4−π2sin x|dx =−∫sin 0−π2xdx+∫sin π0xdx−∫sin 5π4πxdx=cos x|−π20−cos x|0π+cos x|π5π4=1+2+(−√22+1)=4−√22. 【考点】定积分在求面积中的应用 【解析】求曲线y =sin x 与直线x =−π2,x =5π4,y =0所围成的平面图形的面积【解答】解:s =∫|5π4−π2sin x|dx =−∫sin 0−π2xdx+∫sin π0xdx−∫sin 5π4πxdx=cos x|−π20−cos x|0π+cos x|π5π4=1+2+(−√22+1)=4−√22. 40.【答案】 由 {y =kx y =x −x2 得 {x =1−k y =k −k 2 (0<k <1). 由题设得∫10−k[(x −x 2)−kx]dx =12∫(10x −x 2)dx 即∫10−k[(x −x 2)−kx]dx =12( 12x 2−13x 3)|01=112 ∴ (1−k)3=12 ∴ k =1−√432∴ 直线方程为y =(1−√432)x . 故k 的值为:k =1−√432.【考点】定积分的简单应用 【解析】先由 {y =kx y =x −x 2 得 {x =1−k y =k −k 2 ,根据直线y =kx 分抛物线y =x −x 2与x 轴所围成图形为面积相等的两个部分得∫10−k[(x −x 2)−kx]dx =12∫(10x −x 2)dx 下面利用定积分的计算公式即可求得k 值. 【解答】由 {y =kx y =x −x 2得 {x =1−k y =k −k 2 (0<k <1).由题设得∫10−k[(x −x 2)−kx]dx =12∫(10x −x 2)dx 即∫10−k[(x −x 2)−kx]dx =12( 12x 2−13x 3)|01=112试卷第31页,总31页 ∴ (1−k)3=12 ∴k =1−√432∴ 直线方程为y =(1−√432)x . 故k 的值为:k =1−√432.。

【高二数学】选修2-2综合测试含答案解析

【高二数学】选修2-2综合测试含答案解析

选修2-2综合测试时间120分钟,满分150分.一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:1+2i-2=( ) A .-1-12iB .-1+12iC .1+12iD .1-12i[答案] B [解析]1+2i -2=1+2i 1-2i +i 2=1+2i-2i =+2=-1+12i.2.用反证法证明命题“若a ,b ∈N ,ab 能被3整除,那么a ,b 中至少有一个能被3整除”,假设应为( )A .a ,b 都能被3整除B .a ,b 都不能被3整除C .a ,b 不都能被3整除D .a 不能被3整除[答案] B[解析] “至少有一个”的否定为“一个也没有”.3.用数学归纳法证明12+22+…+(n -1)2+n 2+(n -1)2+…+22+12=n n 2+3,从n =k 到n =k +1时,等式左边应添加的式子是( )A .(k -1)2+2k 2B .(k +1)2+k 2C .(k +1)2D .13(k +1)[2(k +1)2+1] [答案] B[解析] 当n =k 时,左边=12+22+…+(k -1)2+k 2+(k -1)2+…+22+12,当n =k +1时,左边=12+22+…+(k -1)2+k 2+(k +1)2+k 2+(k -1)2+…+22+12,∴从n =k 到n =k +1,左边应添加的式子为(k +1)2+k 2.4.已知函数f (x )=1x +-x,则y =f (x )的图象大致为( )[答案] B[解析] 当x =1时,y =1ln 2-1<0,排除A ;当x =0时,y 不存在,排除D ;当x 从负方向无限趋近于0时,y 趋近于-∞,排除C.故选B.5.已知{b n }为等比数列,b 5=2,则b 1b 2b 3…b 9=29.若{a n }为等差数列,a 5=2,则{a n }的类似结论为( )A .a 1a 2a 3…a 9=29B .a 1+a 2+…+a 9=29C .a 1a 2…a 9=2×9D .a 1+a 2+…+a 9=2×9[答案] D[解析] 由等差数列的性质知,a 1+a 9=a 2+a 8=…=2a 5,故D 成立.6.做直线运动的质点在任意位置x 处,所受的力F (x )=1-e -x,则质点从x 1=0,沿x 轴运动到x 2=1处,力F (x )所做的功是( )A .eB .1e C .2e D .12e[答案] B[解析] 由W =⎠⎛01(1-e -x )d x =⎠⎛011d x -⎠⎛01e -x d x =x |10+e -x |10=1+1e -1=1e .7.已知复数(x -2)+y i(x ,y ∈R )对应向量的模为3,则y x的最大值是( ) A .32B .33C. 3 D .12[答案] C[解析] 由|(x -2)+y i|=3,得(x -2)2+y 2=3, 此方程表示如图所示的圆C ,则y x的最大值为切线OP 的斜率. 由|CP |=3,|OC |=2,得∠COP =π3,∴切线OP 的斜率为3,故选C.8.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图像可能是( )[答案] C[解析] 本题考查导数的应用,函数的图象.由f (x )在x =-2处取极小值知f ′(-2)=0且在-2的左侧f ′(x )<0,而-2的右侧f ′(x )>0,所以C 项合适.函数、导数、不等式结合命题,对学生应用函数能力提出了较高要求.9.观察下列的图形中小正方形的个数,则第6个图中有________个小正方形,第n 个图中有________个小正方形( )A .28,n +n +2B .14,n +n +2C .28,n 2D .12,n 2+n2[答案] A [解析]根据规律知第6个图形中有1+2+3+4+5+6+7=28.第n 个图形中有1+2+…+(n +1)=n +n +2.10.给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′,若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在(0,π2)上不是凸函数的是( )A .f (x )=sin x +cos xB .f (x )=ln x -2xC .f (x )=-x 3+2x -1 D .f (x )=-x e -x[答案] D[解析] 若f (x )=sin x +cos x ,则f ″(x )=-sin x -cos x , 在x ∈(0,π2)上,恒有f ″(x )<0;若f (x )=ln x -2x ,则f ″(x )=-1x 2,在x ∈(0,π2)上,恒有f ″(x )<0;若f (x )=-x 3+2x -1,则f ″(x )=-6x ,在x ∈(0,π2)上,恒有f ″(x )<0;若f (x )=-x e -x,则f ″(x )=2e -x-x e -x=(2-x )e -x. 在x ∈(0,π2)上,恒有f ″(x )>0,故选D.二、填空题(本大题共5小题,每小题5分,共25分) 11.(2014·北京理,9)复数(1+i 1-i )2=________.[答案] -1 [解析] 复数1+i1-i =+2-+=2i2=i , 故(1+i 1-i )2=i 2=-1. 12.用数学归纳法证明34n +1+52n +1能被14整除时,当n =k +1时,对于34(k +1)+1+52(k +1)+1应变形为________. [答案] 34·34k +1+52·52k +1[解析] n =k 时,34k +1+52k +1能被14整除,因此,我们需要将n =k +1时的式子构造为能利用n =k 的假设的形式.34(k +1)+1+52(k +1)+1=34·34k +1+52·52k +1+34·52k +1-34·52k +1=34(34k +1+52k +1)+(52-34)52k +1,便可得证.13.在△ABC 中,D 是BC 的中点,则AD →=12(AB →+AC →),将命题类比到四面体中去,得到一个类比命题:____________________________________________________________________________________________________________________________________.[答案] 在四面体A -BCD 中,G 为△BCD 的重心,则AG →=13(AB →+AC →+AD →)14.已知函数f (x )=x 3-ax 2+3ax +1在区间(-∞,+∞)内既有极大值,又有极小值,则实数a 的取值范围是________________.[答案] (-∞,0)∪(9,+∞)[解析] 由题意得y ′=3x 2-2ax +3a =0有两个不同的实根,故Δ=(-2a )2-4×3×3a >0,解得a <0或a >9.15.如图为函数f (x )的图像,f ′(x )为函数f (x )的导函数,则不等式x ·f ′(x )<0的解集为________.[答案] (-3,-1)∪(0,1)[解析] x ·f ′(x )<0⇔⎩⎪⎨⎪⎧x >0,f x ,或⎩⎪⎨⎪⎧x <0,f x∵(-3,-1)是f (x )的递增区间, ∴f ′(x )>0的解集为(-3,-1). ∵(0,1)是f (x )的递减区间, ∴f ′(x )<0的解集为(0,1).故不等式的解集为(-3,-1)∪(0,1).三、解答题(本大题共6小题,共75分,前4题每题12分,20题13分,21题14分) 16.(2015·山东青岛)已知复数z 1=i(1-i)3. (1)求|z 1|.(2)若|z |=1,求|z -z 1|的最大值.[解析] (1)|z 1|=|i(1-i)3|=|i|·|i-1|3=2 2. (2)如图所示,由|z |=1可知,z 在复平面内对应的点的轨迹是半径为1,圆心为O (0,0)的圆.而z 1对应着坐标系中的点Z 1(2,-2),所以|z -z 1|的最大值可以看成是点Z 1(2,-2)到圆上的点的距离的最大值.由图知|z -z 1|max =|z 1|+r (r 为圆的半径)=22+1.17.设函数f (x )=kx 3-3x 2+1(k ≥0). (1)求函数f (x )的单调区间;(2)若函数f (x )的极小值大于0,求k 的取值范围. [解析] (1)当k =0时,f (x )=-3x 2+1,∴f (x )的单调增区间为(-∞,0),单调减区间为(0,+∞). 当k >0时,f ′(x )=3kx 2-6x =3kx (x -2k).∴f (x )的单调增区间为(-∞,0),(2k,+∞),单调减区间为(0,2k).(2)当k =0时,函数f (x )不存在极小值. 当k >0时,由(1)知f (x )的极小值为f (2k )=8k 2-12k2+1>0,即k 2>4, 又k >0,∴k 的取值范围为(2,+∞).18.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: ①sin 213°+cos 217°-sin13°cos17°; ②sin 215°+cos 215°-sin15°cos15°; ③sin 218°+cos 212°-sin18°cos12°; ④sin 2(-18°)+cos 248°-sin(-18°)cos48°; ⑤sin 2(-25°)+cos 255°-sin(-25°)cos55°. (1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. [解析] 解法一: (1)选择(2)式,计算如下:sin 215°+cos 215°-sin15°cos15° =1-12sin30°=1-14=34.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos30°cos α+sin30°sin α)2-sin α(cos30°cos α+sin30°sin α) =sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34. 解法二: (1)同解法一.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α) =1-cos2α2+1+cos 60°-2α2-sin α(cos30°cos α+sin30°sin α)=12-12cos2α+12+12(cos60°cos2α+sin60°sin2α)-32sin αcos α-12sin 2α =12-12cos2α+12+14cos2α+34sin2α-34sin2α-14(1-cos2α) =1-14cos2α-14+14cos2α=34.19.设a >0且a ≠1,函数f (x )=12x 2-(a +1)x +a ln x .(1)当a =2时,求曲线y =f (x )在(3,f (3))处切线的斜率; (2)求函数f (x )的极值点. [解析] (1)由已知得x >0.当a =2时,f ′(x )=x -3+2x ,f ′(3)=23,所以曲线y =f (x )在(3,f (3))处切线的斜率为23.(2)f ′(x )=x -(a +1)+a x=x 2-a +x +ax=x -x -ax.由f ′(x )=0,得x =1或x =A . ①当0<a <1时,当x ∈(0,a )时,f ′(x )>0,函数f (x )单调递增; 当x ∈(a,1)时,f ′(x )<0,函数f (x )单调递减; 当x ∈(1,+∞)时,f ′(x )>0,函数f (x )单调递增. 此时x =a 时f (x )的极大值点,x =1是f (x )的极小值点. ②当a >1时,当x ∈(0,1)时,f ′(x )>0,函数f (x )单调递增; 当x ∈(1,a )时,f ′(x )<0,函数f (x )单调递减; 当x ∈(a ,+∞)时,f ′(x )>0,函数f (x )单调递增. 此时x =1是f (x )的极大值点,x =a 是f (x )的极小值点.综上,当0<a <1时,x =a 是f (x )的极大值点,x =1是f (x )的极小值点;当a >1时,x =1是f (x )的极大值点,x =a 是f (x )的极小值点.20.(2014·广东理)设数列{a n }的前n 项和为S n ,满足S n =2na n +1-3n 2-4n ,n ∈N *,且S 3=15.(1)求a 1,a 2,a 3的值; (2)求数列{a n }的通项公式.[解析] (1)a 1=S 1=2a 2-3×12-4×1=2a 2-7①a 1+a 2=S 2=4a 3-3×22-4×2=4(S 3-a 1-a 2)-20=4(15-a 1-a 2)-20,∴a 1+a 2=8②联立①②解得⎩⎪⎨⎪⎧a 1=3a 2=5,∴a 3=S 3-a 1-a 2=15-8=7,综上a 1=3,a 2=5,a 3=7.(2)由(1)猜想a n =2n +1,以下用数学归纳法证明: ①由(1)知,当n =1时,a 1=3=2×1+1,猜想成立; ②假设当n =k 时,猜想成立,即a k =2k +1, 则当n =k +1时,a k +1=2k -12k a k +6k +12k=2k -12k ·(2k +1)+3+12k=4k 2-12k +3+12k=2k +3=2(k +1)+1这就是说n =k +1时,猜想也成立,从而对一切n ∈N *,a n =2n +1.21.如图,某地有三家工厂,分别位于矩形ABCD 的顶点A ,B 及CD 的中点P 处,已知AB =20 km ,CB =10 km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且与A ,B 等距离的一点O处建造一个污水处理厂,并铺设排污管道AO ,BO ,OP ,设排污管道的总长为y km.(1)设∠BAO =θrad ,将y 表示成θ的函数关系式; (2)确定污水处理厂的位置,使三条排污管道的总长度最小.[解析] (1)延长PO 交AB 于点Q ,则PQ 垂直平分AB .若∠BAO =θrad ,则OA =AQcos ∠BAO =10cos θ,故OB =10cos θ. 又OP =10-10tan θ,所以y =OA +OB +OP =10cos θ+10cos θ+10-10tan θ.故所求函数关系式为y =20-10sin θcos θ+10(0≤θ≤π4).(2)y ′=-10cos θ·cos θ--10sin θ-sinθcos 2θ=θ-cos 2θ.令y ′=0,得sin θ=12.因为0≤θ≤π4,所以θ=π6.当θ∈[0,π6)时,y ′<0,则y 是关于θ的减函数;当θ∈(π6,π4]时,y ′>0,则y 是关于θ的增函数,所以当θ=π6时,y min =20-10×1232+10=(103+10).故当点O 位于线段AB 的中垂线上,且距离AB 边1033km 处时,三条排污管道的总长度最小.。

2022成才之路·人教B版数学·选修2-2练习:第1章 1.2 第2课时

2022成才之路·人教B版数学·选修2-2练习:第1章 1.2 第2课时

第一章 1.2 第2课时一、选择题1.若f (x )=cos π4,则f ′(x )为导学号05300134( )A .-sin π4B .sin π4C .0D .-cos π4答案] C解析] f (x )=cos π4=22,∴f ′(x )=0.2.函数f (x )=x a ,a ∈Q ,若f ′(-1)=-4,则a 的值为导学号05300135( ) A .4 B .-4 C .5 D .-5 答案] A解析] f ′(x )=α·x α-1,∴f ′(-1)=α·(-1)α-1=-4,∴α=4. 3.给出下列命题: ①y =ln2,则y ′=12②y =1x 2,则y ′|x =3=-227③y =2x ,则y ′=2x ·ln2 ④y =log 2x ,则y ′=1x ln2其中正确命题的个数为导学号05300136( ) A .1 B .2 C .3 D .4 答案] C解析] 由求导公式知②③④正确.4.设f (x )=sin x -cos x ,则f (x )在x =π4处的导数f ′(π4)=导学号05300137( )A. 2B .- 2C .0D .22答案] A解析] ∵f ′(x )=cos x +sin x , ∴f ′(π4)=cos π4+sin π4=2,故选A.5.设函数f (x )=cos x 则⎣⎡⎦⎤f ⎝⎛⎭⎫π2′等于导学号05300138( ) A .0 B .1C .-1D .以上均不正确答案] A解析] ∵f ⎝⎛⎭⎫π2=cos π2=0, ∴⎣⎡⎦⎤f ⎝⎛⎭⎫π2′=0′=0,故选A. 6.设函数f (x )=sin x ,则f ′(0)等于导学号05300139( ) A .1 B .-1C .0D .以上均不正确答案] A解析] ∵f ′(x )=(sin x )′=cos x , ∴f ′(0)=cos0=1.故选A.7.若y =ln x ,则其图象在x =2处的切线斜率是导学号05300140( ) A .1 B .0 C .2 D .12答案] D解析] ∵y ′=1x ,∴y ′|x =2=12,故图象在x =2处的切线斜率为12.8.已知直线y =kx 是y =ln x 的切线,则k 的值为导学号05300141( ) A.12 B .-12C .1eD .-1e答案] C解析] ∵y ′=1x =k ,∴x =1k,切点坐标为⎝⎛⎭⎫1k ,1,又切点在曲线y =ln x 上,∴ln 1k =1,∴1k =e ,k =1e . 二、填空题9.函数f (x )=sin x 在x =π3处的切线方程为________.导学号05300142答案] x -2y +3-π3=010.(2021·新课标Ⅱ文,16)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.导学号05300143答案] 8解析] 由y ′=1+1x 可得曲线y =x +ln x 在点(1,1)处的切线斜率为2,故切线方程为y =2x -1,与y =ax 2+(a +2)x +1联立得ax 2+ax +2=0,明显a ≠0,所以由Δ=a 2-8a =0⇒a =8.11.曲线y =ln x 与x 轴交点处的切线方程是______________.导学号05300144 答案] y =x -1解析] ∵曲线y =ln x 与x 轴的交点为(1,0) ∴y ′|x =1=1,切线的斜率为1, 所求切线方程为:y =x -1. 三、解答题12.(1)y =e x在点A (0,1)处的切线方程;导学号05300145 (2)y =ln x 在点A (1,0)处的切线方程. 解析] (1)∵(e x )′=e x ,∴y =e x 在点(0,1)处的切线的斜率为1.∴切线方程为y -1=1×(x -0),即x -y +1=0. (2)∵(ln x )′=1x,∴y =ln x 在点A (1,0)处的切线的斜率为1. ∴切线方程为y =1×(x -1),即x -y -1=0.一、选择题1.物体运动的图象(时间x ,位移y )如图所示,则其导函数图象为导学号05300146( )答案] D解析] 由图象可知,物体在OA ,AB ,BC 三段都做匀速运动,位移是时间的一次函数,因此其导函数为常数函数,并且直线OA ,直线AB 的斜率为正且k OA >k AB ,直线BC 的斜率为负,故选D.2.下列函数中,导函数是奇函数的是导学号05300147( ) A .y =sin x B .y =e x C .y =ln x D .y =cos x -12答案] D解析] 由y =sin x 得y ′=cos x 为偶函数,故A 错;又y =e x 时,y ′=e x 为非奇非偶函数,∴B 错;C 中y =ln x 的定义域x >0,∴C 错;D 中y =cos x -12时,y ′=-sin x 为奇函数,∴选D.3.设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…f n +1(x )=f n ′(x ),n ∈N +,则f 2021(x )的值是导学号05300148( )A .sin xB .-sin xC .cos xD .-cos x答案] D解析] 依题意:f 1(x )=cos x ,f 2(x )=-sin x , f 3(x )=-cos x ,f 4(x )=sin x ,f 5(x )=cos x ,按以上规律可知:f2021(x)=f3(x)=-cos x,故选D.4.(2022·山东文,10)若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线相互垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是导学号 05300149()A .y=sin x B.y=ln xC.y=e x D.y=x3答案] A解析]设两切点坐标分别为(x1,y1),(x2,y2).选项A中,y′=cos x,cos x1cos x2=-1,当x1=0,x2=π时满足,故选项A中的函数具有T性质;选项B、C、D中函数的导数均为正值或非负值,故两点处的导数之积不行能为-1,故选A.二、填空题5.过原点作曲线y=e x的切线,则切点坐标为________,切线方程为________.导学号05300150答案](1,e)y=e x解析]设切点为(x0,e x0),又y′=(e x)′=e x,∴切线的斜率为k=y′|x=x0=e x0,∴切线方程为y-e x0=e x0(x-x0).又切线过原点,∴-e x0=-x0·e x0,即(x0-1)·e x0=0,∴x0=1,∴切点为(1,e),斜率为e,∴切线方程为y=e x.6.函数y=log2x图象上一点A(a,log2a)处的切线与直线(2ln2)x+y-3=0垂直,则a=________.导学号05300151答案] 2解析]y=log2x在点A(a,log2a)处的切线斜率为k1=y′|x=a=1x ln2|x=a=1a ln2.已知直线斜率k2=-2ln2.∵两直线垂直,∴k1k2=-2a=-1,∴a=2.7.若f(x)=x2-2x-4ln x,则f′(x)>0的解集为________.导学号05300152答案](2,+∞)解析]由f(x)=x2-2x-4ln x,得函数定义域为(0,+∞),且f′(x)=2x-2-4x=2x2-2x-4x=2·x2-x-2x=2·(x+1)(x-2)x,f′(x)>0,解得x>2,故f′(x)>0的解集为(2,+∞).三、解答题8.设点P是y=e x上任意一点,求点P到直线y=x的最短距离.导学号05300153解析]依据题意得,平行于直线y=x的直线与曲线y=e x相切的切点为P,该切点即为与y=x距离最近的点,如图,即求在曲线y=e x上斜率为1的切线,由导数的几何意义可求解.令P(x0,y0),∵y′=(e x)′=e x,∴由题意得e x0=1,得x0=0,代入y=e x,y0=1,即P(0,1).利用点到直线的距离公式得最短距离为22.9.已知两条曲线y=sin x、y=cos x,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线相互垂直?并说明理由.导学号05300154解析]由于y=sin x、y=cos x,设两条曲线的一个公共点为P(x0,y0),∴两条曲线在P(x0,y0)处的斜率分别为k1=y′|x=x0=cos x0,k2=y′|x=x0=-sin x0.若使两条切线相互垂直,必需cos x0·(-sin x0)=-1,即sin x0·cos x0=1,也就是sin2x0=2,这是不行能的,∴两条曲线不存在公共点,使在这一点处的两条切线相互垂直.。

新课程人教版高中数学选修2-2课后习题解答(全)

新课程人教版高中数学选修2-2课后习题解答(全)

第一章 导数及其应用 3.1变化率与导数 练习(P6)在第3 h 和5 h 时,原油温度的瞬时变化率分别为1-和3. 它说明在第3 h 附近,原油温度大约以1 ℃/h 的速度下降;在第5 h 时,原油温度大约以3 ℃/h 的速率上升. 练习(P8)函数()h t 在3t t =附近单调递增,在4t t =附近单调递增. 并且,函数()h t 在4t 附近比在3t 附近增加得慢. 说明:体会“以直代曲”的思想. 练习(P9) 函数33()4Vr V π=(05)V ≤≤的图象为根据图象,估算出(0.6)0.3r '≈,(1.2)0.2r '≈.说明:如果没有信息技术,教师可以将此图直接提供给学生,然后让学生根据导数的几何意义估算两点处的导数. 习题1.1 A 组(P10)1、在0t 处,虽然1020()()W t W t =,然而10102020()()()()W t W t t W t W t t t t--∆--∆≥-∆-∆. 所以,企业甲比企业乙治理的效率高.说明:平均变化率的应用,体会平均变化率的内涵.2、(1)(1) 4.9 3.3h h t h t t t∆+∆-==-∆-∆∆,所以,(1) 3.3h '=-.这说明运动员在1t =s 附近以3.3 m /s 的速度下降. 3、物体在第5 s 的瞬时速度就是函数()s t 在5t =时的导数.(5)(5)10s s t s t t t∆+∆-==∆+∆∆,所以,(5)10s '=. 因此,物体在第5 s 时的瞬时速度为10 m /s ,它在第5 s 的动能213101502k E =⨯⨯= J. 4、设车轮转动的角度为θ,时间为t ,则2(0)kt t θ=>. 由题意可知,当0.8t =时,2θπ=. 所以258k π=,于是2258t πθ=.车轮转动开始后第3.2 s 时的瞬时角速度就是函数()t θ在 3.2t =时的导数.(3.2)(3.2)25208t t t t θθθππ∆+∆-==∆+∆∆,所以(3.2)20θπ'=. 因此,车轮在开始转动后第3.2 s 时的瞬时角速度为20π1s -. 说明:第2,3,4题是对了解导数定义及熟悉其符号表示的巩固.5、由图可知,函数()f x 在5x =-处切线的斜率大于零,所以函数在5x =-附近单调递增. 同理可得,函数()f x 在4x =-,2-,0,2附近分别单调递增,几乎没有变化,单调递减,单调递减. 说明:“以直代曲”思想的应用.6、第一个函数的图象是一条直线,其斜率是一个小于零的常数,因此,其导数()f x '的图象如图(1)所示;第二个函数的导数()f x '恒大于零,并且随着x 的增加,()f x '的值也在增加;对于第三个函数,当x 小于零时,()f x '小于零,当x 大于零时,()f x '大于零,并且随着x 的增加,()f x '的值也在增加. 以下给出了满足上述条件的导函数图象中的一种.说明:本题意在让学生将导数与曲线的切线斜率相联系. 习题3.1 B 组(P11)1、高度关于时间的导数刻画的是运动变化的快慢,即速度;速度关于时间的导数刻画的是速度变化的快慢,根据物理知识,这个量就是加速度.2、说明:由给出的()v t 的信息获得()s t 的相关信息,并据此画出()s t 的图象的大致形状. 这个过程基于对导数内涵的了解,以及数与形之间的相互转换.3、由(1)的题意可知,函数()f x 的图象在点(1,5)-处的切线斜率为1-,所以此点附近曲线呈下降趋势. 首先画出切线的图象,然后再画出此点附近函数的图象. 同理可得(2)(3)某点处函数图象的大致形状. 下面是一种参考答案.说明:这是一个综合性问题,包含了对导数内涵、导数几何意义的了解,以及对以直代曲思想的领悟. 本题的答案不唯一. 1.2导数的计算 练习(P18)1、()27f x x '=-,所以,(2)3f '=-,(6)5f '=.2、(1)1ln 2y x '=; (2)2x y e '=; (3)4106y x x '=-; (4)3sin 4cos y x x '=--;(5)1sin 33xy '=-; (6)21y x '=-.习题1.2 A 组(P18)1、()()2S S r r S r r r r r π∆+∆-==+∆∆∆,所以,0()lim(2)2r S r r r r ππ∆→'=+∆=.2、()9.8 6.5h t t '=-+.3、3213()34r V Vπ'=. 4、(1)213ln 2y x x '=+; (2)1n x n x y nx e x e -'=+; (3)2323sin cos cos sin x x x x x y x-+'=; (4)9899(1)y x '=+; (5)2x y e -'=-; (6)2sin(25)4cos(25)y x x x '=+++. 5、()822f x x '=-+. 由0()4f x '=有 04822x =-+,解得032x =. 6、(1)ln 1y x '=+; (2)1y x =-. 7、1xy π=-+.8、(1)氨气的散发速度()500ln 0.8340.834t A t '=⨯⨯.(2)(7)25.5A '=-,它表示氨气在第7天左右时,以25.5克/天的速率减少.习题1.2 B 组(P19) 1、(1)(2)当h 越来越小时,sin()sin x h xy h+-=就越来越逼近函数cos y x =.(3)sin y x =的导数为cos y x =.2、当0y =时,0x =. 所以函数图象与x 轴交于点(0,0)P . x y e '=-,所以01x y ='=-.所以,曲线在点P 处的切线的方程为y x =-.2、()4sin d t t '=-. 所以,上午6:00时潮水的速度为0.42-m /h ;上午9:00时潮水的速度为0.63-m /h ;中午12:00时潮水的速度为0.83-m /h ;下午6:00时潮水的速度为 1.24-m /h.1.3导数在研究函数中的应用 练习(P26)1、(1)因为2()24f x x x =-+,所以()22f x x '=-.当()0f x '>,即1x >时,函数2()24f x x x =-+单调递增; 当()0f x '<,即1x <时,函数2()24f x x x =-+单调递减. (2)因为()x f x e x =-,所以()1x f x e '=-.当()0f x '>,即0x >时,函数()x f x e x =-单调递增; 当()0f x '<,即0x <时,函数()x f x e x =-单调递减. (3)因为3()3f x x x =-,所以2()33f x x '=-.当()0f x '>,即11x -<<时,函数3()3f x x x =-单调递增; 当()0f x '<,即1x <-或1x >时,函数3()3f x x x =-单调递减. (4)因为32()f x x x x =--,所以2()321f x x x '=--.当()0f x '>,即13x <-或1x >时,函数32()f x x x x =--单调递增;当()0f x '<,即113x -<<时,函数32()f x x x x =--单调递减.2、3、因为2()(0)f x ax bx c a =++≠,所以()2f x ax b '=+. (1)当0a >时,()0f x '>,即2bx a >-时,函数2()(0)f x ax bx c a =++≠单调递增; ()0f x '<,即2bx a<-时,函数2()(0)f x ax bx c a =++≠单调递减.(2)当0a <时,()0f x '>,即2bx a <-时,函数2()(0)f x ax bx c a =++≠单调递增;()0f x '<,即2bx a>-时,函数2()(0)f x ax bx c a =++≠单调递减. 4、证明:因为32()267f x x x =-+,所以2()612f x x x '=-. 当(0,2)x ∈时,2()6120f x x x '=-<,因此函数32()267f x x x =-+在(0,2)内是减函数. 练习(P29)1、24,x x 是函数()y f x =的极值点,其中2x x =是函数()y f x =的极大值点,4x x =是函数()y f x =的极小值点. 2、(1)因为2()62f x x x =--,所以()121f x x '=-. 令()1210f x x '=-=,得112x =. 当112x >时,()0f x '>,()f x 单调递增;当112x <时,()0f x '<,()f x 单调递减. 所以,当112x =时,()f x 有极小值,并且极小值为211149()6()212121224f =⨯--=-.(2)因为3()27f x x x =-,所以2()327f x x '=-. 令2()3270f x x '=-=,得3x =±. 下面分两种情况讨论:①当()0f x '>,即3x <-或3x >时;②当()0f x '<,即33x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:注:图象形状不唯一.因此,当3x =-时,()f x 有极大值,并且极大值为54;当3x =时,()f x 有极小值,并且极小值为54-.(3)因为3()612f x x x =+-,所以2()123f x x '=-. 令2()1230f x x '=-=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即22x -<<时;②当()0f x '<,即2x <-或2x >时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极小值,并且极小值为10-;当2x =时,()f x 有极大值,并且极大值为22(4)因为3()3f x x x =-,所以2()33f x x '=-. 令2()330f x x '=-=,得1x =±. 下面分两种情况讨论:①当()0f x '>,即11x -<<时;②当()0f x '<,即1x <-或1x >时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当1x =-时,()f x 有极小值,并且极小值为2-;当1x =时,()f x 有极大值,并且极大值为2练习(P31)(1)在[0,2]上,当112x =时,2()62f x x x =--有极小值,并且极小值为149()1224f =-. 又由于(0)2f =-,(2)20f =.因此,函数2()62f x x x =--在[0,2]上的最大值是20、最小值是4924-. (2)在[4,4]-上,当3x =-时,3()27f x x x =-有极大值,并且极大值为(3)54f -=;当3x =时,3()27f x x x =-有极小值,并且极小值为(3)54f =-;又由于(4)44f -=,(4)44f =-.因此,函数3()27f x x x =-在[4,4]-上的最大值是54、最小值是54-.(3)在1[,3]3-上,当2x =时,3()612f x x x =+-有极大值,并且极大值为(2)22f =.又由于155()327f -=,(3)15f =.因此,函数3()612f x x x =+-在1[,3]3-上的最大值是22、最小值是5527.(4)在[2,3]上,函数3()3f x x x =-无极值. 因为(2)2f =-,(3)18f =-.因此,函数3()3f x x x =-在[2,3]上的最大值是2-、最小值是18-. 习题1.3 A 组(P31)1、(1)因为()21f x x =-+,所以()20f x '=-<. 因此,函数()21f x x =-+是单调递减函数.(2)因为()cos f x x x =+,(0,)2x π∈,所以()1sin 0f x x '=->,(0,)2x π∈. 因此,函数()cos f x x x =+在(0,)2π上是单调递增函数. (3)因为()24f x x =--,所以()20f x '=-<. 因此,函数()24f x x =-是单调递减函数. (4)因为3()24f x x x =+,所以2()640f x x '=+>. 因此,函数3()24f x x x =+是单调递增函数.2、(1)因为2()24f x x x =+-,所以()22f x x '=+.当()0f x '>,即1x >-时,函数2()24f x x x =+-单调递增. 当()0f x '<,即1x <-时,函数2()24f x x x =+-单调递减. (2)因为2()233f x x x =-+,所以()43f x x '=-.当()0f x '>,即34x >时,函数2()233f x x x =-+单调递增. 当()0f x '<,即34x <时,函数2()233f x x x =-+单调递减.(3)因为3()3f x x x =+,所以2()330f x x '=+>. 因此,函数3()3f x x x =+是单调递增函数. (4)因为32()f x x x x =+-,所以2()321f x x x '=+-. 当()0f x '>,即1x <-或13x >时,函数32()f x x x x =+-单调递增. 当()0f x '<,即113x -<<时,函数32()f x x x x =+-单调递减.3、(1)图略. (2)加速度等于0.4、(1)在2x x =处,导函数()y f x '=有极大值; (2)在1x x =和4x x =处,导函数()y f x '=有极小值; (3)在3x x =处,函数()y f x =有极大值; (4)在5x x =处,函数()y f x =有极小值.5、(1)因为2()62f x x x =++,所以()121f x x '=+. 令()1210f x x '=+=,得112x =-. 当112x >-时,()0f x '>,()f x 单调递增; 当112x <-时,()0f x '<,()f x 单调递减.所以,112x =-时,()f x 有极小值,并且极小值为211149()6()212121224f -=⨯---=-.(2)因为3()12f x x x =-,所以2()312f x x '=-. 令2()3120f x x '=-=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极大值,并且极大值为16;当2x =时,()f x 有极小值,并且极小值为16-.(3)因为3()612f x x x =-+,所以2()123f x x '=-+. 令2()1230f x x '=-+=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极大值,并且极大值为22;当2x =时,()f x 有极小值,并且极小值为10-.(4)因为3()48f x x x =-,所以2()483f x x '=-. 令2()4830f x x '=-=,得4x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当4x =-时,()f x 有极小值,并且极小值为128-;当4x =时,()f x 有极大值,并且极大值为128.6、(1)在[1,1]-上,当112x =-时,函数2()62f x x x =++有极小值,并且极小值为4724. 由于(1)7f -=,(1)9f =,所以,函数2()62f x x x =++在[1,1]-上的最大值和最小值分别为9,4724. (2)在[3,3]-上,当2x =-时,函数3()12f x x x =-有极大值,并且极大值为16; 当2x =时,函数3()12f x x x =-有极小值,并且极小值为16-. 由于(3)9f -=,(3)9f =-,所以,函数3()12f x x x =-在[3,3]-上的最大值和最小值分别为16,16-.(3)在1[,1]3-上,函数3()612f x x x =-+在1[,1]3-上无极值.由于1269()327f -=,(1)5f =-,所以,函数3()612f x x x =-+在1[,1]3-上的最大值和最小值分别为26927,5-.(4)当4x =时,()f x 有极大值,并且极大值为128.. 由于(3)117f -=-,(5)115f =,所以,函数3()48f x x x =-在[3,5]-上的最大值和最小值分别为128,117-. 习题3.3 B 组(P32)1、(1)证明:设()sin f x x x =-,(0,)x π∈. 因为()cos 10f x x '=-<,(0,)x π∈ 所以()sin f x x x =-在(0,)π内单调递减因此()sin (0)0f x x x f =-<=,(0,)x π∈,即sin x x <,(0,)x π∈. 图略 (2)证明:设2()f x x x =-,(0,1)x ∈. 因为()12f x x '=-,(0,1)x ∈所以,当1(0,)2x ∈时,()120f x x '=->,()f x 单调递增,2()(0)0f x x x f =->=;当1(,1)2x ∈时,()120f x x '=-<,()f x 单调递减,2()(1)0f x x x f =->=;又11()024f =>. 因此,20x x ->,(0,1)x ∈. 图略(3)证明:设()1x f x e x =--,0x ≠. 因为()1x f x e '=-,0x ≠所以,当0x >时,()10x f x e '=->,()f x 单调递增,()1(0)0x f x e x f =-->=;当0x <时,()10x f x e '=-<,()f x 单调递减,()1(0)0x f x e x f =-->=;综上,1x e x ->,0x ≠. 图略 (4)证明:设()ln f x x x =-,0x >. 因为1()1f x x'=-,0x ≠ 所以,当01x <<时,1()10f x x'=->,()f x 单调递增, ()ln (1)10f x x x f =-<=-<;当1x >时,1()10f x x'=-<,()f x 单调递减, ()ln (1)10f x x x f =-<=-<;当1x =时,显然ln11<. 因此,ln x x <. 由(3)可知,1x e x x >+>,0x >.. 综上,ln x x x e <<,0x > 图略2、(1)函数32()f x ax bx cx d =+++的图象大致是个“双峰”图象,类似“”或“”的形状. 若有极值,则在整个定义域上有且仅有一个极大值和一个极小值,从图象上能大致估计它的单调区间.(2)因为32()f x ax bx cx d =+++,所以2()32f x ax bx c '=++.下面分类讨论:当0a ≠时,分0a >和0a <两种情形: ①当0a >,且230b ac ->时,设方程2()320f x ax bx c '=++=的两根分别为12,x x ,且12x x <,当2()320f x ax bx c '=++>,即1x x <或2x x >时,函数32()f x ax bx cx d =+++单调递增; 当2()320f x ax bx c '=++<,即12x x x <<时,函数32()f x ax bx cx d =+++单调递减. 当0a >,且230b ac -≤时,此时2()320f x ax bx c '=++≥,函数32()f x ax bx cx d =+++单调递增. ②当0a <,且230b ac ->时,设方程2()320f x ax bx c '=++=的两根分别为12,x x ,且12x x <,当2()320f x ax bx c '=++>,即12x x x <<时,函数32()f x ax bx cx d =+++单调递增; 当2()320f x ax bx c '=++<,即1x x <或2x x >时,函数32()f x ax bx cx d =+++单调递减. 当0a <,且230b ac -≤时,此时2()320f x ax bx c '=++≤,函数32()f x ax bx cx d =+++单调递减 1.4生活中的优化问题举例 习题1.4 A 组(P37)1、设两段铁丝的长度分别为x ,l x -,则这两个正方形的边长分别为4x ,4l x -,两个正方形的面积和为 22221()()()(22)4416x l x S f x x lx l -==+=-+,0x l <<.令()0f x '=,即420x l -=,2lx =.当(0,)2l x ∈时,()0f x '<;当(,)2lx l ∈时,()0f x '>.因此,2lx =是函数()f x 的极小值点,也是最小值点.所以,当两段铁丝的长度分别是2l时,两个正方形的面积和最小.2、如图所示,由于在边长为a 的正方形铁片的四角截去 四个边长为x 的小正方形,做成一个无盖方盒,所以无 盖方盒的底面为正方形,且边长为2a x -,高为x .(1)无盖方盒的容积2()(2)V x a x x =-,02ax <<.(2)因为322()44V x x ax a x =-+,所以22()128V x x ax a '=-+.令()0V x '=,得2a x =(舍去),或6a x =. 当(0,)6a x ∈时,()0V x '>;当(,)62a ax ∈时,()0V x '<.因此,6ax =是函数()V x 的极大值点,也是最大值点.所以,当6ax =时,无盖方盒的容积最大.3、如图,设圆柱的高为h ,底半径为R , 则表面积222S Rh R ππ=+由2V R h π=,得2V h R π=. 因此,2222()222V V S R R R R R R ππππ=+=+,0R >. 令2()40VS R R Rπ'=-+=,解得R =.当R ∈时,()0S R '<;当)R ∈+∞时,()0S R '>.因此,R =是函数()S R 的极小值点,也是最小值点.此时,22V h R R π===. 所以,当罐高与底面直径相等时,所用材料最省.4、证明:由于211()()n i i f x x a n ==-∑,所以12()()n i i f x x a n ='=-∑.令()0f x '=,得11ni i x a n ==∑,可以得到,11ni i x a n ==∑是函数()f x 的极小值点,也是最小值点.这个结果说明,用n 个数据的平均值11ni i a n =∑表示这个物体的长度是合理的,这就是最小二乘法的基本原理.5、设矩形的底宽为x m ,则半圆的半径为2xm ,半圆的面积为28x π2m ,(第3题)矩形的面积为28x a π-2m ,矩形的另一边长为()8a xx π-m因此铁丝的长为22()(1)244xa x al x x x x xπππ=++-=++,0x <<令22()104al x xπ'=+-=,得x =.当x ∈时,()0l x '<;当x ∈时,()0l x '>.因此,x =()l x 的极小值点,也是最小值点.时,所用材料最省. 6、利润L 等于收入R 减去成本C ,而收入R 等于产量乘单价. 由此可得出利润L 与产量q 的函数关系式,再用导数求最大利润.收入211(25)2588R q p q q q q =⋅=-=-,利润2211(25)(1004)2110088L R C q q q q q =-=--+=-+-,0200q <<.求导得1214L q '=-+令0L '=,即12104q -+=,84q =.当(0,84)q ∈时,0L '>;当(84,200)q ∈时,0L '<;因此,84q =是函数L 的极大值点,也是最大值点.所以,产量为84时,利润L 最大,习题1.4 B 组(P37)1、设每个房间每天的定价为x 元,那么宾馆利润21801()(50)(20)7013601010x L x x x x -=--=-+-,180680x <<. 令1()7005L x x '=-+=,解得350x =.当(180,350)x ∈时,()0L x '>;当(350,680)x ∈时,()0L x '>. 因此,350x =是函数()L x 的极大值点,也是最大值点. 所以,当每个房间每天的定价为350元时,宾馆利润最大. 2、设销售价为x 元/件时,利润4()()(4)()(5)b x L x x a c cc x a x b b -=-+⨯=--,54ba x <<. 令845()0c ac bc L x xb b +'=-+=,解得458a bx +=. 当45(,)8a b x a +∈时,()0L x '>;当455(,)84a b bx +∈时,()0L x '<.当458a bx +=是函数()L x 的极大值点,也是最大值点.所以,销售价为458a b+元/件时,可获得最大利润.1.5定积分的概念 练习(P42) 83. 说明:进一步熟悉求曲边梯形面积的方法和步骤,体会“以直代曲”和“逼近”的思想. 练习(P45)1、22112()[()2]()i i i i i s s v t n n n n n n'∆≈∆=∆=-+⋅=-⋅+⋅,1,2,,i n =.于是 111()n n ni i i i i is s s v t n ==='=∆≈∆=∆∑∑∑2112[()]ni i n n n ==-⋅+⋅∑22211111()()()2n n n n n n n n -=-⋅--⋅-⋅+2231[12]2n n=-++++31(1)(21)26n n n n ++=-⋅+111(1)(1)232n n=-+++取极值,得1111115lim [()]lim [(1)(1)2]323nnn n i i i s v n n n n →∞→∞====-+++=∑∑说明:进一步体会“以不变代变”和“逼近”的思想.2、223km.说明:进一步体会“以不变代变”和“逼近”的思想,熟悉求变速直线运动物体路程的方法和步骤.练习(P48)2304x dx =⎰. 说明:进一步熟悉定积分的定义和几何意义.从几何上看,表示由曲线3y x =与直线0x =,2x =,0y =所围成的曲边梯形的面积4S =.习题1.5 A 组(P50) 1、(1)10021111(1)[(1)1]0.495100100i i x dx =--≈+-⨯=∑⎰; (2)50021111(1)[(1)1]0.499500500i i x dx =--≈+-⨯=∑⎰; (3)100021111(1)[(1)1]0.499510001000i i x dx =--≈+-⨯=∑⎰. 说明:体会通过分割、近似替换、求和得到定积分的近似值的方法.2、距离的不足近似值为:18112171310140⨯+⨯+⨯+⨯+⨯=(m ); 距离的过剩近似值为:271181121713167⨯+⨯+⨯+⨯+⨯=(m ).3、证明:令()1f x =. 用分点 011i i n a x x x x x b -=<<<<<<=将区间[,]a b 等分成n 个小区间,在每个小区间1[,]i i x x -上任取一点(1,2,,)i i n ξ=作和式11()nni i i b af x b a nξ==-∆==-∑∑, 从而11lim nban i b adx b a n→∞=-==-∑⎰, 说明:进一步熟悉定积分的概念. 4、根据定积分的几何意义,0⎰表示由直线0x =,1x =,0y =以及曲线y =所围成的曲边梯形的面积,即四分之一单位圆的面积,因此04π=⎰.5、(1)03114x dx -=-⎰.由于在区间[1,0]-上30x ≤,所以定积分031x dx -⎰表示由直线0x =,1x =-,0y =和曲线3y x =所围成的曲边梯形的面积的相反数.(2)根据定积分的性质,得1133311011044x dx x dx x dx --=+=-+=⎰⎰⎰.由于在区间[1,0]-上30x ≤,在区间[0,1]上30x ≥,所以定积分131x dx -⎰等于位于x 轴上方的曲边梯形面积减去位于x 轴下方的曲边梯形面积.(3)根据定积分的性质,得202333110115444x dx x dx x dx --=+=-+=⎰⎰⎰由于在区间[1,0]-上30x ≤,在区间[0,2]上30x ≥,所以定积分231x dx -⎰等于位于x 轴上方的曲边梯形面积减去位于x 轴下方的曲边梯形面积.说明:在(3)中,由于3x 在区间[1,0]-上是非正的,在区间[0,2]上是非负的,如果直接利用定义把区间[1,2]-分成n 等份来求这个定积分,那么和式中既有正项又有负项,而且无法抵挡一些项,求和会非常麻烦. 利用性质3可以将定积分231x dx -⎰化为02331x dx x dx -+⎰⎰,这样,3x 在区间[1,0]-和区间[0,2]上的符号都是不变的,再利用定积分的定义,容易求出031x dx -⎰,230x dx ⎰,进而得到定积分231x dx -⎰的值. 由此可见,利用定积分的性质可以化简运算.在(2)(3)中,被积函数在积分区间上的函数值有正有负,通过练习进一步体会定积分的几何意义.习题1.5 B 组(P50)1、该物体在0t =到6t =(单位:s )之间走过的路程大约为145 m.说明:根据定积分的几何意义,通过估算曲边梯形内包含单位正方形的个数来估计物体走过的路程. 2、(1)9.81v t =.(2)过剩近似值:8111899.819.8188.292242i i =⨯⨯⨯=⨯⨯=∑(m );不足近似值:81111879.819.8168.672242i i =-⨯⨯⨯=⨯⨯=∑(m ) (3)49.81tdt ⎰;49.81d 78.48t t =⎰(m ).3、(1)分割在区间[0,]l 上等间隔地插入1n -个分点,将它分成n 个小区间:[0,]l n ,2[,]l l n n ,……,(2)[,]n l l n -, 记第i 个区间为(1)[,]i l iln n-(1,2,i n =),其长度为 (1)il i l l x n n n-∆=-=.把细棒在小段[0,]l n ,2[,]l l n n ,……,(2)[,]n ll n-上质量分别记作:12,,,n m m m ∆∆∆,则细棒的质量1ni i m m ==∆∑.(2)近似代替当n 很大,即x ∆很小时,在小区间(1)[,]i l iln n-上,可以认为线密度2()x x ρ=的值变化很小,近似地等于一个常数,不妨认为它近似地等于任意一点(1)[,]i i l iln nξ-∈处的函数值2()i i ρξξ=. 于是,细棒在小段(1)[,]i l il n n -上质量 2()i i i lm x nρξξ∆≈∆=(1,2,i n =).(3)求和得细棒的质量 2111()nnni i i i i i l m m x nρξξ====∆≈∆=∑∑∑. (4)取极限细棒的质量 21lim ni n i lm n ξ→∞==∑,所以20l m x dx =⎰..。

最新人教版高中数学选修2-2综合测试题及答案2套

最新人教版高中数学选修2-2综合测试题及答案2套

最新人教版高中数学选修2-2综合测试题及答案2套最新人教版高中数学选修2-2综合测试题及答案2套模块综合检测(A)一、选择题1.复数z=2-i(i为虚数单位)在复平面内对应的点所在象限为()A。

第一象限B。

第二象限C。

第三象限D。

第四象限解析:∵z=2-i=(2.-1),在第四象限.∴复数z对应的点的坐标为(2.-1)。

答案:D2.函数f(x)=x^3+4x+5的图象在x=1处的切线在x轴上的截距为()A。

10B。

5/3C。

-1D。

-7/3解析:f′(x)=3x^2+4,f′(1)=7,f(1)=10,y-10=7(x-1),y=7(x-1)+10时,x=7/3.答案:D3.类比下列平面内的三个结论所得的空间内的结论成立的是()①平行于同一直线的两条直线平行;②一条直线如果与两条平行直线中的一条垂直,则必与另一条垂直;③如果一条直线与两条平行直线中的一条相交,则必与另一条相交。

A。

①②③B。

①③C。

①D。

②③解析:类比①的结论为:平行于同一个空间的两个平面平行,成立;类比②的结论为:一个空间如果与两个平行平面中的一个垂直,则必与另一个垂直,成立;类比③的结论为:如果一个空间与两个平行平面中的一个相交,则必与另一个相交,成立。

答案:A4.函数y=x^3-3x^2-9x(-2<x<2)有()A。

极大值5,极小值-27B。

极大值5,极小值-11C。

极大值5,无极小值D。

极小值-27,无极大值解析:y′=3x^2-6x-9=3(x-3)(x+1),得x=-1,x=3,当x0;当x>-1时,y′<0.当x=-1时,y极大值=5,x取不到3,无极小值。

答案:C5.函数y=4x^2+1/x的单调递增区间是()A。

(0,+∞)B。

(-∞,1)C。

(1,2)D。

(2,+∞)解析:令y′=8x-1/x^2=0,即x=1/2,y′(x)=8x-1/x^2>0,所以y=4x^2+1/x在(0,+∞)上单调递增。

高中数学 综合测试题3 新人教A版选修2-2

高中数学 综合测试题3 新人教A版选修2-2

高中新课标数学选修(2-2)综合测试题一、选择题1.函数2y x =在区间[12],上的平均变化率为( ) A.2 B.3 C.4 D.5答案:B2.已知直线y kx =是ln y x =的切线,则k 的值为( )A.1e B.1e- C.2e D.2e -答案:A3.如果1N 的力能拉长弹簧1cm ,为了将弹簧拉长6cm (在弹性限度内)所耗费的功为( ) A.0.18J B.0.26J C.0.12J D.0.28J答案:A4.方程2(4)40()x i x ai a ++++=∈R 有实根b ,且z a bi =+,则z =( )A.22i - B.22i + C.22i -+ D.22i --答案:A5.ABC △内有任意三点不共线的2002个点,加上A B C ,,三个顶点,共2005个点,把这2005个点连线形成不重叠的小三角形,则一共可以形成小三角形的个数为( ) A.4005 B.4002 C.4007 D.4000答案:A6.数列1,2,2,3,3,3,4,4,4,4,的第50项( ) A.8 B.9 C.10 D.11答案:C7.在证明()21f x x =+为增函数的过程中,有下列四个命题:①增函数的定义是大前提;②增函数的定义是小前提;③函数()21f x x =+满足增函数的定义是大前提;④函数()21f x x =+满足增函数的定义是大前提.其中正确的命题是( ) A.①② B.②④ C.①③ D.②③答案:C8.若a b ∈R ,,则复数22(45)(26)a a b b i -++-+-表示的点在( ) A.第一象限B.第二象限C.第三象限D.第四象限答案:D9.一圆的面积以210πcm /s 速度增加,那么当圆半径20cm r =时,其半径r 的增加速率u 为( )A.12cm/s B.13 cm/s C.14 cm/s D.15 cm/s答案:C10.用数学归纳法证明不等式“11113(2)12224n n n n +++>>++”时的过程中,由n k =到1n k =+时,不等式的左边( )A.增加了一项12(1)k +B.增加了两项11212(1)k k +++ C.增加了两项11212(1)k k +++,又减少了一项11k + D.增加了一项12(1)k +,又减少了一项11k +答案:C11.在下列各函数中,值域不是[22]-,的函数共有( ) (1)(sin )(cos )y x x ''=+ (2)(sin )cos y x x '=+ (3)sin (cos )y x x '=+(4)(sin )(cos )y x x ''=· A.1个B.2个C.3个D.4个答案:C12.如图是函数32()f x x bx cx d =+++的大致图象,则2212x x +等于( ) A.23B.43 C.83D.123答案:C二、填空题13.函数3()31f x x x =-+在闭区间[30]-,上的最大值与最小值分别为 .答案:3,17-14.若113z i =-,268z i =-,且12111z z z +=,则z 的值为 .答案:42255i -+15.用火柴棒按下图的方法搭三角形:按图示的规律搭下去,则所用火柴棒数n a 与所搭三角形的个数n 之间的关系式可以是 .答案:21n a n =+16.物体A 的运动速度v 与时间t 之间的关系为21v t =-(v 的单位是m/s ,t 的单位是s ),物体B 的运动速度v 与时间t 之间的关系为18v t =+,两个物体在相距为405m 的同一直线上同时相向运动.则它们相遇时,A 物体的运动路程为 .答案:72m三、解答题17.已知复数1z ,2z 满足2212121052z z z z +=,且122z z +为纯虚数,求证:123z z -为实数.证明:由2212121052z z z z +=,得22112210250z z z z -+=, 即221212(3)(2)0z z z z -++=,那么222121212(3)(2)[(2)]z z z z z z i -=-+=+, 由于,122z z +为纯虚数,可设122(0)z z bi b b ==∈≠R ,且, 所以2212(3)z z b -=,从而123z z b -=±, 故123z z -为实数.18.用总长14.8的钢条做一个长方体容器的框架,如果所做容器的底面的一边长比另一边长多0.5m ,那么高是多少时容器的容积最大?并求出它的最大容积.解:设该容器底面矩形的短边长为x cm ,则另一边长为(0.5)x +m ,此容器的高为14.8(0.5) 3.224y x x x =--+=-, 于是,此容器的容积为:32()(0.5)(3.22)2 2.2 1.6V x x x x x x x =+-=-++,其中0 1.6x <<,即2()6 4.4 1.60V x x x '=-++=,得11x =,2415x =-(舍去), 因为,()V x '在(01.6),内只有一个极值点,且(01)x ∈,时,()0V x '>,函数()V x 递增; (11.6)x ∈,时,()0V x '<,函数()V x 递减;所以,当1x =时,函数()V x 有最大值3(1)1(10.5)(3.221) 1.8m V =⨯+⨯-⨯=, 即当高为1.2m 时,长方体容器的空积最大,最大容积为31.8m . 19.如图所示,已知直线a 与b 不共面,直线c a M =,直线b c N =,又a 平面A α=,b 平面B α=,c 平面C α=,求证:A B C ,,三点不共线.证明:用反证法,假设A B C ,,三点共线于直线l , A B C α∈,,∵,l α⊂∴.c l C =∵,c ∴与l 可确定一个平面β. c a M =∵,M β∈∴.又A l ∈,a β⊂∴,同理b β⊂,∴直线a ,b 共面,与a ,b 不共面矛盾. 所以A B C ,,三点不共线.20.已知函数32()31f x ax x x =+-+在R 上是减函数,求a 的取值范围.解:求函数()f x 的导数:2()361f x ax x '=+-. (1)当()0()f x x '<∈R 时,()f x 是减函数.23610()0ax x x a +-<∈⇔<R 且36120a ∆=+<3a ⇔<-.所以,当3a <-时,由()0f x '<,知()()f x x ∈R 是减函数; (2)当3a =-时,33218()331339f x x x x x ⎛⎫=-+-+=--+ ⎪⎝⎭,由函数3y x =在R 上的单调性,可知当3a =-时,()()f x x ∈R 是减函数; (3)当3a >-时,在R 上存在使()0f x '>的区间,所以,当3a >-时,函数()()f x x ∈R 不是减函数. 综上,所求a 的取值范围是(3)--,∞.21.若0(123)i x i n >=,,,,,观察下列不等式:121211()4x x x x ⎛⎫++ ⎪⎝⎭≥,123123111()9x x x x x x ⎛⎫++++ ⎪⎝⎭≥,,请你猜测1212111()n nx x x x x x ⎛⎫++++++⎪⎝⎭满足的不等式,并用数学归纳法加以证明.解:满足的不等式为21212111()(2)n n x x x n n x x x ⎛⎫++++++⎪⎝⎭≥≥,证明如下: 1.当2n =时,结论成立;2.假设当n k =时,结论成立,即21212111()k kx x x k x x x ⎛⎫++++++⎪⎝⎭12121121121111111()()1k k k k k x x x x x x x x x x x x x ++⎛⎫⎛⎫=+++++++++++++++ ⎪ ⎪⎝⎭⎝⎭· 212111)1k kk x x x x ⎛⎫+++++++ ⎪⎝⎭≥ 2221(1)k k k ++=+≥.显然,当1n k =+时,结论成立.22.设曲线2(0)y ax bx c a =++<过点(11)-,,(11),. (1)用a 表示曲线与x 轴所围成的图形面积()S a ; (2)求()Sa 的最小值.解:(1)曲线过点(11)-,及(11),,故有1a b c a b c =-+=++,于是0b =且1c a =-,令0y =,即2(1)0ax a +-=,得x = 记α=,β,由曲线关于y 轴对称, 有2300()2[(1)]2(1)3a S a ax a dx x a x ββ⎡⎤=+-=+-⎢⎥⎣⎦⎰|2(13a a ⎡=-=⎢⎣· (2)()S a 3(1)()(0)a f a a a-=<,则223221(1)()[3(1)(1)](21)a f a a a a a a a -'=---=+.令()0f a '=,得12a =-或1a =(舍去).又12a ⎛⎫∈-- ⎪⎝⎭,∞时,()0f x'<;102a ⎛⎫∈- ⎪⎝⎭,时,()0f x '>.所以,当12a =-时,()f a 有最小值274,此时()S a高中新课标数学选修(2-2)综合测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数cos sin y x x x =-的导数为 ( ) (A )cos x x (B )sin x x - (C )sin x x (D )cos x x -2.下列说法正确的是 ( ) (A )当0()0f x '=时,0()f x 为()f x 的极大值(B )当0()0f x '=时,0()f x 为()f x 的极小值 (C )当0()0f x '=时,0()f x 为()f x 的极值 (D )当0()f x 为()f x 的极值时, 0()0f x '=3.如果z 是34i +的共轭复数,则z 对应的向量OA 的模是 ( ) (A )1 (B 7 (C 13(D )54.若函数3()y a x x =-的递减区间为33(,33-,则a 的取值范围是 ( ) (A )(0,)+∞ (B )(1,0)- (C )(1,)+∞ (D )(0,1)5.下列四条曲线(直线)所围成的区域的面积是 ( ) (1)sin y x =;(2) s y co x =; (3)4x π=-;(4) 4x π=2 (B)22226.由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,叫 ( )(A )合情推理 (B )演绎推理 (C )类比推理 (D )归纳推理7.复数a bi -与c di +的积是实数的充要条件是 ( ) (A )0ad bc += (B )0ac bd += (C )0ad bc -= (D )0ac bd -= 8.已知函数1sin 2sin 2y x x =+,那么y '是 ( ) (A )仅有最小值的奇函数 (B )既有最大值又有最小值的偶函数 (C )仅有最大值的偶函数 (D )非奇非偶函数9.用边长为48厘米的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成铁盒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

寸录:数学选修 2-2(数学选修 2-2 )第一章导数及其应用[基础训练A 组]一、选择题/,、 f (xh)=-1.若函数y _f (x)在区间(a, b)内可导,且 x o (a, b)则limhf ( x o h)h -o ;h的值为()A • f ' ( x o )B . 2 f ' ( x o )C •吃 f ' ( x o )D . 02 .一个物体的运动方程为S 1 t ' t 2其中S 的单位是米,t 的单位是秒,那么物体在 3秒末的瞬时速度是( )A. 7米/秒 B . 6米/秒 C . 5 米 / 秒D . 8 米 / 秒3.函数y = x 3 + x 的递增区间是()A • (0, - )B . ( - ,1)C • (/ )D • (1,」4 . f ( x) 一 ax 33x 2「2 若 f ' ( F "4 ,则 a 的值等于()19 3A .充分条件B .必要条件第一章导数及其应用第一章导数及其应用 [基础训练A 组] [综合训练B 组] 第一章导数及其应用 第二章 推理与证明 第二章 推理与证明 第二章 推理与证明 [提高训练C 组] [基础训练A 组] [综合训练B 组][提高训练C 组]第三章 第三章 第三章复数[ 复数[ 复数基础训练A 组]综合训练B 组][提高训练C 组]13 _1o C .D .3 35y f (x).函数—在一点的导数值为o 是函数y -f ( x)在这点取极值的(C .充要条件D.必要非充分条件6.函数y 一x4 _4x 3在区间丨2,3上的最小值为( )A . 72B . 36C. 12D. o、填空题1 .若 f ( x) =x 3, f ( xo > 3,则x o 的值为 ________________________ ; 2.曲线y =x3-4x 在点(1,一3)处的切线倾斜角为 ___________________ ;sin x3 .函数y = ------------ 的导数为 ____________________ ;x4 .曲线y =ln x 在点M (e,1)处的切线的斜率是 ________________ ,切线的方程为 __________________5 .函数y =x 3+x 2-5X -5的单调递增区间是 _______________________________________ 。

三、解答题 1 .求垂直于直线2 x-6 y 1-0并且与曲线 y x3 3x 2-5相切的直线方程。

2 .求函数 y _( x a)( x b)( x c)的导数。

4.已知函数y- ax 3•bx2,当x 1时,有极大值3 ;新课程高中数学测试题组(数学选修 2-2 )第一章导数及其应用[综合训练B 组]一、选择题1 .函数 y = x3- 3x 2- 9x (- 2 < x < 2 )有()3 .求函数f ( x) -x 5 5x 4 5x 31 在区间I 1,4上的最大值与最小值(1 )求a, b 的值;(2)求函数y 的极小值。

子曰:学而不思则罔思而不学则殆。

A极大值5,极小值27 .B.极大值5,极小值11C.极大值5,无极小值D.极小值27,无极大值2 •若f(X0 )-3,则limh书B • 6 f(X°h)-f ( 3h) (hC •—9D •-123 .曲线f (x)= x3 + x - 2 在p0处的切线平行于直线y = 4x - 1 ,贝U p0点的坐标为(A • (1,0) B•(2,8)C • (1,0)和(-1,-4) D•(2,8)和(-1,—4)4 f ( x)与g ( x)是定义在f (x)与g( x)满足(R上的两个可导函数,若 f (x) , g (x))满足f ( x) g( x),则f (X) - g( X) B • f ( x) -g (x)为常数函数5 .函数f (x) - g( x) - 0y 二4x 2f ( X) g(x)为常数函数6 •函数In x y 二—X e1:、填空题函数函数函数若-f (x)函数三、解答题•仁一单调递增区间是x的最大值为(y - x 2eos x在区间f (x) X4x3y -x2 x3的单调增区间为f ( x) ax bx '3 2x axT3e2 1 •已知曲线y -x2(I2(1,)10[0,]上的最大值是-----------2x的图像在X —1处的切线在轴上的截距为ex d(a bx a , 20) a, b, e在R增函数,则2在x 一1时有极值10,那么,单调减区间为_________的关系式为是a, b的值分别为一1与y 一1 x 3在x— X0处的切线互相垂直,X0的值。

为多少时,盒子容积最大? I ____3.已知f ( x) 一ax4 bx 2 c的图象经过点(0,1),且在x 1处的切线方程是y x _2 -(1 )求y _ f (x)的解析式;(2)求、、二f ( x)的单调递增区间。

4平面向量a ( 3,1), b " _(1: _±3),若存在不同时为0的实数k和t,使2 2x- a (t 2 -3)b , y - ka tb,且x y,试确定函数k - f (t )的单调区间。

新课程高中数学测试题组(数学选修2-2 )第一章[提高训练导数及其应用C组]-、选择题1 .若f ( x) -sin 何—cos X ,则f「)等于(COS ■■.2si nDjf 'IL i 11Ji1A.BCDC .严厂爲(3, J 握)D .(7 < 3)4.对于 R 上可导的任意函数f ( x), 若满足(x ~1) f (x)-0,则必有()A . f (0)册 f (2) <2 f (1) B.f (0) + f (2)乞 2 f (1)C. f (0) +f (2p2 f (1)D.f (0声 f (2) > 2 f (1)3. 已f ( X )- x在( 一,亠知 函数3ax 2x 1 )上是单调函 数,则实数a 的 取值范围是(Af ( x)的图象是()If.si n . . si n AB COsC2.若函数 f (x) - x 2 bx C 的图象的顶点在第四象限,贝U 函数Il 的方程为 0 D . x x 4y 5 .若曲线A . 4x y 3- 0 "6 .函数f ( x)的定义域为开区间 (a,b),导函数8 0 = 垂直,则 C . 4疋 y 3 f (x)在(a, b)内的图象如图所示,冷乂4的一条切线|与直线B * x则函数f ( x)在开区间(a,b)内有极小值点(A . 1个B. 2个C. 3个D. 4个二、填空题21 .若函数f (x) = x( x - c) 在x = 2处有极大值,则常数c的值为 ___________________ ;2 .函数y三2x^sin x的单调增区间为 ______________________ 。

3.设函数f (x) 一cos(衣辔3)(0 v銘),若f (x片f \x)为奇函数,则申= _________________4 .设f ( x)二x3—1X2_2x 平5,当x [ _ 1,2]时,f (x) <m 恒成立,则实数m 的2 •取值范围为________________ 。

5 .对正整数n,设曲线y y x n(1 -x)在x - 2处的切线与y轴交点的纵坐标为a n ,贝Van_,.Jt的前n项和的公式是数列% ---------- 7 BOIn十1三、解答题1.求函数y (1 cos2x)3的导数。

2 .求函数y _ 2x - 4 x箱3的值域。

3 .已知函数 f ( x) =x3 +ax2碍bx;*c在x二二?与x J 时都取得极值3(1)求a,b的值与函数f (x)的单调区间⑵若对x [ 1,2],不等式f ( x) c2恒成立,求c的取值范围。

、填空题1. _______________________________________________________________________________ 从1 =12 2 3 4二32 ,3阶4 5 6宁7二52中得出的一般性结论是 _____________________________________ 。

12. __________________________________________________________________________________ 已知实数 a 式0,且函数f (x) =a( x 2+1) — (2x 十一)有最小值一1,贝y a = ________________________ 。

aV 十 -------3 a, bx = a l b, y = J a +b ,贝U的大小关系是 ___________ 。

.已知是不相等的正数,、2x, y4 .若正整数 m 满足 10 m 1 *2512*10m ,则 ______________________________ .(lg 2 0.3010)f 1 — 一 + —4■+ _ 4* + +5.若数列 a n 中 a 1 一 1, Q 一3 5, a3_7 9 11, a4- 13 15 17 19,…则 a 10_ ___________________________三、解答题A . a 1a 8 a 4 a 5B . a 1 a 8 a 4 a 5C . 詁 ”a 1 a 8 a 4 a 5 D . a 1 a 8- a 4a 56 log 2[log 3 (log 4 x)] log s [log 4 (log 2x)] log 4[log 2 (log 3 x)] 0.若=二,则 x y 扌 z -() A. 123B . 105C . 89D . 58.函数 1 在点 x 4 处的导数是7 y( )x11 11A .B .C .D .881616则( ) 4 .函数 f (x) 一 3sin( 4x)在[0,]内4 2A .只有最大值B .只有最小值C .只有最大值或只有最小值D .既有最大值又有最小值 5.如果a i , a 2 , a 8为各项都大于零的等差数列,公差 d0 , 子曰:由!诲女知之乎!知之为知之不知为不知,是知也O新课程高中数学测试题组根据最新课程标准,参考独家内部资料, 精心编辑而成;本套资料分必修系列和选修系列及部分选修 系列。

欢迎使用本资料!1 .数列 2,5,11,20, x,47, ?中的 A . 28 B . 32 1 2 .设 a, b, Ct :* (— z ,0),则 a(数学选修 2-2 )第二章 [基础训练A 组] 一、选择题 x 等于( C .,b 」 推理与证明 33 A .都不大于 2 C .至少有一个不大于2.已知正六边形ABCDEF3b cB .都不小于D 至少有一个不小于,在下列表达式①斗—少-弔+③FE ED :④2ED FA 中,与 A . 1个 B . 2个 C . 3个2 2 -.■d =匕・BC CD ECAC 等价的有(D . 4个:② —— ---------2BC DC1. 观察(1) tan 100tan20°tan20°tan600 tan60°tan10°-1;(2) tan5 °tan10 0tan10 0tan 75 0tan75°tan5 °_ 1 由以上两式成立,推广到一般结论,写出你的推论。

相关文档
最新文档