【期末试卷】江苏省南通市海门市2015-2016学年七年级上期末数学试卷含答案解析
,2015 – 2016 学年七年级第一学期期末考试试卷及答案(苏科版)
2015 – 2016 学年七年级第一学期期末考试试卷数学试题 2016.1,22一.选择题 本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填写在答题纸相应的位置上.1.一个物体作左右方向的运动,规定向右运动5m 记作5m +,那么向左运动5m 记作A. 5m -B. 5mC. 10mD. 10m -2. 下列计算正确的是A. 32a a a -=B. 23523a a a +=C. 222235a a a +=D. 2221a a -=3.下列各组中,不是同类项的是A. 23与32B. 3ab -与baC. 20.2a b 与215a b D. 23a b 与32a b - 4. 有理数a ,b 在数轴上对应点的位置如图所示,下列各式正确的是A. 0a b +<B. a b -<0C. a b >D. 0b a> 5. 如图,AB ∥CD ,EF 平分AEG ∠,若40FGE ∠=︒,那么FEG ∠的度数为A . 35︒B . 40︒C . 70︒D . 140︒6. 如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,则组成这个几何体的小正方体的个数是A. 5或6或7B. 6或7C. 7或8D. 6或7或87. 如图,直线AB 、CD 相交于点O ,OA OE ⊥,则1∠和2∠的关系是A. 相等B. 互补C. 互余D. 以上三种都不是8. 若320x y ++-=,则x y +的值为A. 5B. -5C. 1D. -19. 某品牌自行车1月份销售量为100辆,每辆车售价相同, 2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元,若2月份与1月份的销售总额相同,则1月份的售价为A. 880元B. 800元C. 720元D. 1080元10. 有理数a 、b在数轴上的位置如图所示,则化简a b a b -++的结果为A. 2a -B. 2aC. 2bD. 2b -二. 填空题: 本大题共8小题,每小题3分,共24分,把答案直接填在答题纸相对应的位上.11. 2014年常熟市的人均可支配收入约为38300元,将38300用科学记数表示为 .12. 多项式223xy xy -+的次数是 次.13. 已知1x =-是方程310ax a =+的解,则a = .14. 如果代数式8a b +的值为5-,那么代数式()()3252a b a b --+的值为 .15. 已知一个锐角为5521︒',则这个锐角的补角是 .16. 如图,小黄和小陈观察蜗牛爬行,蜗牛在以A 为起点沿数轴匀速爬向B 点的过程中,到达C 点时用了9分钟,那么到达B 点还需要 分钟.第16题 第17题17. 如图,线段8AB =,C 是AB 的中点,点D 在直线CB 上,DB =1.5,则线段CD 的长等于 .18. 如图,在数轴上,点A 表示1,现将点A 沿x 轴做如下移动,第一次点A 向左移动2个单位长度到达点1A ,第二次将点1A ,向右移动4个单位长度到达点2A ,第三次将点2A 向左移动6个单位长度到达点3A ,按照这种移动规律移动下去,第n 次移动到点n A ,如果点n A 与原点的距离等于19,那么n的值是 .第18题三、解答题:本大题共10小题,共76分,把解答过程写在答题纸相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B 铅笔或黑色墨水签字笔.19. (本题满分8分,每小题4分)计算:(1)()()24361--⨯-+-⨯-; (2)24211130.833⎡⎤⎛⎫--⨯-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦20. (本题满分10分,每小题5分)先化简,再求值:(1) 求()()22223343x y xy xy x y ---+的值,其中12x =-、1y =.(2) 求()()22221238222xy xy x y xy x y ⎡⎤----⎢⎥⎣⎦的值,其中23x =、0.2y =- . 21. (本题满分10分,每小题5分)解下列方程:(1) ()13126x x --=+; (2) 521163x x ---= 22. (本题满分6分)某股票上周五的收盘价为39.60元,本周此股票每日的涨跌情况如下表:(当天的收盘价高出前一个交易日的收盘价2.1元记作+2.1元;当天的收盘价低于前一个交易日的收盘价1. 5元记作-1. 5元.)(1) 本周星期四此股票的收盘价是多少?(2) 若本周星期五此股票的收盘价为42. 6元,求a 的值,并说明星期五此股票是涨了还是跌了,涨或跌了多少元?23. (本题满分5分)如图,DF 平分ADE ∠,AC //DE ,168∠=︒,136ADE ∠=︒ .(1) 求A ∠的度数;(2) 试说明:DF //BC .24. (本题满分5分)已知122x y -=,2213x y -=,当x 取何值时,1y 比2y 大1?25. (本题满分6分)已知2362A x x =--,2241B x x =--(1) 试比较2A 与3B 的大小关系: 2A 3B (填“>”、“<”或“=”);(2) 求()423A A B --的值,其中1x =-.26. (本题8分)如图,直线AB ,CD 相交于点O ,OE 平分BOD ∠.(1) 若55EOF ∠=︒,OD OF ⊥,求AOC ∠的度数;(2) 若OF 平分COE ∠,15BOF ∠=︒,求DOE ∠的度数.27. (本题8分)某水果零售商店在杨梅销售季节分两批次从批发市场共购进杨梅60箱,已知 第一、二次进货价分别为每箱50元、40元,且第二次比第一次多付款600元.(1) 求第一、二次各购进杨梅多少箱数;(2) 若商店对这60箱杨梅先按每箱60元销售了25箱,其余的每箱打八折销售完.求商店销售完全部杨梅所获得的利润.(注:按整箱出售,利润=销售总收人一进货总成本)28. (本题10分)如图,120AOB ∠=︒,射线OC 从OA 开始,绕点O 逆时针旋转,旋转的速度为每分钟20︒;射线OD 从OB 开始,绕点O 逆时针旋转,旋转的速度为每分钟5︒,OC 和OD 同时旋转,设旋转的时间为t ()015t ≤≤.(1) 当t 为何值时,射线OC 与OD 重合;(2) 当t 为何值时,射线OC OD ⊥;(3) 试探索:在射线OC 与OD 旋转的过程中,是否存在某个时刻,使得射线OC ,OB 与OD 中的某一条射线是另两条射线所夹角的角平分线?若存在,请求出所有满足题意的t 的取值,若不存在,请说明理由.第28题 备用图1 备用图2。
2015-2016学年度第一学期期末测试七年级数学附答案
2015-2016学年度第一学期期末测试七年级数学说明:1.考试时间为100分钟,满分120分;2.各题均在答题卷指定位置上作答,否则无效;考试结束时,只交回答题卷.一、选择题(本大题共10小题,每小题3分,共30分)每小题给出的4个选项中,只有一个是正确的,请将所选选项的字母填写在答题卷相应的位置上.1、6-的相反数是( ) A 、6 B 、6- C 、61 D 、61- 2、下面几个有理数中,最小的数是( )A 、1B 、2-C 、0D 、5.2- 3、计算3)3(-的结果是( )A 、6B 、9C 、27D 、-27 4、下列各组代数式中,不是同类项的是( )A 、y x 2-和y x 25 B 、32和2 C 、xy 2和 23xy D 、2ax 和2a x 5、下列等式中正确的是( )A 、a b b a -=--)(B 、b a b a +-=+-)(C 、12)1(2+=+a aD 、x x +=--3)3(6、如图是由6个大小相同的正方形组成的几何体,它的左视图是( )7、若b a =,则下列式子不正确的是( )A 、11+=+b aB 、55-=+b aC 、b a -=-D 、0=-b a 8、下列等式中,不是整式的是( ) A 、y x 21- B 、x 73 C 、11-x D 、09、若0<a ,下列式子正确的是( )A BCDA 、0<-aB 、02>aC 、22a a -=D 、33a a -=10、把弯曲的道路改直,就能缩短两点之间的距离,其中蕴含的数学原理是( )A 、两点确定一条直线B 、两点之间线段最短C 、过一点有无数条直线D 、线段是直线的一部分二、填空题(本大题共6小题,每小题4分,共24分)请将下列各题的正确答案写在答题卷相应的位置上.11、=- 5 . 12、︒20的补角是 . 13、方程0121=+x 的解为 . 14、地球与太阳之间的距离为150 000 000km ,用记数法表示为 km .15、某种商品原价为每件b 元,第一次降价打八折,第二次降价每件又减10元,两次降价后,该商品每件的售价是 元.16、点A ,B ,C 在同一条直线上,6=AB cm ,2=BC cm ,则=AC . 三、解答题(一)(本大题共3小题,每小题6分,共18分) 17、计算:(1)15)7()18(12--+--; (2))3(9)216()3()2(3-÷-+⨯-+-. 18、计算:(1)222243234b a ab b a --++; (2))43()42(b a b a +--.19、已知平面内有A ,B ,C 三个点,按要求完成下列问题. (1)作直线AB ,连结BC 和AC ;(2)用适当的语句表述点C 与直线AB 的关系.四、解答题(二)(本大题共3小题,每小题7分,共21分)20、解方程:42321xx -+=+. 21、x 为何值时,式子65+-x x 的值比31-x 的值大3?22、(1)已知()2210x y +++=,求x ,y 的值;BAA(2)化简:)]921(3121[4322xy y x xy y x -+-.五、解答题(三)(本大题共3小题,每小题9分,共27分)23、某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价和售价如下表:(1)求甲,乙两种节能灯各进货多少时,使进货款恰好为46 000元;(2)应如何进货,使销售完节能灯时,商场获得的利润恰好是进货价的30%,此时利润为多少?24、如图,点O 在直线AB 上,OD 是AOC ∠的平分线,射线OE 在BOC ∠内. (1)图中有多少个小于︒180的角?(2)若OE 平分BOC ∠,求DOE ∠的度数;(3)若BOE COE ∠=∠2,︒=∠108DOE ,求COE ∠的度数.25、如图,点O 是数轴的原点,点A 是数轴上的一个定点,点A 表示的数为-15,点B 在数轴上,且OA OB 3=,数轴上的两个动点M ,N 分别从点A 和点O 同时出发,向右移动,点M 的运动速度为每秒3个单位,点N 的运动速度为每秒2个单位.(1)求点B 和线段AB 的中点P 对应的有理数;(2)若点B 对应的数为正数,点M 移动到线段AB 的中点P 时,求点N 对应的有理数; (3)求点M ,N 运动多少秒时,点M ,N 与原点的距离相等.2015-2016学年度第一学期期末测试N M OACBE AD七年级数学答案及评分标准一、选择题:A D D D A A B C B B 二、填空题:11、5 12、︒160 13、2-=x 14、8105.1⨯ 15、108.0-b 16、4cm .三、解答题:17、解:(1)2222015)7()18(12-=-=--+--; (2)593548)3(9)216()3()2(3-=+--=-÷-+⨯-+-.评分说明:每小题3分.(1)答案正确就给3分;(2)计算3)2(- ,)216()3(+⨯-,)3(9-÷-各占1分,答案错误扣1分.18、解:(1)222b ab a -+;(2)b a 8--.评分说明:每小题3分.第(1)小题中,合并同类项每项占1分;第(2)小题中,去括号,每个括号占1分,计算答案占1分.19、(1)作直线AB ,线段BC ,线段AC 各占1分,共3分;(2)点C 在直线AB 外,3分. 20、解:去分母,得)2(12)1(2x x -+=+, 2分 去括号,得x x -+=+21222, 4分 移项,合并,得123=x , 6分 系数化1,得4=x 7分去括号,得221856->+--x x x , 4分 移项,合并得153->x , 5分 系数化1,得5->x , 6分21、去分母,得18)1(2)5(6=--+-x x x 2分去括号,得182256=+---x x x 4分 移项,合并得213=x 5分 系数化1,得7=x , 6分 ∴当7=x 时,式子65+-x x 的值比31-x 的值大3. 7分22、(1)∵()2210x y +++=,∴02=+x ,01=+y 2分 ∴2=x ,1-=y ; 3分(2))]921(2121[4322xy y x xy y x -+- ]294121[4322xy y x xy y x -+-= 4分 )441(4322xy y x y x --= 5分 xy y x y x 4414322+-= 6分 xy y x 4212+= 7分 评分说明:(1)中x ,y 答对1个给1分,答对2个给满分,共3分,没写出过程不扣分;(2)去小括号占1分,中括号内合并占1分,去中括号占1分,计算答案占1分,共4分.23、(1)设甲种节能灯购进x 只,乙种节能灯购进)1200(x -只, 1分 依题意得,46000)1200(4525=-+x x , 3分 解得400=x ,8001200=-x , 4分 即甲种节能灯购进400只,乙种节能灯购进800只,进货款恰好为46 000元; 5分 (2)进货款为x x x 2054000)1200(4525-=-+, 销售款为x x x 3072000)1200(6030-=-+利润为x x x 1018000)2054000()3072000(-=---,依题意有x x 3072000%)301)(2054000(-=+-, 7分 解得450=x ,7501200=-x , 135001018000=-x ,即甲种节能灯购进450只,乙种节能灯购进750只时,商场获得的利润恰好是进货价的30%,此时利润为13500元. 9分24、(1)9个; 2分 (2)∵OD 平分AOC ∠,OE 平分BOC ∠,∴AOC COD ∠=∠21,BOC COE ∠=∠21, 3分∵︒=∠+∠180BOC AOC , ∴︒=∠+∠=∠+∠=∠+∠90)(212121BOC AOC BOC AOC COE COD , ∴︒=∠+∠=∠90COE COD DOE ; 5分 (3)设x BOE =∠,∵BOE COE ∠=∠2,∴x COE 2=∠ ∴x AOC 3180-︒=∠, ∵OD 平分AOC ∠,∴AOC COD ∠=∠21, ∵︒=∠=∠+∠108DOE COE COD, 7分 ∴︒=+-︒1082)3180(21x x ,︒=36x , 8分 ∴︒=∠72COE . 9分 25、(1)∵15=OA ,OA OB 3=,∴45=OB ,若点B 在原点的右边,60=AB , ∴点B 对应的有理数为45,线段AB 的中点P 对应的有理数为15,若点B 在原点的左边,30=AB , ∴点B 对应的有理数为-45;线段AB 的中点P 对应的有理数为-30;(2)当点B 对应的数为正数时,则点M 移动30个单位到达线段AB 的中点P ,点M 移动的时间为10330= 秒,此时点N 移动的距离为20102=⨯,∴点N 对应的有理数为20; (3)设经过x 秒点有ON OM =,若点B 在原点的右边,则1523=-x x ,15=x , 若点B 在原点的左边,则153245-=-x x ,12=x .C BE AD。
南通市七年级上册数学期末试卷及答案-百度文库
南通市七年级上册数学期末试卷及答案-百度文库一、选择题1.4 =( )A.1 B.2 C.3 D.42.2019年6月21日甬台温高速温岭联络线工程初步设计通过,本项目为沿海高速和甬台温高速公路之间的主要联络通道,总投资1289000000元,这个数据用科学记数法表示为()A.0.1289×1011B.1.289×1010C.1.289×109D.1289×1073.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是()A.B.C.D.4.下列判断正确的是()A.有理数的绝对值一定是正数.B.如果两个数的绝对值相等,那么这两个数相等.C.如果一个数是正数,那么这个数的绝对值是它本身.D.如果一个数的绝对值是它本身,那么这个数是正数.5.如图,点A,B在数轴上,点O为原点,OA OB=.按如图所示方法用圆规在数轴上截取BC AB=,若点A表示的数是a,则点C表示的数是( )A.2a B.3a-C.3a D.2a-6.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程()A.1005006 2x x+=B.1005006 x2x+=C .10040062x x +=D .1004006x 2x+= 7.如图,∠ABC=∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF ,以下结论:①AD ∥BC ;②∠ACB=2∠ADB ;③∠ADC+∠ABD=90°;④∠BDC=∠BAC ;其中正确的结论有( )A .1个B .2个C .3个D .4个 8.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( )A .8cmB .2cmC .8cm 或2cmD .以上答案不对 9.下列各数中,有理数是( )A .2B .πC .3.14D .37 10.当x=3,y=2时,代数式23x y -的值是( ) A .43 B .2C .0D .3 11.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+112.正方形ABCD 的轨道上有两个点甲与乙,开始时甲在A 处,乙在C 处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道ABCD 的边长为2 cm ,则乙在第2 020次追上甲时的位置在( )A .AB 上 B .BC 上 C .CD 上 D .AD 上二、填空题13.将一根木条固定在墙上只用了两个钉子,这样做的依据是_______________.14.如图,点C 在线段AB 的延长线上,BC =2AB ,点D 是线段AC 的中点,AB =4,则BD 长度是_____.15.已知a ,m ,n 均为有理数,且满足5,3a m n a -=-=,那么m n -的值为 ______________.16.已知m ﹣2n =2,则2(2n ﹣m )3﹣3m+6n =_____.17.如图,是七(2)班全体学生的体有测试情况扇形统计图.若达到优秀的有25人,则不合格的学生有____人.18.若12x y =⎧⎨=⎩是方程组72ax by bx ay +=⎧⎨+=⎩的解,则+a b =_________. 19.小明妈妈想检测小明学习“列方程解应用题”的效果,给了小明37个苹果,要小明把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加2个,第三堆减少三个,第四堆减少一半后,这4堆苹果的个数相同,那么这四堆苹果中个数最多的一堆为_____个.20.计算7a 2b ﹣5ba 2=_____.21.如果,,a b c 是整数,且c a b =,那么我们规定一种记号(,)a b c =,例如239=,那么记作(3,9)=2,根据以上规定,求(−2,16)=______.22.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___.23.定义:从一个角的顶点出发,把这个角分成1: 2 的两个角的射线,叫做这个角的三分线,显然,一个角的三分线有两条.如图,90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,以O 为中心,将∠COD 顺时针最少旋转__________ ,OA 恰好是∠COD 的三等分线.24.规定:用{m}表示大于m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}=-1等;用[m] 表示不大于m 的最大整数,例如[72]= 3,[2]= 2,[-3.2]=-4,如果整数x 满足关系式:3{x}+2[x]=23,则x =________________.三、解答题25.如图,AB和CD相交于点O,∠A=∠B,∠C=75°求∠D的度数.26.微信运动和腾讯公益推出了一个爱心公益活动:一天中走路步数达到10000步及以上可通过微信运动和腾讯基金会向公益活动捐款,如果步数在10000步及以上,每步可捐....0.0002元;若步数在10000步以下,则不能参与捐款.(1)老赵某天的步数为13000步,则他当日可捐多少钱?(2)已知甲、乙、丙三人某天通过步数共捐了8.4元,且甲的步数=乙的步数=丙步数的3倍,则丙走了多少步?27.(1)先化简,再求值:当(x﹣2)2+|y+1|=0时,求代数式4(12x2﹣3xy﹣y2)﹣3(x2﹣7xy﹣2y2)的值;(2)关于x的代数式(x2+2x)﹣[kx2﹣(3x2﹣2x+1)]的值与x无关,求k的值.28.解下列方程或方程组:(1)3(2x﹣1)=2(1﹣x)﹣1(2)111234x yx y-+⎧+=⎪⎨⎪+=⎩29.解方程:(1)()()32324y y -=-;(2)13124x x +--=. 30.O 为数轴的原点,点A 、B 在数轴上表示的数分别为a 、b ,且满足(a ﹣20)2+|b+10|=0.(1)写出a 、b 的值;(2)P 是A 右侧数轴上的一点,M 是AP 的中点.设P 表示的数为x ,求点M 、B 之间的距离;(3)若点C 从原点出发以3个单位/秒的速度向点A 运动,同时点D 从原点出发以2个单位/秒的速度向点B 运动,当到达A 点或B 点后立即以原来的速度向相反的方向运动,直到C 点到达B 点或D 点到达A 点时运动停止,求几秒后C 、D 两点相距5个单位长度?四、压轴题31.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______.(3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分.(5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.32.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元. (购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价, 请问: ()1购买一件标价为500元的商品,顾客的实际付款是多少元?()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.33.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动.(1)求AC ,BC ;(2)当t 为何值时,AP PQ =;(3)当t 为何值时,P 与Q 第一次相遇;(4)当t 为何值时,1cm PQ =.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据算术平方根的概念可得出答案.【详解】解:根据题意可得:,故答案为:B.【点睛】本题考查算术平方根的概念,解题关键在于对其概念的理解.2.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:12 8900 0000元,这个数据用科学记数法表示为1.289×109.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.C解析:C【解析】【分析】根据余角与补角的性质进行一一判断可得答案..【详解】解:A,根据角的和差关系可得∠α=∠β=45o;B,根据同角的余角相等可得∠α=∠β;C,由图可得∠α不一定与∠β相等;D,根据等角的补角相等可得∠α=∠β.故选C.【点睛】本题主要考查角度的计算及余角、补角的性质,其中等角的余角相等,等角的补角相等. 4.C解析:C【解析】试题解析:A∵0的绝对值是0,故本选项错误.B∵互为相反数的两个数的绝对值相等,故本选项正确.C如果一个数是正数,那么这个数的绝对值是它本身.D ∵0的绝对值是0,故本选项错误.故选C .5.B解析:B【解析】【分析】根据题意和数轴可以用含a 的式子表示出点B 表示的数,从而得到点C 表示的数.【详解】解:由点O 为原点,OA OB =,可知A 、B 表示的数互为相反数,点A 表示的数是a ,所以B 表示的数为-a ,又因为BC AB =,所以点C 表示的数为3a -.故选B.【点睛】本题考查数轴,解答本题的关键是明确题意结合相反数,利用数形结合的思想解答.6.D解析:D【解析】【分析】根据共用6天完成任务,等量关系为:用老机器加工100个零件用的时间+用新机器加工400套用的时间=6即可列出方程.【详解】设该厂原来每天加工x 个零件, 根据题意得:1004006x 2x+= 故选:D .【点睛】此题考查了由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键. 7.C解析:C【解析】①∵AD 平分△ABC 的外角∠EAC ,∴∠EAD=∠DAC ,∵∠EAC=∠ACB+∠ABC ,且∠ABC=∠ACB ,∴∠EAD=∠ABC ,∴AD ∥BC ,故①正确.②由(1)可知AD ∥BC ,∴∠ADB=∠DBC ,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABC=2∠ADB,∵∠ABC=∠ACB,∴∠ACB=2∠ADB,故②正确.③在△ADC中,∠ADC+∠CAD+∠ACD=180°,∵CD平分△ABC的外角∠ACF,∴∠ACD=∠DCF,∵AD∥BC,∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,∴∠ADC+∠ABD=90°∴∠ADC=90°−∠ABD,故③正确;④∵∠BAC+∠ABC=∠ACF,∴12∠BAC+12∠ABC=12∠ACF,∵∠BDC+∠DBC=12∠ACF,∴12∠BAC+12∠ABC=∠BDC+∠DBC,∵∠DBC=12∠ABC,∴12∠BAC=∠BDC,即∠BDC=12∠BAC.故④错误.故选C.点睛:本题主要考查了三角形的内角和,平行线的判定和性质,三角形外角的性质等知识,解题的关键是正确找各角的关系.8.C解析:C【解析】【分析】根据题意分两种情况讨论:①当点C在线段AB上时,②当点C在线段AB的延长线上时,分别根据线段的和差求出AC的长度即可.【详解】解:当点C在线段AB上时,如图,∵AC=AB−BC ,又∵AB=5,BC=3,∴AC=5−3=2;②当点C 在线段AB 的延长线上时,如图,∵AC=AB+BC ,又∵AB=5,BC=3,∴AC=5+3=8.综上可得:AC=2或8.故选C .【点睛】本题考查两点间的距离,解答本题的关键是明确题意,利用分类讨论的数学思想解答.9.C解析:C【解析】【分析】根据有理数及无理数的概念逐一进行分析即可得.【详解】 2B. π是无理数,故不符合题意;C. 3.14是有理数,故符合题意;D. 37故选C.【点睛】本题考查了有理数与无理数,熟练掌握有理数与无理数的概念是解题的关键.10.A解析:A【解析】【分析】当x=3,y=2时,直接代入代数式即可得到结果. 【详解】23x y -=2323⨯-=43, 故选A【点睛】本题考查的是代数式求值,正确的计算出代数式的值是解答此题的关键.11.B解析:B【解析】【分析】【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,n+,下边三角形的数字规律为:1+2,2+, (2)22∴最后一个三角形中y与n之间的关系式是y=2n+n.故选B.【点睛】考点:规律型:数字的变化类.12.D解析:D【解析】【分析】根据题意列一元一次方程,然后四个循环为一次即可求得结论.【详解】解:设乙走x秒第一次追上甲.根据题意,得5x-x=4解得x=1.∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB上;设乙再走y秒第二次追上甲.根据题意,得5y-y=8,解得y=2.∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC上;同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA上;乙在第5次追上甲时的位置又回到AB上;∴2020÷4=505∴乙在第2020次追上甲时的位置是AD上.故选:D.【点睛】本题考查了一元一次方程的应用,解决本题的关键是寻找规律确定位置.二、填空题13.两点确定一条直线.【解析】将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线.故答案为两点确定一条直线.解析:两点确定一条直线.【解析】将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线.故答案为两点确定一条直线.14.【解析】【分析】先根据AB=4,BC=2AB求出BC的长,故可得出AC的长,再根据D是AC的中点求出AD的长度,由BD=AD﹣AB即可得出结论.【详解】解:∵AB=4,BC=2AB,∴B解析:【解析】【分析】先根据AB=4,BC=2AB求出BC的长,故可得出AC的长,再根据D是AC的中点求出AD 的长度,由BD=AD﹣AB即可得出结论.【详解】解:∵AB=4,BC=2AB,∴BC=8.∴AC=AB+BC=12.∵D是AC的中点,∴AD=12AC=6.∴BD=AD﹣AB=6﹣4=2.故答案为:2.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.15.2或8.【解析】【分析】根据绝对值的性质去掉绝对值符号,分类讨论解题即可【详解】∵|a-m|=5,|n-a|=3∴a−m=5或者a−m=-5;n−a=3或者n−a=-3当a−m=5,n解析:2或8.【解析】【分析】根据绝对值的性质去掉绝对值符号,分类讨论解题即可【详解】∵|a-m|=5,|n-a|=3∴a−m=5或者a−m=-5;n−a=3或者n−a=-3当a−m=5,n−a=3时,|m-n|=8;当a−m=5,n−a=-3时,|m-n|=2;当a−m=-5,n−a=3时,|m-n|=2;当a−m=-5,n−a=-3时,|m-n|=8故本题答案应为:2或8【点睛】绝对值的性质是本题的考点,熟练掌握其性质、分类讨论是解题的关键16.-22【解析】【分析】将m﹣2n=2代入原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)计算可得.【详解】解:当m﹣2n=2时,原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)=2×(﹣2)3解析:-22【解析】【分析】将m﹣2n=2代入原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)计算可得.【详解】解:当m﹣2n=2时,原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)=2×(﹣2)3﹣3×2=﹣16﹣6=﹣22,故答案为:﹣22.【点睛】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.17.5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-5解析:5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-50%-40%)=5(人),故答案为:5.【点睛】本题考查了扇形统计图,熟知扇形统计图中各数据所表示的意义是解题关键.18.3【解析】【分析】把x与y的值代入方程组得到关于a和b的方程组,然后整体求出a+b的值即可.【详解】解:把代入方程组得:,①+②得:3(a+b)=9,则a+b=3,故答案为:3.【解析:3【解析】【分析】把x与y的值代入方程组得到关于a和b的方程组,然后整体求出a+b的值即可.【详解】解:把12xy=⎧⎨=⎩代入方程组得:2722a bb a+=⎧⎨+=⎩,①+②得:3(a+b)=9,则a+b=3,故答案为:3.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.19.16【解析】【分析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.【详解】设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+解析:16【解析】【分析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.【详解】设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+d=37①;2a=b+2=c-3=2d ②; 第二个方程所有字母都用a 来表示可得b=2a-2,c=2a+3,d=4a ,代入第一个方程得a=4, ∴b=6,c=11,d=16,∴这四堆苹果中个数最多的一堆为16.故答案为16.【点睛】本题需注意未知数较多时,要把未知的四个量用一个量来表示,化多元为一元. 20.2a2b【解析】【分析】根据合并同类项法则化简即可.【详解】故答案为:【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.解析:2a 2b【解析】【分析】根据合并同类项法则化简即可.【详解】()2222﹣﹣.7a b5ba=75a b=2a b2a b故答案为:2【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.21.4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的解析:4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的掌握零指数幂.22.正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考解析:正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体. 【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查. 23.40【解析】【分析】由OA 恰好是COD 的三等分线可得或,旋转角为,求出其度数取最小值即可. 【详解】解:因为,OC 、OD 是AOB 的两条三分线,所以 因为OA 恰好是COD 的解析:40【解析】【分析】由OA 恰好是∠COD 的三等分线可得'10AOD ︒∠=或'20AOD ︒∠=,旋转角为'DOD ∠,求出其度数取最小值即可.【详解】解:因为90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,所以30AOD ︒∠=因为OA 恰好是∠COD 的三等分线,所以'10AOD ︒∠=或'20AOD ︒∠=,当'10AOC ︒∠=时,''301040DOD AOD AOD ︒︒︒∠=∠+∠=+=当'20AOD ︒∠=时,''302050DOD AOD AOD ︒︒︒∠=∠+∠=+=,综上所述将∠COD 顺时针最少旋转40︒.故答案为:40︒【点睛】本题考查了角的平分线,熟练掌握角平分线的相关运算是解题的关键.24.4【解析】【分析】由题意可得,求解即可.【详解】解:解得故答案为:4【点睛】本题属于新定义题型,正确理解{m}和[m]的含义是解题的关键.解析:4【解析】【分析】由题意可得{}[]1,x x x x =+=,求解即可.【详解】解:{}[]323(1)25323x x x x x +=++=+=解得4x =故答案为:4【点睛】本题属于新定义题型,正确理解{m }和[m ]的含义是解题的关键. 三、解答题25.75°.【解析】【分析】先判断AC//BD ,然后根据平行线的性质进行求解即可得.【详解】∵∠A=∠B,∴AC//BD,∴∠D=∠C=75°.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定定理与性质定理是解题的关键. 26.(1)2.6元;(2)7000步.【解析】【分析】(1)用步数×每步捐的钱数0.0002元即可;(2)设丙走了x步,则甲走了3x步,乙走了3x步,分两种情况讨论即可.【详解】(1)13000×0.0002=2.6元,∴他当日可捐了2.6元钱;(2)设丙走了x步,则甲走了3x步,乙走了3x步,由题意得若丙参与了捐款,则有0.0002(3x+3x+x)=8.4,解之得:x=6000,不合题意,舍去;若丙没参与捐款,则有0.0002(3x+3x)=8.4,解之得:x=7000,符合题意,∴丙走了7000步.【点睛】本题考查了一元一次方程的应用,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.本题也考查了分类讨论的数学思想. 27.(1)﹣x2+9xy+2y2,﹣20;(2)k=4.【解析】【分析】(1)根据|x﹣2|+(y+1)2=0可以求得x、y的值,然后将题目中所求式子化简,再将x、y的值代入化简后的式子即可解答本题.(2)利用多项式的值与x无关,得出x的系数和为0,即可得出k的值,进而求出答案.【详解】解:(1)∵(x﹣2)2+|y+1|=0,∴x=2、y=﹣1,则原式=2x2﹣12xy﹣4y2﹣3x2+21xy+6y2=﹣x2+9xy+2y2=﹣22+9×2×(﹣1)+2×(﹣1)2=﹣4﹣18+2=﹣20;(2)原式=x2+2x﹣kx2+3x2﹣2x+1=(4﹣k)x2+1∵代数式的值与x无关,∴k=4.【点睛】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.28.(1)x=12;(2)15xy=-⎧⎨=⎩.【解析】【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程组整理后,利用加减消元法求出解即可.【详解】解:(1)3(2x﹣1)=2(1﹣x)﹣1,6x﹣3=2﹣2x﹣1,x=12,(2)111234x yx y-+⎧+=⎪⎨⎪+=⎩,整理得:3x+2y=72x+2y=8①②⎧⎨⎩,②﹣①得:﹣x=1,x=﹣1,把x=﹣1代入①中得:y=5,∴方程组的解为:15xy=-⎧⎨=⎩.【点睛】此题考查了解二元一次方程组和一元一次方程,熟练掌握运算法则是解本题的关键.29.(1)14y=;(2)1x=-.【解析】【分析】(1)根据一元一次方程的解法过程,去括号,移项,合并同类项,系数化为1解决即可.(2)根据一元一次方程的解法过程,去分母,去括号,移项,合并同类项,系数化为1解决即可.【详解】解方程:(1)3(2y-3)=2(y-4);6928y y-=-.6298y y-=-.41y =.14y =. (2)13124x x +--=. 2(1)(3)4x x +--=.2234x x +-+=.-1x =.【点睛】本题考查了一元一次方程的解法,解决本题的关键是熟练掌握一元一次方程的解法过程,在去分母时不要漏乘项.30.(1)a =20,b =﹣10;(2)20+2x ;(3)1秒、11秒或13秒后,C 、D 两点相距5个单位长度【解析】【分析】(1)利用绝对值及偶次方的非负性,可求出a ,b 的值;(2)由点A ,P 表示的数可找出点M 表示的数,再结合点B 表示的数可求出点M 、B 之间的距离;(3)当0≤t≤203时,点C 表示的数为3t ,当203<t≤503时,点C 表示的数为20﹣3(t ﹣203)=40﹣3t ;当0≤t≤5时,点D 表示的数为﹣2t ,当5<t≤20时,点D 表示的数为﹣10+2(t ﹣5)=2t ﹣20.分0≤t≤5,5<t≤203及203<t≤503,三种情况,利用CD =5可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:(1)∵(a ﹣20)2+|b+10|=0,∴a ﹣20=0,b+10=0,∴a =20,b =﹣10.(2)∵设P 表示的数为x ,点A 表示的数为20,M 是AP 的中点.∴点M 表示的数为202x +. 又∵点B 表示的数为﹣10,∴BM =202x +﹣(﹣10)=20+2x . (3)当0≤t≤203时,点C 表示的数为3t ;当203<t≤503时,点C 表示的数为:20﹣3(t ﹣203)=40﹣3t ; 当0≤t≤5时,点D 表示的数为﹣2t ;当5<t≤20时,点D 表示的数为:﹣10+2(t ﹣5)=2t ﹣20.当0≤t≤5时,CD =3t ﹣(﹣2t )=5,解得:t =1; 当5<t≤203时,CD =3t ﹣(2t ﹣20)=5, 解得:t =﹣15(舍去); 当203<t≤503时,CD =|40﹣3t ﹣(2t ﹣20)|=5, 即60﹣5t =5或60﹣5t =﹣5,解得:t =11或t =13. 答:1秒、11秒或13秒后,C 、D 两点相距5个单位长度.【点睛】本题考查了一元一次方程的应用、数轴、绝对值及偶次方的非负性,解题的关键是:(1)利用绝对值及偶次方的非负性,求出a ,b 的值;(2)根据各点之间的关系,用含x 的代数式表示出BM 的长;(3)找准等量关系,正确列出一元一次方程.四、压轴题31.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)25032;(4)9.38;(5)0;(6)24或40【解析】【分析】(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x 分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.【详解】(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,故答案为23+(-3)3+43,73+(-5)3+(-6)3(2)∵2a b a ab ⊗=-,∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)]=(-5)⊗15=(-5)2-(-5)×15=100.(3)∵a 1=2,∴a 2=1112=--, a 3=11(1)--=12, 412112a ==-a 5=-1…… ∴从a 1开始,每3个数一循环,∵2500÷3=833……1,∴a 2500=a 1=2,∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032. (4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分,∴平均分为中间8个分数的平均分,∵平均分精确到十分位的为9.4,∴平均分在9.35至9.44之间,9.35×8=74.8,9.44×8=75.52,∴8个裁判所给的总分在74.8至75.52之间,∵打分都是整数,∴总分也是整数,∴总分为75,∴平均分为75÷8=9.375,∴精确到百分位是9.38.故答案为9.38(5)2019÷4=504……3,∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,……∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0∴所得结果可能的最小非负数是0,故答案为0(6)设x 分钟后甲和乙、丙的距离相等,∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,∴120x-400-100x=90x+800-120x解得:x=24.∵当乙追上丙时,甲和乙、丙的距离相等,∴400÷(100-90)=40(分钟)∴24分钟或40分钟时甲和乙、丙的距离相等.故答案为24或40.【点睛】本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.32.(1)230元;(2) 790元或者810元;(3) 400,55%.【解析】【分析】()1可对照表格计算,500元的商品打折后为250元,再享受20元抵扣金额,即可得出实际付款;()2实际付款375元时,应考虑到20037520400≤+<与40037530600≤+<这两种情况的存在,所以分这两种情况讨论;()3根据优惠率的定义表示出四个范围的数据,进行比较即可得结果.【详解】解:()1由题意可得:顾客的实际付款()500500150%20230⎡⎤=-⨯-+=⎣⎦故购买一件标价为500元的商品,顾客的实际付款是230元.()2设商品标价为x 元.20037520400≤+<与40037530600≤+<两种情况都成立,于是分类讨论①抵扣金额为20元时,1x 203752-=,则x 790= ②抵扣金额为30元时,1x 303752-=,则x 810= 故当实际付款375元,那么它的标价为790元或者810元.()3设商品标价为x 元,抵扣金额为b 元,则 优惠率1x b 1b 2100%x 2x+=⨯=+ 为了得到最高优惠率,则在每一范围内x 均取最小值,可以得到2030405040080012001600>>> ∴当商品标价为400元时,享受到最高的优惠率1155%220=+= 故答案为400,55%【点睛】本题考查的是日常生活中的打折销售问题,运用一元一次方程解决问题时要抓住未知量,明确等量关系列出方程是关键.33.(1)AC=4cm, BC=8cm ;(2)当45t =时,AP PQ =;(3)当2t =时,P 与Q 第一次相遇;(4)35191cm.224t PQ =当为,,时, 【解析】【分析】(1)由于AB=12cm ,点C 是线段AB 上的一点,BC=2AC ,则AC+BC=3AC=AB=12cm ,依此即可求解;(2)分别表示出AP 、PQ ,然后根据等量关系AP=PQ 列出方程求解即可;(3)当P 与Q 第一次相遇时由AP AC CQ =+得到关于t 的方程,求解即可; (4)分相遇前、相遇后以及到达B 点返回后相距1cm 四种情况列出方程求解即可.【详解】(1)AC=4cm, BC=8cm.(2) 当AP PQ =时,AP 3t,PQ AC AP CQ 43t t ==-+=-+,即3t 43t t =-+,解得4t 5=. 所以当4t 5=时,AP PQ =. (3) 当P 与Q 第一次相遇时,AP AC CQ =+,即3t 4t =+,解得t 2=.所以当t 2=时,P 与Q 第一次相遇.(4)()()P,Q 1cm,4t 3t 13t 4t 1+-=-+=因为点相距的路程为所以或,35t t 22解得或==, P B P,Q 1cm 当到达点后时立即返回,点相距的路程为,193t 4t 1122,t 4+++=⨯=则解得, 3519t PQ 1cm.224所以当为,,时,= 【点睛】此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系以及分类讨论思想是解决问题的关键.。
江苏省南通市海门市能仁中学2015_2016学年七年级数学上学期期末试卷(含精品解析)苏科版
2015-2016学年江苏省南通市海门市能仁中学七年级(上)期末数学试卷一、选择题1.的绝对值是()A.B.C.2 D.﹣22.从正面看、从左面看、从上面看都一样的几何体是()A.圆柱 B.长方体C.球D.五棱柱3.下列计算中,正确的是()A.(﹣1)2×(﹣1)5=1 B.﹣3÷(﹣)=9 C.÷(﹣)3=9 D.﹣(﹣3)2=94.如图,下列说法正确的是()A.OA的方向是北偏东30°B.OB的方向是北偏西60°C.OC的方向是南偏东50°D.OD的方向是东偏南45°5.如图把左边的图形折叠起来围成一个正方体,应该得到图中的()A.B.C.D.6.若x=2是关于x的方程2x+3m﹣1=0的解,则m的值为()A.﹣1 B.0 C.1 D.7.在直线l上顺次取A、B、C三点,使得AB=5cm,BC=3cm,如果O是线段AC的中点,那么线段OB的长度是()A.0.5cm B.1cm C.1.5cm D.2cm8.观察下列图形它们是按一定的规律排列的,依照此规律,第20个图形的“★”有()A.57个B.60个C.63个D.85个9.下列变形中,不正确的是()A.a+(b+c﹣d)=a+b+c﹣d B.a﹣(b﹣c+d)=a﹣b+c﹣dC.a﹣b﹣(c﹣d)=a﹣b﹣c﹣d D.a+b﹣(﹣c﹣d)=a+b+c+d10.如图,已知O为直线AB上一点,OC平分∠AOD,∠BOD=3∠DOE,∠COE=α,则∠BOE的度数为()A.360°﹣4αB.180°﹣4αC.αD.2α﹣60°二、填空题11.地球与太阳的平均距离大约为150 000 000km,用科学记数法表示km.12.一天早晨的气温是﹣5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的气温是℃.13.如图,在边长为1的小正三角形组成的图形中,正六边形的个数共有个.14.x表示一个三位数,若在x的右边放3,成为一个四位数,则这个四位数可表示为.15.用“●”“■”“▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”个.16.已知某商品降价20%后的售价为2800元,则该商品的原价为元.17.如图所示,将一副三角板叠放在一起,使直角的顶点重合于点O,则∠AOC+∠DOB的度数为.18.挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走.如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走.三、解答题19.计算:(1)﹣42﹣3×22×(﹣1)÷(﹣1)(2)﹣14﹣×[4﹣(﹣2)3].20.化简:(1)﹣2y2+3xy﹣2[x2﹣(2x2﹣xy+y2)](2)化简与求值:x2+2x+3(x2﹣x),其中x=﹣.21.(6分)如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大小.22.解方程(1)4x﹣1.5x=﹣0.5x﹣9;(2)1﹣=2﹣.23.如图,已知,CD∥EF,∠1=∠2.求证:∠3=∠ACB.24.在“五•一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱?说明理由.25.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(4)若点D是数轴上一点,点D表示的数是x,请你探索式子|x+6|+|x﹣8|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.2015-2016学年江苏省南通市海门市能仁中学七年级(上)期末数学试卷参考答案与试题解析一、选择题1.的绝对值是()A.B.C.2 D.﹣2【考点】绝对值.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣的绝对值是.故选:A.【点评】本题考查了绝对值,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.从正面看、从左面看、从上面看都一样的几何体是()A.圆柱 B.长方体C.球D.五棱柱【考点】由三视图判断几何体.【分析】由基本立体图形的三视图可知:从正面看、从左面看、从上面看都一样的几何体是正方体(看到的都是正方形)和球(看到的都是圆),由此从选项中直接选择答案即可.【解答】解:∵从正面看、从左面看、从上面看都一样的几何体是正方体(看到的都是正方形)和球(看到的都是圆),∴选项中只有球符合题意.故选:C.【点评】此题主要考查了由三视图判断几何体,熟练掌握常见图形的三视图是解题关键.3.下列计算中,正确的是()A.(﹣1)2×(﹣1)5=1 B.﹣3÷(﹣)=9 C.÷(﹣)3=9 D.﹣(﹣3)2=9【考点】有理数的混合运算.【专题】计算题.【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、原式=1×(﹣1)=﹣1,错误;B、原式=﹣3×(﹣3)=9,正确;C、原式=×(﹣27)=﹣9,错误;D、原式=﹣9,错误,故选B【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.4.如图,下列说法正确的是()A.OA的方向是北偏东30°B.OB的方向是北偏西60°C.OC的方向是南偏东50°D.OD的方向是东偏南45°【考点】方向角.【分析】根据方向角的定义,即可解答.【解答】解:A.OA的方向是北偏东60°,故错误;B.OB的方向是北偏西30°,故错误;C.OC的方向是南偏西50°,故错误;D.OD的方向是东偏南45°,正确;故选D.【点评】本题考查了方向角的定义,解决本题的关键是熟记方向角的定义.5.如图把左边的图形折叠起来围成一个正方体,应该得到图中的()A.B.C.D.【考点】展开图折叠成几何体.【专题】常规题型.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴有蓝圆圈与灰色圆圈的两个面是相对面,故A、B选项错误;又有蓝色圆圈的面与红色三角形的面相邻时应该是三角形的直角边所在的边与蓝色圆圈的面相邻,即折叠后有蓝色圆圈的面应是左面或下面,所以C选项不符合,故C选项错误;D选项符合.故选D.【点评】本题主要考查了正方体的展开折叠问题,要注意相对两个面上的图形,从相对面入手,分析及解答问题比较方便.6.若x=2是关于x的方程2x+3m﹣1=0的解,则m的值为()A.﹣1 B.0 C.1 D.【考点】一元一次方程的解.【专题】计算题.【分析】根据方程的解的定义,把x=2代入方程2x+3m﹣1=0即可求出m的值.【解答】解:∵x=2是关于x的方程2x+3m﹣1=0的解,∴2×2+3m﹣1=0,解得:m=﹣1.故选:A.【点评】本题的关键是理解方程的解的定义,方程的解就是能够使方程左右两边相等的未知数的值.7.在直线l上顺次取A、B、C三点,使得AB=5cm,BC=3cm,如果O是线段AC的中点,那么线段OB的长度是()A.0.5cm B.1cm C.1.5cm D.2cm【考点】两点间的距离.【专题】计算题.【分析】作图分析由已知条件可知,AB+BC=AC,又因为O是线段AC的中点,则OB=AB﹣AO,故OB可求.【解答】解:根据上图所示OB=5cm﹣OA,∵OA=(AB+BC)÷2=4cm,∴OB=1cm.故选B.【点评】此题考查的知识点是两点间的距离,关键明确在未画图类问题中,正确画图很重要.所以能画图的一定要画图这样才直观形象,便于思维.8.观察下列图形它们是按一定的规律排列的,依照此规律,第20个图形的“★”有()A.57个B.60个C.63个D.85个【考点】规律型:图形的变化类.【专题】压轴题.【分析】排列组成的图形都是三角形.第一个图形中有1×3=3个★,第二个图形中有2×3=6个★,第三个图形中有3×3=9个★,…第20个图形共有20×3=60个★.【解答】解:根据规律可知第n个图形有3n个★,所以第20个图形共有20×3=60个★.另解:通过观察发现每行五星组成的三角形的边上分别有(n+1)个五星,共有3(n﹣1)个,但每个角上的五星重复加了两次,故五星的个数为3(n﹣1)﹣3=3n个,故第20个图象共有60个★.故选B.【点评】本题考查了图形的变化类问题,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.本题的关键规律为第n个图形有3n个★.9.下列变形中,不正确的是()A.a+(b+c﹣d)=a+b+c﹣d B.a﹣(b﹣c+d)=a﹣b+c﹣dC.a﹣b﹣(c﹣d)=a﹣b﹣c﹣d D.a+b﹣(﹣c﹣d)=a+b+c+d【考点】去括号与添括号.【专题】计算题.【分析】根据去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反判断即可.【解答】解:A、a+(b+c﹣d)=a+b+c﹣d,故本选项正确;B、a﹣(b﹣c+d)=a﹣b+c﹣d,故本选项正确;C、a﹣b﹣(c﹣d)=a﹣b﹣c+d,故本选项错误;D、a+b﹣(﹣c﹣d)=a+b+c+d,故本选项正确;故选C.【点评】本题考查了去括号法则,解题时牢记法则是关键,特别要注意符号的变化.10.如图,已知O为直线AB上一点,OC平分∠AOD,∠BOD=3∠DOE,∠COE=α,则∠BOE的度数为()A.360°﹣4αB.180°﹣4αC.αD.2α﹣60°【考点】角平分线的定义.【分析】设∠DOE=x,则∠BOE=2x,根据角之间的等量关系求出∠AOD、∠COD、∠COE的大小,然后解得x即可.【解答】解:设∠DOE=x,则∠BOE=2x,∵∠BOD=∠BOE+∠EOD,∴∠BOD=3x,∴∠AOD=180°﹣∠BOD=180°﹣3x.∵OC平分∠AOD,∴∠COD=∠AOD=(180°﹣3x)=90°﹣x.∵∠COE=∠COD+∠DOE=90°﹣x+x=90°﹣,由题意有90°﹣=α,解得x=180°﹣2α,即∠DOE=180°﹣2α,∴∠BOE=360°﹣4α,故选:A.【点评】本题主要考查角的计算的知识点,运用好角的平分线这一知识点是解答的关键,本题难度不大.二、填空题11.地球与太阳的平均距离大约为150 000 000km,用科学记数法表示 1.5×108km.【考点】科学记数法—表示较大的数.【专题】应用题.【分析】科学记数法的一般形式为:a×10n,在本题中a应为1.5,10的指数为9﹣1=8.【解答】解:150 000 000km=1.5×108km.【点评】将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.12.一天早晨的气温是﹣5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的气温是﹣3 ℃.【考点】有理数的加减混合运算.【专题】应用题.【分析】气温上升为正,下降为负,列出算式求解即可.【解答】解:根据题意列式为:﹣5+10﹣8=﹣13+10=﹣3℃.故应填3℃.【点评】本题主要考查用正负来表示具有相反意义的量,做题时一定要注意单位.13.如图,在边长为1的小正三角形组成的图形中,正六边形的个数共有8 个.【考点】认识平面图形.【专题】压轴题.【分析】解这类题要仔细观察图形,逐个找出来而且要注意外面这个最大的.【解答】解:小的正六边形将有6个小正三角形组成,图中可当作正六边形的中心的有7个,加上最大的这个正六边形,一共有8个.故答案为:8.【点评】解决本题的关键应理解正六边形的构造特点.14.x表示一个三位数,若在x的右边放3,成为一个四位数,则这个四位数可表示为10x+3 .【考点】列代数式.【分析】x表示一个三位数,在x的右边放3,就是3在个位上,三位数扩大10倍+3从而可表示出四位数.【解答】解:在x的右边放3,就是3在个位上,三位数扩大10倍+3得出四位数为10x+3.故答案为:10x+3.【点评】本题考查列代数式,关键知道3放在三位数右边就是在个位上,三位数扩大10倍,从而可表示出四位数.15.用“●”“■”“▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■” 5 个.【考点】等式的性质.【分析】设“●”“■”“▲”分别为x、y、z,根据前两个天平列出等式,然后用y表示出x、z,相加即可.【解答】解:设“●”“■”“▲”分别为x、y、z,由图可知,2x=y+z①,x+y=z②,②两边都加上y得,x+2y=y+z③,由①③得,2x=x+2y,∴x=2y,代入②得,z=3y,∵x+z=2y+3y=5y,∴“?”处应放“■”5个.故答案为:5.【点评】本题考查了等式的性质,根据天平平衡列出等式是解题的关键.16.已知某商品降价20%后的售价为2800元,则该商品的原价为3500 元.【考点】一元一次方程的应用.【专题】销售问题.【分析】依据题意商品的原价格=2800÷(1﹣20%).【解答】解:设原价为x,那么:x×80%=2800元,解得x=3500,故原价为3500元.【点评】此题的关键是把原价当成单位1来计算.17.如图所示,将一副三角板叠放在一起,使直角的顶点重合于点O,则∠AOC+∠DOB的度数为180°.【考点】余角和补角.【分析】由图可知∠AOC=∠AOB+∠BOC,∠BOC+∠BOD=∠COD,依此角之间的和差关系,即可求解.【解答】解:根据题意得:∠AOC+∠DOB=∠AOB+∠BOC+∠DOB=∠AOB+∠COD=90°+90°=180°,故答案为:180°.【点评】本题考查了余角和补角的定义;找出∠AOC+∠DOB=∠AOB+∠BOC+∠DOB是解题的关键.18.挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走.如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走⑦.【考点】规律型:图形的变化类.【专题】操作型.【分析】根据游戏规则可以发现,第1次拿走的是没有被压住的棒,第2次拿走的有一个被压住交点的棒,依此论推,第6次拿走的有5个被压住交点的棒,应该为⑦号棒.【解答】解:根据游戏规则可以发现:第1次拿走的是没有被压住的棒,第2次拿走的有一个被压住交点的棒,依此论推,第6次拿走的有5个被压住交点的棒,则⑦号棒有5个被压住交点的棒.故答案为:⑦.【点评】题目考查了图形的变化类,通过游戏规则为载体,增强学生分析问题能力和解决问题能力,解决本题的关键是数出每根木棒被压住的点的个数.三、解答题19.计算:(1)﹣42﹣3×22×(﹣1)÷(﹣1)(2)﹣14﹣×[4﹣(﹣2)3].【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣16﹣12×(﹣)×(﹣)=﹣16﹣6=﹣22;(2)原式=﹣1﹣×12=﹣1﹣4=﹣5.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.化简:(1)﹣2y2+3xy﹣2[x2﹣(2x2﹣xy+y2)](2)化简与求值:x2+2x+3(x2﹣x),其中x=﹣.【考点】整式的加减—化简求值;整式的加减.【专题】计算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=﹣2y2+3xy﹣2x2+4x2﹣2xy+2y2=xy+2x2;(2)原式=x2+2x+3x2﹣2x=4x2,当x=﹣时,原式=1.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大小.【考点】角平分线的定义.【专题】计算题.【分析】由∠AOB=110°,∠COD=70°,易得∠AOC+∠BOD=40°,由角平分线定义可得∠AOE+∠BOF=40°,那么∠EOF=∠AOB+∠AOE+BOF.【解答】解:∵∠AOB=110°,∠COD=70°∴∠AOC+∠BOD=∠AOB﹣∠COD=40°∵OA平分∠EOC,OB平分∠DOF∴∠AOE=∠AOC,∠BOF=∠BOD∴∠AOE+∠BOF=40°∴∠EOF=∠AOB+∠AOE+∠BOF=150°.故答案为:150°.【点评】解决本题的关键利用角平分线定义得到所求角的两边的角的度数.22.解方程(1)4x﹣1.5x=﹣0.5x﹣9;(2)1﹣=2﹣.【考点】解一元一次方程.【分析】(1)先移项,再合并同类项,把x的系数化为1即可;(2)先去分母,再去括号,移项,合并同类项,把x的系数化为1即可.【解答】解:(1)移项得,4x﹣1.5x+0.5x=﹣9,合并同类项得,3x=﹣9,把x的系数化为1得,x=﹣3;(2)去分母得,6﹣3(x﹣1)=12﹣2(x+2),去括号得,6﹣3x+3=12﹣2x﹣4,移项得,﹣3x+2x=12﹣4﹣6﹣3,合并同类项得,﹣x=﹣1,把x的系数化为1得,x=1.【点评】本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解答此题的关键.23.如图,已知,CD∥EF,∠1=∠2.求证:∠3=∠ACB.【考点】平行线的判定与性质.【专题】证明题.【分析】根据平行线的性质得出∠2=∠DCB,求出∠1=∠DCB,根据平行线的判定得出GD∥CB即可.【解答】证明:∵CD∥EF,∴∠2=∠DCB,∵∠1=∠2,∴∠1=∠DCB,∴GD∥CB,∴∠3=∠ACB.【点评】本题考查了对平行线的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.24.在“五•一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱?说明理由.【考点】一元一次方程的应用.【专题】经济问题;阅读型.【分析】(1)设成人数为x人,则学生人数是(12﹣x)人.根据共需350元列方程求解;(2)只需计算购买16人的团体票和(1)中的350进行比较.【解答】解:(1)设成人人数为x人,则学生人数为(12﹣x)人.则35x+(12﹣x)=350解得:x=8故学生人数为12﹣8=4人,成人人数为8人.(2)如果买团体票,按16人计算,共需费用:35×0.6×16=336元.336<350所以,购团体票更省钱.答:有成人8人,学生4人;购团体票更省钱.【点评】此题主要是正确理解题意,在第二问中,虽然不够团体购票的人数,但可以多买几张,享受团体购票的优惠,从而进行比较.25.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数﹣6 ,点P表示的数8﹣5t (用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(4)若点D是数轴上一点,点D表示的数是x,请你探索式子|x+6|+|x﹣8|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.【考点】一元一次方程的应用;数轴;两点间的距离.【分析】(1)根据点A的坐标和AB之间的距离即可求得点B的坐标和点P的坐标;(2)根据距离的差为14列出方程即可求解;(3)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.(4)分为3种情况去绝对值符号,计算三种不同情况的值,最后讨论得出最小值.【解答】解:(1)点B表示的数是﹣6;点P表示的数是8﹣5t,(2)设点P运动x秒时,在点C处追上点Q (如图)则AC=5x,BC=3x,∵AC﹣BC=AB∴5x﹣3x=14…(4分)解得:x=7,∴点P运动7秒时,在点C处追上点Q.…(5分)(3)没有变化.分两种情况:①当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=7…(7分)②当点P运动到点B的左侧时:MN=MP﹣NP=AP﹣BP=(AP﹣BP)=AB=7…(9分)综上所述,线段MN的长度不发生变化,其值为7 …(4)式子|x+6|+|x﹣8|有最小值,最小值为14.…(12分)【点评】本题考查了数轴:数轴的三要素(正方向、原点和单位长度).也考查了一元一次方程的应用以及数轴上两点之间的距离.。
江苏省海门市2016-2017第一学期七年级数学期末试卷与答案
2016~2017学年度第一学期期末质量调研七年级数学 1月12日一、选择题(每小题2分,共20分) 1.-8的倒数是【 】A .8B .-8 C.18 D .-182.用科学记数法表示数6 590 000,结果是【 】A .6.59×106B .65.9×105C .0.659×107D .6.59×107 3.下图中,是正方形展开图的是【 】A .B .C .D .4.如图,直线a ∥b ,直线c 与直线a 、b 相交,若∠1=56°, 则∠2等于【 】 A .24° B .34° C .56° D .124° 5.下列计算正确的是【 】A .2325a a a += B .431x x -= C .22232x y yx x y -= D .325a b ab +=6.已知∠α=35°,那么∠α的余角等于【 】 A .145° B .35° C .65° D .55°7.当x =-1,y =1时ax +by -3=0,那么当x =1,y =-1时,ax +by -3的值是【 】 A .-6 B .0 C .6 D .98.在上午8:20时,钟表上的时针与分针的夹角是【 】 A .100° B .120° C .130° D .170°9.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若轮船静水速为30千米/小时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米,根据题意,得方程【 】 A .33228x x =+ B .33228x x =- C .33228x x += D .2233030x x -+=- 10.已知a 、b 为有理数,ab ≠0,且M =||||a ba b +,当a 、b 取不同的值时,M 的值是【 】 A .±2 B .±1或±2 C .0或±1 D .0或±2 二、填空题(每小题3分,共24分) 11.用“>”或“<”填空:比较大小:-12______-23. a bc21CE12.若()22|3|0x y -++=,则xy =______.13.如图,直线AB 、CD 相交于点O ,OE ⊥CD 于O ,且∠AOC =50°, 则∠BOE 等于=_____. 14.将2341x x +-减去21x x -+,结果是___________.15.已知x =3是方程11-2x =ax -1的解,则a=______.16.如果线段AB =5 cm ,BC =4 cm ,且A 、B 、C 三点在同一条直线上,则AC =______. 17.如图,点C 、D 、E 、F 都在线段AB 上,点E 是AC 的中点,点F 是BD 的中点,若AB =30,CD =6,则线段EF 的长为 _________.18.如图,已知∠A 1OA 11是一个平角,且∠A 3OA 2-∠A 2OA 1=∠A 4OA 3-∠A 3OA 2=∠A 5OA 4-∠A 4OA 3=……=∠A 11OA 10-∠A 10OA 9=3°,则 ∠A 1OA 11的度数为______.三、解答题(本大题共10小题,共76分) 19.(9分)计算:(1)231363412⎛⎫-⨯+- ⎪⎝⎭ (2)()3112342⎛⎫-⨯-÷- ⎪⎝⎭20.(6分)先化简,再求值:()()2323542453a ab a ab ---,其中a=-1,b=2 . 21.(8分)解方程:(1)(1)4x-3(20-x)+4=0 (2)123173x x -+-=A 11A 2A 1O22.(8分)在数轴上,(1)如果点A 表示数2,动点B 从点A 出发向左移动5个单位长度,再向右移动8个单位长度,此时点B表示的数是 ,A 、B 两点间的距离是 ; (2)一般的,如果点A 表示数为a ,动点B 从点A 出发向右移动b 个单位长度,再向左移动c 个单位长度,此时点B 表示的数是 ,A .B 两点间的距离是 (用a 、b 、c 的式子表示).(3)如果点A 表示数-4 ,点B 表示的数是8,那么A 、B 两点间的距离是 ,AB的中点所表示的数是 ;(4)一般地,如果点A 表示的数为a ,点B 表示的数是b ,那么A 、B 两点间的距离是 ,AB 的中点表示的数是 (用a 、b 的式子表示).23.(6分)如图,已知O 为直线AB 上一点,三条射线OC 、OD 、OE 都在直线AB 上方,且OC 平分∠AOD ,∠2=3∠1,∠COE =70°,求∠2的度数.24.请根据图中提供的信息,回答下列问题:一个水瓶与一个水杯分别是多少元? 25.(8分)完成下面的解题过程:如图,AD ∥BC ,点F 是AD 上一点,CF 与BA 的延长线相交于点E ,且∠1=∠2,∠3=∠4.CD 与BE 平行吗?为什么? 解:CD ∥BE ,理由如下:∵AD ∥BC (已知),∴∠4= ① ( ② ) ∵∠3=∠4(已知),∴∠3= ③ ( ④ ) ∵∠1=∠2(已知),∴∠1+∠ACE =∠2+∠ACE ( ⑤ ) 即∠BCE = ⑥ ∴∠3= ⑦ ∴CD ∥BE ( ⑧ )30元 第24题 95元 4321FE BDA26.(8分)在A 、B 两地之间要修一条笔直的公路,此工程由甲、乙、丙三支施工队伍共同建设.已知甲单独做要30天完成,乙单独做要12天完成,丙单独做要15天完成.甲、丙先合做了4天后,甲因事离去,由乙和丙完成剩下工作,那么还需要几天才能完成? 27.(8分) 如图,点C 、M 、N 在射线DQ 上,点B 在射线AP 上,且AP ∥DQ ,∠D =∠ABC =80°,∠1=∠2,AN 平分∠DAM . (1)试说明AD ∥BC 的理由; (2)试求∠CAN 的度数; (3)平移线段BC .①试问∠AMD :∠ACD 的值是否发生变化?若不会,请求出这个比值;若会,请找出相应变化规律;②若在平移过程中存在某种位置,使得∠AND =∠ACB ,试求此时∠ACB 的度数.28.(10分)如图,线段AB 上有一点O ,AO =6㎝,BO =8㎝,点C 从A 出发以m ㎝/s 的速度向B 运动,点D 从B 出发以n ㎝/s 的速度向A 运动,∠POB =30°,C 、D 、P 三点同时开始运动,点P 绕点O 逆时针旋转一周后停止. (1)若m =2,n =3,则经过 秒点C 、D 相遇; (2)在(1)的条件下,若点P 旋转速度为每秒60°,求OP 与AB 垂直时,点C 、D 之间的距离; (3)若OP =1 ㎝,当三点C 、D 、P重合时,求mn的值. ABO2016~2017学年度第一学期期末调研七年级数学参考答案一、选择题:本大题共10小题,每小题2分,共20分. 1.D 2.A 3.B 4.C 5.C 6.D 7.A 8.C 9.B 10.D 二、填空题:本大题共8小题,每小题3分,共24分.11.> 12.9 13.40 14.2252x x +- 15.2 16.1或9 17.18 18.31.5 三、解答题:本大题共10小题,共76分. 19.(本题8分)计算: 解:(1)原式=231(36)(36)(36)3412⎛⎫⨯-+⨯-+-⨯- ⎪⎝⎭…………………1分 =24273--+…………………3分=48-…………………4分(2)原式=()()12384-⨯-⨯-…………………5分 =26-…………………7分=4-…………………8分20.(本题6分)先化简,再求值:解:原式=232320102012a ab a ab --+…………………4分 =32ab …………………5分当a =-1,b =2时,原式=()3212⨯-⨯ = 16-…………………6分21.(本题8分)解方程:解:(1)4x -60+3x+4=0…………………1分 4x +3x =60-4…………………2分7x =56…………………3分 x =8…………………4分 (2)3(12)217(3)x x --=+…………………5分 3621721x x --=+…………………6分 1339x -=…………………7分 3x =-…………………8分 22.(本题8分) 解:(1)5;3…………………2分(2)a +b -c ;b c -………………4分 (3)12;2…………………6分 (4)a b -;2a b+…………………8分 23.(本题6分) 解:∵∠1=20°,∠COE =70°,∴∠3=∠COE -∠1=50°.…………………1分OC 平分∠AOD ,∴∠4=∠3=50°.…………………2分 ∴∠AOE =∠4+∠3+∠1=120°.…………………4分 ∵∠AOE +∠2=180°, ∴∠2=60°.…………………6分 24.(本题6分)解: 设每个水瓶x 元,则每个水杯(30-x )元…………………1分 根据题意得: 3x +4(30-x )=95…………………3分 x =25…………………4分 则30-x =5…………………5分 答:一个水瓶25元,一个水杯5元.…………………6分 25.(本题8分)解: ①∠BCE ;②两直线平行,同位角相等;………2分 ③∠BCE ;④等量代换;………4分 ⑤等式性质;⑥∠ACD ;………6分⑦∠ACD ;⑧内错角相等,两直线平行………8分 26.(本题8分)解:设还需要x 天才能完成,则: ……………………………1分1111()4()130151215x +⨯++=.……………………………4分 解之得:x =4.……………………………7分答:还需要4天才能完成.……………………………8分 27.(本题8分) 解:(1)∵AP ∥DQ ,∴∠D +∠DAB =180°.∵∠D =80°,∴∠DAB =100°. ∵∠ABC =80°,∴∠DAB +∠ABC =180°, ∴AD ∥BC .……………………………2分 (2)∵AN 平分∠DAM ,∴∠NAM =∠NAD =12∠DAM . ∵∠1=∠2, ∴∠CAM =12∠BAM . 1 2 3 4O A C D E第23题∴∠NAM+∠CAM=12∠DAM+12∠BAM,即:∠CAN=12∠DAB∵∠DAB=100°,∴∠CAN=50°.……………………………4分(3)①不会.∵AP∥DQ,∴∠AMD=∠MAB=2∠1,∠ACD=∠1,……………………………5分∴∠AMD:∠ACD=2.……………………………6分②∵AP∥DQ,AD∥BC,∴∠AND=∠NAB,∠ACB=∠DAC,∵∠AND=∠ACB,∴∠NAB=∠DAC.……………………………7分∴∠NAB-∠NAC=∠DAC-∠NAC,即:∠1=∠DAN.∴∠1=∠2=∠DAN=∠MAN=25°,∴∠ACB=∠DAC=75°.……………………………8分28.(本题10分)解:(1)145.………………………2分(2)①当OP在线段AB上方且垂直于AB时,运动了1秒,此时CD=9㎝; (4)分②当OP在线段AB下方且垂直于AB时,运动了4秒,此时CD=6㎝. (6)分(3)①当点P在点O左侧时,59m n=,∴59mn=; (8)分②当点P在点O右侧时,77m n=,∴1mn=. (10)分。
2015-2016学年第一学期初一数学期末综合试卷(1)附答案
2015-2016学年第一学期初一数学期末综合试卷(1)命题:知识涵盖:苏科版七年级上册;分值:130分;一、选择题:(本题共10小题,每小题3分,共30分)1.(2015•盘锦)12-的相反数是………………………………………………………( ) A .2; B .-2; C .12; D .12-; 2.(2015•玉林)下列运算中,正确的是……………………………………………………( )A .325a b ab +=;B .325235a a a +=;C .22330a b ba -=;D .22541a a -=; 3.(2015•绥化)如图是一些完全相同的小正方体搭成的几何体的三视图.这个几何体只能是……………………………………………………………( )4.已知∠AOB =30°,自∠AOB 顶点O 引射线OC ,若∠AOC ︰∠AOB =4︰3,那么∠BOC 的度数是( )A .10° B.40° C .70° D .10°或70°5.已知点C 在线段AB 上,则下列条件中,不能确定点C 是线段AB 中点的是…………( )A .AC =BC ;B .AC +BC =AB ; C .AB =2AC ;D .BC =12AB ; 6.若a =a -,则实数a 在数轴上的对应点一定在……………………………( )A .原点左侧;B .原点或原点左侧;C .原点右侧 ;D .原点或原点右侧;7.(2014•梅州)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是………………………………………………( )A . 15°B . 20°C . 25°D . 30°8.如图,将一张长方形的纸片沿折痕E 、F 翻折,使点C 、D 分别落在点M 、N 的位置,且∠BFM=12∠EFM ,则∠BFM 的度数为………………………………………………………( ) A .30° B .36° C .45° D .60°9.已知a ,b ,c 在数轴上的位置如图所示,化简22a c a b c b +----的结果第10题A .B .C .D . 第7题 第8题是……………………( )A .0;B . 4b ;C .22a c -- ;D . 24a b -;10. 根据如图的程序,计算当输入值2x =-时,输出结果y 为……………………( )A .1;B .5;C .7;D .以上都有可能;二、填空题:(本题共8小题,每小题3分,共24分)11.2--的绝对值是 .12.地球离太阳约有一亿五千万千米,用科学记数法表示这个数是 千米.13.已知∠α=39°23′,则∠α的补角的度数是 .14.(2015•岳阳)单项式2312x y -的次数是 . 15.当n= 时,253x y 与2312n x y --是同类项.16.已知代数式21x y ++的值是3,则代数式132x y --的值是 . 17.(2015•甘孜州)已知关于x 的方程332x a x -=+的解为2,则代数式221a a -+的值是 .18.(2015•绥化)填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a b c ++= .三、解答题:(本大题共76分)19.计算:(本题满分8分)(1)()375244128⎛⎫-+-⨯- ⎪⎝⎭; (2)()241123522-+⨯--÷⨯20. (本题满分8分)解方程:(1)()4232x x -=--; (2)2151136x x +--=;21.(本题满分8分,每小题4分)先化简,再求值:(1) 5a 2b +4-3a 2b -5ab +5-2a 2b +6ab ,其中a =4,b =-5;(2)()221374322x x x x ⎡⎤----⎢⎥⎣⎦,其中x =-2.22. (本题满分8分)已知13y x =-+,223y x =-.(1)当x 取何值时,12y y =;(2)当x 取何值时,1y 的值比2y 的值的2倍大8;23.(本题满分6分)如图,点P ,Q 分别是∠AOB 的边OA ,OB 上的点.(1)过点P 画OB 的垂线,垂足为H ;(2)过点Q 画OA 的垂线,交OA 于点C ,连接PQ ;(3)线段QC 的长度是点Q 到 的距离, 的长度是点P 到直线OB 的距离,因为直线外一点和直线上各点连接的所有线段中,垂线段最短,所以线段PQ 、PH 的大小关系是 (用“<”号连接).24.(本题满分6分)已知线段AB ,在AB 的延长线上取一点C ,使BC=3AB ,在BA 的延长线上取一点D ,使DA=32AB ,E 为DB 的中点,且EB=30cm ,求DC 的长.25.(本题满分5分)如图所示,直线AB 、CD 相交于O ,OE 平分∠AOD ,∠FOC=90°,∠1=40°,求∠2和∠3的度数.26.(本题满分6分)某商场因换季,将一品牌服装打折销售,每件服装如果按标价的六折出售将亏10元,而按标价的八折出售将赚70元,问:(1)每件服装的标价和成本分别是多少元?(2)为使销售该品牌服装每件获得20%的利润率,应按标价的几折出售?27. (本题满分6分)如图,在数轴上的1A 、2A 、3A 、4A …20A ,这20个点所表示的数分别为1a 、2a 、3a 、4a 、…20a .若12231920AA A A A A === ,且3a =20,1412a a -=.(1)求1a 的值;(2)若124a x a a -=+,求x 的值;(3)求20a 的值.28.(本题满分7分)如图1,已知AB=12cm ,点C 为线段AB 上的一个动点,点D 、E 分别是AC 、BC 的中点. ①若点C 恰为AB 的中点,则DE= _________ cm ;②若AC=4cm ,则DE= _________ cm ;③DE 的长度与点C 的位置是否有关?请说明理由.(2)如图2,已知∠AOB=120°,过角的内部任一点C 画射线OC ,若OD 、OE 分别是∠AOC、∠BOC 的平分线,则∠DOE 的大小与射线OC 的位置是否有关?请说明理由.29. (本题满分8分)如图,AC ⊥CB ,垂足为C 点,AC =CB =8cm ,点Q 是AC 的中点,动点P 由B 点出发,沿射线BC 方向匀速移动.点P 的运动速度为2cm/s.设动点P 运动的时间为ts .为方便说明,我们分别记三角形ABC 面积为S ,三角形PCQ 的面积为1S ,三角形PAQ 的面积为2S ,三角形ABP 的面积为3S .(1) 3S = ㎝2(用含t 的代数式表示);(2)当点P 运动几秒,1S =14S ,说明理由; (3)请你探索是否存在某一时刻,使得1S =2S =3S ,若存在,求出t 值,若不存在,说明理由.2015-2016学年第一学期初一数学期末综合试卷(1)参考答案一、选择题:1.C;2.C;3.A;4.D;5.B;6.B;7.C;8.B;9.B;10.C;二、填空题:11.2;12.81.510⨯;13.140°37′;14.5;15. 2;16.2;17.1; 18.10;三、解答题:19.计算:(1)19;(2)-3;20.(1)2x=;(2)3x=-;21.(1)-11;(2)28.5;22.(1)2x=;(2)15x=;23.(1)略;(2)略;(3)直线OA,线段PH;PH<PQ;24.132㎝;25.(1)∠2=65°,∠2=50°;26. 解:(1)设每件标价为x元.由题意,得0.6x+10=0.8x一70,解得:x=400,则成本为:0.6x+10=0.6×400+10=250;(2)250×(1+20%)÷400=0.75,即应按标价的7.5折出售.答:每件服装的标价标价400元,成本价250元,应按标价的7.5折出售.27.(1)12;(2)-28或52;(3)88;∴DE=DC+CE=AD+EB=∴,29.(1)8t ;(2)由题意,得当0≤t ≤4时,()18241642t S t -⨯==-, 当t >4时,()12844162t S t -⨯==-, ∴当16-4t=14×8×8×12时,t=2,当4t-16=14×8×8×12时,t=6.答:当点P 运动2秒或6秒时,1S =14S ; (3)由题意,得16-4t=8t ,解得:t=43. 答:当t=43时,1S =2S =3S .。
2015-2016学年江苏省南通市海门市能仁中学七年级数学上期末测试卷
海门能仁中学2015-2016学年度(上)初一期末测试卷一、选择题(本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1.23-的绝对值是 A .23B .23-C .32D .32-2.小明爸爸手机软件“墨迹天气”显示,2016年元旦我市最高气温7℃,最低气温-2℃,那么这天的最高气温比最低气温高 A .-5℃B .5℃C .-9℃D .9℃3.根据新浪新闻网报道,南通地铁一期建设周期为2015-2019年,总投资394亿元,将394亿用科学记数表示应为 A .394×108B .3.94×1010C .0.394×1011D .3.94×1084.下列各式中,次数为3的单项式是 A .15ab -B .223a bC .343x -D . 235x y5.如图,直线a ,b 被直线c 所截,a ∥b ,∠1=∠2,若∠3=40°, 则∠4等于 A .40° B .50°C .70°D .80°6.若关于x 的方程43ax x a =-的解为3x =,则a 的值是 A .2-B .1C .2D .67.下列说法中,正确的是A .延长线段AB 到M ,使2BM AB = B .射线AB 和射线BA 是同一条射线C .延长射线MN 到CD .连结两点的线段叫做两点间的距离8.下列各式中运算错误的是 A .5x ﹣2x =3x B .5ab ﹣5ba =0 C .4x 2y ﹣5xy 2=﹣x 2yD .3x 2+2x 2=5x 29.点A 、B 、C 在同一条数轴上,其中点A 、B 表示的数分别为-2、3,若2BC =,则AC 等于 A .5B .7C .1或5D .3或7(第5题)10.已知O 为圆锥的顶点,M 为圆锥底面上一点,点P 在OM 上.一只蜗牛从P 点出发,绕圆锥侧面爬行,回到P 点时所爬过的最短路线的痕迹如图所示.若沿OM 将圆锥侧面剪开并展开,所得侧面展开图是( )二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 11.若a 、b 互为倒数,则2016(2)ab -= ▲ .12.如图,O 为直线AB 上一点,∠COB =26°30′,则∠1= ▲ 度.13.代数式13mn x y-与34x y -是同类项,则nm = ▲ .14.已知:如图,直线a ∥b ,将一块含30°角的直角三角板如图所示放置,若∠1=40°,则∠2= ▲ 度.15.南通探险王国开园后,入园门票有两种销售方式,分别为:景点售票门市价每张120元; 网络售票团购价每张70元.如果某日探险王国以两种方式售出门票100张,门票收入共10000元.那么当日售出网络团购票 ▲ 张.16.已知线段8AB =,直线AB 上有一点C ,且10BC =,M 是线段B C 的中点,则AM 的长为 ▲ .17.如图,将周长为8的三角形ABC 向右平移1个单位后得到三角形DEF ,则四边形ABFD的周长等于 ▲ .18.现将连续自然数1至2016按图中的方式排列成一个长方形队列,再用如图所示的正方形任意框出9个数.A .B .C .D .A B C DEF(第17题)(第12题)则在下列三个数①711、②2000、③2016中,不可能成为正方形框中9个数的和是的 ▲ .(填序号)三、解答题(本大题共10小题,共56分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.计算(1)32422()93-÷⨯-;(2)23(2)5(2)4-⨯--÷20.化简(1)2222(45)(34)x y xy x y xy ---; (2)22135(3)22x x x x ⎡⎤---+⎢⎥⎣⎦21.解下列方程(1)44(3)2(9)x x --=-;(2)3157146y y ---=1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 · · · · · · ··· · · · · · 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 201622.已知21(2)0x y ++-=,求)3(2)52(4222xy x y xy x xy ++-+-的值.23.如图,直线l 1∥l 2,∠α=∠β,∠2=140°,求∠1的度数是多少度?24.双“十一”已成为人们的购物狂欢节.在2015年双十一期间,某网购平台开展家电促销活动,商家将某型号的液晶电视按进价提高40%后,以打9折包邮的方式销售,包邮一台电视商家需支付50元运费给快递公司,结果每台液晶电视仍获利418元,求每台液晶电视的进价是多少元?25.如图,OB 是∠AOC 的平分线,OD 是∠EOC 的平分线.(1)如果∠AOD =76°,∠BOC =18°,则∠DOE 的度数为 ; (2)如果∠BOD =54°,求∠AOE 的度数.26.我国从全国情况来说属于缺水国家,为鼓励据居民节约用水,某市自来水公司规定了水费的分段计算的方法:每月用水不超过30吨,按每吨水2元计算;每月用水超过30吨,超出部分按每吨3元计算.设每月用水x吨.(1)若0≤x≤30时,水费为元;若x>30时,水费为_______________元.(用含有x的式子表示);(2)小明为了解日均用水量,记录了9月第一周的水表读数请你估计小明家9月(30天)的水费约为多少元?(3)小明家采取了节水措施后,10月平均每吨水费2.25元,那么该用户10月份用水多少吨?27.如图,一条铁路修到一个村子边时,需拐弯绕道而过,如果第一次拐的角∠A是105度,第二次拐的角∠B是135度,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,那么∠C应为多少度?28.已知数轴上三点M,O,N对应的数分别为-3,0,2,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M,点N的距离相等,那么x的值是______________;(2)数轴上是否存在点P,使点P到点M,点N的距离之和是8?若存在,请求出x的值;若不存在,请说明理由.(3)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N的距离相等?参考答案 一、选择题 1-5 ADBDC 6-10 CACDD 二、填空题 11.1 12.153.5 13.914.2015.40 16.13或317.1018.①三、解答题 19.(1)解:原式=-8 (2)解:原式=45(8)4⨯--÷=20+2=22 20.(1)解:原式=22224534x y xy x y xy --+=22x y xy - (2)解:原式=2213[532]2x x x x --++ =2932x x --21.(1)x =-1 (2)y =-122.解:由题意得,10x +=,20y -=, 所以1x =-,2y =原式=22242526xy x xy y x xy--+++=25xy y+当1x=-,2y=时,原式=25(1)224⨯-⨯+=-23.解:延长AB交CD于点G,∠2=180°-∠CDE=180°-40°=140°24.解:设每台电视机的进价是x元,得(140%)90%50418x x+⨯--=x=1800答:每台液晶电视的进价是1800元。
苏科版2015-2016学年第一学期初一数学期末综合试卷(三)及答案
苏科版2015-2016学年第一学期初一数学期末综合试卷(三)2015.12.19一、选择题:(本大题共10小题,每小题3分,共30分)1.-21的相反数是…………………………………………………………………………( )A .21 ; B .2; C .-21 ; D .-2 ; 2.下列说法中,正确的是…………………………………………………………( )A.倒数等于它本身的数是1;B.如果两条线段不相交,那么它们一定互相平行;C.等角的余角相等;D.任何有理数的平方都是正数;3.下列一组数:﹣8,2.6,3--,π-, 227-,0.1010010001…,(每两个1之间依次多一个0)中,无理数有………………………………………………………………( )A . 0个;B . 1个;C . 2个;D . 3个;4. 若1x =是方程260x m +-=的解,则m 的值是………………………………( )A .-4 ;B .4;C .-8;D .8;5.(2013•遵义)一个几何体的三视图如图所示,则这个几何体是………………………( )A .-4 ;B .4;C .-8;D .8;6.(2014.抚州)已知a 、b 满足方程组2226a b a b -=⎧⎨+=⎩,则3a b +的值为……………( )A .8 ;B .4;C .-4;D .-8;7.如图,AB 、CD 相交于点O ,EO ⊥AB ,则∠1与∠2的关系是…………………( )A .相等;B .互余 ;C .互补 ;D .对顶角;A. B. C. D. 第7题图第10题图8.已知有理数a ,b 在数轴上的位置如图所示,则化简代数式a b a b +--的结果是…………( )A .b -;B .a ;C .2b -;D .2a b -;9.(2013•扬州)下列图形中,由AB ∥CD ,能得到∠1=∠2的是………………………( )10.一块正方体木块的六个面上分别标上数字1~6,如图是从不同方向所看到的数字情况,则5对面的数字是………………………………………………………………( )A .3 ;B .4;C .6;D .无法确定;二、填空题:(本大题共8小题,每小题3分,共24分)11.单项式32y x -的系数是___ _. 12.“激情盛会,和谐亚洲”第16届亚运会在中国广州举行,广州亚运城的建筑面积约是358000平方米,将358000用科学记数法表示为____________ .13.如图,点C 是线段AB 上的任一点,点D 是线段BC 的中点,若AB =10,AC =6,则CD =______.14.某商店销售一批服装,每件售价150元,打8折出售后,仍可获利20元,设这种服装的成本价为每件x 元,则x 满足的方程是 .15.若代数式b a 3+的值为8-,则代数式()()b a b a +++24132的值为__________.16.一个角的补角是它的余角的3倍,则这个角的度数为 .17.(2014•长沙)如图,直线//a b ,直线c 分别与a ,b 相交,若∠1=70°,则∠2= 度.A. B. C. D.第18题图第13题第17题图18.(2014•黔西南州)如图,将矩形纸片ABCD 折叠,使边AB 、CB 均落在对角线BD 上,得折痕BE 、BF ,则∠EBF= °.三、解答题:(本题共76分)19.(每小题4分,共8分)计算:(1))12()216141(-⨯-+; (2))3(4)2(2132--÷-+⨯-.20. (本题满分5分)化简求值:求()()222245233a ab b a ab b -+--+的值,其中225a b -=,2ab =;21. (本题满分8分)解下列方程(组):(1)⎩⎨⎧=-+=-.11)(323y x y y x , (2)14126110312-+=+--x x x ;22.(本题满分5分)如图,在平面内有A 、B 、C 三点.(1)画直线AC ,线段BC ,射线AB ,过C 作CH ⊥AB 于H ;(2)取线段BC 的中点D ,连接AD .(保留作图痕迹,不要求写作法)23.(本题满分6分)如图,已知线段AB =6,延长线段AB 到C ,使BC =2AB ,点D 是AC 的中点.求:(1)AC 的长;(2)BD 的长.24.(本题共6分)如果关于x 、y 的二元一次方程组212x y x y a+=⎧⎨+=⎩的x 和y 的绝对值相等,求a 的值.25.(本题满分6分)已知2232A a b =-,226B a b =+.(1) 22a b += ;(用含A ,B 的代数式表示)(2)若2323a b x y +与514a b x y +-是同类项,求A -2B 的值; (3)若A =5,B =15,求22224a a b b -+的值.26. (本题满分8分)如图,直线AB 与CD 相交于点O ,OE ⊥AB ,OF ⊥CD ,OP 是∠BOC 的平分线.(1)图中除直角外,还有相等的角吗?请写出两对:① ;② .(2)如果∠DOA =60°,①那么根据 ,可得∠BOC = 度.②因为 ,所以∠COP = 度.③求∠BOF 的度数.27. (本题满分6分)如图,已知:E 为DF 上的点,B 为AC 上的点,∠1=∠2,∠C =∠D. 求证:⑴ DB ∥EC ;⑵ DF ∥AC .28.(本题满分8分)(1)观察下列各图,第①个图中有1个三角形,第②个图中有3个三角形,第③个图中有6个三角形,第④个图中有 个三角形,……,根据这个规律可知第n 个图中有 个三角形(用含正整数n 的式子表示).(2)问在上述图形中是否存在这样的一个图形,该图形中共有35个三角形?若存在,求出n 的值;若不存在请说明理由.(3)在下图中,点B 是线段AC 的中点,D 为AC 延长线上的一个动点,记△PDA 的面积为1s ,△PDB 的面积为2s ,△PDC 的面积为3s .试探索1s 、2s 、3s 之间的数量关系,并说明理由.D C BE F12G H29.(本题满分10分)知识的迁移与应用.问题一:如图①,甲、乙两人分别从相距30km的A、B两地同时出发,若甲的速度为80km/h,乙的速度为60km/h,设甲追到乙所花时间为xh,则可列方程为:;问题二:如图②,若将线段AC弯曲后视作钟表的一部分,线段AB对应钟表上的弧AB(1小时的间隔),易知∠AOB=30°.(1)分针OC的速度为每分钟转动度;时针OD的速度为每分钟转动度;(2)若从1:00起计时,几分钟后分针与时针第一次重合?(3)在(2)的条件下,几分钟后分针与时针互相垂直(在1:00~2:00之间)?参考答案一、选择题:1.A ;2.C ;3.C ;4.B ;5.C ;6.A ;7.B ;8.C ;9.B ;10.B ;二、填空题:11. 13-;12. 53.5810⨯;13.2;14. 201500.8x +=⨯;15.-80;16. 45°;17.110°;18.45°;三、解答题:19.(1)1;(2)-1;20. 222226a b ab --=;21. (1)41x y =⎧⎨=⎩;(2)16x =;22.略; 23.(1)18;(2)3;24.解:①当x y =,即0x y -=时,方程组两式相减得1x y a -=-,∴10a -=,∴1a =; ②当x y =-,即0x y +=时,()31x y a +=+,∴10a +=,∴1a =-.25.(1)4A B +;(2)-10;(3)5; 26. 解:(1)①∠COP=∠BOP ,②∠COB=∠AOD ,③∠BOF=∠EOC ;(2)①根据对顶角相等,可得∠BOC=60°.②因为OP 是∠BOC 的平分线,所以∠COP=30°.③∵OF ⊥CD ,∴∠COF=90°,又∵∠BOC=∠DOA=60°,∴∠BOF=∠COF-∠BOC=90°-60°=30°.故答案为:(1)∠COP=∠BOP ;∠COB=∠AOD ;(2)对顶角相等;60;OP 是∠BOC 的平分线;30°.27.略;28. 解:(1)10;(1)2n n +; (2)不存在(解法一)当n=7时,三角形的个数为(1)2n n +=()771282⨯+=; 当n=8时,三角形的个数为(1)2n n +=()881362⨯+=;所以不存在n 使三角形的个数为35. (解法二)由(1)352n n +=,得(1)70n n +=,而不存在两个连续整数的乘积为70, 所以不存在n 使三角形的个数为35.(3)1322S S S +=.∵点B 是线段AC 的中点,∴AB=BC ,∴PAB PBC S S = ,∴1322S S S +=.29.解:问题一:806030x x -=;问题二:(1)6,0.5;(2)60.530x x -=,解得6011x =;(3)设x 分钟后分针与时针互相重合. 如图①:60.53090x x =++,解得24011x =;如图②:60.530270x x =++;解得60011x =; 综上所述:当24011x =或60011x =时,分针与时针互相垂直.。
海门市2015-2016学年度第一学期期中考试七年级数学试卷
。
b -1 图 16 0
a
1
16.两个有理数 a 、 b 在数轴上的位置如图 16 所示,则 a b 0(填>,=,<)。
17.如果 2x-y=3,则-2y+4x-5=
。
18.对于有理数 m,如果 m =- m ,则 m 。
3
1
19.买一个篮球需要 x 元,一个排球的价格是篮球的 ,一个足球的价格是篮球的 ,
5
2
买 3 个篮球、10 个排球、6 个足球共需要
元。
35
20.已知下列一组数:-1, ,- ,
7
,
9
11
, ……,则第 9 个数与第三 10 个
4 9 16 25 36
数之和为
。
得分 评卷人
三、专心解一解(本题满分 60 分)请认真读题,冷静思考.解答题应 写出文字说明、解答过程.
21.计算(每小题 6 分,共 18 分) (1)27-54+20+(-46)-(-73)
千米/时(m>n),则此轮船往返 A、B 两码头共用………………………………【 】小时
A、 60 60 B、 30 30 C、 30 30 D、 60 60
mn
mn
mn mn
mn mn
得分 评卷人 二、细心填一填(本大题共 10 小题,每小题 2 分,共 20 分)把答案 直接写在题中的横线上.
7、下列单项式中,次数为 5 的是…………………………………【 】
A、3a5b2 B、-2a4b C、-22a2b D、4a5b
8.对于多项式 x2-3x2y+3xy2-1 的描述正确的是……………………………………【 】
A、此多项式的次数为 2
苏科版2015-2016学年度第一学期七年级期末数学试题及答案
苏科版2015-2016学年度第一学期七年级期末数学试卷(全卷满分:150分 考试时间:120分钟)2016.1.20 一、精心选一选(本题共8小题,每小题3分,共24分) 1.21—的倒数是( ▲ ) A .21- B .21 C .—2 D .22.下列式子中正确的是( ▲ )A .―3―2=―1B .325a b ab +=C .77--=D .550xy yx -=3.直线l 外一点P 与直线l 上两点的连线段长分别为3cm ,5cm ,则点P 到直线l 的距离是( ▲ )A . 不超过3cmB . 3cmC . 5cmD . 不少于5cm4.小明在日历上圈出五个数,呈十字框形,它们的和是40,则中间的数是( ▲ )A .7B .8C .9D .10 5.如图,某测绘装置上一枚指针原来指向南偏西600,把这枚指针按顺时针方向旋转41周,则结果指针的指向( ▲ )A .南偏东30ºB .南偏东60ºC .北偏西30ºD .北偏西60º6.甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等.设甲班原有人数是x 人,可列出方程( ▲ ) A .98+x =x -3 B .98-x =x -3 C .(98-x )+3=x D .(98-x )+3=x -37.下列语句中:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③两条不相交的直线叫做平行线;④过一点有且只有一条直线与已知直线平行。
其中错误的有( ▲ )A .1个B .2个C .3个D .4个8.如图所示的数码叫“莱布尼茨调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数,且两端的数均为,每个数是它下一行左右相邻两数的和,则第8行第3个数(从A(第15题)二、认真填一填(本题共10小题,每小题3分,共30分)9.扬州今年冬季某天测得的最低气温是-6℃,最高气温是5℃,则当日温差是 ▲ ℃. 10.如图,为抄近路践踏草坪是一种不文明的现象.请你用学过的数学知识解释出现这一现象的原因:________ ▲ __________.11.钓鱼岛是中国领土一部分.钓鱼岛诸岛总面积约5平方千米,岛屿周围的海域面积约170 000平方千米.170 000用科学计数法表示为 ▲ . 12.一个角的补角是它的余角的3倍,则这个角的度数是 ▲ . 13. 代数式2231a a ++的值是6,那么代数式2695a a ++的值是 ▲ .14.小华同学在解方程=-15x ( )3+x 时,发现 “( )”处的数字模糊不清,但察看答案可知解为,2=x 则“( )”处的数字为 ▲ .15.一个正方体的每个面上都写有一个汉字,其平面展开图如图所示,那么在该正方体中和“文”相对的字是 ▲ .16.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售, 仍可获利60元,则这款服装每件的进价为 ▲ 元.17.已知线段AB=20cm ,直线..AB 上有一点C ,且BC=6cm , M 是线段AC 的中点,则线段AM 的长度为 ▲ .18.如图所示, 两人沿着边长为90m 的正方形,按A→B→C→D→A……的方向行走,甲从A 点以65m/min 的速度、乙从B 点以75m/min 的速度行走, 当乙第一次追上甲时,将在正方形的 ▲ 边上.南 东(第5题)(第8题)(第18题)三、运算大比武 19.(本题满分8分)计算:(1)537(72)9818⎛⎫-+⨯- ⎪⎝⎭(2)63)211(14-⨯÷--- 20.(本题满分8分)先化简,再求值:)3(2)2(42222b a ab ab b a +---,其中2-=a ,3=b . 21.(本题满分8分)解方程:(1)4)5(211=--x x (2) 341125x x -+-=22.(本题满分8分) 已知关于x 的方程23x m mx -=+与x -1=2(2x -1),它们的解互为倒数,求m 的值.四、漫游图形世界23.(本题满分10分)如图,点P 是AOB ∠的边OB 上的一点. (1)过点P 画OB 的垂线,交OA 于点C ; (2)过点P 画OA 的垂线,垂足为H ;(3)线段PH 的长度是点P 到 ▲ 的距离,线段 ▲ 的长度是点C 到直线OB 的距离.因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段PC 、PH 、OC 这三条线段大小关系是 ▲ . (用“<”号连接) 24.(本题满分10分)如图,是由8个大小相同的小正方体组合成的简单几何体.(1)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的俯视图和主视图不变,那么请在下面的网格中画出添加小正方体后所得几何体所有可能的左视图.25.(本题满分10分)如图,点O 是直线AB 、CD 的交点,OE ⊥AB ,OF ⊥CD ,OM 是∠BOF 的平分线,∠AOC=32. (1)填空:①由OM 是∠BOF 的平分线,可得∠ ▲ =∠ ▲ ; ②根据 ▲ ,可得∠BOD = ▲ 度; ③根据 ▲ ,可得∠EOF=∠AOC ; (2)计算:求∠COM 的度数.(写出过程)MFEODC BA五、实践与运用26.(本题满分10分)国庆期间,小明、小亮等同学随家长一同到瘦西湖公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2) 请你帮助小明算一算,用哪种方式购票更省钱?说明理由.27. (本题满分12分)某校的一间阶梯教室,第1排的座位数为12,从第2排开始,每一排都比前一排增加a个座位.(1)请你在下表的空格里填写一个适当的代数式:(2)已知第15排座位数是第5排座位数的2倍,求a的值;(3)在(2)的条件下计算第21排有多少座位?28. (本题满分12分),三角板A PD答案及评分标准一、精心选一选(本题共8小题,每小题3分,共24分)二、认真填一填(本题共10小题,每小题3分,共30分)9. 11 ; 10. 两点之间,线段最短 ;11.5107.1⨯;12. 45° ; 13. 20 ; 14. 3 ;15. 强 ;16. 180 ; 17. 7或13 ;18. AD . 19. (本题满分8分,每小题4分)(1)537(72)9818⎛⎫-+⨯- ⎪⎝⎭(2)63)211(14-⨯÷--- 解:原式=-40+27-28 (3分) 解:原式= -1-1 (3分) =-41 (4分) =-2 (4分) 20.(本题满分8分))3(2)2(42222b a ab ab b a +---,其中2-=a ,3=b .解:原式=b a ab ab b a 22226248-+- (4分) =2222ab b a - (6分)当a=-2,b=3时,原式=60 (8分) 21.(本题满分8分,每小题4分)(1)4)5(211=--x x (2) 341125x x -+-= 解:11x-2x+10=4 (2分) 解:5(x-3)-2(4x+1)=10 (2分) 9x=-6 (3分) 5x-15-8x-2=10 (3分)x=—32(4分) x= —9 (4分) 22.(本题满分8分) 先解x -1=2(2x -1)得x=31(3分)∴23x m mx -=+的解为x=3 (4分) 代入方程求出m= -59(8分)23. (本题满分10分)(1)(2)作图略 (各2分,共4分)(3) OA , PC ; (4) PH ﹤PC ﹤OC (用“<”号连接).(每空2分) 24. (本题满分10分)(1)图略 (每图2分,共4分) (2)图略 (每图3分,共6分)25. (本题满分10分)(1)①∠ FOM =∠ BOM ;②根据 对顶角相等 ,可得∠BOD = 32 度;③根据 同角的余角相等 ,可得∠EOF=∠AOC ;(每空1分,共5分) (2) 119° (10分) 26.(本题满分10分) 解:(1)设:x 个成人,(15- x )个学生。
2015—2016学年度第一学期期末检测试卷七年级数学试题及答案
2015—2016学年度第一学期期末检测试卷七年级数学2016.1.28一、选择题。
(每题3分,共30分)( )1.-5的绝对值是: A.5 B.51 C.-5 D.0.5 ( )2.当χ=-2时,代数式-χ+1的值是:A.-1B.-3C.1D.3( )3.下列说法中,正确的是:A.直线AB 与直线BA 是同一条直线B.射线OA 与射线AO 是同一条射线C.延长线段AB 到点C ,使AC=BCD. 画直线AB=5cm( )4.地球上的陆地面积约为149 000 000千米2,用科学记数法表示为:A.149×106千米2B. 1.49×108千米2C. 14.9×107千米2D. 0.149×109千米2( )5.图1是由5个大小相同的小正方体摆成的立体图形,它的俯视图...是:(图一) A B C D( )6.下列各组两项中,是同类项的是:A. χy 与-χyB. 51abc 与51ac C.-2χy 与-3ab D. 3χ2y 与3χy 2( )7.如图,数轴上的A 、B 两点分别表示有理数a 、b ,下列式子中不.正确的是A.|b|>|a|B.a -b <0C.-a +b >0D.a +b <0( )8.试从以下事件中选出必然事件:A.这张彩票中大奖B.掷骰子掷得4点C.明天北京下雨D.在装有2个白球、1个红球的袋子中取出2个球,其中至少有一个白球A.这张彩票中大奖B.掷骰子掷得4点C.明天北京下雨D.在装有2个白球、1个红球的袋子中取出2个球,其中至少有一个白球( )9.在下列的代数式的写法中,表示正确的一个是:A.“负χ的平方”记作-χ2B. “y 与311的积”记作311y C.“χ的3倍”记作χ3 D.“a 除以2b 的商”记作b a 2( )10. 如图,3×3方格中的任一行、任一列以及对角线上的数字之和相等,那么m 等于: A.9 B.10 C.13 D.无法确定二、填空题。
南通市海门市2015-2016学年七年级上期末数学试卷含答案解析
2015-2016学年江苏省南通市海门市七年级(上)期末数学试卷一、选择题1.的绝对值是()A.B.C.2 D.﹣22.从正面看、从左面看、从上面看都一样的几何体是()A.圆柱 B.长方体C.球D.五棱柱3.下列计算中,正确的是()A.(﹣1)2×(﹣1)5=1 B.﹣3÷(﹣)=9 C.÷(﹣)3=9 D.﹣(﹣3)2=94.如图,下列说法正确的是()A.OA的方向是北偏东30°B.OB的方向是北偏西60°C.OC的方向是南偏东50°D.OD的方向是东偏南45°5.如图把左边的图形折叠起来围成一个正方体,应该得到图中的()A.B.C.D.6.若x=2是关于x的方程2x+3m﹣1=0的解,则m的值为()A.﹣1 B.0 C.1 D.7.在直线l上顺次取A、B、C三点,使得AB=5cm,BC=3cm,如果O是线段AC的中点,那么线段OB 的长度是()A.0.5cm B.1cm C.1.5cm D.2cm8.观察下列图形它们是按一定的规律排列的,依照此规律,第20个图形的“★”有()A.57个B.60个C.63个D.85个9.下列变形中,不正确的是()A.a+(b+c﹣d)=a+b+c﹣d B.a﹣(b﹣c+d)=a﹣b+c﹣dC.a﹣b﹣(c﹣d)=a﹣b﹣c﹣d D.a+b﹣(﹣c﹣d)=a+b+c+d10.如图,已知O为直线AB上一点,OC平分∠AOD,∠BOD=3∠DOE,∠COE=α,则∠BOE的度数为()A.360°﹣4αB.180°﹣4αC.αD.2α﹣60°二、填空题11.地球与太阳的平均距离大约为150 000 000km,用科学记数法表示km.12.一天早晨的气温是﹣5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的气温是℃.13.如图,在边长为1的小正三角形组成的图形中,正六边形的个数共有个.14.x表示一个三位数,若在x的右边放3,成为一个四位数,则这个四位数可表示为.15.用“●”“■”“▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”个.16.已知某商品降价20%后的售价为2800元,则该商品的原价为元.17.如图所示,将一副三角板叠放在一起,使直角的顶点重合于点O,则∠AOC+∠DOB的度数为.18.挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走.如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走.三、解答题19.计算:(1)﹣42﹣3×22×(﹣1)÷(﹣1)(2)﹣14﹣×[4﹣(﹣2)3].20.化简:(1)﹣2y2+3xy﹣2[x2﹣(2x2﹣xy+y2)](2)化简与求值:x2+2x+3(x2﹣x),其中x=﹣.21.(6分)如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大小.22.解方程(1)4x﹣1.5x=﹣0.5x﹣9;(2)1﹣=2﹣.23.如图,已知,CD∥EF,∠1=∠2.求证:∠3=∠ACB.24.在“五•一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱?说明理由.25.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(4)若点D是数轴上一点,点D表示的数是x,请你探索式子|x+6|+|x﹣8|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.2015-2016学年江苏省南通市海门市七年级(上)期末数学试卷参考答案与试题解析一、选择题1.的绝对值是()A.B.C.2 D.﹣2【考点】绝对值.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣的绝对值是.故选:A.【点评】本题考查了绝对值,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.从正面看、从左面看、从上面看都一样的几何体是()A.圆柱 B.长方体C.球D.五棱柱【考点】由三视图判断几何体.【分析】由基本立体图形的三视图可知:从正面看、从左面看、从上面看都一样的几何体是正方体(看到的都是正方形)和球(看到的都是圆),由此从选项中直接选择答案即可.【解答】解:∵从正面看、从左面看、从上面看都一样的几何体是正方体(看到的都是正方形)和球(看到的都是圆),∴选项中只有球符合题意.故选:C.【点评】此题主要考查了由三视图判断几何体,熟练掌握常见图形的三视图是解题关键.3.下列计算中,正确的是()A.(﹣1)2×(﹣1)5=1 B.﹣3÷(﹣)=9 C.÷(﹣)3=9 D.﹣(﹣3)2=9 【考点】有理数的混合运算.【专题】计算题.【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、原式=1×(﹣1)=﹣1,错误;B、原式=﹣3×(﹣3)=9,正确;C、原式=×(﹣27)=﹣9,错误;D、原式=﹣9,错误,故选B【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.4.如图,下列说法正确的是()A.OA的方向是北偏东30°B.OB的方向是北偏西60°C.OC的方向是南偏东50°D.OD的方向是东偏南45°【考点】方向角.【分析】根据方向角的定义,即可解答.【解答】解:A.OA的方向是北偏东60°,故错误;B.OB的方向是北偏西30°,故错误;C.OC的方向是南偏西50°,故错误;D.OD的方向是东偏南45°,正确;故选D.【点评】本题考查了方向角的定义,解决本题的关键是熟记方向角的定义.5.如图把左边的图形折叠起来围成一个正方体,应该得到图中的()A .B .C .D .【考点】展开图折叠成几何体.【专题】常规题型.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴有蓝圆圈与灰色圆圈的两个面是相对面,故A 、B 选项错误;又有蓝色圆圈的面与红色三角形的面相邻时应该是三角形的直角边所在的边与蓝色圆圈的面相邻, 即折叠后有蓝色圆圈的面应是左面或下面,所以C 选项不符合,故C 选项错误;D 选项符合.故选D .【点评】本题主要考查了正方体的展开折叠问题,要注意相对两个面上的图形,从相对面入手,分析及解答问题比较方便.6.若x=2是关于x 的方程2x+3m ﹣1=0的解,则m 的值为( )A .﹣1B .0C .1D .【考点】一元一次方程的解.【专题】计算题.【分析】根据方程的解的定义,把x=2代入方程2x+3m ﹣1=0即可求出m 的值.【解答】解:∵x=2是关于x 的方程2x+3m ﹣1=0的解,∴2×2+3m ﹣1=0,解得:m=﹣1.故选:A .【点评】本题的关键是理解方程的解的定义,方程的解就是能够使方程左右两边相等的未知数的值.7.在直线l上顺次取A、B、C三点,使得AB=5cm,BC=3cm,如果O是线段AC的中点,那么线段OB 的长度是()A.0.5cm B.1cm C.1.5cm D.2cm【考点】两点间的距离.【专题】计算题.【分析】作图分析由已知条件可知,AB+BC=AC,又因为O是线段AC的中点,则OB=AB﹣AO,故OB可求.【解答】解:根据上图所示OB=5cm﹣OA,∵OA=(AB+BC)÷2=4cm,∴OB=1cm.故选B.【点评】此题考查的知识点是两点间的距离,关键明确在未画图类问题中,正确画图很重要.所以能画图的一定要画图这样才直观形象,便于思维.8.观察下列图形它们是按一定的规律排列的,依照此规律,第20个图形的“★”有()A.57个B.60个C.63个D.85个【考点】规律型:图形的变化类.【专题】压轴题.【分析】排列组成的图形都是三角形.第一个图形中有1×3=3个★,第二个图形中有2×3=6个★,第三个图形中有3×3=9个★,…第20个图形共有20×3=60个★.【解答】解:根据规律可知第n个图形有3n个★,所以第20个图形共有20×3=60个★.另解:通过观察发现每行五星组成的三角形的边上分别有(n+1)个五星,共有3(n﹣1)个,但每个角上的五星重复加了两次,故五星的个数为3(n﹣1)﹣3=3n个,故第20个图象共有60个★.故选B.【点评】本题考查了图形的变化类问题,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.本题的关键规律为第n个图形有3n个★.9.下列变形中,不正确的是()A.a+(b+c﹣d)=a+b+c﹣d B.a﹣(b﹣c+d)=a﹣b+c﹣dC.a﹣b﹣(c﹣d)=a﹣b﹣c﹣d D.a+b﹣(﹣c﹣d)=a+b+c+d【考点】去括号与添括号.【专题】计算题.【分析】根据去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反判断即可.【解答】解:A、a+(b+c﹣d)=a+b+c﹣d,故本选项正确;B、a﹣(b﹣c+d)=a﹣b+c﹣d,故本选项正确;C、a﹣b﹣(c﹣d)=a﹣b﹣c+d,故本选项错误;D、a+b﹣(﹣c﹣d)=a+b+c+d,故本选项正确;故选C.【点评】本题考查了去括号法则,解题时牢记法则是关键,特别要注意符号的变化.10.如图,已知O为直线AB上一点,OC平分∠AOD,∠BOD=3∠DOE,∠COE=α,则∠BOE的度数为()A.360°﹣4αB.180°﹣4αC.αD.2α﹣60°【考点】角平分线的定义.【分析】设∠DOE=x,则∠BOE=2x,根据角之间的等量关系求出∠AOD、∠COD、∠COE的大小,然后解得x即可.【解答】解:设∠DOE=x,则∠BOE=2x,∵∠BOD=∠BOE+∠EOD,∴∠BOD=3x,∴∠AOD=180°﹣∠BOD=180°﹣3x.∵OC平分∠AOD,∴∠COD=∠AOD=(180°﹣3x)=90°﹣x.∵∠COE=∠COD+∠DOE=90°﹣x+x=90°﹣,由题意有90°﹣=α,解得x=180°﹣2α,即∠DOE=180°﹣2α,∴∠BOE=360°﹣4α,故选:A.【点评】本题主要考查角的计算的知识点,运用好角的平分线这一知识点是解答的关键,本题难度不大.二、填空题11.地球与太阳的平均距离大约为150 000 000km,用科学记数法表示 1.5×108km.【考点】科学记数法—表示较大的数.【专题】应用题.【分析】科学记数法的一般形式为:a×10n,在本题中a应为1.5,10的指数为9﹣1=8.【解答】解:150 000 000km=1.5×108km.【点评】将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.12.一天早晨的气温是﹣5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的气温是﹣3 ℃.【考点】有理数的加减混合运算.【专题】应用题.【分析】气温上升为正,下降为负,列出算式求解即可.【解答】解:根据题意列式为:﹣5+10﹣8=﹣13+10=﹣3℃.故应填3℃.【点评】本题主要考查用正负来表示具有相反意义的量,做题时一定要注意单位.13.如图,在边长为1的小正三角形组成的图形中,正六边形的个数共有8 个.【考点】认识平面图形.【专题】压轴题.【分析】解这类题要仔细观察图形,逐个找出来而且要注意外面这个最大的.【解答】解:小的正六边形将有6个小正三角形组成,图中可当作正六边形的中心的有7个,加上最大的这个正六边形,一共有8个.故答案为:8.【点评】解决本题的关键应理解正六边形的构造特点.14.x表示一个三位数,若在x的右边放3,成为一个四位数,则这个四位数可表示为10x+3 .【考点】列代数式.【分析】x表示一个三位数,在x的右边放3,就是3在个位上,三位数扩大10倍+3从而可表示出四位数.【解答】解:在x的右边放3,就是3在个位上,三位数扩大10倍+3得出四位数为10x+3.故答案为:10x+3.【点评】本题考查列代数式,关键知道3放在三位数右边就是在个位上,三位数扩大10倍,从而可表示出四位数.15.用“●”“■”“▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■” 5 个.【考点】等式的性质.【分析】设“●”“■”“▲”分别为x、y、z,根据前两个天平列出等式,然后用y表示出x、z,相加即可.【解答】解:设“●”“■”“▲”分别为x、y、z,由图可知,2x=y+z①,x+y=z②,②两边都加上y得,x+2y=y+z③,由①③得,2x=x+2y,∴x=2y,代入②得,z=3y,∵x+z=2y+3y=5y,∴“?”处应放“■”5个.故答案为:5.【点评】本题考查了等式的性质,根据天平平衡列出等式是解题的关键.16.已知某商品降价20%后的售价为2800元,则该商品的原价为3500 元.【考点】一元一次方程的应用.【专题】销售问题.【分析】依据题意商品的原价格=2800÷(1﹣20%).【解答】解:设原价为x,那么:x×80%=2800元,解得x=3500,故原价为3500元.【点评】此题的关键是把原价当成单位1来计算.17.如图所示,将一副三角板叠放在一起,使直角的顶点重合于点O,则∠AOC+∠DOB的度数为180°.【考点】余角和补角.【分析】由图可知∠AOC=∠AOB+∠BOC,∠BOC+∠BOD=∠COD,依此角之间的和差关系,即可求解.【解答】解:根据题意得:∠AOC+∠DOB=∠AOB+∠BOC+∠DOB=∠AOB+∠COD=90°+90°=180°,故答案为:180°.【点评】本题考查了余角和补角的定义;找出∠AOC+∠DOB=∠AOB+∠BOC+∠DOB是解题的关键.18.挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走.如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走⑦.【考点】规律型:图形的变化类.【专题】操作型.【分析】根据游戏规则可以发现,第1次拿走的是没有被压住的棒,第2次拿走的有一个被压住交点的棒,依此论推,第6次拿走的有5个被压住交点的棒,应该为⑦号棒.【解答】解:根据游戏规则可以发现:第1次拿走的是没有被压住的棒,第2次拿走的有一个被压住交点的棒,依此论推,第6次拿走的有5个被压住交点的棒,则⑦号棒有5个被压住交点的棒.故答案为:⑦.【点评】题目考查了图形的变化类,通过游戏规则为载体,增强学生分析问题能力和解决问题能力,解决本题的关键是数出每根木棒被压住的点的个数.三、解答题19.计算:(1)﹣42﹣3×22×(﹣1)÷(﹣1)(2)﹣14﹣×[4﹣(﹣2)3].【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣16﹣12×(﹣)×(﹣)=﹣16﹣6=﹣22;(2)原式=﹣1﹣×12=﹣1﹣4=﹣5.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.化简:(1)﹣2y2+3xy﹣2[x2﹣(2x2﹣xy+y2)](2)化简与求值:x2+2x+3(x2﹣x),其中x=﹣.【考点】整式的加减—化简求值;整式的加减.【专题】计算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=﹣2y2+3xy﹣2x2+4x2﹣2xy+2y2=xy+2x2;(2)原式=x2+2x+3x2﹣2x=4x2,当x=﹣时,原式=1.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大小.【考点】角平分线的定义.【专题】计算题.【分析】由∠AOB=110°,∠COD=70°,易得∠AOC+∠BOD=40°,由角平分线定义可得∠AOE+∠BOF=40°,那么∠EOF=∠AOB+∠AOE+BOF.【解答】解:∵∠AOB=110°,∠COD=70°∴∠AOC+∠BOD=∠AOB﹣∠COD=40°∵OA平分∠EOC,OB平分∠DOF∴∠AOE=∠AOC,∠BOF=∠BOD∴∠AOE+∠BOF=40°∴∠EOF=∠AOB+∠AOE+∠BOF=150°.故答案为:150°.【点评】解决本题的关键利用角平分线定义得到所求角的两边的角的度数.22.解方程(1)4x﹣1.5x=﹣0.5x﹣9;(2)1﹣=2﹣.【考点】解一元一次方程.【分析】(1)先移项,再合并同类项,把x的系数化为1即可;(2)先去分母,再去括号,移项,合并同类项,把x的系数化为1即可.【解答】解:(1)移项得,4x﹣1.5x+0.5x=﹣9,合并同类项得,3x=﹣9,把x的系数化为1得,x=﹣3;(2)去分母得,6﹣3(x﹣1)=12﹣2(x+2),去括号得,6﹣3x+3=12﹣2x﹣4,移项得,﹣3x+2x=12﹣4﹣6﹣3,合并同类项得,﹣x=﹣1,把x的系数化为1得,x=1.【点评】本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解答此题的关键.23.如图,已知,CD∥EF,∠1=∠2.求证:∠3=∠ACB.【考点】平行线的判定与性质.【专题】证明题.【分析】根据平行线的性质得出∠2=∠DCB,求出∠1=∠DCB,根据平行线的判定得出GD∥CB即可.【解答】证明:∵CD∥EF,∴∠2=∠DCB,∵∠1=∠2,∴∠1=∠DCB,∴GD∥CB,∴∠3=∠ACB.【点评】本题考查了对平行线的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.24.在“五•一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱?说明理由.【考点】一元一次方程的应用.【专题】经济问题;阅读型.【分析】(1)设成人数为x人,则学生人数是(12﹣x)人.根据共需350元列方程求解;(2)只需计算购买16人的团体票和(1)中的350进行比较.【解答】解:(1)设成人人数为x人,则学生人数为(12﹣x)人.则35x+(12﹣x)=350解得:x=8故学生人数为12﹣8=4人,成人人数为8人.(2)如果买团体票,按16人计算,共需费用:35×0.6×16=336元.336<350所以,购团体票更省钱.答:有成人8人,学生4人;购团体票更省钱.【点评】此题主要是正确理解题意,在第二问中,虽然不够团体购票的人数,但可以多买几张,享受团体购票的优惠,从而进行比较.25.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数﹣6 ,点P表示的数8﹣5t (用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(4)若点D是数轴上一点,点D表示的数是x,请你探索式子|x+6|+|x﹣8|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.【考点】一元一次方程的应用;数轴;两点间的距离.【分析】(1)根据点A的坐标和AB之间的距离即可求得点B的坐标和点P的坐标;(2)根据距离的差为14列出方程即可求解;(3)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.(4)分为3种情况去绝对值符号,计算三种不同情况的值,最后讨论得出最小值.【解答】解:(1)点B表示的数是﹣6;点P表示的数是8﹣5t,(2)设点P运动x秒时,在点C处追上点Q (如图)则AC=5x,BC=3x,∵AC﹣BC=AB∴5x﹣3x=14…(4分)解得:x=7,∴点P运动7秒时,在点C处追上点Q.…(5分)(3)没有变化.分两种情况:①当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=7…(7分)②当点P运动到点B的左侧时:MN=MP﹣NP=AP﹣BP=(AP﹣BP)=AB=7…(9分)综上所述,线段MN的长度不发生变化,其值为7 …(4)式子|x+6|+|x﹣8|有最小值,最小值为14.…(12分)【点评】本题考查了数轴:数轴的三要素(正方向、原点和单位长度).也考查了一元一次方程的应用以及数轴上两点之间的距离.第21页(共21页)。
苏科版2015~2016学年度第一学期期末考试七年级数学试题及答案
第5题图苏科版2015~2016学年度第一学期期末考试七年级数学试卷(满分:150分 考试时间:120分钟) 2016.1.22一、选择题(每小题3分,共18分)1.﹣2的相反数是A .12-B .12C .2D .±22.下列几何体中,俯视图是矩形的是3.下列图形可由平移得到的是4.服装店销售某款服装,每件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多 A .60元 ;. B .80元; C .120元; D .180元;5.如图,能判定EB ∥AC 的条件是 A .∠C=∠ABE B .∠A=∠EBD C .∠C=∠ABC D .∠A=∠ABE6.如图,点P 是直线a 外的一点,点A 、B 、C 在直线a 上,且PB ⊥a ,垂足是B ,PA ⊥PC ,则下列不正确...的表述是 A .线段PB 的长是点P 到直线a 的距离; B .PA 、PB 、PC 三条线段中,PB 最短 ;C .线段AC 的长是点A 到直线PC 的距离;D .线段PC 的长是点C 到直线PA 的距离;第6题图 A . B. C. D.第12题图 第13题图二、填空题(每空3分,共30分) 7.计算:()23-= .8.70°30′的余角为_________°. 9.单项式b a 32-的次数是____________.10.若有理数a 、b 满足2a -+(b +1)2=0,则a +b 的值为 .11.已知4x =-是关于x 的方程384xx a -=-的解,则a = . 12.如图是正方体的一种展开图,其每个面上都标有一个数字,那么在原正方体中,与数字“2”相对的面上的数字是 . 13.如图,小明从点A 向北偏东75°方向走到B 点,又从B 点向南偏西30°方向走到点C ,则∠ABC 的度数为 .14.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%,设把x 公顷旱地改为林地,则可列关于x 的方程________.15.观察:1091+⨯=a ;2192+⨯=a ;3293+⨯=a ;4394+⨯=a ;…… 请根据你猜想的规律写出n a =__________ __.16.已知∠ABC 与∠DEF 的两边分别满足:BA ∥ED ,BC ∥EF ,若∠ABC=45°,则∠DEF的度数为 . 三、解答题(本大题共102分) 17.(每小题5分,共10分)计算:(1) 3)45()43(----+ (2))3(9)1(3220162-÷--⨯+-18.(每小题6分,共12分)解方程: (1)3(2)13x x +-=- (2)x -12223x x -+=-19.(本题满分8分)求222233()(6)3x x x x x x ++--+的值,其中x =-6.20.(本题满分12分,其中第1题8分,第2题4分)作图题: (1)按下列要求画图,并解答问题: ①如图,取BC 边的中点D ,画射线..AD ;②分别过点B 、C 画BE ⊥AD 于点E ,CF ⊥AD 于点F ;③BE 和CF 的位置关系是_______ ,通过度量猜想BE 和CF 的数量关系是_______. (2)如图,请根据图中的信息将小船ABCD 进行平移,画出平移后小船A ′B'C'D'的位置.21.(本题满分8分)请补全说理过程: 如图,直线MN 分别交直线AB ,CD 于点E ,F ,若AB ∥CD , EG 平分∠BEF ,∠1=50°, 求∠2的度数. 解:因为AB ∥CD (已知) 所以∠1+∠BEF=180°理由是: 因为∠1=50°(已知) 所以∠BEF= ° 因为EG 平分∠BEF (已知)所以∠BEG =21∠ =65°理由是:角平分线的定义 因为AB ∥CD (已知) 所以∠2=∠BEG=65°理由是: .22.(本题满分10分)如图,BD 平分∠ABC ,ED ∥BC ,∠1=30,∠4=120°. (1)求∠2,∠3的度数; (2)证明:DF ∥AB .E E ′23.(本题满分8分)列方程解应用题:某校七年级学生去春游,如果减少一辆客车,每辆车正好坐60人,如果增加一辆客车,每辆车正好坐50人.问七年级共有多少学生?24.(本题满分12分)如图,点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点. (1)若AC=8cm ,CB=6cm ,求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC+CB=a ,其它条件不变,你能猜想MN 的长度吗?写出你的结论并说明理由; (3)若C 为直线..AB ..上线段...AB ..之外..的任一点,且AC=m ,CB=n ,则线段MN 的长为____________.25.(本题满分12分)电信公司推出两种移动电话计费方法:方法A :免收月租费,按每分钟0.5元收通话费;方法B :每月收取月租费30元,再按每分钟0.2元收通话费. 现在设通话时间是x 分钟.(1)请分别用含x 的代数式表示计费方法A 、B 的通话费用.(2)用计费方法A 的用户一个月累计通话150分钟所需的话费,若改用计费方法B ,则可通话多少分钟?(3)请你分析,当通话时间超过多少分钟时采用计费方法B 合算?26.(本题满分14分)已知∠AOB =140°,∠AOC =30°,若射线OE 绕点O 在∠AOB 内部旋转,OF 平分∠AOE .(1)如图1,当∠EOB =40°时,请直接写出∠AOF 和∠COF 的度数:图1 C B A O备用图∠AOF=_______°;∠COF=________°;(2) 请分别求出当∠COF=35°和10°时,∠EOB的度数(利用备用图,画出图形并写出简要的过程);(3) 若∠COF=n°(0<n<30),请用含n的式子表示∠EOB的度数(直接写出结果)。
2015-2016学年苏教版七年级上数学期末考试卷(含答案)
2015-2016学年苏教版七年级上数学期末考试卷姓名 得分一、选择题1、在下图的四个图形中,不能由左边的图形经过旋转或平移得到的是( )2、在()()22007228,1,3,1,0,,53π--------中,负有理数共有 ( ) A .4个 B.3个 C.2个 D 。
1个3、b a 、两数在数轴上位置如图3所示,将b a b a --、、、用“<”连接,其中正确的是( )A .a <a -<b <b -B .b -<a <a -<bC .a -<b <b -<aD .b -<a <b <a - 4、据《2011年国民经济与社会发展统计公报》报道,2011年我国国民生产总值为471564亿元,471564亿元用科学记数法表示为(保留三个有效数字)( )A .13107.4⨯元B .12107.4⨯元C .131071.4⨯元D .131072.4⨯元5、下列结论中,正确的是( ) A .单项式732xy 的系数是3,次数是2 B .单项式m 的次数是1,没有系数 C .单项式z xy 2-的系数是1-,次数是4 D .多项式322++xy x 是三次三项式 6、在解方程133221=+--x x 时,去分母正确的是( ) A .134)1(3=+--x x B .63413=+--x xC .13413=+--x xD .6)32(2)1(3=+--x x7、某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为( )A .1800元B .1700元C .1710元D .1750元8、中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”。
乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”。
若设甲有x 只羊,则下列方程正确的是( )A .)2(21-=+x xB .)1(23-=+x xC .)3(21-=+x xD .1211++=-x x 9、某中学学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4500米。
2015-2016学年苏科版七年级上册期末数学试卷(含答案)
2015-2016学年七年级(上)期末数学试卷一、选择题:24分1.﹣5的倒数是( )A.B.﹣C.5 D.﹣52.下列各式计算正确的是( )A.6a+a=6a2B.﹣2a+5b=3abC.4m2n﹣2mn2=2mn D.3ab2﹣5b2a=﹣2ab23.若x=2是关于x的方程2x﹣3m﹣1=0的解,则m的值为( )A.﹣1 B.0 C.1 D.4.下图中,是正方体的展开图是( )A.B.C.D.5.如果|﹣a|=﹣a,下列成立的是( )A.a<0 B.a≤0 C.a>0 D.a≥06.平面上不重合的两点确定一条直线,不同三点最多可确定3条直线,若平面上不同的n 个点最多可确定21条直线.则n的值为( )A.5 B.6 C.7 D.87.已知x2﹣2x﹣3=0,那么代数式2x2﹣4x﹣5的值为( )A.1 B.2 C.3 D.48.该试题已被管理员删除二、填空题:16分9.写出一个大于﹣4的负分数__________.10.单项式的系数是__________.11.太阳半径大约是696 000千米,用科学记数法表示为__________米.12.某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为__________元.13.如图,将长方形ABCD沿AE折叠,使点D落在BC边上的点F,若∠BAF=56°,则∠DAE=__________.14.有一些相同的小立方块搭成的几何体的三视图,则搭成该几何体的小立方块有__________块15.已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β﹣∠γ=__________.16.某信用卡上的号码由17位数字组成,每一位数字写在下面的一个方格中,如果任何相邻的三个数字之和都等于20,则x+y的值等于__________.三、解答题:12分17.计算:(1)(﹣15)﹣18÷(﹣3)+|﹣5|;(2).18.解方程:(1)3(2x﹣1)﹣2(1﹣x)=0;(2).19.先化简,再求值:4xy﹣[(x2+5xy﹣y2)﹣(x2+3xy﹣2y2)],其中x=﹣,y=.20.(1)画出把△ABC沿射线CB方向平移2cm后得到的△A1B1C1;(2)线段AB与线段A1B1有怎么样的关系__________.21.阅读计算:阅读下列各式:(a•b)2=a2b2,(a•b)3=a3b3,(a•b)4=a4b4…回答下列三个问题:①验证:(4×0.25)100=__________.4100×0.25100=__________.②通过上述验证,归纳得出:(a•b)n=__________;(abc)n=__________.③请应用上述性质计算:(﹣0.125)2013×22012×42012.22.如图,A、B、C、D四点在同一直线上,M是AB的中点,N是CD的中点.(1)若MB=3,BC=2,CN=2.5,则AD=__________.(2)若MN=a,BC=b,用a、b表示线段AD.23.如图,直线AB与CD相交于点D,OE⊥AB,OF⊥CD.(1)图中∠AOF的余角有__________;(把符合条件的角都填出来)(2)如果∠AOD=140°,那么根据__________,可得∠BOC=__________度;(3)∠EOF=∠AOD,求∠EOF的度数.24.古运河是扬州的母亲河,为打造古运河风光带,现有一段河道整治任务由A、B两工程队完成.A工程队单独整治该河道要16天才能完成;B工程队单独整治该河道要24天才能完成.现在A工程队单独做6天后,B工程队加入合做完成剩下的工程,问A工程队一共做了多少天?25.甲、乙两个旅行团同时去苏州旅游,已知乙团人数比甲团人数多4人,两团人数之和恰等于两团人数之差的18倍.(1)问甲、乙两个旅行团的人数各是多少?(2)若乙团中儿童人数恰为甲团人数的3倍少2人,某景点成人票价为每张100元,儿童票价是成人票价的六折,两旅行团在此景点所花费的门票费用相同,求甲、乙两团儿童人数各是多少?26.如图,数轴的原点为0,点A、B、C是数轴上的三点,点B对应的数位1,AB=6,BC=2,动点P、Q同时从A、C出发,分别以每秒2个长度单位和每秒1个长度单位的速度沿数轴正方向运动.设运动时间为t秒(t>0)(1)求点A、C分别对应的数;(2)求点P、Q分别对应的数(用含t的式子表示)(3)试问当t为何值时,OP=OQ?2015-2016学年七年级(上)期末数学试卷一、选择题:24分1.﹣5的倒数是( )A.B.﹣C.5 D.﹣5考点:倒数.分析:根据乘积为1的两个数互为倒数,可得一个数的倒数.解答:解:﹣5的倒数是﹣,故选:B.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.下列各式计算正确的是( )A.6a+a=6a2B.﹣2a+5b=3abC.4m2n﹣2mn2=2mn D.3ab2﹣5b2a=﹣2ab2考点:合并同类项.分析:根据同类项的定义及合并同类项的方法进行判断即可.解答:解:A、6a+a=7a≠6a2,错误;B、﹣2a与5b不是同类项,不能合并,错误;C、4m2n与2mn2不是同类项,不能合并;D、3ab2﹣5ab2=﹣2ab2,正确.故选:D.点评:本题考查的知识点为:同类项的定义:所含字母相同,相同字母的指数相同.合并同类项的方法:字母和字母的指数不变,只把系数相加减.不是同类项的一定不能合并.3.若x=2是关于x的方程2x﹣3m﹣1=0的解,则m的值为( )A.﹣1 B.0 C.1 D.考点:一元一次方程的解.专题:计算题.分析:根据方程的解的定义,把x=2代入方程2x﹣3m﹣1=0即可求出m的值.解答:解:∵x=2是关于x的方程2x﹣3m﹣1=0的解,∴2×2﹣3m﹣1=0,解得:m=1.故选C.点评:此题考查的知识点是一元一次方程的解,本题的关键是理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.4.下图中,是正方体的展开图是( )A.B.C.D.考点:几何体的展开图.分析:由平面图形的折叠及正方体的展开图解题.解答:解:由四棱柱四个侧面和上下两个底面的特征可知,A、多了一个面,不可以拼成一个正方体;B、可以拼成一个正方体;C、不符合正方体的展开图,不可以拼成一个正方体;D、不符合正方体的展开图,不可以拼成一个正方体.故选B.点评:解题时勿忘记四棱柱的特征及正方体展开图的各种情形.5.如果|﹣a|=﹣a,下列成立的是( )A.a<0 B.a≤0 C.a>0 D.a≥0考点:绝对值.专题:计算题.分析:根据绝对值的意义由|﹣a|=﹣a得到﹣a≥0,然后解不等式即可.解答:解:∵|﹣a|=﹣a,∴﹣a≥0,∴a≤0.故选B.点评:本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.6.平面上不重合的两点确定一条直线,不同三点最多可确定3条直线,若平面上不同的n 个点最多可确定21条直线.则n的值为( )A.5 B.6 C.7D.8考点:一元二次方程的应用.专题:规律型.分析:这是个规律性题目,关键是找到不在同一直线上的n个点,可以确定多少条直线这个规律,当有n个点时,就有,从而可得出n的值.解答:解:设有n个点时,=21n=7或n=﹣6(舍去).故选C.点评:本题是个规律性题目,关键知道当不在同一平面上的n个点时,可确定多少条直线,代入21可求出解.7.已知x2﹣2x﹣3=0,那么代数式2x2﹣4x﹣5的值为( )A.1 B.2 C.3 D.4考点:代数式求值.专题:整体思想.分析:由x2﹣2x﹣3=0得,x2﹣2x=3,所以代入2x2﹣4x﹣5=2(x2﹣2x)﹣5即可求得它的值.解答:解:∵x2﹣2x﹣3=0,∴x2﹣2x=3,又知:2x2﹣4x﹣5=2(x2﹣2x)﹣5=2×3﹣5=1.故本题选A.点评:代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式x2﹣2x的值,然后利用“整体代入法”求代数式的值.8.该试题已被管理员删除二、填空题:16分9.写出一个大于﹣4的负分数﹣.考点:有理数大小比较.专题:开放型.分析:根据有理数的大小比较法则和负分数的意义找出即可.解答:解:大于﹣4的负分数有﹣,﹣3等;故答案为:﹣.点评:本题考查了负分数和有理数的大小比较,注意:两个负数比较大小,其绝对值大的反而小.10.单项式的系数是﹣.考点:单项式.分析:根据单项式系数的定义进行解答即可.解答:解:∵单项式的数字因数是﹣∴此单项式的系数是﹣.故答案为:﹣.点评:本题考查的是单项式的系数,熟知单项式中的数字因数叫做单项式的系数是解答此题的关键.11.太阳半径大约是696 000千米,用科学记数法表示为6.96×108米.考点:科学记数法—表示较大的数.专题:应用题.分析:先把696 000千米转化成696 000 000米,然后再用科学记数法记数记为6.96×108米.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:696 000千米=696 000 000米=6.96×108米.点评:用科学记数法表示一个数的方法是:(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).12.某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为28元.考点:一元一次方程的应用.专题:销售问题.分析:设标价是x元.则0.9x=21×(1+20%),解方程即可.解答:解:设标价是x元,列方程得0.9x=21×(1+20%),解得x=28.故填28.点评:此题首先读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.13.如图,将长方形ABCD沿AE折叠,使点D落在BC边上的点F,若∠BAF=56°,则∠DAE=17°.考点:翻折变换(折叠问题).分析:先由折叠的性质可知△ADE≌△AFE,故∠DAE=∠EAF,再由∠BAD=90°即可解答.解答:解:∵△AEF是△AED沿直线AE折叠而成,∴△ADE≌△AFE,∴∠DAE=∠EAF,∵∠BAF=56°,∠BAD=90°,∴∠DAF=90°﹣∠BAF=90°﹣56°=34°,∴∠DAE=∠DAF=×34°=17°.故答案为:17°.点评:本题考查的是图形的翻折变换,熟知图形折叠的性质是解答此题的关键.14.有一些相同的小立方块搭成的几何体的三视图,则搭成该几何体的小立方块有4块考点:由三视图判断几何体.分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.解答:解:从俯视图可得最底层有3个小正方体,由主视图可得有2层上面一层是1个小正方体,下面有2个小正方体,从左视图上看,后面一层是2个小正方体,前面有1个小正方体,所以此几何体共有4个正方体.故答案为4.点评:此题主要考查了由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.15.已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β﹣∠γ=90°.考点:余角和补角.分析:根据互余两角之和为90°,互补两角之和为180°,结合题意即可得出答案.解答:解:由题意得,∠α+∠β=180°,∠α+∠γ=90°,两式相减可得:∠β﹣∠γ=90°.故答案为:90°.点评:此题考查了余角和补角的知识,掌握互余两角之和为90°,互补两角之和为180°,是解答本题的关键.16.某信用卡上的号码由17位数字组成,每一位数字写在下面的一个方格中,如果任何相邻的三个数字之和都等于20,则x+y的值等于11.考点:有理数的加法.专题:计算题.分析:根据每一位数字写在下面的一个方格中,如果任何相邻的三个数字之和都等于20,确定出x与y的值,即可求出x+y的值.解答:解:根据题意得到x前面的数字为9,后面的数字为2,则有9+x+2=20,即x=9,表格中的数字为9,9,2,9,9,2,9,9,2,9,9,2,9,9,2,9,9,即y=2,则x+y=11.故答案为:11.点评:此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.三、解答题:12分17.计算:(1)(﹣15)﹣18÷(﹣3)+|﹣5|;(2).考点:有理数的混合运算.专题:计算题.分析:(1)原式先计算除法运算及绝对值运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.解答:解:(1)原式=﹣15+6+5=﹣15+11=﹣4;(2)原式=﹣8××+1.8+=﹣8+2.6=﹣5.4.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.解方程:(1)3(2x﹣1)﹣2(1﹣x)=0;(2).考点:解一元一次方程.专题:计算题.分析:(1)注意移项要变号;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)6x﹣3﹣2+2x=0整理得:8x=5∴x=;(2)去分母得:3y﹣18=﹣5+2﹣2y整理得:5y=15∴y=3.点评:主要考查了一元一次方程的解法,解题的关键是要掌握去括号,移项的方法.注意括号前是负号,去掉括号后各项要变号,移项要变号.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.19.先化简,再求值:4xy﹣[(x2+5xy﹣y2)﹣(x2+3xy﹣2y2)],其中x=﹣,y=.考点:整式的加减—化简求值.专题:计算题.分析:原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.解答:解:原式=4xy﹣x2﹣5xy+y2+x2+3xy﹣2y2=2xy﹣y2,当x=﹣,y=时,原式=﹣﹣=﹣.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.(1)画出把△ABC沿射线CB方向平移2cm后得到的△A1B1C1;(2)线段AB与线段A1B1有怎么样的关系相等.考点:作图-平移变换.分析:(1)根据题意画出△A1B1C1即可;(2)由图形平移的性质即可得出结论.解答:解:(1)如图所示;(2)∵△A1B1C1由△ABC平移而成,∴AB=A1B1.故答案为:相等.点评:本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.21.阅读计算:阅读下列各式:(a•b)2=a2b2,(a•b)3=a3b3,(a•b)4=a4b4…回答下列三个问题:①验证:(4×0.25)100=1.4100×0.25100=1.②通过上述验证,归纳得出:(a•b)n=a n b n;(abc)n=a n b n c n.③请应用上述性质计算:(﹣0.125)2013×22012×42012.考点:有理数的乘方.专题:阅读型.分析:①先算括号内的,再算乘方,先乘方,再算乘法.②根据有理数乘方的定义求出即可;③根据同底数幂的乘法计算,再根据积的乘方计算,即可得出答案.解答:解:①:(4×0.25)100=1100=1;4100×0.25100=1,故答案为:1,1.②(a•b)n=a n b n,(abc)n=a n b n c n,故答案为:a n b n,(abc)n=a n b n c n.③原式=(﹣0.125)2012×22012×42012×(﹣0.125)=(﹣0.125×2×4)2012×(﹣0.125)=(﹣1)2012×(﹣0.125)=1×(﹣0.125)=﹣0.125.点评:本题考查了同底数幂的乘法,再根据积的乘方,有理数乘方的定义的应用,主要考查学生的计算能力.22.如图,A、B、C、D四点在同一直线上,M是AB的中点,N是CD的中点.(1)若MB=3,BC=2,CN=2.5,则AD=13.(2)若MN=a,BC=b,用a、b表示线段AD.考点:两点间的距离.专题:计算题.分析:(1)由已知M是AB的中点,N是CD的中点,可求出AB和CD,从而求出AD;(2)由已知M是AB的中点,N是CD的中点,推出AM=MB=AB,CN=ND=CD,则推出AB+CD=2a﹣2b,从而得出答案.解答:解:(1)∵M是AB的中点,N是CD的中点,∴AB=2MB=6,CD=2CN=5,∴AD=AB+BC+CD=6+2+5=13,故答案为:13;(2)∵M是AB的中点,N是CD的中点,∴AM=MB=AB,CN=ND=CD,∵MN=MB+BC+CN=a,∴MB+CN=MN﹣BC=a﹣b,∴AB+CD=2MB+2CN=2(a﹣b),∴AD=AB+BC+CD=2a﹣2b+b=2a﹣b.点评:此题考查的知识点是两点间的距离,关键是根据线段的中点及各线段间的关系求解.23.如图,直线AB与CD相交于点D,OE⊥AB,OF⊥CD.(1)图中∠AOF的余角有∠EOF,∠AOC,∠BOD;(把符合条件的角都填出来)(2)如果∠AOD=140°,那么根据对顶角相等,可得∠BOC=140度;(3)∠EOF=∠AOD,求∠EOF的度数.考点:对顶角、邻补角;余角和补角.分析:(1)根据余角的定义、性质,可得答案;(2)根据对顶角的性质,可得答案;(3)根据余角的性质,可得∠EOF与∠BOD的关系,根据平角的定义,可得答案.解答:解:(1)图中∠AOF的余角有∠EOF,∠AOC,∠BOD;(把符合条件的角都填出来)(2)如果∠AOD=140°,那么根据对顶角相等,可得∠BOC=140度;故答案为:∠EOF,∠AOC,∠BOD;对顶角相等,140;(3)∵∠EOF+AOF=90°,∠AOC+∠AOF=90°,∴∠EOF=∠AOC=∠BOD.∵∠AOD+∠BOD=180°,∠EOF=∠AOD∴5∠EOF+∠BOD=180°,即6∠EOF=180°,∠EOF=30°.点评:本题考查了对顶角、邻补角,利用了余角的性质,对顶角的性质,邻补角的性质.24.古运河是扬州的母亲河,为打造古运河风光带,现有一段河道整治任务由A、B两工程队完成.A工程队单独整治该河道要16天才能完成;B工程队单独整治该河道要24天才能完成.现在A工程队单独做6天后,B工程队加入合做完成剩下的工程,问A工程队一共做了多少天?考点:一元一次方程的应用.分析:设A工程队一共做的天数为x天,根据工作总量为“1”列出方程并解答.解答:解:设A工程队一共做的天数为x天,则由题意得:x+(x﹣6)=1,解得:x=12答:A工程队一共做的天数为12天.点评:本题考查了一元一次方程的应用,解答本题的关键是表示出两工程队的工作效率,根据工作总量为单位1,建立方程.25.甲、乙两个旅行团同时去苏州旅游,已知乙团人数比甲团人数多4人,两团人数之和恰等于两团人数之差的18倍.(1)问甲、乙两个旅行团的人数各是多少?(2)若乙团中儿童人数恰为甲团人数的3倍少2人,某景点成人票价为每张100元,儿童票价是成人票价的六折,两旅行团在此景点所花费的门票费用相同,求甲、乙两团儿童人数各是多少?考点:一元一次方程的应用.专题:应用题.分析:(1)设甲旅行团的人数为x人,那么乙旅行团的人为(x+4)人,由于两团人数之和恰等于两团人数之差的18倍,即:两数之和为:4×18=72,以两数之和为等量关系列出方程求解;(2)设甲团儿童人数为m人,则可知乙团儿童人数为(3m﹣2)人,根据等量关系:甲乙所花门票相等可以列出方程,求解即可.解答:解:(1)设甲旅行团的人数为x人,那么乙旅行团的人为x+4人,由题意得:x+x+4=4×18解得:x=34,∴x+4=38答:甲、乙两个旅行团的人数各是34人,38人.(2)设甲团儿童人数为m人,则可知乙团儿童人数为(3m﹣2)人,所以甲团成人有(34﹣m)人,乙团成人有(38﹣3m+2)人.根据题意列方程得:100(34﹣m)+m×100×60%=100(38﹣3m+2)+(3m﹣2)×100×60%,解得:m=6.∴3m﹣2=16.答:甲团儿童人数为6人,乙团儿童人数为16人.点评:本题考查了一元一次方程的运用,解决本类问题一般都是找到等量关系列方程求解即可.属于基本的题型.26.如图,数轴的原点为0,点A、B、C是数轴上的三点,点B对应的数位1,AB=6,BC=2,动点P、Q同时从A、C出发,分别以每秒2个长度单位和每秒1个长度单位的速度沿数轴正方向运动.设运动时间为t秒(t>0)(1)求点A、C分别对应的数;(2)求点P、Q分别对应的数(用含t的式子表示)(3)试问当t为何值时,OP=OQ?考点:一元一次方程的应用;数轴.分析:(1)根据点B对应的数为1,AB=6,BC=2,得出点A对应的数是1﹣6=﹣5,点C 对应的数是1+2=3.(2)根据动点P、Q分别同时从A、C出发,分别以每秒2个单位和1个单位的速度沿数轴正方向运动,表示出移动的距离,即可得出对应的数;(3)分两种情况讨论:当点P与点Q在原点两侧时和当点P与点Q在同侧时,根据OP=OQ,分别列出方程,求出t的值即可.解答:解:(1)∵点B对应的数为1,AB=6,BC=2,∴点A对应的数是1﹣6=﹣5,点C对应的数是1+2=3.(2)∵动点P、Q分别同时从A、C出发,分别以每秒2个单位和1个单位的速度沿数轴正方向运动,∴点P对应的数是﹣5+2t,点Q对应的数是3+t;(3)①当点P与点Q在原点两侧时,若OP=OQ,则5﹣2t=3+t,解得:t=;②当点P与点Q在同侧时,若OP=OQ,则﹣5+2t=3+t,解得:t=8;当t为或8时,OP=OQ.点评:此题考查了一元一次方程的应用和数轴,解题的关键是掌握点的移动与点所表示的数之间的关系,在计算时(3)要注意分两种情况进行讨论.。
2015-2016学年江苏省南通市越江中学七年级上学期期末数学试卷(解析版)
第 3 页(共 18 页)
25. (8 分)如图,已知点 O 是直线 AB 上的一点,∠BOC=40°,OD、OE 分别是 ∠BOC、∠AOC 的角平分线. (1)求∠AOE 的度数; (2)写出图中与∠EOC 互余的角; (3)∠COE 有补角吗?若有,请把它找出来,并说明理由.
26. (12 分)中国现行的个人所得税法自 2011 年 9 月 1 日起施行,其中规定个 人所得税纳税办法如下: 一、以个人每月工资收入额减去 3500 元后的余额作为其每月应纳税所得额; 二、个人所得税纳税税率如下表所示: 纳税级数 1 2 3 4 5 6 7 个人每月应纳税所得额 不超过 1500 元的部分 超过 1500 元至 4500 元的部分 超过 4500 元至 9000 元的部分 超过 9000 元至 35000 元的部分 超过 35000 元至 55000 元的部分 超过 55000 元至 80000 元的部分 超过 80000 元的部分 纳税税率 3% 10% 20% 25% 30% 35% 45%
15. (3 分)按照如图所示的操作步骤,若输入的值为 4,则输出的值为
16. (3 分)某文具店一支铅笔的售价为 1.2 元,一支圆珠笔的售价为 2 元.该店 在“6•1 儿童节”举行文具优惠售卖活动,铅笔按原价打 8 折出售,圆珠笔按原价
第 2 页(共 18 页)
打 9 折出售,结果两种笔共卖出 60 支,卖得金额 87 元.若设铅笔卖出 x 支,那 么所列方程为 . =ad﹣bc,则满足
A.a+b B.a﹣b
C.b﹣a
D.﹣a﹣b )
5. (3 分)多项式 1+2xy﹣3xy2 的次数及最高次项的系数分别是( A.3,﹣3 B.2,﹣3 C.5,﹣3 D.2,3 6. (3 分)下列说法错误的是( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年江苏省南通市海门市七年级(上)期末数学试卷一、选择题1.的绝对值是()A.B.C.2 D.﹣22.从正面看、从左面看、从上面看都一样的几何体是()A.圆柱 B.长方体C.球D.五棱柱3.下列计算中,正确的是()A.(﹣1)2×(﹣1)5=1 B.﹣3÷(﹣)=9 C.÷(﹣)3=9 D.﹣(﹣3)2=94.如图,下列说法正确的是()A.OA的方向是北偏东30°B.OB的方向是北偏西60°C.OC的方向是南偏东50°D.OD的方向是东偏南45°5.如图把左边的图形折叠起来围成一个正方体,应该得到图中的()A.B.C.D.6.若x=2是关于x的方程2x+3m﹣1=0的解,则m的值为()A.﹣1 B.0 C.1 D.7.在直线l上顺次取A、B、C三点,使得AB=5cm,BC=3cm,如果O是线段AC的中点,那么线段OB 的长度是()A.0.5cm B.1cm C.1.5cm D.2cm8.观察下列图形它们是按一定的规律排列的,依照此规律,第20个图形的“★”有()A.57个B.60个C.63个D.85个9.下列变形中,不正确的是()A.a+(b+c﹣d)=a+b+c﹣d B.a﹣(b﹣c+d)=a﹣b+c﹣dC.a﹣b﹣(c﹣d)=a﹣b﹣c﹣d D.a+b﹣(﹣c﹣d)=a+b+c+d10.如图,已知O为直线AB上一点,OC平分∠AOD,∠BOD=3∠DOE,∠COE=α,则∠BOE的度数为()A.360°﹣4αB.180°﹣4αC.αD.2α﹣60°二、填空题11.地球与太阳的平均距离大约为150 000 000km,用科学记数法表示km.12.一天早晨的气温是﹣5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的气温是℃.13.如图,在边长为1的小正三角形组成的图形中,正六边形的个数共有个.14.x表示一个三位数,若在x的右边放3,成为一个四位数,则这个四位数可表示为.15.用“●”“■”“▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”个.16.已知某商品降价20%后的售价为2800元,则该商品的原价为元.17.如图所示,将一副三角板叠放在一起,使直角的顶点重合于点O,则∠AOC+∠DOB的度数为.18.挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走.如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走.三、解答题19.计算:(1)﹣42﹣3×22×(﹣1)÷(﹣1)(2)﹣14﹣×[4﹣(﹣2)3].20.化简:(1)﹣2y2+3xy﹣2[x2﹣(2x2﹣xy+y2)](2)化简与求值:x2+2x+3(x2﹣x),其中x=﹣.21.(6分)如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大小.22.解方程(1)4x﹣1.5x=﹣0.5x﹣9;(2)1﹣=2﹣.23.如图,已知,CD∥EF,∠1=∠2.求证:∠3=∠ACB.24.在“五•一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱?说明理由.25.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(4)若点D是数轴上一点,点D表示的数是x,请你探索式子|x+6|+|x﹣8|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.2015-2016学年江苏省南通市海门市七年级(上)期末数学试卷参考答案与试题解析一、选择题 1.的绝对值是( )A .B .C .2D .﹣2【考点】绝对值.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣的绝对值是. 故选:A .【点评】本题考查了绝对值,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.从正面看、从左面看、从上面看都一样的几何体是( ) A .圆柱 B .长方体 C .球 D .五棱柱 【考点】由三视图判断几何体.【分析】由基本立体图形的三视图可知:从正面看、从左面看、从上面看都一样的几何体是正方体(看到的都是正方形)和球(看到的都是圆),由此从选项中直接选择答案即可.【解答】解:∵从正面看、从左面看、从上面看都一样的几何体是正方体(看到的都是正方形)和球(看到的都是圆), ∴选项中只有球符合题意. 故选:C .【点评】此题主要考查了由三视图判断几何体,熟练掌握常见图形的三视图是解题关键.3.下列计算中,正确的是( )A .(﹣1)2×(﹣1)5=1B .﹣3÷(﹣)=9C .÷(﹣)3=9D .﹣(﹣3)2=9【考点】有理数的混合运算.【专题】计算题.【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、原式=1×(﹣1)=﹣1,错误;B、原式=﹣3×(﹣3)=9,正确;C、原式=×(﹣27)=﹣9,错误;D、原式=﹣9,错误,故选B【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.4.如图,下列说法正确的是()A.OA的方向是北偏东30°B.OB的方向是北偏西60°C.OC的方向是南偏东50°D.OD的方向是东偏南45°【考点】方向角.【分析】根据方向角的定义,即可解答.【解答】解:A.OA的方向是北偏东60°,故错误;B.OB的方向是北偏西30°,故错误;C.OC的方向是南偏西50°,故错误;D.OD的方向是东偏南45°,正确;故选D.【点评】本题考查了方向角的定义,解决本题的关键是熟记方向角的定义.5.如图把左边的图形折叠起来围成一个正方体,应该得到图中的()A.B.C.D.【考点】展开图折叠成几何体.【专题】常规题型.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴有蓝圆圈与灰色圆圈的两个面是相对面,故A、B选项错误;又有蓝色圆圈的面与红色三角形的面相邻时应该是三角形的直角边所在的边与蓝色圆圈的面相邻,即折叠后有蓝色圆圈的面应是左面或下面,所以C选项不符合,故C选项错误;D选项符合.故选D.【点评】本题主要考查了正方体的展开折叠问题,要注意相对两个面上的图形,从相对面入手,分析及解答问题比较方便.6.若x=2是关于x的方程2x+3m﹣1=0的解,则m的值为()A.﹣1 B.0 C.1 D.【考点】一元一次方程的解.【专题】计算题.【分析】根据方程的解的定义,把x=2代入方程2x+3m﹣1=0即可求出m的值.【解答】解:∵x=2是关于x的方程2x+3m﹣1=0的解,∴2×2+3m﹣1=0,解得:m=﹣1.故选:A.【点评】本题的关键是理解方程的解的定义,方程的解就是能够使方程左右两边相等的未知数的值.7.在直线l上顺次取A、B、C三点,使得AB=5cm,BC=3cm,如果O是线段AC的中点,那么线段OB 的长度是()A.0.5cm B.1cm C.1.5cm D.2cm【考点】两点间的距离.【专题】计算题.【分析】作图分析由已知条件可知,AB+BC=AC,又因为O是线段AC的中点,则OB=AB﹣AO,故OB可求.【解答】解:根据上图所示OB=5cm﹣OA,∵OA=(AB+BC)÷2=4cm,∴OB=1cm.故选B.【点评】此题考查的知识点是两点间的距离,关键明确在未画图类问题中,正确画图很重要.所以能画图的一定要画图这样才直观形象,便于思维.8.观察下列图形它们是按一定的规律排列的,依照此规律,第20个图形的“★”有()A.57个B.60个C.63个D.85个【考点】规律型:图形的变化类.【专题】压轴题.【分析】排列组成的图形都是三角形.第一个图形中有1×3=3个★,第二个图形中有2×3=6个★,第三个图形中有3×3=9个★,…第20个图形共有20×3=60个★.【解答】解:根据规律可知第n个图形有3n个★,所以第20个图形共有20×3=60个★.另解:通过观察发现每行五星组成的三角形的边上分别有(n+1)个五星,共有3(n﹣1)个,但每个角上的五星重复加了两次,故五星的个数为3(n﹣1)﹣3=3n个,故第20个图象共有60个★.故选B.【点评】本题考查了图形的变化类问题,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.本题的关键规律为第n个图形有3n个★.9.下列变形中,不正确的是()A.a+(b+c﹣d)=a+b+c﹣d B.a﹣(b﹣c+d)=a﹣b+c﹣dC.a﹣b﹣(c﹣d)=a﹣b﹣c﹣d D.a+b﹣(﹣c﹣d)=a+b+c+d【考点】去括号与添括号.【专题】计算题.【分析】根据去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反判断即可.【解答】解:A、a+(b+c﹣d)=a+b+c﹣d,故本选项正确;B、a﹣(b﹣c+d)=a﹣b+c﹣d,故本选项正确;C、a﹣b﹣(c﹣d)=a﹣b﹣c+d,故本选项错误;D、a+b﹣(﹣c﹣d)=a+b+c+d,故本选项正确;故选C.【点评】本题考查了去括号法则,解题时牢记法则是关键,特别要注意符号的变化.10.如图,已知O为直线AB上一点,OC平分∠AOD,∠BOD=3∠DOE,∠COE=α,则∠BOE的度数为()A.360°﹣4αB.180°﹣4αC.αD.2α﹣60°【考点】角平分线的定义.【分析】设∠DOE=x,则∠BOE=2x,根据角之间的等量关系求出∠AOD、∠COD、∠COE的大小,然后解得x即可.【解答】解:设∠DOE=x,则∠BOE=2x,∵∠BOD=∠BOE+∠EOD,∴∠BOD=3x,∴∠AOD=180°﹣∠BOD=180°﹣3x.∵OC平分∠AOD,∴∠COD=∠AOD=(180°﹣3x)=90°﹣x.∵∠COE=∠COD+∠DOE=90°﹣x+x=90°﹣,由题意有90°﹣=α,解得x=180°﹣2α,即∠DOE=180°﹣2α,∴∠BOE=360°﹣4α,故选:A.【点评】本题主要考查角的计算的知识点,运用好角的平分线这一知识点是解答的关键,本题难度不大.二、填空题11.地球与太阳的平均距离大约为150 000 000km,用科学记数法表示 1.5×108km.【考点】科学记数法—表示较大的数.【专题】应用题.【分析】科学记数法的一般形式为:a×10n,在本题中a应为1.5,10的指数为9﹣1=8.【解答】解:150 000 000km=1.5×108km.【点评】将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.12.一天早晨的气温是﹣5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的气温是﹣3 ℃.【考点】有理数的加减混合运算.【专题】应用题.【分析】气温上升为正,下降为负,列出算式求解即可.【解答】解:根据题意列式为:﹣5+10﹣8=﹣13+10=﹣3℃.故应填3℃.【点评】本题主要考查用正负来表示具有相反意义的量,做题时一定要注意单位.13.如图,在边长为1的小正三角形组成的图形中,正六边形的个数共有8 个.【考点】认识平面图形.【专题】压轴题.【分析】解这类题要仔细观察图形,逐个找出来而且要注意外面这个最大的.【解答】解:小的正六边形将有6个小正三角形组成,图中可当作正六边形的中心的有7个,加上最大的这个正六边形,一共有8个.故答案为:8.【点评】解决本题的关键应理解正六边形的构造特点.14.x表示一个三位数,若在x的右边放3,成为一个四位数,则这个四位数可表示为10x+3 .【考点】列代数式.【分析】x表示一个三位数,在x的右边放3,就是3在个位上,三位数扩大10倍+3从而可表示出四位数.【解答】解:在x的右边放3,就是3在个位上,三位数扩大10倍+3得出四位数为10x+3.故答案为:10x+3.【点评】本题考查列代数式,关键知道3放在三位数右边就是在个位上,三位数扩大10倍,从而可表示出四位数.15.用“●”“■”“▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■” 5 个.【考点】等式的性质.【分析】设“●”“■”“▲”分别为x、y、z,根据前两个天平列出等式,然后用y表示出x、z,相加即可.【解答】解:设“●”“■”“▲”分别为x、y、z,由图可知,2x=y+z①,x+y=z②,②两边都加上y得,x+2y=y+z③,由①③得,2x=x+2y,∴x=2y,代入②得,z=3y,∵x+z=2y+3y=5y,∴“?”处应放“■”5个.故答案为:5.【点评】本题考查了等式的性质,根据天平平衡列出等式是解题的关键.16.已知某商品降价20%后的售价为2800元,则该商品的原价为3500 元.【考点】一元一次方程的应用.【专题】销售问题.【分析】依据题意商品的原价格=2800÷(1﹣20%).【解答】解:设原价为x,那么:x×80%=2800元,解得x=3500,故原价为3500元.【点评】此题的关键是把原价当成单位1来计算.17.如图所示,将一副三角板叠放在一起,使直角的顶点重合于点O,则∠AOC+∠DOB的度数为180°.【考点】余角和补角.【分析】由图可知∠AOC=∠AOB+∠BOC,∠BOC+∠BOD=∠COD,依此角之间的和差关系,即可求解.【解答】解:根据题意得:∠AOC+∠DOB=∠AOB+∠BOC+∠DOB=∠AOB+∠COD=90°+90°=180°,故答案为:180°.【点评】本题考查了余角和补角的定义;找出∠AOC+∠DOB=∠AOB+∠BOC+∠DOB是解题的关键.18.挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走.如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走⑦.【考点】规律型:图形的变化类.【专题】操作型.【分析】根据游戏规则可以发现,第1次拿走的是没有被压住的棒,第2次拿走的有一个被压住交点的棒,依此论推,第6次拿走的有5个被压住交点的棒,应该为⑦号棒.【解答】解:根据游戏规则可以发现:第1次拿走的是没有被压住的棒,第2次拿走的有一个被压住交点的棒,依此论推,第6次拿走的有5个被压住交点的棒,则⑦号棒有5个被压住交点的棒.故答案为:⑦.【点评】题目考查了图形的变化类,通过游戏规则为载体,增强学生分析问题能力和解决问题能力,解决本题的关键是数出每根木棒被压住的点的个数.三、解答题19.计算:(1)﹣42﹣3×22×(﹣1)÷(﹣1)(2)﹣14﹣×[4﹣(﹣2)3].【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣16﹣12×(﹣)×(﹣)=﹣16﹣6=﹣22;(2)原式=﹣1﹣×12=﹣1﹣4=﹣5.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.化简:(1)﹣2y2+3xy﹣2[x2﹣(2x2﹣xy+y2)](2)化简与求值:x2+2x+3(x2﹣x),其中x=﹣.【考点】整式的加减—化简求值;整式的加减.【专题】计算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=﹣2y2+3xy﹣2x2+4x2﹣2xy+2y2=xy+2x2;(2)原式=x2+2x+3x2﹣2x=4x2,当x=﹣时,原式=1.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大小.【考点】角平分线的定义.【专题】计算题.【分析】由∠AOB=110°,∠COD=70°,易得∠AOC+∠BOD=40°,由角平分线定义可得∠AOE+∠BOF=40°,那么∠EOF=∠AOB+∠AOE+BOF.【解答】解:∵∠AOB=110°,∠COD=70°∴∠AOC+∠BOD=∠AOB﹣∠COD=40°∵OA平分∠EOC,OB平分∠DOF∴∠AOE=∠AOC,∠BOF=∠BOD∴∠AOE+∠BOF=40°∴∠EOF=∠AOB+∠AOE+∠BOF=150°.故答案为:150°.【点评】解决本题的关键利用角平分线定义得到所求角的两边的角的度数.22.解方程(1)4x﹣1.5x=﹣0.5x﹣9;(2)1﹣=2﹣.【考点】解一元一次方程.【分析】(1)先移项,再合并同类项,把x的系数化为1即可;(2)先去分母,再去括号,移项,合并同类项,把x的系数化为1即可.【解答】解:(1)移项得,4x﹣1.5x+0.5x=﹣9,合并同类项得,3x=﹣9,把x的系数化为1得,x=﹣3;(2)去分母得,6﹣3(x﹣1)=12﹣2(x+2),去括号得,6﹣3x+3=12﹣2x﹣4,移项得,﹣3x+2x=12﹣4﹣6﹣3,合并同类项得,﹣x=﹣1,把x的系数化为1得,x=1.【点评】本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解答此题的关键.23.如图,已知,CD∥EF,∠1=∠2.求证:∠3=∠ACB.【考点】平行线的判定与性质.【专题】证明题.【分析】根据平行线的性质得出∠2=∠DCB,求出∠1=∠DCB,根据平行线的判定得出GD∥CB即可.【解答】证明:∵CD∥EF,∴∠2=∠DCB,∵∠1=∠2,∴∠1=∠DCB,∴GD∥CB,∴∠3=∠ACB.【点评】本题考查了对平行线的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.24.在“五•一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱?说明理由.【考点】一元一次方程的应用.【专题】经济问题;阅读型.【分析】(1)设成人数为x人,则学生人数是(12﹣x)人.根据共需350元列方程求解;(2)只需计算购买16人的团体票和(1)中的350进行比较.【解答】解:(1)设成人人数为x人,则学生人数为(12﹣x)人.则35x+(12﹣x)=350解得:x=8故学生人数为12﹣8=4人,成人人数为8人.(2)如果买团体票,按16人计算,共需费用:35×0.6×16=336元.336<350所以,购团体票更省钱.答:有成人8人,学生4人;购团体票更省钱.【点评】此题主要是正确理解题意,在第二问中,虽然不够团体购票的人数,但可以多买几张,享受团体购票的优惠,从而进行比较.25.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数﹣6 ,点P表示的数8﹣5t (用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(4)若点D是数轴上一点,点D表示的数是x,请你探索式子|x+6|+|x﹣8|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.【考点】一元一次方程的应用;数轴;两点间的距离.【分析】(1)根据点A的坐标和AB之间的距离即可求得点B的坐标和点P的坐标;(2)根据距离的差为14列出方程即可求解;(3)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.(4)分为3种情况去绝对值符号,计算三种不同情况的值,最后讨论得出最小值.【解答】解:(1)点B表示的数是﹣6;点P表示的数是8﹣5t,(2)设点P运动x秒时,在点C处追上点Q (如图)则AC=5x,BC=3x,∵AC﹣BC=AB∴5x﹣3x=14…(4分)解得:x=7,∴点P运动7秒时,在点C处追上点Q.…(5分)(3)没有变化.分两种情况:①当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=7…(7分)②当点P运动到点B的左侧时:MN=MP﹣NP=AP﹣BP=(AP﹣BP)=AB=7…(9分)综上所述,线段MN的长度不发生变化,其值为7 …(4)式子|x+6|+|x﹣8|有最小值,最小值为14.…(12分)【点评】本题考查了数轴:数轴的三要素(正方向、原点和单位长度).也考查了一元一次方程的应用以及数轴上两点之间的距离.。