新人教版七年级数学下册第八章二元一次方程组测试题(附答案)
七年级数学下册《第八章 二元一次方程组》单元测试题含答案(人教版)
七年级数学下册《第八章 二元一次方程组》单元测试题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列各式是二元一次方程的是( )A .xy +y =1B .1x +1=yC .x −12y =2D .2x −y2.已知方程2mx −y =10的一组解为{x =1y =2,则m 的值是( ) A .6 B .16 C .4 D .14 3.《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本书.若每人出9元,则多了4元;若每人出8元,则少了3元,设学生有x 人和该书单价为y 元,下列方程组正确的是( )A .{9x −y =4y −8x =3B .{x −9y =48y −x =3C .{9x −y =3y −8x =4D .{9x +y =4y +8x =34.在解二元一次方程组{x −2y =2①4x −2y =5②时,下列方法中无法消元的是( ) A .①−②B .由①变形得x =2+2y ③,将③代入②C .①×4+②D .由②变形得2y =4x −5③,将③代入①5.已知x 、y 满足方程组{2x +y =6x +2y =3,则x −y =( ) A .-3 B .3 C .2 D .06.已知{x =4y =−2与{x =−2y =−5都是方程y =kx +b 的解,则k 与b 的值为( ) A .k =12,b =−4B .k =−12C .k =12,b =4D .k =−127.某种商品价格为33元/件,某人只带有2元和5元的两种面值的购物券各若干张,买了一件这种商品;若无需找零钱,则他的付款方式共有( )A .1种B .2种C .3种D .4种8.若{x =2y =1是方程组{ax +by =712bx +2cy =5的解,则a −c 的值是( ) A .1B .32C .2D .52 二、填空题 9.若x m−2+3y 3n−m =9是关于x ,y 的二元一次方程,则m +n = .10.关于x ,y 的方程组{x +6y =42x −3y =2k −1的解也是二元一次方程x +y =3的解,则k 的值为 . 11.已知a 、b 满足方程组{2a −b =2a +2b =6,则3a+b 的值为 . 12.把一根长20m 的钢管截成2m 长和3m 长两种规格均有的短钢管,且没有余料,不同的截法有 种.13.已知方程组{3x +2y =m +12x +y =m −1当m = 时,x 比y 大2. 三、解答题14.解方程组:(1){2y −x =−4x +y =−5(2){5(x +y)−3(x −y)=163(x +y)−5(x −y)=015.若{x =1,y =2是关于x 、y 的二元一次方程ax −by =1的一个解,且a +b =−5,求a −b 的值. 16.为引导广大青少年树立正确的世界观、人生观、价值观,传承红色基因,某校组织480名师生去红色革命圣地-延安开展研学旅行,学校向租车公司租赁A 、B 两种车型接送师生往返,已知每辆A 型车有45个座位,每辆B 型车有60个座位.若租车公司最多能提供7辆B 型车,且学校两种车型都要租用,没有剩余座位,请问有几种租车方案?并写出符合题意的所有租车方案.17.某公司计划印制一批宣传册.该宣传册每本共10页,由A 、B 两种彩页构成.已知A 种彩页制版费300元/页,B 种彩页制版费200元/页,共计2400元.(注:彩页制版费与印数无关)(1)求每本宣传册中A 、B 两种彩页各有多少页.(2)据了解,A 种彩页印刷费2.5元/页,B 种彩页印刷费1.5元/页,公司准备印制这批宣传册1500本,求印制这批宣传册制版费与印刷费的总和是多少元.18.为了防治“新型冠状病毒”,某小区准备用3500元购买医用口罩和消毒液发放给本小区住户,若医用口罩买800个,消毒液买120瓶,则钱还缺100元;若医用口罩买1000个,消毒液买100瓶,则钱恰好用完.(1)求医用口罩和消毒液的单价;(2)由于实际需要,除购买医用口罩和消毒液外,还需购买单价为6元的N95口罩m个.若需购买医用口罩和N95口罩共1000个,剩余的钱正好买了n瓶消毒液,求m与n的关系式.(用含m的代数式表示n)(3)在(2)的基础上,若100<m<200,求出N95口罩的个数.参考答案1.C2.A3.A4.C5.B6.A7.C8.A9.13310.311.812.313.514.(1)解:{2y −x =−4①x +y =−5② ①+②得:3y =−9解得:y =−3把y =−3代入②得:∴x =−2∴方程组的解为:{x =−2y =−3. (2)解:{5(x +y)−3(x −y)=16①3(x +y)−5(x −y)=0②①+②得:8x +8y −8x +8y =16解得:y =1把y =1代入①得:5x +5−3x +3=16解得:x =4∴方程组的解为:{x =4y =1.15.解:∵{x =1,y =2是关于x 、y 的二元一次方程ax −by =1的一个解 ∴a −2b =1∵a +b =−5∴联立方程组{a −2b =1,a +b =−5, 解得:{a =−3,b =−2,∴a −b =−3−(−2)=−1.16.解:设租m 输A 型车,n 辆B 型车依题意,得:45m +60n =480解得:n =8−34m .∵m ,n 为整数.∴{m =8,n =2,或{m =4,n =5,或{m =0,n =8,(不合题意,舍去) ∴有两种租车方案方案1:租4辆A 型车、5辆B 型车;方案2;租8辆A 型车、2辆B 型车.17.(1)解:设每本宣传册中A 种彩页有x 页,B 种彩页有y 页依题意得:{x +y =10300x +200y =2400解得:{x =4y =6. 答:每本宣传册中A 种彩页有4页,B 种彩页有6页;(2)解:2400+(2.5×4+1.5×6)×1500=2400+(10+9)×1500=2400+19×1500=2400+28500=30900(元).答:印制这批宣传册制版费与印刷费的总和是30900元.18.(1)解:设医用口罩的单价为x 元,消毒液的单价为y 元由题意得:{800x +120y =3500+1001000x +100y =3500解得:{x =1.5y =20答:医用口罩的单价为1.5元,消毒液的单价为20元(2)解:∵需购买单价为6元的N95口罩m 个,需购买医用口罩和N95口罩共1000个 ∴购买医用口罩(1000−m)个由题意得:1.5(1000−m)+6m +20n =3500化简得:n =100−940m(3)解:∵均为正整数,且100<m <200∴m 为40得倍数∴m =120或160。
人教版七年级数学下册第八章二元一次方程组单元测试题含答案
人教版七年级数学下册第八章二元一次方程组单元测试题含答案一、选择题1 、方程2 x - =0 ,3 x + y =0 , 2 x + xy =1 , 3 x + y -2 x =0 , x 2 - x +1=0 中,二元一次方程的个数是()A. 5 个B. 4 个C. 3 个D. 2 个2 、已知是关于 x 、 y 的二元一次方程, 则m 、n 的解是( ) (A )(B )(C )(D )3 、方程组的解的情况是().A.一个解B.二个解C.无解D.无数个4 、下列各组数值是方程的解的一组是()A.B.C.D.5 、由方程组可得出与的关系是()A.B.C.D.6 、甲、乙二人从同一地点出发,同向而行,甲骑车乙步行,若乙先行千米,那么甲小时追上乙;如果乙先走小时,甲只用小时追上乙,则乙的速度是()A.千米/时B.千米/时C.千米/时D.千米/时7 、已知, 是方程组的解,则的值为().A.B.C.D.8 、如果二元一次方程组的解是二元一次方程的一个解,则()A.B.C.D.9 、已知甲、乙两种商品的进价和为100 元,为了促销而打折销售,若甲商品打八折,乙商品打六折,则可赚50 元,若甲商品打六折,乙商品打八折,则可赚30 元,甲、乙两种商品的定价分别为()A. 50 元、150 元B. 50 元、100 元C. 100 元、50 元D. 150 元、50 元10 、在一次野炊活动中,小明所在的班级有x 人,分成y 组,若每组7 人,则余下3 人;若每组8 人,则缺 5 人,求全班人数的正确的方程组是()A. . C. D.二、填空题1 、方程的一个解是那么的值为_____ .2 、已知二元一次方程,用含x 的式子表示y ,则y =_____ ;若y 的值为2 ,则x 的值为_____ .3 、如果,,则_____ .4 、若甲队有人,乙队有人,若从甲队调出人到乙队,则甲队人数是乙队人数的一半,可列方程为_____ .5 、当_____________ 时,下列方程① ,② ,③有公共解.6 、二元一次方程的所有正整数解为_____ .7 、若,那么_____ .8 一个两位数的十位数字与个位数字之和等于5 ,十位数字与个位数字之差为1 ,设十位数字为x ,个位数字为y ,则用方程组表示上述语言为______ .9 方程x (x +3 )=0 的解是______ .10 由方程组,可以得到x + y + z 的值是______ .三、解答题1 、解下列方程组:(1 )(4 分)(2 )(4 分)(3 )(6 分)2 、小明手上有一张元的人民币,当路过商店门口时,他想把这元钱换成元或元的零钱,请他细考虑一下,售货员可有几种兑换方法?(5 分)3 、小英和小强相约一起去某超市购买他们看中的随身听和书包.你能根据他们的对话内容(如图3 ),求出他们看中的随身听和书包单价各是多少元吗?(5 分)4 、“利海”通讯器材商场,计划用元从厂家购进若干部新型手机,以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别为甲种型号手机每部元,乙种型号手机每部元,丙种型号手机每部元.(1 )若商场同时购进其中两种不同型号的手机共部,并将元恰好用完.请你帮助商场计算一下如何购买.(2 )若商场同时购进三种不同型号的手机共部,并将元恰好用完,并且要求乙种型号手机的购买数量不少于部且不多于部,请你求出商场每种型号手机的购买数量.(8 分)答案:5.某旅行社组织一批游客外出旅游,原计划租用45 座客车若干辆,但有15 人没有座位;若租用同样数量的60 座客车,则多出一辆车,且其余客车恰好坐满.已知45 座客车租金为每辆220 元,60 座客车租金为每辆300 元,问:(1 )这批游客的人数是多少?原计划租用多少辆45 座客车?(2 )若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?一、选择题1、D;2 、C ;3 、C ;4 、A ;5 、C ;6 、A ;7 、D ;8 、B ;9 、D;10 、A二、填空题1 、;2 、y= ,6 ;3 、16 ;4 、x -10= (y+10) ;5 、;6 、;7 、-;8.9 0 或-310 3三、解答1 、1 .(1 )(2 )(3 )2 、种兑换方法.(提示:此题实际是求二元一次方程的非负整数解.)3 、设他们看中的书包的单价为x 元,随身听的单价为y 元.则根据题意,得解得答他们看中的随身听和书包单价各是360 元和92 元4.(1 )两种购买方法:甲种型号手机购买部,乙种型号手机购买部,或甲种型号手机购买部,丙种型号手机购买部;(2 )若乙种型号手机购买部,则甲种型号手机购买部,丙种型号手机购买部,若乙种型号手机购买部,则甲种型号手机购买部,丙种型号手机购买部;若乙种型号手机购买部,由甲种型号手机购买部,丙种型号手机购买部.5. 解:( 1 )设这批游客的人数是 x 人,原计划租用 45 座客车 y 辆. 根据题意,得, 解这个方程组,得 .答:这批游客的人数 240 人,原计划租 45 座客车 5 辆;( 2 )租 45 座客车: 240÷45≈5.3 (辆),所以需租 6 辆,租金为 220×6=1320 (元),租 60 座客车: 240÷60=4 (辆),所以需租 4 辆,租金为 300×4=1200 (元).答:租用 4 辆 60 座客车更合算.人教版七年级下册第8章二元一次方程组培优训练卷人教版七年级下册第八章二元一次方程组单元检测题培优训练试题一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.已知x 、y 满足方程组⎩⎨⎧=+=+7282y x y x 则x +y 的值是( ) A. 3 B. 5 C. 7 D. 92.若方程组()⎩⎨⎧=+=-+143461y x y a ax 的解y x ,的值相等,则a 的值为( ) A .﹣4 B .4 C .2 D .13.下列方程组中,与方程组⎩⎨⎧=+-=73243y x y x 的解相同的是( ) A.⎩⎨⎧=+=73211y x x B.⎩⎨⎧=+=7325y x y C.⎩⎨⎧=+--=734643y x y x D.⎩⎨⎧=-=y x y x 43 4﹒如图,是正方体的一种表面展开图,若这个正方体相对的两个面上的代数式的值相等,则a y x ++的值为( )A ﹒5B ﹒6C ﹒7D ﹒85.有大小两种船,1艘大船与4艘小船一次可以载乘客46名,2艘大船与3艘小船一次可以载乘客57人.现有3艘大船与6艘小船,一次可以载游客的人数为( )A .129B .120C .108D .966.已知关于y x ,的方程组⎩⎨⎧-=-=-52253a y x a y x ,若y x ,的值互为相反数,则a 的值为( ) A. 5- B. 5C. 20-D.20 7.关于y x ,的方程组⎩⎨⎧=-=+15x y ay x 有正整数解,则正整数a 为( ) A . 1、2 B .2、5 C .1、5 D .1、2、58.为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( )A .4种B .3种C .2种D .1种9.某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种奖品各买多少件?该问题中,若设购 买甲种奖品x 件,乙种奖品y 件,则方程组正确的是A.⎩⎨⎧=+=+400161230y x y xB.⎩⎨⎧=+=+400121630y x y xC.⎩⎨⎧=+=+400301612y x y x D. ⎩⎨⎧=+=+400301216y x y x 10.已知a 为常数,且方程组⎩⎨⎧=+=+-1153)35(y ax y x a 只有唯一解,则a 的值为( ) A. 65=a B. 65≠a C. 35<a D.a 为任意实数二.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!11.二元一次方程x +3y=7的非负整数解是_________12.已知⎩⎨⎧==13y x 和⎩⎨⎧=-=112y x 都是方程7=+by ax 的解,则___________,==b a 13.若关于y x ,的二元一次方程组⎩⎨⎧=-=+k y x k y x 95的解也是二元一次方程2x +3y =6的解,则k 的值为___________14.已知⎩⎨⎧-=-=+122k y x k y x 如果x 是y 的3倍少1,那么______=k 15.若关于x 、y 的二元一次方程组⎩⎨⎧=+=-232y mx n y x 有无数个解,则____________,==n m16.某公司去年的利润(总收入-总支出)为200万元.今年总收入比去年增加了20%,总支出比去年减少了10%,若今年的利润为780万元,则去年总收入是_________万元三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17(本题6分)解下列方程组:(1)⎩⎨⎧=-=+82523y x y x (2)()()()⎪⎩⎪⎨⎧=--+-=+--3223121432y x y x y x y x18(本题8分)已知关于y x ,的方程组⎩⎨⎧=+=+142y x by ax 与()⎩⎨⎧=-+=-313y a bx y x 的解相同,求b a ,的值.19(本题8分)已知二元一次方程组的解为且m +n=2,求k 的值.20(本题10分)(1)满足方程组⎩⎨⎧=++=+532153y x k y x 的x 、y 值之和为2,求k 的值。
七年级数学下册《第八章二元一次方程组》测试卷及答案(人教版)
七年级数学下册《第八章二元一次方程组》测试卷及答案(人教版)一、单选题(本大题共12小题,每小题3分,共36分)1.中国古代数学著作《算法统宗》中记载了这样一个题目:九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?其大意是:用九百九十九文钱共买了一千个苦果和甜果,其中四文钱可以买苦果七个,十一文钱可以买甜果九个.问:苦、甜果各有几个?设苦果有x个,甜果有y个,则可列方程组为()A.100041199979x yx y+=⎧⎪⎨+=⎪⎩B.100079909411x yx y+=⎧⎪⎨+=⎪⎩C.100079999x yx y+=⎧⎨+=⎩D.1000411999x yx y+=⎧⎨+=⎩2.如图,某农家乐老板计划在一块长130米,宽60米的空地开挖两块形状大小相同的垂钓鱼塘,它们的面积之和为5750平方米,两块垂钓鱼塘之间及周边留有宽度相等的垂钓通道,则垂钓通道的宽度为()A.4.5m B.5m C.5.5m D.6m3.已知方程组23133530.9a ba b-=⎧⎨+=⎩的解是8.31.2ab=⎧⎨=⎩,则()()()()2213313230.951x yx y⎧-=++⎪⎨-=-+⎪⎩的解是()A.8.31.2xy=⎧⎨=⎩B.10.32.2xy=⎧⎨=⎩C.6.32.2xy=⎧⎨=⎩D.10.30.2xy=⎧⎨=⎩4.若关于x,y的二元一次方程组2245x y kx y k+=⎧⎨-=⎩的解满足1x y-=,则k的值是()A.1B.2C.3D.45.方程组233730x yx zx y z+=⎧⎪-=⎨⎪-+=⎩的解为()A .211x y z =⎧⎪=⎨⎪=-⎩B .211x y z =⎧⎪=-⎨⎪=⎩C .211x y z =⎧⎪=-⎨⎪=-⎩D .211x y z =⎧⎪=⎨⎪=⎩6.已知21x y =⎧⎨=-⎩是方程23x y m -=的解,则m 的值为( ) A .7 B .7- C .1 D .1-7.若关于x ,y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是23x y =⎧⎨=-⎩,则关于m ,n 的二元一次方程组()()()()111222a m n b m n c a m n b m n c ⎧-++=⎪⎨-++=⎪⎩的解是( ) A .1252m n ⎧=-⎪⎪⎨⎪=-⎪⎩ B .1252m n ⎧=-⎪⎪⎨⎪=⎪⎩ C .5212m n ⎧=-⎪⎪⎨⎪=-⎪⎩ D .5212m n ⎧=⎪⎪⎨⎪=⎪⎩8.若等式||2(1)3m x m y +-=,是关于x ,y 的二元一次方程,则m 的值是( )A .1±B .1C .1-D .2±9.已知关于x ,y 的二元一次方程组=12+=3ax by ax by -⎧⎨⎩的解为=1=1x y ⎧⎨-⎩,那么代数式2a b -的值为( ) A .-2 B .2 C .3 D .- 310.若关于x 、y 的二元一次方程组3749ax y x y +=⎧⎨+=⎩与5358x y x by -+=⎧⎨+=⎩) A .1 B .1± C .2 D .2±11.若关于x ,y 的方程组()()()()111222a x y b x y c a x y b x y c ⎧+--=⎪⎨+--=⎪⎩,解为20222023x y =⎧⎨=⎩.则关于x ,y 的方程组1112221515a x b y c a x b y c ⎧+=⎪⎪⎨⎪+=⎪⎩的解是( )A .80915x y =⎧⎪⎨=⎪⎩B .40451x y =⎧⎨=⎩C .20222023x y =⎧⎨=⎩D .2022520235x y ⎧=⎪⎪⎨⎪=-⎪⎩12.已知21x y =⎧⎨=-⎩是关于x ,y 的二元一次方程组522ax by bx ay +=-⎧⎨-=⎩的解,则a +b 的值为( ) A .﹣5 B .﹣1 C .3 D .7二、填空题(本大题共8小题,每小题3分,共24分)13.若实数m ,n 满足5240m n m n --+-=∣∣,则3m n +=__________.14.若关于x ,y 的二元一次方程组9876x y m x y n -=⎧⎨+=⎩的解为12x y =⎧⎨=⎩,则关于a ,b 的二元一次方程组()()()()91827162a b m a b n ⎧--+=⎪⎨-++=⎪⎩的解为_______. 15.已知x ,y ,z 满足438324x y z +++==,且212x y z -+=,则x =____________. 16.若关于x ,y 的方程()12m m x y --=是一个二元一次方程,则m 的值为_____________.17.若方程组2439x y ax y -=⎧⎨+=⎩无解,则a 的值为________ 18.重庆某大学对重庆某村实施“技术助农”.该村种植有A 、B 、C 三种经济作物,助农前,A ,B ,C 三种作物亩数比例为2:5:3;助农后,三种经济作物的亩数都得以增加,其中B 作物增加的亩数占总增加亩数的16.助农前,C 作物的亩产量是B 作物亩产量的2.5倍,A ,B 两种作物的亩产量之和恰好是C 作物的亩产量;助农后,A ,B 两种作物的亩产量分别增加了13和12,A ,B 两种作物的亩产量之和恰好仍是C 作物的亩产量.若助农后,B 作物的产量比助农前A ,B 产量之和多332,而C 作物的产量比助农前A ,B ,C 三种作物产量的总和还多5%,则助农前后A 作物的产量之比为__________.19.已知关于x ,y 的二元一次方程组21346x y a x y a +=-+⎧⎨-=+⎩(a 是常数),若不论a 取什么实数,代数式kx y -(k 是常数)的值始终不变,则k =______.20.已知关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是49x y =⎧⎨=⎩,则与方程组111222234234a x b y c a x b y c +=⎧⎨+=''''⎩ 有关的2x y ''-的值为_____.三、解答题(本大题共5小题,每小题8分,共40分)21.解下列二元一次方程组:(1)=23+10=0y x x y -⎧⎨⎩(2)2+3=53+2=5x y x y -⎧⎨⎩22.“冰墩墩”和“雪容融”分别是北京2022年冬奥会和冬残奥会的吉祥物.某冬奥官方特许商品零售店购进了一批同一型号的“冰墩墩”和“雪容融”玩具,连续两个月的销售情况如表:求此款“冰墩墩”和“雪容融”玩具的零售价格.23.解方程组:(1)231915x yx y+=-⎧⎨=-⎩(用代入消元法)(2)49231x yx y-=⎧⎨+=⎩(用加减消元法)24.我们规定:若关于x的一元一次方程ax=b的解为b+a,则称该方程为“和解方程”.例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x的一元一次方程3x=m是“和解方程”,求m的值;(2)请自行写出一个除上述你方程外的“和解方程”:______(3)已知关于x的一元一次方程﹣2x=mn+n是“和解方程”,并且它的解是x=n,求m,n的值.25.已知一个三位数=m abc,如果它的百位数字加上2与十位数字加上5的和等于个位数字加上8,则称这个三位数叫“258数”.如:245,∵()()22455813+++=+=,∵245是“258数”;437,∵()()423514+++= 7815+=,14≠15,∵437不是“258数”.(1)请根据材料判断526和738是不是“258数”,并说明理由;(2)若“258数”=m abc (19a b c ≤<<≤,且a ,b 、c 均为整数)能被3整除,请求出所有符合题意的m 的值.参考答案:1.A2.B3.D4.A5.C6.A7.A8.C9.B10.C11.A12.B13.714.20a b =⎧⎨=⎩ 15.1416.-117.-618.90:27119.-120.16-21.(1)24x y =⎧⎨=⎩;(2)55x y =-⎧⎨=⎩.22.此款“冰墩墩”玩具的零售价格为118元,“雪容融”玩具的零售价格为75元23.(1)143x y =-⎧⎨=⎩ (2)21x y =⎧⎨=-⎩24.(1)92m=-(2)1643x(答案不唯一)(3)23,3m n=-=-25.(1)526是“258数”,738不是“258数”,(2)267、627、357、537。
(精练)人教版七年级下册数学第八章 二元一次方程组含答案
人教版七年级下册数学第八章二元一次方程组含答案一、单选题(共15题,共计45分)1、甲、乙、丙三辆车均在A、B两地间往返,三辆车在A、B两地间往返一次所需时间分别为5小时、3小时和2小时.现在三辆车同时在A地视为第一次汇合,甲车先出发,1 小时后乙车出发,再经过2小时后丙车出发.那么丙车出发()小时后,三辆车第三次同时汇合于A地.A.50B.51C.52D.532、小强到体育用品商店购买羽毛球球拍和乒乓球球拍,已知购买1副羽毛球球拍和1副乒乓球球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍.若设每副羽毛球拍为x元,每副乒乓球拍为y元,根据题意,下面所列方程组正确的是()A. B. C. D.3、某县响应国家“退耕还林”号召,将一部分耕地改为林地,改还后,林地面积和耕地面积共有,耕地面积是林地面积的,设改还后耕地面积为,林地面积为,则下列方程组中正确的是A. B. C. D.4、有甲,乙,丙三种商品,如果购甲3件,乙2件,丙1件共需315元钱,购甲1件,乙2件,丙3件共需285元钱,那么购甲,乙,丙三种商品各一件共需()A.50B.100C.150D.2005、若是方程组的解,那么a-b的值是( )A.5B.1C.-1D.-56、如果单项式2a2m﹣5b n+2与ab3n﹣2的和是单项式,那么m和n的取值分别为()A.2,3B.3,2C.﹣3,2D.3,﹣27、小江去商店购买签字笔和笔记本(签字笔的单价相同,笔记本的单价相同).若购买20支签字笔和15本笔记本,则他身上的钱会不足25元;若购买19支签字笔和13本笔记本,则他身上的钱会剩下15元.若小江购买17支签字笔和9本笔记本,则( )A.他身上的钱会不足95元B.他身上的钱会剩下95元C.他身上的钱会不足105元D.他身上的钱会剩下105元8、已知方程组:的解x,y满足x+3y≥0,则m的取值范围是()A.﹣≤m≤1B.m≥C.m≥1D.m≥﹣9、若方程组的解满足方程,则的值为()A. B. C. D.10、由方程组可得出x与y的关系是( )A.2x+y=4B.2x-y=4C.2x+y=-4D.2x-y=-411、已知关于x、y的方程组和方程组有相同的解,那么(a+b)2007的值为()A.﹣2007B.﹣1C.1D.200712、方程■x﹣2y=x+5是二元一次方程,■是被弄污的x的系数,请你推断■的值属于下列情况中的()A.不可能是﹣1B.不可能是﹣2C.不可能是1D.不可能是213、把一根长的钢管截成长和长两种规格的钢管,如果保证没有余料,那么截取的方法有()A.2种B.3种C.4种D.5种14、若|3x+2y+7|+|5x﹣2y+1|=0,则x,y的值是()A. B. C. D.15、解方程组时,某同学把c看错后得到,而正确的解是,那么a,b,c的值是( )A.a=4,b=5,c=2B.a,b,c的值不能确定C.a=4,b=5,c=-2D.a,b不能确定,c=-2二、填空题(共10题,共计30分)16、已知2x+3y=5,用含x的式子表示y,得:________.17、把方程3x+y-1=0写成用含x的代数式表示y的形式,则y=________.18、方程组的解中,x 与 y 的和等于 5,则 m=________.19、县城3路公交车每隔一定时间发车一次,一天小明在街上匀速行走,发现背后每隔15分钟开过来一辆公交车,而迎面每隔10分钟有一辆公交车驶来,则公交车每隔________分钟发车一次.20、二元一次方程3x+2y=15的正整数解为________21、若=0是关于x、y的二元一次方程,则a的值是________.22、已知关于x,y的二元一次方程组满足,则a的取值范围是________.23、已知是方程的一个解,则的值为________.24、二元一次方程组的解是:________ .25、在关于x,y的方程组:① :② 中,若方程组①的解是,则方程组②的解是________.三、解答题(共6题,共计25分)26、解方程组27、当k取何值时,等式的b是负数.28、将若干吨分别含铁和含铁的两种矿石混合后配成含铁的矿石70吨.求两种矿石分别需要多少吨?29、一农妇在市场卖葱,当时市场上的葱价是1.00元一斤,一葱贩对农妇说:“我想把你的葱分开来买,葱叶0.50元一斤,葱白0.50元一斤.”农妇听了葱贩的话,不假思索就把葱全部卖完.当农妇数过钱之后才发现只卖了一半钱.此时葱贩已不见踪影.聪明的你,请运用数学语言揭穿葱贩的把戏.过程如下:设总量z斤,葱叶x斤,葱白y斤,列方程∵x+y=z,∴卖给葱贩的钱为0.5x+0.5y=0.5z,而实际应卖的钱为1.0x+1.0y=1.0z,结果一目了然,那葱贩只用了一半钱就买了所有葱.(1)生活常识告诉我们,人们在吃葱的时候主要吃的是葱白,葱白应比葱叶卖的贵.假设一根葱的葱叶和葱白重量相同,葱叶和葱白的价钱之和仍是1.00元.请用数学语言说明此时农妇还是只卖了一半的钱.(2)假设一根葱的葱叶和葱白重量不同,且葱叶的重量大于葱白的重量,葱叶0.20元一斤,葱白0.80元一斤.请用数学语言说明此时农妇卖的钱少于一半.30、某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.求该校的大小寝室每间各住多少人?参考答案一、单选题(共15题,共计45分)1、C2、B3、A4、C5、C6、B7、B8、D9、C10、A11、C12、C13、B14、C15、C二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共6题,共计25分)26、27、28、30、。
新人教版初中数学七年级下册第8章《二元一次方程组》单元测试题(解析版)
人教版七年级数学下册第八章 二元一次方程组复习检测试题一、选择题1.下列各式,属于二元一次方程的个数有( ) ①xy+2x -y=7; ②4x+1=x -y ; ③1x+y=5; ④x=y ; ⑤x 2-y 2=2 ⑥6x -2y ⑦x+y+z=1 ⑧y (y -1)=2y 2-y 2+x A .1 B .2 C .3 D .42.如果方程组⎩⎪⎨⎪⎧x +y =★,2x +y =16的解为⎩⎪⎨⎪⎧x =6,y =■,那么被“★”“■”遮住的两个数分别是( ) A .10,4 B .4,10 C .3,10 D .10,33.已知二元一次方程30x y +=的一个解是x ay b=⎧⎨=⎩,其中0a ≠,那么( )A.0ba> B.0ba= C.0ba< D.以上都不对4.若满足方程组的x 与y 互为相反数,则m 的值为( ) A .1B .﹣1C .﹣11D .115今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是踢负场数的整数倍,则小虎足球队踢负场数的情况有( ) A .2种 B .3种C .4种D .5 种6.已知方程组5354x y ax y +=⎧⎨+=⎩和2551x y x by -=⎧⎨+=⎩有相同的解,则a ,b 的值为 ( )A.12a b =⎧⎨=⎩B.46a b =-⎧⎨=-⎩ C.62a b =-⎧⎨=⎩D.142a b =⎧⎨=⎩7.某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y 元,那么根据题意,下列方程组中,正确的是( )A.⎩⎪⎨⎪⎧x -y =320x +10y =36B.⎩⎪⎨⎪⎧x +y =320x +10y =36 C.⎩⎪⎨⎪⎧y -x =320x +10y =36 D.⎩⎪⎨⎪⎧x +y =310x +20y =368.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,•则下面所列的方程组中符合题意的有()A.246246216246... 22222222 x y x y x y x yB C Dy x x y y x y x+=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩9.某商店有两进价不同的耳机都卖64元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店()A、赔8元B、赚32元C、不赔不赚D、赚8元10.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为()A.400cm2B.500cm2C.600cm2D.300cm2二、填空题1.将方程3y﹣x=2变形成用含y的代数式表示x,则x=.2.为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有____种购买方案.3.已知│x-1│+(2y+1)2=0,且2x-ky=4,则k=_____.4.《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文.甲、乙两人原来各有多少钱?设甲原有x文钱,乙原有y文钱,可列方程组是.三、解答题1.解方程组:2.定义一个非零常数的运算,规定:a*b=ax+by,例如:2*3=2x+3y,若1*1=8,4*3=27,求x、y的值.3.甲、乙两位同学在解方程组时,甲把字母a看错了得到方程组的解为;乙把字母b看错了得到方程组的解为.(1)求a,b的正确值;(2)求原方程组的解.4.某工厂第一季度生产甲、乙两种机器共550台,经市场调查决定调整两种机器的产量,计划第二季度生产这两种机器共536台,其中甲种机器产量要比第一季度增产12%,乙种机器产量要比第一季度减产20%.该厂第一季度生产甲、乙两种机器各多少台?5.某校准备去楠溪江某景点春游,旅行社面向学生推出的收费标准如下:已知该校七年级参加春游学生人数多于100人,八年级参加春游学生人数少于100人.经核算,若两个年级分别组团共需花费17700元,若两个年级联合组团只需花费14700元.(1)两个年级参加春游学生人数之和超过200人吗?为什么?(2)两个年级参加春游学生各有多少人?6.某超市第一次用4600元购进甲、乙两种商品,其中甲商品件数的2倍比乙商品件数的3倍少40件,甲、乙两种商品的进价和售价如下表(利润=售价﹣进价):(1)该超市第一次购进甲、乙两种商品的件数分别是多少?(2)该超市将第一次购进的甲、乙两种商品全部卖出后一共可获得多少利润?(3)该超市第二次以同样的进价又购进甲、乙两种商品.其中甲商品件数是第一次的2倍,乙商品的件数不变.甲商品按原价销售,乙商品打折销售.第二次甲、乙两种商品销售完以后获得的利润比第一次获得的利润多280元,则第二次乙商品是按原价打几折销售的?参考答案一.选择题1.B. 2.A.3.B.4.D.5.B.6.B.7.B.8.B.9.C.10.A.二.填空题1.3y﹣2 2.两 3. k=1.4..三.解答题1.解:原方程组可整理得:,②﹣①得:2x=4,解得:x=2,把x=2代入①得:2﹣2y=﹣3,解得:y=,即原方程组的解为:.2.解:∵a*b=ax+by∴1*1=8,即为x+y=8,4*3=27 即为4x+3y=27;解方程组①×3﹣②,得﹣x=﹣3,解得x=3,将x=3代入①,得y=5.3.解:(1)根据题意得:,解得:a=2,b=﹣3,(2)方程组为,解得.4.解:设某工厂第一季度人教版七年级数学下册 第八章 二元一次方程组 单元综合测试卷(1)一、选择题(本大题共10小题,,共30分)1.下列方程组中,是二元一次方程组的是( ) A.⎩⎨⎧=-=+53262z y y x B.⎪⎩⎪⎨⎧=-=+1221y x y x C.⎩⎨⎧==+34y y x D.⎩⎨⎧==+34xy y x2.已知方程组⎩⎨⎧-=+=-4272y x y x 的解是( )A .⎩⎨⎧=-=23y xB .⎩⎨⎧-==32y xC .⎩⎨⎧==51y xD .⎩⎨⎧-==20y x3.⎩⎨⎧==72y x 是方程ax -3y=2的一个解,则a 为( )A.8B.223 C.-223 D.-2194.若0)23(22=++-y x ,则y x )1(+的值是( ) A. ﹣1B. ﹣2C. ﹣3D.23 5.如果2x-7y=8,那么用含y 的代数式表示x 正确的是( ) A .827x y -=B .287x y +=C .872y x +=D .872yx -= 6.已知是方程组的解,则a+b+c 的值是( )A .3B .2C .1D .无法确定7.已知方程组54{ 58x y x y +=+=,则x ﹣y 的值为( )A. 2B. ﹣1C. 12D. ﹣48.如图,宽为50的大长方形图案由10个完全相同的小长方形拼成,其中一个小长方形的面积为( )A. 400B. 500C. 600D. 40009.成渝路内江至成都全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇.相遇时,小汽车比小客车多行驶20千米.设小汽车和客车的平均速度分别为x 千米/小时和y 千米/小时,则下列方程组正确的是( )A.207717066x y x y +=+=⎧⎪⎨⎪⎩B.207717066x y x y -=+=⎧⎪⎨⎪⎩ C.207717066x y x y +=-=⎧⎪⎨⎪⎩ D.7717066772066x y x y +=-=⎧⎪⎪⎨⎪⎪⎩ 10.某次知识竞赛共出了25道题,评分标准如下:答对1题加4分;答错1题扣1分,不答记0分,已知李刚不答的题比答错的题多2题,他的总分为74分,则他答对了( ) A .19题B .18题C .20题D .21题二、填空题(本大题共8小题,共24分)11.二元一次方程4x +y =11的所有自然数解是______ . 12.已知,则x 与y 的关系式为______ .13.三元一次方程组的解是______ .14.如果1032162312=--+--b a b a y x是一个二元一次方程,那么数a =___, b =__。
人教版七年级下第八章二元一次方程组综合练习题(含答案)
人教版七年级下第八章二元一次方程组综合练习题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列方程是二元一次方程的是()A.2x+y=3z B.2x﹣1 y=2C.3x﹣5y=2D.2xy﹣3y=02.在下列方程组5231xy x=⎧⎨-=⎩、35x yx y+=⎧⎨-=⎩、3123xyx y=⎧⎨+=⎩、1111x yx y⎧+=⎪⎨⎪+=⎩、11xy=⎧⎨=⎩中,是二元一次方程组的有()个A.2个B.3个C.4个D.5个3.如图,AB⊥BC,⊥ABD的度数比⊥DBC的度数的两倍少15°,设⊥ABD和⊥DBC的度数分别为x°、y°,那么下面可以求出这两个角的度数的方程组是()A.9015x yx y+=⎧⎨=-⎩B.90215x yx y+=⎧⎨=-⎩C.90152x yx y+=⎧⎨=-⎩D.290215xx y=⎧⎨=-⎩4.方程组1{25x yx y+=-=,的解是().A.1{2.xy=-=,B.2{3.xy,=-=C.2{1.xy==,D.2{1.xy==-,5.用代入法解方程组233210y xx y=-⎧⎨-=⎩①②将方程⊥代入⊥中,所得的正确方程是()A.3x-4x-3=10B.3x-4x+3=10C.3x-4x+6=10D.3x-4x-6=106.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为()A .2400cmB .2500cmC .2600cmD .2700cm7.若31,21x t y t =+=-,用含y 的式子表示x 的结果是( ) A .253x y -=B .352y x +=C .253x y +=D .352y x -=8.若324432a b a b x y ++--=是关于x ,y 的二元一次方程,则23a b +的值为( ) A .0B .3-C .3D .69.关于x ,y 的方程组3212331x y k x y k +=-⎧⎨+=+⎩的解为x ay b =⎧⎨=⎩,若点P (a ,b )总在直线y =x上方,那么k 的取值范围是( ) A .k >1B .k >﹣1C .k <1D .k <﹣110.若方程组435,(1)8x y kx k y +=⎧⎨--=⎩的解中的x 的值比y 的值的相反数大1,则k 为( )A .3B .-3C .2D .-211.代数式2x ax b ++,当1x =,2时,其值均为0,则当1x =-时,其值为( ) A .0B .6C .6-D .212.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如果他骑车和步行的时间分别为x ,y 分钟,列出的方程是( ) A .1{4250802900x y x y +=+=B .15{802502900x y x y +=+=C .1{4802502900x y x y +=+=D .15{250802900x y x y +=+=二、填空题13.请写出一个以21x y =⎧⎨=-⎩为解的二元一次方程:______ .14.(1)若35m =,37=n ,则3m n +=________;(2)若x 、y 是正整数,且5222⋅=x y ,则x 、y 的值分别为________.15.在(1)32xy=⎧⎨=-⎩,(2)453xy=⎧⎪⎨=-⎪⎩,(3)1472xy⎧=⎪⎪⎨⎪=⎪⎩这三组数值中,_______是方程x-3y=9的解,______是方程2x+y=4的解,_________是方程组3924x yx y-=⎧⎨+=⎩的解.16.若二元一次方程组1523210aax yx y-⎧-=⎪⎨⎪-=⎩的解也是方程29x y+=的解,则a=_____.17.二元一次方程组321221x yx y+=⎧⎨-=⎩的解为________.18.已知|2x﹣4|+|x+2y﹣8|=0,则(x﹣y)2022=____.19.已知1,{2xy==是方程ax-3y=5的一个解,则a=________.20.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则列出的方程组为________.三、解答题21(2x+3y+1)2互为相反数,求x﹣y的平方根.22.我市某著名景点门票价格规定如下表:小明妈妈的公司有一项短途旅行业务,就是去该景点一日游.学完一元一次方程以后,他妈妈让他给规划一个去该景点游玩的购票方案,给他的提示是:有甲、乙两个团队共32人,其中甲团队3人以上,不足10人.经估算,如果两个团队分别购票,则应付门票费2100元.(1)两个团队各有多少人?(2)如果两个团队联合起来,作为一个团体购票,可省钱元.(3)如果乙团队临时有事不能去了,只有甲团队单独去游玩,通过计算说明如何购票最省钱?23.有甲、乙、丙三种货物,若购甲3件,乙7件,丙1件,共需315元,若购甲4件,乙10件,丙1件,共需420元.现在购甲、乙、丙各一件共需多少元?24.(1)解二元一次方程组5316,350;x y x y -=⎧⎨-=⎩(2)现在你可以用哪些方法得到方程组()()()()5316,350x y x y x y x y ⎧+--=⎪⎨+--=⎪⎩的解?请你对这些方法进行比较.25.先阅读下列解法,再解答后面的问题. 已知2343212x A Bx x x x -=+-+--,求A 、B 的值.解法一:将等号右边通分,再去分母,得:()()3421x A x B x -=-+-,即:()()342x A B x A B -=+-+,⊥()324A B A B +=⎧⎨-+=-⎩解得12A B =⎧⎨=⎩.解法二:在已知等式中取0x =时,有22BA -+=--,整理得24AB +=; 取3x =,有522A B +=,整理得25A B +=. 解2425A B A B +=⎧⎨+=⎩,得:12A B =⎧⎨=⎩.(1)已知21131424643x A B x x x x=+--++-,用上面的解法一或解法二求A 、B 的值.(2)计算:()111111(1)(1)(1)(3)(3)(5)(9)(11)x x x x x x x x x ⎡⎤+++⋅⋅⋅++⎢⎥-+++++++⎣⎦,并求x 取何整数时,这个式子的值为正整数.参考答案:1.C【详解】A 、2x+y=3z 不是二元一次方程,因为有3个未知数; B 、2x -1y=2不是二元一次方程,因为不是整式方程; C 、3x -5y=2是二元一次方程;D 、2xy -3y=0不是二元一次方程,因为最高项的次数为2. 故选C . 2.B【分析】根据二元一次方程组的定义逐个判断即可.【详解】解:方程组5231x y x =⎧⎨-=⎩,035x y x y +=⎧⎨-=⎩,11x y =⎧⎨=⎩符合二元一次方程组的定义,是二元一次方程组.方程组3121xy x y =⎧⎨+=⎩属于二元二次方程组,不是二元一次方程组.方程组1111x y x y ⎧+=⎪⎨⎪+=⎩中的第一个方程不是整式方程,不是二元一次方程组.故选:B .【点睛】本题考查了二元一次方程组的定义,解题关键是明确二元一次方程组的定义,准确进行判断. 3.B【详解】⊥AB⊥BC , ⊥⊥ABD+⊥DBC=90°,又⊥⊥ABD 的度数比⊥DBC 的度数的两倍少15度, ⊥当设⊥ABD 和⊥DBC 度数分别为x y 、时,由题意可得:90215x y x y +=⎧⎨=-⎩ . 故选:B. 4.D【详解】方程组1{25x y x y +=-=①②,由⊥+⊥得3x =6,x =2,把x =2代入⊥中得y =-1, 所以方程组1{25x y x y +=-=的解是2{1x y ==-. 故选D. 5.C 【解析】略 6.A【分析】设小长方形的宽为x cm ,长为y cm ,根据题意列方程组求解即可.【详解】设小长方形的宽为x cm ,长为y cm ,根据题意得504x y y x +=⎧⎨=⎩,解得1040x y =⎧⎨=⎩,∴一个小长方形的面积为21040400cm ⨯=,故选:A .【点睛】本题考查了二元一次方程组的实际应用,能够根据题意列出方程组并准确求解是解题的关键. 7.B【分析】根据21y t =-得,t =12y +,然后将其代入31x t =+即可求解. 【详解】解:由21y t =-,得t =12y +, ⊥31x t =+=3×12y ++1=352y +, 即x =352y +. ⊥用含y 的式子表示x 的结果是x =352y + 故选:B .【点睛】本题主要考查了二元一次方程的解法,解本题关键是把方程21y t =-中含有x 的项移到等号的右边,得到t =12y +. 8.A【分析】根据二元一次方程的定义,得=1a b +,324=1+-a b ,即可得到关于a 、b 的方程组,从而解出a ,b .【详解】解:⊥324432a b a b x y ++--=是一个关于x ,y 的二元一次方程,⊥=1324=1a b a b +⎧⎨+-⎩, 解得:=3=2a b ⎧⎨-⎩,⊥23=660+-=a b , 故选:A .【点睛】本题考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:方程中只含有2个未知数;含未知数项的最高次数为一次;方程是整式方程. 9.B【分析】将k 看作常数,解方程组得到x ,y 的值,根据P 在直线上方可得到b >a ,列出不等式求解即可.【详解】解:解方程组3212331x y k x y k +=-⎧⎨+=+⎩可得,315715x k y k ⎧=--⎪⎪⎨⎪=+⎪⎩, ⊥点P (a ,b )总在直线y =x 上方, ⊥b >a ,⊥731155k k +>--, 解得k >-1, 故选:B .【点睛】本题考查了解二元一次方程组,一次函数上点的坐标特征,解本题的关键是将k 看作常数,根据点在一次函数上方列出不等式求解. 10.A【分析】所谓方程组的解,指的是该数值满足方程组中的每一方程.解出方程组的解,再列出关于两解的等式,求出k . 【详解】解:由题意,解得x =51974k k +-,y =53274k k --,⊥x 的值比y 的值的相反数大1, ⊥x +y =1,即51974k k +-+53274k k --=1, 解得k =3, 故选:A .【点睛】本题主要考查解二元一次方程组和它的解,熟练掌握解二元一次方程组的方法是关键. 11.B【分析】把x 与y 的两对值代入代数式列出方程组,求出方程组的解即可得到a 与b 的值,再将1x =-代入即可求解.【详解】解:由题意,得10420a b a b ++=⎧⎨++=⎩①② , ⊥-⊥得:30a += , 3a =- ,把3a =-代入⊥得:()130b +-+= ,2b = ,解得:32a b =-⎧⎨=⎩ , 把32a b =-⎧⎨=⎩代入代数式2x ax b ++得:232x x -+, 当1x =-时,2326x x -+=. 故选B .【点睛】此题考查了解二元一次方程组,利用了消元的思想,求出a 与b 的值是解题关键. 12.D【分析】根据关键语句“到学校共用时15分钟”可得方程:x +y =15,根据“骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米”可得方程:250x +80y =2900,两个方程组合可得方程组.【详解】解:他骑车和步行的时间分别为x 分钟,y 分钟,由题意得:152********x y x y +=⎧⎨+=⎩ 故选D .【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是弄清题意,找出合适的等量关系,列出方程组. 13.1x y +=(答案不唯一)【分析】根据二元一次方程定义:ax by c +=,令,,a b c 为常数,把21x y =⎧⎨=-⎩代入,解出c 即可.【详解】⊥本题答案不唯一,只要写出的二元一次方程的解为21x y =⎧⎨=-⎩即可⊥令1a =,1b =,得x y c += ⊥把21x y =⎧⎨=-⎩代入方程x y c +=解出1c = ⊥1x y +=故答案是:1x y +=.【点睛】本题考查解二元一次方程的逆过程、不定方程的定义,灵活掌握二元一次方程定义是解题的关键.14. 35 14x y =⎧⎨=⎩,23x y =⎧⎨=⎩,32x y =⎧⎨=⎩,41x y =⎧⎨=⎩.【分析】(1)根据333m n m n +=⋅求解即可;(2)求根据5222⋅=x y 得到522x y +=即5x y +=,再由x 、y 是正整数求解即可. 【详解】解:(1)⊥35m =,37=n , ⊥3335735m n m n +=⋅=⨯=; (2)⊥5222⋅=x y ⊥522x y +=, ⊥5x y +=, ⊥x 、y 是正整数,⊥14xy=⎧⎨=⎩或23xy=⎧⎨=⎩或32xy=⎧⎨=⎩或41xy=⎧⎨=⎩.故答案为:35;14xy=⎧⎨=⎩,23xy=⎧⎨=⎩,32xy=⎧⎨=⎩,41xy=⎧⎨=⎩.【点睛】本题主要考查了同底数幂的乘法的逆用,二元一次方程,解题的关键在于能够熟练掌握相关知识进行求解.15.(1),(2)(1),(3)(1)【分析】根据二元一次方程解的定义:使二元一次方程左右两边相等的一组未知数的值,分别将三组数值代入两个方程中求出各自的解,即可得到方程组的解.【详解】解:当32xy=⎧⎨=-⎩时,方程39x y-=的左边为:()33329x y-=-⨯-=,方程左右两边相等,⊥32xy=⎧⎨=-⎩是方程39x y-=的解;当453xy=⎧⎪⎨=-⎪⎩时,方程39x y-=的左边为:534393x y⎛⎫-=-⨯-=⎪⎝⎭,方程左右两边相等,⊥453xy=⎧⎪⎨=-⎪⎩是方程39x y-=的解;当1472xy⎧=⎪⎪⎨⎪=⎪⎩时,方程39x y-=的左边为:174133424x y⎛⎫-=-⨯=-⎪⎝⎭,方程左右两边不相等,⊥1472xy⎧=⎪⎪⎨⎪=⎪⎩不是方程39x y-=的解;当32xy=⎧⎨=-⎩时,方程24x y+=的左边为:()22324x y+=⨯+-=,方程左右两边相等,⊥32xy=⎧⎨=-⎩是方程24x y+=的解;当453xy=⎧⎪⎨=-⎪⎩时,方程24x y+=的左边为:51322333x y⎛⎫+=⨯+-=⎪⎝⎭,方程左右两边不相等,⊥453xy=⎧⎪⎨=-⎪⎩不是方程24x y+=的解;当1472xy⎧=⎪⎪⎨⎪=⎪⎩时,方程24x y+=的左边为:1722442x y+=⨯+=,方程左右两边相等,⊥1472xy⎧=⎪⎪⎨⎪=⎪⎩不是方程24x y+=的解;⊥方程组3924x yx y-=⎧⎨+=⎩的解为32xy=⎧⎨=-⎩;故答案为:⊥(1),(2);⊥(1),(3);⊥(1).【点睛】本题主要考查了二元一次方程和二元一次方程组的解,数值二元一次方程解得定义是解题的关键.16.9 7【分析】根据方程组1523210aax yx y-⎧-=⎪⎨⎪-=⎩的解也是方程29x y+=的解得2+93210x yx y=⎧⎨-=⎩求出x,y得值,再代入方程152aax y--=,即可解答.【详解】1523210aax yx y-⎧-=⎪⎨⎪-=⎩的解也是方程29x y+=的解∴得2+9 3210x yx y=⎧⎨-=⎩解得:41 xy=⎧⎨=⎩把41xy=⎧⎨=⎩代入方程152aax y--=得:1452aa--=解得:a=9 7【点睛】此题考查了二元一次方程组的解,解决本题的关键是明确方程组的解即为能使方程组中两方程成立的未知数的值.17.23 xy=⎧⎨=⎩【分析】方程组利用加减消元法求出解即可.【详解】解:321221x yx y+=⎧⎨-=⎩①②.⊥+⊥×2得:7x=14,解得:x=2,把x=2代入⊥得:2×2-y=1解得:y=3,所以,方程组的解为23xy=⎧⎨=⎩,故答案为:23xy=⎧⎨=⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.1【分析】由非负数的意义求出x,y的值,再代入计算即可.【详解】解:⊥|2x﹣4|≥0,|x+2y﹣8|≥0,|2x﹣4|++|x+2y﹣8|=0,⊥2x﹣4=0,x+2y﹣8=0.⊥x=2,y=3.⊥(x﹣y)2022=(2﹣3)2022=1.故答案为:1.【点睛】本题考查非负数的意义,掌握绝对值,偶次幂的运算性质是解决问题的前提.19.11【详解】本题考查的是二元一次方程的解的定义由题意把1,{2xy==代入方程ax-3y=5即可得到结果.由题意得,20.2753x yx y+=⎧⎨=⎩【分析】根据图示可得:大长方形的长可以表示为x +2y ,长又是75厘米,故x +2y =75,长方形的宽可以表示为2x ,或x +3y ,故2x =3y +x ,整理得x =3y ,联立两个方程即可.【详解】解:根据图示可得大长方形的长可以表示为x +2y ,长又是75厘米,故x +2y =75,长方形的宽可以表示为2x ,或x +3y ,故2x =3y +x ,整理得x =3y ,联立两个方程得到: 2753x y x y+=⎧⎨=⎩, 故答案为:2753x y x y +=⎧⎨=⎩【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.21.x ﹣y 的平方根为(2x +3y +1)2()22310x y ++=,再结合二次根式非负性及平方的非负性得到4302310x y x y +-=⎧⎨++=⎩,求解代值即可得到结论.【详解】解:()2231x y ++互为相反数,()22310x y ++=, ()240,2310x y x y +++≥, ⊥4302310x y x y +-=⎧⎨++=⎩,解得11x y =⎧⎨=-⎩, ⊥x ﹣y =2,⊥x﹣y 的平方根为【点睛】本题考查求代数式的平方根,涉及到相反数的性质、二次根式非负性及平方的非负性、解二元一次方程组等知识点,熟练掌握相反数的性质和常见非负式的运用是解决问题的关键.22.(1)甲团队有9人,乙团队有23人;(2)500;(3)11张【分析】(1)设甲团队有x 人,由题意可知,乙团队人数大于20人小于30人,再根据门票的收费标准列出方程求解即可;(2)算出合在一起买的花销,然后用分开买的花销减去合买的花销即可;(3)分别算出单买和合买11张的花销,然后比较即可得到答案.【详解】解:(1)设甲团队有x 人,由题意可知,乙团队人数大于20人小于30人,列方程得8060(32)2100x x +-=解方程,得9x =这时,3223x -=答:甲团队有9人,乙团队有23人.(2)由题意得人数一共有32人,则合买的花销=3250=1600⨯ 元,⊥可省钱2100-1600=500元故答案为:500;(3)直接购买:809720⨯=(元);按团体票购买:6011660⨯=(元)⊥720>660,⊥购买11张票最省钱.答:购买11张票最省钱.【点睛】本题主要考查了一元一次方程的实际应用,解题的关键在于能够准确找到等量关系列出方程求解.23.105元【分析】先设甲、乙、丙各一件分别需要x ,y ,z 元,根据购甲3件,乙7件,丙1件,共需315元,购甲4件,乙10件,丙1件,共需420元,列出方程组求出x y z ++的值即可.【详解】解:设购甲、乙、丙各一件分别需要x ,y ,z 元,根据题意得:37315410420x y z x y z ++=⎧⎨++=⎩①② ⊥×3-⊥×2得105x y z ++=.则现在购甲、乙、丙各一件共需105元【点睛】此题考查了三元一次方程组的应用,关键是根据题意设出未知数,列出方程组,注意要把x ,y ,z 以整体形式出现.24.(1)5,3;x y =⎧⎨=⎩;(2)见解析 【分析】(1)利用加减消元法解方程组;(2)方法一:将两个方程分别化简再求解;方法二:根据(1)可得方程的解为53x y x y +=⎧⎨-=⎩,再利用加减法求解.【详解】解:(1)5316350x y x y -=⎧⎨-=⎩①②, 由35⨯-⨯①②得16y =48,⊥y =3,将y =3代入⊥得x =5,⊥这个方程组的解是53x y =⎧⎨=⎩; (2)方法一:去括号得到方程组2816,280,x y x y +=⎧⎨-+=⎩再解得结果41;x y =⎧⎨=⎩; 方法二:由(1)5316,350;x y x y -=⎧⎨-=⎩解为53x y =⎧⎨=⎩,可得()()()()5316,350x y x y x y x y ⎧+--=⎪⎨+--=⎪⎩的解为53x y x y +=⎧⎨-=⎩,解得41x y =⎧⎨=⎩. 【点睛】此题考查解二元一次方程组,掌握二元一次方程组的解法:代入法和加减法,(2)可灵活运用解题方法求解,渗透一定的整体换元思想和化归思想.25.(1)3,2A B =-=;(2)61x -,当x 取2,3,4,7时,这个式子的值为正整数. 【分析】(1)解法一:先等式两边同乘以(6)(43)x x +-去分母,去括号化简可得一个关于A 、B 的二元一次方程组,解方程组即可得;解法二:分别取0x =和1x =可得一个关于A 、B 的二元一次方程组,解方程组即可得;(2)先将括号内的每一项拆分成两项的差的形式,再计算分式的加减法与乘法运算即可得,然后根据整数性质求出符合条件的整数x 的值即可.【详解】(1)解法一:21131424643x A B x x x x =+--++-, 等式两边同乘以(6)(43)x x +-去分母,得11(43)(6)x A x B x =-++,即11(3)46x A B x A B =-+++,则311460A B A B -+=⎧⎨+=⎩,解得32A B =-⎧⎨=⎩; 解法二:21131424643x A B x x x x =+--++-, 取0x =,得064A B +=,即230A B +=, 取1x =,得1177B A =+,即117A B +=, 联立230711A B A B +=⎧⎨+=⎩,解得32A B =-⎧⎨=⎩; (2)()111111(1)(1)(1)(3)(3)(5)(9)(11)x x x x x x x x x ⎡⎤+++⋅⋅⋅+⎢⎥-+++++++⎣⎦, ()111111111112111335911x x x x x x x x x ⎛⎫-+-+-+⋅⋅⋅+-+ ⎪-++++⎝⎭=+++, ()111112111x x x ⎛⎫-+ ⎪⎝⎭=-+, ()11112(1)(11)(11()1)11x x x x x x x ⎡⎤--+⎢⎥-+-+⎣⎦+=, ()1112(1)(11)12x x x ⋅⋅++=-, 61x =-, 要使61x -为正整数,则整数1x -的所有可能取值为1,2,3,6, 即整数x 的所有可能取值为2,3,4,7,经检验,当x 取2,3,4,7时,分式的分母均不为零,故当x 取2,3,4,7时,这个式子的值为正整数.【点睛】本题考查了分式的加减法与乘法运算、二元一次方程组的应用,读懂阅读材料中的两种解法是解题关键.。
新人教版初中数学七年级下册第8章《二元一次方程组》检测试卷(含答案)
人教版数学七年级下册第八章《二元一次方程组》测试题一、选择题(每小题只有一个正确答案)1.下列各方程组中,属于二元一次方程组的是( )A. B. C. D.2.下列各组数中,方程2x-y=3和3x+4y=10的公共解是( )A. B. C. D.3.用代入法解方程组有以下步骤:①由(1),得y=(3);②由(3)代入(1),得7x-2×=3;③整理得3=3;④∴x可取一切有理数,原方程组有无数个解以上解法,造成错误的一步是( )A.① B.② C.③ D.④4.一船顺水航行45千米需要3小时,逆水航行65千米需要5小时,若设船在静水中的速度为x千米/时,水流速度为y千米/时,则x,y的值为( )A. B. C. D.5.|3x-y-4|+|4x+y-3|=0,那么x与y的值分别为( )A. B. C. D.6.从方程组中求x与y的关系是( )A.x+y=-1 B.x+y=1 C. 2x-y=7 D.x+y=97.如果ax+2y=1是关于x,y的二元一次方程,那么a的值应满足( )A.a是有理数 B.a≠0 C.a=0 D.a是正有理数8.已知甲数的60%加乙数的80%等于这两个数的和的72%,若设甲数为x,乙数为y,则下列方程中符合题意的是( )A. 60%x+80%y=x+72%y B. 60%x+80%y=60%x+yC. 60%x+80%y=72%(x+y) D. 60%x+80%y=x+y9.下列各组数中,不是方程2x+y=10的解是( )A .B .C .D .10.如图所示,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( ).A .400 cm 2B .500 cm2C .600 cm 2D .4 000 cm 211.有大小两种货车,2辆大车与3辆小车一次可以运货15.5吨,5辆大车与6辆小车一次可以运货35吨,3辆大车与5辆小车一次可以运货为(单位:吨)( ) A . 25.5 B . 24.5 C . 26.5 D . 27.512.一文具店的装订机的价格比文具盒的价格的3倍少1元,购买2把装订机和6个文具盒共需70元,问装订机与文具盒价格各是多少元?设文具盒的价格为x 元,装订机的价格为y 元,依题意可列方程组为( )A .B .C .D . 二、填空题 13.在括号内填写一个二元一次方程,使其与二元一次方程5x -2y =1组成方程组的解是 你所填写的方程为______________.14.已知方程3x -2y =5的一个解中,y 的值比x 的值大1,则这个方程的这个解是________. 15.已知方程组则x -y =______,x +y =______.16.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x 岁,哥哥的年龄是y 岁,所列方程组为______. 17.已知方程2x 2n -1-3y 3m -n +1=0是二元一次方程,则m =______,n =______. 三、解答题18、用代入消元法解方程组 20.用加减消元法解方程组⎩⎨⎧-=-=+54032y x y x 3410,490;x y x y +=⎧⎨+-=⎩19、用适当的方法解下列方程组(1)20328x y x y -=⎧⎨+=⎩ (2)23533x yx y -⎧=⎪⎪⎨+⎪=⎪⎩20.甲、乙两人共同解方程组⎩⎨⎧-=-=+ ②by x ①y ax 24155,由于甲看错了方程①中的a ,得到方程组的解为⎩⎨⎧-=-=13y x人教版数学七年级下册同步单元复习卷: 第8章 二元一次方程组(1) 一、选择题(每小题3分,共42分)请将正确答案的代号填涂在答题卡上 1.下列各数中,既是分数又是负数的是( ) A .1B .﹣3C .0D .2.252.﹣2019的相反数是( ) A .﹣2019B .2019C .﹣D .3.“2017中国企业跨国投资研讨会”于11月17日在长沙召开,共同聚焦“‘一带一路’跨国投资与服务新时代”,该研讨会表示,在2016年,中国企业对7961家境外企业累计实现投资约170100000000美元,170100000000用科学记数法可表示为( ) A .1.701×1011B .1.701×1010C .17.01×1010D .170.1×1094.下列各组数中,互为倒数的是( ) A .2与﹣2B .﹣与C .﹣1与(﹣1)2016D .﹣与﹣5.计算﹣100÷10×,结果正确的是( ) A .﹣100B .100C .1D .﹣16.下列说法正确的是()A.整式就是多项式B.﹣的系数是C.π是单项式D.x4+2x3是七次二项式7.下列各组单项式中,不是同类项的一组是()A.x2y和2xy2B.﹣32和3C.3xy和﹣D.5x2y和﹣2yx28.下列计算正确的是()A.3a+2b=5ab B.3x2y﹣yx2=2x2yC.5x+x=5x2D.6x﹣x=69.下列运用等式的性质,变形正确的是()A.若x2=6x,则x=6B.若2x=2a﹣b,则x=a﹣bC.若3x=2,则x=D.若a=b,则a﹣c=b﹣c10.若|a+3|+(b﹣2)2=0,则a b的值为()A.﹣6B.﹣9C.9D.611.多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3的和不含二次项,则m为()A.2B.﹣2C.4D.﹣412.某商品的原价是每件x元,在销售时每件加价20元,再降价15%,则现在每件的售价是()元.A.15%x+20B.(1﹣15%)x+20C.15%(x+20)D.(1﹣15%)(x+20)13.有长为l的篱笆,利用他和房屋的一面墙围成如图形状的长方形园子,园子的宽为t,则所围成的园子面积为()A.(l﹣2t)t B.(l﹣t)t C.(﹣t)t D.(l﹣)t 14.按照如图所示的计算机程序计算,若开始输入的x值为2,第一次得到的结果为1,第二次得到的结果为4,…第2018次得到的结果为()A.1B.2C.3D.4二、填空题(每小题3分,共15分)15.临沂某天的最高温度为8℃,最大温差11℃,该天最低温度是.16.在数轴上,点A表示的数是5,若点B与A点之间距离是8,则点B表示的数是.17.若2a﹣3b2=5,则2018﹣4a+6b2的值是.18.关于x的方程mx+4=3x﹣5的解是x=1,则m=.19.如图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中由个基础图形组成.三、解答题(本题共7个小题,共计63分)20.(12分)计算下列各题:(1)(﹣5)﹣(﹣6)+(+1)(2)﹣12×(﹣+)(3)﹣1100﹣(1﹣0.5)××[3﹣(﹣3)2]21.(6分)对于有理数a、b,定义一种新运算“⊙”,规定:a⊙b=|a+b|+|a ﹣b|.(1)计算2⊙(﹣4)的值;(2)若a,b在数轴上的位置如图所示,化简a⊙b.22.(12分)先化简,再求值.(1)﹣x2+5x+4﹣7x﹣4+2x2,其中x=﹣2.(2)m﹣2(m﹣n2)+(﹣m+n2),其中m=﹣2,n=﹣23.(7分)2017年12月,旗团委号召各校组织开展捐赠衣物的“暖冬行动”.某校七年级六个班参加了这次捐赠活动,若每班捐赠衣物以100件为基准,超过的件数用正数表示,不足的件数用负数表示,记录如下:(1)捐赠衣物最多的班比最少的班多多少件?(2)该校七年级学生共捐赠多少件衣物?该校七年级学生平均每人捐赠多少件衣物?24.(7分)为了有效控制酒后驾车,交警队一辆汽车每天在一条东西方向的公路上巡视.某天早晨从A地出发,晚上到达B地,约定向东为正方向,当天行驶记录如下(单位:km):+18,﹣19,﹣13,+15,+10,﹣14,+19,﹣20.问:(1)B地在A地哪个方向?距A地多少千米?(2)若该警车每千米耗油0.2L,警车出发时,油箱中有油20L,请问中途有没有给警车加油?若有,至少加多少升油?请说明理由.25.(7分)如图所示,1925年数学家莫伦发现的世界上第一个完美长方形,它恰能被分割成10个大小不同的正方形,请你计算:(1)如果标注1、2的正方形边长分别为1,2,第3个正方形的边长=;第5个正方形的边长=;(2)如果标注1、2的正方形边长分别为x,y,第10个正方形的边长=.(用含x、y的代数式表示)26.(12分)开学期间,为了打扫卫生,班主任派卫生委员小敏去轻工市场购买一些扫帚和抹布.选定一家店后,老板告诉小敏,扫帚每把25元,抹布每块5元,现为了搞促销,有两种优惠方案.方案一:买一把扫帚送一块抹布;方案二:扫帚和抹布都按定价的90%付款.小敏需要购买扫帚6把,抹布x块(x>6).(1)若小敏按方案一购买,需付款多少元(用含x的式子表示);(2)若小敏按方案二购买,需付款多少元(用含x的式子表示);(3)当x=10时,通过计算说明此时按哪种方案购买较为合算;(4)当x=10时,你能给小敏提供一种更为省钱的购买方案吗?试写出你的购买方法.2018-2019学年山东省临沂市临沭县七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共42分)请将正确答案的代号填涂在答题卡上1.下列各数中,既是分数又是负数的是()A.1B.﹣3C.0D.2.25【分析】根据有理数的分类即可求出答案.【解答】解:既是分数又是负数的是故选:B.【点评】本题考查有理数的分类,解题的关键是正确理解有理数的分类,本题属于基础题型.2.﹣2019的相反数是()A.﹣2019B.2019C.﹣D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣2019的相反数是:2019.故选:B.【点评】此题主要考查了相反数,正确把握定义是解题关键.3.“2017中国企业跨国投资研讨会”于11月17日在长沙召开,共同聚焦“‘一带一路’跨国投资与服务新时代”,该研讨会表示,在2016年,中国企业对7961家境外企业累计实现投资约170100000000美元,170100000000用科学记数法可表示为()A.1.701×1011B.1.701×1010C.17.01×1010D.170.1×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:170100000000=1.701×1011.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列各组数中,互为倒数的是()A.2与﹣2B.﹣与C.﹣1与(﹣1)2016D.﹣与﹣【分析】根据倒数的定义,可得答案.【解答】解:﹣与﹣互为倒数,故选:D.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.5.计算﹣100÷10×,结果正确的是()A.﹣100B.100C.1D.﹣1【分析】直接利用有理数的乘除运算法则计算得出答案.【解答】解:﹣100÷10×=﹣10×=﹣1.故选:D.【点评】此题主要考查了有理数的乘除运算,正确掌握运算法则是解题关键.6.下列说法正确的是()A.整式就是多项式B.﹣的系数是C.π是单项式D.x4+2x3是七次二项式【分析】根据整式的定义,单项式的系数,单项式的定义以及多项式概念对各选项分析判断即可得解.【解答】解:A、整式就是多项式,错误,因为单项式和多项式统称为整式,故本选项错误;B、﹣的系数是﹣,故本选项错误;C、π是单项式,故本选项正确;D、x4+2x3是四次二项式,故本选项错误.故选:C.【点评】本题考查了多项式,单项式,熟练掌握相关概念是解题的关键.7.下列各组单项式中,不是同类项的一组是()A.x2y和2xy2B.﹣32和3C.3xy和﹣D.5x2y和﹣2yx2【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、所含字母相同且相同字母的指数也相同,故B正确;C、所含字母相同且相同字母的指数也相同,故C正确;D、所含字母相同且相同字母的指数也相同,故D正确;故选:A.【点评】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.8.下列计算正确的是()A.3a+2b=5ab B.3x2y﹣yx2=2x2yC.5x+x=5x2D.6x﹣x=6【分析】根据合并同类项的法则解答即可.【解答】解:A、3a与2b不是同类项,错误;B、3x2y﹣yx2=2x2y,正确;C、5x+x=6x,错误;D、6x﹣x=5x,错误;故选:B.【点评】此题考查合并同类项,关键是根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变计算进行判断.9.下列运用等式的性质,变形正确的是()A.若x2=6x,则x=6B.若2x=2a﹣b,则x=a﹣bC.若3x=2,则x=D.若a=b,则a﹣c=b﹣c【分析】根据等式的性质解答.【解答】解:A、当x=0时,该等式的变形不成立,故本选项错误;B、若2x=2a﹣b,则x=a﹣b,故本选项错误;C、在等式3x=2的两边同时除以2,等式仍成立,即x=,故本选项错误;D、在等式a=b的两边同时减去c,等式仍成立,即a﹣c=b﹣c,故本选项正确.故选:D.【点评】考查的是等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.10.若|a+3|+(b﹣2)2=0,则a b的值为()A.﹣6B.﹣9C.9D.6【分析】根据非负数的性质列式求出ab的值,然后再代入代数式进行计算.【解答】解:根据题意得,a+3=0,b﹣2=0,解得a=﹣3,b=2,∴a b=(﹣3)2=9.故选:C.【点评】本题主要考查了非负数的性质,几个非负数相加等于0,则每一个算式都等于0.11.多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3的和不含二次项,则m为()A.2B.﹣2C.4D.﹣4【分析】先把两多项式的二次项相加,令x的二次项为0即可求出m的值.【解答】解:∵多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3相加后不含x的二次项,∴﹣8x2+2mx2=(2m﹣8)x2,∴2m﹣8=0,解得m=4.故选:C.【点评】本题考查的是整式的加减,根据题意把两多项式的二次项相加得到关于m的方程是解答此题的关键.12.某商品的原价是每件x元,在销售时每件加价20元,再降价15%,则现在每件的售价是()元.A.15%x+20B.(1﹣15%)x+20C.15%(x+20)D.(1﹣15%)(x+20)【分析】先提价的价格是原价+20,再降价的价格是降价前的1﹣15%,得出此时价格即可.【解答】解:根据题意可得:(1﹣15%)(x+20),故选:D.【点评】本题考查了列代数式,解答本题的关键是读懂题意,列出代数式.13.有长为l的篱笆,利用他和房屋的一面墙围成如图形状的长方形园子,园子的宽为t,则所围成的园子面积为()A.(l﹣2t)t B.(l﹣t)t C.(﹣t)t D.(l﹣)t 【分析】表示出长,利用长方形的面积列出算式即可.【解答】解:园子的面积为t(l﹣2t).故选:A.【点评】此题考查列代数式,利用长方形的面积计算方法是解决问题的关键.14.按照如图所示的计算机程序计算,若开始输入的x值为2,第一次得到的结果为1,第二次得到的结果为4,…第2018次得到的结果为()A.1B.2C.3D.4【分析】将x=2代入,然后依据程序进行计算,依据计算结果得到其中的规律,然后依据规律求解即可.【解答】解:当x=2时,第一次输出结果=×2=1;第二次输出结果=1+3=4;第三次输出结果=4×=2,;第四次输出结果=×2=1,…2018÷3=672…2.所以第2018次得到的结果为4.故选:D.【点评】本题主要考查的是求代数式的值,熟练掌握相关方法是解题的关键.二、填空题(每小题3分,共15分)15.临沂某天的最高温度为8℃,最大温差11℃,该天最低温度是﹣3℃.【分析】直接利用有理数的加减运算法则计算得出答案.【解答】解:∵临沂某天的最高温度为8℃,最大温差11℃,∴该天最低温度是:8﹣11=﹣3(℃).故答案为:﹣3℃【点评】此题主要考查了有理数的加减,正确掌握运算法则是解题关键.16.在数轴上,点A表示的数是5,若点B与A点之间距离是8,则点B表示的数是﹣3或13.【分析】分点B在点A的左边与右边两种情况讨论求解.【解答】解:①当点B在点A的左边时,5﹣8=﹣3,②当点B在点A的右边时,5+8=13,所以点B表示的数是﹣3或13.故答案为:﹣3或13.【点评】本题考查了数轴,注意分点B在点A的左右两边两种情况讨论.17.若2a﹣3b2=5,则2018﹣4a+6b2的值是2008.【分析】首先把2018﹣4a+6b2化成2018﹣2(2a﹣3b2),然后把2a﹣3b2=5代入化简后的算式,求出算式的值是多少即可.【解答】解:∵2a﹣3b2=5,∴2018﹣4a+6b2=2018﹣2(2a﹣3b2)=2018﹣2×5=2018﹣10=2008故答案为:2008.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.18.关于x的方程mx+4=3x﹣5的解是x=1,则m=﹣6.【分析】把x=1代入方程mx+4=3x﹣5,得到关于m的一元一次方程,解之即可.【解答】解:把x=1代入方程mx+4=3x﹣5得:m+4=3﹣5,解得:m=﹣6,故答案为:﹣6.【点评】本题考查了一元一次方程的解,正确掌握代入法是解题的关键.19.如图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中由(3n+1)个基础图形组成.【分析】观察图形很容易看出每加一个图案就增加三个基础图形,以此类推,便可求出结果.【解答】解:第一个图案基础图形的个数:3+1=4;第二个图案基础图形的个数:3×2+1=7;第三个图案基础图形的个数:3×3+1=10;…∴第n个图案基础图形的个数就应该为:(3n+1).故答案为:(3n+1).【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.三、解答题(本题共7个小题,共计63分)20.(12分)计算下列各题:(1)(﹣5)﹣(﹣6)+(+1)(2)﹣12×(﹣+)(3)﹣1100﹣(1﹣0.5)××[3﹣(﹣3)2]【分析】(1)运用加减运算律和运算法则计算可得;(2)运用乘法分配律计算可得;(3)根据有理数的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=(﹣5+1)+6=﹣4+6=2;(2)原式=(﹣12)×﹣(﹣12)×+(﹣12)×=﹣4+3﹣6=﹣7;(3)原式=﹣1﹣××(3﹣9)=﹣1﹣×(﹣6)=﹣1+1=0.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则及其运算律.21.(6分)对于有理数a、b,定义一种新运算“⊙”,规定:a⊙b=|a+b|+|a ﹣b|.(1)计算2⊙(﹣4)的值;(2)若a,b在数轴上的位置如图所示,化简a⊙b.【分析】(1)根据新定义计算可得;(2)根据数轴得出a<0<b且|a|>|b|,从而得出a+b<0、a﹣b<0,再根据绝对值性质解答可得.【解答】解:(1)2⊙(﹣4)=|2﹣4|+|2+4|=2+6=8;(2)由数轴知a<0<b,且|a|>|b|,则a+b<0、a﹣b<0,所以原式=﹣(a+b)﹣(a﹣b)=﹣a﹣b﹣a+b=﹣2a.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算法则和运算顺序及绝对值的性质.22.(12分)先化简,再求值.(1)﹣x2+5x+4﹣7x﹣4+2x2,其中x=﹣2.(2)m﹣2(m﹣n2)+(﹣m+n2),其中m=﹣2,n=﹣【分析】(1)直接合并同类项,进而计算得出答案;(2)直接去括号进而合并同类项,再把已知代入求出答案.【解答】解:(1)﹣x2+5x+4﹣7x﹣4+2x2=x2﹣2x,当x=﹣2,原式=8;(2)原式=﹣3m+n2,当m=﹣2,n=﹣,原式=6+=.【点评】此题主要考查了整式的加减,正确合并同类项是解题关键.23.(7分)2017年12月,旗团委号召各校组织开展捐赠衣物的“暖冬行动”.某校七年级六个班参加了这次捐赠活动,若每班捐赠衣物以100件为基准,超过的件数用正数表示,不足的件数用负数表示,记录如下:(1)捐赠衣物最多的班比最少的班多多少件?(2)该校七年级学生共捐赠多少件衣物?该校七年级学生平均每人捐赠多少件衣物?【分析】(1)求出捐赠衣物最多的班额,捐赠衣物最少的班额,然后相减即可;(3)用标准捐赠衣物数加上记录的各班捐赠衣物数的和,计算即可得解.【解答】解:(1)19﹣(﹣7)=26,答:捐赠衣物最多的班比最少的班多26件;(2)18﹣3+19+14+9﹣7+6×100=50+600=650,答:该校七年级学生共捐赠650件衣物,平均每人捐赠2.6件衣物.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.24.(7分)为了有效控制酒后驾车,交警队一辆汽车每天在一条东西方向的公路上巡视.某天早晨从A地出发,晚上到达B地,约定向东为正方向,当天行驶记录如下(单位:km):+18,﹣19,﹣13,+15,+10,﹣14,+19,﹣20.问:(1)B地在A地哪个方向?距A地多少千米?(2)若该警车每千米耗油0.2L,警车出发时,油箱中有油20L,请问中途有没有给警车加油?若有,至少加多少升油?请说明理由.【分析】(1)把行驶记录求和,若结果为正,则B地在出发地的正东,若结果为负,再B地再出发点的正西;(2)计算各个记录的绝对值的和,计算出耗油量,根据邮箱里的油量判断是否需要加油,计算至少需要加多少升油.【解答】解:(1)18﹣19﹣13+15+10﹣14+19﹣20=(18+15+10)﹣(13+14+20)+(19﹣19)=43﹣47=﹣4即B地在A地的西方,距A地4千米.(2)因为(18+19+13+15+10+14+19+20)×0.2=128×0.2=25.6(L)因为25.6>20,所以途中至少加油5.6L答:途中警车需加油,至少需加油5.6L.【点评】本题考查了正负数的意义和有理数的混合运算,解决本题的关键是根据题意列出代数式,并能根据计算结果作答.25.(7分)如图所示,1925年数学家莫伦发现的世界上第一个完美长方形,它恰能被分割成10个大小不同的正方形,请你计算:(1)如果标注1、2的正方形边长分别为1,2,第3个正方形的边长=3;第5个正方形的边长=7;(2)如果标注1、2的正方形边长分别为x,y,第10个正方形的边长=3y﹣3x.(用含x、y的代数式表示)【分析】(1)根据正方形的性质即可解决问题;(2)根据各个正方形的边的和差关系分别表示出第(3)(4)(5)(6)(7),第10个正方形的边长=第7个正方形的边长﹣第一个正方形的边长﹣第3个正方形的边长;【解答】解:(1)观察图象可知第3个正方形的边长=3;第5个正方形的边长=7;故答案为3,7;(2):(1)第(3)个正方形的边长是:x+y,则第(4)个正方形的边长是:x+2y;第(5)个正方形的边长是:x+2y+y=x+3y;第(6)个正方形的边长是:(x+3y)+(y﹣x)=4y;第(7)个正方形的边长是:4y﹣x;第(10)个正方形的边长是:(4y﹣x)﹣x﹣(x+y)=3y﹣3x;故答案为3y﹣3x.【点评】本题考查了列代数式,正确理解各个正方形的边之间的和差关系是关键.26.(12分)开学期间,为了打扫卫生,班主任派卫生委员小敏去轻工市场购买一些扫帚和抹布.选定一家店后,老板告诉小敏,扫帚每把25元,抹布每块5元,现为了搞促销,有两种优惠方案.方案一:买一把扫帚送一块抹布;方案二:扫帚和抹布都按定价的90%付款.小敏需要购买扫帚6把,抹布x块(x>6).(1)若小敏按方案一购买,需付款多少元(用含x 的式子表示); (2)若小敏按方案二购买,需付款多少元(用含x 的式子表示); (3)当x =10时,通过计算说明此时按哪种方案购买较为合算;(4)当x =10时,你能给小敏提供一种更为省钱的购买方案吗?试写出你的购买方法.【分析】(1)根据题意列出算式即可;(2)根据题意列出算式即可;(3)把x =10分别代入求出结果,即可得出答案;(4)先在方案一买6把扫帚,再在方案二买4块抹布即可.【解答】解:(1)∵方案一:买一把扫帚送一块抹布,∴小敏需要购买扫帚6把,抹布x 块(x >6),若小敏按方案一购买,需付款25×6+5(x ﹣6)=(5x +120)元;(2)∵方案二:扫帚和抹布都按定价的90%付款,∴小敏需要购买扫帚6把,抹布x 块(x >6),若小敏按方案二购买,需付款25×6×0.9+5x •0.9=(4.5x +135)元;(3)方案一需:5×10+120=170元,方案二需4.5×10+135=180元, 故方案一划算;(4)其中6把扫帚6块抹布按方案一买,剩下4块抹布按方案二买,共需168元.【点评】本题考查了求代数式的值,列代数式的应用的应用,能正确根据题意列出算式是解此题的关键.人教版七年级下册 第八章二元一次方程组单元试题一、选择题(共10小题,每小题3分,共30分)1.二元一次方程组⎩⎨⎧ x +y =7,3x -y =5的解是( ) A.⎩⎨⎧ x =4,y =3B .⎩⎨⎧ x =5,y =2 C .⎩⎨⎧ x =3,y =4 D .⎩⎨⎧ x =-2,y =92.已知方程组⎩⎨⎧ 2x +y =4,x +2y =5,则x +y 的值为( )A .-1B .0C .2D .33.下列各方程中,是二元一次方程的是( )A.x 3-2y=y +5x B .3x +1=2xy C .15x =y 2+1 D .x +y =14.已知x 2m -1+3y 4-2n =-7是关于x ,y 的二元一次方程,则m ,n 的值是( ) A.⎩⎨⎧ m =2,n =1B .⎩⎨⎧ m =1,n =-32 C .⎩⎨⎧ m =1,n =52D .⎩⎨⎧ m =1,n =325.方程kx +3y =5有一组解是⎩⎨⎧ x =2,y =1,则k 的值是( )A .1B .-1C .0D .2 6.二元一次方程x +2y =10的所有正整数解有( )A .1个B .2个C .3个D .4个7.“珍爱生命,拒绝毒品”,学校举行的2017年禁毒知识竞赛共有60道题,曾浩同学答对了x 道题,答错了y 道题(不答视为答错),且答对题数比答错题数的7倍还多4道,那么下面列出的方程组中正确的是( )A.⎩⎨⎧ x +y =60,x -7y =4B .⎩⎨⎧ x +y =60,y -7x =4C .⎩⎨⎧ x =60-y ,x =7y -4D .⎩⎨⎧ y =60-x ,y =7x -48.关于x ,y 的方程组⎩⎨⎧ x +py =0,x +y =3的解是⎩⎨⎧ x =1,y =■,其中y 的值被盖住了,不过仍能求出p ,则p 的值是( )A .-12B .12C .-14D .149.若|x +y -5|与(x -y -1)2互为相反数,则x 2-y 2的值为( )A .-5B .5C .13D .1510.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为( )A.⎩⎨⎧ 8x -3=y ,7x +4=yB .⎩⎨⎧ 8x +3=y ,7x -4=yC .⎩⎨⎧ y -8x =3,y -7x =4D .⎩⎨⎧ 8x -y =3,7x -y =4二、填空题(共5小题,每小题4分,共20分)11.方程组⎩⎨⎧ x +y =1,3x -y =3的解是 .12.“六一”前夕,市关工委准备为希望小学购进图书和文具若干套,已知1套文具和3套图书需104元,3套文具和2套图书需116元,则1套文具和1套图书需 元.13.已知关于x ,y 的二元一次方程组⎩⎨⎧ 2x +y =k ,x +2y =-1的解互为相反。
人教版七年级数学下册第八章《二元一次方程组》单元检测卷 (附答案)
型号
A
B
单个盒子容量(升)
2
3
单价(元)
5
6
三、解答题(共60分)
2.若 ,则ab=()
A.-10B.-40C.10D.40
【答案】A
【解析】
【分析】联立已知两方程求出a与b的值,即可求出ab的值.
【详解】解:联立得:
解得
∴ab=-10.
故选A.
3.若-2amb4与5an+2b2m+n可以合并成一项,则mn的值是( )
A.0B. C.1D.2
【答案】C
【解析】
【分析】根据-2amb4与5an+2b2m+n可以合并成一项,可得同类项,根据同类项的定义,可得m、n的值,根据乘方,可得答案.
18.阅读下列材料:
问题:某饭店工作人员第一次买了13只鸡、5只鸭、9只鹅共用了925元.第二次买了2只鸡、4只鸭、3只鹅共用了320元,试问第三次买了鸡、鸭、鹅各一只共需多少元?(假定三次购买鸡、鸭、鹅的单价不变)
解:设鸡、鸭、鹅的单价分别为x,y,z元.依题意,得
,
上述方程组可变形为 ,
设x+y+z=a,2x+z=b,上述方程组可化 : ,
13.解方程组:
(1)
(2)
14.已知 是关于x,y的二元一次方程3x=y+a的解,求a(a-1)的值.
15.已知关于x,y 方程组 与 有相同的解,求a,b的值.
新人教版初中数学七年级下册第8章《二元一次方程组》单元测试卷(含答案解析)
人教版数学七年级下册同步单元复习卷: 第8章 二元一次方程组一、填空题(本大题共8小题,共32分)1.写出一个解为12x y =-⎧⎨=⎩的二元一次方程组__________.2.方程mx -2y=x+5是二元一次方程时,则m________.3.若2x 2a-5b +y a -3b =0是二元一次方程,则a=______,b=______. 4.若12a b =⎧⎨=-⎩是关于a ,b 的二元一次方程ax+ay -b=7的一个解,则代数式(x+y )2-1•的值是_________5.若2x 5a y b+4与-x 1-2b y 2a 是同类项,则b=________. 6.已知都是ax+by=7的解,则a=_______,b=______.7.甲队有x 人,乙队有y 人,若从甲队调出10人到乙队,则甲队人数是乙队人数的一半,可列方程为______________.8.在等式y =kx +b 中,当x =1时,y =1;当x =2时,y =4,则k =__________,b =__________.二、选择题(本大题共8小题,每小题4分,共32分。
)9.表示二元一次方程组的是( )A 、⎩⎨⎧=+=+;5,3x z y xB 、⎩⎨⎧==+;4,52y y xC 、⎩⎨⎧==+;2,3xy y xD 、⎩⎨⎧+=-+=222,11xy x x y x 10.已知2 x b +5y 3a 与-4 x 2a y 2-4b 是同类项,则b a 的值为( )A .2B .-2C .1D .-1 11.若关于x 、y 的方程组⎩⎨⎧=-=+k y x k y x 73的解满足方程2x +3y =6,那么k 的值为( ) A .-23 B .23 C .-32 D .-23 12.如图所示,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( ).A .400 cm 2B .500 cm 2C .600 cm 2D .4 000 cm 213.方程82=+y x 的正整数解的个数是( )A 、4B 、3C 、2D 、114.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =m ,x -y =4m 的解为3x +2y =14的一个解,那么m 的值为( ). A .1 B .-1 C .2 D .-215.六年前,A 的年龄是B 的年龄的3倍,现在A 的年龄是B 的年龄的2倍,A 现在的年龄是( ).A .12岁B .18岁C .24岁D .30岁16.已知下列方程组:(1)⎩⎨⎧-==23y y x ,(2)⎩⎨⎧=-=+423z y y x ,(3)⎪⎪⎩⎪⎪⎨⎧=-=+0131y x y x ,(4)⎪⎪⎩⎪⎪⎨⎧=-=+0131y x y x ,其中属于二元一次方程组的个数为( )A .1B .2C .3D .4三、解答题(本大题共6小题,共36分)17.(1)⎩⎨⎧=+=-5253y x y x (2) ⎩⎨⎧=--=523x y x y(3)⎩⎨⎧=+=-152y x y x (4)⎩⎨⎧+==-1302y x y x(5)⎩⎨⎧-=+=-14329m n n m (6)⎩⎨⎧=+-=-q p q p 45133218.若12x y =⎧⎨=⎩是关于x ,y 的二元一次方程3x -y +a=0的一个解,求a 的值.19.小华不小心将墨水溅在同桌小丽的作业本上,结果二元一次方程组31122x yx y+=⎧⎨+=-⎩中第一个方程y的系数和第二个方程x的系数看不到了,现在已知小丽的结果是12xy=⎧⎨=⎩,你能由此求出原来的方程组吗?20.某纸品加工厂为了制作甲、乙两种无盖的长方体小盒,利用边角余料裁出正方形和长方形两种硬纸片,长方形的宽和正方形的边长相等,现将150张正方形硬纸片和300张长方形硬纸片全部用来制作这两种小盒,可以制作甲、乙两种小盒各多少个人教版七年级下册第8章二元一次方程组综合素质检测卷(解析版)人教版七年级下册第八章二元一次方程组单元检测题综合素质检测卷姓名:__________班级:__________考号:__________一、选择题(本大题共10小题,每小题3分,共30分。
精选初中数学七年级下册第8章《二元一次方程组》单元检测试卷(含答案)
人教版七年级数学下册第八章二元一次方程组单元测试题一、选择题。
1.已知下列方程组:(1)3{ 2x y y ==-,(2)32{ 24x y y +=-=,(3)1+3{ 10x y x y =--=,(4)1+3{ 10x y x y=-=,其中属于二元一次方程组的个数为( )A. 1B. 2C. 3D. 4 2.已知方程组54{58x y x y +=+=,则x ﹣y 的值为( )A. 2B. ﹣1C. 12D. ﹣43.用一根绳子环绕一棵大树,若环绕大树3周,绳子还多4尺,若环绕大树4周,绳子又少了3尺,则环绕大树一周需要绳子( )A. 5尺B. 6尺C. 7尺D. 8尺4.甲、乙、丙、丁四人到文具店购买同一种笔记本和计算器,购买的数量及总价分别如下表所示.若其中一人的总价算错了,则此人是( )A.甲B .乙C .丙D .丁5.如果是方程组 的解,那么下列各式中成立的是( )A. a +4c =2B. 4a +c =2C. 4a +c +2=0D. a +4c +2=06.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x ,女生人数为y ,则下列方程组中,能计算出x ,y 的是( )A.⎩⎪⎨⎪⎧x -y =49,y =2(x +1)B.⎩⎪⎨⎪⎧x +y =49,y =2(x +1)C.⎩⎪⎨⎪⎧x -y =49,y =2(x -1)D.⎩⎪⎨⎪⎧x +y =49,y =2(x -1) 7.二元一次方程组的正整数解有( )组解A. 0B. 3C. 4D. 6 8.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有人共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A. B. C. D.9.解方程组2{78ax by cx y +=-=时,一学生把c 看错得2{ 2x y =-=,已知方程组的正确解是3{2x y ==-,则a 、b 、c 的值是( )A. a 、b 不能确定,c=-2B. a 、b 、c 不能确定C. a=4,b=7,c=2D. a=4,b=5,c=-210.一个两位数,十位上数字比个位上数字大2,且十位上数字与个位上数字之和为12,则这个两位数为( )A. 46B. 64C. 57D. 75 二、填空题(每小题3分,共15分)1.若2x a +1-3y b -2=10是一个二元一次方程,则a -b =________.2.若方程组⎩⎪⎨⎪⎧2x +y =*,3x -y =3的解为⎩⎨⎧x =2,y =#,则“*”“#”的值分别为________.象限.3.已知等式y =kx +b ,当x =1时,y =2;当x =2时,y =-3.若x =-1,则y =________.4.若m ,n 为实数,且|2m+n ﹣,则(m+n )2018的值为________ .5.若235,{ 323x y x y +=-=-则2(2x +3y)+3(3x -2y)=________.6.对于X 、Y 定义一种新运算“*”:X*Y=aX+bY ,其中a 、b 为常数,等式右边是通常的加法和乘法的运算.已知:3*5=15,4*7=28,那么2*3=__________ . 三、解答题 1.解方程组:(1)(2);2.解关于x 、y 的方程组时,甲正确地解得方程组的解为,乙因为把c抄错了,在计算无误的情况下解得方程组的解为,求a、b、c的值.3.随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p元/公里计算,耗时费按q元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、(1)求p,q的值;(2)如果小华也用该打车方式,车速55公里/时,行驶了11公里,那么小华的打车总费用为多少?4.已知:用2辆A型车和1辆B型车载满货物一次可运货11吨;用1辆A型车和2辆B型车载满货物一次可运货13吨.根据以上信息, 解答下列问题:(1)1辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物请用含有b的式子表示a,并帮该物流公司设计租车方案;(3)在(2)的条件下,若A型车每辆需租金500元/次,B型车每辆需租金600元/次.请选出最省钱的租车方案,并求出最少租车费用.5.某商场计划从一厂家购进若干部新型手机以满足市场需求.已知该厂家生产三种不同型号的手机,出厂价分别是甲种型号手机1800元/部,乙种型号手机600元/部,丙种型号手机1200元/部.商场在经销中,甲种型号手机可赚200元/部,乙种型号手机可赚100元/部,丙种型号手机可赚120元/部.(1)若商场用6万元同时购进两种不同型号的手机共40部,并恰好将钱用完,请你通过计算分析进货方案;(2)在(1)的条件下,求盈利最多的进货方案.参考答案一、选择题。
最新人教版初中数学七年级下册第8章《二元一次方程组》测试题(含答案)
人教版七年级数学下册第八章 二元一次方程组单元检测试题(有答案)一、选择题1 . 下列各方程组中,属于二元一次方程组的是( )A .B .C .D .2 .将方程 2 x + y =3 写成用含 x 的式子表示 y 的形式,正确的是 ( ) A . y = 2 x - 3 B . y = 3 - 2 x C . x = 2y-3D . x =3-2y3 .若方程组 的解为 ,则被 “☆” 、 “ K ” 遮住的两个数分别是 ( )A . 10 , 3B . 3 , 10C . 4 , 10D . 10 , 44 .已知 x , y 满足方程组 则 x + y 的值为 ( )A . 9B . 7C . 5D . 35 .已知甲、乙两数的和是 7 ,甲数是乙数的 2 倍,设甲数为 x ,乙数为 y ,根据题意,列方程组正确的是 ( )A. B. C. D.6 .按如图所示的运算程序,能使输出结果为 5 的 x , y 的值是 ( )A . x = 5 , y =- 5B . x =- 1 , y = 1C . x = 2 , y = 1D . x = 3 , y = 27.若2310x y z ++=,43215x y z ++=,则x y z ++的值为( ) A .5 B .4 C .3 D .28.若方程组431(1)3x yax a y+=⎧⎨+-=⎩的解x与y相等,则a的值等于()A.4 B.10 C.11 D.129. 两个水池共储水40吨,如果甲池注进水4吨,乙池注进水8吨,甲池水的吨数就与乙池水的吨数相等.甲、乙水池原来各储水的吨数是()A.甲池21吨,乙池19吨B.甲池22吨,乙池18吨C. 甲池23吨,乙池17吨D.甲池24吨,乙池16吨10.某校七年级(2)班40表格中捐款2元和32元的有x名同学,捐款3元的有y名同学,根据题意,可列方程组( )A.272366x yx y+=⎧⎨+=⎩B.2723100x yx y+=⎧⎨+=⎩C.273266x yx y+=⎧⎨+=⎩D.2732100x yx y+=⎧⎨+=⎩二、填空题1.方程组的解是________ .2.已知关于x ,y 的二元一次方程2 x +■ y =7 中,y 的系数已经模糊不清,但已知是这个方程的一个解,那么原方程是________ .3.某旅行社组织甲、乙两个旅游团分别到庐山、婺源旅游,已知这两个旅游团共有55 人,甲旅游团的人数比乙旅游团的人数的2 倍少5 人,问甲、乙两个旅游团各有多少人?设甲、乙两个旅游团分别有x 人、y 人,根据题意可列方程组为__________ .4.已知+( x +2 y -5) 2 =0 ,则x +y =________ .5.“六一”儿童节,某动物园的成人门票每张8元,儿童门票半价(即每张4元),全天共售出门票3000张,共收入15600元,则这一天售出了成人票________张,儿童票___ _ 张.三、计算题1.解方程组:(1) (2)2.已知与都是方程kx -b =y 的解,求k 和b 的值.3.已知方程组小马由于看错了方程① 中的m ,得到方程组的解为小虎由于看错了方程② 中的n ,得到方程组的解为请你根据上述条件求原方程组的解.4.请你根据王老师所给的内容,完成下列各小题.(1) 若x =-5 ,2 ◎ 4 =-18 ,求y 的值;(2) 若1 ◎ 1 =8 ,4 ◎ 2 =20 ,求x ,y 的值.5. “ 六一” 儿童节有一投球入盆的游戏,深受同学们的喜爱,游戏规则如下:如图,在一大盆里放一小茶盅( 叫幸运区) 和小茶盅外大盆内( 环形区) 分别得不同的分数,投到大盆外不得分;每人各投 6 个球,总得分不低于30 分得奖券一张.现统计小刚、小明、小红三人的得分情况如下图.(1) 每投中“ 幸运区” 和“ 环形区” 一次,分别得多少分?(2) 根据这种得分规则,小红能否得到一张奖券?请说明理由.6.数学方法:解方程组若设x +y =A ,x -y =B ,则原方程组可变形为解方程组得所以解方程组得我们把某个式子看成一个整体,用一个字母去代替它,这种解方程组的方法叫作换元法.(1) 请用这种方法解方程组(2) 已知关于x ,y 的二元一次方程组的解为那么关于m ,n 的二元一次方程组的解为________ ;(3) 已知关于x ,y 的二元一次方程组的解为则关于x ,y 的方程组的解为________ .答案与解析一、选择题。
人教版七年级下册数学 第八章 二元一次方程组 单元测试 (含解析)
第八章二元一次方程组单元测试一.选择题1.下列是二元一次方程的是()A.3x﹣6=x B.2x﹣3y=x2C.D.3x=2y2.若关于x、y的方程ax+y=2的一组解是,则a的值为()A.﹣1B.C.1D.23.已知方程组,则x﹣y的值是()A.1B.2C.4D.54.用代入法解方程组时,使用代入法化简比较容易的变形是()A.由①,得x=B.由①,得y=2x﹣1C.由②,得y=D.由②,得x=5.一个长方形周长是16cm,长与宽的差是1cm,那么长与宽分别为()A.5cm,3cm B.4.5cm,3.5cmC.6cm,4cm D.10cm,6cm6.已知关于x,y的方程组和的解相同,则(a+b)2021的值为()A.0B.﹣1C.1D.20217.已知关于x,y的二元一次方程组的解为,则k的值是()A.3B.2C.1D.08.某中学组织全区优秀九年级毕业生参加学校冬令营,一共有x名学生,分成y个学习小组.若每组10人,则还差5人;若每组9人,还余下3人.若求冬令营学生的人数,所列的方程组为()A.B.C.D.9.《九章算术》中记载:“今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”大意是:甲、乙二人带着钱,不知是多少,若甲得到乙的钱数的,则甲的钱数为50;若乙得到甲的钱数的,则乙的钱数也能为50,问甲、乙各有多少钱?设甲持钱为x,乙持钱为y,可列方程组为()A.B.C.D.10.已知关于x,y的方程组,给出下列结论:①是方程组的解;②当a=﹣2时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x+y=4﹣a的解;其中正确的个数是()A.0个B.1个C.2个D.3个二.填空题11.把方程5x﹣2y=3改写成用含x的式子表示y的形式是:.12.若关于x、y的二元一次方程2x+ay=7有一个解是,则a=.13.若关于x,y的方程2x|n|+3y m﹣2=0是二元一次方程,则m+n=.14.已知x,y互为相反数且满足二元一次方程组,则k的值是.15.若方程组与方程组的解相同,则a+b的值为.16.小新出生时父亲28岁,现在父亲的年龄是小新的3倍还多2岁,则现在小新的年龄是岁.17.如果方程组的解为,那么“*”表示的数是.18.已知关于x,y的二元一次方程组的解互为相反数,则k的值是.19.在《九章算术》中,二元一次方程组是通过“算筹”摆放的.若图中各行从左到右列出的三组算筹分别表示未知数x,y的系数与相应的常数项,如图1表示方程组是,则如图2表示的方程组是.20.某校七年级的数学竞赛中共有30道题,答对一题得5分,不答得0分,答错扣4分,学生小王有5题未答,最后得71分,那么他答对了题.21.若方程组的解是,则方程组的解是x=,y =.三.解答题22.解方程组:(1)(代入法);(2)(加减法).23.解方程组:(1);(2).24.已知,都是关于x,y的二元一次方程y=x+b的解,且m﹣n=b2+b﹣,求b的值.25.我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,绳长、井深各几何?这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,绳长、井深各几尺?26.在抗击新冠肺炎疫情期间,某社区购买酒精和消毒液两种消毒物资,供居民使用.第一次购买酒精和消毒液若干,酒精每瓶10元,消毒液每瓶5元,共花费了350元;第二次又购买了与第一次相同数量的酒精和消毒液,由于酒精和消毒液每瓶价格分别下降了30%和20%,只花费了260元.求每次购买的酒精和消毒液分别是多少瓶?参考答案一.选择题1.解:A.是一元一次方程,不是二元一次方程,故本选项不符合题意;B.是二元二次方程,故本选项不符合题意;C.分式方程,不是二元一次方程,故本选项不符合题意;D.是二元一次方程,故本选项符合题意;故选:D.2.解:将代入方程ax+y=2,得4a﹣6=2,解得a=2.故选:D.3.解:∵2x+3y﹣(x+4y)=x﹣y=14﹣12=2,∴x﹣y=2,故选:B.4.解:A、B、C、D四个答案都是正确的,但“化简比较容易的”只有B.故选:B.5.解:设这个长方形的长为xcm,宽为ycm,依题意得:,解得:.故选:B.6.解:联立得:,①×5+②×3得:29x=58,解得:x=2,把x=2代入①得:y=1,代入得:,解得:,则原式=(﹣2+2)2021=0.故选:A.7.解:把x=3,y=﹣3代入方程3x+2y=k+1,得9﹣6=k+1,解得k=2.故选:B.8.解:每组10人时,实际人数可表示为10y﹣5;每组9人时,实际人数可表示为9y+3;可列方程组为:,故选:C.9.解:由题意可得,,故选:B.10.解:①(1)×3+(2)得:4x+8y=12∴x+2y=3 (3)将x=5,y=﹣1代入(3),左边=5+2×(﹣1)=3=右边故①正确;②将a=﹣2代入方程组得:解得:x,y的值互为相反数,故②正确;③将a=1代入方程组得:解得:当a=1时,方程x+y=4﹣a化为:x+y=3∴x=3,y=0是方程x+y=3的解,故③正确.故选:D.二.填空题11.解:5x﹣2y=3,移项得:﹣2y=3﹣5x,系数化1得:=.故答案为:y=.12.解:把代入方程2x+ay=7,得6+a=7,解得a=1.故答案为:1.13.解:根据题意得:|n|=1,m﹣2=1,解得:n=±1,m=3,∴m+n=3+1=4,m+n=3﹣1=2,∴m+n的值是2或4,故答案为:2或4.14.解:解方程组:,得:,∵x和y互为相反数,则有2k+3+(﹣k﹣2)=0,解得k=﹣1.故答案为:﹣1.15.解:把代入,得:,①+②得:7(a+b)=14,则a+b=2,故答案为:2.16.解:设小新现在的年龄为x岁,父亲现在的年龄是y岁,由题意得:,解得:,即现在小新的年龄是13岁,故答案为:13.17.解:将x=6代入2x﹣y=16,得12﹣y=16,解得y=﹣4,∴x+y=6﹣4=2.故答案为:2.18.解:∵x,y的二元一次方程组的解互为相反数,∴x+y=0.解方程组,得.把x=3,y=﹣3代入方程3x+2y=k+1,得9﹣6=k+1,解得k=2.故答案为2.19.解:依题意得:.故答案为:.20.解:设小王答对了x道题,答错了y道题,依题意得:,解得:.故答案为:19道.21.解:把代入方程组得,,所以c1﹣c2=2(a1﹣a2),c1﹣2a1=3,方程组,①﹣②得,(a1﹣a2)x=a1﹣a2﹣(c1﹣c2),所以(a1﹣a2)x=﹣(a1﹣a2),因此x=﹣1,把x=﹣1代入方程组中的方程①得,﹣a1+y=a1﹣c1,所以y=2a1﹣c=﹣(c﹣2a)=﹣3,故答案为:﹣1,﹣3.三.解答题22.解:(1),由①得:y=4﹣x③,将③代入②得,3x﹣2(4﹣x)=2,5x﹣8=2,5x=10,x=2,将x=2代入①得,y=2,∴方程组的解为:,(2),将①×2+②得,5x=10,x=2,将x=2代入①得,y=3,∴方程组的解为:.23.解:,①×5+②,14x=﹣14,解得x=﹣1,把x=﹣1代入①,﹣2+y=﹣5,解得y=﹣3,∴原方程组的解是;(2)方程组整理得,①+②×4,﹣37y=74,解得y=﹣2,把y=﹣2代入①,8x+18=6,解得x=﹣,∴原方程组的解是.24.解:∵,都是关于x,y的二元一次方程y=x+b的解,∴①+②,得2m+3=2n+2b+2,整理,得2m﹣2n=2b﹣1∴m﹣n=b﹣∴b﹣=b2+b﹣即b2=5,∴b=±.25.解:设绳长是x尺,井深是y尺,依题意有:,解得:,答:绳长是36尺,井深是8尺.26.解:设每次购买酒精x瓶,消毒液y瓶,依题意得:,解得:.答:每次购买酒精20瓶,消毒液30瓶.。
人教版七年级下第八章 二元一次方程组 单元测试题(含答案)
人教版七年级下第八章 二元一次方程组 单元测试题(含答案)一、选择题(每题4分,共32分)1. 下列方程中,是二元一次方程的是( ) A . x xy 212=+ B . 222=-y x C . 31=+yx D . y y x =+23 2. 以⎩⎨⎧-==11y x 为解的二元一次方程组是( )A .⎩⎨⎧=-=+10y x y x B .⎩⎨⎧-=-=+10y x y x C .⎩⎨⎧=-=+20y x y x D .⎩⎨⎧-=-=+2y x y x3.程1523=+y x 在自然数范围内的解共有( )A .1对B .2对C .3对D .无数对 4.已知单项式b a nm +3与单项式n m b a -32是同类项,那么m 、n 的值分别是( )A .⎩⎨⎧-==12n m B .⎩⎨⎧-=-=12n m C .⎩⎨⎧==12n m D .⎩⎨⎧=-=12n m5.关于x 、y 的二元一次方程⎩⎨⎧=-=+ky x ky x 95的解也是二元一次方程632=+y x 的解,则k 的值是( )A .43-B .43C .34D .34-6.若二元一次方程73=-y x ,132=+y x ,9-=kx y 有公共解,则k 的取值范围为( )A .3B .—3C .—4D .47.若⎩⎨⎧==21y x 与⎩⎨⎧==32y x 都是3=-ay bx 的解,则下列各组数值中也是3=-ay bx 的解的是( )A .⎩⎨⎧-==43y x B .⎩⎨⎧==34y x C .⎩⎨⎧-=-=43y x D .⎩⎨⎧==43y x8.为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x ,不吸烟者患肺癌的人数为y ,根据题意,下面列出的方程组正确的是( )A .⎩⎨⎧=⨯+⨯=-10000%5.0%5.222y x y xB .⎪⎩⎪⎨⎧=+=-10000%5.0%5.222yx y x C .⎩⎨⎧=⨯-⨯=+22%5.0%5.210000y x y x D .⎪⎩⎪⎨⎧=-=+22%5.0%5.210000yx y x 二、填空题(每题4分,共32分)9. 在方程5413=-y x 中,用含x 的代数式表示为:y = ,当3=x 时,y = . 10.已知方程组⎩⎨⎧=+=-②①.123,432y x y x 用加减法消去x 的方法是 ,用加减法消去y 的方法是 .11.以方程组⎩⎨⎧=-=+2233y x y x 的解为坐标的点(x ,y )在平面直角坐标系中的第 象限.12.已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+18my nx ny mx 的解,则n m -2的算术平方根是 .13. 若方程组⎩⎨⎧=-+=-3)1(334y k kx y x 的解x 和y 的值相等,则k = .14.已知方程组⎩⎨⎧=+=-241121254y x y x ,则2)(y x +的值为 .15. “今有共买犬,人出五,不足九十;人出五十,适足.问人数、犬价各几何?”题目大意是:现在大家共一条狗,若每人出五元,还差九十元;若每人出五十元,刚好够.可知一共有 人,狗价为 元.16.甲、乙两人去商店买东西,他们所带的钱数之比为7:6,甲用掉50元,乙用掉60元,两人余下的钱数之比是3:2,则甲余下的钱数为 元,乙余下的钱数为 元.三、解答题(共56分)17.(每题5分,共10分)解下列方程组:(1)⎩⎨⎧=+=+64302y x y x ;(2)⎩⎨⎧=+=-3241123b a b a .18.(8分)在b y ax =+2中,已知x 当1-=x 时,2=y ;当2=x 时,21=y .求代数式))((22b ab a b a +-+的值.19.(9分)如图,在东北大秧歌的踩高跷表演中,已知演员身高是高跷长度的2倍,高跷与腿重合部分的长度为28cm ,演员踩在高跷上时,头顶距离地面的高度为224cm .设演员的高度为x cm ,高跷的长度为y cm ,求x ,y 的值.20.(9分)已知方程组⎩⎨⎧-=--=+4652by ax y x 与方程组⎩⎨⎧-=+=-81653ay bx y x 的解相同,求2015)2(b a +的值.21.(10分)已知:用2辆A 型车和1辆B 型车装满货物一次可运货10吨;用1辆A 型车和2辆B 型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A 型车a人教版数学七年级下册第八章 二元一次方程组 能力提升检测卷一.选择题(共10小题)1.下列方程是二元一次方程的是( ) A .2x-4=xB .x-2y=6C .x+ 2y =3D .xy=5xcmcm28ycmcm224第19题图2.以方程组 ⎩⎨⎧x +y =102x +y =6的解为坐标的点(x,y)在( )A .第一象限B .第二象限C .第三象限D .第四象限3.在方程组 = = 中,代入消元可得( )A .3y-1-y=7B .y-1-y=7C .3y-3=7D .3y-3-y=74.若2x |k|+(k-1)y=3是关于x ,y 的二元一次方程,则k 的值为( ) A .-1B .1C .1或-1D .05.若关于x ,y 的二元一次方程组 = = 的解为 = = ,则a+4b 的值为( )A .17B .197C .1D .36.如果方程x-y=3与下面的方程组成的方程组的解为= =,那么这一个方程可以是( )A .2(x-y)=6yB .3x-4y=16C .14x+2y =5D .12x+3y =87.某加工厂有工人50名,生产某种一个螺栓套两个螺母的配套产品,每人每天平均生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,能使生产出的螺栓和螺母刚好配套?设应安排x 人生产螺栓,y 人生产螺母,则所列方程组为( ) A . = = B .= =C . = =D .==8.关于x ,y 的方程组 = = 的解是 = =,其中y 的值被盖住了,不过仍能求出p ,则p 的值是( ) A .- 12B .12C .- 14D .149.A 、B 两地相距900km,一列快车以200km/h 的速度从A 地匀速驶往B 地,到达B 地后立刻原路返回A 地,一列慢车以75km/h 的速度从B 地匀速驶往A 地.两车同时出发,截止到它们都到达终点时,两车恰好相距200km 的次数是( )A.5 B.4 C.3 D.210.如图所示是最近微信朋友圈常被用来“醒醒盹,动动脑”的图片,请你一定认真观察,动动脑子想一想,图中的?表示什么数()A.25 B.15 C.12 D.14二.填空题(共5小题)11.把方程5x+y=3改写为用含x的式子表示y的形式是.12.已知==是方程ax+by=3的一组解(a≠0,b≠0),任写出一组符合题意的a、b值,则a= ,b= .13.已知方程组==和==的解相同,则2m-n= .14.小明,小丽,小刚到同一个文具店买文具,小明买了2支钢笔,2本作业本,3个文件袋共花了20元;小丽买了1支钢笔,2个文件袋共花了10元;那么小刚买了5支钢笔,4本作业本,8个文件袋共花了元.15.甲乙二人分别从相距20km的A,B两地出发,相向而行.如图是小华绘制的甲乙二人运动两次的情形,设甲的速度是xkm/h,乙的速度是ykm/h,根据题意所列的方程组是.三.解答题(共10小题)16.解下列方程(组)(1)==(2)==(3)===17.已知==,==都是关于x,y的二元一次方程y=x+b的解,且m-n=b2+2b-4,求b的值.18.甲、乙两人同求方程ax-by=7的整数解,甲求出一组解为==,而乙把ax-by=7中的7错看成1,求得一组解为==,试求a、b的值.19.阅读下列解方程组的部分过程,回答下列问题解方程组=,①=,②现有两位同学的解法如下:解法一;由①,得x=2y+5,③把③代入②,得3(2y+5)-2y=3.……解法二:①-②,得-2x=2.……(1)解法一使用的具体方法是,解法二使用的具体方法是,以上两种方法的共同点是.(2)请你任选一种解法,把完整的解题过程写出来20.某人沿着相同的路径上山、下山共用了2h.如果上山速度为3km/h,下山速度为5km/h,那么这条山路长是多少?21.我校准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元.购买1个足球和1个篮球共需130元.求购买足球、篮球的单价各是多少元?22.【方法体验】已知方程组= ① = ②求4037x+y 的值.小明同学发现解此方程组代入求值很麻烦!后来他将两个方程直接相加便迅速解决了问题.请你体验一下这种快捷思路,写出具体解题过程: 【方法迁移】根据上面的体验,填空: 已知方程组= =则3x+y-z=.【探究升级】已知方程组= =求-2x+y+4z 的值.小明凑出"-2x+y+4z=2﹒(x+2y+3z)+(-1)﹒(4x+3y+2z)=20-15=5“,虽然问题获得解决,但他觉得凑数字很辛苦!他问数学老师丁老师有没有不用凑数字的方法,丁老师提示道:假设-2x+y+4z=m ﹒(x+2y+3z)+n ﹒(4x+3y+2z),对照方程两边各项的系数可列出方程组 == =,它的解就是你凑的数!根据丁老师的提示,填空: 2x+5y+8z=(x+2y+3z)+(4x+3y+2z)【巩固运用】已知2a-b+kc=4,且a+3b+2c=-2,当k 为时,8a+3b-2c 为定值,此定值是.(直接写出结果)23.《孙子算经》是中国古代重要的数学著作,其中记载:“今有甲、乙二人,持钱各不知数.甲得乙中半,可满四十八.乙得甲太半,亦满四十八,问甲、乙二人原持钱各几何?”译文:“甲,乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文,如果乙得到甲所有钱的23,那么乙也共有钱48文,问甲,乙二人原来各有多少钱?”24.【阅读材料】南京市地铁公司规定:自2019年3月31日起,普通成人持储值卡乘坐地铁出行,每个自然月内,达到规定消费累计金额后的乘次,享受相应的折扣优惠(见图).地铁出行消费累计金额月底清零,次月重新累计.比如:李老师二月份无储值卡消费260元,若采用新规持储值卡消费,则需付费150×0.95+50×0.9+60×0.8=235.5元.【解决问题】甲、乙两个成人二月份无储值卡乘坐地铁消费金额合计300元(甲消费金额超过150元,但不超过200元).若两人采用新规持储值卡消费,则共需付费283.5元.求甲、乙二月份乘坐地铁的消费金额各是多少元?答案: 1.B 2.B 3.D 4.A 5.D 6.A 7.B 8.A 9.B 10.B 11. y=-5x+3 12.1,1 13.5 14.50 15.16.解:(1)= ①= ② , ①+②×5,得:13x=26,x=2,将x=2代入②,得:4-y=3,y=1, 所以方程组的解为 = = ;(2)将方程组整理成一般式为= ①= ② ,①+②,得:6x=14,x=73,将x=73代入①,得:7-2y=8,y=- 12,所以方程组的解为(3)= ① = ② = ③,①+②,得:3x+4y=24 ④, ③+②,得:6x-3y=人教版数学七年级下册第八章 二元一次方程组 能力提升检测卷一.选择题(共10小题)1.下列方程是二元一次方程的是( ) A .2x-4=xB .x-2y=6C .x+ 2y =3D .xy=52.以方程组 ⎩⎨⎧x +y =102x +y =6的解为坐标的点(x,y)在( )A .第一象限B .第二象限C .第三象限D .第四象限3.在方程组 = = 中,代入消元可得( )A .3y-1-y=7B .y-1-y=7C .3y-3=7D .3y-3-y=74.若2x |k|+(k-1)y=3是关于x ,y 的二元一次方程,则k 的值为( ) A .-1B .1C .1或-1D .05.若关于x ,y 的二元一次方程组 = = 的解为 = = ,则a+4b 的值为( )A .17B .197C .1D .36.如果方程x-y=3与下面的方程组成的方程组的解为= =,那么这一个方程可以是( )A .2(x-y)=6yB .3x-4y=16C .14x+2y =5D .12x+3y =87.某加工厂有工人50名,生产某种一个螺栓套两个螺母的配套产品,每人每天平均生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,能使生产出的螺栓和螺母刚好配套?设应安排x人生产螺栓,y人生产螺母,则所列方程组为()A.==B.==C.==D.==8.关于x,y的方程组==的解是==,其中y的值被盖住了,不过仍能求出p,则p的值是()A.- 12B.12C.-14D.149.A、B两地相距900km,一列快车以200km/h的速度从A地匀速驶往B地,到达B地后立刻原路返回A地,一列慢车以75km/h的速度从B地匀速驶往A地.两车同时出发,截止到它们都到达终点时,两车恰好相距200km的次数是()A.5 B.4 C.3 D.210.如图所示是最近微信朋友圈常被用来“醒醒盹,动动脑”的图片,请你一定认真观察,动动脑子想一想,图中的?表示什么数()A.25 B.15 C.12 D.14二.填空题(共5小题)11.把方程5x+y=3改写为用含x的式子表示y的形式是.12.已知==是方程ax+by=3的一组解(a≠0,b≠0),任写出一组符合题意的a、b值,则a= ,b= .13.已知方程组==和==的解相同,则2m-n= .14.小明,小丽,小刚到同一个文具店买文具,小明买了2支钢笔,2本作业本,3个文件袋共花了20元;小丽买了1支钢笔,2个文件袋共花了10元;那么小刚买了5支钢笔,4本作业本,8个文件袋共花了元.15.甲乙二人分别从相距20km的A,B两地出发,相向而行.如图是小华绘制的甲乙二人运动两次的情形,设甲的速度是xkm/h,乙的速度是ykm/h,根据题意所列的方程组是.三.解答题(共10小题)16.解下列方程(组)(1)==(2)==(3)===17.已知==,==都是关于x,y的二元一次方程y=x+b的解,且m-n=b2+2b-4,求b的值.18.甲、乙两人同求方程ax-by=7的整数解,甲求出一组解为==,而乙把ax-by=7中的7错看成1,求得一组解为==,试求a、b的值.19.阅读下列解方程组的部分过程,回答下列问题解方程组=,①=,②现有两位同学的解法如下:解法一;由①,得x=2y+5,③把③代入②,得3(2y+5)-2y=3.……解法二:①-②,得-2x=2.……(1)解法一使用的具体方法是,解法二使用的具体方法是,以上两种方法的共同点是.(2)请你任选一种解法,把完整的解题过程写出来20.某人沿着相同的路径上山、下山共用了2h.如果上山速度为3km/h,下山速度为5km/h,那么这条山路长是多少?21.我校准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元.购买1个足球和1个篮球共需130元.求购买足球、篮球的单价各是多少元?22.【方法体验】已知方程组=①=②求4037x+y的值.小明同学发现解此方程组代入求值很麻烦!后来他将两个方程直接相加便迅速解决了问题.请你体验一下这种快捷思路,写出具体解题过程:【方法迁移】根据上面的体验,填空:已知方程组==则3x+y-z=.【探究升级】已知方程组==求-2x+y+4z的值.小明凑出"-2x+y+4z=2﹒(x+2y+3z)+(-1)﹒(4x+3y+2z)=20-15=5“,虽然问题获得解决,但他觉得凑数字很辛苦!他问数学老师丁老师有没有不用凑数字的方法,丁老师提示道:假设-2x+y+4z=m﹒(x+2y+3z)+n ﹒(4x+3y+2z),对照方程两边各项的系数可列出方程组 == =,它的解就是你凑的数!根据丁老师的提示,填空: 2x+5y+8z=(x+2y+3z)+(4x+3y+2z)【巩固运用】已知2a-b+kc=4,且a+3b+2c=-2,当k 为时,8a+3b-2c 为定值,此定值是.(直接写出结果)23.《孙子算经》是中国古代重要的数学著作,其中记载:“今有甲、乙二人,持钱各不知数.甲得乙中半,可满四十八.乙得甲太半,亦满四十八,问甲、乙二人原持钱各几何?”译文:“甲,乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文,如果乙得到甲所有钱的23,那么乙也共有钱48文,问甲,乙二人原来各有多少钱?”24.【阅读材料】南京市地铁公司规定:自2019年3月31日起,普通成人持储值卡乘坐地铁出行,每个自然月内,达到规定消费累计金额后的乘次,享受相应的折扣优惠(见图).地铁出行消费累计金额月底清零,次月重新累计.比如:李老师二月份无储值卡消费260元,若采用新规持储值卡消费,则需付费150×0.95+50×0.9+60×0.8=235.5元.【解决问题】甲、乙两个成人二月份无储值卡乘坐地铁消费金额合计300元(甲消费金额超过150元,但不超过200元).若两人采用新规持储值卡消费,则共需付费283.5元.求甲、乙二月份乘坐地铁的消费金额各是多少元?答案: 1.B 2.B 3.D 4.A 5.D 6.A 7.B 8.A 9.B 10.B 11. y=-5x+3 12.1,1 13.5 14.50 15.16.解:(1)= ①= ② , ①+②×5,得:13x=26,x=2,将x=2代入②,得:4-y=3,y=1, 所以方程组的解为 = = ;(2)将方程组整理成一般式为= ①= ② ,①+②,得:6x=14,x=73,将x=73代入①,得:7-2y=8,y=- 12,所以方程组的解为(3)= ① = ② = ③,①+②,得:3x+4y=24 ④, ③+②,得:6x-3y=人教版七年级数学下册第九章不等式与不等式组复习检测试题(有答案)一、选择题。
七年级数学下册《第八章 二元一次方程组》单元测试卷及答案解析-人教版
七年级数学下册《第八章 二元一次方程组》单元测试卷及答案解析-人教版一、单选题1.如果21x y =⎧⎨=-⎩是关于x 、y 的二元一次方程ax+y=1的解,那么a 的值为( )A .-2B .-1C .0D .I2.已知二元一次方程组 522048x y x y +=⎧⎨-=⎩①②,若用加减法消去y ,则正确的是( )A .①×1+②×1B .①×1+②×2C .①×1-②×1D .①×1-②×23.七年级学生在会议室开会,每排座位坐12人,则有11人没有座位;每排座位坐14人,则余1人独坐一排,则这间会议室的座位排数是( ) A .14B .13C .12D .154.方程组24x y x y -=⎧⎨-=⎩的解为2x y =-⎧⎨=⎩▽则被△和△遮盖的两个数分别为(,)A .-10,6B .2,-6C .2,6D .10,-65.已知13x y =⎧⎨=⎩是关于x ,y 的二元一次方程2x y m -=的一个解,则m 的值是( )A .5B .2C .-5D .-26.关于x ,y 的二元一次方程组538y x x y =-⎧⎨-=⎩,用代入法消去y ,得到的方程是( )A .3583x x --=B .358x x +-=C .358x x ++=D .358x x -+=7.已知24328a b a b +=⎧⎨+=⎩,则2a+2b 的值为()A .3B .4C .6D .78.小明计划用100元钱在京东商城购买价格分别为6元和8元的两种商品,则在钱全部用完的前提下,可供小明选择的方案有( ) A .3种B .4种C .5种D .6种9.举办“书香文化节”的活动中,将x 本图书分给了y 名学生,若每人分6本,则剩余40本;若每人分8本,则还缺50本,下列方程组正确的是( )A .640850y x y x -=⎧⎨+=⎩B .640850y xy x +=⎧⎨-=⎩C .640850x y x y +=⎧⎨-=⎩D .640850y xy x -=⎧⎨-=⎩10.若方程组41233x by z x by z -+=⎧⎨-+=⎩ 的解是1x ay z c=⎧⎪=⎨⎪=⎩,则6a b c ++的值是( )A .-3B .0C .3D .6二、填空题11.已知二元一次方程x -2y =10,用含x 的代数式表示y ,则y = . 12.已知x 、y 满足方程组3202132022x y x y +=⎧⎨+=⎩,则x y -= .13.若273330x y y z z x +=⎧⎪+=⎨⎪+=⎩,则代数式x+y+z 的值为 .14.小明家准备装修一套新房,若甲、乙两家装修公司合作需6周完成,装修费用为5.2万元;若甲公司单独做4周,剩下的由乙公司做,还需9周完成,此时装修费用为4.8万元.若小明只选甲公司单独完成,则他需要付给甲公司装修费用 万元.三、计算题15.解方程组:(1){y =2x3x +2y =7 (2){4x −y =112x +y =1316.解方程组: 4223327x y z x y z x y z +-=⎧⎪-+=-⎨⎪+-=⎩四、解答题17.解方程组 64ax by x cy +=⎧⎨+=⎩ 时甲同学因看错 a 符号,从而求得解为32x y =⎧⎨=⎩ ,乙因看漏 c ,从而求得解为 62x y =⎧⎨=-⎩ ,试求 a , b , c 的值.18.已知方程组31313x y mx y m +=-+⎧⎨-=+⎩的解满足x 为非正数,y 为负数,求m 的取值范围.19. 2021年下半年,新冠疫情在全球新一波蔓延,接种新冠疫苗是当前抗击疫情最有效的手段.某县注射的疫苗有两种,一种是2针剂的灭活疫苗,另种是3针剂的重组蛋白疫苗.某校120名教职工全部完成其中一种疫苗的注射,共注射了325针,注射2针剂和3针剂疫苗的教职工各有多少人?五、综合题20.已知二元一次方程20ax y b +-=(a ,b 均为常数,且a≠0).(1)当a =3,b =﹣4时用x 的代数式表示y ;(2)若()2212x a by b b =-⎧⎪⎨=+⎪⎩是该二元一次方程的一个解 ①探索a 与b 关系,并说明理由;②无论a 、b 取何值,该方程有一组固定解,请求出这组解.21.下面是马小虎同学解二元一次方程组的过程,请认真阅读并完成相应的任务.解方程组:{3x −y =4 ①6x −3y =10 ②解:①×2,得628x y -=……③ 第一步 ②-③,得2y -= 第二步=2y -. 第三步将=2y -代入①,得2x =.第四步所以,原方程组的解为22x y =⎧⎨=-⎩第五步(1)这种求解二元一次方程组的方法叫做 法,以上求解步骤中,马小虎同学第 步开始出现错误.(2)请写出此题正确的解答过程.22.目前,新型冠状病毒在我国虽可控可防,但不可松懈.建兰中学欲购置规格分别为200mL 和500mL 的甲、乙两种免洗手消毒液若干瓶,已知购买3瓶甲和2瓶乙免洗手消毒液需要80元,购买1瓶甲和4瓶乙免洗手消毒液需要110元. (1)求甲、乙两种免洗手消毒液的单价.(2)该校在校师生共1000人,平均每人每天都需使用10mL 的免洗手消毒液,若校方采购甲、乙两种免洗手消毒液共花费2500元,则这批消毒液可使用多少天?(3)为节约成本,该校购买散装免洗手消毒液进行分装,现需将8.4L 的免洗手消毒液全部装入最大容量分别为200mL 和500mL 的两种空瓶中(每瓶均装满),若分装时平均每瓶需损耗10mL ,请问如何分装能使总损耗最小,求出此时需要的两种空瓶的数量.参考答案与解析1.【答案】D【解析】【解答】解:将 21x y =⎧⎨=-⎩ 代入ax+y=1得2a-1=1 解得a=1. 故答案为:D.【分析】根据方程根的概念,将x=2与y=-1代入ax+y=1可得关于字母a 的方程,求解即可得出a 的值.2.【答案】B【解析】【解答】解: ACD 、既不能消去x ,也不能消去y ,错误;B 、能消去y ,正确; 故答案为:B.【分析】观察两方程中y 的系数,找出两系数的最小公倍数,结合系数的符号,即可判断.3.【答案】C【解析】【解答】解:设这间会议室的座位排数是x 排,人数是y 人.根据题意,得()12111411x y x y+=⎧⎨-+=⎩解得12155x y =⎧⎨=⎩. 故答案为:C .【分析】本题中有两个等量关系:1、每排坐12人,则有11人没有座位;2、每排坐14 人,则余1人独坐一排. 这样设每排的座位数为x ,总人数为y ,列出二元一次方程组即可.4.【答案】B【解析】【解答】解:∵方程组24x y x y -=⎧⎨-=⎩①②的解为2x y =-⎧⎨=⎩▽ 424y y --=⎧⎨--=⎩①②解之:y=-6, △=2【分析】将x=-2代入第二个方程,可求出△的值,再将x ,y 的值代入第一个方程,可求出△的值.5.【答案】C【解析】【解答】解:13x y =⎧⎨=⎩是关于x ,y 的二元一次方程2x y m -=的一个解123m ∴-⨯=5m ∴=-故答案为:C.【分析】将x=1、y=3代入方程中进行计算可得m 的值.6.【答案】D【解析】【解答】解:方程:{y =x −5①3x −y =8②把①式代入②式,可得:()358x x --=整理,可得:358x x -+= 故答案为:D.【分析】将第一个方程代入第二个方程中可得3x-(x-5)=8,然后化简即可.7.【答案】C【解析】【解答】解:24328a b a b +=⎧⎨+=⎩①② ①+②,可得: 4a +4b =12 ∴2a +2b =12÷2=6. 故答案为:C .【分析】两方程组中两方程相加即可求解.8.【答案】B【解析】【解答】设购买价格为6元的商品x 件,价格为8元的商品y 件依题意得:68100x y +=5034xy -∴=又x ,y 均为正整数解得211x y =⎧⎨=⎩或68x y =⎧⎨=⎩或105x y =⎧⎨=⎩或142x y =⎧⎨=⎩因此可供小明选择的方案有4种.【分析】设购买价格为6元的商品x 件,价格为8元的商品y 件, 根据购买价格分别为6元和8元的两种商品共花费100元,列出二元一次方程,再求出其正整数解即可.9.【答案】B【解析】【解答】解:由题意得: 640850y xy x +=⎧⎨-=⎩故答案为:B.【分析】根据“ 每人分6本,则剩余40本”得方程6y-40=x ;根据“每人分8本,则还缺50本”得方程8y-50=x ,依此列出二元一次方程组,即可解答.10.【答案】A【解析】【解答】解:∵方程组41233x by z x by z -+=⎧⎨-+=⎩ 的解是1x a y z c=⎧⎪=⎨⎪=⎩∴41233a b c a b c -+=⎧⎨-+=⎩①② 由①-②得:2b c +=- ∴2b c =--把2b c =--代入①,得:()241a c c ---+=∴51a c +=-∴65123a b c a c b c ++=+++=--=-. 故答案为:A.【分析】由题意把x 、y 、z 的值代入方程组可得关于a 、b 、c 的方程组,将c 作为常数,用含c 的式子表示出a 、b ,整体代换计算即可求解.11.【答案】x 102- 【解析】【解答】解:x -2y =102y=x-10 解之:y=x 102-. 故答案为x 102-【分析】先移项,再将y的系数化为1,可求出y.12.【答案】1 2 -【解析】【解答】解:3202132022 x yx y+=⎧⎨+=⎩①②①-②得,2x-2y=﹣1两边同除以2得,x-y=1 2 -故答案为1 2 -.【分析】将①式和②式整体相减得出2x-2y=﹣1,然后根据等式的性质两边同除以2,即可解答. 13.【答案】45【解析】【解答】解:273330x yy zz x+=⎧⎪+=⎨⎪+=⎩①②③①+②+③得:2x+2y+2z=90整理得:x+y+z=45.故答案为:45.【分析】将方程组中的三个方程相加并化简可得x+y+z的值. 14.【答案】6【解析】【解答】解:设甲公司的工作效率为x,乙公司的工作效率为y.依题意列方程组,得661 491 x yx y+=⎧⎨+=⎩解这个方程组,得110115 xy⎧=⎪⎪⎨⎪=⎪⎩所以,甲公司单独做需10周,乙公司单独做需15周;设甲一周的装修费是m万元,乙一周的装修费是n万元.依题意列方程组,得66 5.2 49 4.8 m nm n+=⎧⎨+=⎩解这个方程组,得35415 mn⎧=⎪⎪⎨⎪=⎪⎩甲单独做的装修费:35×10=6(万元)故答案为:6.【分析】设甲公司的工作效率为x,乙公司的工作效率为y,根据相等关系“ 甲装修公司6周完成的工作量+乙装修公司6周完成的工作量=1,甲装修公司4周完成的工作量+乙装修公司9周完成的工作量=1”可得关于x、y的方程组,解之求出x、y的值;设甲一周的装修费是m万元,乙一周的装修费是n万元,根据相等关系“ 甲装修公司6周所需费用+乙装修公司6周完成所需费用=1,甲装修公司4周所需费用+乙装修公司9周所需费用=1”可得关于m、n的方程组,解之可求解.15.【答案】(1)解:{y=2x①3x+2y=7②将①代入②得3x+4x=7解得x=1将x=1代入①得y=2∴12 xy=⎧⎨=⎩(2)解:{4x−y=11①2x+y=13②①+②得6x=24解得x=4将x=4代入②得8+y=13解得y=5∴45 xy=⎧⎨=⎩【解析】【分析】(1)将①方程直接代入②方程可求出x的值,再将x的值代入①方程可求出y的值,从而即可得出方程组的解;(2)将方程组中的两个方程相加可求出x的值,再将x的值代入②方程可求出y的值,从而即可得出方程组的解.16.【答案】解:4 223 327x y zx y zx y z+-=⎧⎪-+=-⎨⎪+-=⎩①②③解:①+②得, 31x y -=④ ②×2+③得, 731x y -=⑤④与⑤组成方程组得 31731x y x y -=⎧⎨-=⎩解方程组得, 12x y =⎧⎨=⎩把 12x y =⎧⎨=⎩ 代入①得, 124z +-=解得, 1z =-∴原方程组的解为: 121x y z =⎧⎪=⎨⎪=-⎩【解析】【分析】利用第一个方程加上第二个方程可得3x-y=1,利用第二个方程的2倍加上第三个方程可得7x-3y=1,联立求解可得x 、y 的值,然后将x 、y 的值代入第一个方程中求出z 的值,据此可得方程组的解.17.【答案】解:甲同学因看错 a 符号∴ 把 3x = , 2y = 代入 4x cy +=解得 12c =326a b -+= .乙因看漏 c∴ 把 6x = , 2y =- 代入 6ax by +=得 626a b -= 得 326626a b a b -+=⎧⎨-=⎩解得, a=4 , b=9【解析】【分析】甲同学看错a 的负号,把x=3,y=2代入x+cy=4,求出c 值,因看错a 的符号,得-3a+2b=6,再由乙看漏c ,把x=6,y=-2代入ax+by=6,得6a-2b=6,联立方程组解方程组得a 、b 的值,即可解决问题.18.【答案】解:解方程组31313x y m x y m +=-+⎧⎨-=+⎩,得324x m y m =-⎧⎨=--⎩ ∵x 为非正数,y 为负数∴30240m m -≤⎧⎨--<⎩解得-2<m≤3【解析】【分析】先求出方程组的解324x m y m =-⎧⎨=--⎩,再根据题意列出不等式组30240m m -≤⎧⎨--<⎩,最后求出m 的取值范围即可。
新初中数学七年级下册第8章《二元一次方程组》单元测试题(含答案)
人教版七年级下册 第八章二元一次方程组单元试题一、选择题一、选择题((共10小题,每小题3分,共30分) 1.二元一次方程组îíì x +y =7,3x -y =5的解是的解是( ( ( )A.îíìx =4,y =3B .îíì x =5,y =2C .îíìx =3,y =4D .îíìx =-=-22,y =92.已知方程组îíì2x +y =4,x +2y =5,则x +y 的值为的值为( ( ( )A .-.-1 1 1B B .0C .2 2D D .3 3.下列各方程中,是二元一次方程的是.下列各方程中,是二元一次方程的是( ( ( ) A.x 3-2y=y +5x B .3x +1=2xy C .15x =y 2+1 1D .x +y =14.已知x 2m m-1+3y 4-2n n=-=-77是关于x ,y 的二元一次方程,则m ,n 的值是的值是( ( ( )A.îíìm =2,n =1B .îíì m =1,n =-32 C .îíì m =1,n =52D .îíìm =1,n =325.方程kx +3y =5有一组解是îíìx =2,y =1,则k 的值是的值是( ( ( )A .1B .-.-1C 1 C .0 0D D.2 6.二元一次方程x +2y =10的所有正整数解有的所有正整数解有( ( ( ) A .1个 B .2个 C .3个 D .4个7.“珍爱生命,拒绝毒品”,学校举行的2017年禁毒知识竞赛共有60道题,曾浩同学答对了x 道题,道题,答错了答错了y 道题道题((不答视为答错不答视为答错)),且答对题数比答错题数的7倍还多4道,那么下面列出的方程组中正确的是道,那么下面列出的方程组中正确的是( ( ( )A.îíìx +y =6060,,x -7y =4 B .îíì x +y =6060,,y -7x =4C .îíìx =6060--y ,x =7y -4D .îíìy =6060--x ,y =7x -48.关于x ,y 的方程组îíìx +py =0,x +y =3的解是îíìx =1,y =■,其中y 的值被盖住了,不过仍能求出p ,则p 的值是的值是( ( ( )A .-.-112 B.12 C .-.-114 D .149.若.若||x +y -5|5|与与(x -y -1)2互为相反数,则x 2-y 2的值为的值为( ( ( ) A .-.-5 5 5 B B .5 C .13 13D .15 1010..《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为钱,可列方程组为( ( ( )A.îíì 8x -3=y ,7x +4=yB .îíì 8x +3=y ,7x -4=yC .îíìy -8x =3,y -7x =4D .îíì8x -y =3,7x -y =4二、填空题二、填空题((共5小题,每小题4分,共20分) 1111.方程组.方程组îíìx +y =1,3x -y =3的解是的解是. 1212..“六一”前夕,“六一”前夕,市关工委准备为希望小学购进图书和文具若干套,市关工委准备为希望小学购进图书和文具若干套,市关工委准备为希望小学购进图书和文具若干套,已知已知1套文具和3套图书需104元,元,33套文具和2套图书需116元,则1套文具和1套图书需套图书需 元.元.13.已知关于x ,y 的二元一次方程组îíì2x +y =k ,x +2y =-1的解互为相反的解互为相反 人教版七年级下第八章 二元一次方程组 单元测试题(含答案)一、选择题(每题4分,共32分)分)1. 下列方程中,是二元一次方程的是(下列方程中,是二元一次方程的是() A . x xy 212=+ B . 222=-y x C . 31=+yxD . y y x =+23 2. 以îíì-==11y x 为解的二元一次方程组是(为解的二元一次方程组是( ) A .îíì=-=+10y x y x B .îíì-=-=+10y x y x C .îíì=-=+20y x y x D .îíì-=-=+20y x y x 3.程1523=+y x 在自然数范围内的解共有(在自然数范围内的解共有() A .1对 B .2对 C .3对 D .无数对.无数对4.已知单项式b a n m +3与单项式n m b a -32是同类项,那么m 、n 的值分别是(的值分别是( ) A .îíì-==12n m B .îíì-=-=12n m C .îíì==12n m D .îíì=-=12n m5.5.关于关于x 、y 的二元一次方程îíì=-=+ky x k y x 95的解也是二元一次方程632=+y x 的解,则k 的值是(的值是() A .43- B .43 C .34 D .34- 6.6.若二元一次方程若二元一次方程73=-y x ,132=+y x ,9-=kx y 有公共解,则k 的取值范围为( )A .3B .—.—3C 3 C .—.—4D 4 D .4 7.若îíì==21y x 与îíì==32y x 都是3=-ay bx 的解,则下列各组数值中也是3=-ay bx 的解的是(的是() A .îíì-==43y x B .îíì==34y x C .îíì-=-=43y x D .îíì==43y x8.为了研究吸烟是否对肺癌有影响,为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x ,不吸烟者患肺癌的人数为y ,根据题意,下面列出的方程组正确的是(,根据题意,下面列出的方程组正确的是() A .îíì=´+´=-10000%5.0%5.222y x y xB .îïíì=+=-10000%5.0%5.222y x y x C .îíì=´-´=+22%5.0%5.210000y x y xD .ïîïíì=-=+22%5.0%5.210000yx y x 二、填空题(每题4分,共32分)分)9. 在方程5413=-y x 中,用含x 的代数式表示为:y = ,当3=x 时,y = .10.10.已知方程组已知方程组îíì=+=-②①.123,432y x y x 用加减法消去x 的方法是的方法是,用加减法消去y 的方法是法是. 11.11.以方程组以方程组îíì=-=+2233y x y x 的解为坐标的点(x ,y )在平面直角坐标系中的第)在平面直角坐标系中的第象限.12.已知îíì==12y x 是二元一次方程组îíì=-=+18my nx ny mx 的解,则n m -2的算术平方根是的算术平方根是 . 13. 若方程组îíì=-+=-3)1(334y k kx y x 的解x 和y 的值相等,则k = . 14.已知方程组îíì=+=-241121254y x y x ,则2)(y x +的值为的值为. 15.15.“今有共买犬,人出五,不足九十;人出五十,适足.问人数、犬价各几何?”题目大意是:现在大家共一条狗,若每人出五元,还差九十元;若每人出五十元,刚好够.可知一共有知一共有 人,狗价为人,狗价为 元.元. 16.甲、乙两人去商店买东西,他们所带的钱数之比为7:6,甲用掉50元,乙用掉60元,两人余下的钱数之比是3:2,则甲余下的钱数为,则甲余下的钱数为 元,乙余下的钱数为元,乙余下的钱数为元. 三、解答题(共56分)分) 17.17.(每题(每题5分,共10分)解下列方程组:分)解下列方程组:(1)îíì=+=+64302y x y x ;(2)îíì=+=-3241123b a b a .18.18.((8分)在b y ax =+2中,已知x 当1-=x 时,2=y ;当2=x 时,21=y .求代数式))((22b ab a b a +-+的值的值. .19(9分)如图,在东北大秧歌的踩高跷表演中,已知演员身高是高跷长度的2倍,高跷与腿重合部分的长度为28cm ,演员踩在高跷上时,头顶距离地面的高度为224cm .设演员的高度为x cm ,高跷的长度为y cm ,求x ,y 的值.的值.xcmcm28ycmcm224第19题图题图20.(9分)已知方程组îíì-=--=+4652by ax y x 与方程组îíì-=+=-81653ay bx y x 的解相同,求2015)2(b a +的值的值. .21.21.((10分)已知:用2辆A 型车和1辆B 型车装满货物一次可运货10吨;用1辆A 型车和2辆B 型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A 型车a人教版数学七年级下册第八章 二元一次方程组 能力提升检测卷一.选择题(共10小题)小题)1.下列方程是二元一次方程的是(.下列方程是二元一次方程的是( ) A .2x-4=xB .x-2y=6C .x+ 2y =3D .xy=5 2.以方程组.以方程组 îíìx +y =102x +y =6的解为坐标的点(x,y)在(在() A .第一象限.第一象限 B .第二象限.第二象限 C .第三象限.第三象限 D .第四象限.第四象限3.在方程组.在方程组== 中,代入消元可得(中,代入消元可得( ) A .3y-1-y=7B .y-1-y=7C .3y-3=7D .3y-3-y=7 4.若2x |k|+(k-1)y=3是关于x ,y 的二元一次方程,则k 的值为(的值为( ) A .-1B .1C .1或-1D .0 5.若关于x ,y 的二元一次方程组的二元一次方程组= = 的解为的解为= = ,则a+4b 的值为(的值为( ) A .17B .197C .1D .3 6.如果方程x-y=3与下面的方程组成的方程组的解为与下面的方程组成的方程组的解为== ,那么这一个方程可以是( )A .2(x-y)=6yB .3x-4y=16C .14x+2y =5D .12x+3y =87.某加工厂有工人50名,生产某种一个螺栓套两个螺母的配套产品,生产某种一个螺栓套两个螺母的配套产品,每人每天平均生产螺每人每天平均生产螺栓14个或螺母20个,应分配多少人生产螺栓,应分配多少人生产螺栓,多少人生产螺母,多少人生产螺母,能使生产出的螺栓和螺母刚好配套?设应安排x 人生产螺栓,y 人生产螺母,则所列方程组为(人生产螺母,则所列方程组为( )A .= =B .= =C .= = D .==8.关于x ,y 的方程组的方程组= = 的解是的解是== ,其中y 的值被盖住了,不过仍能求出p ,则p 的值是(的值是( ) A .- 12B .12C .- 14D .14 9.A 、B 两地相距900km,一列快车以200km/h 的速度从A 地匀速驶往B 地,到达B 地后立刻原路返回A 地,一列慢车以75km/h 的速度从B 地匀速驶往A 地.两车同时出发,截止到它们都到达终点时,两车恰好相距200km 的次数是(的次数是( ) A .5B .4C .3D .2 10.如图所示是最近微信朋友圈常被用来“醒醒盹,动动脑”的图片,请你一定认真观察,动动脑子想一想,图中的?表示什么数(动动脑子想一想,图中的?表示什么数( ) A .25B .15C .12D .14二.填空题(共5小题)小题)11.把方程5x+y=3改写为用含x 的式子表示y 的形式是的形式是. 12.已知已知= 是方程ax+by=3的一组解(a ≠0,b ≠0),任写出一组符合题意的a 、b 值,则a= ,b= .13.已知方程组.已知方程组= = 和== 的解相同,则2m-n= . 14.小明,小丽,小刚到同一个文具店买文具,小明买了2支钢笔,2本作业本,3个文件袋共花了20元;小丽买了1支钢笔,2个文件袋共花了10元;那么小刚买了5支钢笔,4本作业本,8个文件袋共花了个文件袋共花了 元.元.15.甲乙二人分别从相距20km 的A ,B 两地出发,相向而行.如图是小华绘制的甲乙二人运动两次的情形,设甲的速度是xkm/h,乙的速度是ykm/h,根据题意所列的方程组是 .三.解答题(共10小题)小题) 16.解下列方程(组).解下列方程(组) (1) = =(2)==(3) == =17.已知.已知== , = = 都是关于x ,y 的二元一次方程y=x+b 的解,且m-n=b 2+2b-4,求b 的值.的值.18.甲、乙两人同求方程ax-by=7的整数解,甲求出一组解为的整数解,甲求出一组解为== ,而乙把ax-by=7中的7错看成1,求得一组解为,求得一组解为== ,试求a 、b 的值.的值.19.阅读下列解方程组的部分过程,回答下列问题.阅读下列解方程组的部分过程,回答下列问题解方程组解方程组 =,① = ,②现有两位同学的解法如下:现有两位同学的解法如下: 解法一;由①,得x=2y+5,③ 把③代入②,得3(2y+5)-2y=3.…….…… 解法二:①-②,得-2x=2.…….……(1)解法一使用的具体方法是,解法二使用的具体方法是,以上两种方法的共同点是.以上两种方法的共同点是. (2)请你任选一种解法,把完整的解题过程写出来)请你任选一种解法,把完整的解题过程写出来20.某人沿着相同的路径上山、下山共用了2h .如果上山速度为3km/h,下山速度为5km/h,那么这条山路长是多少?那么这条山路长是多少?21.我校准备从体育用品商店一次性购买若干个足球和篮球我校准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,(每个足球的价格相同,(每个足球的价格相同,每个篮每个篮球的价格相同),若购买3个足球和2个篮球共需310元.购买1个足球和1个篮球共需130元.求购买足球、篮球的单价各是多少元?元.求购买足球、篮球的单价各是多少元?22.【方法体验】已知方程组【方法体验】已知方程组= ①= ②求4037x+y 的值.小明同学发现解此方程组代入求值很麻烦!后来他将两个方程直接相加便迅速解决了问题.请你体验一下这种快捷思路,写出具体解题过程:这种快捷思路,写出具体解题过程: 【方法迁移】根据上面的体验,填空:【方法迁移】根据上面的体验,填空: 已知方程组已知方程组==则3x+y-z=. 【探究升级】已知方程组【探究升级】已知方程组 = =求-2x+y+4z 的值.小明凑出的值.小明凑出 "-2x+y+4z=2﹒(x+2y+3z)+(-1)﹒(4x+3y+2z)=20-15=5“,虽然问题获得解决,但他觉得凑数字很辛苦!他问数学老师丁老师有没有不用凑数字的方法,丁老师提示道:假设-2x+y+4z=m ﹒(x+2y+3z)+n ﹒(4x+3y+2z),对照方程两边各项的系数可列出方程组对照方程两边各项的系数可列出方程组===,它的解就是你凑的数!根据丁老师的提示,填空:根据丁老师的提示,填空: 2x+5y+8z=(x+2y+3z)+(4x+3y+2z)【巩固运用】已知2a-b+kc=4,且a+3b+2c=-2,当k 为时,8a+3b-2c 为定值,此定值是.(直接写出结果)接写出结果)23.《孙子算经》是中国古代重要的数学著作,其中记载:.《孙子算经》是中国古代重要的数学著作,其中记载:“今有甲、乙二人,持钱各不知“今有甲、乙二人,持钱各不知数.甲得乙中半,可满四十八.乙得甲太半,亦满四十八,问甲、乙二人原持钱各几何?”译文:“甲,乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文,如果乙得到甲所有钱的23,那么乙也共有钱48文,问甲,乙二人原来各有多少钱?”文,问甲,乙二人原来各有多少钱?”24.【阅读材料】.【阅读材料】南京市地铁公司规定:自2019年3月31日起,普通成人持储值卡乘坐地铁出行,普通成人持储值卡乘坐地铁出行,每个自然每个自然月内,达到规定消费累计金额后的乘次,享受相应的折扣优惠(见图).地铁出行消费累计金额月底清零,次月重新累计.金额月底清零,次月重新累计.比如:李老师二月份无储值卡消费260元,若采用新规持储值卡消费,则需付费150×0.95+50×0.9+60×0.8=235.5元.元.【解决问题】【解决问题】甲、乙两个成人二月份无储值卡乘坐地铁消费金额合计300元(甲消费金额超过150元,但不超过200元).若两人采用新规持储值卡消费,则共需付费283.5元.求甲、乙二月份乘坐地铁的消费金额各是多少元?坐地铁的消费金额各是多少元?答案:答案:1.B2.B3.D4.A5.D6.A7.B 8.A9.B10.B11. y=-5x+312.1,113.514.50 15. 16.解:(1)= ① = ② ,①+②×5,得:13x=26,x=2, 将x=2代入②,得:4-y=3,y=1, 所以方程组的解为所以方程组的解为 == ;(2)将方程组整理成一般式为)将方程组整理成一般式为= ① = ② , ①+②,得:6x=14,x=73,将x=73代入①,得:7-2y=8,y=- 12, 所以方程组的解为(3)= ① = ②= ③, ①+②,得:3x+4y=24 ④,④, ③+②,得:6x-3y=。
七年级数学下册《第八章 二元一次方程组》单元测试卷附答案解析-人教版
七年级数学下册《第八章 二元一次方程组》单元测试卷附答案解析-人教版一、单选题1.已知x 2y 1=⎧⎨=-⎩是二元一次方程2x 3ky 1-=的一组解,则k 的值为( )A .1B .-1C .53D .53-2.方程组: 5210x y x y +=⎧⎨+=⎩①② ,由②-①得到的方程是( )A .3x =10B .x =-5C .3 x =-5D .x =53.七年级学生在会议室开会,每排座位坐12人,则有11人没有座位;每排座位坐14人,则余1人独坐一排,则这间会议室的座位排数是( ) A .14B .13C .12D .154.将方程3x+y=9写成用含y 的式子表示x 的形式,正确的是( )A .y=3x-9B .y=9-3xC .x=3y-3 D .x=3-3y 5.已知{x =2ky =−3k 是二元一次方程x-y=10的解,则k 的值是( )A .-10B .-2C .2D .106.若4326x y x y +=⎧⎨-=⎩,则x y +的值为( )A .3B .4C .5D .67.已知方程组272a b a b +=⎧⎨-=⎩①②下列消元过程错误的是( )A .代人法消去a ,由②得2a b =+代入①B .代入法消去b ,由①得72b a =-代入②C .加减法消去b ,①-②D .加减法消去a ,①-②×28.三元一次方程组32522x y x y z z -=⎧⎪++=⎨⎪=⎩,,的解是( )A .112x y z =⎧⎪=⎨⎪=⎩B .112x y z =⎧⎪=-⎨⎪=⎩C .112x y z =-⎧⎪=⎨⎪=⎩D .112x y z =-⎧⎪=-⎨⎪=⎩9.把一根长17m 的钢管截成2m 和3m 长两种不同规格的钢管,且不造成浪费,你有几种不同的截法( ) A .1种B .2 种C .3种D .4种10.在学习完“垃圾分类”的相关知识后,小明和小丽一起收集了一些废电池,小明说:“我比你多收集了7节废电池啊!”小丽说:“如果你给我8节废电池,我的废电池数量就是你的2倍”.如果他们说的都是真的,设小明收集了x 节废电池,小丽收集了y 节废电池,则可列方程组为( ).A .()7828x y x y -=⎧⎨-=+⎩B .()7828y x x y -=⎧⎨+=-⎩C .()728x y x y -=⎧⎨-=⎩D .()7288x y x y -=⎧⎨-=+⎩二、填空题11.已知方程2x ﹣y =8,用含x 的代数式表示y ,则y = . 12.若二元一次方程组ax by 3bx ay 2+=⎧⎨+=⎩的解为x 3y 2=⎧⎨=⎩,则a b +的值 .13.已知关于x ,y 的二元一次方程()()a 1x a 2y 52a 0-+++-=,当a 每取一个值时就有一方程,而这些方程有一个公共解,则这个公共解是 .14.某中学为积极开展校园足球运动,计划购买A 和B 两种品牌的足球,已知一个A 品牌足球价格为120元,一个B 品牌足球价格为150元.学校准备用3000元购买这两种足球(两种足球都买),并且3000元全部用完,请写出一种购买方案:买 个A 品牌足球,买 个B 品牌足球.三、计算题15.解方程 212311x y x y -=-⎧⎨+=⎩16.解方程组: 3472395978x z x y z x y z +=⎧⎪++=⎨⎪-+=⎩①②③四、解答题17.已知关于x ,y 的二元一次方程组2632x y x y k -=⎧⎨-=⎩的解满足x ﹣y =2,求k 的值.18.下面是王斌同学解方程组1022x y x y +=⎧⎨-=-⎩的过程,请认真阅读并完成相应任务.解:1022x y x y +=⎧⎨-=-⎩①②由①得10y x =-③,……第一步把③代入②,得2(10)2x x --=-,……第二步 整理得2022x x --=-,……第三步 解得18x -=,即18x =-.……第四步 把18x =-代入③,得28y =则方程组的解为1828x y =-⎧⎨=⎩.……第五步(1)任务一:填空:①以上求解过程中,王斌用了 消元法;(填“代入”或“加减”)②第 步开始出现错误,这一步错误的原因是 ;(2)任务二:直接写出该方程组求解后的正确结果.19.为了鼓励市民节约用电,某市对居民用电实行阶梯收费(总电费=第一阶梯电费+第二阶梯电费),规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.以下是张磊家2014年3月和4月所交电费的收据,问该市规定的第一阶梯电价和第二阶梯电价分别为每度多少元? 代收电费收据 电表号 1205 电表号 1205 户名 张磊 户名 张磊 月份 3月 月份 4月 用电量 220度 用电量 265度 金额112元金额139元20.已知31x y =⎧⎨=⎩是方程2x-ay=9的一个解,解决下列问题:(1)求a 的值;(2)化简并求值:()()()()211213a a a a a -+--+-21.阅读下列方程组的解法,然后解答相关问题:解方程组272625252423x y x y +=⎧⎨+=⎩①②时若直接利用消元法解,那么运算比较繁杂,采用下列解法则轻而易举解:①-②,得222x y +=,即1x y +=.③ ②-③×24,得1x =-.把1x =-代入③,解得2y =.故原方程组的解是12x y =-⎧⎨=⎩.(1)请利用上述方法解方程组192123111315x y x y +=⎧⎨+=⎩.(2)猜想并写出关于x ,y 的方程组()2()2ax a m y a mbx b m y b m +-=-⎧⎨+-=-⎩的解,并加以检验.22.一批机器零件共558个,甲先做3天后,乙再加入,两人共同再做6天刚好完成.设甲每天做x个,乙每天做y 个.(1)列出关于x ,y 的二元一次方程.(2)用含x 的代数式表示y ,并求当32x =时y 的值是多少? (3)若乙每天做48个,则甲每天做多少个?参考答案与解析1.【答案】B【解析】【解答】解:∵x 2y 1=⎧⎨=-⎩是二元一次方程2x-3ky=1的一组解∴4+3k=1 解得k=-1. 故答案为:B.【分析】根据二元一次方程根的概念,将x=2、y=-1代入原方程,可得关于字母k 的一元一次方程,解该方程可求出k 的值.2.【答案】D【解析】【解答】解:由②-①得:x=5.故答案为:D.【分析】由方程②-方程①,即左边减左边,右边减右边,可得x=5,即可得出正确答案.3.【答案】C【解析】【解答】解:设这间会议室的座位排数是x 排,人数是y 人.根据题意,得()12111411x y x y+=⎧⎨-+=⎩解得12155x y =⎧⎨=⎩. 故答案为:C .【分析】本题中有两个等量关系:1、每排坐12人,则有11人没有座位;2、每排坐14 人,则余1人独坐一排. 这样设每排的座位数为x ,总人数为y ,列出二元一次方程组即可.4.【答案】D【解析】【解答】解:3x+y=93x=9-y 解之:33yx =-. 故答案为:D【分析】先移项,将含y 的项移到方程的右边,再在方程的两边同时除以3,可求出x.5.【答案】C【解析】【解答】解:∵{x=2ky=−3k是二元一次方程x-y=10的解∴2k+3k=10解之:k=2.故答案为:C【分析】将x,y的值代入方程,可得到关于k的方程,解方程求出k的值. 6.【答案】A【解析】【解答】解:43 26 x yx y+=⎧⎨-=⎩①②①+②得3x+3y=9两边同时除以3得x+y=3.故答案为:A.【分析】直接将方程组中的两个方程相加后再在两边同时除以3即可得出答案. 7.【答案】C【解析】【解答】解:方程组272a ba b+=⎧⎨-=⎩①②A、代入法消去a,由②得a=b+2代入①可消去a,不符合题意;B、代入法消去b.由①得b=7−2a代入②可消去b,不符合题意;C、加减法消去b,①+②,符合题意;D、加减法消去a,①−②×2,不符合题意.故答案为:C.【分析】利用加减消元法和代入消元的方法求解二元一次方程组即可。
七年级数学下册第八章《二元一次方程组》综合测试卷-人教版(含答案)
七年级数学下册第八章《二元一次方程组》综合测试卷-人教版(含答案)一、选择题(本大题共10小题,共30分)1. 二元一次方程x −2y =1有无数多个解,下列四组值中不是该方程的解的是( )A. {x =0y =−12B. {x =1y =1C. {x =1y =0D. {x =−1y =−12. 若(k -2)x |k|−1-3y =2是关于x ,y 的二元一次方程,则k 2-3k -2的值为( )A. 8B. 8或−4C. −8D. −43. 方程组{2x +y =4,x −y =−1的解是( )A. {x =1y =2B. {x =−3y =−2C. {x =2y =0D. {x =3y =−14. 《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为( )A. 160钱B. 155钱C. 150钱D. 145钱5. 我市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工2天后,乙工程队加入,两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲、乙工程队每天各施工多少米?设甲工程队每天施工x 米,乙工程队每天施工y 米.根据题意,所列方程组正确的是( )A. {x =y −22x +3y =400 B. {x =y −22x +3(x +y)=400−50 C. {x =y +22x +3y =400−50D. {x =y +22x +3(x +y)=400−506. 用代入法解方程组时,比较容易的变形是( )A. 由 ①,得x =y+12B. 由 ①,得y =2x −1C. 由 ②,得y =3x+56D. 由 ②,得x =6y−537. 为做好防疫消毒工作,某单位制作日常消毒液.将浓度分别为90%和60%的甲、乙两种酒精溶液,配制成浓度是75%的消毒酒精溶液500g ,设甲种酒精溶液为xg ,乙种酒精溶液为yg ,则()A. {x =300y =200B. {x =250y =200C. {x =250y =250D. {x =200y =3008. 在3×3方格上做填字游戏,要求每行每列及对角线上三个方格中的数字和都相等,若填在图中的数字如图,则x ,y 的值是( )A. x =1,y =−1B. x =−1,y =1C. x =2,y =−1D. x =−2,y =19. 两位同学在解方程组时,甲同学由{ax +by =2,cx −y =−4正确地解出{x =3,y =−2;乙同学因把c 写错了解得{x =−2,y =2,则a +b +c 的值为( )A. 3B. 0C. 1D. 710. 若点P (x ,y )的坐标满足方程组{x +y =k,x −y =6−3k,则点P 不可能在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题(本大题共4小题,共12分)11. 已知方程组{3x +2y =m −22x +3y =m的解适合x +y =2,则m 的值为______.12. 当m ,n 满足关系 时,关于x ,y 的方程组{x −5y =2m,2x +3y =m −n 的解互为相反数.13. 已知乙组人数是甲组人数的一半,若将乙组人数的13调入甲组,则甲组比乙组多15人,甲、乙两组的人数分别为__________.14. 已知2x -y -z =0,3x +4y -2z =0,则x−y+zx+y+z =________________.三、计算题(本大题共2小题,共12分) 15. 解方程组:(1{3x −2y +20=0,2x +15y −3=0;(2){1.5(20x +10y)=15000,1.2(110x +120y)=97200.16. 若方程组{ax +by =32ax +by =4与方程组{2x +y =3x −y =0有相同的解,求a 、b 的值.四、解答题(本大题共5小题,共46分)17. 某两位数,两个数位上的数之和为11.这个两位数加上45,得到的两位数恰好等于原两位数的两个数字交换位置所表示的数,求原两位数. (1)列一元一次方程求解.(2)如果设原两位数的十位数字为x ,个位数字为y ,列二元一次方程组. (3)检验(1)中求得的结果是否满足(2)中的方程组.18. 一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时.(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少干米?19.某新长途客运站准备在国庆前建成营运.后期工程若请甲乙两个工程队同时施工,8天可以完工,需付两工程队施工费用7040元;若先请甲工程队单独施工6天,再请乙工程队单独施工12天也可以完工,需付两工程队施工费用6960元.问甲、乙两工程队施工一天,应各付施工费用多少元?20.已知用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案(即A、B两种型号的车各租几辆,有几种租车方案).21. 先阅读材料,然后解方程组.材料:解方程组{x −y −1=0,①4(x −y)−y =5.②由①,得x -y =1.③把③代入②,得4×1-y =5,解得y =-1. 把y =-1代入③,得x =0. ∴原方程组的解为{x =0,y =−1. 这种方法称为“整体代入法”.你若留心观察,有很多方程组可采用此方法解答,请用整体代入法解方程组:{2x −3y −2=0,①2x−3y+57+2y =9.②参考答案1.【答案】B【解析】 【分析】本题考查二元一次方程的解的定义,要求理解什么是二元一次方程的解,并会把x ,y 的值代入原方程验证二元一次方程的解.将x 、y 的值分别代入x -2y 中,看结果是否等于1,判断x 、y 的值是否为方程x -2y =1的解. 【解答】解:A 、当x =0,y =-12时,x -2y =0-2×(-12)=1,是方程的解; B 、当x =1,y =1时,x -2y =1-2×1=-1,不是方程的解; C 、当x =1,y =0时,x -2y =1-2×0=1,是方程的解; D 、当x =-1,y =-1时,x -2y =-1-2×(-1)=1,是方程的解. 故选B .2.【答案】A【解析】 【分析】本题主要考查了二元一次方程的概念,代数式求值,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程; 根据二元一次方程满足的条件列式求出k 的值,即可得解. 【解答】解:根据题意得:{k −2≠0|k |−1=1,解得:k =-2,∴k 2-3k -2=(-2)2-3×(-2)-2=4+6-2=8. 故选:A .3.【答案】A【解析】 【分析】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.方程组利用加减消元法求出解即可. 【解答】 解:,①+②得:3x =3, 解得:x =1,把x =1代入①得:y =2, 则方程组的解为{x =1y =2.故选:A .4.【答案】C【解析】解:设共有x 人合伙买羊,羊价为y 钱, 依题意,得:{5x +45=y7x +3=y ,解得:{x =21y =150.故选:C .设共有x 人合伙买羊,羊价为y 钱,根据“若每人出5钱,还差45钱;若每人出7钱,还差3钱”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.5.【答案】D【解析】解:由题意可得, {x =y +22x +3(x +y)=400−50, 故选:D .根据甲工程队独立施工2天后,乙工程队加入,两工程队联合施工3天后,还剩50米的工程和甲工程队每天比乙工程队多施工2米,可以列出相应的二元一次方程组,本题得以解决. 本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.6.【答案】B【解析】观察方程组的特点可知,B 中的变形比较容易,7.【答案】C【解析】根据题意,得{x +y =500,90%x +60%y =500×75%,解得{x =250,y =250,故选C .8.【答案】B【解析】 【分析】本题考查了二元一次方程组的应用,解答本题的关键是仔细审题,根据题意列出方程组,难度一般. 根据每行每列及对角线上三个方格中的数字和都相等,可得出方程组,解出即可. 【解答】解:由题意,得{2x +3+2=2−3+4y,2−3+4y =2x +y +4y, 解得{x =−1,y =1. 故选B .9.【答案】D【解析】把{x =3,y =−2代入方程组得把{x =−2,y =2代入ax +by =2得-2a +2b =2,即-a +b =1,联立得{3a −2b =2,−a +b =1,解得{a =4,b =5,由得c =-2,则a +b +c =4+5-2=7.故选D .10.【答案】C【解析】略11.【答案】6【解析】解:两个方程相加,得 5x +5y =2m -2, 即5(x +y )=2m -2, 即x +y =2m−25=2.解得m =6.方程组中的两个方程相加,即可用m 表示出x +y ,即可解得m 的值.注意到两个方程的系数之间的关系,而采用方程相加的方法解决本题是解题的关键.12.【答案】m =34n【解析】由题可知x =-y ,代入方程组,得{−6y =2m,y =m −n,则-6m +6n =2m ,所以m =34n .13.【答案】甲组18人,乙组9人【解析】 【分析】此题主要考查了二元一次方程组的应用,找准等量关系是解决应用题的关键,特别注意第二个等量关系的理解.等量关系有:①乙组人数是甲组人数的一半;②乙组人数的三分之一调入甲组,即甲组现有(x +13y)人,乙组现有人数23y 人,此时甲组比乙组多15人,据此列方程组求解即可. 【解答】解:设甲组有x 人,乙组有y 人,根据乙组人数是甲组人数的一半,则y =12x ; 根据乙组人数的三分之一调入甲组时甲组比乙组多15人,得方程x +13y =23y +15, 可列方程组为:{y =12x x +13y =23y +15, 解得:{ x =18 y =9.所以甲组人数为18人,乙组人数为9人, 故答案是甲组18人,乙组9人.14.【答案】89【解析】【分析】此题考查的是解三元一次方程组,需将三元一次方程组中的一个未知数当做已知数来处理,转化为二元一次方程组来解.将x 、y 写成用z 表示的代数式然后代入即可得到答案. 【解答】 解:{2x −y −z =0①3x +4y −2z =0②①×4+②得, 11x −4z −2z =0, 解得x =6z11,将x =6z 11代入①得,12z11−y −z =0, 解得y =z11, ∴原式=6z 11−z 11+z 6z 11+z 11+z =1618=89.故答案为89.15.【答案】(1)方程组整理得×15+×2得49x =-294,解得x =-6,把x =-6代入得-12+15y =3,解得y =1, ∴方程组的解为{x =−6,y =1.(2)方程组整理得 ×12-得13x =3900,解得x =300,把x =300代入得600+y =1000,解得y =400, ∴方程组的解为{x =300,y =400.【解析】略16.【答案】解:,解得该方程组的解为{x =1y =1,由题意该方程组的解也是方程组{ax +by =32ax +by =4的解,代入ax +by =3可得a +b =3③,代入2ax +by =4可得2a +b =4④,④-③可得a =1,代入③可得b =2,∴a =1,b =2.【解析】先求出第二个方程组的解,再代入第一个方程组即可求出a 、b 的值.本题主要考查二元一次方程组的解,解答此题的关键是要弄清题意,正确求出第二个方程组的解.17.【答案】解:(1)设原两位数的个位数字为m ,则十位数字为(11-m ),依题意,得:10×(11-m )+m +45=10m +(11-m ),解得:m =8,∴11-m =3.答:原两位数为38.(2)设原两位数的十位数字为x ,个位数字为y ,依题意,得:{x +y =1110x +y +45=10y +x. (3)结合(1),可知:x =3,y =8,∴x +y =11,10x +y +45=83=10y +x ,∴(1)中求得的结果满足(2)中的方程组.【解析】(1)设原两位数的个位数字为m ,则十位数字为(11-m ),根据原两位数+45等于原两位数的两个数字交换位置所表示的数,即可得出关于m 的一元一次方程,解之即可得出结论;(2)设原两位数的十位数字为x ,个位数字为y ,根据原两位数两个数位上的数之和为11及原两位数+45等于原两位数的两个数字交换位置所表示的数,即可得出关于x ,y 的二元一次方程组,此问得解;(3)由(1)的结论可得出x ,y 的值,再将其代入(2)的方程组中验证后即可得出结论. 本题考查了一元一次方程的应用以及由实际问题抽象出二元一次方程组,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)找准等量关系,正确列出二元一次方程组;(3)将(1)的结论代入方程组中验证方程组是否正确.18.【答案】解:(1)设该轮船在静水中的速度是x 千米/小时,水流速度是y 千米/小时,依题意,得:{6(x +y)=90(6+4)(x −y)=90,解得:{x =12y =3. 答:该轮船在静水中的速度是12千米/小时,水流速度是3千米/小时;(2)设甲、丙两地相距a 千米,则乙、丙两地相距(90-a )千米,依题意,得:a 12+3=90−a 12−3,解得:a =2254.答:甲、丙两地相距2254千米.【解析】本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次方程. (1)设该轮船在静水中的速度是x 千米/小时,水流速度是y 千米/小时,根据路程=速度×时间,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设甲、丙两地相距a 千米,则乙、丙两地相距(90-a )千米,根据时间=路程÷速度,即可得出关于a 的一元一次方程,解之即可得出结论.19.【答案】解:设甲工程队每天需费用x 元,乙工程队每天需费用y 元,由题意得,{8x +8y =70406x +12y =6960, 解得:{x =600y =280. 答:甲工程队每天需费用600元,乙工程队每天需费用280元.【解析】设甲工程队每天需费用x 元,乙工程队每天需费用y 元,根据题意可得:甲乙合作8天完工,需付两工程队施工费用7040元;甲队单独施工6天,再请乙工程队单独施工12天完工,需付两工程队施工费用6960元,列方程组求解.本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.20.【答案】解:(1)设1辆A 型车和1辆B 型车都装满货物一次可分别运货x 吨,y 吨,根据题意得:{2x +y =10x +2y =11, 解得:{x =3y =4. 答:1辆A 型车和1辆B 型车都装满货物一次可分别运货3吨,4吨.(2)由题意可得:3a +4b =31,∴b =31−3a 4.∵a ,b 均为正整数,∴有{a =1b =7、{a =5b =4和{a =9b =1三种情况. 故共有三种租车方案,分别为:①A 型车1辆,B 型车7辆;②A 型车5辆,B 型车4辆;③A 型车9辆,B 型车1辆.【解析】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)根据等量关系,列出关于x 、y 的二元一次方程组;(2)由(1)的结论结合共运货31吨,找出3a +4b =31.(1)设1辆A 型车和1辆B 型车都装满货物一次可分别运货x 吨,y 吨,根据“用2辆A 型车和1辆B 型车装满货物一次可运货10吨;用1辆A 型车和2辆B 型车装满货物一次可运货11吨”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)由(1)的结论结合某物流公司现有31吨货物,即可得出3a +4b =31,即b =31−3a 4,由a 、b 均为正整数即可得出各租车方案.21.【答案】解:由①,得2x -3y =2.③把③代入②,得2+57+2y =9,解得y =4.把y =4代入③,得2x -3×4=2, 解得x =7.∴原方程组的解为{x =7,y =4.【解析】略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下第八章二元一次方程组测试题
一、选择题(每小题5分,共20分)
1.下列不是二元一次方程组的是( ) A. ⎪⎩⎪⎨⎧=-=+1
41y x y x B. ⎩⎨⎧=+=+42634y x y x C. ⎩⎨⎧=-=+14y x y x D. ⎩⎨⎧=+=+25102553y x y x 2.由12
3=-y x ,可以得到用x 表示y 的式子( ) A. 322-=x y B. 3
132-=x y C. 232-=x y D. 322x y -= 3.方程组⎩⎨⎧=-=+13
4723y x y x 的解是( ) A. ⎩⎨⎧=-=31y x B. ⎩⎨⎧-==13y x C. ⎩⎨⎧-=-=13y x D. ⎩
⎨⎧-=-=31y x 二、填空题(每小题6分,共24分):
4.方程组⎩⎨⎧=+=-5
21y x y x 的解是( )
A. ⎩⎨⎧=-=21y x
B. ⎩⎨⎧-==12y x
C. ⎩⎨⎧==21y x
D. ⎩
⎨⎧==12y x 5.在3x +4y =9中,如果2y =6,那么x = .
6.已知⎩⎨⎧-==8
1y x 是方程3m x -y =-1的解,则m = .
7.若方程m x +n y =6的两个解是⎩⎨⎧==,1,1y x ⎩⎨⎧-==1
2y x ,则m = ,n = . 8.如果512-+=+-y x y x =0,那么x = ,y = .
三、解下列方程组(每小题8分,共16分): 9. ⎪⎪⎩⎪⎪⎨⎧=-=+34
31332n m n m
10. ⎪⎩⎪⎨⎧=-++=--+162
4)(4)(3y x y x y x y x
四、综合运用(每小题10分,共40分):
11.用16元买了60分、80分两种邮票共22枚. 60分与80分的邮票各买了多少枚?
12.已知梯形的面积是422cm ,高是6㎝,它的下底比上底的2倍少1㎝.求梯形的上下底.
13.《一千零一夜》中有这样一段文字:有一群鸽子,其中有一部分在树上欢歌,另一部分在地上觅食,树上的一只鸽子对地上觅食的鸽子说:“若从你们中飞上来一只,则树下的鸽子就是整个鸽群的3
1;若从树上飞下去一只,则树上、树下的鸽子就一样多了.”你知道树上、树下各有多少只鸽子吗?
14.如图,8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?
60cm
测试题答案:
1.A ;
2.C ;3,B ;4.D ;5.-1,6.-3;7.4,2;8.3,2;9. ⎩⎨⎧==1218n m ;10. ⎪⎪⎩
⎪⎪⎨⎧==15111517y x 11.60分买了8枚,80分买了14枚.
12.上底5㎝,下底是9㎝.
13.树上有7只,树下有5只.
14.长是45㎝,宽是15㎝.。