1.3探索三角形全等的条件(7)
1.3探索三角形全等的条件(7)尺规作图(可编辑修改word版)
AD O1.3 探索三角形全等的条件(7) ---- 尺规作图教学目标:1. 会作一个角的角平分线,能证明作法的正确性,并在经历“观察——操作——证明”的活动过程中养成善于分析、乐于探究和理性思考的良好习惯;2. 会过一点作已知直线的垂线,能证明作法的正确性,体会与“作一个角的角平分线”作法的联系,在比较中探究作法;教学重点:会“作已知角的角平分线”和“过一点作已知直线的垂线” . 教学难点:几何图形信息转化为尺规操作. 教学过程: 一、知识回顾:如图,AC 、BD 相交于点O ,且AB =DC ,AC =DB .求证:∠A =∠D .二、自主先学:(P25)B C 【情景引入】工人师傅常常利用角尺平分一个角。
如图,在∠AOB 的两边OA 、OB 上分别任取OC =OD ,移动角尺,使角尺两边相同的刻度分别与点C 、D 重合,这时过角尺顶点M 的射线OM 就是∠AOB 的平分线。
请同学们说明这样画角平分线的道理.【问题探究】(1) 说 请按序说出木工师傅的“操作”过程.(2) 作与写 用直尺和圆规在图(1)中按序将木工师傅的“操作”过程作出来,并写出作法.(3) 证 请证明你的作法是正确的. (4) 用 用直尺和圆规完成以下作图:①在图(2)中把∠MON 四等分.②在图(3)中作出平角∠AOB 的平分线.MO N图(2)A OB图(3)作法 图形1.2. 3. 射线OM 就是∠AOB 的角平分线。
图(1)lCMDB图(4)三、例题分析:(1) 观察思考.在图(1)作图的基础上,作过C 、D 的直线l (如图(4)),观察图中射线OM 与直线l 的位置关系,并说明理由.APO(2) 问题变式.AB图(5)你能用圆规和直尺过已知直线外一点作这条直线的垂线吗?(如图(5),经过直线AB 外一点P 作AB 的垂线PQ ).(3) 比较分析.引导学生比较新旧两个问题之间的联系,寻求解决新问题的策略. (4) 作图与证明. ①作法 ②证明.(5) 归纳总结:根据活动一中的4(2)与活动二可知:经过一点可用直尺和与圆规作一条直线与已知直线垂直.(6) 知识运用:用直尺和圆规作一个直角三角形, a 使它的两条直角边分别等于a 、b (如图(6)).b图(6)四、质疑拓展问题3.没有量角器,利用刻度尺也能画出一个角的平分线吗?下面是小兵的作法: 如图,①利用刻度尺在∠AOB 的两边上,分别取OD=OC.②连接CD ,利用刻度尺画出CD 的中点E.③画射线OE ;所以射线OE 为∠AOB 的角平分线. 他的作法对吗?请说明理由.小结反思.。
新苏科版数学导学案八年级第1章全等三角形
5
※巩固练习:
1、如图,点 E、F 在 AC 上,AD=CB,DF=BE,要使△ADF≌△CBE,
还需要添加的一个条件是……………………………………………………………( )
A.∠A=∠C B.∠D=∠B C.AD∥BC
D.DF∥BE
2、如图,AC 与 BD 相交于点 O.若 OA=OD,则要用“SAS”证明△AOB≌△DOC,
,
因此证明三角形全等是说明两条线段相等或两个角相等的常用方法.
2、已知:如图,C 是 AB 的中点,AE=BD,∠A=∠B. 求证:∠E=∠D. 证明:∵C 是 AB 的中点(已知),
∴
=
(
)
在△AEC 和△BDC 中,
AE=BD(
)
(
)
(
)
∴△AEC≌△BDC(
)
∴∠E=∠D(
)
3、已知:如图,AB∥CD,AB=CD. 求证:AD∥BC.
A.OA=OB B.∠A=∠B C.∠C=∠D D.AC=BD
作业订正栏
3、如图,某同学将一块三角形玻璃打碎成三块,现在要到玻璃店去配一块完全一样的
玻璃,你认为最省事的方法是带玻璃块……………………………………………( )
A.①
B.②
C.③
D.①和②
4、如图,AC 与 BD 相交于点 O,∠1=∠2,∠DAO=∠CBO.若△ABC 的周长为 25cm,
1、经历探索三角形全等条件的过程,能够进行有条理的思考并进行简单的推理; 2、会利用基本事实:“角边角”判别两个三角形是否全等.
※自主学习:阅读课本 P17、18 页
新知 按下列作法,用直尺和圆规作△ABC,使 AB= a ,∠A=∠ α ,∠B=∠ β ,.
八年级数学教案:探索三角形全等的条件 ( 全8课时 )
合吗?(2)重新利用这张长方形剪一个直角三角形,要使得全班同学剪下的都能够重合,你有什么办法?(3)剪下直角三角形,验证是否能够重合,并能得出什么结论?5.如图,△ABC 与△DEF 、△MNP 能完全重合吗?(1)直觉猜想哪两个三角形能完全重合? (2)再用工具测量,验证猜想是否正确.6.按下列作法,用直尺和圆规作△ABC ,使∠A =∠α,AB =a ,AC =b .作法:1.作∠MAN =∠α.2.在射线AM 、AN 上分别作线段AB =a ,AC =b . 3.连接BC .△ABC 就是所求作的三角形.图形:你作的三角形与其他同学作的三角形能完全重合吗? 三.交流展示通过上面几个活动你对三角形全等所需要的条件有什么看45︒31.5CB A60︒3DEF1.5P45︒31.5MN课时NO: 主备人:审核人用案时间:年月日星期教学课题 1.3 探索三角形全等的条件(3)教学目标1.掌握三角形全等的条件“ASA”;会利用“ASA”进行有条理的简单的推理;2.通过多种手段的活动过程,让学生动手操作,激发学生学习的兴趣,并能通过合作交流解决问题,体会数学在现实生活中的应用,增强学生的自信心.教学重点掌握三角形全等的条件“ASA”,并能利用它们判定三角形是否全等.教学难点探索三角形全等的条件“ASA”的过程及应用教学方法教具准备教学课件教学过程个案补充一.自主先学:(1)要证明两个三角形全等,需要几个条件?(2)上节课我们学习了哪些条件可以构成全等(3)请你们猜想,构成全等还有哪些条件组合?二.探究交流1.调皮的小明用纸板挡住了两个三角形的一部分,你能画出这两个三角形吗?每个人画出的三角形都一样吗?2.粗心的小明不小心将一块三角形模具打碎了,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具呢?如果可以,带哪块去合适?3.请你和小明一起画:用圆规和直尺画△ABC,使AB=a,∠A=∠α,∠B=∠β.(1)作AB=a.(2)在AB的同一侧分别作∠MAB=∠α,∠NBA=∠β,AM、BN相交于点C.(3)△ABC就是所求作的三角形.以上三个问题回答完毕了,你有什么发现?基本事实两角及其夹边分别相等的两个三角形全等(ASA)三.交流展示1.说一说图中有几对全等三角形?你能找出它们并说出理由吗?2.如图,O是AB的中点,∠A=∠B,△AOC与△BOD全等吗?为什么(以填空方式回答)?四.拓展提高:已知:如图,在△ABC中,D是BC的中点,点E、F分别在AB、AC上,且DE//AC,DF//AB.求证:BE=DF,DE=CF.五.小结与反思:这节课你学到了什么?哪些三个条件的组合是你还想去探索求证的?课外作业:布置作业板书设计教后札记课时NO: 主备人:审核人用案时间:年月日星期教学课题 1.3 探索三角形全等的条件(4)1.掌握三角形全等的条件“AAS”,会用“AAS”进行有条理的简单的推理;教学目标2.学会根据题目的条件选择适当的定理进行全等的证明.教学重点掌握三角形全等的条件“AAS”,并能利用它们判定三角形是否全等.教学难点在解题时选择适当定理应用.教学方法教具准备教学课件教学过程个案补充一. 自主先学:1.回忆上节课内容,用自己的语言表达出来!2.解决下面的问题,你有什么发现吗?已知:如图,∠A=∠D,∠ACB=∠DBC,求证:AB=DC.二.探究交流探索新知一已知:△ABC与△DEF中,∠A=∠D,∠B=∠E,BC=EF.求证:△ABC≌△DEF.基本推论:两角及其中一角的对边分别相等的两个三角形全等.简称“角角边”或“AAS”.在△ABC与△A'B'C'中,∠B=∠B'(已知),∠C=∠C'(已知),AB=A'B'(已知),∴△ABC≌△A'B'C'(AAS).三.交流展示1.如图∠ACB=∠DFE,BC=EF,根据“ASA”,应补充一个直接条件__________根据“AAS”,那么补充的条件为______,才能使△ABC≌△DEF.2.如图,BE=CD,∠1=∠2,则AB=AC吗?为什么?3.如图∠ACB=∠DFE,BC=EF,根据“ASA”,应补充一个直接条件__________根据“AAS”,那么补充的条件为______,才能使△ABC≌△DEF.2.如图,BE=CD,∠1=∠2,则AB=AC吗?为什么?3.已知:如图,△ABC≌△A'B'C',AD和A'D'分别是△ABC和△A'B'C'中BC和B'C'边上的高.求证:AD=A'D'.四.拓展提高:4.已知:如图,△ABC ≌△A 'B 'C ',AD 和A 'D '分别是△ABC 和△A 'B 'C '中∠A 和∠A’的角平分线.求证:AD =A 'D '.五.小结与反思:布置作业课外作业:板书设计教后札记课时NO: 主备人: 审核人 用案时间: 年 月 日 星期A 'B ' D 'C 'AB DC AB DC A 'B'D 'C '教学课题 1.3 探索三角形全等的条件(5)教学目标1.会用“角边角”“角角边”证明两个三角形全等,进而证明线段或角相等;2.渗透综合、分析等思想方法,从而提高学生演绎推理的条理性和逻辑性.教学重点用“角边角”“角角边”定理证明两个三角形全等,进而证明线段或角相等教学难点角边角”“角角边”定理的灵活应用教学方法教具准备教学课件教学过程个案补充一.自主先学:如图,已知AD平分∠BAC,要使△ABD≌△ACD,(1)根据“SAS”需添加条件________;(2)根据“ASA”需添加条件________;(3)根据“AAS”需添加条件________.二.探究交流1.如图,∠A=∠B,∠1=∠2,EA=EB,你能证明AC=BD吗?2.如图,点C、F在AD上,且AF=DC,∠B=∠E,∠A=∠D,你能证明AB=DE吗?三.交流展示例1: 已知:如图,点A、B、C、D在一条直线上,EA∥FB,EC∥FD,EA=FB.求证:AB=CD.例2;已知:如图,AB=AC,点D、E分别在AB、AC上,∠B =∠C.求证:DB=EC变式一已知:∠1=∠2,∠B=∠C,AB=AC.求证:AD=AE,∠D=∠E.变式二已知:∠1=∠2,∠B=∠C,AB=AC,D、A、E在一条直线上.求证:AD=AE,∠D=∠E.四.拓展提高:1.如图,AC⊥AB,BD⊥AB,CE⊥DE,CE=DE.求证:AC+BD=AB.2.如图,∠ABC=90°,AB=BC,D为AC上一点,分别过A、C作BD的垂线,垂足分别为E、F.求证:EF+AE=CF.五.小结与反思:课外作业:布置作业板书设计教后札记课时NO: 主备人:审核人用案时间:年月日星期教学课题 1.3 探索三角形全等的条件(6)教学目标1.掌握“边边边”定理.理解三角形的稳定性和它在生产、生活中的应用;教会学生如何利用尺规来完成“已知三边画三角形”,如何添加辅助线构造全等三角形;2.培养学生观察、操作、分析、综合、抽象、概括和发散思维的能力;感悟转化的数学思想方法.教学重点探究三角形全等的方法及运用“边边边”条件证明两个三角形全等.教学难点边边边”定理的应用和转化意识的形成及辅助线的添加.教学方法教具准备教学课件教学过程个案补充一.自主先学:小明家的衣橱上镶有两块全等的三角形玻璃装饰物,其中一块被打碎了,妈妈让小明到玻璃店配一块回来,小明该怎么办呢?二.探究交流实践探索一:已知三条线段a、b、c,以这三条线段为边画一个三角形,并把你画好的三角形剪下,和其他同学进行比较,看剪下的三角形是否能完全重合.通过以上的操作你发现了什么?实践探索二:教师出示三角形、四边形木架,让学生动手拉动木架的两边.教师提出问题:(1)演示实验说明了什么?教师总结:三角形的这个性质叫做三角形的稳定性.(2)你能举出生活中利用三角形稳定性的例子吗?三.交流展示1.下列图形中,哪两个三角形全等?2.如图,C 点是线段BF 的中点,AB =DF ,AC =DC .△ABC 和△DFC 全等吗?变式1若将上题中的△DFC 向左移动(如图),若AB =DF ,AC =DE ,BE =CF ,问:△ABC ≌△DFE 吗 ?变式2若继续将上题中的△DFC 向左移动(如图),若AB =DC ,AC =DB ,问:△ABC ≌ △DCB 吗 ?3.已知:如图, 在△ABC 中,AB =AC ,求证:∠B =∠C .四.拓展提高:1.已知:如图,AB =CD ,AD =CB ,求证:∠B =∠D .117667119942.如图,AC 、BD 相交于点O ,且AB =DC ,AC =DB .求证:∠A =∠D .五.小结与反思:布置作业课外作业:板书设计教后札记课时NO: 主备人: 审核人 用案时间: 年 月 日 星期CDOAB教学课题 1.3 探索三角形全等的条件(7)教学目标1.会作一个角的角平分线,能证明作法的正确性,并在经历“观察——操作——证明”的活动过程中养成善于分析、乐于探究和理性思考的良好习惯;2.会过一点作已知直线的垂线,能证明作法的正确性,体会与“作一个角的角平分线”作法的联系,在比较中探究作法;3.能在不同的作图题中感悟相同的知识背景,在同一问题中探求不同的作法,从而进一步把握知识本质,逐步形成抽象概括能力和发散思维.教学重点能在不同的作图题中感悟相同的知识背景,在同一问题中探求不同的作法,从而进一步把握知识本质,逐步形成抽象概括能力和发散思维.”.教学难点几何图形信息转化为尺规操作教学方法教具准备教学课件教学过程个案补充一. 自主先学:工人师傅常常利用角尺平分一个角.如图(1),在∠AOB的两边OA、OB上分别任取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C、D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线.请同学们说明这样画角平分线的道理.二.探究交流1.说请按序..说出木工师傅的“操作”过程.2.作与写用直尺和圆规在图(2)中按序..将木工师傅的“操作”过程作出来,并写出作法.3.证请证明你的作法是正确的.4.用用直尺和圆规完成以下作图:(1)在图(3)中把∠MON四等分.图(1)(2)在图(4)中作出平角∠AOB 的平分线.说明:过直线上一点作这条直线的垂线就是作以这点为顶点的平角的角平分线.1.观察思考.在图(2)作图的基础上,作过C 、D 的直线l (如图(5)),观察图中射线OM 与直线l 的位置关系,并说明理由.2.问题变式.你能用圆规和直尺过已知直线外一点作这条直线的垂线吗?(如图(6),经过直线AB 外一点P 作AB 的垂线PQ ). 3.比较分析.引导学生比较新旧两个问题之间的联系,寻求解决新问题的策略. 4.作图与证明.1 以点P 为圆心,适当的长为半径作弧,使它与AB 交于C 、D .2 分别以点C 、D 为圆心,大于12CD 的长为半径作弧,两弧交于点Q .3 作直线PQ .∴直线PQ 就是经过直线AB 外一点P 的AB 的垂线(如图(7)). (2)证明略.5.归纳总结.图(2)O BA 图(4)NOM图(3)(图7)QDC BAPMDCBOA图(5)l图(6)BAP课时NO: 主备人:审核人用案时间:年月日星期教学课题 1.3 探索三角形全等的条件(8)教学目标 1.利用尺规作图,掌握已知斜边、直角边画直角三角形的画图方法; 2.经历操作、实验、观察、归纳,证明斜边、直角边(HL )定理;3.用HL 及其他三角形全等的判定方法进行证明和计算,发展演绎推理的能力. 教学重点 斜边、直角边”定理的证明和应用. 教学难点 斜边、直角边”定理的证明和应用.教学方法教具准备教学课件教 学 过 程个案补充一.自主先学:1.判定两个三角形全等的方法: 、 、 、___ .2.如图,在Rt △ABC 中,直角边是 、 , 斜边是___ 3.如何将一个等腰三角形变成两个全等的直角三角形? 4.如图,在Rt △ABC 、Rt △DEF 中,∠B =∠E =90°, (1)若∠A =∠D ,AB =DE 则△ABC ≌△DE ( ) (2)若∠A =∠D ,BC =EF ,则△ABC ≌△DEF ( ) (3)若AB =DE ,BC =EF ,则△ABC ≌△DEF ( ).上面的每一小题,都只添加了两个条件,就使两个直角三角形全等,你还能添加哪两个不同的条件使这两个直角三角形全等?二.探究交流探索活动一. (1)交流、操作.用直尺和圆规作Rt △ABC ,使∠C =90°,CB =a ,AB =c .(2)思考、交流.①△ABC 就是所求作的三角形吗?BADE C F。
《探索三角形全等的条件》数学教案
2019年《探索三角形全等的条件》数学教案教师以探究任务引导学生自学自悟的方式,提供了学生自主合作探究的舞台,营造了思维驰骋的空间,在经历知识的发现过程中,培养了学生分类、探究、合作、归纳的能力。
为了更好的将教与学有机结合,提高课堂教学效率,数学网小编与大家分享2019年《探索三角形全等的条件》数学教案,希望大家在学习中得到提高。
一、教学内容分析本节课选自北师大版《七年级数学下册》第五章第四节探索三角形全等的条件第一课时,本节课探索第一种判定方法—边边边,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。
二、学生学习情况分析学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、图形的全等,对本节课要学习的三角形全等条件中的“边边边”和三角形的稳定性来说已经具备了一定的知识技能基础。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形全等的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
三、设计思想我们所在的学校处于市区,教学设备齐全,学生学习基础较好,在这之前他们已了解了图形全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。
另外,学生也基本具备了利用已知条件拼出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。
遵循启发式教学原则,采用引探式教学方法。
用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法。
八年级数学探索三角形全等的条件
AC=DC
A
B
ቤተ መጻሕፍቲ ባይዱ
∠ACB=∠DCE
C
E D
BC=EC △ACB≌△DCE(SAS) AB=DE
; / 澳门葡京官网 ;
是用于举办战申榜排位赛の临事城市,其实就是呐个排位赛场地.一旦在排位赛期间离开呐座城市,那就无法再进来了.哪怕你是晋级到决赛绝点の战申,只要离开,也一样不能再回来.大斗场内の修行者,陆续の离开.鞠言和纪沄国尪,也跟着人流出了大斗场.在押注大厅,鞠言用相应の 压保凭证在一片惊叹之中兑换到了九亿白耀翠玉.从押注大厅出来后,鞠言和纪沄国尪直接去了交易区域,径直来到了交易大厅.上次在交易大厅购买の红毛果和善琉膏,对鞠言の帮助极其巨大.能够说,若不是使用呐两种资源,让鞠言在对战之前提升了不少の战斗历,那鞠言是不可能击 败月灿尪国丁水云战申の,更不可能杀死对方.红毛果提升了鞠言の申魂体,让鞠言对微子世界控制更强,同事还让他能够在一定程度上领悟混元碎片空间の黑色区域也就是至高级の黑道则,正是由于对至高级黑道则有了些许の掌握,鞠言才能够施展出自身の乾坤千叠击.至于那善琉膏, 同样是对他帮助巨大.善琉膏,明显の增强了鞠言体内の微子世界历量,同事也让微子世界更为稳固和坚韧.鞠言明确了一点,在暗混元空间之中,还有不少资源是对他修行能提供巨大帮助の.暗混元空间与明混元空间の资源,特性是不同の.当然了,普通资源就没哪个用处了,也只有善琉 膏呐一级数の资源才有较为明显の效果.距离决赛阶段,鞠言还有足足半年の事间能够用来继续提升实历,呐半年事间,他自是要利用好.而珍贵の资源,也是必不可少の.现在鞠言身上有超过九亿の白耀翠玉,购买次一级の珍贵资源,那足够买到很多很多.对提升申魂体有效の红毛果,鞠 言打算再买个二百颗.先前那次买の二百颗红毛果,已是被鞠言全部使用了,而鞠言感觉用红毛果仍然能继续提升自身の申魂体.在交易大厅,鞠言和纪沄国尪,直接就购买了伍亿白耀翠玉の各种资源.其中有三亿白耀翠玉都是鞠言自身所用,而另外两亿白耀翠玉是纪沄国尪花の.不过, 纪沄国尪所购买の资源中,绝大部分并不是自身所用,而是准备用于充实国家の国库.两亿白耀翠玉の各种资源,足够让龙岩国の国库颇为充盈了.毕竟,龙岩国只是一个小国家,国家内善王级强者数量都没多少,对资源の消耗,相对の也就比较少.从交易大厅购买了大量资源后,鞠言和纪 沄国尪返回住处.当日稍晚一些事间,波塔尪国の申肜公爵过来,请鞠言和纪沄国尪赴宴.贺荣国尪,为鞠言战申和纪沄国尪准备了庆功宴.而鞠言拒绝了参加庆功宴,鞠言の意思是,庆功宴等到战申榜排位赛彻底结束后再说.申肜公爵劝说数次后都没能让鞠言改变主意,也就只能罢了.鞠 言战申不参加庆功宴,纪沄国尪也是跟着鞠言拒绝了.申肜公爵回到波塔尪国の居所,向贺荣国尪复命.“陛下,鞠言战申和纪沄国尪の意思是,等战申榜排位赛全部结束,再行庆功.”申肜公爵对贺荣国尪道.“哦?”贺荣国尪轻‘哦’了一声.他准备庆功宴,是为了感谢鞠言.鞠言三轮全 胜进入了战申榜排位赛の决赛,给波塔尪国带来了难以想象の好处.光是在几场对战中波塔尪国在押注大厅所赢取の白耀翠玉,都令贺荣呐位尪国の国尪心潮澎湃了.设宴庆功,另一方面也是为了进一步与鞠言战申和纪沄国尪拉近关系.“陛下,鞠言战申和纪沄国尪都很坚持.”申肜公 爵又说道.“嗯,俺知道了.俺们,尊叠鞠言战申和纪沄国尪の意思.”贺荣国尪点点头道.“对了申肜公爵,俺们波塔尪国,通过鞠言战申呐一盘口,得到了多少积分?押注大厅那边,具体の信息应该出来了吧?”贺荣国尪转而问道.“信息已经出来了,鞠言战申呐个盘口得到の积分超过二 拾八亿之巨.”申肜公爵道.积分与盘口压保额直接相关!“啧啧……”贺荣国尪听到呐个数字,忍不住咋了咋舌.“哈哈,下一届战申榜排位赛,俺们波塔尪国获得の压保盘口,至少能比呐次多一倍.”贺荣国尪振奋の语气说道.“是の陛下,按照过往の例子看,仅仅鞠言战申呐一个盘口 获得の押注积分,就足以让俺们波塔尪国在下一届战申榜排位赛中得到至少伍个压保盘口了.而接下来,还有决赛阶段.鞠言战申在决赛中,应该也能获得一些押注积分.”申肜公爵道.“嗯,等战申榜排位赛结束后,俺一定要好好感谢鞠言战申和纪沄国尪.”贺荣国尪叠叠の点了点头.与 此同事,玄秦尪国人员の居所,廉心国尪和尪国の众人员都在一个房间中,房间内气氛异常の安静.似乎,已是有一段事间没有人开口说话了.玄秦尪国在呐一届战申榜排位赛中,损失惨叠.获得の押注积分,也比预料中の少很多.别の不说,单单一个丁水云战申の盘口,就损失了大量の押 注积分.(本章完)第三零零思章王国招揽丁水云战申の呐个盘口,本应该是能够帮助玄秦尪国必得大量押注积分の,可惜……从大斗场回到居所之后,廉心国尪の心仍然没能平复下来.她の心情,此事是极其の复杂,后悔、愤怒、忧虑等等情绪皆有.“怎么都不说话了?”“应哗公爵,你 の主意不是一直都很多の吗?怎么也不说话了?”廉心国尪环视房间内の众人,声音冰冷.应哗公爵,身体都在发抖.淘汰阶段第二轮对战中,他代表玄秦尪国压保伍千万白耀翠玉,赔了.第三轮对战中,他代表玄秦尪国压保两亿白耀翠玉,又血本无归.他应哗公爵,还能找哪个借口.“陛下, 现在不是追究某个人责任の事候.损失の白耀翠玉,就目前の局势,已算不上最无法想象,善王の申魂体还能有呐样幅度の提升!”“不错,真是不错.申魂体增强之后,俺对微子世界の控制更加精妙了.”“还有对黑道则の掌控!俺の申魂体所增强の部分,与在明混元空间不同,在呐里 所增强の那部分申魂体,与暗混元空间更加契合.呐也让俺,对暗混元黑道
苏科版八年级数学上册1.3 探索三角形全等的条件同步练习(含解析)
数是
.
28.如图,已知五边形 ABCDE 中,∠ABC=∠AED=90°,AB=CD=AE=BC+DE=2,
则五边形 ABCDE 的面积为
.
三.解答题(共 12 小题)
29.如图,已知∠1=∠2,∠3=∠4,求证:BC=BD.
30.如图,在△ABC 和△ADE 中,AB=AD,∠B=∠D,∠1=∠2.求证:BC=DE.
A.2 个
B.4 个
C.6 个
D.8 个
12.在△ABC 中,已知∠CAB=60°,D,E 分别是边 AB,AC 上的点,且∠AED=60°,
2 / 37
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
ED+DB=CE,∠CDB=2∠CDE,则∠DCB=( )
A.15°
B.20°
C.25°
D.30°
A.
B.2
C.2
D.
【分析】根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC,就可以得出 BE=DC,就可以求出 DE 的值. 【解答】解:∵BE⊥CE,AD⊥CE, ∴∠E=∠ADC=90°, ∴∠EBC+∠BCE=90°. ∵∠BCE+∠ACD=90°, ∴∠EBC=∠DCA. 在△CEB 和△ADC 中,
1 / 37
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
仍无法判定△ABC≌△DEF 的是(
A.AB=DE
B.AC=DF
) C.∠A=∠D
D.BF=EC
7.如图,在△ABC 和△DEF 中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能
证明△ABC≌△DEF,这个条件是( )
A.∠A=∠D
1.3 探索三角形全等的条件 第二课时教学设计 2022-2023学年鲁教版(五四制)七年级数学上册
1.3 探索三角形全等的条件第二课时教学设计课程目标
•掌握三角形全等的概念
•探究三角形全等的条件
•认识三角形全等的性质
教学重难点
•重点:掌握三角形全等的条件
•难点:分析和证明三角形的全等性
教学过程
1. 导入新知识
•引入三角形全等的概念
•提问:当两个三角形相等时,我们称它们为____?
2. 模拟实验
•带领学生进行三角形全等的模拟实验
•用尺子和量角器操作,让学生自己感悟全等的条件是什么
3. 探究三角形全等条件
•列出三角形全等的条件
–SSS
–SAS
–ASA
–RHS
•逐一分析并讲解全等条件
4. 确定全等条件的应用
•给出一些例题,让学生应用全等条件进行解答
•学生可使用全等条件进行推理,做出正确的选择
5. 总结三角形全等性质
•讲解三角形全等的性质:对应角相等、对应边相等、对应线段相等
•让学生分析、理解并总结
教学设计说明
本节课以探究的方式引入三角形全等,采用实验和推理的方法让学生掌握全等的条件,注重学生思维的启发和训练,以培养学生的自学能力为核心,让学生在自主性学习和思考中,逐渐理解全等性质,形成自我的认知。
小结
因为几何学是建立在直观的几何意象上的,所以在学习上加强视觉感受很有必要。
本节课通过模拟实验的方式,引导学生自己感悟全等条件,培养学生的观察能力和空间想象能力,让学生能够在理性思考的基础上,更好地理解全等的概念和条件。
作业
1.完成教材上与本课有关的练习题;
2.自己寻找几个“问答题”,能进行简单的分析和证明。
三角形全等的条件 要点全析
三角形全等的条件·要点全析1.探索三角形全等的条件三角形有三条边,三个内角共六个基本元素,全等三角形的六个元素都分别对应相等.反过来,如果两个三角形的三组边对应相等并且三组角也对应相等.那么它们必定可以重合,根据定义,它们一定全等.但是,判定两个三角形全等真的需要六个条件吗?探索发现:两个三角形满足一个条件(一条边或一个内角相等)或两个条件都不能确定它们是否全等,而满足三个适当的条件就可以判定两三角形全等.2.三角形全等的条件一:“SSS ”或“边边边”(1)SSS :三边对应相等的两个三角形全等,简写成“边边边”或“SSS ”.(2)书写格式:如图13-2-1.在△ABC 和△A ′B ′C ′中,①⎪⎩⎪⎨⎧'''''',=,=,=C B BC C A AC B A AB ② ∴ △ABC ≌△A ′B ′C ′(SSS ).③(3)书写格式的步骤分三步:第一步:指出在哪两个三角形中.如上边的①,在△ABC 和△A ′B ′C ′中. 第二步:按条件中的边角顺序列出三个条件.如上边的②. 第三步;写出结论,如上边的③,△ABC ≌△A ′B ′C ′(SSS ).【说明】①第一步中,两个三角形之间的“和”不能写成“≌”,也不能取消.②第二步中,大括号内的三个条件的书写是有顺序的,必须与判定条件一致,并且注意边、角字母的对应.一般前一个三角形的边、角写在等号的左边,另一个三角形的对应边、角写在右边.③写结论时,注意对应顶点写在对应位置上,并在后面的括号内注明判定条件的简写,如“SSS ”或“边边边”.例如:如图13-2-2.已知AB =AC ,D 为BC 中点.试说明∠B =∠C 是否成立,为什么?解:∠B =∠C 成立.∵ D 为BC 中点,∴ BD =CD .在△ABD 和△ACD 中,⎪⎩⎪⎨⎧(公共边),=(已证),=(已知),=AD AD CD BD AC AB∴ △ABD ≌△ACD (SSS ).∴ ∠B =∠C (全等三角形的对应角相等).【说明】①在本例中使用了证明的格式.②在本例中的最后两步中有两个“∴”符号,前一个“∴”,是由前面大括号内的三个条件得出的.后一个“∴”,是将前一个“∴”当成了“∵”,然后推出后一个“∴”,这里省略了一步:∵△ABD ≌△ACD .因此,今后在书写中要注意.3.三角形全等的条件二:“边角边”或“SAS ”(1)SAS :有两边和它们的夹角对应相等的两个三角形全等,简记为“SAS ”.(2)表达格式为在△ABC 和△DEF 中(图13-2-3)⎪⎩⎪⎨⎧∠∠,=,=,=EF BC DEF ABC DE AB∴ △ABC ≌△DEF (SAS ).例如:如图13-2-4中,AD 、BC 相交于点O .OA =OD ,OB =OC ,那么AB =DC 是否成立.解:∵ AD 、BC 相交于点O ,∴ ∠AOB =∠DOC (对顶角相等).在△AOB 和△DOC 中,⎪⎩⎪⎨⎧∠∠(已知)=(已证),=(已知),=OC OB DOC AOB OD OA∴ △AOB ≌△DOC (SAS ).∴ AB =DC【说明】本题中,书写三条件时,应该按边、角、边的顺序,将两边的夹角放在中间,用括号括起来;或者写成一行,也按边、角、边的顺序,将两边的夹角放在中间,再推出两个三角形全等.4.三角形全等的条件三:“角边角”或“ASA ”(1)两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA ”.(2)表达格式:如图13-2-5,在△ABC 和△DEF 中,⎪⎩⎪⎨⎧∠∠∠∠,=,=,=DEF B DE AB D A ∴ △ABC ≌△DEF (AAS ).5.三角形全等的条件四:“角角边”或“AAS ”(1)有两角和一边对应相等的两个三角形全等,简写成“角角边”或“AAS ”.(2)表达格式,如图13-2-5,在△ABC 和△DEF 中,⎪⎩⎪⎨⎧∠∠∠∠,=,=,=EF BC D A DEF B ∴ △ABC ≌△DEF (AAS ).例如:如图13-2-6中,AB ∥CD ,AE ∥DF ,AB =CD .求证:AE =DF .证明:∵ AB ∥CD ,∴ ∠ABC =∠DCB .∵ AE ∥DF ,∴ ∠AEB =∠DFC .在△ABE 和△DCF 中,⎪⎩⎪⎨⎧∠∠∠∠,=,=(已证),=DF AE DFC AEB DCF ABC∴ △ABE ≌△DCF (AAS ).∴ AE =DF .6.直角三角形全等的条件:“斜边、直角边”或“HL ”(1)HL :斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL ”.(2)表达格式:如图13-2-7,在△ABC 中,AD ⊥BC 于D ,AB =AC 在Rt △ABD 和Rt △ACD 中,⎩⎨⎧,=,=AD AD AC AB∴ Rt △ABD ≌Rt △ACD (HL )(3)直角三角形是三角形中的一种特殊情况,因此,它也可以用一般三角形全等的条件.如两条直角边对应相等,可用“SAS ”,一边一锐角对应相等可用“ASA ”或“AAS ”.它的特殊条件就是“斜边、直角边”.7.“角角角”与“边边角”在三角形全等的条件中,上面已说过的有:三边的SSS ,两边一角的SAS 和一边两角的ASA ,AAS ,那么“AAA ”和“SSA ”能否成为三角形全等的条件呢?(1)有三个角对应相等的两个三角形不一定全等,如图13-2-8,DE ∥BC ,则∠ADE =∠B ,∠AED =∠C ,∠A =∠A ,△ADE 与△ABC 有三角对应相等,但它们没有重合,所以不全等.(2)如图13-2-9,在△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等.也就是有两边和其中一边的对角对应相等的两个三角形不一定全等.8.证明的意义和步骤(1)证明的意义证明是由题设(已知)出发,经过一步步的推理,最后推出结论(求证)正确的过程,简单地说,证明就是推理过程.(2)证明的步骤证明一个命题为正确的时候,其步骤如下:①弄清命题的条件和结论,画出图形.②根据条件,结合图形,写出已知.③根据结论,结合图形、写出求证.④写出证明过程.证明一个命题不正确的时候,只需举出一个反例即可.例如:若a 2=b 2,则a =b .这是一个错误命题,证明如下.证明:∵ (-5)2=52=25,而-5≠5.∴ 若a 2=b 2,则a =b ,是一个错误命题.9.证明题目时常用的三种方法在探索三角形全等的过程中,经常要遇到条件不足或结论不易寻找等问题,如何分析条件与结论之间的关系,常用的分析方法有以下三种:(1)综合法就是从题目的已知条件入手,根据已学过的定义、定理、性质、公理等,逐步推出要判断的结论,有时也叫“由因导果法”.例如:如图13-2-10,在△ABC 中,D 是BC 的中点,DE ∥AB ,DF ∥AC ,分别交AC 、AB 于点E 、F .求证:BF =DE .分析:从已知条件到推出结论,其探索过程如下⇒⎪⎭⎪⎬⎫∠∠⇒⇒∠∠⇒C BDF AC DF CD BD BC D CDE B AB DE =∥=的中心是=∥△BFD ≌△DEC (ASA ) ⇒BF =DE (目标).以上这种由因导果的方法就是综合法.(2)分析法就是从要判断的结论出发,根据已学的定义、定理、公理、性质等,倒过来寻找能使结论成立的条件,这样一步步地递求,一直追溯到结论成立的条件与已知条件相吻合为止,有时也叫“执果索因法”.如上题,用分析法的探索过程如下:BF =DE ⇒△BFD ≌△DEC ⇒⎪⎩⎪⎨⎧⇒⇒∠∠⇒⇒⇒⇒∠∠已知∥=已知中点是=已知∥=AC DF C BDF BC D CD BD AB DE CDE B(3)分析—综合法在实际的思考过程中,往往需要使用这两种方法,先从结论出发,想一想需要什么条件,层层逆推,当思维遇到障碍时,再从条件出发,顺推几步,看可以得出什么结论,从而两边凑,直至沟通“已知”和“结论”的两个方面. 即:已知 中间条件 结论 综合法 分析法例如:如图13-2-11,在△ABC 中,AB =AC ,D 是BC 的中点,E 是AD 上任一点,连接EB 、EC ,求证:EB =EC .分析:本题比较复杂,可用上述的三个方法均可,现在以分析一综合法为例,说明分析过程.先用综合:由因导果.⇒⎪⎭⎪⎬⎫⇒CD BD D AD AD AC AB =为中心==△ABD ≌△ACD ⇒⎩⎨⎧∠∠∠∠.=,=CDA BDA CAD BAD再用分析:执果索因.EB =EC ⇒△ABE ≌△ACE ⇒⎪⎩⎪⎨⎧⇒∠∠⇒已知==已知=AE AE CAEBAE AC AB ⇒△ABD ≌△ACD . 证明:∵ D 是BC 的中心,∴ BD =CD . 在△ABD 和△ACD 中⎪⎩⎪⎨⎧(公共边),=(已证),=(已知),=AD AD CD BD AC AB∴ △ABD ≌△ACD (SSS ).∴ ∠BAD =∠CAD .在△ABE 和△ACE 中⎪⎩⎪⎨⎧∠∠(公共边)=(已证),=(已知),=AE AE CAE BAE AC AB∴ △ABE ≌△ACE (SAS ).∴ BE =CE (全等三角形的对应边相等).【说明】①本题证明过程中,后一次三角形全等,也可选△BDE ≌△CDE ,方法同上.②本题两次用到全等三角形,在分析中应找准三角形,理清思路.10.判定两个三角形全等方法的选择选择哪种方法判定两个三角形全等,要根据具体已知条件而定,见下表:已知条件寻找条件判定方法—边一角对应相等一边SAS一角SAS或AAS两角对应相等一边ASA或AAS两边对应相等一角SAS 一边SSS11.如何选择三角形判定全等在学过本节内容之后,经常会遇到判定两条线段相等,两个角相等的问题,而要判断它们相等,就要考虑选择三角形全等.如何选择三角形呢?可考虑以下四个方面:(1)可以从判断的结论(线段或角)出发,寻找这些结论在哪两个可能的全等三角形中,就试着判定两个三角形全等.(2)可以从题目的已知条件出发,看已知条件能确定哪两个三角形全等就判定它们全等.(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后判定它们全等.(4)如果以上方法都行不通,可考虑添加辅助线的办法,构造三角形全等.例如:如图13-2-12,已知AB=AC,BD=CD,试判断∠B与∠C的关系,并说明理由.分析:要判断∠B与∠C的关系,先看∠B与∠C是否在两个全等三角形中,而此题没有两个全等三角形,只有一个四边形,目前由已知条件四边形ABDC,要创造三角形,可以连接AD或BC,那么连接谁更合适呢?若连接AD,则∠B、∠C分在左、右两个三角形中,若全等,则∠B=∠C,事实上,∠B=∠C,若连接BC,则∠B、∠C分在上、下两个三角形中,根据目前所学知识还不能确定∠B=∠C因此,连接AD较为合适.解:∠B=∠C连接AD,在△ABD和△ACD中,AB=AC,BD=CD,AD=AD(公共边),∴△ABD≌△ACD(SSS).∴∠B=∠C12.探索三角形全等时常作的辅助线在利用三角形全等进行解题时,有时题目所给条件不足或不明显,还需从题目本身或图形中挖掘它的隐含条件,还有的需加上一些辅助线,为解题铺路搭桥,起到很好的辅助作用,这些辅助线常见的有以下几种:(1)连接图形中的已知点,构造全等形.例如:如图13-2-13,已知AC 、BD 相交于O 点,且AB =CD ,AC =BD ,判断∠A 与∠D 的关系,并说明理由.解:∠A =∠D .连接BC ,在△ABC 与△DCB 中,AB =DC ,AC =DB ,BC =CB ,则△ABC ≌△DCB (SSS ).因此∠A =∠D .(2)取线段中点构造全等三角形.例如:如图13-2-14,已知在梯形ABCD 中,AB =DC ,∠A =∠D ,试判断∠ABC 与∠DCB 的关系,并说明理由.解:∠ABC =∠DCB .取AD 的中点N ,取月C 的中点M .连接MN 、BN 、CN ,则AN =DN ,BM =CM ,在△ABN 和△DCN 中,⇒⎪⎭⎪⎬⎫∠∠DC AB D A DN AN ===△ABN ≌△DCN ,则∠ABN =∠DCN ,NB =NC (全等三角形的对应角、对应边相等). 在△BMN 和△CMN 中,⇒⎪⎭⎪⎬⎫MN MN CM BM CN BN ===△BMN ≌△CMN , 则∠MBN =∠MCN (全等三角形的对应角相等).那么∠ABN +∠MBN =∠DCN +∠MCN .即∠ABC =∠DCB .【说明】在本题中,辅助线起到了很好的桥梁作用,为解题创造了条件.(3)有角平分线时,常在角两边截相等的线段,创造全等三角形.如图13-2-15,OC平分∠AOB,在OC上任取一点P,在OA、OB上截取OM=ON,连接PM、PN,那么,PM=PN.事实上,在△MOP和△NOP中,OM=ON,∠MOP=∠NOP,OP=OP,则△MOP≌△NOP(SSS).因此有PM=PN.(4)三角形中有中线时,常延长加倍中线,构造全等三角形.如图13-2-16,在△ABC中,AD为BC边上的中线,若延长AD至E,使AD=DE,连接B E,在△ACD和△EBD中,BD=CD,∠1=∠2,AD=ED,则△ACD≌△EBD,因此BE=AC13.利用全等三角形解决实际问题的步骤全等三角形在日常生活、科技生产中有很多的用途,在用它解决实际问题时可分以下几个步骤:(1)先明确实际问题与哪些知识有关,确定用哪些知识来解决.(2)根据实际问题画出图形.(3)结合图形写出已知和结论.(4)分析已知,找出解决问题的途径.(5)写出解决问题的过程(或探索过程).例如:如图13-2-17,要测河两岸相对的两点A、B的距离,可以在AB的垂线BF上取两点C、D使CD=BC,再定出BF的垂线DE,使E、C、A三点在一条直线上,这时测得DE的长就是AB的长.你能用数学原理说明吗?分析:这是一个实际应用题,应先把其转化为数学问题,然后再解答.解:已知:AB⊥BF,DE⊥BF,A、C、E三点在一条直线上,BC=DC.判断AB与DE是否相等?在△ABC和△DEC中,由于AB⊥BF,DE⊥BF,则∠ABC=∠EDC=90°,又A、C、E三点在一条直线上,则∠ACB=∠ECD(对顶角).又BC=CD,则ABC≌△EDC(ASA),因此AB=DE.。
鲁教版(五四制)七年级数学上册教学案:1.3.3探索三角形全等的条件
时间:第周第课时执笔人:
教学目标:
知识与技能目标:1.知道三角形全等的判定方法“SAS”
2.能利用“SAS”判定三角形全等
过程与方法目标:1.通过观察、操作、想象、推理、交流等活动,发展空间观念、推理能力、有条理表达的能力
2.能利用“SAS”判定三角形全等
情感与价值目标:在学习中,不断的自我突破,体验收获知识的喜悦
求证:△ABE≌△DCF
★★☆练习2:已知,AD//BC,AD=BC,AE=CF,
求证BE=DF
四、合作探究
★★★例3:如图已知△ACE和△ECD都是等腰直角三角形,
∠ACB=∠ECD=90°,D是AB上的一点,
求证:△ACE≌△BCD
★★★练习3:
已知正方形ABCD和正方形AEFG,
求证DE=BG
方法一:已知两边,通过加减角,证明夹角相等
★☆☆例1:已知CE=CB,CD=CA,∠DCA=∠ECB
证明:DE=AB
★☆☆练习1:如图,AC⊥BC,DC⊥EC,AC=BC,DC=EC,
求证:∠D=∠E
方法二:已知一边和一角,通过加减线段,证明另一边相等
★★☆例2,:如图已知,AB//CD,AB=CD,CE=BF
训练要求:1、快速准确计算2、限时3分钟
二、预习自测(预习课本P5~P6,然后作答)
1.全等三角形的判定方法“SAS”:及其分别相等的两个三角形全等,简写成“边角如图,已知AC平分∠BAD,AB=AD,
证明:△ABC≌△ADC
三、精讲精练:“SAS”通过对应关系找出两条边及夹角
教学重点:能利用“SAS”判定三角形全等
教学难点:能利用“SAS”判定三角形全等
苏科版八年级数学上册1-3探索三角形全等的条件 同步知识点分类练习题(含答案)-doc
苏科版八年级数学上册1.3探索三角形全等的条件同步知识点分类练习题一.三角形的稳定性1.王师傅用4根木条钉成一个四边形木架,如图,要使这个木架不变形,他至少还要再钉上几根木条?( )A.0根B.1根C.2根D.3根2.如图所示的自行车架设计成三角形,这样做的依据是三角形具有 .3.小龙平时爱观察也喜欢动脑,他看到路边的建筑和电线架等,发现了一个现象:一切需要稳固的物品都是由三角形这个图形构成的,当时他就思考,数学王国中不仅只有三角形,为何偏偏用三角形稳固它们呢?请你用所学的数学知识解释这一现象的依据为 .4.有一个人用四根木条钉了一个四边形的模具,两根木条连接处钉一颗钉子,但他发现这个模具老是走形,为什么?如果他想把这个模具固定,再给一根木条给你,你怎么把它固定下来,画出示意图,并说出理由.二.全等三角形的判定5.根据下列条件,不能画出唯一确定的△ABC的是( )A.AB=3,BC=4,AC=6B.AB=4,∠B=45°,∠A=60°C.AB=4,BC=3,∠A=30°D.∠C=90°,AB=8,AC=46.如图,点D在AB上,点E在AC上,AB=AC,添加一个条件 ,使△ABE≌△ACD(填一个即可).7.如图,AB=AD,∠1=∠2,DA平分∠BDE.求证:△ABC≌△ADE.8.如图,AD,BC相交于点O,∠OAB=∠OBA,∠C=∠D=90°.求证:△AOC≌△BOD.9.如图,在△ABC中,∠ACB=90°,AC=8cm,BC=10cm.点C在直线l上,动点P 从A点出发沿A→C的路径向终点C运动;动点Q从B点出发沿B→C→A路径向终点A运动.点P和点Q分别以每秒1cm和2cm的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,分别过点P和Q作PM⊥直线l于M,QN⊥直线l于N.则点P运动时间为 秒时,△PMC与△QNC全等.10.证明命题“全等三角形的面积相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程.下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图, 求证: .请你补全已知和求证,并写出证明过程.11.如图,点B,E,C,F在同一条直线上,AB=DE,BE=CF,∠B=∠DEF.求证:△ABC≌△DEF.12.如图,在矩形ABCD中,AD=3,DC=5,动点M从A点出发沿线段AD﹣DC以每秒1个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD﹣DA以每秒3个单位长度的速度向终点A运动.ME⊥PQ于点E,NF⊥PQ于点F,设运动的时间为t秒.(1)在运动过程中当M、N两点相遇时,求t的值.(2)在整个运动过程中,求DM的长.(用含t的代数式表示)(3)当△DEM与△DFN全等时,请直接写出所有满足条件的DN的长.13.如图,D、C、F、B四点在一条直线上,AC=EF,AC⊥BD,EF⊥BD,垂足分别为点C、点F,BF=CD.试说明:△ABC≌△EDF.14.如图,长方形ABCD中,AB=4cm,BC=6cm,现有一动点P从A出发以2cm/秒的速度,沿矩形的边A﹣B﹣C﹣D﹣A返回到点A停止,设点P运动的时间为t秒.(1)当t=3时,BP= cm;(2)当t为何值时,连接CP,DP,△CDP是等腰三角形;(3)Q为AD边上的点,且DQ=5,当t为何值时,以长方形的两个顶点及点P为顶点的三角形与△DCQ全等.15.八年级数学社团活动课上,《致远组》同学讨论了这样一道题目:如图所示,∠BAC是钝角,AB=AC,D,E分别在AB,AC上,且CD=BE.试说明:∠ADC=∠AEB.其中一个同学的解法是这样的:在△ACD和△ABE中,,所以△ABE≌△ACD,所以∠ADC=∠AEB.这种解法遭到了其他同学的质疑.理由是错在不能用“SSA”说明三角形全等.请你给出正确的解法.三.全等三角形的判定与性质16.如图,在△ABC与△AEF中,AB=AE,BC=EF,∠ABC=∠AEF,∠EAB=44°,AB交EF于点D,连接EB.下列结论:①∠FAC=44°;②AF=AC;③∠EFB=44°;④AD=AC,正确的个数为( )A.4个B.3个C.2个D.1个17.如图,点P是∠BAC平分线AD上的一点,AC=9,AB=5,PB=3,则PC的长可能是( )A.6B.7C.8D.918.如图,AC⊥BC,BD⊥BC,AB=CD,AC=5,则BD的大小为 .19.如图,△ABC和△ADE的顶点交于一点A,已知∠BAD=∠CAE,AB=AD,AC=AE.求证:∠B=∠D.20.已知:如图,在△ABC中,BE、CD分别是AC、AB边上的高,且BE=CD.求证:AB=AC.21.如图,已知△ABC,作射线AP∥BC,E、F分别为BC、AP上的点,且AF=CE.连接EF交AC于点D,连接BD并延长,交AP于点M.(1)求证:△ADF≌△CDE;(2)求证:AM=BC.22.如图,在△ABC中,AC=BC,点D在AB上,点E在BC上,连接CD、DE,AD=BE,∠CDE=∠A.(1)求证:DC=ED;(2)如图2,当∠ACB=90°时,作CH⊥AB于H,请直接写出图2中的所有等腰三角形.(△ABC除外)23.如图,△ABC中,∠ABC=45°,∠ACB=75°,D是BC上一点,且∠ADC=60°,CF⊥AD于F,AE⊥BC于E,AE交CF于G.(1)求证:△AFG≌△CFD;(2)若FD=1,AF=,求线段EG的长.24.如图,在△ABC和△A'B'C'中,∠B=∠B',∠C=∠C',AD平分∠BAC交BC于点D.(1)在△A'B'C'中,作出∠B'A'C'的角平分线A'D'交B'C'于点D';(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若AD=A'D',求证:BD=B'D'.25.如图所示,在△ABC中,AD为中线,过C作CE⊥AD于E.(1)如图1,若∠B=30°,∠A=90°,AC=BD,AE=1,求BC的长.(2)如图2,延长DA至F,连接FC.若∠F=∠BAD,求证:AF=2DE.26.在Rt△ABC中,∠ABC=90°,点D是CB延长线上一点,点E是线段AB上一点,连接DE.AC=DE,BC=BE.(1)求证:AB=BD;(2)BF平分∠ABC交AC于点F,点G是线段FB延长线上一点,连接DG,点H是线段DG上一点,连接AH交BD于点K,连接KG.当KB平分∠AKG时,求证:AK =DG+KG.27.在直线m上依次取互不重合的三个点D,A,E,在直线m上方有AB=AC,且满足∠BDA=∠AEC=∠BAC=α.(1)如图1,当α=90°时,猜想线段DE,BD,CE之间的数量关系是 ;(2)如图2,当0<α<180时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)拓展与应用:如图3,当α=120°时,点F为∠BAC平分线上的一点,且AB=AF,分别连接FB,FD,FE,FC,试判断△DEF的形状,并说明理由.28.问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系,小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 ;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A 处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以70海里/小时的速度前进,舰艇乙沿北偏东50°的方向以90海里/小时的速度,前进2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.参考答案一.三角形的稳定性1.解:如图所示:要使这个木架不变形,利用三角形的稳定性,他至少还要再钉上1个木条,故选:B.2.解:自行车的主框架采用了三角形结构,这样设计的依据是三角形具稳定性,故答案为:稳定性.3.解:用三角形稳固它们是因为三角形具有稳定性,故答案为:三角形具有稳定性.4.解:∵多边形ABCD是四边形,四边形具有不稳定性,∴这个模具老是走形,如图所示;在B、D处钉一颗钉子,把BD连接,可以把把它固定下来,理由是三角形具有稳定性.二.全等三角形的判定5.解:A:三边确定,符合全等三角形判定定理SSS,能画出唯一的△ABC,故不符合题意,B:已知两个角及其公共边,符合全等三角形判定定理ASA,能画出唯一的△ABC,故不符合题意,C:已知两边及其中一边的对角,属于“SSA”的情况,不符合全等三角形判定定理,故不能画出唯一的三角形,故本选项符合题意,D:已知一个直角和一条直角边以及斜边长,符合全等三角形判定定理HL,能画出唯一的△ABC,故不符合题意.故选:C.6.解:∵AB=AC,∠BAE=∠CAD,∴当添加AE=AD(或CE=BD)时,可根据“SAS”判断△ABE≌△ACD;当添加∠B=∠C时,可根据“ASA”判断△ABE≌△ACD;当添加∠AEB=∠ADC时,可根据“AAS”判断△ABE≌△ACD.故答案为:AE=AD(或CE=BD或∠AEB=∠ADC).7.证明:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,∴∠BAC=∠DAE,∵AB=AD,∴∠ADB=∠B,∵DA平分∠BDE.∴∠ADE=∠ADB,∴∠ADE=∠B,在△ABC和△ADE中,,∴△ABC≌△ADE(ASA).8.证明:∵∠OAB=∠OBA,∴OA=OB,在△AOC和△BOD中,,∴△AOC≌△BOD(AAS).9.解:设运动时间为t秒时,△PMC≌△CNQ,∴斜边CP=CQ,分两种情况:①如图1,点P在AC上,点Q在BC上,∵AP=t,BQ=2t,∴CP=AC﹣AP=8﹣t,CQ=BC﹣BQ=10﹣2t,∵CP=CQ,∴8﹣t=10﹣2t,∴t=2;②如图2,点P、Q都在AC上,此时点P、Q重合,∵CP=AC﹣AP=8﹣t,CQ=2t﹣10,∴8﹣t=2t﹣10,∴t=6;综上所述,点P运动时间为2或6秒时,△PMC与△QNC全等,故答案为:2或6.10.解:如下图作AD⊥BC,作A'D⊥BC',垂足分别为D,D',∵△ABC≌△A'B'C'(已知),∴AB=A'B',BC=B'C'(全等三角形的对应边相等),∠B=∠B(全等三角形的对应角相等),在△ABD和△A'B'D'中,∵,∴ABD≌△A'B'D'(AAS),∴AD=A'D'(全等三角形的对应边相等),∴S△ABC=S△A'B'C'.11.证明:∵BE=CF,∴BE+CE=CF+EC.∴BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).12.解:(1)根据题意得t+3t=3+5,解得t=2,即t的值为2;(2)当0≤t≤3时,DM=3﹣t;当3<t≤8时,DM=t﹣3;(3)∵ME⊥PQ,NF⊥PQ,∴∠DEM=∠DFN=90°,∵∠MDN=90°,∴∠DME=∠NDF,∴当DM=DN时,△DEM与△DFN全等,当0≤t≤时,3﹣t=5﹣3t,解得t=1,此时DN的长为2;当<t≤3时,3﹣t=3t﹣5,解得t=2,此时DN的长为1,当3<t≤时,3t﹣5=t﹣3,解得t=1,不合题意舍去;<t<8时,3=t﹣3,解得t=6,此时DN的长为3.综上所述,DN的长为1或2或3.13.解:∵AC⊥BD,EF⊥BD,∴∠ACB=∠EFD=90°,∵BF=CD,∴BF+CF=CD+CF,即BC=DF,在△ABC和△EDF中,,∴△ABC≌△EDF(SAS).14.解:(1)当t=3时,点P走过的路程为:2×3=6,∵AB=4,∴点P运动到线段BC上,∴BP=6﹣4=2,故答案为:2;(2)∵矩形ABCD的面积=4×6=24,∴三角形ABP的面积=×24=8,∵AB=4,∴△ABP的高为:8×2÷4=4,如图,当点P在BC上时,BP=4,∴t=(4+4)÷2=4,当点P在AD上时,AP=4,∴t=(4+6+4+2)÷2=8,∴当t=4 s或8 s时,△ABP的面积为长方形面积的三分之一;(3)根据题意,如图,连接CQ,则AB=CD=4,∠A=∠B=∠C=∠D=90o,DQ=5,∴要使一个三角形与△DCQ全等,则另一条直角边必须等于DQ,①当点P运动到P1时,CP1=DQ=5,此时△DCQ≌△CDP1,∴点P的路程为:AB+BP1=4+1=5,∴t=5÷2=2.5,②当点P运动到P2时,BP2=DQ=5,此时△CDQ≌△ABP2,∴点P的路程为:AB+BP2=4+5=9,∴t=9÷2=4.5,③当点P运动到P3时,AP3=DQ=5,此时△CDQ≌△ABP3,∴点P的路程为:AB+BC+CD+DP3=4+6+4+1=15,∴t=15÷2=7.5,④当点P运动到P4时,即P与Q重合时,DP4=DQ=5,此时△CDQ≌△CDP4,∴点P的路程为:AB+BC+CD+DP4=4+6+4+5=19,∴t=19÷2=9.5,综上所述,时间的值可以是:t=2.5,4.5,7.5或9.5,故答案为:2.5或4.5或7.5或9.5.15.证明:因为∠BAC是钝角,故过B、C两点分别作CA、BA的垂线,垂足分别为F,G,在△ABF与△ACG中,∴△ABF≌△ACG(AAS),∴BF=CG,在Rt△BEF和Rt△CDG中,∴Rt△BEF≌Rt△CDG(HL),∴∠ADC=∠AEB.三.全等三角形的判定与性质16.解:在△ABC和△AEF中,,∴△ABC≌△AEF(SAS),∴AF=AC,∠EAF=∠BAC,∠AFE=∠C,故②正确,∴∠EAF﹣∠BAF=∠BAC﹣∠BAF,∴∠EAB=∠FAC=44°,故①正确,∵∠AFB=∠C+∠FAC=∠AFE+∠EFB,∴∠EFB=∠FAC=44°,故③正确,无法证明AD=AC,故④错误,综上,①②③正确,故选:B.17.解:在AC上截取AE=AB=5,连接PE,∵AC=9,∴CE=AC﹣AE=9﹣5=4,∵点P是∠BAC平分线AD上的一点,∴∠CAD=∠BAD,在△APE和△APB中,,∴△APE≌△APB(SAS),∴PE=PB=3,∵4﹣3<PC<4+3,解得1<PC<7,∴PC取6,故选:A.18.解:∵AC⊥BC,BD⊥BC,∴∠ABC=∠DBC=90°,在Rt△ACB和Rt△DBC中,,∴Rt△ACB和Rt△DBC(HL),∴BD=AC=5,故答案为:5.19.证明:∵∠BAD=∠CAE,∴∠BAD﹣∠DAC=∠CAE﹣∠DAC,即∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS),∴∠B=∠D.20.证明:∵BE⊥AC,CD⊥AB,∴∠AEB=∠ADC=90°,在△AEB和△ADC中,,∴△AEB≌△ADC(AAS),∴AB=AC.21.证明:(1)∵AP∥BC,∴∠AFD=∠CED,∠FAD=∠ECD,在△ADF和△CDE中,,∴△ADF≌△CDE(ASA);(2)由(1)知,△ADF≌△CDE,∠FAD=∠ECD,∴AD=CD,在△ADM和△CDB中,,∴△ADM≌△CDB(ASA),∴AM=BC.22.(1)证明:∵AC=BC,∴∠A=∠B,∵∠CDB=∠A+∠ACD,∴∠CDE+∠BDE=∠A+∠ACD,∵∠CDE=∠A,∴∠BDE=∠ACD,在△ACD和△BDE中,,∴△ACD≌△BDE(AAS),∴DC=ED.(2)解:图2中的所有等腰三角形有△ACH,△BCH,△BCD,△DCE.理由:∵AC=BC,∠ACB=90°,∴∠A=∠B=45°,∵CH⊥AB,∴∠ACH=∠BCH=45°,∴△ACH和△BCH都是等腰三角形,由(1)可知△DCE是等腰三角形,∵∠CDE=∠A=45°,∴∠DCE=∠DEC=67.5°,∵∠B=45°,∴∠CDB=67.5°,∴∠DCB=∠CDB,∴△BCD是等腰三角形.23.(1)证明:∵∠ABC=45°,∠ACB=75°,∴∠BAC=60°,∵∠ADC=60°,∴∠ADB=120°,又∵∠BAC=60°,∴∠DAC=45°,又∵CF⊥AD,∴∠AFC=∠CFD=90°,∠ACF=∠DAC=45°,∴AF=CF,∵CF⊥AD,AE⊥BC,∴∠CDF+∠DCF=∠CGE+∠DCF=90°,∴∠CDF=∠CGE,∵∠CGE=∠AGF,∴∠AGF=∠CDF,∵在△AFG和△CFD中,,∴△AFG≌△CFD(AAS);(2)解:在Rt△CFD中,∠CFD=90°,∠FCD=30°,∴CD=2DF=2,∵△AFG≌△CFD,∴FG=DF=1,∴CF=AF=,∴CG=CF﹣FG=﹣1,在Rt△CGE中,∠AEC=90°,∠FCD=30°,∴EG=CG=.24.(1)解:如图所示:(2)证明:∵∠B=∠B',∠C=∠C',∴∠A=∠A',∵AD平分∠BAC,∠B'A'C'的角平分线A'D',∴∠BAD=∠B'A'D',∵AD=A'D',∴△BAD≌△B'A'D'(AAS),∴BD=B'D'.25.解:(1)∵∠BAC=90°,AD为中线,∴BD=CD=AD=BC,∵∠B=30°,∴∠BAD=30°,∴∠DAC=60°,∵CE⊥AD,∴∠ACE=30°,∴AC=2AE=2,在Rt△ABC中,BC=2AC=4;(2)延长ED到G,使DG=DE,则EG=2DE,连接GB,如图:∵AD为中线,∴BD=CD,在△BDG和△CDE中,,∴△BDG≌△CDE(SAS),∴BG=CE,∠G=∠CED=90°=∠CEF,在△ABG和△FCE中,,∴△ABG≌△FCE(AAS),∴AG=EF,∴AG﹣AE=EF﹣AE,即EG=AF,∵EG=2DE,∴AF=2DE.26.证明:(1)在Rt△ACB和Rt△DEB中,,∴Rt△ACB≌Rt△DEB(HL),∴AB=BD,(2)如图:作BM平分∠ABD交AK于点M,∵BM平分∠ABD,KB平分∠AKG,∴∠ABM=∠MBD=45°,∠AKB=∠BKG,∵∠ABF=∠DBG=45°∴∠MBD=∠GBD,在△BMK和△BGK中,,∴△BMK≌△BGK(ASA),∴BM=BG,MK=KG,在△ABM和△DBG中,,∴△ABM≌△DBG(SAS),∴AM=DG,∵AK=AM+MK,∴AK=DG+KG.27.解:(1)DE=BD+CE,理由如下,∵∠BDA=∠BAC=∠AEC=90°,∴∠BAD+∠EAC=∠BAD+∠DBA=90°,∴∠DBA=∠EAC,∴△DBA≌△EAC(AAS),∴AD=CE,BD=AE,∴DE=AD+AE=BD+CE,故答案为:DE=BD+CE.(2)DE=BD+CE仍然成立,理由如下,∵∠BDA=∠BAC=∠AEC=α,∴∠BAD+∠EAC=∠BAD+∠DBA=180°﹣α,∴∠DBA=∠EAC,∵AB=AC,∴△DBA≌△EAC(AAS),∴BD=AE,AD=CE,∴DE=AD+AE=BD+CE;(3)△DEF是等边三角形,理由如下,∵α=120°,AF平分∠BAC,∴∠BAF=∠CAF=60°,∵AB=AF=AC,∴△ABF和△ACF是等边三角形,∴FA=FC,∠FCA=∠FAB=∠AFC=60°,同(2)理得,△BDA≌△EAC,∴∠BAD=∠ACE,AD=CE,∴∠FAD=∠FCE,∴△FAD≌△FCE(SAS),∴DF=EF,∠DFA=∠EFC,∴∠DFE=∠DFA+∠AFE=∠EFC+∠AFE=∠AFC=60°,∴△DEF是等边三角形.28.解:问题背景:由题意:△ABE≌△ADG,△AEF≌△AGF,∴BE=DG,EF=GF,∴EF=FG=DF+DG=BE+FD.故答案为:EF=BE+FD.探索延伸:EF=BE+FD仍然成立.理由:如图2,延长FD到点G,使DG=BE,连接AG∵∠B+∠ADC=180°,∠ADG+∠ADC=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,又∵∠EAF=∠BAD,∴∠FAG=∠FAD+∠DAG=∠FAD+∠BAE=∠BAD﹣∠EAF,=∠BAD﹣∠BAD=∠BAD,∴∠EAF=∠GAF.在△AEF和△AGF中,,∴△AEF≌△AGF(SAS),∴EF=FG,又∵FG=DG+DF=BE+DF,∴EF=BE+FD.实际应用:如图3,连接EF,延长AE,BF相交于点C,在四边形AOBC中,∵∠AOB=30°+90°+20°=140°,∠FOE=70°=∠AOB,又∵OA=OB,∠OAC+∠OBC=60°+120°=180°,符合探索延伸中的条件,∴结论EF=AE+FB成立.即,EF=AE+FB=2×(70+90)=320(海里)答:此时两舰艇之间的距离为320海里.。
八年级数学上册 1.3《探索三角形全等的条件》知识点解
知识点解读:快速判定三角形全等全等三角形是初中数学中的重要内容之一,是今后学习其他内容的基础。
判断三角形全等公理有SAS 、ASA 、AAS 、SSS 和HL ,如果能够直接证明三角形的全等的条件,则比较简单,直接根据相应的公理就可以证明,但是如果给出的条件不全面,就需要根据已知的条件结合相应的公理来进行分析,先推导出所缺的条件然后再证明。
一、已知一边及与其相邻的一个内角对应相等判断三角形全等的公理中边和角相邻的有SAS 、ASA 、AAS ,所以可以从三个方面进行考虑:例1、如图1,点C 、D 在线段AB 上,AC=DB ,AE=BF ,∠A=∠B 。
说明△ABF≌△DCE 的理由。
分析:本题是根据SAS 来判断两个三角形全等,应该首先推导这个内角的另一条边也是对应相等的,也就是AD =BC ,然后再证明三角形全等。
解:因为AC =DB (已知)所以AC +CD=BD +CD ,即 AD =BC 在△ABF 和△DCE 中,AE BFA B AD BC =⎧⎪∠=∠⎨⎪=⎩∴ △ABF≌△DCE(SAS )。
例2、如图2,F 是△ABC 的边AB 上一点,DF 交AC 于点E ,DE=FE ,DC∥AB。
说明△AFE≌△CDE 的理由。
分析:本题是在两个三角形有对顶角的情况下进行考虑的,根据ASA 来判断两个三角形全等,应该首先推导以DE 、FE 为一边的另一个角也是对应相等的,也就是∠AFE=∠CDE,然后再证明三角形全等。
CBA D 图1解:应为 FC∥AB(已知)所以∠AFE=∠CDE(两直线平行,内错角相等) 在△ADE 和△CFE 中,AFE CDE DE FEAEF CED ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AFE≌△CDE(ASA )。
例3、题目同例2,在DE=FE 的情况下也可以根据FC∥AB,证明AFE CDE ∠=∠和EAF ECD ∠=∠,然后根据AAS 公理来说明△AFE≌△CDE。
第03讲 探索三角形全等的条件(7种题型)(解析版)
第03讲 探索三角形全等的条件(7种题型)1.理解和掌握全等三角形判定方法“边角边”、“角边角”、“角角边”、“边边边”“HL ”定理.2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.一、全等三角形判定1——“边角边”1. 全等三角形判定1——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).要点诠释:如图,如果AB = ,∠A =∠,AC = ,则△ABC ≌△. 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.二、全等三角形判定2——“角边角”全等三角形判定2——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).''A B 'A ''A C '''A B C要点诠释:如图,如果∠A =∠,AB =,∠B =∠,则△ABC ≌△.三、全等三角形判定3——“角角边”1.全等三角形判定3——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE ∥BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.四、全等三角形判定4——“边边边”全等三角形判定4——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS”).要点诠释:如图,如果=AB ,=AC ,=BC ,则△ABC ≌△.五.直角三角形全等的判定——“HL ”1、斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL ”).2、直角三角形首先是三角形,所以一般三角形全等的判定方法都适合它,同时,直角三角形又是特殊的三角形,有它的特殊性,作为“HL ”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,'A ''A B 'B '''A B C ''A B ''A C ''B C '''A B C使用时应该抓住“直角”这个隐含的已知条件.六、判定方法的选择1.选择哪种判定方法,要根据具体的已知条件而定,见下表:已知条件可选择的判定方法一边一角对应相等SAS AAS ASA两角对应相等ASA AAS两边对应相等SAS SSS2.如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.七.全等三角形的判定与性质(1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.(2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.八.全等三角形的应用(1)全等三角形的性质与判定综合应用用全等寻找下一个全等三角形的条件,全等的性质和判定往往是综合在一起应用的,这需要认真分析题目的已知和求证,分清问题中已知的线段和角与所证明的线段或角之间的联系.(2)作辅助线构造全等三角形常见的辅助线做法:①把三角形一边的中线延长,把分散条件集中到同一个三角形中是解决中线问题的基本规律.②证明一条线段等于两条线段的和,可采用“截长法”或“补短法”,这些问题经常用到全等三角形来证明.(3)全等三角形在实际问题中的应用一般方法是把实际问题先转化为数学问题,再转化为三角形问题,其中,画出示意图,把已知条件转化为三角形中的边角关系是关键.题型一、全等三角形的判定1——“边角边”例1、已知:如图,AB =AD ,AC =AE ,∠1=∠2.求证:BC =DE .【思路点拨】由条件AB =AD ,AC =AE ,需要找夹角∠BAC 与∠DAE ,夹角可由等量代换证得相等.【答案与解析】证明: ∵∠1=∠2∴∠1+∠CAD =∠2+∠CAD ,即∠BAC =∠DAE在△ABC 和△ADE 中∴△ABC ≌△ADE (SAS )∴BC =DE (全等三角形对应边相等)【总结升华】证明角等的方法之一:利用等式的性质,等量加等量,还是等量.【变式】如图,将两个一大、一小的等腰直角三角尺拼接 (A 、B 、D 三点共线,AB =CB ,EB =DB ,∠ABC =∠EBD =90°),连接AE 、CD ,试确定AE 与CD 的位置与数量关系,并证明你的结论.【答案】AE =CD ,并且AE ⊥CD证明:延长AE 交CD 于F ,∵△ABC 和△DBE 是等腰直角三角形∴AB =BC ,BD =BE在△ABE 和△CBD中AB AD BAC DAEAC AE =ìïÐ=Ðíï=î∴△ABE ≌△CBD (SAS )∴AE =CD ,∠1=∠2又∵∠1+∠3=90°,∠3=∠4(对顶角相等)∴∠2+∠4=90°,即∠AFC =90°∴AE ⊥CD例2、如图,AD 是△ABC 的中线,求证:AB +AC >2AD .【思路点拨】延长AD 到点E ,使AD =DE ,连接CE .通过证全等将AB 转化到△CEA 中,同时也构造出了2AD .利用三角形两边之和大于第三边解决问题.【答案与解析】证明:如图,延长AD 到点E ,使AD =DE ,连接CE .在△ABD 和△ECD 中,∴△ABD ≌△ECD (SAS ).∴AB =CE .∵AC +CE >AE ,∴AC +AB >AE =2AD .即AC +AB >2AD .90AB BC ABE CBD BE BD =ìïÐ=Ð=°íï=îAD DE ADB EDCBD CD ìïÐÐíïî===.【总结升华】证明边的大小关系主要有两个思路:(1)两点之间线段最短;(2)三角形的两边之和大于第三边.要证明AB +AC >2AD ,如果归到一个三角形中,边的大小关系就是显然的,因此需要转移线段,构造全等三角形是转化线段的重要手段.可利用旋转变换,把△ABD 绕点D 逆时针旋转180°得到△CED ,也就把AB 转化到△CEA 中,同时也构造出了2AD .若题目中有中线,倍长中线,利用旋转变换构造全等三角形是一种重要方法.例3、已知,如图:在△ABC 中,∠B =2∠C ,AD ⊥BC ,求证:AB =CD -BD .【思路点拨】在DC 上取一点E ,使BD =DE ,则△ABD ≌△AED ,所以AB =AE ,只要再证出EC =AE 即可.【答案与解析】证明:在DC 上取一点E ,使BD =DE∵ AD ⊥BC ,∴∠ADB =∠ADE在△ABD 和△AED 中,∴△ABD ≌△AED (SAS ).∴AB =AE ,∠B =∠AED.BD DE ADB=ADEAD AD ìïíïî=∠∠=AE D CB又∵∠B=2∠C=∠AED=∠C+∠EAC.∴∠C=∠EAC.∴AE=EC.∴AB=AE=EC=CD—DE=CD—BD.【总结升华】此题采用截长或补短方法.上升到解题思想,就是利用翻折变换,构造的全等三角形,把条件集中在基本图形里面,从而使问题加以解决.如图,要证明AB=CD-BD,把CD-BD转化为一条线段,可利用翻折变换,把△ABD沿AD翻折,使线段BD运动到DC上,从而构造出CD-BD,并且也把∠B转化为∠AEB,从而拉近了与∠C的关系.【变式】已知,如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于E,并且AE=(AB+AD),求证:∠B+∠D=180°.【答案】证明:在线段AE上,截取EF=EB,连接FC,∵CE⊥AB,∴∠CEB=∠CEF=90°在△CBE和△CFE中,1 2∴△CBE 和△CFE (SAS )∴∠B =∠CFE∵AE =(AB +AD ),∴2AE = AB +AD ∴AD =2AE -AB∵AE =AF +EF ,∴AD =2(AF +EF )-AB =2AF +2EF -AB =AF +AF +EF +EB -AB =AF +AB -AB ,即AD =AF在△AFC 和△ADC 中∴△AFC ≌△ADC (SAS )∴∠AFC =∠D∵∠AFC +∠CFE =180°,∠B =∠CFE.∴∠AFC +∠B =180°,∠B +∠D =180°.题型二、全等三角形的判定2——“角边角”例4、已知:如图,E ,F 在AC 上,AD ∥CB 且AD =CB ,∠D=∠B.求证:AE =CF .【答案与解析】证明:∵AD ∥CB∴∠A =∠C在△ADF 与△CBE 中CEB CEFEC =EC EB EF =ìïÐ=Ðíïî12(AF AD FAC DAC AC AC =ìïÐ=Ðíï=î角平分线定义)∴△ADF ≌△CBE (ASA )∴AF =CE ,AF +EF =CE +EF故得:AE =CF【总结升华】利用全等三角形证明线段(角)相等的一般方法和步骤如下: (1)找到以待证角(线段)为内角(边)的两个三角形; (2)证明这两个三角形全等; (3)由全等三角形的性质得出所要证的角(线段)相等.【变式】(2022•长安区一模)已知:点B 、E 、C 、F 在一条直线上,AB ∥DE ,AC ∥DF ,BE =CF .求证:△ABC ≌△DEF .【分析】先利用平行线的性质得到∠B =∠DEF ,∠ACB =∠F ,再证明BC =EF ,然后根据“ASA ”可判断△ABC ≌△DEF .【解答】证明:∵AB ∥DE ,∴∠B =∠DEF ,∵AC ∥DF ,∴∠ACB =∠F ,∵BE =CF ,∴BE +EC =CF +EC ,即BC =EF ,在△ABC 和△DEF 中,,∴△ABC ≌△DEF (ASA ).【点评】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的关键.选用A C AD CBD B Ð=Ðìï=íïÐ=Ðî哪一种判定方法,取决于题目中的已知条件.例5、如图,G 是线段AB 上一点,AC 和DG 相交于点E.请先作出∠ABC 的平分线BF ,交AC 于点F ;然后证明:当AD∥BC,AD =BC ,∠ABC=2∠ADG 时,DE =BF.【思路点拨】通过已知条件证明∠DAC=∠C,∠CBF=∠ADG,则可证△DAE≌△BCF【答案与解析】证明: ∵AD∥BC,∴∠DAC=∠C∵BF 平分∠ABC∴∠ABC=2∠CBF∵∠ABC=2∠ADG∴∠CBF=∠ADG在△DAE 与△BCF 中∴△DAE≌△BCF(ASA )∴DE=BF【总结升华】利用全等三角形证明线段(角)相等的一般方法和步骤如下:(1)找到以待证角(线段)为内角(边)的两个三角形;(2)证明这两个三角形全等;(3)由全等三角形的性质得出所要证的角(线段)相等.【变式】已知:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ .求证:HN =PM.【答案】ïîïíìÐ=Ð=Ð=ÐC DAC BCAD CBFADG证明:∵MQ 和NR 是△MPN 的高,∴∠MQN =∠MRN =90°,又∵∠1+∠3=∠2+∠4=90°,∠3=∠4∴∠1=∠2在△MPQ 和△NHQ 中,∴△MPQ ≌△NHQ (ASA )∴PM =HN题型三、全等三角形的判定3——“角角边”例6.(2021秋•苏州期末)如图,在四边形ABCD 中,E 是对角线AC 上一点,AD ∥BC ,∠ADC =∠ACD ,∠CED +∠B =180°.求证:△ADE ≌△CAB .【分析】由等角对等边可得AC =AD ,再由平行线的性质可得∠DAE =∠ACB ,由∠CED +∠B =180°,∠CED +∠AED =180°,得∠AED =∠B ,从而利用AAS 可判定△ADE ≌△CAB .【解答】证明:∵∠ADC =∠ACD ,∴AD =AC ,∵AD ∥BC ,∴∠DAE =∠ACB ,∵∠CED +∠B =180°,∠CED +∠AED =180°,∴∠AED =∠B ,在△ADE 与△CAB 中,,∴△ADE ≌△CAB (AAS ).【点评】本题主要考查全等三角形的判定,解答的关键是由已知条件得出相应的角或边的关系.例7、已知:如图,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB .求证:AD =AC .12MQ NQMQP NQH Ð=Ðìï=íïÐ=Ðî【思路点拨】要证AC =AD ,就是证含有这两个线段的三角形△BAC ≌△EAD.【答案与解析】证明:∵AB ⊥AE ,AD ⊥AC ,∴∠CAD =∠BAE =90°∴∠CAD +∠DAB =∠BAE +∠DAB ,即∠BAC =∠EAD在△BAC 和△EAD 中∴△BAC ≌△EAD (AAS )∴AC =AD【总结升华】我们要善于把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.【变式】已知:如图,,,是经过点的一条直线,过点、B 分别作、,垂足为E 、F ,求证:.【答案与解析】证明:∵ ,∴∴∵∴∴BAC EAD B ECB=DE Ð=ÐìïÐ=Ðíïî90ACB Ð=°AC BC =CD C A AE CD ^BF CD ^CE BF=CD AE ^CD BF ^°=Ð=Ð90BFC AEC °=Ð+Ð90B BCF ,90°=ÐACB °=Ð+Ð90ACF BCF BACF Ð=Ð在和中∴≌()∴【总结升华】要证,只需证含有这两个线段的≌.同角的余角相等是找角等的好方法.题型四、全等三角形的判定4——“边边边”例8、已知:如图,△RPQ 中,RP =RQ ,M 为PQ 的中点.求证:RM 平分∠PRQ .【思路点拨】由中点的定义得PM =QM ,RM 为公共边,则可由SSS 定理证明全等.【答案与解析】证明:∵M 为PQ 的中点(已知),∴PM =QM在△RPM 和△RQM 中,∴△RPM ≌△RQM (SSS ).∴ ∠PRM =∠QRM (全等三角形对应角相等).即RM 平分∠PRQ.【总结升华】在寻找三角形全等的条件时有的可以从图中直接找到,如:公共边、公共角、对顶角等条件隐含在题目或图形之中. 把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的性质和判定.【变式】已知:如图,AD =BC ,AC =BD.试证明:∠CAD =∠DBC.BCF ∆CAE ∆ïîïíì=Ð=ÐÐ=ÐBC AC B ACE BFC AEC BCF ∆CAE ∆AAS BF CE =BF CE =BCF ∆CAE∆()(),,RP RQ PM QM RM RM ì=ï=íï=î已知公共边【答案】证明:连接DC ,在△ACD 与△BDC 中∴△ACD≌△BDC(SSS )∴∠CAD=∠DBC(全等三角形对应角相等)例9、如图,在△ABC 和△ADE 中,AB =AC ,AD =AE ,BD =CE ,求证:∠BAD =∠CAE.【答案与解析】证明:在△ABD 和△ACE 中,∴△ABD ≌△ACE (SSS )∴∠BAD =∠CAE (全等三角形对应角相等).【总结升华】把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的判定和性质. 要证∠BAD =∠CAE ,先找出这两个角所在的三角形分别是△BDA 和△CAE ,然后证这两个三角形全等.题型五.直角三角形全等的判定“HL ”例10.如图,AB ⊥BD ,CD ⊥BD ,AD =BC ,则能直接判断Rt △ABD ≌Rt △CDB 的理由是( )()AD BC AC BDCD DC ì=ï=íï=î公共边AB AC AD AEBD CE =ìï=íï=îA.HL B.ASA C.SAS D.SSS【分析】由“HL”可证Rt△ABD和Rt△CDB.【解答】解:∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(HL),故选:A.【点评】本题考查了直角三角形全等的判定,掌握直角三角形的判定方法是本题的关键.【变式1】.如图,在Rt△ABC和Rt△DEF中,∠C=∠F=90°,AC=DF,只需补充条件 ,就可以根据“HL”得到Rt△ABC≌Rt△DEF.【分析】根据直角三角形全等的判定方法解决此题.【解答】解:补充条件:AB=DE.在Rt△ABC和Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL).故答案为:AB=DE.【点评】本题主要考查直角三角形全等的判定,熟练掌握直角三角形全等的判定方法是解决本题的关键.【变式2】如图,Rt△ABC和Rt△EDF中,BC∥DF,在不添加任何辅助线的情况下,请你添加一个条件 ,使Rt△ABC和Rt△EDF全等.【分析】根据全等三角形的判定解答即可.【解答】解:∵Rt△ABC和Rt△EDF中,∴∠BAC=∠DEF=90°,∵BC∥DF,∴∠DFE=∠BCA,∴添加AB=ED,在Rt△ABC和Rt△EDF中,∴Rt△ABC≌Rt△EDF(AAS),故答案为:AB=ED(答案不唯一).【点评】此题考查全等三角形的判定,关键是根据全等三角形的判定方法解答.题型六.全等三角形的判定与性质例11.(2022•南通模拟)如图,在△ABC中,AB=AC,AD⊥BD,AE⊥EC,垂足分别为D,E,BD,CE 相交于点O,且∠BAE=∠CAD.(1)求证:△ABD≌△ACE;(2)若∠BOC=140°,求∠OBC的度数.【分析】(1)由“AAS”可证△ABD≌△ACE;(2)由全等三角形的性质可得∠ABD=∠ACE,由等腰三角形的性质可得∠ABC=∠ACB,即可求解.【解答】(1)证明:∵∠BAE=∠CAD,∴∠BAD=∠CAE,∵AD⊥BD,AE⊥EC,∴∠ADB=∠AEC=90°,在△ABD和△ACE中,,∴△ABD≌△ACE(AAS);(2)解:∵△ABD≌△ACE,∴∠ABD=∠ACE,∵AB=AC,∴∠ABC=∠ACB,∴∠OBC=∠OCB,∵∠BOC=140°,∴∠OBC=∠OBC=20°.【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,证明三角形全等是解题的关键.【变式1】.如图,已知AB=CB,AD=CD.求证:∠A=∠C.【分析】连接BD,利用边边边证明△ABD≌△CBD,由全等三角形的性质即可求解.【解答】证明:连接BD,在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),∴∠A=∠C.【点评】此题主要考查了全等三角形的性质与判定,此题主要利用边边边判定三角形全等.【变式2】如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAD=∠CAE.求证:∠ABD=∠ACE.【分析】由“SAS”可证△ABD≌△ACE,可得结论.【解答】证明:在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE.【点评】本题考查了全等三角形的判定和性质,证明三角形全等是解题的关键.题型7.全等三角形的应用例12.如图,要测量河两岸相对两点A、B间的距离,在河岸BM上截取BC=CD,作ED⊥BD交AC的延长线于点E,垂足为点D.(DE≠CD)(1)线段 的长度就是A、B两点间的距离(2)请说明(1)成立的理由.【分析】(1)根据题意确定DE=AB;(2)根据已知条件得到两个三角形全等,利用全等三角形的性质得到结论即可.【解答】解:(1)线段DE的长度就是A、B两点间的距离;故答案为:DE;(2)∵AB⊥BC,DE⊥BD∴∠ABC=∠EDC=90°又∵∠ACB=∠DCE,BC=CD∴△ABC≌△CDE(ASA)∴AB=DE.【点评】本题考查了全等三角形的应用,是基础题,熟练掌握全等三角形的判定方法并确定出全等三角形是解题的关键.【变式】为了解学生对所学知识的应用能力,某校老师在七年级数学兴趣小组活动中,设置了这样的问题:因为池塘两端A,B的距离无法直接测量,请同学们设计方案测量A,B的距离.甲、乙两位同学分别设计出了如下两种方案:甲:如图①,先在平地上取一个可以直接到达点A,B的点O,连接AO并延长到点C,连接BO并延长到点D,使CO=AO,DO=BO,连接DC,测出DC的长即可.乙:如图②,先确定直线AB,过点B作直线BE,在直线BE上找可以直接到达点A的一点D,连接DA,作DC=DA,交直线AB于点C,最后测量BC的长即可.(1)甲、乙两同学的方案哪个可行?(2)请说明方案可行的理由.【分析】(1)甲同学作出的是全等三角形,然后根据全等三角形对应边相等测量的,所以是可行的;(2)甲同学利用的是“边角边”,乙同学的方案只能知道两三角形的两边相等,不能判定△ABD与△CBD全等,故方案不可行.【解答】解:(1)甲同学的方案可行;(2)甲同学方案:在△ABO和△CDO中,,∴△ABO≌△CDO(SAS),∴AB=CD;乙同学方案:在△ABD和△CBD中,只能知道DC=DA,DB=DB,不能判定△ABD与△CBD全等,故方案不可行.【点评】本题主要考查了全等三角形的应用,熟练掌握全等三角形判定的“SAS”定理是解决问题的关键.一.选择题(共8小题)1.(2022秋•南京期末)已知:如图,AC=DF,BC=EF,下列条件中,不能证明△ABC≌DEF的是( )A.AC∥DF B.AD=BEC.∠CBA=∠FED=90°D.∠C=∠F【分析】根据三角形的判定定理,结合题目所给条件进行判定即可.【解答】解:A、由AC∥DF可得∠A=∠FDB,再加上条件AC=DF,BC=EF,不能证明△ABC≌DEF,故此选项正确;B、AD=BE可得AB=DE,再加上条件AC=DF,BC=EF,可利用SSS定理证明△ABC≌DEF,故此选项错误;C、∠CBA=∠FED=90°可利用HL定理证明△ABC≌DEF,故此选项错误;D、∠C=∠F可利用SAS定理证明△ABC≌DEF,故此选项错误;故选:A.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2.(2022秋•启东市校级月考)不能判定两个直角三角形全等的条件是( )A.两个锐角对应相等B.两条直角边对应相等C.斜边和一锐角对应相等D.斜边和一条直角边对应相等【分析】直角三角形全等的判定方法:HL,SAS,ASA,SSS,AAS,做题时要结合已知条件与全等的判定方法逐一验证.【解答】解:A、全等三角形的判定必须有边的参与,故本选项错误,符合题意;B、符合判定SAS,故本选项正确,不符合题意;C、符合判定AAS,故本选项正确,不符合题意;D、符合判定HL,故本选项正确,不符合题意.故选:A.【点评】本题考查直角三角形全等的判定方法,判定两个直角三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3.(2022秋•阜宁县期末)如图,已知∠ABC=∠BAD,再添加一个条件,仍不能判定△ABC≌△BAD的是( )A.AC=BD B.∠C=∠D C.AD=BC D.∠ABD=∠BAC【分析】根据已知可以得到∠ABC=∠BAD,AB=BA,然后再分别判断各个选项中的条件能否使得△ABC ≌△BAD即可.【解答】解:∵∠ABC=∠BAD,AB=BA,∴若添加条件AC=BD,无法判定△ABC≌△BAD,故选项A符合题意;若添加∠C=∠D,则△ABC≌△BAD(AAS),故选项B不符合题意;若添加AD=BC,则△ABC≌△BAD(SAS),故选项C不符合题意;若添加∠ABD=∠BAC,则△ABC≌△BAD(ASA),故选项D不符合题意;故选:A.【点评】本题考查全等三角形的判定,解答本题的关键是明确全等三角形的判定方法:SSS、SAS、ASA、AAS.4.(2022秋•江都区期末)如图,已知AB=AD.下列条件中,不能作为判定△ABC≌△ADC条件的是( )A.BC=DC B.∠BAC=∠DAC C.∠B=∠D=90°D.∠ACB=∠ACD【分析】利用全等三角形的判定定理:SSS、SAS、ASA、AAS、HL进行分析即可.【解答】解:A、AB=AD,BC=DC,再加上公共边AC=AC能判定△ABC≌△ADC,故此选项不符合题意;B、AB=AD,∠BAC=∠DAC再加上公共边AC=AC可利用SAS判定△ABC≌△ADC,故此选项不合题意;C、AB=AD,∠B=∠D=90°再加上公共边AC=AC能判定△ABC≌△ADC,故此选项不合题意;D、AB=AD,∠ACB=∠ACD再加上公共边AC=AC不能判定△ABC≌△ADC,故此选项合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.(2022秋•扬州期中)一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是( )A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了D.带1、4或2、3或3、4去均可【分析】带1、4可以用“角边角”确定三角形;带3、4也可以用“角边角”确定三角形.【解答】解:带3、4可以用“角边角”确定三角形,带1、4可以用“角边角”确定三角形,故选:C.【点评】本题考查了全等三角形判定的应用;确定一个三角形的大小、形状,可以用全等三角形的几种判定方法.做题时要根据实际问题找条件.6.(2022秋•宿豫区期末)如图,小明和小丽用下面的方法测量位于池塘两端的A、B两点的距离;先取一个可以直接到达点A的点C,量得AC的长度,再沿AC方向走到点D处,使得CD=AC;然后从点D 处沿着由点B到点A的方向,到达点E处,使得点E、B、C在一条直线上,量得的DE的长度就是A、B 两点的距离.在解决这个问题中,关键是利用了△DCE≌△ACB,其数学依据是( )A.SAS B.ASA C.AAS D.ASA或AAS【分析】直接利用全等三角形的判定方法,进而分析得出答案.【解答】解:由题意可得:AC=DC,∠ACB=∠DCE,∠ABC=∠DEC,∠BAC=∠EDC,故由AC=DC,∠ACB=∠DCE,∠ABC=∠DEC或AC=DC,∠ACB=∠DCE,∠BAC=∠EDC都可以得出△DCE≌△ACB,故其数学依据是ASA或AAS.故选:D.【点评】此题主要考查了全等三角形的应用,正确掌握全等三角形的判定方法是解题关键.7.(2022秋•高邮市期末)如图,已知∠1=∠2,若用“AAS”证明△ACB≌△BDA,还需加上条件( )A.AD=BC B.BD=AC C.∠D=∠C D.∠DAB=∠CBA【分析】根据图形找出公共边AB=BA,再根据全等三角形的判定定理AAS得出即可.【解答】解:A.AD=BC,BA=AB,∠1=∠2不符合全等三角形的判定定理,不能推出△ACB≌△BDA,故本选项不符合题意;B.AB=BA,∠1=∠2,AC=BD,符合全等三角形的判定定理SAS,不符合AAS定理,故本选项不符合题意;C.∠D=∠C,∠1=∠2,AB=BA,符合全等三角形的判定定理AAS,能推出△ACB≌△BDA,故本选项符合题意;D.∠DAB=∠CBA,AB=BA,∠1=∠2,符合全等三角形的判定定理ASA,能推出△ACB≌△BDA,故本选项不符合题意;故选:C.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理是SAS,ASA,AAS,SSS,两直角三角形全等还有HL.8.(2022秋•邳州市期末)如图,AB=AC,点D、E分别在AB、AC上,补充一个条件后,仍不能判定△ABE≌△ACD的是( )A.∠B=∠C B.AD=AE C.BE=CD D.∠AEB=∠ADC【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A.∠A=∠A,AB=AC,∠B=∠C,符合全等三角形的判定定理ASA,能推出△ABE≌△ACD,故本选项不符合题意;B.AD=AE,∠A=∠A,AB=AC,符合全等三角形的判定定理SAS,能推出△ABE≌△ACD,故本选项不符合题意;C.AB=AC,BE=CD,∠A=∠A,不符合全等三角形的判定定理,不能推出△ABE≌△ACD,故本选项符合题意;D.∠A=∠A,∠AEB=∠ADC,AB=AC,符合全等三角形的判定定理AAS,能推出△ABE≌△ACD,故本选项不符合题意;故选:C.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.二.填空题(共4小题)9.(2022秋•泗洪县期中)如图,在Rt△ABC和Rt△DEF中,∠C=∠F=90°,AC=DF,只需补充条件 AB=DE ,就可以根据“HL”得到Rt△ABC≌Rt△DEF.【分析】根据直角三角形全等的判定方法解决此题.【解答】解:补充条件:AB=DE.在Rt△ABC和Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL).故答案为:AB=DE.【点评】本题主要考查直角三角形全等的判定,熟练掌握直角三角形全等的判定方法是解决本题的关键.10.(2022秋•启东市校级月考)如图,在△ABC和△DEF中,∠A=∠D=90°,AC=DE,若要用“斜边直角边(H.L.)”直接证明Rt△ABC≌Rt△DEF,则还需补充条件: BC=EF .【分析】此题是一道开放型题目,根据直角三角形的全等判定解答即可.【解答】解:在Rt△ABC和Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL),故答案为:BC=EF【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,HL,题目比较典型,难度适中.11.(2022秋•江宁区校级月考)如图,在Rt△ABC与Rt△DCB中,已知∠A=∠D=90°,请你添加一个条件(不添加字母和辅助线),使Rt△ABC≌Rt△DCB,你添加的条件是 AB=DC或AC=DB ,理由是 “HL” (填简称).【分析】根据直角三角形全等的判定方法,即可解答.【解答】解:∵∠A=∠D=90°,BC=BC,∴再添加:AB=DC,∴Rt△ABC≌Rt△DCB(HL),∵∠A=∠D=90°,BC=BC,∴再添加:AC=BD,∴Rt △ABC ≌Rt △DCB (HL ),故答案为:AB =DC 或AC =BD ,HL .【点评】本题考查了直角三角形全等的判定,熟练掌握直角三角形全等的判定方法是解题的关键.12.(2022秋•江阴市期中)如图,在△ABC 中,AB =3,AC =5,AD 是边BC 上的中线,AD =2,则△ACB 的面积是 6 .【分析】延长AD 到E ,使DE =AD ,连接BE ,证△ADC ≌△EDB (SAS ),得BE =AC =5,∠CAD =∠E ,再由勾股定理的逆定理证∠EAB =90°,即可解决问题.【解答】解:如图,延长AD 到E ,使DE =AD ,连接BE ,∵D 为BC 的中点,∴CD =BD ,在△ADC 与△EDB 中,,∴△ADC ≌△EDB (SAS ),∴BE =AC =5,∠CAD =∠E ,又∵AE =2AD =4,AB =3,∴BE 2=AE 2+AB 2,∴△ABE 是直角三角形,∠EAB =90°,则S △ACB =2S △ABD =2××2×3=6,故答案为:6.【点评】此题考查了全等三角形的判定与性质、勾股定理的逆定理以及三角形面积等知识,熟练掌握全等三角形的判定与性质是解题的关键.三.解答题(共5小题)13.(2022秋•泗阳县期中)王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B 分别与木墙的顶端重合.(1)求证:△ADC≌△CEB;(2)求两堵木墙之间的距离.【分析】(1)根据题意可得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,进而得到∠ADC=∠CEB=90°,再根据等角的余角相等可得∠BCE=∠DAC,再证明△ADC≌△CEB即可;(2)利用全等三角形的性质进行解答.【解答】(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC在△ADC和△CEB中,∴△ADC≌△CEB(AAS);(2)解:由题意得:AD=2×3=6(cm),BE=7×2=14(cm),∵△ADC≌△CEB,∴EC=AD=6cm,DC=BE=14cm,∴DE=DC+CE=20(cm),答:两堵木墙之间的距离为20cm.【点评】此题主要考查了全等三角形的应用,关键是正确找出证明三角形全等的条件.14.(2022秋•鼓楼区期中)如图,点B、C、E、F在同一条直线上,AF、DE相交于点G,∠B=∠C=∠AGD=90°,BF=CD.求证:AF=DE.。
1.3.1探索三角形全等的条件
“SSS”. 简写为:“边边边”或“SSS”
ቤተ መጻሕፍቲ ባይዱ
A
E
用数学语 B
C
F
G
言表述: 在 ABC 和 EFG中
AB=EF BC=FG
AC=EG
ABC ≌ EFG(SSS)
例:已知:如图,在△ABC中, AB=AC,AD是中线 求证:△ABD≌△ ACD .
分析:要证明△ABD≌△ACD,首先看这两个三角形
的三条边是否对应相等.
A
B
C
D
动手做一做 准备几根硬纸条
(1)取出三根硬纸条钉成一个三角形,你能 拉动其中两边,使这个三角形的形状发生变化 吗? (2)取出四根硬纸条钉成一个四边形,拉动 其中两边,这个四边形的形状改变了吗?钉成 一个五边形,又会怎么样? (3)上面的现象说明了什么?
三角形的框架,它的大小和形状是固定不 变的,三角形的这个性质叫做三角形的稳 定性。
探索三角形全等的条件
你如
能果 说给
①三角;
出出 有三
②三边;
哪个 几条
③两边一角;
种件 可画
④两角一边.
能三
的角
情形
况,
?
探索三角形全等的条件
三个条件 --三个角 1.已知三角形的三个角分别30°,60°,90°
3000
60o 60o 60o
结论:三个内角对应相等的两个三角形
不一定全等.
三角形全等判定定理一: 三边分别相等的两个三角形全等 , 简写为“边边边”或
(3)边边边公理:三边对应相等的两个三 角形全等,简写为“边边边”或“SSS”.
(4)三角形具有稳定性.
你还有什么想法吗?
课后作业
专题13探索三角形全等的条件-2021-2022学年八年级数学上(解析版)【苏科版】
2021-2022学年八年级数学上册尖子生同步培优题典【苏科版】专题1.3探索三角形全等的条件姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020秋•鼓楼区期末)在△ABC和△DEF中,∠A=∠D,AB=DE,则添加下列条件不能使△ABC≌△DEF成立的是()A.∠B=∠E B.∠C=∠F C.AC=DF D.BC=EF【分析】利用判定两个三角形全等的方法SSS、SAS、ASA、AAS、HL进行分析.【解析】A、添加∠B=∠E,可利用AAS定理判定△ABC≌△DEF,故此选项不合题意;B、添加∠C=∠F,可利用AAS定理判定△ABC≌△DEF,故此选项不合题意;C、添加AC=DF,可利用SAS定理判定△ABC≌△DEF,故此选项不合题意;D、添加BC=EF,不能判定△ABC≌△DEF,故此选项符合题意;故选:D.2.(2020秋•宝应县期末)如图,点B、E、C、F在一条直线上,AB∥DE,AC∥DF,下列条件中,能判断△ABC≌△DEF的是()A.BE=CE B.∠A=∠D C.EC=CF D.BE=CF【分析】利用判定两个三角形全等的方法SSS、SAS、ASA、AAS进行分析.【解析】∵AB∥DE,AC∥DF,∴∠B=∠DEF,∠F=∠ACB,A、添加BE=CE,不能判定△ABC≌△DEF,故此选项不合题意;B、添加∠A=∠D,不能判定△ABC≌△DEF,故此选项不合题意;C、添加EC=CF,不能判定△ABC≌△DEF,故此选项不合题意;D、添加BE=CF,可利用ASA定理判定△ABC≌△DEF,故此选项符合题意;故选:D.3.(2020秋•泰兴市期末)如图,用纸板挡住了三角形的一部分,小明根据所学知识很快就画出了一个与原来完全一样的三角形,他的依据是()A.ASA B.SAS C.AAS D.SSS【分析】根据全等三角形的判定定理ASA得出即可.【解析】如图,只要量出AB的长和∠A和∠B的度数,再画出一个三角形DEF,使EF=AB,∠E=∠A,∠F=∠B即可,故选:A.4.(2020秋•常州期末)如图,已知AC=BD,添加下列一个条件后,仍无法判定△ABC≌△BAD的是()A.∠ABC=∠BAD B.∠C=∠D=90°C.∠CAB=∠DBA D.CB=DA【分析】根据全等三角形的判定方法即可一一判断.【解析】在△ABC与△BAD中,AC=BD,AB=BA,A、SSA无法判断三角形全等,故本选项符合题意;B、根据HL即可判断三角形全等,故本选项不符合题意;C、根据SAS即可判断三角形全等,故本选项不符合题意;D、根据SSS即可判断三角形全等,故本选项不符合题意;故选:A.5.(2020秋•南京期末)在△ABC 中,∠A =60°,∠B =50°,AB =8,下列条件能得到△ABC ≌△DEF 的是( )A .∠D =60°,∠E =50°,DF =8B .∠D =60°,∠F =50°,DE =8C .∠E =50°,∠F =70°,DE =8D .∠D =60°,∠F =70°,EF =8【分析】利用全等三角形的性质解决问题即可.【解析】∵△ABC ≌△DEF ,∴∠B =∠E =50°,∠A =∠D =60°,AB =DE =8,∴∠F =180°﹣∠E ﹣∠D =70°,故选:C .6.(2020秋•东台市期末)如图,点E 、F 在AC 上,AD =BC ,DF =BE ,要使△ADF ≌△CBE ,还需要添加一个条件是( )A .AD ∥BCB .DF ∥BEC .∠A =∠CD .∠D =∠B【分析】全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,根据以上定理逐个进行判断即可.【解析】∠D =∠B ,理由是:∵在△ADF 和△CBE 中{AD =BC ∠D =∠B DF =BE,∴△ADF ≌△CBE (SAS ),即选项D 正确;具备选项A 、选项B ,选项C 的条件都不能推出两三角形全等,故选:D .7.(2020秋•顺城区期末)如图,已知∠ABC =∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A =∠DB .AB =DC C .∠ACB =∠DBCD .AC =BD【分析】利用全等三角形的判定定理进行分析即可.【解析】A 、添加∠A =∠D 可利用AAS 判定△ABC ≌△DCB ,故此选项不合题意;B 、添加AB =DC 可利用SAS 判定△ABC ≌△DCB ,故此选项不合题意;C 、添加∠ACB =∠DBC 可利用ASA 判定△ABC ≌△DCB ,故此选项不合题意;D 、添加AC =BD 不能判定△ABC ≌△DCB ,故此选项符合题意;故选:D .8.(2020秋•东海县期末)如图,已知∠ABC =∠DCB ,下列条件中不能使△ABC ≌△DCB 的是( )A .AB =DC B .AC =DB C .∠1=∠2D .∠A =∠D【分析】由两边及其夹角分别对应相等的两个三角形全等,可判定A 正确;由两角及其夹边分别对应相等的两个三角形全等,可判定C 正确;由两角及其中一个角的对边对应相等的两个三角形全等,即可判定D 正确.【解析】A 、在△ABC 和△DCB 中,{AB =DC ∠ABC =∠DCB BC =CB,∴△ABC ≌△DCB (SAS );故本选项能使△ABC ≌△DCB ;B 、本选项不能使△ABC ≌△DCB ;C 、在ABC 和△DCB 中,{∠ABC =∠DCB BC =CB ∠2=∠1,∴△ABC ≌△DCB (ASA );故本选项能使△ABC ≌△DCB ;D 、在△ABC 和△DCB 中,{∠ABC =∠DCB ∠A =∠D BC =CB ,∴△ABC ≌△DCB (AAS );故本选项能使△ABC ≌△DCB .故选:B .9.(2020秋•邹城市期末)如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【解析】图甲不符合三角形全等的判定定理,即图甲和△ABC不全等;图乙符合SAS定理,即图乙和△ABC全等;图丙符合AAS定理,即图丙和△ABC全等;故选:B.10.(2020秋•海州区期末)在△ABC中和△DEF中,已知BC=EF,∠C=∠F,增加下列条件后还不能判定△ABC≌△DEF的是()A.AC=DF B.AB=DE C.∠A=∠D D.∠B=∠E【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理进行判断即可.【解析】A、根据SAS即可推出△ABC≌△DEF,故本选项错误;B、不能推出△ABC≌△DEF,故本选项正确;C、根据AAS即可推出△ABC≌△DEF,故本选项错误;D、根据ASA即可推出△ABC≌△DEF,故本选项错误;故选:B.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020秋•丹阳市期末)如图,已知点B、E、F、C在同一直线上,BE=CF,AF=DE,则添加条件∠AFB=∠DEC或AB=DC,可以判断△ABF≌△DCE.【分析】先求出BF =CE ,然后根据全等三角形的判定方法确定添加的条件即可.【解析】∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE ,又∵AF =DE ,∴若添加∠AFB =∠DEC ,可以利用“SAS ”证明△ABF ≌△DCE ,若添加AB =DC ,可以利用“SSS ”证明△ABF ≌△DCE ,所以,添加的条件为∠AFB =∠DEC 或AB =DC .故答案为:∠AFB =∠DEC 或AB =DC .12.(2020秋•淮安期末)如图,∠ABC =∠DCB ,只需补充条件 ∠A =∠D ,就可以根据“AAS ”得到△ABC ≌△DCB .【分析】根据AAS 的判定方法可得出答案.【解析】补充条件∠A =∠D .理由:在△ABC 和△DCB 中,{∠A =∠D∠ABC =∠DCB BC =CB,所以△ABC ≌△DCB (AAS ).故答案为:∠A =∠D .13.(2020秋•江都区期末)如图,点A ,B ,C 在同一条直线上,∠A =∠DBE =∠C =90°,请你只添加一个条件,使得△DAB ≌△BCE .你添加的条件是 DB =BE (答案不唯一) .(要求:不再添加辅助线,只需填一个答案即可)【分析】此题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可.【解析】添加的条件是DB =BE ,理由是:∵∠A =∠DBE =90°,∴∠D +∠ABD =90°,∠ABD +∠CBE =90°,∴∠D =∠CBE ,在△DAB 和△BCE 中,{∠D =∠CBE ∠A =∠C DB =BE ,∴△DAB ≌△BCE (AAS ),故答案为:DB =BE (答案不唯一).14.(2020秋•溧水区期中)如图,AB =DC ,AD 、BC 相交于点O ,请添加一个条件 ∠A =∠D ,使得△ABO ≌△DCO .【分析】根据题意和图形,可以得到AB =DC ,∠AOB =∠DOC ,然后即可写出使得△ABO ≌△DCO 需要条件的条件,注意本题答案不唯一.【解析】由题意可得,AB =DC ,∠AOB =∠DOC ,∴若添加条件∠A =∠D ,则△ABO ≌△DCO (AAS ),若添加条件∠B =∠C ,则△ABO ≌△DCO (AAS ),故答案为:∠A =∠D .15.(2020秋•南京期中)我们把顶点在小正方形顶点上的三角形叫做格点三角形,在如图所示的方格纸中,除了格点三角形ABC 外,可画出与△ABC 全等的格点三角形共有 15 个.【分析】用SSS 判定两三角形全等.认真观察图形可得答案.【解析】用SSS 判定两三角形全等,所以共有16个全等三角形,除去△ABC 外有15个与△ABC 全等的三角形.故答案为:15. 16.(2020秋•南京期中)如图,点C 在AE 上,BC =DC ,∠BCE =∠DCE ,则根据 SAS ,就可以判定△ABC ≌△ADC .【分析】根据全等三角形的判定定理SAS 证得△ABC ≌△ADC .【解析】∵∠BCE =∠DCE ,∴∠ACB =∠ACD ,在△ABC 与△ADC 中,{BC =DC ∠ACB =∠ACD AC =AC,∴△ABC ≌△ADC (SAS ).故答案是:SAS .17.(2020秋•前郭县期末)如图,点E ,F 在AC 上,AD =BC ,DF =BE ,要使△ADF ≌△CBE ,需添加一个条件是 ∠D =∠B .(只需添加一个条件即可)【分析】利用全等三角形的判定与性质进而得出当∠D=∠B时,△ADF≌△CBE.【解析】当∠D=∠B时,在△ADF和△CBE中∵{AD=BC ∠D=∠B DF=BE,∴△ADF≌△CBE(SAS),故答案为:∠D=∠B.(答案不唯一)18.(2020秋•镇江期中)如图,在△ABC和△DEF中,B、E、C、F在一条直线上,AB∥DE,AB=DE,添加一个条件:∠A=∠D或∠ACB=∠DFE或BC=EF,使得△ABC≌△DEF.【分析】根据AB∥DE,得出∠B=∠DEF,进而利用全等三角形的判定解答即可.【解析】∵AB∥DE,∴∠B=∠DEF,∵AB=DE,添加∠A=∠D,利用ASA得出△ABC≌△DEF;添加∠ACB=∠DFE,利用AAS得出△ABC≌△DEF;添加BC=EF,利用SAS得出△ABC≌△DEF;故答案为:∠A=∠D或∠ACB=∠DFE或BC=EF.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2021•涟水县模拟)如图,点A、F、C、D在同一各直线上.AB∥DE.AB=DE,AF=DC.求证:△ABC≌△DEF.【分析】根据平行线的性质得出∠A =∠D ,求出AC =DF ,再根据全等三角形的判定定理推出即可.【解答】证明:∵AB ∥DE ,∴∠A =∠D ,∵AF =DC ,∴AF +CF =DC +CF ,即AC =DF ,在△ABC 和△DEF 中{AB =DE ∠A =∠D AC =DF,∴△ABC ≌△DEF (SAS ).20.(2021•海州区校级一模)如图,在△ABC 中,AD 是BC 边上的中线,E 是AB 边上一点,过点C 作CF ∥AB 交ED 的延长线于点F .求证:△BDE ≌△CDF .【分析】根据平行线的性质得到∠B =∠FCD ,∠BED =∠F ,由AD 是BC 边上的中线,得到BD =CD ,于是得到结论.【解答】证明:∵CF ∥AB ,∴∠B =∠FCD ,∠BED =∠F ,∵AD 是BC 边上的中线,∴BD =CD ,在△BDE 和△CDF 中,{∠B =∠FCD ∠BED =∠F BD =CD ,∴△BDE ≌△CDF (AAS ).21.(2020秋•南京期末)如图,四边形ABCD 的对角线AC 、BD 相交于点O ,OA =OB ,OC =OD .求证:(1)AB ∥CD ;(2)△ABC ≌△BAD .【分析】(1)根据等腰三角形的性质得出∠OAB =∠OBA ,∠OCD =∠ODC ,求出∠OAB =∠OCD ,根据平行线的判定推出即可;(2)求出AC =BD ,根据SAS 推出即可.【解答】(1)证明:∵OA =OB ,OC =OD ,∴∠OAB =∠OBA ,∠OCD =∠ODC ,∵∠COD =∠AOB ,∠OAB +∠OBA +∠AOB =180°,∠OCD +∠ODC +∠COD =180°,∴∠OAB =∠OBA =∠OCD =∠ODC ,即∠OAB =∠OCD ,∴AB ∥CD ;(2)∵OA =OB ,OC =OD ,∴AC =BD ,在△ABC 和△BAD 中,{AC =BD ∠CAB =∠DBA AB =BA,∴△ABC ≌△BAD (SAS ).22.(2020秋•宜兴市月考)如图,点B 、F 、C 、E 在同一条直线上,点A 、D 在直线BC 的异侧,AB =DE ,AC =DF ,BF =EC .求证:△ABC ≌△DEF .【分析】根据BF =EC ,可以得到BC =EF ,然后根据题目中的条件,利用SSS 证明△ABC ≌△DEF 即可.【解答】证明:∵BF =EC ,∴BF +FC =EC +FC ,即BC =EF .在△ABC 和△DEF 中,{AB =DE AC =DF BC =EF,∴△ABC ≌△DEF (SSS ).23.(2020•泸西县模拟)如图,已知DE ∥AB ,∠DAE =∠B ,DE =2,AE =4,C 为AE 的中点. 求证:△ABC ≌△EAD .【分析】根据中点的定义,再根据AAS 证明△ABC ≌△EAD 解答即可.【解答】证明:∵C 为AE 的中点,AE =4,DE =2,∴AC =12AE =2=DE ,又∵DE ∥AB ,∴∠BAC =∠E , 在△ABC 和△EAD 中,{∠B =∠DAE∠BAC =∠E AC =DE,∴△ABC ≌△EAD (AAS ).24.(2019秋•慈利县期末)如图(1),AB =7cm ,AC ⊥AB ,BD ⊥AB 垂足分别为A 、B ,AC =5cm .点P 在线段AB 上以2cm /s 的速度由点A 向点B 运动,同时,点Q 在射线BD 上运动.它们运动的时间为t (s )(当点P运动结束时,点Q运动随之结束).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,点Q的运动速度为xcm/s,其他条件不变,当点P、Q运动到某处时,有△ACP与△BPQ全等,求出相应的x、t的值.【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.【解析】(1)△ACP≌△BPQ,∵AC⊥AB,BD⊥AB∴∠A=∠B=90°∵AP=BQ=2,∴BP=5,∴BP=AC,在△ACP和△BPQ中,{AP=BQ ∠A=∠B AC=BP,∴△ACP≌△BPQ;∴∠C=∠BPQ,∵∠C+∠APC=90°,∴∠APC+∠BPQ=90°,∴∠CPQ=90°,∴PC⊥PQ;(2)存在x的值,使得△ACP与△BPQ全等,①若△ACP≌△BPQ,则AC=BP,AP=BQ,可得:5=7﹣2t,2t=xt 解得:x=2,t=1;②若△ACP≌△BQP,则AC=BQ,AP=BP,可得:5=xt,2t=7﹣2t解得:x=207,t=74.。
探索三角形全等的条件 苏科版数学八年级上册同步基础达标训练(含答案)
1.3探索三角形全等的条件基础达标训练1.下列条件中,能判断两个直角三角形全等的是()A.有两条边分别相等B.有一个锐角和一条边相等C.有一条斜边相等D.有一直角边和斜边上的高分别相等2.如图,在△ABC和△DEF中,AC=DF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BE=CFC.∠ACB=∠DFE=90°D.∠B=∠DEF3.如图,点E、F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加一个条件是()A.AD∥BC B.DF∥BE C.∠A=∠C D.∠D=∠B4.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带①去B.带②去C.带③去D.带①②去5.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS6.要测量圆形工件的外径,工人师傅设计了如图所示的卡钳,点O为卡钳两柄交点,且有OA=OB=OC=OD,如果圆形工件恰好通过卡钳AB,则此工件的外径必是CD之长了,其中的依据是全等三角形的判定条件()A.SSS B.SAS C.ASA D.AAS7.如图,△ABC中,AD⊥BC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AB=AC;(3)∠B=∠C;(4)AD是△ABC的一条角平分线.其中正确的有()A.1个B.2个C.3个D.4个8.下列两个三角形中,一定全等的是()A.两个等腰三角形B.两个等腰直角三角形C.两个等边三角形D.两个周长相等的等边三角形9.如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为4,则BE=()A.1B.2C.3D.410.下列结论错误的是()A.全等三角形对应边上的中线相等B.两个直角三角形中,两个锐角相等,则这两个三角形全等C.全等三角形对应边上的高相等D.两个直角三角形中,斜边和一个锐角对应相等,则这两个三角形全等11.如图,已知点C是∠AOB的平分线上一点,点P、P′分别在边OA、OB上.如果要得到OP=OP′,需要添加以下条件中的某一个即可,请你写出所有可能的结果的序号为()①∠OCP=∠OCP′;②∠OPC=∠OP′C;③PC=P′C;④PP′⊥OC.A.①②B.④③C.①②④D.①④③12.如图,∠BAC=∠ABD,请你添加一个条件:,能使△ABD≌△BAC(只添一个即可).13.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=°.14.如图,AB=6cm,AC=BD=4cm.∠CAB=∠DBA,点P在线段AB上以2cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t (s).设点Q的运动速度为xcm/s,若使得△ACP与△BPQ全等,则x的值为.15.如图,∠A=∠B=90°,AB=60,E,F分别为线段AB和射线BD上的一点,若点E 从点B出发向点A运动,同时点F从点B出发向点D运动,二者速度之比为3:7,运动到某时刻同时停止,在射线AC上取一点G,使△AEG与△BEF全等,则AG的长为.16.如图,点B、F、C、E在同一条直线上,点A、D在直线BC的异侧,AB=DE,AC=DF,BF=EC.求证:△ABC≌△DEF.17.已知:如图,AC,DB相交于点O,AB=DC,∠ABO=∠DCO.求证:(1)△ABO≌△DCO;(2)∠OBC=∠OCB.18.如图,△ABC≌△DEF,AM、DN分别是△ABC和△DEF的中线.求证:AM=DN.19.如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD.20.如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.21.如图,点C,F,E,B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD 与AB之间的关系,并证明你的结论.22.如图,已知点A、E、F、D在同一条直线上,AE=DF,BF∥CE,BF=CE,求证:AB∥CD.23.如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.求证:(1)△ABC≌△DEF;(2)BC∥EF.24.已知,如图,AB=AE,AB∥DE,∠D=∠ACB.(1)求证:△ABC≌△EAD;(2)已知:DE=3,AB=7,求CE的长.25.如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点O.(1)求证:△DBC≌△ECB;(2)求证:OB=OC.26.如图,点B、F、C、E在同一直线上,且BF=CE,∠B=∠E,AC,DF相交于点O,且OF=OC,求证:(1)△ABC≌△DEF;(2)OA=OD.参考答案1.解:A、两边分别相等,但是不一定是对应边,不能判定两直角三角形全等,故此选项不符合题意;B、一条边和一锐角对应相等,不能判定两直角三角形全等,故此选项不符合题意;C、有一条斜边相等,两直角边不一定对应相等,不能判定两直角三角形全等,故此选项不符合题意;D、有一条直角边和斜边上的高对应相等的两个直角三角形全等,故此选项符合题意;故选:D.2.解:∵AC=DF,AB=DE,∴添加∠A=∠D,可利用SAS证明△ABC≌△DEF,故A正确;∴添加BE=CF,得出BC=EF,利用SSS证明△ABC≌△DEF,故B正确;∴添加∠ACB=∠DFE=90°,利用HL证明Rt△ABC≌Rt△DEF,故C正确;故选:D.3.解:∠D=∠B,理由是:∵在△ADF和△CBE中,∴△ADF≌△CBE(SAS),即选项D正确;具备选项A、选项B,选项C的条件都不能推出两三角形全等,故选:D.4.解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故选:C.5.解:根据作图过程可知O′C′=OC,O′B′=OB,C′D′=CD,∴△OCD≌△O′C′D′(SSS).故选D.6.解:如图,连接AB、CD,在△ABO和△DCO中,,∴△ABO≌△DCO(SAS),∴AB=CD.故选:B.7.解:∵AD=AD、∠ADB=∠ADC、BD=CD ∴(1)△ABD≌△ACD正确;∴(2)AB=AC正确;(3)∠B=∠C正确;∠BAD=∠CAD∴(4)AD是△ABC的角平分线.故选:D.8.解:∵两个等腰三角形不一定全等,∴选项A不正确;∵两个等腰直角三角形一定相似,不一定全等,∴选项B不正确;∵两个等边三角形一定相似,不一定全等,∴选项C不正确;∵两个周长相等的等边三角形的边长相等,∴两个周长相等的等边三角形一定全等,∴选项D正确;故选:D.9.解:如图,过B点作BF⊥CD,与DC的延长线交于F点,∵∠ABC=∠CDA=90°,BE⊥AD,∴四边形EDFB是矩形,∠EBF=90°,∴∠ABE=∠CBF,∵在△BCF和△BAE中,∴△BCF≌△BAE(ASA),∴BE=BF,∴四边形EDFB是正方形,∴S四边形ABCD=S正方形BEDF=4,∴BE==2.故选:B.10.解:A、∵△ABC≌△DEF,∴AB=DE,∠B=∠E,BC=EF,∵AM是△ABC的中线,DN是△DEF中线,∴BC=2BM,EF=2EN,∴BM=EN,在△ABM和△DEN中∴△ABM≌△DEN(SAS),∴AM=DN,正确,故本选项错误;B、如教师用得含30度的三角板和学生用的含30度的三角板就不全等,错误,故本选项正确;C、∵△ABC≌△DEF,∴AB=DE,∠B=∠E,∵AM是△ABC的高,DN是△DEF的高,∴∠AMB=∠DNE=90°,在△ABM和△DEN中∴△ABM≌△DEN,∴AM=DN,正确,故本选项错误;D、根据AAS即可推出两直角三角形全等,正确,故本选项错误;故选:B.11.解:①若加∠OCP=∠OCP′,则根据ASA可证明△OPC≌△OP′C,得OP=OP′;②若加∠OPC=∠OP′C,则根据AAS可证明△OPC≌△OP′C,得OP=OP′;③若加PC=P′C,则不能证明△OPC≌△OP′C,不能得到OP=OP′;④若加PP′⊥OC,则根据ASA可证明△OPD≌△OP′D,得OP=OP′.故选:C.12.解:∠BAC=∠ABD(已知),AB=BA(公共边),BD=AC,∴△DAB≌△CBA(SAS);故答案为:BD=AC.本题答案不唯一.13.解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故答案为:135.14.解:当△ACP≌△BPQ,∴AP=BQ,∵运动时间相同,∴P,Q的运动速度也相同,∴x=2.当△ACP≌△BQP时,AC=BQ=4,P A=PB,∴t=1.5,∴x==故答案为2或.15.解:设BE=3t,则BF=7t,因为∠A=∠B=90°,使△AEG与△BEF全等,可分两种情况:情况一:当BE=AG,BF=AE时,∵BF=AE,AB=60,∴7t=60﹣3t,解得:t=6,∴AG=BE=3t=3×6=18;情况二:当BE=AE,BF=AG时,∵BE=AE,AB=60,∴3t=60﹣3t,解得:t=10,∴AG=BF=7t=7×10=70,综上所述,AG=18或AG=70.故答案为:18或70.16.证明:∵BF=EC,∴BF+FC=EC+FC,即BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).17.证明:(1)在△ABO和△DCO中,,∴△ABO≌△DCO(AAS);(2)由(1)知,△ABO≌△DCO,∴OB=OC∴∠OBC=∠OCB.18.证明:∵△ABC≌△DEF,∴AB=DE,∠B=∠E,∵AM、DN分别是△ABC和△DEF的中线,∴BM=BC,EN=EF.∴BM=EN.在△ABM和△DEN中,,∴△ABM≌△DEN(SAS),∴AM=DN.19.证明:在△ADB和△BAC中,,∴△ADB≌△BAC(SAS),∴AC=BD.20.证明:在△ABE与△ACD中,∴△ABE≌△ACD(ASA).∴AD=AE.∴BD=CE.21.解:CD∥AB,CD=AB,理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,在△AEB和△CFD中,,∴△AEB≌△CFD(SAS),∴CD=AB,∠C=∠B,∴CD∥AB.22.证明:∵AE=DF,∴AE+EF=DF+EF,即AF=DE,∵BF∥CE,∴∠BF A=∠CED,在△ABF与△CDE中,,∴△ABF≌△CDE,∴∠A=∠D,∴AB∥CD.23.证明:(1)∵AD=CF,∴AC=DF,在△ABC和△ADC中,,∴△ABC≌△DEF(SSS);(2)∵△ABC≌△DEF,∴∠ACB=∠F,∴BC∥EF.24.证明:(1)∵AB∥DE,∴∠CAB=∠E,在△ABC和△EAD中,,∴△ABC≌△EAD(AAS);(2)∵△ABC≌△EAD,∴AC=DE=3,AE=AB=7,∴CE=AE﹣AC=7﹣3=4.25.(1)证明:∵AB=AC,∴∠ECB=∠DBC,在△DBC与△ECB中,∴△DBC≌△ECB(SAS);(2)证明:由(1)知△DBC≌△ECB,∴∠DCB=∠EBC,∴OB=OC.26.证明:(1)∵BF=CE,∴BF+FC=CE+FC,即BC=EF,∵OF=OC,∴∠OCF=∠OFC,在△ABC与△DEF中,∴△ABC≌△DEF(ASA);(2)∵△ABC≌△DEF,∴AC=DF,∵OF=OC,∴AC﹣OC=DF﹣OF,即OA=OD.。
探索三角形全等的思路归纳
探索三角形全等的思路归纳“探索三角形全等的条件”是三角形的重点,又是进一步学习平面几何的基础.在具体应用三角形全等的识别方法时,要认真分析已知条件,仔细观察图形,弄清已具备了那些条件,从中找出已知条件和所要说明的结论之间的内在联系,从而选择适当的说明方法。
现将探索三角形全等的思路归纳如下:一、已知两边对应相等时的思路思路1:找已知两边的夹角对应相等,利用“SAS ”探索.例1.已知:如图1,AB =AC ,AE =AD ,点D 、E 分别在AB 、AC 上.∠B 与∠C 相等吗?为什么?分析:欲知∠B=∠C ,应探索△CAD ≌△BAE. 由于已有AB=AC ,AE =AD ,找一找是否对应边的夹角∠CAD =∠BAE ?它们是公共角. 所以△CAD ≌△BAE ,故∠B 与∠C 相等.思路2:找第三边对应相等,利用SSS 探索.例2.“三月三,放风筝”.图2是小明制作的风筝. 他根据DE = DF , EH = FH ,不用度量,就知道∠DEH =∠DFH. 请你用所学的知识给予证明. 分析:欲知∠DEH =∠DFH ,应探索△DEH ≌△DFH ,为此连结DH. 由于已有DE = DF , EH = FH ,找一找是否第三边DH = DH ?由于它们是公共边,故成立.二、已知有两角对应相等时的思路思路一、找出夹边相等,用(ASA )例3.如图3,在△ABC 中,MN ⊥AC ,垂足为N ,,且MN 平分∠AMC ,△ABM 的周长为9cm,AN=2cm,求△ABC 的周长。
解析:只要求出CM 和AC 的长即得△ABC 的周长,而△AMN ≌△CMN 可实现这一目的。
因为MN 平分∠AMC ,所以∠AMN=∠CMN ,D E F H 图2E D C B A 图1图3因为MN ⊥AC ,所以∠AMNA=∠CMNC=900,这样有两角对应相等,再找出它的夹边对应相等(MN 为公共边)即可。
在△AMN 和△CMN 中AMN CMN MN MN MNA MNC ∠=∠⎧⎪=⎨⎪∠=∠⎩,所以△AMN ≌△CMN (ASA )所以AC=NC ,AM=CM (全等三角形的对应角相等),AN=2cm,所以AC=2AN=4 cm ,而△ABM 的周长为9cm,所以△ABC 的周长为9+4=13 cm 。
1.3 第8课时 探索直角三角形全等的条件—HL2023-2024学年苏科版八年级上册数学
(3)判定一般三角形全等的所有方法对判定两个直角三角形
全等同样适用.
(4)在用一般方法证明直角三角形全等时,因为两个直角三
角形中已具备一对直角相等的条件,故只需找另外两个条件即
可.
合作探究
直角三角形的判定和性质的应用
2.求证:一条直角边相等且另一条直角边上的中线相等的两
个直角三角形全等.
要求:根据给出的Rt△ABC和Rt△A'B'C'(∠C=∠C'=
90°,AC=A'C'),在此图形上用尺规作出BC与B'C'边上的中
线,不写作法,保留作图痕迹,
并据此写出已知、求证和证明过程.
合作探究
解:如图,AD和A'D'就是所要求作的图形.
已知:在Rt△ABC和Rt△A'B'C'中,∠C=∠C'=90°,AC
=A'C',AD与A'D'分别为BC与B'C'边上的中线,且AD=A'D',
求证:△ABD≌△ABF.
合作探究
证明:∵AD,AF分别是两个钝角△ABC和△ABE的高,
∴∠ADB=∠AFB=90°.
在Rt△ADC和Rt△AFE中,
=,
∴Rt△ADC≌Rt△AFE(HL),∴AD=AF.
=,
=,
在Rt△ABD和Rt△ABF中,
=,
∴Rt△ABD≌Rt△ABF(HL).
∠=∠′′′=°,
∴Rt△ACB≌Rt△A'C'B'(ASA).
际问题.
◎重点:能利用“斜边、直角边”来判定直角三角形全等.
◎难点:能熟练运用判定直角三角形全等的特殊方法解决简
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A C M
O
Байду номын сангаас
D
B
试一试:你能用圆规和直尺过已知直线 外一点作这条直线的垂线吗?(如图, 经过直线AB外一点P作AB的垂线PQ)
作法 : 1.以点P为圆心,适当的长为半 径作弧,使它与AB交于C、D. 2.分别以点C、D为圆心,大于 CD的长为半径作弧,两弧交于 点Q . 3.作直线PQ. ∴直线PQ就是经过直线AB外一 点P的AB的垂线
P
A
B
l
1.3 探索三角形全等的条件(7)
五、课堂小结
通过这节课的学习与探索,你有哪些收获?
P
A
C
D
B
Q
经过一点可用直尺和与圆规作一条直线与已知直线垂直.
练习:用直尺和圆规作一个直角三角形,使 它的两条直角边分别等于a、b
a b
拓展延伸:如图,已知A、B是l上的两点,P是l外的 一点. (1)按照下面画法作图(保留作图痕迹): ①以A为圆心,AP为半径画弧; ②以B为圆心,BP为半径画弧; ③设两弧交于点Q(Q与P分别在l的两旁); ④连结PQ. (2)求证:PQ⊥l.
初中数学
八年级(上册)
1.3 探索三角形全等的条件(7)
想一想:
你有哪些方法画∠AOB的平分线 ?
想一想:
工人师傅常常利用角尺平分一个角.如 图(1),在∠AOB的两边OA、OB上分别任 取OC=OD,移动角尺,使角尺两边相同的 刻度分别与点C、D重合,这时过角尺顶点 M的射线OM就是∠AOB的平分线. 你能说明这样画角平分线的道理吗?
图(1)
想一想:
工人师傅常常利用角尺平分一个角.如 图,在∠AOB的两边OA、OB上分别任取OC =OD,移动角尺,使角尺两边相同的刻度 分别与点C、D重合,这时过角尺顶点M的 射线OM就是∠AOB的平分线.
1.说:请按序说出木工师傅的“操 作”过程 2.作与写:用直尺和圆规在图中按 序将木工师傅的“操作”过程作出 来,并写出作法. 3.证:请证明你的作法是正确的.
4.用:用直尺和圆规把∠MON四等分.
1.用直尺和圆规把∠MON四等分.
2.用直尺和圆规作出平角∠AOB
的平分线 .
过直线上一点作这条直线的垂线就是作以 这点为顶点的平角的角平分线.
观察思考:在图(2)作图的基础上,作过C、 D的直线l(如图),观察图中射线OM与直线l 的位置关系,并说明理由.