2011年天津高考数学试题及答案(理科)

合集下载

2011年天津高考数学试题及答案(理科)

2011年天津高考数学试题及答案(理科)

2011年高考理科数学试题及答案(天津卷)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2.本卷共8小题,每小题5分,共40分.参考公式:如果事件A ,B 互斥,那么 如果事件A ,B 相互独立,那么()()()P A B P A P B =+U ()()().P AB P A P B =棱柱的体积公式.V Sh = 圆锥的体积公式1.3V Sh =其中S 表示棱柱的底面面积 其中S 表示圆锥的底面面积h 表示棱柱的高 h 表示圆锥的高一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的.1.i 是虚数单位,复数131ii --=A .2i +B .2i -C .12i -+D .12i --2.设,,x y R ∈则“2x ≥且2y ≥”是“224x y +≥”的 A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .即不充分也不必要条件3.阅读右边的程序框图,运行相应的程序,则输出i 的值为A .3B .4C .5D .64.已知{}n a 为等差数列,其公差为-2,且7a 是3a 与9a 的等比中项,n S 为 {}n a 的前n 项和,*n N ∈,则10S 的值为A .-110B .-90C .90D .1105.在6x x ⎛⎫- ⎪ ⎪⎝⎭的二项展开式中,2x 的系数为 A .154- B .154 C .38- D .386.如图,在△ABC 中,D 是边AC 上的点,且,23,2AB CD AB BD BC BD ===,则sin C 的值为A .33B .36C .6D .67.已知324log 0.3log 3.4log 3.615,5,,5a b c ⎛⎫=== ⎪⎝⎭则A .a b c >>B .b a c >>C .a c b >>D .c a b >>8.对实数a 和b ,定义运算“⊗”:,1,, 1.a a b a b b a b -≤⎧⊗=⎨->⎩ 设函数()()22()2,.f x x x x x R =-⊗-∈若函数()y f x c =-的图像与x 轴恰有两个公共点,则实数c 的取值范围是A .(]3,21,2⎛⎫-∞-⋃- ⎪⎝⎭ B .(]3,21,4⎛⎫-∞-⋃-- ⎪⎝⎭C .111,,44⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭D .311,,44⎛⎫⎡⎫--⋃+∞ ⎪⎪⎢⎝⎭⎣⎭。

2011年天津市高考数学试卷(文科)答案与解析

2011年天津市高考数学试卷(文科)答案与解析

2011年天津市高考数学试卷(文科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2011•天津)i是虚数单位,复数=()A.2﹣i B.2+i C.﹣1﹣2i D.﹣1+2i【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】复数的分子、分母同乘分母的共轭复数,复数化简为a+bi(a,b∈R)的形式,即可.【解答】解:复数=故选A【点评】本题是基础题,考查复数代数形式的乘除运算,注意分母实数化,考查计算能力,常考题型.2.(5分)(2011•天津)设变量x,y满足约束条件则目标函数z=3x﹣y的最大值为()A.﹣4 B.0 C.D.4【考点】简单线性规划.【专题】不等式的解法及应用.【分析】作出不等式组表示的平面区域;作出目标函数对应的直线;结合图象知当直线过(2,2)时,z最大.【解答】解:画出不等式表示的平面区域将目标函数变形为y=3x﹣z,作出目标函数对应的直线,当直线过(2,2)时,直线的纵截距最小,z最大最大值为6﹣2=4故选D【点评】本题考查画不等式组表示的平面区域、考查数形结合求函数的最值.3.(5分)(2011•天津)阅读如图的程序框图,运行相应的程序,若输入x的值为﹣4,则输出y的值为()A.0.5 B.1 C.2 D.4【考点】程序框图.【专题】算法和程序框图.【分析】根据题意,按照程序框图的顺序进行执行,当x<3时跳出循环,输出结果.【解答】解:当输入x=﹣4时,|x|>3,执行循环,x=|﹣4﹣3|=7|x|=7>3,执行循环,x=|7﹣3|=4,|x|=4>3,执行循环,x=|4﹣3|=1,退出循环,输出的结果为y=21=2.故选C.【点评】本题考查循环结构的程序框图,搞清程序框图的算法功能是解决本题的关键,按照程序框图的顺序进行执行求解,属于基础题.4.(5分)(2011•天津)设集合A={x∈R|x﹣2>0},B={x∈R|x<0},C={x∈R|x(x﹣2)>0},则“x∈A∪B”是“x∈C”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.即不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断;集合的包含关系判断及应用.【专题】简易逻辑.【分析】化简集合A,C,求出A∪B,判断出A∪B与C的关系是相等的即充要条件.【解答】解:A={x∈R|x﹣2>0}={x|x>2}A∪B={x|x>2或x<0}C={x∈R|x(x﹣2)>0}={x|x>2或x<0}∴A∪B=C∴“x∈A∪B”是“x∈C”的充要条件故选C【点评】本题考查判断一个命题是另一个命题的什么条件,先化简各个命题.考查充要条件的定义.5.(5分)(2011•天津)已知a=log23.6,b=log43.2,c=log43.6则()A.a>b>c B.a>c>b C.b>a>c D.c>a>b【考点】对数值大小的比较.【专题】函数的性质及应用.【分析】利用换底公式可得a=log23.6=log43.62,然后根据对数函数y=log4x在(0,+∞)的单调性可进行比较即可.【解答】解:∵a=log23.6=log43.62∵y=log4x在(0,+∞)单调递增,又∵3.62>3.6>3.2∴log43.62>log43.6>log43.2即a>c>b故选:B【点评】本题考查利用对数函数的单调性比较对数值大小,考查了换底公式的应用,是基础题.6.(5分)(2011•天津)已知双曲线﹣=1(a>0,b>0)的左顶点与抛物线y2=2px的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),则双曲线的焦距为()A.2 B.2C.4D.4【考点】双曲线的简单性质;直线与圆锥曲线的关系.【专题】圆锥曲线的定义、性质与方程.【分析】根据题意,点(﹣2,﹣1)在抛物线的准线上,结合抛物线的性质,可得p=4,进而可得抛物线的焦点坐标,依据题意,可得双曲线的左顶点的坐标,即可得a的值,由点(﹣2,﹣1)在双曲线的渐近线上,可得渐近线方程,进而可得b的值,由双曲线的性质,可得c的值,进而可得答案.【解答】解:根据题意,双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),即点(﹣2,﹣1)在抛物线的准线上,又由抛物线y2=2px的准线方程为x=﹣,则p=4,则抛物线的焦点为(2,0);则双曲线的左顶点为(﹣2,0),即a=2;点(﹣2,﹣1)在双曲线的渐近线上,则其渐近线方程为y=±x,由双曲线的性质,可得b=1;则c=,则焦距为2c=2;故选B.【点评】本题考查双曲线与抛物线的性质,注意题目“双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1)”这一条件的运用,另外注意题目中要求的焦距即2c,容易只计算到c,就得到结论.7.(5分)(2011•天津)已知函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,﹣π<φ≤π.若函数f(x)的最小正周期为6π,且当x=时,f(x)取得最大值,则()A.f(x)在区间[﹣2π,0]上是增函数B.f(x)在区间[﹣3π,﹣π]上是增函数C.f(x)在区间[3π,5π]上是减函数D.f(x)在区间[4π,6π]上是减函数【考点】正弦函数的单调性;三角函数的周期性及其求法;三角函数的最值.【专题】三角函数的图像与性质.【分析】由函数f(x)的最小正周期为6π,根据周期公式可得ω=,且当x=时,f(x)取得最大值,代入可得,2sin(φ)=2,结合已知﹣π<φ≤π可得φ=可得,分别求出函数的单调增区间和减区间,结合选项验证即可【解答】解:∵函数f(x)的最小正周期为6π,根据周期公式可得ω=,∴f(x)=2sin(φ),∵当x=时,f(x)取得最大值,∴2sin(φ)=2,φ=+2kπ,∵﹣π<φ≤π,∴φ=,∴,由可得函数的单调增区间:,由可得函数的单调减区间:,结合选项可知A正确,故选A.【点评】本题主要考查了利用函数的部分图象求解函数的解析式,还考查了函数y=Asin (ωx+φ)(A>0,ω>0)的单调区间的求解,属于对基础知识的考查.8.(5分)(2011•天津)对实数a与b,定义新运算“⊗”:a⊗b=.设函数f(x)=(x2﹣2)⊗(x﹣1),x∈R.若函数y=f(x)﹣c的图象与x轴恰有两个公共点,则实数c的取值范围是()A.(﹣1,1]∪(2,+∞)B.(﹣2,﹣1]∪(1,2]C.(﹣∞,﹣2)∪(1,2]D.[﹣2,﹣1]【考点】函数与方程的综合运用.【专题】函数的性质及应用.【分析】根据定义的运算法则化简函数f(x)=(x2﹣2)⊗(x﹣1),的解析式,并画出f (x)的图象,函数y=f(x)﹣c的图象与x轴恰有两个公共点转化为y=f(x),y=c图象的交点问题,结合图象求得实数c的取值范围.【解答】解:∵,∴函数f(x)=(x2﹣2)⊗(x﹣1)=,由图可知,当c∈(﹣2,﹣1]∪(1,2]函数f(x)与y=c的图象有两个公共点,∴c的取值范围是(﹣2,﹣1]∪(1,2],故选B.【点评】本题考查二次函数的图象特征、函数与方程的综合运用,及数形结合的思想.属于基础题.二、填空题(共6小题,每小题5分,满分30分)9.(5分)(2011•天津)已知集合A={x∈R||x﹣1|<2},Z为整数集,则集合A∩Z中所有元素的和等于3.【考点】交集及其运算.【专题】集合.【分析】先根据绝对值不等式求出集合A,然后根据交集的定义求出A∩Z,最后求出集合A∩Z中所有元素的和即可.【解答】解:A={x∈R||x﹣1|<2}={x|﹣1<x<3},而Z为整数集,集合A∩Z={0,1,2},故集合A∩Z中所有元素的和等于0+1+2=3,故答案为3.【点评】本题属于以绝对值不等式为依托,求集合的交集的基础题,同时考查了集合中元素的和.10.(5分)(2011•天津)一个几何体的三视图如图所示(单位:m),则这个几何体的体积为4m3.【考点】由三视图求面积、体积.【专题】立体几何.【分析】由题意可知,一个简单的组合体,上面是一个底面是边长为1的正方形,高是2的四棱柱,下面是一个长为2,高为1,宽为1的长方体,根据所给的长度,求出几何体的体积.【解答】解:由三视图可知,这是一个简单的组合体,上面是一个底面是边长为1的正方形,高是2的四棱柱,体积是1×1×2下面是一个长为2,高为1,宽为1的长方体,体积是1×1×2∴几何体的体积是1×1×2+2×1×1=4m3,故答案为:4【点评】本题考查由三视图还原直观图,根据图形中所给的数据,求出要求的体积,本题是一个考查简单几何体体积的简单题目.11.(5分)(2011•天津)已知{a n}为等差数列,S n为{a n}的前n项和,n∈N*,若a3=16,S20=20,则S10值为110.【考点】等差数列的性质.【专题】等差数列与等比数列.【分析】本题可根据等差数列的前n项和的一上性质{S(k+1)m﹣S km}是以m2d为公差的数列,本题中令m=5,每五项的和也组成一个等差数列,再由数列中项知识求出前五项的和,由此建立方程求出公差,进而可求出S10的值【解答】解:由题意a3=16,故S5=5×a3=80,由数列的性质S10﹣S5=80+25d,S15﹣S10=80+50d,S20﹣S15=80+75d,故S20=20=320+150d,解之得d=﹣2又S10=S5+S10﹣S5=80+80+25d=160﹣50=110故答案为:110【点评】本题考点是等差数列的性质,考查等差数列前n项和的性质,以及数列的中项的运用,本题技巧性较强,属于等差数列的性质运用题,解答本题,要注意从题设条件中分析出应该用那个性质来进行转化.12.(5分)(2011•天津)已知log2a+log2b≥1,则3a+9b的最小值为18.【考点】基本不等式;对数的运算性质.【专题】函数的性质及应用;不等式的解法及应用.【分析】先把已知条件转化为ab≥2,且a>0,b>0;再把所求用基本不等式转化到用ab表示即可.【解答】解:由log2a+log2b≥1得ab≥2,且a>0,b>0.又3a+9b=3a+32b≥2=2,因为a+2b≥2=2≥2=4,所以3a+9b≥2=18.即3a+9b的最小值为18.故答案为18.【点评】本题是对指数的运算性质,对数的运算性质以及基本不等式的综合考查.考查的都是基本知识点,只要课本知识掌握熟练,是道基础题.13.(5分)(2011•天津)如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF=,AF:FB:BE=4:2:1.若CE与圆相切,则CE的长为.【考点】圆的切线方程.【专题】直线与圆.【分析】设出AF=4k,BF=2k,BE=k,由DF•FC=AF•BF求出k的值,利用切割定理求出CE.【解答】解:设AF=4k,BF=2k,BE=k,由DF•FC=AF•BF,得2=8k2,即k=,∴AF=2,BF=1,BE=,AE=,由切割定理得CE2=BE•EA==,∴CE=.【点评】本题是基础题,考查直线与圆的位置关系,考查计算能力,基本知识掌握的情况,常考题型.14.(5分)(2011•天津)已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则的最小值为5.【考点】向量的模.【专题】平面向量及应用.【分析】根据题意,利用解析法求解,以直线DA,DC分别为x,y轴建立平面直角坐标系,则A(2,0),B(1,a),C(0,a),D(0,0),设P(0,b)(0≤b≤a),求出,根据向量模的计算公式,即可求得,利用完全平方式非负,即可求得其最小值.【解答】解:如图,以直线DA,DC分别为x,y轴建立平面直角坐标系,则A(2,0),B(1,a),C(0,a),D(0,0)设P(0,b)(0≤b≤a)则=(2,﹣b),=(1,a﹣b),∴=(5,3a﹣4b)∴=≥5.故答案为5.【点评】此题是个基础题.考查向量在几何中的应用,以及向量模的求法,同时考查学生灵活应用知识分析解决问题的能力.三、解答题(共6小题,满分80分)15.(13分)(2011•天津)编号为A1,A2,…,A16的16名篮球运动员在某次训练比赛中的得分记录如下:运动员编号A1A2A3A4A5A6A7A8得分15 35 21 28 25 36 18 34运动员编号A9A10A11A12A13A14A15A16得分17 26 25 33 22 12 31 38(Ⅰ)将得分在对应区间内的人数填入相应的空格;区间[10,20)[20,30)[30,40]人数(Ⅱ)从得分在区间[20,30)内的运动员中随机抽取2人,(i)用运动员的编号列出所有可能的抽取结果;(ii)求这2人得分之和大于50分的概率.【考点】列举法计算基本事件数及事件发生的概率;古典概型及其概率计算公式.【专题】概率与统计.【分析】(I)根据已知中编号为A1,A2,…,A16的16名篮球运动员在某次训练比赛中的得分记录表,我们易得出得分在对应区间内的人数.(II)(i)根据(I)的结论,我们易列出在区间[20,30)内的运动员中随机抽取2人,所有可能的抽取结果;(ii)列出这2人得分之和大于50分的基本事件的个数,代入古典概型公式即可得到这2人得分之和大于50分的概率.【解答】解:(I)由已知中编号为A1,A2,…,A16的16名篮球运动员在某次训练比赛中的得分记录表易得:得分在区间[10,20)上的共4人,在区间[20,30)上的共6人,在区间[30,40]上的共6人,故答案为4,6,6(II)(i)得分在区间[20,30)上的共6人,编号为A3,A4,A5,A10,A11,A13,从中随机抽取2人,计为(X,Y),则所有可能的抽取结果有:(A3,A4),(A3,A5),(A3,A10),(A3,A11),(A3,A13),(A4,A5),(A4,A10),(A4,A11),(A4,A13),(A5,A10),(A5,A11),(A5,A13),(A10,A11),(A10,A13),(A11,A13)共15种.(ii)从得分在区间[20,30)内的运动员中随机抽取2人,这2人的得分之和大于50分的基本事件有:(A4,A5),(A4,A10),(A4,A11),(A5,A10),(A10,A11)共5种故这2人得分之和大于50分的概率P==【点评】本题主要考查用列举法计算随机事件所含的基本事件烽、古典概型及其概率计算公式等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力.16.(13分)(2011•天津)在△ABC中,内角A,B,C的对边分别为a,b,c,已知.(Ⅰ)求cosA的值;(Ⅱ)的值.【考点】余弦定理;同角三角函数基本关系的运用;两角和与差的余弦函数;二倍角的余弦.【专题】解三角形.【分析】(I)利用三角形中的等边对等角得到三角形三边的关系;利用三角形的余弦定理求出角A的余弦.(II)利用三角函数的平方关系求出角A的正弦,利用二倍角公式求出角2A的正弦,余弦;利用两个角的和的余弦公式求出的值.【解答】解:(I)由B=C,可得所以cosA==(II)因为所以=【点评】本题考查三角形的余弦定理、考查三角函数的平方关系、考查两角和的余弦公式.17.(13分)(2011•天津)如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC中点,PO⊥平面ABCD,PO=2,M为PD中点.(Ⅰ)证明:PB∥平面ACM;(Ⅱ)证明:AD⊥平面PAC;(Ⅲ)求直线AM与平面ABCD所成角的正切值.【考点】直线与平面垂直的判定;直线与平面平行的判定;直线与平面所成的角.【专题】空间位置关系与距离;空间角;立体几何.【分析】(I)由O为AC中点,M为PD中点.结合平行四边形的对角线性质,考虑连接BD,MO,则有PB∥MO,从而可证(II)由∠ADC=45°,且AD=AC=1,易得AD⊥AC,PO⊥AD,根据线面垂直的判定定理可证(III)取DO中点N,由PO⊥平面ABCD,可得MN⊥平面ABCD,从而可得∠MAN是直线AM与平面ABCD所成的角.在Rt△ANM中求解即可【解答】解:(I)证明:连接BD,MO在平行四边形ABCD中,因为O为AC的中点,所以O为BD的中点,又M为PD的中点,所以PB∥MO因为PB⊄平面ACM,MO⊂平面ACM所以PB∥平面ACM(II)证明:因为∠ADC=45°,且AD=AC=1,所以∠DAC=90°,即AD⊥AC又PO⊥平面ABCD,AD⊂平面ABCD,所以PO⊥AD,AC∩PO=O,AD⊥平面PAC (III)解:取DO中点N,连接MN,AN因为M为PD的中点,所以MN∥PO,且MN=PO=1,由PO⊥平面ABCD,得MN⊥平面ABCD所以∠MAN是直线AM与平面ABCD所成的角.在Rt△DAO中,,所以,∴,在Rt△ANM中,==即直线AM与平面ABCD所成的正切值为【点评】本题主要考查直线与平面平行、直线与平面垂直、直线与平面所成的角等基础知识,考查空间想象能力、运算能力、推理论证能力.18.(13分)(2011•天津)设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2.点P(a,b)满足|PF2|=|F1F2|.(Ⅰ)求椭圆的离心率e;(Ⅱ)设直线PF2与椭圆相交于A,B两点,若直线PF2与圆(x+1)2+=16相交于M,N两点,且|MN|=|AB|,求椭圆的方程.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程;椭圆的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】(Ⅰ)直接利用|PF2|=|F1F2|,对应的方程整理后即可求椭圆的离心率e;(Ⅱ)先把直线PF2与椭圆方程联立求出A,B两点的坐标以及对应的|AB|两点,进而求出|MN|,再利用弦心距,弦长以及圆心到直线的距离之间的等量关系,即可求椭圆的方程.【解答】解:(Ⅰ)设F1(﹣c,0),F2(c,0)(c>0).由题得|PF2|=|F1F2|,即=2c,整理得2+﹣1=0,得=﹣1(舍),或=,所以e=.(Ⅱ)由(Ⅰ)知a=2c,b=c,可得椭圆方程为3x2+4y2=12c2,直线方程PF2为y=(x ﹣c).A,B的坐标满足方程组,消y并整理得5x2﹣8xc=0,解得x=0,x=,得方程组的解为,,不妨设A(c,c),B(0,﹣c).所以|AB|==c,于是|MN|=|AB|=2c.圆心(﹣1,)到直线PF2的距离d=,因为d2+=42,所以(2+c)2+c2=16,整理得c=﹣(舍)或c=2.所以椭圆方程为+=1.【点评】本题主要考查椭圆的方程和几何性质,直线的方程,两点间的距离公式以及点到直线的距离公式等基础知识,考查用代数方法研究圆锥曲线的性质和数形结合的数学思想,考查解决问题的能力和运算能力.19.(14分)(2011•天津)已知函数f(x)=4x3+3tx2﹣6t2x+t﹣1,x∈R,其中t∈R.(Ⅰ)当t=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)当t≠0时,求f(x)的单调区间;(Ⅲ)证明:对任意的t∈(0,+∞),f(x)在区间(0,1)内均存在零点.【考点】利用导数研究曲线上某点切线方程;函数的零点;利用导数研究函数的单调性.【专题】导数的综合应用.【分析】(I)当t=1时,求出函数f(x),利用导数的几何意义求出x=0处的切线的斜率,利用点斜式求出切线方程;(II)根据f'(0)=0,解得x=﹣t或x=,讨论t的正负,在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0求出单调区间即可;(III)根据函数的单调性分两种情况讨论,当≥1与当0<<1时,研究函数的单调性,然后根据区间端点的符号进行判定对任意t∈(0,2),f(x)在区间(0,1)内均存在零点从而得到结论.【解答】解:(I)当t=1时,f(x)=4x3+3x2﹣6x,f(0)=0f'(x)=12x2+6x﹣6,f'(0)=﹣6,所以曲线y=f(x)在点(0,f(0))处的切线方程为y=﹣6x.(II)解:f'(x)=12x2+6tx﹣6t2,f'(0)=0,解得x=﹣t或x=∵t≠0,以下分两种情况讨论:(1)若t<0,则<﹣t,∴f(x)的单调增区间是(﹣∞,),(﹣t,+∞);f(x)的单调减区间是(,﹣t)(2)若t>0,则>﹣t,∴f(x)的单调增区间是(﹣∞,﹣t),(,+∞);f(x)的单调减区间是(﹣t,)(III)证明:由(II)可知,当t>0时,f(x)在(0,)内单调递减,在(,+∞)内单调递增,以下分两种情况讨论:(1)当≥1,即t≥2时,f(x)在(0,1)内单调递减.f(0)=t﹣1>0,f(1)=﹣6t2+4t+3≤﹣13<0所以对于任意t∈[2,+∞),f(x)在区间(0,1)内均存在零点.(2)当0<<1,即0<t<2时,f(x)在(0,)内单调递减,在(,1)内单调递增若t∈(0,1],f()=+t﹣1≤<0,f(1)=﹣6t2+4t+3≥﹣2t+3>0所以f(x)在(,1)内存在零点.若t∈(1,2),f()=+t﹣1<+1<0,f(0)=t﹣1>0∴f(x)在(0,)内存在零点.所以,对任意t∈(0,2),f(x)在区间(0,1)内均存在零点.综上,对于任意t∈(0,+∞),f(x)在区间(0,1)内均存在零点.【点评】本题主要考查了导数的几何意义,利用导数研究函数的单调性、曲线的切线方程、函数零点、解不等式等基础知识,考查了计算能力和分类讨论的思想.20.(14分)(2011•天津)已知数列{a n}与{b n}满足b n+1a n+b n a n+1=(﹣2)n+1,b n=,n∈N*,且a1=2.(Ⅰ)求a2,a3的值(Ⅱ)设c n=a2n+1﹣a2n﹣1,n∈N*,证明{c n}是等比数列(Ⅲ)设S n为{a n}的前n项和,证明++…++≤n﹣(n∈N*)【考点】数列与不等式的综合;等比关系的确定.【专题】等差数列与等比数列.【分析】(Ⅰ)推出b n的表达式,分别当n=1时,求出a2=﹣;当n=2时,解出a3=8;(Ⅱ)设c n=a2n+1﹣a2n﹣1,n∈N*,利用等比数列的定义,证明{c n}是等比数列;(Ⅲ)求出S2n,a2n,S2n﹣1,a2n﹣1,求出+的表达式,然后求出++…++的表达式,利用放缩法证明结果.【解答】(Ⅰ)解:由b n=,(n∈N*)可得b n=又b n+1a n+b n a n+1=(﹣2)n+1,当n=1时,a1+2a2=﹣1,可得由a1=2,a2=﹣;当n=2时,2a2+a3=5可得a3=8;(Ⅱ)证明:对任意n∈N*,a2n﹣1+2a2n=﹣22n﹣1+1…①2a2n+a2n+1=22n+1…②②﹣①,得a2n+1﹣a2n﹣1=3×22n﹣1,即:c n=3×22n﹣1,于是所以{c n}是等比数列.(Ⅲ)证明:a1=2,由(Ⅱ)知,当k∈N*且k≥2时,a2k﹣1=a1+(a3﹣a1)+(a5﹣a3)+(a7﹣a5)+…+(a2k﹣1﹣a2k﹣3)=2+3(2+23+25+…+22k﹣3)=2+3×=22k﹣1,故对任意的k∈N*,a2k﹣1=22k﹣1.由①得22k﹣1+2a2k=﹣22k﹣1+1,所以k∈N*,因此,于是,.故==所以,对任意的n∈N*,++…++=(+)+…+(+)===n﹣≤n﹣﹣=n﹣(n∈N*)【点评】本题考查等比数列的定义,等比数列求和等基础知识,考查计算能力、推理论证能力、综合发现问题解决问题的能力以及分类讨论思想.。

2011年普通高等学校招生全国统一考试高考数学教师精校版含详解天津理

2011年普通高等学校招生全国统一考试高考数学教师精校版含详解天津理

2011年天津理一、选择题(共8小题;共40分)1. i是虚数单位,复数1−3i1−i= A. 2+iB. 2−iC. −1+2iD. −1−2i2. 设x,y∈R,则"x≥2且y≥2"是"x2+y2≥4"的 A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件3. 阅读下面的程序框图,运行相应的程序,则输出i的值为 A. 3B. 4C. 5D. 64. 已知a n为等差数列,其公差为−2,且a7是a3与a9的等比中项,S n为a n的前n项和,n∈N∗,则S10的值为 A. −110B. −90C. 90D. 1105. 在x2x 6的二项展开式中,x2的系数为 A. −154B. 154C. −38D. 386. 如图所示,在△ABC中,D是边AC上的点,且AB=AD,2AB=3BD,BC=2BD,则sin C的值为 A. 33B. 36C. 63D. 667. 已知a=5log23.4,b=5log43.6,c=15log30.3,则 A. a>b>cB. b>a>cC. a>c>bD. c>a>b8. 对实数a与b,定义运算“ ⊗”:a⊗b=a,a−b≤1,b,a−b>1.设函数f x=x2−2⊗x−x2,x∈R.若函数y=f x−c的图象与x轴恰有两个公共点,则实数c的取值范围是 A. −∞,−2∪ −1,32B. −∞,−2∪ −1,−34C. −∞,14∪14,+∞ D. −1,−34∪14,+∞二、填空题(共6小题;共30分)9. 一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为.10. 一个几何体的三视图如图所示(单位:m),则这个几何体的体积为m3.11. 已知抛物线C的参数方程为x=8t2y=8t(t为参数),若斜率为1的直线经过抛物线C的焦点,且与圆x−42+y2=r2r>0相切,则r=.12. 如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF=2,AF:FB:BE=4:2:1.若CE与圆相切,则CE的长为.13. 已知集合A=x∈R x+3+x−4≤9,B= x∈R x=4t+1t−6,t∈0,+∞,则集合A∩B=.14. 已知直角梯形ABCD中,AD∥BC,∠ADC=90∘,AD=2,BC=1,P是腰DC上的动点,则PA+3PB的最小值为.三、解答题(共6小题;共78分)15. 已知函数f x=tan2x+π4.(1)求f x的定义域与最小正周期;(2)设α∈0,π4,若fα2=2cos2α,求α的大小.16. 学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)(1)求在一次游戏中,①摸出3个白球的概率;②获奖的概率;(2)求在两次中获奖次数X的分布列及数学期望E X.17. 如图,在三棱柱ABC−A1B1C1中,H是正方形AA1B1B的中心,AA1=22,C1H⊥平面AA1B1B,且C1H=5.(1)求异面直线AC与A1B1所成角的余弦值;(2)求二面角A−A1C1−B1的正弦值;(3)设N为棱B1C1的中点,点M在平面AA1B1B内,且MN⊥平面A1B1C1,求线段BM的长.18. 在平面直角坐标系xOy中,点P a,b a>b>0为动点,F1,F2分别为椭圆x2a +y2b=1的左右焦点.已知△F1PF2为等腰三角形.(1)求椭圆的离心率e;(2)设直线PF2与椭圆相交于A,B两点,M是直线PF2上的点,满足AM⋅BM=−2,求点M的轨迹方程.19. 已知a>0,函数f x=ln x−ax2,x>0.(f x的图象连续不断)(1)求f x的单调区间;(2)当a=18时,证明:存在x0∈2,+∞,使f x0=f32;(3)若存在均属于区间1,3的α,β,且β−α≥1,使fα=fβ,证明:ln3−ln25≤a≤ln23.20. 已知数列a n与b n满足:b n a n+a n+1+b n+1a n+2=0,b n=3+−1n2,n∈N∗,且a1=2,a2=4.(1)求a3,a4,a5的值;(2)设c n=a2n−1+a2n+1,n∈N∗,证明:c n是等比数列;(3)设S k=a2+a4+⋯+a2k,k∈N∗,证明:S ka k <76n∈N∗4nk=1.答案第一部分1. B2. A 【解析】当x≥2且y≥2时,一定有x2+y2≥4;反过来,当x2+y2≥4时,不一定有x≥2且y≥2,例如x=−4,y=0也可以.3. B 【解析】i=1时,a=1×1+1=2;i=2时,a=2×2+1=5;i=3时,a=3×5+1=16;i=4时,a=4×16+1=65>50.所以输出i=4.4. D 【解析】由a72=a3⋅a9,d=−2,得a1−122=a1−4a1−16,解得a1=20,从而S10=10×20+10×92−2=110.5. C【解析】由二项式展开式得:T k+1=C6k x26−kxk=−1k22k−6C6k x3−k,令k=1,则x2的系数为−1⋅22−6C61=−38.6. D 【解析】设AB=a,所以AD=a,BD=3,BC=2BD=3,故cos A=AB2+AD2−BD22AB⋅AD=2a2−43a22a =13,所以sin A=1−cos2A=223.由正弦定理知sin C=ABBC ⋅sin A=34×223=66.7. C 【解析】因为a=5log23.4,b=5log43.6,c=5log310,所以只需要比较它们的指数即可.由对数函数的性质知log43.6=log2 3.6<1<log3103<log33.4<log23.4,从而有a>c>b.8. B 【解析】f x=x2−2,x2−2−x−x2≤1 x−x2,x2−2−x−x2>1=x2−2,−1≤x≤3x−x2,x<−1,或x>3则f x的图象如图:∵y=f x−c的图象与x轴恰有两个公共点,∴y=f x与y=c的图象恰有两个公共点,由图象知c≤−2,或−1<c<−34.第二部分9. 12【解析】设抽取男运动员人数为n,则n48=2148+36,解之得n=12.10. 6+π【解析】如图:该几何体为一个棱柱与一个圆锥的组合体.所以V=3×2×1+1π×12×3=6+π.11. 212. 72【解析】设AF=4k,BF=2k,BE=k,由DF⋅FC=AF⋅BF,得2=8k2,即k=12,从而AF=2,BF=1,BE=12,AE=72,由切割线定理得CE2=BE⋅EA=12×72=74,故CE=72.13. x∈R−2≤x≤5【解析】因为A=x∈R−4≤x≤5,B= x∈R x≥24t×1t−6,t∈0,+∞=x∈R x≥−2,所以A∩B=x∈R−4≤x≤5∩x∈R x≥−2=x∈R−2≤x≤5.14. 5【解析】建立如图所示的坐标系,设DC= ,则A2,0,B1, .设P0,y0≤y≤ ,则PA=2,−y,PB=1, −y,所以PA+3PB=25+3 −4y2≥第三部分15. (1)由2x +π4≠π2+kπ,k ∈Z ,得x ≠π8+kπ2,k ∈Z ,所以f x 的定义域为 x ∈R x ≠π8+kπ2,k ∈Z ,f x 的最小正周期为π2.(2)由f α2 =2cos2α,得tan α+π4=2cos2α,sin α+π4cos α+4=2 cos 2α−sin 2α ,整理得sin α+cos αcos α−sin α=2 cos α+sin α cos α−sin α . 因为α∈ 0,π4 ,所以sin α+cos α≠0.因此 cos α−sin α 2=12.即sin2α=12.由α∈ 0,π4 ,得2α∈ 0,π2 ,所以2α=π6,即α=π12.16. (1)①设“在1次游戏中摸出i 个白球”为事件A i i =0,1,2,3 ,则P A 3 =C 3252⋅C 2132=1.②设“在1次游戏中获奖”为事件B ,则B =A 2∪A 3,又P A 2 =C 32C 52⋅C 22C 32+C 31C 21C 52⋅C 21C 32=12,且A 2,A 3互斥,所以P B =P A 2 +P A 3 =1+1=7.(2)由题意可知X 的所有可能取值为0,1,2.P X =0 = 1−7 2=9,P X =1 =C 21⋅7⋅ 1−7 =21,P X =2 = 7 2=49.所以X 的分布列是X 012P92149E X =0×9+1×21+2×49=7.17. (1)方法一:由于AC ∥A 1C 1,故∠C 1A 1B 1是异面直线AC 与A 1B 1所成的角.因为C 1H ⊥平面AA 1B 1B ,又H 为正方形AA 1B 1B 的中心,AA 1=2 2,C 1H = 5.可得A 1C 1=B 1C 1=3.因此cos ∠C 1A 1B 1=A 1C 12+A 1B 12−B 1C 122A 1C 1⋅A 1B 1= 23.所以异面直线AC 与A 1B 1所成角的余弦值为 23. 方法二:如图所示,建立空间直角坐标系,点B 为坐标原点.依题意得A 2 2,0,0 ,B 0,0,0 ,C 2,− 2, 5 ,A 1 2 2,2 2,0 ,B 1 0,2 2,0 ,C 1 2, 2, 5 . 易得AC= − 2,− 2, 5 ,A 1B 1= −2 2,0,0 ,于是cos AC ,A 1B 1 =AC ⋅A 1B 1AC ⋅ A 1B 1 =3×2 2= 2, 所以异面直线AC 与A 1B 1所成角的余弦值为 23. (2)方法一: 连接AC 1,易知AC1=B1C1,又由于AA1=B1A1,A1C1=A1C1,所以△AC1A1≌△B1C1A1,过点A作AR⊥A1C1于点R,连接B1R,于是B1R⊥A1C1,故∠ARB1为二面角A—A1C1—B1的平面角.在Rt△A1RB1中,B1R=A1B1⋅sin∠RA1B1=22⋅1−22=214.连接AB1,在△ARB1中,AB1=4,AR=B1R,cos∠ARB1=AR2+B1R2−AB12 2AR⋅B1R=−2 ,从而sin∠ARB1=35.所以二面角A—A1C1—B1的正弦值为357.方法二:易知AA1=0,22,0,A1C1= − 2,− 2,5.设平面AA1C1的法向量m=x1,y1,z1,则m⋅A1C1=0,m⋅AA1=0,即− 2x1−2y1+5z1=0,22y1=0.不妨令x1=5,可得m=5,0,2,n⋅A1C1=0,n⋅A1B1=0.即− 2x2−2y2+5z2=0,−22x2=0.不妨令y2=5,可得n=0,5,2.于是cos m,n=m⋅nm⋅n=27⋅7=27,从而sin m,n=35.所以二面角A—A1C1—B的正弦值为357.(3)方法一:因为MN⊥平面A1B1C1,所以MN⊥A1B1.取HB1中点D,连接ND,由于N是棱B1C1中点,所以ND∥C1H且ND=12C1H=52.又C1H⊥平面AA1B1B,所以ND⊥平面AA1B1B,故ND⊥A1B1.又MN∩ND=N,所以A1B1⊥平面MND,连接MD并延长交A1B1于点E,则由DE AA1=B1EB1A1=B1DB1A=14,得DE=B1E=2 ,延长EM交AB于点F,可得BF=B1E=2 .连接NE,在Rt△ENM中,所以DM=ND2=52.可得FM=2 4 .连接BM,在Rt△BFM中,BM= FM2+BF2=104.方法二:由N为棱B1C1的中点,得N22,322,52.设M a,b,0,则MN=22−a,322−b,52.由MN⊥平面A1B1C1,得MN⋅A1B1=0,MN⋅A1C1=0.即22−a ⋅ −22=0,2 2−a ⋅ − 2+322−b ⋅ − 2+52⋅5=0.解得a=2 ,b=2 4 .故M22,24,0,因此BM=22,24,0,所以线段BM的长为BM=10 4 .18. (1)设F1−c,0,F2c,0c>0,由题意,可得PF2=F1F2,即a−c2+b2=2c.整理得2c2+c−1=0,即c a =−1舍,或 ca=12.所以e=1 2 .(2)由(1)知a=2c,b=3c,可得椭圆方程为3x2+4y2=12c2,直线PF2方程为y=3x−c. A,B两点的坐标满足方程组3x2+4y2=12c2,y=3x−c.消去y并整理,得5x2−8cx=0.解得x1=0,x2=8 5 c.得方程组的解x1=0,y1=− 3c, x2=8c,y2=335c.不妨设A85c,335c ,B 0,−3c ,设点M的坐标为x,y,AM= x−85c,y−335c ,BM= x,y+3c ,由y=3x−c,得c=x−3 y.于是AM=83y−3x,8y−33x ,BM= x,3x .由AM⋅BM=−2,即83y−3x ⋅x+8y−33x ⋅3x=−2,化简得18x2−163xy−15=0.将y=2163xc=x−33y,得c=10x2+5>0.所以x>0.因此,点M的轨迹方程是18x2−163xy−15=0x>0.19. (1)fʹx=1x−2ax=1−2ax2x,x∈0,+∞,令fʹx=0,解得x=2a 2a.当x变化时,fʹx,f x的变化情况如下表:x0,2a2a2a2a2a2a,+∞fʹx+0−f x↗极大值↘所以,f x的单调递增区间是0,2a2a ,f x的单调递减区间是2a2a,+∞ .(2)当a=18时,f x=ln x−18x2.由(1)知f x在0,2内单调递增,在2,+∞内单调递减.令g x=f x−f32.由于f x在0,2内单调递增,故f2>f 3 2 ,即g2>0.取xʹ=32e>2,则g xʹ=41−9e232<0.所以存在x0∈2,xʹ,使g x0=0,即存在x0∈2,+∞,使f x0=f32.(3)由fα=fβ及(1)的结论知α<2a2a<β,从而f x在α,β上的最小值为fα.又由β−α≥1,α,β∈1,3,知1≤α≤2≤β≤3.故f2≥fα≥f1,f2≥fβ≥f3.即ln2−4a≥−a,ln2−4a≥ln3−9a.从而ln3−ln2≤a≤ln2.20. (1)由b n=3+−1n2,n∈N∗,可得b n=1, n为奇数, 2, n为偶数.又b n a n+a n+1+b n+1a n+2=0,当n=1时,a1+a2+2a3=0,由a1=2,a2=4,可得a3=−3;当n=2时,2a2+a3+a4=0,可得a4=−5;当n=3时,a3+a4+2a5=0,可得a5=4.(2)对任意n∈N∗,a2n−1+a2n+2a2n+1=0, ⋯⋯①2a2n+a2n+1+a2n+2=0, ⋯⋯②a2n+1+a2n+2+2a2n+3=0, ⋯⋯③②−③,得a2n=a2n+3. ⋯⋯④将④代入①,可得a2n+1+a2n+3=−a2n−1+a2n+1,即c n+1=−c n n∈N∗.又c1=a1+a3=−1,故c n≠0,因此c n+1c n=−1,所以c n是等比数列.(3)由(2)可得a 2k−1+a 2k +1= −1 k ,于是,对任意k ∈N ∗且k ≥2,有a 1+a 3=−1,− a 3+a 5 =−1,a 5+a 7=−1,⋮ −1 k a 2k−3+a 2k−1 =−1.将以上各式相加,得a 1+ −1 k a 2k−1=− k −1 ,即a 2k−1= −1 k +1 k +1 ,此式当k =1时也成立.由④式得a 2k = −1 k +1 k +3 .从而S 2k= a 2+a 4 + a 6+a 8 +⋯+ a 4k−2+a 4k =−k ,S 2k−1=S 2k −a 4k =k +3.所以,对任意n ∈N ∗,n ≥2,S ka k4nk =1= S 4m−3a 4m−3+S 4m−2a 4m−2+S 4m−1a 4m−1+S 4ma 4mnm =1= 2m +2−2m −1−2m +3+2mnm =1= 22m 2m +1 +32m +2 2m +3n m =1=22×3+ 52m 2m +1 +3 2n +2 2n +3 nm =2<1+ 5 +3 nm =2=1+5⋅ 1−1 + 1−1 +⋯+ 1−1 +3 =13+56−52⋅12n +1+3 2n +2 2n +3 <7.对于n =1,不等式显然成立.。

2011年天津高考数学试题及答案(文科)

2011年天津高考数学试题及答案(文科)

2011年普通高等学校招生全国统一考试(天津卷)数学(文史类)第Ⅰ卷参考公式: 如果事件A ,B 互斥,那么 棱柱的体积公式V Sh =()()()P A B P A P B ⋃=+其中S 表示棱柱的底面面积。

h 表示棱柱的高。

参考答案一、选择题:本题考查基本知识和基本运算,每小题5分,满分40分。

1—4 ADCC 5—8 BBAB二、填空题:本题考查基本知识和基本运算,每小题5分,满分30分。

9.3 10.4 11.110 12.18 13 14.5 三、解答题(15)本小题主要考查用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式的等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力,满分13分。

(Ⅰ)解:4,6,6(Ⅱ)(i )解:得分在区间[20,30)内的运动员编号为345101113,,,,,.A A A A A A 从中随机抽取2人,所有可能的抽取结果有:343531*********{,},{,},{,},{,},{,},{,},A A A A A A A A A A A A 410{,}A A ,411413510511513101110131113{,},{,},{,},{,},{,},{,},{,},{,}A A A A A A A A A A A A A A A A ,共15种。

(ii )解:“从得分在区间[20,30)内的运动员中随机抽取2人,这2人得分之和大于50”(记为事件B )的所有可能结果有:454104115101011{,},{,},{,},{,},{,}A A A A A A A A A A ,共5种。

所以51().153P B == (16)本小题主要考查余弦定理、两角和的余弦公式、同角三角函数的基本关系、二倍角的正弦、余弦公式等基础知识,考查基本运算能力,满分13分。

(Ⅰ)解:由,2,B C b c b ====可得所以222222331cos .2322a a abc a A bc +-+-===(Ⅱ)解:因为1cos ,(0,)3A A π=∈,所以sin 3A ==27cos 22cos 1.sin 22sin cos 99A A A A A =--=-==故所以7c o4A π⎛⎫+= ⎪⎝⎭(17)本小题主要考查直线与平面平行、直线与平面垂直、直线与平面所成的角等基础知识,考查空间想象能力、运算能力和推理论证能力。

2011年天津高考理科数学真题及答案

2011年天津高考理科数学真题及答案

2011年天津高考理科数学真题及答案一、选择题(共8小题,每小题5分,满分40分)1.(5分)i是虚数单位,复数=( )A.2+i B.2﹣i C.﹣1+2i D.﹣1﹣2i【解答】解:复数===2﹣i故选B.2.(5分)设x,y∈R,则“x≥2且y≥2”是“x2+y2≥4”的( )A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【解答】解:若x≥2且y≥2,则x2≥4,y2≥4,所以x2+y2≥8,即x2+y2≥4;若x2+y2≥4,则如(﹣2,﹣2)满足条件,但不满足x≥2且y≥2.所以“x≥2且y≥2”是“x2+y2≥4”的充分而不必要条件.故选A.3.(5分)阅读程序框图,运行相应的程序,则输出i的值为( )A.3 B.4 C.5 D.6【解答】解:该程序框图是循环结构经第一次循环得到i=1,a=2;经第二次循环得到i=2,a=5;经第三次循环得到i=3,a=16;经第四次循环得到i=4,a=65满足判断框的条件,执行是,输出4故选B4.(5分)已知{a n}为等差数列,其公差为﹣2,且a7是a3与a9的等比中项,S n为{a n}的前n项和,n∈N*,则S10的值为( )A.﹣110B.﹣90 C.90 D.110【解答】解:a7是a3与a9的等比中项,公差为﹣2,所以a72=a3•a9,∵{a n}公差为﹣2,∴a3=a7﹣4d=a7+8,a9=a7+2d=a7﹣4,所以a72=(a7+8)(a7﹣4),所以a7=8,所以a1=20,所以S10==110故选D5.(5分)在的二项展开式中,x2的系数为( )A.B.C. D.【解答】解:展开式的通项为T r+1=(﹣1)r22r﹣6C6r x3﹣r令3﹣r=2得r=1所以项展开式中,x2的系数为﹣故选C6.(5分)如图,在△ABC中,D是边AC上的点,且AB=AD,2AB=BD,BC=2BD,则sinC的值为( )A.B.C.D.【解答】解:设AB=x,由题意可得AD=x,BD=△ABD中,由余弦定理可得∴sinA=△ABD中,由正弦定理可得⇒sin∠ADB=∴△BDC中,由正弦定理可得故选:D.7.(5分)已知,则( )A.a>b>c B.b>a>c C.a>c>b D.c>a>b【解答】解:∵log23.4>1,log43.6<1,又y=5x是增函数,∴a>b,>==b而log23.4>log2>log3,∴a>c故a>c>b.故选C.8.(5分)对实数a与b,定义新运算“⊗”:.设函数f(x)=(x2﹣2)⊗(x﹣x2),x∈R.若函数y=f(x)﹣c的图象与x轴恰有两个公共点,则实数c 的取值范围是( )A.B.C.D.【解答】解:∵,∴函数f(x)=(x2﹣2)⊗(x﹣x2)=,由图可知,当c∈函数f(x)与y=c的图象有两个公共点,∴c的取值范围是,故选B.二、填空题(共6小题,每小题5分,满分30分)9.(5分)一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为 12 .【解答】解:∵田径队有男运动员48人,女运动员36人,∴这支田径队共有48+36=84人,用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,∴每个个体被抽到的概率是,∵田径队有男运动员48人,∴男运动员要抽取48×=12人,故答案为:12.10.(5分)一个几何体的三视图如图所示(单位:m),则这个几何体的体积为 6+π m3.【解答】解:由已知可得已知的几何体是一个圆锥和长方体的组合体其中上部的圆锥的底面直径为2,高为3,下部的长方体长、宽高分别为:2,3,1则V圆锥=•π•3=πV长方体=1×2×3=6则V=6+π故答案为:6+π11.(5分)已知抛物线C的参数方程为(t为参数),若斜率为1的直线经过抛物线C的焦点,且与圆(x﹣4)2+y2=r2(r>0)相切,则r= .【解答】解:∵抛物线C的参数方程为则抛物线的标准方程为:y2=8x则抛物线C的焦点的坐标为(2,0)又∵斜率为1的直线经过抛物线C的焦点则直线的方程为y=x﹣2,即经x﹣y﹣2=0由直线与圆(x﹣4)2+y2=r2,则r==故答案为:12.(5分)如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF=,AF:FB:BE=4:2:1.若CE与圆相切,则CE的长为 .【解答】解:设AF=4k,BF=2k,BE=k,由DF•FC=AF•BF,得2=8k2,即k=,∴AF=2,BF=1,BE=,AE=,由切割定理得CE2=BE•EA==,∴CE=.13.(5分)已知集合A={x∈R||x+3|+|x﹣4|≤9},B=,则集合A∩B= {x|﹣2≤x≤5} .【解答】解:集合A={x∈R||x+3|+|x﹣4|≤9},所以A={x|﹣4≤x≤5};集合,,当且仅当t=时取等号,所以B={x|x≥﹣2},所以A∩B={x|﹣4≤x≤5}∩{x|x≥﹣2}={x|﹣2≤x≤5},故答案为:{x|﹣2≤x≤5}.14.(5分)已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则的最小值为 5 .【解答】解:如图,以直线DA,DC分别为x,y轴建立平面直角坐标系,则A(2,0),B(1,a),C(0,a),D(0,0)设P(0,b)(0≤b≤a)则=(2,﹣b),=(1,a﹣b),∴=(5,3a﹣4b)∴=≥5.故答案为5.三、解答题(共6小题,满分80分)15.(13分)已知函数f(x)=tan(2x+),(1)求f(x)的定义域与最小正周期;(2)设α∈(0,),若f()=2cos2α,求α的大小.【考点】正切函数的周期性;同角三角函数基本关系的运用;二倍角的余弦;正切函数的定义域.【专题】解三角形.【分析】(Ⅰ)利用正切函数的定义域求出函数的定义域,利用周期公式求出最小正周期;(Ⅱ)通过,化简表达式,结合α∈(0,),求出α的大小.【解答】解:(Ⅰ)由2x+≠+kπ,k∈Z.所以x≠,k∈Z.所以f(x)的定义域为:f(x)的最小正周期为:.(Ⅱ)由得tan()=2cos2α,整理得因为α∈(0,),所以sinα+cosα≠0因此(cosα﹣sinα)2=即sin2α=因为α∈(0,),所以α=【点评】本题考查两角和的正弦函数、余弦函数、正切函数公式,同角三角函数的基本关系式,二倍角公式等基本知识,考查基本运算能力.16.(13分)学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)(Ⅰ)求在1次游戏中,(i)摸出3个白球的概率;(ii)获奖的概率;(Ⅱ)求在2次游戏中获奖次数X的分布列及数学期望E(X).【考点】离散型随机变量的期望与方差;互斥事件与对立事件;古典概型及其概率计算公式;离散型随机变量及其分布列.【专题】概率与统计.【分析】(I)(i)甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,事件数是C52C32,摸出3个白球事件数为C32C21C21;由古典概型公式,代入数据得到结果,(ii)获奖包含摸出2个白球和摸出3个白球,且它们互斥,根据(i)求出摸出2个白球的概率,再相加即可求得结果,注意运算要正确,因为第二问要用本问的结果.(II)连在2次游戏中获奖次数X的取值是0、1、2,根据上面的结果,代入公式得到结果,写出分布列,求出数学期望.【解答】解:(Ⅰ)(i)设“在一次游戏中摸出i个白球”为事件A i(i=,0,1,2,3),则P(A3)=,(ii)设“在一次游戏中获奖”为事件B,则B=A2∪A3,又P(A2)=,且A2、A3互斥,所以P(B)=P(A2)+P(A3)=;(Ⅱ)由题意可知X的所有可能取值为0,1,2.P(X=0)=(1﹣)2=,P(X=1)=C21(1﹣)=,P(X=2)=()2=,所以X的分布列是X 0 1 2pX的数学期望E(X)=0×.【点评】此题是个中档题.本题考查古典概型及共概率计算公式,离散型随机变量的分布列数学期望、互斥事件和相互独立事件等基础知识,考查运用概率知识解决实际问题的能力. 17.(13分)如图所示,在三棱柱ABC﹣A1B1C1中,H是正方形AA1B1B的中心,AA1=2,C1H⊥平面AA1B1B,且C1H=.(1)求异面直线AC与A1B1所成角的余弦值;(2)求二面角A﹣A1C1﹣B1的正弦值;(3)设N为棱B1C1的中点,点M在平面AA1B1B内,且MN⊥平面A1B1C1,求线段BM的长.【考点】二面角的平面角及求法;异面直线及其所成的角;直线与平面垂直的性质.【专题】空间位置关系与距离;空间角;空间向量及应用;立体几何.【分析】方法一:如图所示,建立空间直角坐标系,点B为坐标原点.(Ⅰ)求出中的有关向量,然后求出异面直线AC与A1B1所成角的余弦值;(Ⅱ)利用求出平面AA1C1的法向量,通过求出平面A1B1C1的法向量,然后利用求二面角A﹣A1C1﹣B1的正弦值;(Ⅲ)设N为棱B1C1的中点,设M(a,b,0),利用MN⊥平面A1B1C1,结合求出a,b,然后求线段BM的长.方法二:(I)说明∠C1A1B1是异面直线AC与A1B1所成的角,通过解三角形C1A1B1,利用余弦定理,.求出异面直线AC与A1B1所成角的余弦值为.(II)连接AC1,过点A作AR⊥A1C1于点R,连接B1R,说明∠ARB1为二面角A﹣A1C1﹣B1的平面角.连接AB1,在△ARB1中,通过,求出二面角A﹣A1C1﹣B1的正弦值为.(III)首先说明MN⊥A1B1.取HB1中点D,连接ND,由于N是棱B1C1中点,推出ND⊥A1B1.证明A1B1⊥平面MND,连接MD并延长交A1B1于点E,延长EM交AB于点F,连接NE.连接BM,在Rt△BFM中,求出.【解答】方法一:如图所示,建立空间直角坐标系,点B为坐标原点.依题意得(I)解:易得,于是,所以异面直线AC与A1B1所成角的余弦值为.(II)解:易知.设平面AA1C1的法向量=(x,y,z),则即不妨令,可得,同样地,设平面A1B1C1的法向量=(x,y,z),则即不妨令,可得.于是,从而.所以二面角A﹣A1C1﹣B的正弦值为.(III)解:由N为棱B1C1的中点,得.设M(a,b,0),则由MN⊥平面A1B1C1,得即解得故.因此,所以线段BM的长为.方法二:(I)解:由于AC∥A1C1,故∠C1A1B1是异面直线AC与A1B1所成的角.因为C 1H⊥平面AA1B1B,又H为正方形AA1B1B的中心,,可得A1C1=B1C1=3.因此.所以异面直线AC与A1B1所成角的余弦值为.(II)解:连接AC1,易知AC1=B1C1,又由于AA1=B1A1,A1C1=A1C1,所以△AC1A1≌△B1C1A1,过点A作AR⊥A1C1于点R,连接B1R,于是B1R⊥A1C1,故∠ARB1为二面角A﹣A1C1﹣B1的平面角.在Rt△A1RB1中,.连接AB1,在△ARB1中,=,从而.所以二面角A﹣A1C1﹣B1的正弦值为.(III)解:因为MN⊥平面A1B1C1,所以MN⊥A1B1.取HB1中点D,连接ND,由于N是棱B1C1中点,所以ND∥C1H且.又C1H⊥平面AA1B1B,所以ND⊥平面AA1B1B,故ND⊥A1B1.又MN∩ND=N,所以A1B1⊥平面MND,连接MD并延长交A1B1于点E,则ME⊥A1B1,故ME∥AA1.由,得,延长EM交AB于点F,可得.连接NE.在Rt△ENM中,ND⊥ME,故ND2=DE•DM.所以.可得.连接BM,在Rt△BFM中,.【点评】本小题主要考查异面直线所成的角、直线与平面垂直、二面角等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力.18.(13分)在平面直角坐标系xOy中,点P(a,b)(a>b>0)为动点,F1,F2分别为椭圆的左、右焦点.已知△F1PF2为等腰三角形.(Ⅰ)求椭圆的离心率e;(Ⅱ)设直线PF2与椭圆相交于A,B两点,M是直线PF2上的点,满足,求点M 的轨迹方程.【考点】直线与圆锥曲线的综合问题;轨迹方程;椭圆的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】(Ⅰ)直接利用△F1PF2为等腰三角形得|PF2|=|F1F2|,解其对应的方程即可求椭圆的离心率e;(Ⅱ)先把直线方程与椭圆方程联立,求得A,B两点的坐标,代入,即可求点M的轨迹方程.【解答】解:(Ⅰ)设F1(﹣c,0),F2(c,0)(c>0).由题得|PF2|=|F1F2|,即=2c,整理得2+﹣1=0,得=﹣1(舍),或=,所以e=.(Ⅱ)由(Ⅰ)知a=2c,b=c,可得椭圆方程为3x2+4y2=12c2,直线方程为y=(x﹣c).A,B的坐标满足方程组,消y并整理得5x2﹣8xc=0,解得x=0,x=,得方程组的解为,,不妨设A(c,c),B(0,﹣c).设点M的坐标为(x,y),则=(x﹣c,y﹣c),=(x,y+c)由y=(x﹣c)得c=x﹣y ①,由=﹣2即(x﹣c)x+(y﹣c)(y+c)=﹣2.将①代入化简得18x2﹣16xy﹣15=0,⇒y=代入①化简得c=>0.所以x>0,因此点M的轨迹方程为18x2﹣16xy﹣15=0(x>0).【点评】本题主要考查椭圆的方程和几何性质,直线的方程,平面向量等基础知识,考查用代数方法研究圆锥曲线的性质和数形结合的数学思想,考查解决问题的能力和运算能力. 19.(14分)已知a>0,函数f(x)=lnx﹣ax2,x>0.(f(x)的图象连续不断)(Ⅰ)求f(x)的单调区间;(Ⅱ)当时,证明:存在x0∈(2,+∞),使;(Ⅲ)若存在均属于区间[1,3]的α,β,且β﹣α≥1,使f(α)=f(β),证明.【考点】利用导数研究函数的单调性;函数的零点;不等式的证明.【专题】导数的综合应用.【分析】(I)求导数fˊ(x);在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0确定函数的单调区间,若在函数式中含字母系数,往往要分类讨论.(II)由(I)知f(x)在(0,2)内单调递增,在(2,+∞)内单调递减.令.利用函数f(x)在(0,2)内单调递增,得到.最后取.从而得到结论;(III)先由f(α)=f(β)及(I)的结论知,从而f(x)在[α,β]上的最小值为f(a).再依1≤α≤2≤β≤3建立关于a的不等关系即可证得结论.【解答】解:(I ),令.当x变化时,f'(x),f(x)的变化情况如下表:x (0,)(,+∞)f′(x )+0 ﹣f(x)增极大减值所以,f(x)的单调递增区间是的单调递减区间是.(II)证明:当.由(I)知f(x )在(0,2)内单调递增,在(2,+∞)内单调递减.令.由于f(x)在(0,2)内单调递增,故.取.所以存在x0∈(2,x'),使g(x0)=0,即存在.(说明:x'的取法不唯一,只要满足x'>2,且g(x')<0即可)(III)证明:由f(α)=f(β)及(I)的结论知,从而f(x)在[α,β]上的最小值为f(a).又由β﹣α≥1,α,β∈[1,3],知1≤α≤2≤β≤3.故从而.【点评】本小题主要考查导数的运算、利用导数研究函数的单调性、解不等式、函数的零点等基础知识,考查运算能力和运用函数思想分析解决问题的能力及分类讨论的思想方法. 20.(14分)已知数列{a n}与{b n}满足:,n∈N*,且a1=2,a2=4.(Ⅰ)求a3,a4,a5的值;(Ⅱ)设c n=a2n﹣1+a2n+1,n∈N*,证明:{c n}是等比数列;(Ⅲ)设S k=a2+a4+…+a2k,k∈N*,证明:.【考点】数列与不等式的综合;等比关系的确定.【专题】等差数列与等比数列.【分析】(Ⅰ)要求a3,a4,a5的值;通过赋值方法,利用已知条件化简求解即可.(Ⅱ)化简出a2n﹣1+a2n+1,a2n+1+a2n+3的关系,即:c n+1与c n的关系,从而证明{c n}是等比数列;就是利用(Ⅰ)的,用2n﹣1,2n,2n+1,替换中的n,化简出只含“a n”的关系式,就是a2n﹣1+a2n+2a2n+1=0,①2a2n+a2n+1+a2n+2=0,②a2n+1+a2n+2+2a2n+3=0,③然后推出a2n+1+a2n+3=﹣(a2n﹣1+a2n+1),得到c n+1=﹣c n(n∈N*),从而证明{c n}是等比数列;(Ⅲ)先研究通项公式a2k,推出S k的表达式,然后计算,结合证明的表达式,利用表达式的特征,通过裂项法以及放缩法证明即可;就是:根据a2k﹣1+a2k+1=(﹣1)k,对任意k∈N*且k≥2,列出n个表达式,利用累加法求出a2k=(﹣1)k+1(k+3).化简S2k=(a2+a4)+(a6+a8)+…+(a4k﹣2+a4k)=﹣k,k∈N*,,通过裂项法以及放缩法证明:.【解答】20、满分14分.(I)解:由,可得又b n a n+a n+1+b n+1a n+2=0,(II)证明:对任意n∈N*,a2n﹣1+a2n+2a2n+1=0,①2a2n+a2n+1+a2n+2=0,②a2n+1+a2n+2+2a2n+3=0,③②﹣③,得a2n=a2n+3.④将④代入①,可得a2n+1+a2n+3=﹣(a2n﹣1+a2n+1)即c n+1=﹣c n(n∈N*)又c1=a1+a3=﹣1,故c n≠0,因此是等比数列.(III)证明:由(II)可得a2k﹣1+a2k+1=(﹣1)k,于是,对任意k∈N*且k≥2,有将以上各式相加,得a1+(﹣1)k a2k﹣1=﹣(k﹣1),即a2k﹣1=(﹣1)k+1(k+1),此式当k=1时也成立.由④式得a2k=(﹣1)k+1(k+3).从而S2k=(a2+a4)+(a6+a8)+…+(a4k﹣2+a4k)=﹣k,S2k﹣1=S2k﹣a4k=k+3.所以,对任意n∈N*,n≥2,====对于n=1,不等式显然成立.【点评】本小题主要考查等比数列的定义、数列求和等基础知识,考查运算能力、推理论证能力、综合分析和解决问题的能力及分类讨论的思想方法.赋值法是求数列前几项的常用方法,注意n=1的验证,裂项法和放缩法的应用.。

2011天津数学高考试题及答案

2011天津数学高考试题及答案

2011年普通高等学校夏季招生全国统一考试数学(天津卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷本卷共8小题,每小题5分,共40分.参考公式:·如果事件A 、B 互斥,那么P (A ∪B )=P (A )+P (B ).·如果事件A ,B 相互独立,那么P (AB )=P (A )P (B ).·棱柱的体积公式V =Sh .其中S 表示棱柱的底面面积,h 表示棱柱的高.·圆锥的体积公式1.3V Sh =.其中S 表示棱锥的底面面积,h 表示圆锥的高. 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,复数1-3i 1-i =( ) A .2+i B .2-i C .-1+2iD .-1-2i 2.设,,x y R ∈则“2x ≥且2y ≥”是“224x y +≥”的…( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.阅读如图的程序框图,运行相应的程序,则输出i 的值为( )A .3B .4C .5D .64.已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N *,则S 10的值为 …( )A .-110B .-90C .90D .110 5.在622x x ⎛⎫- ⎪ ⎪⎝⎭的二项展开式中,x 2的系数为( ) A .154- B . 154 C .38- D . 38 6.如图,在△ABC 中,D 是边AC 上的点,且,23,2AB CD AB BD BC BD ===则sin C 的值为( )A .33 B .36C .63D .667.已知324log0.3log 3.4log 3.615,5,,5a b c⎛⎫=== ⎪⎝⎭则()A.a>b>c B.b>a>c C.a>c>b D.c>a>b8.对实数a和b,定义运算“⊗”:,1,, 1.a a ba bb a b-≤⎧⊗=⎨->⎩设函数()()22()2,.f x x x x x R=-⊗-∈,x∈R.若函数()y f x c=-的图象与x轴恰有两个公共点,则实数c的取值范围是()A.(-∞,-2]∪(-1,3 2 )B.(-∞,-2]∪(-1,3 4 -)C.(-1,14)∪(14,+∞)D.(-1,34-)∪[14,+∞)第Ⅱ卷本卷共12小题,共110分.二、填空题:本大题共6小题,每小题5分,共30分.9.一支田径队有男运动员48人,女运动员36人.若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为________.10.一个几何体的三视图如图所示(单位:m),则该几何体的体积为________ m3.11.已知抛物线C的参数方程为28,8.x ty t⎧=⎨=⎩(t为参数).若斜率为1的直线经过抛物线C的焦点,且与圆(x-4)2+y2=r2(r>0)相切,则r=________.12.如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且2,::4:2:1DF CF AF FB BE===,若CE与圆相切,则线段CE的长为________.13.已知集合{}|349, A x R x x=∈++-≤1|46,(0,)B x R x t tt⎧⎫=∈=+-∈+∞⎨⎬⎩⎭,则集合A∩B=________.。

2011年高考天津市数学试卷-理科(含详细答案)

2011年高考天津市数学试卷-理科(含详细答案)

2011年高考天津市数学试卷-理科(含详细答案)2011年普通高等学校招生全国统一考试天津卷(理科)第Ⅰ卷本卷共8小题,每小题5分,共40分 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,复数13i 1i-=-( ). A .2i+ B .2i- C .12i-+D .12i --【解】()()()()13i 1i 13i 42i2i 1i 1i 1i 2-+--===---+.故选B. 2.设,x y ∈R ,则“2x ≥且2y ≥”是“224x y +≥”的( ).A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解】因为2x ≥且2y ≥,则24x≥且24y≥,因而224x y +≥,所以“2x ≥且2y ≥”是“224xy +≥”的充分条件,取3x y ==,则满足224xy +≥, 但不满足2x ≥且2y ≥,所以“2x ≥且2y ≥”不是“224xy +≥”的必要条件. 因此“2x ≥且2y ≥”是“224xy +≥”的充分而于是()1011091010204521102Sa d ⨯=+=⨯+⨯-=.故选D.5.在6x x ⎫⎝的二项展开式中,2x 的系数为( ).A .154-B .154C .38-D .38【解】()6326166C 1C 2rrr r r r r r x T x x ---+⎛==- ⎝⎝⎭,令32r -=,则1r =.()112262226631C 2168Tx x x -=-=-=-.所以,2x 的系数38-,故选C.6.如图,在ABC ∆中,D 是边AC 上的点,且AB AD =,23AB BD=,2BC BD=,则sin C 的值为( ).A 3B 3C.6D 6【解】解法1.取BD 的中点E ,因为AB AD =,所以AE BD ⊥,因为23AB BD=,3AB BE=.所以3cos cos BE ABE ADB AB=∠==∠,CBDAECBDA于是6sin sin 3ADB CDB ∠=∠=.在BDC ∆中,由正弦定理得sin sin BC BDCDB C=∠, sin 6BDC=,所以6sin C =.故选D.解法2.设1BD =,由题设32AB AD ==,2BC =.在ABD∆中,由余弦定理得222331144cos 32324AB AD BD BAD AB AD +-+-∠===⋅⨯,所以22sin BAD ∠=在ABC ∆中,由正弦定理得sin sin BC ABBAD C=∠,即32sin 22C =,所以6sin 6C =.故选D.7.2log 3.45a =,4log 3.65b =,3log 0.315c ⎛⎫= ⎪⎝⎭,则( ).A .a b c >>B .b a c >>C .a c b >>D .c a b >> 【解】解法1.33310log 0.3log log 0.331555c -⎛⎫=== ⎪⎝⎭,下面比较2log 3.4a '=,4log 3.6b '=和310log 3c '=的大小. 因为1a '>,1c '>,1b '<,则b '最小.2310lg10lg 3.43log 3.4log 3lg 2lg 3a c ''-=-=-,因为10lg 3.4lg 03>>,0lg 2lg3<<,所以11lg 2lg 3>, 因此10lglg 3.430lg 2lg 3a c ''-=->.所以a c ''>,因而a cb '''>>.由于函数5x y =是R 上的增函数,所以a c b >>.故选C. 解法2.33310log 0.3log log 0.331555c -⎛⎫=== ⎪⎝⎭,下面比较2log 3.4a '=,4log 3.6b '=和310log 3c '=的大小. 因为1a '>,1c '>,1b '<,则b '最小.因为3310log log 3.43c '=<, 所以233lg3.4lg3.410log 3.4log 3.4log lg 2lg33a c ''==>>>=,因而a cb '''>>.由于函数5x y =是R 上的增函数,所以a c b >>.故选C.解法3.由解法2,3310log log 3.43c '=<,画出函数2log y x =和3log y x =的图象,比较 3.4x =的纵坐标,可得23log 3.4log 3.4>,于是23310log 3.4log 3.4log 3a c ''=>>=.因而a cb '''>>. 由于函数5x y =是R 上的增函数,所以ac b >>.故选C.8.对实数a 和b ,定义运算“⊗”:,1,,1.a ab a b b a b -≤⎧⊗=⎨->⎩设函数()()()222f x x x x =-⊗-,x ∈R .若函数()y f x c =-的图象与x 轴恰有两个公共点,则实数c 的取值范围是( ). A .()3,21,2⎛⎫-∞-- ⎪⎝⎭ B .(]3,21,4⎛⎫-∞--- ⎪⎝⎭ C .111,,44⎛⎫⎛⎫-+∞ ⎪⎪⎝⎭⎝⎭ D .311,,44⎛⎫⎡⎫--+∞ ⎪⎪⎢⎝⎭⎣⎭【解】由题设()2232,1,23,12x x f x x x x x ⎧--≤≤⎪⎪=⎨⎪-<->⎪⎩或画出函数的图象,函数图象的四个端点(如图)为()1,1A --,31,24D ⎛⎫⎪⎝⎭,()1,2B --,33,24C ⎛⎫- ⎪⎝⎭, 从图象中可以看出,直线y c =穿过点C ,点A 之间时,直线y c =与图象有且只有两个公共点,同时,直线y c =穿过点B 及其下方时,直线y c =与图象有且只有两个公共点,所以实数c 的取值范围是(]3,21,4⎛⎫-∞--- ⎪⎝⎭.故选B.第Ⅱ卷二、填空题:本答题共6小题,每小题5分,共30分.9.一支田径队有男运动员48人,女运动员36人.若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为 . 【解】12.抽取男运动员的人数为2121484812483684⨯=⨯=+(人).10.一个几何体的三视图如右图所示(单位:m),则该几何体的体积为3m .【解】6π+.几何体是由一个长方体与一个圆锥组合的.体积为213211363V ππ=⨯⨯+⨯⨯⨯=+.俯视图侧视图正视图12233311.已知抛物线C 的参数方程为28,8x t y t ⎧=⎨=⎩(t 为参数).若斜率为1的直线经过抛物线C 的焦点,且与圆()()22240x y r r -+=>相切,则r = .2抛物线C 的普通方程为28y x=,其焦点为()2,0F . 直线方程为2y x =-. 因为直线与圆()()22240x y r r -+=>相切,则圆心到直线的距离等于半径,即40222r --==12.如图,已知圆中两条弦AB 与CD 相交于点F ,E 是AB 延长线上一点,且2DF CF ==::4:2:1AF FB BE =,若CE 与圆相切,则线段CE 的长为 . 【解】72.因为::4:2:1AF FB BE =,所以设BE a =,2FB a =,4AF a =. 由相交弦定理,242DF CF AF FB a a ⋅=⋅==⋅,所以12a =,12BE =,772AE a ==. 因为CE与圆相切,由切割线定理,2177224CE AE BE =⋅=⋅=.所以72CE =.FDCB A13.已知集合{}349A x x x =∈++-≤R ,()146,0,B x x t t t ⎧⎫=∈=+-∈+∞⎨⎬⎩⎭R ,则集合A B =.【解】{}25x x -≤≤. 解集合A .当3x <-时,不等式化为349x x --+-≤,解得4x ≥-.所以解为43x -≤<-;当34x -≤≤时,不等式化为349x x ++-≤,即79≤.所以解为34x -≤≤;当4x >时,不等式化为349x x ++-≤,解得5x ≤,所以解为45x <≤.综合以上,{}45A x x =-≤≤. 解集合B .因为0t >,所以1146246462x t t t t=+-≥⋅=-=-,所以{}2B x x =≥-,因而{}25AB x x =-≤≤.14.已知直角梯形ABCD 中,//AD BC ,90ADC ∠=︒,2AD =,1BC =,P 是腰DC 上的动点,则3PA PB +的最小值为 . 【解】5.解法1 .以D 为坐标原点,DA 所在直线为x 轴,DC 所在直线为y 轴,y xPD C BA建立如图的直角坐标系.由题设,()2,0A ,设()0,C c ,()0,P y ,则()1,B c .()2,PA y =-,()1,PB c y =-.()35,34PA PB c y +=-.()2235345PA PB c y +=+-,当且仅当34c y =时,等号成立,于是,当34c y =时,3PA PB+有最小值5.解法2 . 以相互垂直的向量DP ,DA 为基底表示PB PA 3+,得()533332PA PB DA DP PC CB DA PC DP +=-++=+-.又P 是腰DC 上的动点,即PC 与DP 共线,于是可设DP PC λ=,有DP DA PB PA )13(253-+=+λ. 所以2222553(31)(31)42PA PB DA DP DA DP λλ⎡⎤+=+-+⨯-⋅⎣⎦即[]2)13(25)13(4253DP DPDA PB PA -+=-+=+λλ.由于P 是腰DC 上的动点,显然当31=λ,即DP PC 31=时,所以3PA PB +有最小值5. 解法3 .如图,3PB PF =,设E 为AF1a FB的中点,Q 为AB 的中点,则12QE BF PB ==, 32PA PB PA PF PE+=+=, ①因为PB PQ PE +=,PB PQ QB -=. 则22222222PB PQ PB PQ PB PQ PE QB++-=+=+. ②(实际上,就是定理:“平行四边形的对角线的平方和等于各边的平方和”)设T 为DC 的中点,则TQ 为梯形的中位线,()1322TQ AD BC =+=.设P 为CT 的中点,且设,CP a PT b ==, 则221PBa =+,2294PQ b =+,()2214QB a b =++,代入式②得()()222222912221244PB PQ a b PE a b ⎛⎫+=+++=+++⎪⎝⎭,于是()22252544PEa b =+-≥,于是25PE ≥,当且仅当a b=时,等号成立.由式①,325PA PB PE +=≥, 所以3PA PB +有最小值5.三、解答题:本大题共6小题,共80分。

2011年天津市高考数学试卷(理科)答案与解析

2011年天津市高考数学试卷(理科)答案与解析

2011年天津市高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1 一1. --------------------------------------------------------------------- (5分)(2011?天津)i是虚数单位,复数-------------------------------------------------- =()1_1A . 2+i B. 2 - i C.- 1+2i D . - 1 - 2i【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】要求两个复数的除法运算,分子和分母同乘以分母的共轭复数,分子和分母上进行复数的乘法运算,最后结果要化简成最简形式.【解答】解:复数= -::'=2 - i1-i (1-i)(1+i) 2故选B .【点评】本题考查复数的代数形式的乘除运算,是一个基础题,这种题目运算量不大,解题应用的原理也比较简单,是一个送分题目.2 22. (5分)(2011?天津)设x, y€R,贝U X丝且y多堤x +y台”的()A •充分而不必要条件B •必要而不充分条件C.充分必要条件D •既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】简易逻辑.2 2 2 2【分析】由X支且y多”推出X +y台”可证明充分性;由满足X +y台”可举出反例推翻X多且y 支”,则证明不必要性,综合可得答案.【解答】解:若X》且y呈,则x2台,y2呂,所以x2+y2%,即x2+y2呂;2 2 右x +y台,则如(-2,- 2)满足条件,但不满足x支且y支.2 2 所以X呈且y支”是X +y绍”的充分而不必要条件.故选A .【点评】本题主要考查充分条件与必要条件的含义.3. (5分)(2011?天津)阅读程序框图,运行相应的程序,则输出i的值为()£7 = J X CT*1/输出]L/A . 3B . 4C . 5D . 6【考点】程序框图. 【专题】算法和程序框图.【分析】通过程序框图的要求,写出前四次循环的结果得到输出的值. 【解答】解:该程序框图是循环结构 经第一次循环得到 i=1 , a=2; 经第二次循环得到 i=2, a=5;经第三次循环得到 i=3, a=16;经第四次循环得到 i=4, a=65满足判断框的条件,执行是,输出4故选B【点评】本题考查解决程序框图中的循环结构时,常采用写出前几次循环结果,找规律.4. ( 5分)(2011?天津)已知{a n }为等差数列,其公差为- 2,且a 是a s 与a 9的等比中项, S n 为{an }的前n 项和,n€N ,则S io 的值为( )A . - 110B . - 90C . 90D . 110【考点】等差数列的前n 项和;等比数列的性质. 【专题】等差数列与等比数列.【分析】 通过a 7是a 3与a 9的等比中项,公差为-2,求出【解答】解:a 7是a 3与a 9的等比中项,公差为-2,所以a 72=a 3?a 9,T {a n }公差为-2,二 a 3=a 7- 4d=a 7+8, a 9=a 7+2d=a 7 - 4,所以 a 7 = (a 7+8) (a 7 - 4),所以 a 7=8,所以 a 1 =20, 所以 S 10=「「二亠八 ' 「-=110故选D【点评】本题是基础题,考查等差数列的前 n 项和,等比数列的应用,考查计算能力,常考题型.故选C【点评】本题考查利用二项展开式的通项公式解决二项展开式的特定项问题.【考点】二项式定理. 【专题】二项式定理.【分析】利用二项展开式的通项公式求出展开式的通项,令 x 2的系数,即得答案.【解答】解:展开式的通项为 T r+1= (- 1) r 22r -6C 6r x 3-rx 的指数为2,求出展开式中,令 3 - r=2 得 r=1所以项展开式中,x 2的系数为-..\ '-° O5. ( 5分)(2011?天津)在x 2的系数为(2V5 r V6BD _ BC * c _ 3V6sinC sin-ZBDC 4逅兀 3故选:D .【点评】本题主要考查了在三角形中,综合运用正弦定理、余弦定理、 识解三角形的问题, 反复运用正弦定理、 余弦定理,要求考生熟练掌握基本知识, 选择基本工具解决问题.7. ( 5 分) (2011?天津)已知二:r 丄. 八]则( )5A . a > b > cB . b > a > cC . a > c >bD . c > a > b 【考点】指数函数的单调性与特殊点.【专题】函数的性质及应用.6. (5分)(2011?天津)如图,在 △ ABC 中,D 是边AC 上的点,且 AB=AD , 2AB= ■:BD ,BC=2BD ,则sinC 的值为( A .匚3【考点】【专题】【分析】B .亘C .丄D .6 3三角形中的几何计算.解三角形.根据题中条件,在 △ ABD 中先由余弦定理求出 cosA ,利用同角关系可求 sinA ,利 用正弦定理可求 sin /BDC ,然后在△ BDC 中利用正弦定理求解 sinC 即可 【解答】解:设AB=x ,由题意可得 AD=x , BD=—■,.-V3 <3△ ABD 中,由余弦定理可得cosA=2 _ 4 X 2AB 2 + AD 2- BD 2 2x ~~_1••• sinA = _△ ABD 中,由正弦定理可得AB1? sin / ADB=sin^ADB sinA霁in 么孟X 竽暮V3BC △ BDC 中,由正弦定理可得同角基本关系式等知 并能灵活【分析】比较大小的方法:找1或者0做中介判断大小,指数幕的运算法则和对数的运算法则对 c 进行化简,得到b ,再借助于中间值log 2丄进行比较大小,从而得到结果.,3【解答】解:••Tog 23.4 > 1, Iog 43.6v 1, 又y=5x 是增函数,••• a > b ,沁)W5103T Y二5影>5】呃昇二51=5"隔4〉5"阴"归b而 ge |og J >IogJ',• a > c故 a >c >b . 故选C .【点评】此题是个中档题.本题考查对数函数单调性、指数函数的单调性及比较大小, 以及中介值法,考查学生灵活应用知识分析解决问题的能力.自,a - b^l.设函数fb, a - bJ>l2 2(x ) = (x - 2) ? (X - x ), x €R .若函数y=f (x )- c 的图象与x 轴恰有两个公共点,则 实数c 的取值范围是()A .| 一 •; 1. " 1 B. ' 一. . 二2 4C .-二「「D.'-卩:■-4444【考点】函数与方程的综合运用. 【专题】函数的性质及应用.【分析】根据定义的运算法则化简函数f (x ) = (x 2- 2) ? (x - x 2)的解析式,并求出 f(x )的取值范围,函数 y=f (x ) - c 的图象与x 轴恰有两个公共点转化为 y=f (x ), y=c 图 象的交点问题,结合图象求得实数c 的取值范围.£ a - b<l【解答】解:•••已毗二J|、■.,b, a ~ b^>l.X.由图可知,当 函数f (x )与y=c 的图象有两个公共点, ••• c 的取值范围是 -,{•函数 f ( x ) = (x 2- 2)(x - x 2)Iog 43.6v 1, Iog 23.4> 1,利用分数- K £4【点评】本题考查二次函数的图象特征、函数与方程的综合运用,及数形结合的思想.属于基础题.二、填空题(共6小题,每小题5分,满分30分)9. (5分)(2011?天津)一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为12 . 【考点】分层抽样方法.【专题】概率与统计.【分析】根据田径队的男女运动员数目和用分层抽样要抽取的数目,得到每个个体被抽到的概率,利用每个个体被抽到的概率乘以男运动员的数目,得到结果.【解答】解::•田径队有男运动员48人,女运动员36人,•••这支田径队共有48+36=84人,用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,•每个个体被抽到的概率是——84 4•••田径队有男运动员48人,•••男运动员要抽取48X =12人,4故答案为:12.【点评】本题考查分层抽样,在抽样过程中每个个体被抽到的概率相等,这是解决这种问题的依据,本题是一个基础题.10. (5分)(2011?天津)一个几何体的三视图如图所示(单位:m),则这个几何体的体积为6+ n m3.正视圏犒视圏【考点】由三视图求面积、体积.【专题】立体几何.【分析】由已知中的三视图,我们易判断已知中几何体的形状,然后根据已知的三视图分析出几何体的相关几何量,代入体积公式,即可求出该几何体的体积.【解答】解:由已知可得已知的几何体是一个圆锥和长方体的组合体其中上部的圆锥的底面直径为2,高为3,下部的长方体长、宽高分别为:2,3, 1贝U V圆锥=* ? n?= nV长方体=1 >2X3=6则V=6+ n故答案为:6+ n【点评】本题考查的知识是由三视图求体积,其中根据已知中的三视图分析几何体的形状是解答本题的关键.11. (5分)(2011?天津)已知抛物线C的参数方程为X=St(t为参数),若斜率为1的直线经过抛物线C的焦点,且与圆(x-4)2+y2=r2(r> 0)相切,则r=_ . :_ .【考点】直线与圆的位置关系;抛物线的简单性质;直线的参数方程.【专题】圆锥曲线的定义、性质与方程;坐标系和参数方程.f 2【分析】由抛物线C的参数方程为X"St我们易求出抛物线的标准方程,进而根据斜率L y=8t为1的直线经过抛物线C的焦点,且与圆(x- 4)2+y2=r2(r>0)相切,我们根据直线与圆相切,贝U 圆心到直线的距离等于半径,求出直线方程后,代入点到直线距离公式,构造关于r的方程,解方程即可得到答案.【解答】解:•••抛物线C的参数方程为,x=St则抛物线的标准方程为:y2=8x则抛物线C的焦点的坐标为(2, 0)又•••斜率为1的直线经过抛物线C的焦点则直线的方程为 y=x - 2,即经x - y - 2=0 由直线与圆(x - 4) 2+y 2=r 2,则故答案为:-其中根据直线与圆相切, 则圆心到直线的距离等于半径, 求出直线方程后,代入点到直线距离公式,构造关于r 的方程,是解答本题的关键.12. ( 5分)(2011?天津)如图,已知圆中两条弦 AB 与CD 相交于点F , E 是AB 延长线上 一点,且 DF=CF= 二 AF : FB : BE=4 : 2: 1.若CE 与圆相切,则 CE 的长为.【考点】圆的切线方程. 【专题】直线与圆.【分析】 设出AF=4k , BF=2k , BE=k ,由DF?FC=AF?BF 求出k 的值,禾U 用切割定理求出 CE .2 1【解答】 解:设 AF=4k , BF=2k , BE=k ,由 DF?FC=AF ?BF ,得 2=8k ,即 k=,2••• AF=2 , BF=1 , BE= , AE=,2 22 17 7由切割定理得CE =BE?EA= =—,2 2 4• CE ==.2【点评】 本题是基础题,考查直线与圆的位置关系,考查计算能力,基本知识掌握的情况, 常考题型.13. ( 5 分)(2011?天津)已知集合 A={x €R||x+3|+|x - 4|电}, B= . T _ I : — - |I ' ,则集合 A QB= _【考点】交集及其运算. 【专题】集合.【分析】 求出集合A ,求出集合B ,然后利用集合的运算法则求出 A AB .【解答】 解:集合A={x €R||x+3|+|x - 40},所以A={x| - 4纟老}; 集合-.■' -'. ■ . ; .•-,--_ -■■■■. '| _ _ - - - ■-- ,当且仅当t=〔时取等号,所以 B={x|x A 2},2所以 A AB={x| - 4$W5} A{x|x A 2}={x| - 2$老}, 故答案为:{x| - 2<x<5}.r=4-2【点评】本题考查的知识点是直线与的圆位置关系,抛物线的简单性质及抛物线的参数方程,【点评】本题是基础题,考查集合的基本运算,注意求出绝对值不等式的解集,基本不等式求出函数的值域,是本题解题是关键,考查计算能力.14. (5 分)(2011?天津)已知直角梯形ABCD 中,AD // BC,/ ADC=90 ° AD=2 , BC=1 ,P是腰DC上的动点,则|的最小值为 5 .【考点】向量的模.【专题】平面向量及应用.【分析】根据题意,利用解析法求解,以直线DA , DC分别为x, y轴建立平面直角坐标系,则A (2, 0), B (1 , a) , C (0 , a) , D (0 , 0),设P (0 , b) (0电弟),求出包+3瓦,根据向量模的计算公式,即可求得_ J : :■.<■' | ,利用完全平方式非负,即可求得其最小值.【解答】解:如图,以直线DA, DC分别为x , y轴建立平面直角坐标系,则A (2 , 0), B (1 , a) , C ( 0 , a) , D (0 , 0)设P ( 0 , b) ( 04)毛)则」■■= (2 , - b), -1= (1, a- b),•••「'd「用=(5 , 3a- 4b)••• C「二* 「一二;l.. .「为.故答案为5.【点评】此题是个基础题•考查向量在几何中的应用,以及向量模的求法,同时考查学生灵活应用知识分析解决问题的能力.三、解答题(共6小题,满分80分)15. (13 分)(2011?天津)已知函数f (x) =tan (2x+——),(1 )求f (x)的定义域与最小正周期;(2)设a€ ( 0,——),若f (二)=2cos2 a ,求a 的大小.4 2【考点】正切函数的周期性;同角三角函数基本关系的运用; 二倍角的余弦;正切函数的定义域.【专题】解三角形.【分析】(I)利用正切函数的定义域求出函数的定义域,利用周期公式求出最小正周期;(n)通过f (2) -2cos2Cl ,化简表达式,结合 a€ ( 0,丄L ),求出a 的大小.241解答,解:⑴由吩 即n 迪.所以x 专呼,k 厘.所以f (x )的定义域/. f (x )的最小正周期为:sin ( a +令)---------- 二2 (co s 2a - si cos ( □ +—)4整理得—L' ] 1 J _ 二 i -二二: cos a 一 sin Cl(cos a+sind )因为 a€ (0,匹),所 4以 sin a +cos a 0 因此(COS a — sin a) 即 sin2 a —因为 a€ (0,二_),2 4所以a_—12【点评】本题考查两角和的正弦函数、余弦函数、 式,二倍角公式等基本知识,考查基本运算能力.16. (13分)(2011?天津)学校游园活动有这样一个游戏项目:甲箱子里装有 3个白球、2 个黑球,乙箱子里装有 1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个 箱子里各随机摸出 2个球,若摸出的白球不少于 2个,则获奖.(每次游戏结束后将球放回原箱)(I)求在1次游戏中,(i) 摸出3个白球的概率; (ii) 获奖的概率;(n)求在2次游戏中获奖次数 X 的分布列及数学期望 E (X ).【考点】离散型随机变量的期望与方差; 互斥事件与对立事件; 古典概型及其概率计算公式;离散型随机变量及其分布列. 【专题】概率与统计.【分析】(1)( i )甲箱子里装有3个白球、2个黑球,乙箱子里装有 1个白球、2个黑球, 这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出 2个球,事件数是 C 52C 32,摸出3个白球事件数为C 32C 21C 21;由古典概型公式,代入数据得到结果,(ii )获奖包含摸出2个白球和摸出3个白球,且它们互斥,根据(i )求出摸出2个白球的概率,再相加即可求得结果,注意运算为:2_丄=:正切函数公式,同角三角函数的基本关系 - ■-.-:=:'得 tan (=2cos2 a,要正确,因为第二问要用本问的结果.(II )连在2次游戏中获奖次数 X 的取值是0、1、2,根据上面的结果,代入公式得到结果,写出分布列,求出数学期望.【点评】此题是个中档题. 本题考查古典概型及共概率计算公式, 离散型随机变量的分布列数学期望、互斥事件和相互独立事件等基础知识,考查运用概率知识解决实际问题的能力.17. (13分)(2011?天津)如图所示,在三棱柱 ABC - A 1B 1C 1中,H 是正方形AA 伯伯 的 中心,AA 仁2*:「,C 1H 丄平面 AA 1B 1B ,且 C 1H=".(1) 求异面直线 AC 与A 1B 1所成角的余弦值; (2) 求二面角 A - A 1C 1 - B 1的正弦值;(3) 设N 为棱B 1C 1的中点,点 M 在平面AA 1B 1B 内,且MN 丄平面A 1B 1C 1,求线段BM【考点】 二面角的平面角及求法;异面直线及其所成的角;直线与平面垂直的性质. 【专题】空间位置关系与距离;空间角;空间向量及应用;立体几何.【解答】解:(I) (i )设 在一次游戏中摸出i 个白球”为事件A i (i= , 0, 1, 2, 3),则2 1 C3 c 21P (A 3).(ii )设 在一次游戏中获奖2 2 11 C 电 C 9C C nP (A 2)=厂 丁- - - ■ c 5 c 3 c 5”为事件B , 1.一-3则 B=A 2U A 3,又且 A 2、A 3 互斥,所以 P ( B ) =P (A 2)(H)由题意可知 X 的所有可能取值为+P ( A 3)=:」] 0, 1, 2.P (X=0 )==(1 - \ 2=,10 100P (X=2 )==(')「,10 10012.p910021 50 49 100X 的数学期望E (X ) =0X " . ■ 一100 50100^5P (X =1)"吒(1 甘疇,所以X 的分布列是【分析】方法一:如图所示,建立空间直角坐标系,点B 为坐标原点.(I)求出心中的有关向量,然后求出异面直线 AC 与A 1B 1所成角的余弦值;□二0T(H)利用,「: 求出平面AA i C i 的法向量IT ,通过*AA [二 0 的法向量」然后利用MN-AiBi=O(川)设N 为棱B i C i 的中点,设M ( a, b, 0),利用MN 丄平面A i B i C i,结合[一 fHN-A^^O求出a , b ,然后求线段BM 的长.方法二:(I )说明/ C i A i B i 是异面直线AC 与A i B i 所成的角,通过解三角形 C i A i B i ,利 用余弦定理, cosZC l A l B l- 2A 1C 1-A 1B 1-3求出异面直线 AC 与A i B i 所成角的余弦值为士I3(II )连接AC i ,过点A 作AR 丄A i C i 于点R ,连接B i R ,说明/ ARB i 为二面角A - A i C iA "+E E - AB !-B i 的平面角.连接 AB i ,在厶ARB i 中,通过「 • •,1ZAK* D j K求出二面角A -A i C i - B i 的正弦值为 -7(III )首先说明MN 丄A i B i .取HB i 中点D ,连接ND ,由于N 是棱B i C i 中点,推出ND 丄A i B i .证明A i B i 丄平面MND ,连接MD 并延长交A i B i 于点E ,延长EM 交AB 于点F,_连接NE .连接BM ,在Rt △ BFM 中,求出【解答】方法一:如图所示,建立空间直角坐标系,点 B 为坐标原点. 依题意得A (2^2. 0, 0) ,B (0, 0, 0),C (近,-伍,真)A t (2A /2 * 2^2* 0),B ] (CL 2品 0) , Cj (V2 * V2 * Vs )cos 疋,盘磴[B ;〉二,一.’, ----- .,1 1|人1匚1二Q求出平面 A I B I C I i 二0[一求二面角A - A i C i - B i 的正弦值;(I )解:易得-- 冷「 —.:—► -------►AC p A 1B 14 V?是, 所以异面直线AC 与A 1B1所成角的余弦值为匚.(H )解:易知.I .... ■--: =匸设平面AA 1C 1的法向量 =(x , y , z ),不妨令」二,可得.. - ■ 同样地,设平面 A i B i C i 的法向量-i=(x , y , z ),n p A t C t =0( -^/2x - V23^V5Z ~0、 厂则* f ______ * 即《 不妨令尸,n-A^^O l - 2V2K =0.可得-厂•「 ■■: 1所以二面角A - A 1C 1 - B 的正弦值为in* Ai Ci=O则-丄即(■后-品*12727=0.从而:j(III )解:由N 为棱B i C i 的中点,方法二:(I )解:由于AC // A 1C 1,故/ C i A i B i 是异面直线AC 与A I B I 所成的角. 因为CiH 丄平面AAlBlB ,又H 为正方形AAlBlB 的中心, 「.二-C . H--可得 A i C 仁B i C i =3 .因此-M--G 曲厶n 1 2打所以异面直线AC 与A i B i 所成角的余弦值为 1.3(II )解:连接 AC i ,易知 AC I =B I C I , 又由于 AA I =B I A I , A i C i =A i C i ,所以△ AC i A i ^A B i C i A i ,过点A 作AR 丄A i C i 于点R ,连接B i R ,于是B i R 丄A i C i ,故/ ARB i 为二面角A - A i C i - B i 的平面角.由MN 丄平面A I B I C I ,得、MN-B!=0连接 AB I ,在△ ARB I 中,上 「门-一 A7.:.-AR 2+B 1R 2 - ABj 2祁•石百=°c在Rt △ A IRBI中,•-…..-(I)求椭圆的离心率 e ;【考点】直线与圆锥曲线的综合问题;轨迹方程;椭圆的简单性质. 【专题】圆锥曲线的定义、性质与方程.所以二面角A - A i C i - B i 的正弦值为-7(III )解:因为 MN 丄平面A i B i C l ,所以MN 丄A i B i . 取HB i 中点D ,连接ND ,由于N 是棱B i C i 中点, 所以 ND // C i H 且、一-厂--.2 2又C i H 丄平面AA i B i B , 所以ND 丄平面AA i B i B ,故ND 丄A i B i . 又 MN AND=N ,所以A i B i 丄平面MND ,连接MD 并延长交A i B i 于点E , 则 ME 丄A iB i ,故 ME // AA i .得---:--,延长EM 交AB 于点F ,2可得-_ :)2在 Rt △ ENM 中,ND 丄 ME ,故 ND 2=DE?DMD 厝晋 F 闻所以可得BM ,在 Rt △ BFM 中,:丫_ y 二];一 . 【点评】本小题主要考查异面直线所成的角、直线与平面垂直、二面角等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力.连接 i8. (i3分)(20ii?天津)在平面直角坐标系2 2F2分别为椭圆1的左、右焦点.已知a 2b 2xOy 中,点 P (a , b ) (a > b > 0)为动点,△ F i PF 2为等腰三角形.F i ,(H)设直线PF 2与椭圆相交于 A , B 两点,M 是直线PF 2上的点,满足f ;:,.连接NE .点M 的轨迹方程.【分析】(I)直接利用△ F 1PF 2为等腰三角形得 离心率e ;将① 代入化简得18x 2- 16 7y - 15=0, ? y='代入① 化简得c=丄」>0.所1&V3X16x以 x >0 , 因此点M 的轨迹方程为18x 2- 16 ■:xy - 15=0 (x >0). 【点评】本题主要考查椭圆的方程和几何性质,直线的方程,平面向量等基础知识,考查用代数方法研究圆锥曲线的性质和数形结合的数学思想,考查解决问题的能力和运算能力.219. (14分)(2011?天津)已知a >0,函数f (x ) =lnx - ax , x >0. (f (x )的图象连续不 断)(I)求f (x )的单调区间;(n)当 手g 时,证明:存在Xo € (2, + 8),使f (耳)=f (冷);(川)若存在均属于区间[1,3]的a 且B- a 丰,使(a)=f( B),证明 — ■ ■-:一匚一5 3|PF 2|=|F 1F 2|,解其对应的方程即可求椭圆的 (n)先把直线方程与椭圆方程联立,求得A ,B 两点的坐标, 代入二,即可求点M 的轨迹方程.【解答】解:(I)设 F i (- c , 0) , F 2 (c , 0)(C >0).由题得 |PF 2|=|F i F 2|,即:'=2c ,整理得 2a2+ :-仁0,得:=-1 (舍),或=,a 2所以e=.2(n)由(I)知a=2c , b= 7c ,可得椭圆方程为y 2=12c 2 Cx-d '消y 并整理得5x 2- 8xc=0 ,3x 2+4y 2=12c 2,直线方程为 y= '; (x - c ).解得x =0, x鲁得方程组的解为x=08c5v=—■—c不妨设 A ( c 二一c ), B (0, - 7 c )5 5*p设点M 的坐标为(x , y ),则AH = (x - — c , 5y -— c ) , M= (x , y+■:c )5由.「,丫 * f'= - 2 即(x -x+ (y --C) 5(y+* ?c ) =- 2.A ,B 的坐标满足方程组①,由 Y =W (x - c ) 得 c=x -【考点】利用导数研究函数的单调性;函数的零点;不等式的证明.【专题】导数的综合应用.【分析】(I)求导数f/(x);在函数的定义域内解不等式f/(x)> 0和f/(x)v 0确定函数的单调区间,若在函数式中含字母系数,往往要分类讨论.(II )由(I)知f (x)在(0, 2)内单调递增,在(2, +8)内单调递减•令-二.■' I I .利用函数f (x)在(0, 2)内单调递增,得到2.■- ■ .- 「•最后取I:「「一「从而得到结论;(III )先由f (a) =f (份及( :1)的结论知P,从而f (x )在[a, 3上的最小值为f (a).再依1Wa2<B3建立关于a的不等关系即可证得结论.2【解答】解: (I) : :. - ・■X X令-:< ■.-11^ /'.za当x变化时,f (x), f (X)的变化情况如下表:x(0, ^^)2a 7 2刁2a(V^, + 8)2af' (x) +0—f ( x) 增极大值减所以,f( x)的单调递增区间是I I, --1 . ,:的单调递减区间是2a(II )证明:当-厂"「一丄' :, •s y由(I)知f (x)在(0, 2)内单调递增,在(2, + 8)内单调递减.令H ;■一•'':.由于f (x)在(0, 2)内单调递增,故..取:,'■■■■ ■' : - -J- -'r- 1.1所以存在x°€ (2, x'),使g (xo) =0,即存在- . . ' : 1■, -1 ,.(说明:x'的取法不唯一,只要满足x'> 2,且g (x')v 0即可)(Ill )证明:由f (a) =f (B)及(I )的结论知,, 2a 从而f (x )在[a B 上的最小值为f (a ). 又由 a 1 a, ^€[1 , 3],知 1 Wa 2^B 3.,,ff (2) Af ( Ct ) >f (1) An fln2 -- af (2) CP) C3) . ^In2 - 4a^ln3 - 9a.【点评】本小题主要考查导数的运算、禾U 用导数研究函数的单调性、解不等式、函数的零点 等基础知识,考查运算能力和运用函数思想分析解决问题的能力及分类讨论的思想方法.20. (14分)(2011?天津)已知数列{a n }与{b n }满足:(I)求 a 3, a 4, a 5 的值;(n)设 C n =a 2n -1+a 2n+1, n €N ,证明:{c n }是等比数列;(川)设 S k =a 2+a 4+ --+a 2k , k€N ,证明:【考点】数列与不等式的综合;等比关系的确定. 【专题】等差数列与等比数列.【分析】(I)要求a 3, a 4, a 5的值;通过赋值方法,利用已知条件化简求解即可.(n)化简出a 2n - 1+a 2n+1, a 2n+1+a 2n+3的关系,即:C n+1与C n 的关系,从而证明{C n }是等比 数列;就是利用(I)的 b 二'1" 吟覚豎,用2n — 1, 2n , 2n+1 ,替换n匕且为偶数1,.r -———中的n ,化简出只含a n'的关系式,就是a 2n-1+a 2n +2a 2n+1=0,① 2a 2n +a 2n+1+a 2n+2=0,② a 2n+1+a 2n+2+2a 2n+3=0,③ 然后推出 a 2n+1+a 2n+3= —(a 2n - 1+a 2n+1),得到5+1= — C n ( n €N ),从而证明{C n }是等比数列; (川)先研究通项公式a 2k ,推出S k 的表达式,然后计算 ',结合证明的表达式,利用表达式的特征,通过裂项法以及放缩法证明即可;就是:根据a 2k -1+a 2k+1= (— 1) k ,对任意k+1k€N 且k 多,列出n 个表达式,利用累加法求出 a 2k = (— 1) (k+3).化简S 2k = ( a 2+a 4)、 / x . . <KI * 3 兀 JJ r 场m-3 ^4jn-2 1 】皿计+ (a 6+a 8)+ ••+ ( a 4k -2+a 4k ) = — k , k €N ,二k=l a k m=l两皿-?屯1 対皿加 S T , 7通过裂项法以及放缩法证明:::\'k=i a k 6【解答】20、满分14 分.b n a n +an+l + b n +l a n+2=°7''■',n €N *,且 a 1=2,a 2=4.% Si, 7可得b =(lf n?Sn u,ii为偶数又b n a n+a n+1+b n+1a n+2=0,当n=l时,a1-l-a2+2a3=:0i由31~2, a2=4s可得a3= - 3;当口二£时,2a2 + a3+a4=0* 可得a4= - 5i当HF3时,&3+a4+2a5=0* 可得屯=4.(II)证明:对任意n€N , a2n-i+a2n+2a2n+仁0,①2a2n+a2n+1+a2n+2=0, ②a2n+l+a2n+2+2a2n+3=0,③②-③,得a2n=a2n+3-④将④ 代入①,可得a2n+1+a2n+3=-( a2n- 1+a2n+1)即C n+1= - c n ( n€N )又c1 =a1+a3= - 1,故C n M D,因此:. ■ ■I是等比数列.c n n(III )证明:由(II)可得a2k- 1+a2k+1= (- 1), 于是,对任意k €N*且k逖有aj + a^ - l t-(巧+叫)二巧+ a亍~1,(-1 ) k ( a2t-3+ a2k - 1^ = _ 1-将以上各式相加,得a1+ (- 1) k a2k-1= -( k - 1),即a2k-1= (- 1) k+1(k+1),k+1此式当k=1时也成立.由④ 式得a2k= (- 1) ( k+3).从而S2k= (a2+a4) + (a6+a8) + ••+ ( a4k-2+a4k) = - k, S2k-仁S2k- a4k=k+3.所以,对任意n €N*, n老芒( 3如「3 | S如_2 ] $仏「打5-机)(2nH~2 _ 加- 1 _ 2nrh3 十2m)k=l a k Jii=l 为m-3 ^-2 1 m=l 加2时2 2^1 2nr+3「: =... . =—(——+____________________ 3 _______ )2*3 ±2 加(2nri-l) (2时2) (2时3). =3急(2m-l) (2^1) (2^2) (2时3)孚订(1-1) + (1-1) +…+] ——-2 ------------- —3 2 3 5 5 7 2n- 1 2n+l (2n+2) (2n+3)^5.5 ] 3 _______飞陀2*2n+l (2n+2) (2n+3)对于n=1,不等式显然成立.【点评】本小题主要考查等比数列的定义、数列求和等基础知识,考查运算能力、推理论证能力、综合分析和解决问题的能力及分类讨论的思想方法. 赋值法是求数列前几项的常用方法,注意n=1的验证,裂项法和放缩法的应用.。

2011年高考试题数学圆锥曲线(理科)

2011年高考试题数学圆锥曲线(理科)

2011年高考试题数学圆锥曲线(理科)解析数学一、选择题:1. (2011年高考山东卷理科8)已知双曲线22221(0b 0)x y a a b-=>,>的两条渐近线均和圆C:22650x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为(A)22154x y -= (B) 22145x y -= (C) 22136x y -= (D) 22163x y -=3. (2011年高考全国新课标卷理科7)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于 A,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为(A (B (C )2 (D )3 答案:B解析:由题意知,AB 为双曲线的通径,所以,AB a a b 422==,222=∴ab又3122=+=ab e ,故选B.点评:本题考查双曲线标准方程和简单几何性质,通过通经与长轴的4倍的关系可以计算出离心率的关键22ab 的值,从而的离心率。

4.(2011年高考浙江卷理科8)已知椭圆22122:1(0)x y C a b a b+=>>与双曲线222:14y C x -=有公共的焦点,2C 的一条渐近线与以1C 的长轴为直径的圆相交于,A B 两点,若1C 恰好将线段AB 三等分,则 (A )2132a =(B )213a = (C )212b = (D )22b = 【答案】 C【解析】由1C 恰好将线段AB 三等分得133A A x x x x =⇒=,由222A y x x x y=⎧⇒=⎨+⎩,x ∴=y=) 在椭圆上,1=2211a b ⇒=又225,a b -=212b ∴=,故选C 5.(2011年高考安徽卷理科2)双曲线x y 222-=8的实轴长是(A )2 (B)【答案】A【命题意图】本题考查双曲线的标准方程,考查双曲线的性质.属容易题.【解析】x y 222-=8可变形为22148x y -=,则24a =,2a =,24a =.故选C.6. (2011年高考湖南卷理科5)设双曲线()019222>=-a y ax 的渐近线方程为023=±y x ,则a 的值为A.4B. 3C. 2D. 18.(2011年高考陕西卷理科2)设抛物线的顶点在原点,准线方程为2x =-,则抛物线的方程是(A )28y x =- (B )28y x = (C )24y x =- (D )24y x = 【答案】B【解析】:设抛物线方程为2y ax =,则准线方程为4a x =-于是24a-=-8a ⇒= 9. (2011年高考四川卷理科10)在抛物线25(0)y x ax a ==-≠上取横坐标为14x =-,22x =的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆225536x y +=相切,则抛物线顶点的坐标为( )(A )(2,9)-- (B )(0,5)- (C )(2,9)- (D )(1,6)-10. (2011年高考全国卷理科10)已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠= (A)45 (B)35 (C)35- (D)45- 【答案】D【解析】:24(1,0)y x F = 得,准线方程为1x =-,由24(1,2),(4,4)24y xA B y x ⎧=-⎨=-⎩得=,由抛物线的定义得2,5AF BF ==由余弦定理得4cos 5AFB ∠==- 故选D11.(2011年高考福建卷理科7)设圆锥曲线r 的两个焦点分别为F 1,F 2,若曲线r 上存在点P 满足1122::PF F F PF =4:3:2,则曲线r 的离心率等于A .1322或B .23或2C .12或2D .2332或 【答案】A二、填空题:1.(2011年高考辽宁卷理科13)已知点(2,3)在双曲线C :1by -a x 2222=(a >0,b >0)上,C 的焦距为4,则它的离心率为_____________.3. (2011年高考江西卷理科14)若椭圆22221x y a b +=的焦点在x 轴上,过点(1,12)作圆22+=1x y 的切线,切点分别为A,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是【答案】22154x y +=【解析】因为一条切线为x=1,且直线AB 恰好经过椭圆的右焦点和上顶点,所以椭圆的右焦点为(1,0),即1c =,设点P (1,12),连结OP,则OP ⊥AB,因为12OP k =,所以2AB k =-,又因为直线AB 过点(1,0),所以直线AB 的方程为220x y +-=,因为点(0,)b 在直线AB 上,所以2b =,又因为1c =,所以25a =,故椭圆方程是22154x y +=.4. (2011年高考全国新课标卷理科14) 在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在 x 轴上,。

2011年天津市高考数学试卷(理科)及答案

2011年天津市高考数学试卷(理科)及答案

2011年天津市高考数学试卷(理科)一、选择题(共8小题,每小题5分,满分40分)1.(5分)i是虚数单位,复数=()A.2+i B.2﹣i C.﹣1+2i D.﹣1﹣2i2.(5分)设x,y∈R,则“x≥2且y≥2”是“x2+y2≥4”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.(5分)阅读程序框图,运行相应的程序,则输出i的值为()A.3 B.4 C.5 D.64.(5分)已知{a n}为等差数列,其公差为﹣2,且a7是a3与a9的等比中项,S n 为{a n}的前n项和,n∈N*,则S10的值为()A.﹣110 B.﹣90 C.90 D.1105.(5分)在的二项展开式中,x2的系数为()A.B.C.D.6.(5分)如图,在△ABC中,D是边AC上的点,且AB=AD,2AB=BD,BC=2BD,则sinC的值为()A.B.C.D.7.(5分)已知,则()A.a>b>c B.b>a>c C.a>c>b D.c>a>b8.(5分)对实数a与b,定义新运算“⊗”:.设函数f(x)=(x2﹣2)⊗(x﹣x2),x∈R.若函数y=f(x)﹣c的图象与x轴恰有两个公共点,则实数c的取值范围是()A.B.C. D.二、填空题(共6小题,每小题5分,满分30分)9.(5分)一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为.10.(5分)一个几何体的三视图如图所示(单位:m),则这个几何体的体积为m3.11.(5分)已知抛物线C的参数方程为(t为参数),若斜率为1的直线经过抛物线C的焦点,且与圆(x﹣4)2+y2=r2(r>0)相切,则r=.12.(5分)如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF=,AF:FB:BE=4:2:1.若CE与圆相切,则CE的长为.13.(5分)已知集合A={x∈R||x+3|+|x﹣4|≤9},B=,则集合A∩B=.14.(5分)已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则|+3|的最小值为.三、解答题(共6小题,满分80分)15.(13分)已知函数f(x)=tan(2x+),(1)求f(x)的定义域与最小正周期;(2)设α∈(0,),若f()=2cos2α,求α的大小.16.(13分)学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)(Ⅰ)求在1次游戏中,(i)摸出3个白球的概率;(ii)获奖的概率;(Ⅱ)求在2次游戏中获奖次数X的分布列及数学期望E(X).17.(13分)如图所示,在三棱柱ABC﹣A1B1C1中,H是正方形AA1B1B的中心,AA1=2,C1H⊥平面AA1B1B,且C1H=.(1)求异面直线AC与A1B1所成角的余弦值;(2)求二面角A﹣A1C1﹣B1的正弦值;(3)设N为棱B1C1的中点,点M在平面AA1B1B内,且MN⊥平面A1B1C1,求线段BM的长.18.(13分)在平面直角坐标系xOy中,点P(a,b)(a>b>0)为动点,F1,F2分别为椭圆的左、右焦点.已知△F1PF2为等腰三角形.(Ⅰ)求椭圆的离心率e;(Ⅱ)设直线PF2与椭圆相交于A,B两点,M是直线PF2上的点,满足,求点M的轨迹方程.19.(14分)已知a>0,函数f(x)=lnx﹣ax2,x>0.(f(x)的图象连续不断)(Ⅰ)当a=时①求f(x)的单调区间;②证明:存在x0∈(2,+∞),使f(x0)=f();(Ⅱ)若存在均属于区间[1,3]的α,β,且β﹣α≥1,使f(α)=f(β),证明.20.(14分)已知数列{a n}与{b n}满足:,n∈N*,且a1=2,a2=4.(Ⅰ)求a3,a4,a5的值;(Ⅱ)设c n=a2n﹣1+a2n+1,n∈N*,证明:{c n}是等比数列;(Ⅲ)设S k=a2+a4+…+a2k,k∈N*,证明:.2011年天津市高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2011•天津)i是虚数单位,复数=()A.2+i B.2﹣i C.﹣1+2i D.﹣1﹣2i【分析】要求两个复数的除法运算,分子和分母同乘以分母的共轭复数,分子和分母上进行复数的乘法运算,最后结果要化简成最简形式.【解答】解:复数===2﹣i故选B.2.(5分)(2011•天津)设x,y∈R,则“x≥2且y≥2”是“x2+y2≥4”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】由“x≥2且y≥2”推出“x2+y2≥4”可证明充分性;由满足“x2+y2≥4”可举出反例推翻“x≥2且y≥2”,则证明不必要性,综合可得答案.【解答】解:若x≥2且y≥2,则x2≥4,y2≥4,所以x2+y2≥8,即x2+y2≥4;若x2+y2≥4,则如(﹣2,﹣2)满足条件,但不满足x≥2且y≥2.所以“x≥2且y≥2”是“x2+y2≥4”的充分而不必要条件.故选A.3.(5分)(2011•天津)阅读程序框图,运行相应的程序,则输出i的值为()A.3 B.4 C.5 D.6【分析】通过程序框图的要求,写出前四次循环的结果得到输出的值.【解答】解:该程序框图是循环结构经第一次循环得到i=1,a=2;经第二次循环得到i=2,a=5;经第三次循环得到i=3,a=16;经第四次循环得到i=4,a=65满足判断框的条件,执行是,输出4故选B4.(5分)(2011•天津)已知{a n}为等差数列,其公差为﹣2,且a7是a3与a9的等比中项,S n为{a n}的前n项和,n∈N*,则S10的值为()A.﹣110 B.﹣90 C.90 D.110【分析】通过a7是a3与a9的等比中项,公差为﹣2,求出【解答】解:a7是a3与a9的等比中项,公差为﹣2,所以a72=a3•a9,∵{a n}公差为﹣2,∴a3=a7﹣4d=a7+8,a9=a7+2d=a7﹣4,所以a72=(a7+8)(a7﹣4),所以a7=8,所以a1=20,所以S10==110故选D5.(5分)(2011•天津)在的二项展开式中,x2的系数为()A.B.C.D.【分析】利用二项展开式的通项公式求出展开式的通项,令x的指数为2,求出展开式中,x2的系数,即得答案.=(﹣1)r22r﹣6C6r x3﹣r【解答】解:展开式的通项为T r+1令3﹣r=2得r=1所以项展开式中,x2的系数为﹣故选C6.(5分)(2011•天津)如图,在△ABC中,D是边AC上的点,且AB=AD,2AB=BD,BC=2BD,则sinC的值为()A.B.C.D.【分析】根据题中条件,在△ABD中先由余弦定理求出cosA,利用同角关系可求sinA,利用正弦定理可求sin∠BDC,然后在△BDC中利用正弦定理求解sinC 即可【解答】解:设AB=x,由题意可得AD=x,BD=△ABD中,由余弦定理可得∴sinA=△ABD中,由正弦定理可得⇒sin∠ADB=∴△BDC中,由正弦定理可得故选:D.7.(5分)(2011•天津)已知,则()A.a>b>c B.b>a>c C.a>c>b D.c>a>b【分析】比较大小的方法:找1或者0做中介判断大小,log43.6<1,log23.4>1,利用分数指数幂的运算法则和对数的运算法则对c进行化简,得到>1>b,再借助于中间值log2进行比较大小,从而得到结果.,【解答】解:∵log23.4>1,log43.6<1,又y=5x是增函数,∴a>b,>==b而log23.4>log2>log3,∴a>c故a>c>b.故选C.8.(5分)(2011•天津)对实数a与b,定义新运算“⊗”:.设函数f(x)=(x2﹣2)⊗(x﹣x2),x∈R.若函数y=f(x)﹣c的图象与x轴恰有两个公共点,则实数c的取值范围是()A.B.C. D.【分析】根据定义的运算法则化简函数f(x)=(x2﹣2)⊗(x﹣x2)的解析式,并求出f(x)的取值范围,函数y=f(x)﹣c的图象与x轴恰有两个公共点转化为y=f(x),y=c图象的交点问题,结合图象求得实数c的取值范围.【解答】解:∵,∴函数f(x)=(x2﹣2)⊗(x﹣x2)=,由图可知,当c∈函数f(x)与y=c的图象有两个公共点,∴c的取值范围是,故选B.二、填空题(共6小题,每小题5分,满分30分)9.(5分)(2011•天津)一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为12.【分析】根据田径队的男女运动员数目和用分层抽样要抽取的数目,得到每个个体被抽到的概率,利用每个个体被抽到的概率乘以男运动员的数目,得到结果.【解答】解:∵田径队有男运动员48人,女运动员36人,∴这支田径队共有48+36=84人,用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,∴每个个体被抽到的概率是,∵田径队有男运动员48人,∴男运动员要抽取48×=12人,故答案为:12.10.(5分)(2011•天津)一个几何体的三视图如图所示(单位:m),则这个几何体的体积为6+πm3.【分析】由已知中的三视图,我们易判断已知中几何体的形状,然后根据已知的三视图分析出几何体的相关几何量,代入体积公式,即可求出该几何体的体积.【解答】解:由已知可得已知的几何体是一个圆锥和长方体的组合体其中上部的圆锥的底面直径为2,高为3,下部的长方体长、宽高分别为:2,3,1=•π•3=π则V圆锥V长方体=1×2×3=6则V=6+π故答案为:6+π11.(5分)(2011•天津)已知抛物线C的参数方程为(t为参数),若斜率为1的直线经过抛物线C的焦点,且与圆(x﹣4)2+y2=r2(r>0)相切,则r=.【分析】由抛物线C的参数方程为我们易求出抛物线的标准方程,进而根据斜率为1的直线经过抛物线C的焦点,且与圆(x﹣4)2+y2=r2(r>0)相切,我们根据直线与圆相切,则圆心到直线的距离等于半径,求出直线方程后,代入点到直线距离公式,构造关于r的方程,解方程即可得到答案.【解答】解:∵抛物线C的参数方程为则抛物线的标准方程为:y2=8x则抛物线C的焦点的坐标为(2,0)又∵斜率为1的直线经过抛物线C的焦点则直线的方程为y=x﹣2,即经x﹣y﹣2=0由直线与圆(x﹣4)2+y2=r2,则r==故答案为:12.(5分)(2011•天津)如图,已知圆中两条弦AB与CD相交于点F,E是AB 延长线上一点,且DF=CF=,AF:FB:BE=4:2:1.若CE与圆相切,则CE的长为.【分析】设出AF=4k,BF=2k,BE=k,由DF•FC=AF•BF求出k的值,利用切割定理求出CE.【解答】解:设AF=4k,BF=2k,BE=k,由DF•FC=AF•BF,得2=8k2,即k=,∴AF=2,BF=1,BE=,AE=,由切割定理得CE2=BE•EA==,∴CE=.13.(5分)(2011•天津)已知集合A={x∈R||x+3|+|x﹣4|≤9},B=,则集合A∩B={x|﹣2≤x≤5} .【分析】求出集合A,求出集合B,然后利用集合的运算法则求出A∩B.【解答】解:集合A={x∈R||x+3|+|x﹣4|≤9},所以A={x|﹣4≤x≤5};集合,,当且仅当t=时取等号,所以B={x|x≥﹣2},所以A∩B={x|﹣4≤x≤5}∩{x|x≥﹣2}={x|﹣2≤x≤5},故答案为:{x|﹣2≤x≤5}.14.(5分)(2011•天津)已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则|+3|的最小值为5.【分析】根据题意,利用解析法求解,以直线DA,DC分别为x,y轴建立平面直角坐标系,则A(2,0),B(1,a),C(0,a),D(0,0),设P(0,b)(0≤b≤a),求出,根据向量模的计算公式,即可求得,利用完全平方式非负,即可求得其最小值.【解答】解:如图,以直线DA,DC分别为x,y轴建立平面直角坐标系,则A(2,0),B(1,a),C(0,a),D(0,0)设P(0,b)(0≤b≤a)则=(2,﹣b),=(1,a﹣b),∴=(5,3a﹣4b)∴=≥5.故答案为5.三、解答题(共6小题,满分80分)15.(13分)(2011•天津)已知函数f(x)=tan(2x+),(1)求f(x)的定义域与最小正周期;(2)设α∈(0,),若f()=2cos2α,求α的大小.【分析】(Ⅰ)利用正切函数的定义域求出函数的定义域,利用周期公式求出最小正周期;(Ⅱ)通过,化简表达式,结合α∈(0,),求出α的大小.【解答】解:(Ⅰ)由2x+≠+kπ,k∈Z.所以x≠,k∈Z.所以f (x)的定义域为:f(x)的最小正周期为:.(Ⅱ)由得tan()=2cos2α,整理得因为α∈(0,),所以sinα+c osα≠0 因此(cosα﹣sinα)2=即sin2α=因为α∈(0,),所以α=16.(13分)(2011•天津)学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)(Ⅰ)求在1次游戏中,(i)摸出3个白球的概率;(ii)获奖的概率;(Ⅱ)求在2次游戏中获奖次数X的分布列及数学期望E(X).【分析】(I)(i)甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,事件数是C52C32,摸出3个白球事件数为C32C21C21;由古典概型公式,代入数据得到结果,(ii)获奖包含摸出2个白球和摸出3个白球,且它们互斥,根据(i)求出摸出2个白球的概率,再相加即可求得结果,注意运算要正确,因为第二问要用本问的结果.(II)连在2次游戏中获奖次数X的取值是0、1、2,根据上面的结果,代入公式得到结果,写出分布列,求出数学期望.【解答】解:(Ⅰ)(i)设“在一次游戏中摸出i个白球”为事件A i(i=,0,1,2,3),则P(A3)=,(ii)设“在一次游戏中获奖”为事件B,则B=A2∪A3,又P(A2)=,且A2、A3互斥,所以P(B)=P(A2)+P(A3)=;(Ⅱ)由题意可知X的所有可能取值为0,1,2.P(X=0)=(1﹣)2=,P(X=1)=C21(1﹣)=,P(X=2)=()2=,所以X的分布列是X012pX的数学期望E(X)=0×.17.(13分)(2011•天津)如图所示,在三棱柱ABC﹣A1B1C1中,H是正方形AA1B1B 的中心,AA1=2,C1H⊥平面AA1B1B,且C1H=.(1)求异面直线AC与A1B1所成角的余弦值;(2)求二面角A﹣A1C1﹣B1的正弦值;(3)设N为棱B1C1的中点,点M在平面AA1B1B内,且MN⊥平面A1B1C1,求线段BM的长.【分析】方法一:如图所示,建立空间直角坐标系,点B为坐标原点.(Ⅰ)求出中的有关向量,然后求出异面直线AC与A1B1所成角的余弦值;(Ⅱ)利用求出平面AA1C1的法向量,通过求出平面A1B1C1的法向量,然后利用求二面角A﹣A1C1﹣B1的正弦值;(Ⅲ)设N为棱B1C1的中点,设M(a,b,0),利用MN⊥平面A1B1C1,结合求出a,b,然后求线段BM的长.方法二:(I)说明∠C1A1B1是异面直线AC与A1B1所成的角,通过解三角形C1A1B1,利用余弦定理,.求出异面直线AC与A1B1所成角的余弦值为.(II)连接AC1,过点A作AR⊥A1C1于点R,连接B1R,说明∠ARB1为二面角A ﹣A1C1﹣B1的平面角.连接AB1,在△ARB1中,通过,求出二面角A﹣A1C1﹣B1的正弦值为.(III)首先说明MN⊥A1B1.取HB1中点D,连接ND,由于N是棱B1C1中点,推出ND⊥A1B1.证明A1B1⊥平面MND,连接MD并延长交A1B1于点E,延长EM 交AB于点F,连接NE.连接BM,在Rt△BFM中,求出.【解答】方法一:如图所示,建立空间直角坐标系,点B为坐标原点.依题意得(I)解:易得,于是,所以异面直线AC与A1B1所成角的余弦值为.(II)解:易知.设平面AA1C1的法向量=(x,y,z),则即不妨令,可得,同样地,设平面A1B1C1的法向量=(x,y,z),则即不妨令,可得.于是,从而.所以二面角A﹣A1C1﹣B的正弦值为.(III)解:由N为棱B1C1的中点,得.设M(a,b,0),则由MN⊥平面A1B1C1,得即解得故.因此,所以线段BM的长为.方法二:(I)解:由于AC∥A1C1,故∠C1A1B1是异面直线AC与A1B1所成的角.因为C 1H⊥平面AA1B1B,又H为正方形AA1B1B的中心,,可得A1C1=B1C1=3.因此.所以异面直线AC与A1B1所成角的余弦值为.(II)解:连接AC1,易知AC1=B1C1,又由于AA1=B1A1,A1C1=A1C1,所以△AC1A1≌△B1C1A1,过点A作AR⊥A1C1于点R,连接B1R,于是B1R⊥A1C1,故∠ARB1为二面角A﹣A1C1﹣B1的平面角.在Rt△A1RB1中,.连接AB1,在△ARB1中,=,从而.所以二面角A﹣A1C1﹣B1的正弦值为.(III)解:因为MN⊥平面A1B1C1,所以MN⊥A1B1.取HB1中点D,连接ND,由于N是棱B1C1中点,所以ND∥C1H且.又C1H⊥平面AA1B1B,所以ND⊥平面AA1B1B,故ND⊥A1B1.又MN∩ND=N,所以A1B1⊥平面MND,连接MD并延长交A1B1于点E,则ME⊥A1B1,故ME∥AA1.由,得,延长EM交AB于点F,可得.连接NE.在Rt△ENM中,ND⊥ME,故ND2=DE•DM.所以.可得.连接BM,在Rt△BFM中,.18.(13分)(2011•天津)在平面直角坐标系xOy中,点P(a,b)(a>b>0)为动点,F1,F2分别为椭圆的左、右焦点.已知△F1PF2为等腰三角形.(Ⅰ)求椭圆的离心率e;(Ⅱ)设直线PF2与椭圆相交于A,B两点,M是直线PF2上的点,满足,求点M的轨迹方程.【分析】(Ⅰ)直接利用△F1PF2为等腰三角形得|PF2|=|F1F2|,解其对应的方程即可求椭圆的离心率e;(Ⅱ)先把直线方程与椭圆方程联立,求得A,B两点的坐标,代入,即可求点M的轨迹方程.【解答】解:(Ⅰ)设F1(﹣c,0),F2(c,0)(c>0).由题得|PF2|=|F1F2|,即=2c,整理得2+﹣1=0,得=﹣1(舍),或=,所以e=.(Ⅱ)由(Ⅰ)知a=2c,b=c,可得椭圆方程为3x2+4y2=12c2,直线方程为y=(x﹣c).A,B的坐标满足方程组,消y并整理得5x2﹣8xc=0,解得x=0,x=,得方程组的解为,,不妨设A(c,c),B(0,﹣c).设点M的坐标为(x,y),则=(x﹣c,y﹣c),=(x,y+c)由y=(x﹣c)得c=x﹣y ①,由=﹣2即(x﹣c)x+(y﹣c)(y+c)=﹣2.将①代入化简得18x2﹣16xy﹣15=0,⇒y=代入①化简得c=>0.所以x>0,因此点M的轨迹方程为18x2﹣16xy﹣15=0 (x>0).19.(14分)(2011•天津)已知a>0,函数f(x)=lnx﹣ax2,x>0.(f(x)的图象连续不断)(Ⅰ)当a=时①求f(x)的单调区间;②证明:存在x0∈(2,+∞),使f(x0)=f();(Ⅱ)若存在均属于区间[1,3]的α,β,且β﹣α≥1,使f(α)=f(β),证明.【分析】(I)将a=代入可得函数的解析式,①求导数fˊ(x);在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0确定的单调区间②由(I)知f(x)在(0,2)内单调递增,在(2,+∞)内单调递减.令g(x)=f(x)﹣f().利用函数f(x)在(0,2)内单调递增,得到f(2)>f(),即g(2)>0.最后取x′=e>2,则g(x′)=<0.从而得到结论;(II)先由f(α)=f(β)及(I)的结论知α<<β,从而f(x)在[α,β]上的最小值为f(a).再依1≤α≤2≤β≤3建立关于a的不等关系即可证得结论.【解答】解:(I)①当a=时,f(x)=lnx﹣x2.∴f′(x)=﹣x=,x∈(0,+∞),令f′(x)=0,解得x=2.当x变化时,f'(x),f(x)的变化情况如下表:所以,f(x)的单调递增区间是(0,2),f(x)的单调递减区间是(2,+∞).证明:②由(I)知f(x)在(0,2)内单调递增,在(2,+∞)内单调递减.令g(x)=f(x)﹣f().由于f(x)在(0,2)内单调递增,故f(2)>f(),即g(2)>0.取x′=e>2,则g(x′)=<0.所以存在x0∈(2,x'),使g(x0)=0,即存在x0∈(2,+∞),使f(x0)=f().(II)证明:由f(α)=f(β)及(I)的结论知α<<β,从而f(x)在[α,β]上的最小值为f(a).又由β﹣α≥1,α,β∈[1,3],知1≤α≤2≤β≤3.故即从而≤a≤.20.(14分)(2011•天津)已知数列{a n}与{b n}满足:,n∈N*,且a1=2,a2=4.(Ⅰ)求a3,a4,a5的值;(Ⅱ)设c n=a2n﹣1+a2n+1,n∈N*,证明:{c n}是等比数列;(Ⅲ)设S k=a2+a4+…+a2k,k∈N*,证明:.【分析】(Ⅰ)要求a3,a4,a5的值;通过赋值方法,利用已知条件化简求解即可.(Ⅱ)化简出a2n+a2n+1,a2n+1+a2n+3的关系,即:c n+1与c n的关系,从而证明{c n}﹣1是等比数列;就是利用(Ⅰ)的,用2n﹣1,2n,2n+1,替换中的n,化简出只含“a n”的关系式,就+a2n+2a2n+1=0,①2a2n+a2n+1+a2n+2=0,②a2n+1+a2n+2+2a2n+3=0,③然后推出是a2n﹣1a2n+1+a2n+3=﹣(a2n﹣1+a2n+1),得到c n+1=﹣c n(n∈N*),从而证明{c n}是等比数列;(Ⅲ)先研究通项公式a2k,推出S k的表达式,然后计算,结合证明的表达式,+a2k+1=利用表达式的特征,通过裂项法以及放缩法证明即可;就是:根据a2k﹣1(﹣1)k,对任意k∈N*且k≥2,列出n个表达式,利用累加法求出a2k=(﹣1)k+1(k+3).化简S2k=(a2+a4)+(a6+a8)+…+(a4k+a4k)=﹣k,k∈N*,﹣2,通过裂项法以及放缩法证明:.【解答】20、满分14分.(I)解:由,可得又b n a n+a n+1+b n+1a n+2=0,(II)证明:对任意n∈N*,a2n+a2n+2a2n+1=0,①﹣12a2n+a2n+1+a2n+2=0,②a2n+1+a2n+2+2a2n+3=0,③②﹣③,得a2n=a2n+3.④+a2n+3=﹣(a2n﹣1+a2n+1)将④代入①,可得a2n+1=﹣c n(n∈N*)即c n+1又c1=a1+a3=﹣1,故c n≠0,因此是等比数列.+a2k+1=(﹣1)k,(III)证明:由(II)可得a2k﹣1于是,对任意k∈N*且k≥2,有将以上各式相加,得a1+(﹣1)k a2k﹣1=﹣(k﹣1),=(﹣1)k+1(k+1),即a2k﹣1此式当k=1时也成立.由④式得a2k=(﹣1)k+1(k+3).从而S2k=(a2+a4)+(a6+a8)+…+(a4k﹣2+a4k)=﹣k,S2k﹣1=S2k﹣a4k=k+3.所以,对任意n∈N*,n≥2,====对于n=1,不等式显然成立.。

(完整版)2011年高考数学天津卷(理科)

(完整版)2011年高考数学天津卷(理科)

2011年天津市高考数学(理科)试题一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的. 1.i 是虚数单位,复数131i i --= A .2i + B .2i - C .12i -+ D .12i --2.设,,x y R ∈则“2x ≥且2y ≥”是“224x y +≥”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .即不充分也不必要条件3.阅读右边的程序框图,运行相应的程序,则输出i 的值为A .3B .4C .5D .64.已知{}n a 为等差数列,其公差为-2,且7a 是3a 与9a 的等比中项,n S 为{}n a 前n 项和,*n N ∈,则10S 的值为A .-110B .-90C .90D .1105.在62x x ⎛⎫- ⎪ ⎪⎝⎭的二项展开式中,2x 的系数为 A .154- B .154C .38-D .38 6.如图,在△ABC 中,D 是边AC 上的点,且,23,2AB CD AB BD BC BD ===, 则sin C 的值为A .3B .3C .6D .6 7.已知324log 0.3log 3.4log 3.615,5,,5a b c ⎛⎫=== ⎪⎝⎭则 A .a b c >> B .b a c >> C .a c b >> D .c a b >>8.对实数a 与b ,定义新运算“⊗”:,1,, 1.a ab a b b a b -≤⎧⊗=⎨->⎩ 设函数()()22()2,.f x x x x x R =--∈若函数()y f xc =-的图像与x 轴恰有两个公共点,则实数c 的取值范围是A .(]3,21,2⎛⎫-∞-⋃- ⎪⎝⎭B .(]3,21,4⎛⎫-∞-⋃-- ⎪⎝⎭C .11,,44⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭D .311,,44⎛⎫⎡⎫--⋃+∞ ⎪⎪⎢⎝⎭⎣⎭二、填空题:本大题共6小题,每小题5分,共30分.9.一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为___________10.一个几何体的三视图如图所示(单位:m ),则这个几何体的体积为__________3m 11.已知抛物线C 的参数方程为28,8.x t y t ⎧=⎨=⎩(t 为参数),若斜率为1的直线经过抛物线C 的的焦点,且与圆()2224(0)x y r r -+=>相切,则r =________12.如图已知圆中两条弦AB 与CD 相交于点F ,E 是AB 延长线上一点,且 2,::4:2:1.DF CF AF FB BE ===若CE 与圆相切,则CE 的长为__________13.已知集合{}1|349,|4,(0,)A x R x x B x R x t t t ⎧⎫=∈++-≤=∈=+∈+∞⎨⎬⎩⎭,则集合A B ⋂=________14.已知直角梯形ABCD 中,AD //BC ,090ADC ∠=,2,1AD BC ==,P 是腰DC 上的动点,则3PA PB +u u u r u u u r 的最小值为____________三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知函数()tan(2),4f x x π=+, (Ⅰ)求()f x 的定义域与最小正周期; (Ⅱ)设0,4πα⎛⎫∈ ⎪⎝⎭,若()2cos 2,2f αα=求α的大小.16.(本小题满分13分)学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)(Ⅰ)求在一次游戏中,(i )摸出3个白球的概率;(ii )获奖的概率;(Ⅱ)求在两次游戏中获奖次数X 的分布列及数学期望()E X17.(本小题满分13分)如图,在三棱柱111ABC A B C -中,H 是正方形11AA B B 的中心,122AA =,1C H ⊥平面11AA B B ,且1 5.C H =(Ⅰ)求异面直线与所成角的余弦值;(Ⅱ)求二面角111A AC B --的正弦值;(Ⅲ)设N 为棱11B C 的中点,点M 在平面11AA B B 内,且MN ⊥平面11A B C ,求线段BM 的长.18.(本小题满分13分)在平面直角坐标系xOy 中,点(,)P a b (0)a b >>为动点,12,F F 分别为椭圆22221x y a b+=的左右焦点.已知△12F PF 为等腰三角形. (Ⅰ)求椭圆的离心率e ;(Ⅱ)设直线2PF 与椭圆相交于,A B 两点,M 是直线2PF 上的点,满足2AM BM ⋅=-u u u u r u u u u r ,求点M 的轨迹方程.19.(本小题满分14分)已知0a >,函数2()ln ,0.f x x ax x =->(()f x 的图像连续不断) (Ⅰ)求()f x 的单调区间; (Ⅱ)当18a =时,证明:存在0(2,)x ∈+∞,使03()()2f x f =; (Ⅲ)若存在均属于区间[]1,3的,αβ,且1βα-≥,使()()f f αβ=,证明ln 3ln 2ln 253a -≤≤.20.(本小题满分14分)已知数列{}n a 与{}n b 满足: 1123(1)0,2n n n n n n n b a a b a b ++++-++==, *n ∈N ,且122,4a a ==. (Ⅰ)求345,,a a a 的值; (Ⅱ)设*2121,n n n c a a n N -+=+∈,证明:{}n c 是等比数列; (Ⅲ)设*242,,k k S a a a k N =++⋅⋅⋅+∈证明:4*17()6n k k k S n N a =<∈∑.。

2011年天津卷文科数学高考试卷(原卷 答案)

2011年天津卷文科数学高考试卷(原卷 答案)

绝密★启用前2011年普通高等学校招生全国统一考试(天津卷)文科数学本试卷共20题,共150分。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

第Ⅰ卷注意事项: 1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式: 如果事件A ,B 互斥,那么 棱柱的体积公式V Sh =()()()P A B P A P B ⋃=+其中S 表示棱柱的底面面积。

h 表示棱柱的高。

一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的.1.i 是虚数单位,复数131ii−−= A .2i − B .2i + C .12i −− D .12i −+2.设变量x ,y 满足约束条件1,40,340,x x y x y ≥⎧⎪+−≤⎨⎪−+≤⎩则目标函数3z x y =−的最大值为A .-4B .0C .43D .43.阅读右边的程序框图,运行相应的程序,若输入x 的值为-4,则输出y 的值为 A .,0.5 B .1 C .2 D .44.设集合{}{}|20,|0A x R x B x R x =∈−>=∈<,{}|(2)0C x R x x =∈−>, 则“x A B ∈⋃”是“x C ∈”的 A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .即不充分也不必要条件5.已知244log 3.6,log 3.2,log 3.6a b c ===则A .a b c >>B .a c b >>C .b a c >>D .c a b >>6.已知双曲线22221(0,0)x y a b a b−=>>的左顶点与抛物线22(0)y px p =>的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的准线的交点坐标为(-2,-1),则双曲线的焦距为( )A.B.C.D.7.已知函数()2sin(),f x x x R ωϕ=+∈,其中0,,()f x ωπϕπ>−<≤若的最小正周期为6π,且当2x π=时,()f x 取得最大值,则( )A .()f x 在区间[2,0]π−上是增函数B .()f x 在区间[3,]ππ−−上是增函数C .()f x 在区间[3,5]ππ上是减函数D .()f x 在区间[4,6]ππ上是减函数8.对实数a b 和,定义运算“⊗”:,1,, 1.a ab a b b a b −≤⎧⊗=⎨−>⎩设函数2()(2)(1),f x x x x R =−⊗−∈。

2011年普通高等学校招生全国统一考试(天津卷)数学试题 (文科)(解析版)

2011年普通高等学校招生全国统一考试(天津卷)数学试题 (文科)(解析版)

2011年普通高等学校招生全国统一考试(天津卷)数学(文)试题解析本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项: 1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式: 如果事件A ,B 互斥,那么 棱柱的体积公式V Sh = ()()()P A B P A P B ⋃=+ 其中S 表示棱柱的底面面积。

h 表示棱柱的高。

一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的. 1.i 是虚数单位,复数131ii--= ( )A .2i -B .2i +C .12i --D .12i -+【答案】A 【解析】 13(13)(1)4221(1)(1)2i i i ii i i i --+-===---+2.设变量x ,y 满足约束条件1,40,340,x x y x y ≥⎧⎪+-≤⎨⎪-+≤⎩则目标函数3z x y =-的最大值为( )A .-4B .0C .43D .4 【答案】D【解析】可行域如图:联立40340x y x y ++=⎧⎨-+=⎩解得⎩⎨⎧==22y x 当目标直线3z x y =-移至(2.2)时,3z x y =-有最大值4.3.阅读右边的程序框图,运行相应的程序,若输入x 的值为-4,则输出y 的值为( ) A .,0.5 B .1 C .2 D .4 【答案】C【解析】当4x =-时,37x x =-=; 当7x =时,34x x =-= 当4x =时,31|3|<=-=x x ,∴22y '==.4.设集合{}{}|20,|0A x R x B x R x =∈->=∈<,{}|(2)0C x R x x =∈->, 则“x A B ∈⋃”是“x C ∈”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .即不充分也不必要条件【答案】C【解析】∵{}20A x kx =∈->,{}0B x kx =∈<,∴{0A B x x ⋃=<,或}2x >,又∵}{{(2)00C x k x x x k x =∈->=∈<或}2x >, ∴A B C ⋃=,即“x A B ∈⋃”是“x C ∈”的充分必要条件.5.已知244log 3.6,log 3.2,log 3.6a b c ===则( )A .a b c >>B .a c b >>C .b a c >>D .c a b >> 【答案】B【解析】∵ 3.6222log log 1a =>=,又∵4log xy =为单调递增函数, ∴ 3.2 3.64444log log log 1<<=, ∴b c a <<.6.已知双曲线22221(0,0)x y a b a b-=>>的左顶点与抛物线22(0)y px p =>的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的准线的交点坐标为(-2,-1),则双曲线的焦距为( )A .B .C .D .【答案】B【解析】双曲线22215x y a -=的渐近线为by x a=±,由双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1)得22p-==,即4p =,又∵42=+a p ,∴2a =,将(-2,-1)代入by x a=得1b =,∴c ==2c =7.已知函数()2sin(),f x x x R ωϕ=+∈,其中0,,()f x ωπϕπ>-<≤若的最小正周期为6π,且当2x π=时,()f x 取得最大值,则 ( )A .()f x 在区间[2,0]π-上是增函数B .()f x 在区间[3,]ππ--上是增函数C .()f x 在区间[3,5]ππ上是减函数D .()f x 在区间[4,6]ππ上是减函数【答案】A 【解析】∵πωπ62=,∴31=ω.又∵12,322k k z πππ⨯+=+∈且4ππ-<<,∴当0k =时,1,()2sin()333f x x ππϕ==+,要使()f x 递增,须有122,2332k x k k z πππππ-≤+≤+∈,解之得566,22k x k k z ππππ-≤≤+∈,当0k =时,522x ππ-≤≤,∴()f x 在5[,]22ππ-上递增.8.对实数a b 和,定义运算“⊗”:,1,, 1.a ab a b b a b -≤⎧⊗=⎨->⎩设函数2()(2)(1),f x x x x R =-⊗-∈。

2011天津高考数学

2011天津高考数学

2011天津高考数学1. 引言数学作为一门基础科学,对于每一个高中毕业生来说都是必修课程之一。

通过高考数学考试,学生的数学素养、逻辑思维和解决问题的能力都会受到检验。

本文将回顾2011年天津高考数学试卷,并对其中的题目进行分析和解答。

2. 试卷结构2011年天津高考数学试卷共分为两个部分:选择题和非选择题。

选择题占总分的60%,非选择题占总分的40%。

下面将对两部分的题目类型进行介绍。

2.1 选择题选择题共有20道题目,每道题目共有4个选项,只有一个选项是正确的。

这些题目涵盖了高中数学的各个知识点,包括代数、几何、函数等。

选择题在考查学生的记忆能力、分析能力和推理能力的同时,也对学生的考试时间管理能力提出了一定的要求。

2.2 非选择题非选择题共有5道题目,每道题目都需要学生进行全面的分析和解答。

其中,题目三是非常典型的解决问题的题目,要求学生综合运用所学的数学知识解决实际问题。

这些题目对学生的思维能力和应用能力提出了较高的要求。

3. 题目分析和解答3.1 选择题选择题是考试中较为常见的题型,下面对其中几道题目进行分析和解答。

3.1.1 题目1题目描述:已知函数f(x) = 2x + 3,求f(1) + f(3)的值。

解答:将x=1和x=3代入函数f(x),得到f(1) = 2 * 1 + 3 = 5,f(3) = 2 * 3 + 3 = 9。

所以f(1) + f(3) = 5 + 9 = 14。

3.1.2 题目2题目描述:已知函数f(x) = 3x^2 - 2x + 1,求f(-1)的值。

解答:将x=-1代入函数f(x),得到f(-1) = 3 * (-1)^2 - 2 * (-1) + 1 = 3 + 2 + 1 = 6。

3.2 非选择题非选择题需要学生进行全面的分析和解答,下面对其中几道题目进行分析和解答。

3.2.1 题目3题目描述:有一组数据:8, 9, 10, 12, x。

求x的值,使得这组数据的平均数等于10。

数学_2011年天津市某校高考数学一模试卷(理科)(含答案)

数学_2011年天津市某校高考数学一模试卷(理科)(含答案)

2011年天津市某校高考数学一模试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,将答案涂在答题卡上. 1. 复数(3+i 1−i)2=( )A −3−4iB −3+4iC 3−4iD 3+4i2. 已知条件p:|x +l|>2,条件q:x >a ,且¬p 是¬q 的充分不必要条件,刚a 的取值范围可以是( )A a ≥lB a ≤lC a ≥−lD a ≤−33. 函数f(x)=|x −2|−lnx 在定义域内零点可能落在下列哪个区间内( ) A (0, 1) B (2, 3) C (3, 4) D (4, 5)4. 如图,是一程序框图,则输出结果为( )A 49B 511C 712D 6135. 已知等差数列{a n }的前n 项和为S n ,且S 4S 2=4,则S6S 4的值为( )A 94B 32C 53D 46. 要得到函数g(x)=2cos(2x +π3)的图象,只需将f(x)=sin(2x +π3)的图象( ) A 向左平移π2个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变) B 向右平移π2个单位,再把各点的纵坐标缩短到原来的12倍(横坐标不变) C 向左平移π4个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变) D 向右平移π4个单位,再把各点的纵坐标伸长到原来的12倍(横坐标不变)7. 过双曲线x 2a 2−y 2b 2=1(a >0,b >0)的一个焦点F 引它的渐近线的垂线,垂足为M ,延长FM 交y 轴于E ,若|FM|=2|ME|,则该双曲线的离心率为( ) A 3 B 2 C √3 D √28. 如图所示的每个开关都有闭合与不闭合两种可能,因此5个开关共有25种可能,在这25种可能中电路从P 到Q 接通的情况有( ) A 30种 B 10种 C 24种 D 16种二、填空题:本大题共6小题,每小题5分,共30分,将答案填写在答题纸上. 9. (x −√x 3)6展开式中,含x 2项的系数是________.10. 如图,是某四棱锥的三视图,则该几何体的表面积为________.11. 如图,已知P 是⊙O 外一点,PD 为⊙O 的切线,D 为切点,割线PEF 经过圆心O ,若PF =12,PD =4√3,则圆O 的半径长为________、∠EFD 的度数为________.12. 在极坐标系中,设P 是直线l:ρ(cosθ+sinθ)=4上任一点,Q 是圆C:ρ2=4ρcosθ−3上任一点,则|PQ|的最小值是________.13. 平面上的向量MA →与MB →满足|MA →|2+|MB →|=4,且MA →⋅MB →=0,若点C 满足MC →=13MA →+23MB →,则|MC →|的最小值为________.14. 定义在R 上的函数y =f(x)是减函数,y =f(x −1)的图象关于(1, 0)成中心对称,若s ,t 满足不等式f(s 2−2s)≤−f(2t −t 2),则当1≤s ≤4时,ts 的取值范围是________.三、解答题:共6个小题,总计80分,解答应写出必要的文字说明、证明过程或演算步骤.15. 已知向量a →=(cosωx, sinωx),b →=(cosωx, √3cosωx),其中(0<ω<2).函数,f(x)=a →⋅b →−12其图象的一条对称轴为x =π6. (I)求函数f(x)的表达式及单调递增区间;(II)在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,S 为其面积,若f(A2)=1,b =1,S △ABC =√3,求a 的值.16. 桌面上有三颗均匀的骰子(6个面上分别标有数字1,2,3,4,5,6).重复下面的操作,直到桌面上没有骰子:将骰子全部抛掷,然后去掉哪些朝上点数为奇数的骰子.记操作三次之内(含三次)去掉的骰子的颗数为X .(I)求P(X =1); (II)求X 的分布列及期望EX .17. 如图,在三棱柱ABC −A 1B 1C 1中,侧棱AA 1⊥底面ABC ,AB ⊥BC ,D 为AC 的中点,AA 1=AB =2,四棱锥B −AA 1C 1D 的体积为3. (1)求证:AB 1 // 平面BC 1D ;(2)求直线A 1C 1与平面BDC 1所成角的正弦值; (3)求二面角C −BC 1−D 的正切值.18. 已知函f(x)=e x −x (e 为自然对数的底数). (1)求f(x)的最小值;(2)不等式f(x)>ax 的解集为P ,若M ={x|12≤x ≤2}且M ∩P ≠⌀求实数a 的取值范围;(3)已知n ∈N +,且S n =∫f 0n (x)dx ,是否存在等差数列{a n }和首项为f(I)公比大于0的等比数列{b n },使得a 1+a 2+...+a n +b 1+b 2+...b n =S n ?若存在,请求出数列{a n }、{b n }的通项公式.若不存在,请说明理由.19. 已知圆C 1:(x +1)2+y 2=8,点C 2(1, 0),点Q 在圆C 1上运动,QC 2的垂直平分线交QC 1于点P .(I) 求动点P 的轨迹W 的方程;(II) 设M ,N 是曲线W 上的两个不同点,且点M 在第一象限,点N 在第三象限,若OM →+2ON →=2OC 1→,O 为坐标原点,求直线MN 的斜率k ;(III)过点S(0,−13)且斜率为k 的动直线l 交曲线W 于A ,B 两点,在y 轴上是否存在定点D ,使以AB 为直径的圆恒过这个点?若存在,求出D 的坐标,若不存在,说明理由.20. 已知函数y =f(x)的定义域为R ,当0<L <1时,对于任意x 1,x 2∈R ,|f(x 1)−f(x 2)|≤L|x 1−x 2|都成立,数列{a n }满足a n+1=f(a n ),n =1,2,… (1)证明:∑|n k=1a k −a k+1|≤11−L|a 1−a 2|;(2)令A k =a 1+a 2+⋯a kk(k =1,2,3),证明:∑|n k=1A k −A k+1|≤11−L |a 1−a 2|..2011年天津市某校高考数学一模试卷(理科)答案1. B2. A3. C4. B5. A6. C7. C8. D9. −160 10. 34+6√5 11. 4,30∘ 12. √2−1 13. √7414. [−12, 1]15. 解:(I))f(x)=a →⋅b →−12=cos 2ωx +√3sinωxcosωx −12=1+cos2ωx 2+√32sin2ωx −12=sin(2ωx +π6)当x =π6时,sin(ωπ3+π6)=±1即ωπ3+π6=kπ+π2∵ 0<ω<2∴ ω=1 ∴ f(x)=sin(2x +π6)−π2+2kπ≤2x +π6≤π2+2kπ 解得kπ−π3≤x ≤kπ+π6所以f(x)d 的递增区间为[kπ−π3,kπ+π6](k ∈Z) (II)f(A 2)=sin(A +π6)=1在△ABC 中,0<A <π,π6<A +π6<7π6∴ A +π6=π2 ∴ A =π3由S △ABC =12bcsinA =√3,b =1得c =4由余弦定理得a 2=42+12−2×4×1cos60∘=13 故a =√1316. 解:(1)P(X =1)=C 31(12)3(12)2(12)2+(12)3C 31(12)3(12)2+(12)3(12)3C 31(12)3=21521.(2)由题设知,X 的取值为0,1,2,3, P(X =0)=(12)3(12)3(12)3=1512,P(X =1)=C 31(12)3(12)2(12)2+(12)3C 31(12)3(12)2+(12)3(12)3C 31(12)3=21521,P(X =2)=147512,P(X =3)=343512, ∴ X 的分布列是Ex =0×1512+1×21251+2×147512+3×343512=218.17. 解:(1)证明:连接B 1C ,设B 1C 与BC 1相交于点O ,连接OD ,∵ 四边形BCC 1B 是平行四边形, ∴ 点O 为B 1C 的中点, ∵ D 为AC 的中点,∴ OD 为△AB 1C 的中位线, ∴ OD // AB 1,∵ OD ⊂平面BC 1D ,AB 1⊄平面BC 1D , ∴ AB 1 // 平面BC 1D(2)作BE ⊥AC ,垂足为E ,∵ 侧棱AA 1⊥底面ABC ,BE ⊂底面ABC ∴ AA 1⊥BE ∵ AA 1∩AC =A∴ BE ⊥平面AA 1C 1C .设BC =a ,在Rt △ABC 中,BE =AB⋅BC AC =2a √4+a 2∴ 四棱锥B −AA 1C 1D 的体积V =13×12(A 1C 1+AD)⋅AA 1⋅BE =a =3,即BC =3 ∴ BE =6√13在三角形C 1BD 中,BC 1=√13,BD =√132,C 1D =√292, ∴ cos∠C 1BD =√913,∴ sin∠C 1BD =√413=213√13 ∴ S △C 1BD =√132设A 1到平面C 1BD 的距离为ℎ,则根据V A 1−C 1BD =V B−A 1C 1D , 可得13×√132×ℎ=13×12×2×√13×√13∴ ℎ=√13设直线A 1C 1与平面BDC 1所成角为α,∴ sinα=√13=1213(3)依题意知,AB =BB 1=2,∵ AA 1⊥底面ABC ,AA 1⊂底面AA 1C 1C ,∴ 平面ABC ⊥平面AA 1C 1C ,且平面ABC ∩平面AA 1C 1C =AC取BC 中点M ,连接DM ,DM ⊥平面BCC 1,作MN ⊥NC 1与N ,连接DN ,则DN ⊥BC 1, ∠DNM 为二面角C −BC 1−D 的平面角. 在△DMN 中,DM =1,MN =√13,tan∠DNM =√133, ∴ 二面角C −BC 1−D 的正切值为√13318. 解:(1)∵ 函数f(x)=e x −x ,∴ f′(x)=e x −1;由f′(x)=0,得x =0,当x >0时,f′(x)>0,函数f(x)在(0, +∞)上单调递增;当x <0时,f′(x)<0,函数f(x)在(−∞, 0)上单调递减;∴ 函数f(x)的最小值为f(0)=1.(2)∵ M ∩P ≠⌀,∴ f(x)>ax 在区间[12, 1]有解,由f(x)>ax ,得e x −x >ax ,即a <e x x−1在[12, 2]上有解;令g(x)=e x x−1,x ∈[12, 2],则g′(x)=(x−1)e xx 2,∴ g(x)在[12, 1]上单调递减,在[1, 2]上单调递增;又g(12)=2√e −1,g(2)=e 22−1,且g(2)>g(12),∴ g(x)的最大值为g(2)=e 22−1,∴a <e 22−1.(3)设存在公差为d 的等差数列{a n }和公比为q(q >0),首项为f(1)的等比数列{b n }, 使a 1+a 2+...+a n +b 1+b 2+...+b n =S n∵ S n =∫f n0(x)dx =∫(n0e x −x)dx =(e x −12x 2)|_n =e n −12n 2−1;且b 1=f(1)=e −1, ∴ a 1+b 1=S 1即a 1+e −1=e −32;∴ a 1=−12,又n ≥2时,a n +b n =s n −s n−1=e n−1(e −1)−n +12;故n =2,3时,有{−12+d +(e −1)q =e(e −1)−32①−12+2d +(e −1)q 2=e 2(e −1)−52②; ②-①×2得,q 2−2q =e 2−2e ,解得q =e ,或q =2−e (舍),故q =e ,d =−1; 此时a n =−12+(n −1)(−1)=12−n ,b n =(e −1)e n−1且a n +b n =(e −1)e n−1+12−n =S n −S n−1;∴ 存在满足条件的数列{a n },{b n }满足题意. 19. 解(1)∵ QC 2的垂直平分线交QC 1于P , ∴ |PQ|=|PC 2|,|PC 2|+|PC 1|=|PC 1|+|PQ|=|QC 1|=2√2>|C 1C 2|=2, ∴ 动点P 的轨迹是点C 1,C 2为焦点的椭圆. 设这个椭圆的标准方程是x 2a 2+y 2b 2=1, ∵ 2a =2√2,2c =2,∴ b 2=1, ∴ 椭圆的标准方程是x 22+y 2=1. (II)设M(a 1, b 1),N(a 2, b 2),则a 12+2b 12=2,a 22+2b 22=2. ∵ OM →+2ON →=2OC 1→,则a 1+2a 2=−2,b 1+2b 2=0, ∴ a 1=12,b 1=√144,a 2=−54,b 2=−√148, ∴ 直线MN 的斜率为b 2−b1a 2−a 1=3√1414. (III)直线l 的方程为y =kx −13,联立直线和椭圆方程,得 {y =kx −13x 22+y 2=1,∴ 9(1+2k 2)x 2−12kx −16=0,由题意知,点S(0, −13)在直线上,动直线l 交曲线W 于A 、B 两点, 设A(x 1, y 1),B(x 2, y 2),则x 1+x 2=4k3(1+2k 2),x 1x 2=−169(1+2k 2),假设在y 轴上存在定点D(0, m),使以AB 为直径的圆恒过这个点, 则DA →=(x 1,y 1−m),DB →=(x 2,y 2−m), DA →⋅DB →=x 1x 2+(y 1−m)(y 2−m)=0, ∵ y 1=kx 1−13,y 2=kx 2−13,∴ x 1x 2+(y 1−m)(y 2−m)=x 1x 2+y 1y 2−m(y 1+y 2)+m 2 =(k 2−1)x 1x 2−k(13−m)(x 1−x 2)−m 2+23m +19=−16(k 2−1)9(2k 2+1)−k(13−m)4k 3(2k 2+1)−m 2+23m +19=18(m 2−1)k 2+(9m 2+6m−15)9(2k 2+1)=0.∴ {m 2−1=09m 2+6m −15=0,∴ m =1, 所以,在y 轴上存在满足条件的定点D ,点D 的坐标为(0, 1). 20. (1)证明:∵ a n+1=f(a n ),n =1,2,3,…,故当n ≥2时,|a n −a n+1|=|f(a n−1)−f(a n )|≤L|a n−1−a n | =L|f(a n−2)−f(a n−1)|≤L 2|a n−2−a n−1| ≤...≤L n−1|a 1−a 2|. ∴ ∑|n k=1a k −a k+1|=|a 1−a 2|+|a 2−a 3|+...+|a n −a n+1| ≤(1+L +L 2+...+L n−1)|a 1−a 2| =1−L n 1−L|a 1−a 2|.∵ 0<L <1, ∴ ∑|n k=1a k −a k+1|≤11−L|a 1−a 2|;(当n =1时,不等式也成立.) (2)证明:∵ A k =a 1+a 2+⋯+a kk,∴ |A k −A k+1|=|1k(k+1)(a 1+a 2+⋯+a k −ka k+1)| =1k(k+1)|(a 1−a 2)+2(a 3−a 2)+3(a 3−a 4)+⋯+k(a k −a k+1)|.①∵ a n+1=f(a n ),n =1,2,…,故当n ≥2时,|a n −a n+1|=|f(a n−1)−f(a n )|≤L|a n−1−a n |=L|f(a n−2)−f(a n−1)| ≤L 2|a n−2−a n−1|≤...≤L n−1|a 1−a 2| .…6分 ∴ ∑|n k=1a k −a k+1|=|a 1−a 2|+|a 2−a 3|+|a 3−a 4|+⋯+|a n −a n+1| ≤(1+L +L 2+...+L n−1)|a 1−a 2|...7分 =1−L n 1−L|a 1−a 2|.…8分∵ 0<L <1,∴ ∑|n k=1a k −a k+1|≤11−L |a 1−a 2|(当n =1时,不等式也成立).…9分 ②∵ A k =a 1+a 2+⋯a kk,∴ |A k −A k+1|=|a 1+a 2+⋯+a kk−a 1+a 2+⋯+a k+1k+1|=|1k(k +1)(a 1+a 2+⋯+a k −ka k+1)|=1k(k +1)|(a 1−a 2)+2(a 2−a 3)+3(a 3−a 4)+⋯+k(a k −a k+1)|≤1k(k+1)(|a 1−a 2|+2|a 2−a 3|+3|a 3−a 4|+⋯+k|a k −a k+1|). ...11分∴ ∑|n k=1A k −A k+1|=|A 1−A 2|+|A 2−A 3|+⋯+|A n −A n+1|≤|a 1−a 2|(11×2+12×3+⋯+1n(n +1))+2|a 2−a 3|(12×3+13×4+⋯+1n(n +1))+3|a 3−a 4|(13×4+14×5+⋯+1n(n +1))+⋯+n|a n −a n+1|×1n(n +1)=|a 1−a 2|(1−1n +1)+|a 2−a 3|(1−2n +1)+⋯+|a n −a n+1|(1−nn +1)≤|a 1−a 2|+|a 2−a 3|+...+|a n −a n+1|≤11−L |a 1−a 2|.…14分 ≤1k(k+1)(|a 1−a 2|+2|a 2−a 3|+3|a 3−a 4|+...+k|a k −a k+1|,∴ ∑|n k=1A k −A k+1|=|A 1−A 2|+|A 2−A 3|+...+|A n −A n+1| ≤|a 1−a 2|(11×2+12×3+⋯+1n(n +1))+2|a 2−a 3|(12×3+13×4+⋯+1n(n +1))+3|a 3−a 4|(13×4+14×5+⋯+1n(n +1))+...+n|a n −a n+1|×1n(n +1=|a 1−a 2|(1−1n +1)+|a 2−a 3|(1−2n +1)+...+|a n −a n−1|(1−nn +1) ≤|a 1−a 2|+|a 2−a 3|+...+|a n −a n+1| ≤11−L|a 1−a 2|.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年普通高等学校招生全国统一考试(天津卷)
数学理科
本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并交回.
第Ⅰ卷
注意事项: 1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号. 2.本卷共8小题,每小题5分,共40分. 参考公式:
如果事件A ,B 互斥,那么 如果事件A ,B 相互独立,那么
()()()P A B P A P B =+
()()().P AB P A P B =
棱柱的体积公式.V Sh =
圆锥的体积公式1
.3
V Sh =
其中S 表示棱柱的底面面积 其中S 表示圆锥的底面面积 h 表示棱柱的高 h 表示圆锥的高
一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的. 1.i 是虚数单位,复数131i
i
--= A .2i + B .2i -
C .12i -+
D .12i --
2.设,,x y R ∈则“2x ≥且2y ≥”是“2
2
4x y +≥”的
A .充分而不必要条件
B .必要而不充分条件
C .充分必要条件
D .即不充分也不必要条件
3.阅读右边的程序框图,运行相应的程序,则输出i 的值为 A .3 B .4 C .5 D .6 4.已知{}n a 为等差数列,其公差为-2,且7a 是3a 与9a 的等比中项,n S 为
{}n a 的前n 项和,*n N ∈,则10S 的值为
A .-110
B .-90
C .90
D .110
5.在6
2⎛⎫ ⎝的二项展开式中,2
x 的系数为
A .154
-
B .154
C .38-
D .3
8
6.如图,在△ABC 中,D 是边AC
上的点,且,2,2AB CD AB BC BD ==,则
sin C 的值为
A

3
B

6
C
.3
D
.6
7.已知324log 0.3
log 3.4
log 3.6
15,5
,,5a b c ⎛⎫=== ⎪
⎝⎭

A .a b c >>
B .b a c >>
C .a c b >>
D .c a b >>
8.对实数a 和b ,定义运算“⊗”:,1,
, 1.
a a
b a b b a b -≤⎧⊗=⎨
->⎩ 设函数
()()22()2,.f x x x x x R =-⊗-∈若函数()y f x c =-的图像与x 轴恰有两个公共点,
则实数c 的取值范围是
A .(]3,21,2⎛⎫-∞-⋃- ⎪⎝⎭
B .(]3,21,4⎛⎫-∞-⋃--
⎪⎝⎭ C .111,,44
⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭
D .311,,44
⎛⎫⎡⎫--⋃+∞ ⎪⎪⎢⎝⎭⎣⎭
第II 卷
二、填空题:本大题共6小题,每小题5分,共30分.
9.一支田径队有男运动员48人,女运动员36
人,若用分层抽样的方法 从该队的全体运动员中抽取一个容量为21
的样本,则抽取男运动员的人 数为___________
10.一个几何体的三视图如右图所示(单位:m ),则该几何体的体积 为__________3
m
11.已知抛物线C 的参数方程为28,8.x t y t ⎧=⎨=⎩
(t 为参数)若斜率为1的
直线经过抛物线C 的焦点,且与圆()2
22
4(0)x y r r -+=>相切,
则r =________.
12.如图,已知圆中两条弦AB 与CD 相交于点F ,E 是AB 延长线上一
点,且::4:2:1.DF CF AF FB BE ==若CE 与圆相切,则 线段CE 的长为__________.
13.已知集合{}
1|349,|46,(0,)A x R x x B x R x t t t
⎧⎫=∈++-≤=∈=+-∈+∞⎨⎬⎩

,则
集合A B ⋂=________.
14.已知直角梯形ABCD 中,AD //BC ,0
90ADC ∠=,2,1AD BC ==,P 是腰DC 上的
动点,则3PA PB +
的最小值为____________.。

相关文档
最新文档