自动控制原理_第5章_1

合集下载

精品文档-自动控制原理(第二版)(千博)-第5章

精品文档-自动控制原理(第二版)(千博)-第5章
24
图 5-5 惯性环节的波德图
25
三、对数幅相图(Nichols图)
对数幅相图是以相角(°)为横坐标, 以对数幅频L(ω)(dB)
为纵坐标绘出的G(jω)曲线。频率ω为参变量。因此它与幅相
频率特性一样, 在曲线的适当位置上要标出ω的值, 并且要用
箭头表示ω增加的方向。
用对数幅频Hale Waihona Puke 性及相频特性取得数据来绘制对数幅相
第五章 频 域 分 析 法
第一节 第二节 第三节 第四节 第五节 第六节 第七节 第八节 关系 第九节 德图
频率特性的基本概念 频率特性的表示方法 典型环节的频率特性 系统开环频率特性 奈奎斯特稳定性判据和波德判据 稳定裕度 闭环频率特性 开环频率特性和系统阶跃响应的
利用MATLAB绘制奈奎斯特图和波
8
图 5-2 频率特性与系统描述之间的关系
9
利用频率特性曲线分析研究控制系统性能的方法称为频域 分析法。频域分析法主要有傅氏变换法和经典法。
(1) 傅氏变换法就是系统在输入信号r(t)的作用下,其输 出响应为
即把时间函数变换到频域进行计算并以此分析研究系统的方法。 (2) 经典法就是先求出系统的开环频率特性G(jω)并绘成
的对数频率
22
(1) 对数幅频特性曲线。通常用L(ω)简记对数幅频特性, 故
ω从0变化到∞时的对数幅频特性曲线如图5-3所示。
23
(2) 相频特性曲线。通常以j(ω)表示相频特性, 即 j (ω)=∠G(jω)。对于惯性环节, 有
j (ω)=-arctanTω 对不同ω值, 逐点求出相角值并绘成曲线即为相频特性曲线, 如图5-5所示。
45
图 5-11 振荡环节近似波德图

自动控制原理第五章习题及答案

自动控制原理第五章习题及答案

第五章习题与解答5-1试求题5-1图(a)、(b)网络的频率特性。

u r R1u cR2CR2R1u r u c(a) (b)题5-1图R-C网络解(a)依图:⎪⎪⎪⎩⎪⎪⎪⎨⎧+==+=++=++=2121111212111111221)1(11)()(RRCRRTCRRRRKsTsKsCRsCRRRsUsUrcττωωτωωωωω11121212121)1()()()(jTjKCRRjRRCRRjRjUjUjGrca++=+++==(b)依图:⎩⎨⎧+==++=+++=CRRTCRsTssCRRsCRsUsUrc)(1111)()(2122222212ττωωτωωωωω2221211)(11)()()(jTjCRRjCRjjUjUjGrcb++=+++=="5-2某系统结构图如题5-2图所示,试根据频率特性的物理意义,求下列输入信号作用时,系统的稳态输出)(tcs和稳态误差)(tes(1)tt r2sin)(=(2))452cos(2)30sin()(︒--︒+=ttt r题5-2图反馈控制系统结构图解 系统闭环传递函数为: 21)(+=Φs s 频率特性:2244221)(ωωωωω+-++=+=Φj j j 幅频特性: 241)(ωω+=Φj相频特性: )2arctan()(ωωϕ-=-系统误差传递函数: ,21)(11)(++=+=Φs s s G s e则 )2arctan(arctan )(,41)(22ωωωϕωωω-=++=Φj j e e(1)当t t r 2sin )(=时,2=ω,r m =1则 ,35.081)(2==Φ=ωωj 45)22arctan()2(-=-=j ϕ4.1862arctan )2(,79.085)(2====Φ=j j e e ϕωω )452sin(35.0)2sin()2(-=-Φ=t t j r c m ss ϕ)4.182sin(79.0)2sin()2(+=-Φ=t t j r e e e m ss ϕ (2) 当 )452cos(2)30sin()(︒--︒+=t t t r 时: ⎩⎨⎧====2,21,12211m m r r ωω5.26)21arctan()1(45.055)1(-=-===Φj j ϕ 4.18)31arctan()1(63.0510)1(====Φj j e e ϕ>)]2(452cos[)2()]1(30sin[)1()(j t j r j t j r t c m m ss ϕϕ+-⋅Φ-++⋅Φ=)902cos(7.0)4.3sin(4.0--+=t t)]2(452cos[)2()]1(30sin[)1()(j t j r j t j r t e e e m e e m ss ϕϕ+-⋅Φ-++⋅Φ=)6.262cos(58.1)4.48sin(63.0--+=t t5-3 若系统单位阶跃响应 h t e e t tt()..=-+≥--11808049试求系统频率特性。

自动控制原理第5章-频域分析

自动控制原理第5章-频域分析
(4)频率特性主要适用于线性定常系统,也可以有条件 地推广应用到非线性系统中。
第5章 控制系统的频域分析
§5.1 频 率 特 性
一、频率特性概述
1、 RC网络的频率特性
T
du0 (t) dt
u0 (t)
ui (t)
其传递函数为:
G(s) U0(s) 1 Ui (s) Ts 1
在复数域内讨论RC网络,并求输出电压
(T)2 1
——RC网络的频率特性
G( j)
1
(T)2 1 —幅频特性
() arctan T —相频特性
第5章 控制系统的频域分析
比较
G( j)
1
jT 1

G(s) 1 Ts 1
可见,只要用jω代替该网络的传递函数G(s)中的复变 量S,便可得其频率特性G(jω)。结论具有一般性。
2、线性定常系统的频率特性
设 ui (t) Um sin t
U U e •
j00 复阻抗 Z R 1 jRC 1
i
m
第5章 控制系统的频域分析
jC
jC



U0
1

I
jC
1 Ui
jC Z
1
jC
jCUi jCR 1
1
jT

U 1
i
于是有:

U0

Ui
1
jT 1

(T RC)
G( j)
U0

Ui
1
e j () G( j) e j ()
第5章 控制系统的频域分析
5.2.2 典型环节的频率特性
1、积分环节
传递函数: G(s) 1

自动控制原理及其应用课后习题第五章答案

自动控制原理及其应用课后习题第五章答案
40 20 0 -20 -20dB/dec 10 1 2ωc -40dB/dec -60dB/dec 40 -40dB/dec
ω
20 0 -20
10 ωc
1
2 -20dB/dec
ω
-60dB/dec
10 ≈1 ω2 0.5 c
ω c=4.5
5 ≈1 ω c=7.9 ω 0.01 c3
第五章习题课 (5-17)
-20
低频段曲线: 低频段曲线: 20lgK=20dB φ (ω ) 0 ω1=5 ω2=15 -90 相频特性曲线: 相频特性曲线: -180 -270 φ ( )= -90o ω ω=0 φ ( )= -270o ω ω=∞
-60dB/dec
ω
第五章习题课 (5-2)
10(s+0.2) 1.33(5s+1) (5) G(s)= s2(s+0.1)(s+15)=s2(10s+1)(0.67s+1) 解: 低频段曲线: 低频段曲线: 20lgK=2.5dB
第五章习题课 (5-7)
5-7 已知奈氏曲线,p为不稳定极点个数, 已知奈氏曲线, 为不稳定极点个数 为不稳定极点个数, υ为积分环节个数,试判别系统稳定性。 为积分环节个数,试判别系统稳定性。 Im υ=2 (b) p=0 (a) p=0 Im υ=0
ω=0 Re -1 0 ω=0+ -1 0 ω=0 Re
第五章习题课 (5-1)
5-1(1) 已知单位负反馈系统开环传递函数, 已知单位负反馈系统开环传递函数, 当输入信号r(t)=sin(t+30o),试求系统的稳态 当输入信号 , 输出。 输出。 10 G(s)=(s+1) 10 解: φ(s)= (s+11) 10 = 10 = 10 ω A( )= 2 2 112+1√ 122 =0.905 √ 11 +( ) √ ω φ ( )=-tg-1ω =-tg-1 1 =-5.2o ω 11 11 cs(t)=0.9sin(t+24.8o)

《自动控制原理》第五章:系统稳定性

《自动控制原理》第五章:系统稳定性

5.2 稳定的条件
当σi和λi均为负数,即特征根的 σi和λi均为负数, 均为负数 实部为负数,系统是稳定的; 实部为负数,系统是稳定的; 或极点均在左平面。 或极点均在左平面。
5.3 代数稳定性判据
定常线性系统稳定的充要条件 定常线性系统稳定的充要条件是特征方程的根具有负 充要条件是特征方程的根具有负 实部。因此,判别其稳定性,要解系统特征方程的根。为 实部。因此,判别其稳定性,要解系统特征方程的根。 避开对特征方程的直接求解,可讨论特征根的分布, 避开对特征方程的直接求解,可讨论特征根的分布,看其 是否全部具有负实部,并以此来判别系统的稳定性,这样 是否全部具有负实部,并以此来判别系统的稳定性, 也就产生了一系列稳定性判据。 也就产生了一系列稳定性判据。 其中最主要是E.J.Routh(1877 )h和Hurwitz( 其中最主要是E.J.Routh(1877年)h和Hurwitz(1895 E.J.Routh(1877年 年)分别提出的代数判据。 分别提出的代数判据 代数判据。
习题讲解: 习题讲解:
µ
G1
Q21
G1
h2
k1 k1 G1 ( s ) = , G1 ( s ) = (T1s + 1) (T1s + 1) k1k 2 G0 ( s ) = (T1s + 1)(T2 s + 1)
kp
G0 ( s ) G(s) = 1 + G0 ( s ) K p
5.4 Nyquist稳定性判据 Nyquist稳定性判据
系统稳定的条件? 系统稳定的条件?
5.2 稳定的条件
d n y (t ) d ( n −1) y (t ) dy (t ) 线性系统微分方程: 线性系统微分方程: n a + an −1 + L + a1 + a0 y (t ) n ( n −1) dt dt dt d m x(t ) d ( m −1) x(t ) dx(t ) = bm + bm−1 + L + b1 + b0 x(t ) m ( m −1) dt dt dt d n y (t ) d ( n −1) y (t ) dy (t ) + a( n −1) + L + a1 + a0 y (t ) = 0 齐次微分方程: 齐次微分方程: an n ( n −1) dt dt dt an s n + an −1s n −1 + L + a1s + a0 = 0 设系统k 设系统k个实根

自动控制原理第5章频率特性

自动控制原理第5章频率特性

自动控制原理第5章频率特性频率特性是指系统对输入信号频率的响应特点。

在自动控制系统设计中,了解和分析系统的频率特性是非常重要的,因为它可以帮助工程师评估系统的稳定性,性能和稳定裕度。

本章主要介绍频率特性的相关概念和分析方法,包括频率响应函数、频率幅频特性、相频特性、对数坐标图等。

1.频率响应函数频率响应函数是描述系统在不同频率下的输出和输入之间的关系的函数。

在连续时间系统中,频率响应函数可以表示为H(jω),其中j是虚数单位,ω是频率。

频率响应函数通常是复数形式,它包含了系统的振幅和相位信息。

2.频率幅频特性频率幅频特性是频率响应函数的模的图形表示,通常用于表示系统的增益特性。

频率幅频特性通常用对数坐标图绘制,以便更好地显示系统在不同频率下的增益特性。

对数坐标图上,增益通常以分贝(dB)为单位表示。

3.相频特性相频特性是频率响应函数的相角的图形表示,通常用于表示系统的相位特性。

相频特性可以让我们了解系统对输入信号的相位延迟或提前情况。

在相频特性图上,频率通常是以对数坐标表示的。

4. Bode图Bode图是频率幅频特性和相频特性的综合图形表示。

它将频率幅频特性和相频特性分别绘制在纵轴和横轴上,因此可以直观地了解系统在不同频率下的增益和相位特性。

5.系统的稳定性分析频率特性可以帮助工程师判断系统的稳定性。

在Bode图上,当系统的相位角趋近于-180度,且增益在此处为0dB时,系统即将变得不稳定。

对于闭环控制系统,我们希望系统在特定频率范围内保持稳定,以便实现良好的控制性能。

6.频率特性的设计频率特性的设计是自动控制系统设计中的一个重要任务。

工程师需要根据系统对不同频率下的增益和相位的要求,设计出合适的控制器。

常见的设计方法包括校正器设计、分频补偿、频率域设计等。

总结:本章重点介绍了自动控制系统的频率特性,包括频率响应函数、频率幅频特性、相频特性和Bode图。

频率特性的分析和设计对于掌握自动控制系统的稳定性、性能和稳定裕度非常重要。

自动控制原理_第5章习题解答-

自动控制原理_第5章习题解答-

第5章频率特性法教材习题同步解析一放大器的传递函数为:G (s )=1+Ts K测得其频率响应,当ω=1rad/s 时,稳态输出与输入信号的幅值比为12/2,稳态输出与输入信号的相位差为-π/4。

求放大系数K 及时间常数T 。

解:系统稳态输出与输入信号的幅值比为A ==222172K T ω=+ 稳态输出与输入信号的相位差arctan 45T ϕω=-=-︒,即1T ω=当ω=1rad/s 时,联立以上方程得T =1,K =12放大器的传递函数为:G (s )=121s +已知单位负反馈系统的开环传递函数为5()1K G s s =+ 根据频率特性的物理意义,求闭环输入信号分别为以下信号时闭环系统的稳态输出。

(1)r (t )=sin (t +30°); (2)r (t )=2cos (2t -45°);(3)r (t )= sin (t +15°)-2cos (2t -45°); 解:该系统的闭环传递函数为65)(+=Φs s 闭环系统的幅频特性为365)(2+=ωωA闭环系统的相频特性为6arctan )(ωωϕ-=(1)输入信号的频率为1ω=,因此有37375)(=ωA ,()9.46ϕω︒=- 系统的稳态输出537()sin(20.54)37ss c t t ︒=+ (2)输入信号的频率为2ω=,因此有10()A ω=,()18.43ϕω︒=- 系统的稳态输出10()cos(263.43)2ss c t t ︒=- (3)由题(1)和题(2)有对于输入分量1:sin (t +15°),系统的稳态输出如下5371()sin( 5.54)37ss c t t ︒=+ 对于输入分量2:-2cos (2t -45°),系统的稳态输出为102()cos(263.43)ss c t t ︒=-- 根据线性系统的叠加定理,系统总的稳态输出为)4363.632cos(210)537.5sin(37375)(︒︒--+=t t t c ss绘出下列各传递函数对应的幅相频率特性与对数频率特性。

自动控制原理第5章_线性控制系统的频率特性分析法

自动控制原理第5章_线性控制系统的频率特性分析法

5. 2控制系统开环传递函数的对数频率特性
5.2.2 系统伯德图的绘制
开环对数幅频渐近特性曲线的绘制步骤: (1)把系统开环传递函数化为标准形式,即化为典型环节的传递函
数乘积,分析它的组成环节; (2)确定一阶环节、二阶环节的转折频率,由小到大将各转折频率
标注在半对数坐标图的频率轴上; (3)绘制低频段渐近特性线; (4)以低频段为起始段,从它开始每到一个转折频率,折线发生转
开环极点的个数。
5. 4 频域稳定判据与系统稳定性
5.4.4 控制系统的相对稳定性
开环频率特性 G( j)H( j)在剪切频率 c处所对应的相角与 180 之差称为相角裕度,记为 ,按下式计算
(c ) (180 ) 180 (c )
开环频率特性 G( j)H的( 相j)角等于 时所1对80应的角频率称为相
闭环系统稳定的充要条件是,当 由 0 时0,开 环奈奎斯 特曲线逆时针方向包围( )点 周1, j。0 是具P有2 正实部P 的开 环极点的个数。 需注意,若开环传递函数含有 v 个积分环节,所谓 由 0 0 ,指的 是由 0 0 0 ,此时奈 奎斯特曲线需顺时针增补 v 角度的无穷大半径的圆弧。
5. 4 频域稳定判据与系统稳定性
5.4.1 奈奎斯特稳定判据
若闭环系统在[ s]右半平面上有 个P开环极点,当 从 变化到
时,奈奎斯特曲线 G( j对)H点( j) 的包围1周, j数0 为 ( 为逆时N针,
为顺N 时 0针),则系统N<在0[ ]右半平面上的闭环极点s的个数为 。
折,斜率变化规律取决于该转折频率对应的典型环节的种类; (5)如有必要,可对上述折线渐近线加以修正,一般在转折频率处

自动控制原理第5章

自动控制原理第5章

自动控制原理
第五章 频域分析法-频率法
1 sin(t arctanT ) 1 2T 2
1
e jarctanT
j 1
e 1 jT
1 2T 2
jT
1
1 jT
RC网络的频率特性
只要把传递函数式中的s以j置换,就可以 得到频率特性,即
1
1
1 jT 1 Ts sj
自动控制原理
第五章 频域分析法-频率法
对数相频特性:( ) arctan 特征点: 1 , L( ) 3dB, 45
自动控制原理
第五章 频域分析法-频率法
一阶微分环节的伯德图 幅相曲线
自动控制原理
第五章 频域分析法-频率法
六、振荡环节
传递函数: 频率特性:
G(s)
2 n
s2 2n s n2
1
s
n
2
2 n
s1
G( j
M ( ) G(j )
G1(j ) G2 (j ) G3(j ) M1( ) M2 ( ) M3 ( )
( ) G(j ) G1(j ) G2(j ) G3(j ) 1( ) 2( ) 3( )
自动控制原理
第五章 频域分析法-频率法
1.开环幅相特性曲线的绘制
例 某0型单位负反馈控制系统,系统开环
频率特性: G(j) 2 j 2 2 j 1
对数幅频特性:
L() 20lg G j 20lg 1 22 2 2 2
对数相频特性:
arctan
1
2 2
2
自动控制原理
第五章 频域分析法-频率法
幅相曲线: 0时,M 1, 0 ; 时,M =, =180
自动控制原理

自动控制原理 第五章(第一次课)

自动控制原理 第五章(第一次课)

autocumt@
18
中国矿业大学信电学院 常俊林
ω =1
1 12 + 2 2 e
(− tg
−1 1 2
)j
= 0 . 45 e
− 26 .6 o
c ss (t ) = 2 ⋅ 0 .45 sin t + 30 o − 26 .6 o = 0 .9 sin t + 3 .4 o
autocumt@ 13
(
)
(
)
中国矿业大学信电学院 常俊林
c(t ) = b1e
− s1t
+ ... + bn e
− sn t
+c1e
− jωt
+ c2e
jωt
css (t ) = c1e
− jωt
+ c2 e
jωt
其中: 其中
c1 = C ( s)( s + jω ) s = − jω
Aω = G ( s) ⋅ ( s + j ω ) s = − jω ( s + jω )( s − jω )
[ a (ω ) c (ω ) + b (ω ) d (ω )] + j[ b (ω ) c (ω ) − a (ω ) d (ω )] = c 2 (ω ) + d 2 (ω )
autocumt@ 9 中国矿业大学信电学院 常俊林
5-1 频率特性
b(ω )c(ω ) − a(ω )d (ω ) ϕ (ω ) = arctg a(ω )c(ω ) + b(ω )d (ω )
自ห้องสมุดไป่ตู้控制原理
r (t ) = 2 sin(t + 30 )

自动控制原理第五章-1

自动控制原理第五章-1

积分环节:G(s)=1/s
微分环节:G(s)=s 惯性环节:G(s)=1/(Ts+1) 一阶微分环节:G(s)=Ts+1 振荡环节 1/(s 2 / n2 2s / n 1)
二阶微分环节 s 2 / 2 2s / 1 n n
比例环节:G(s)=K (K<0)
惯性环节:G(s)=1/(1-Ts)
系统开环传函由多个典型环节相串联 :
G(s) H (s) G1 (s)G2 (s)Gr (s)
那么,系统幅相特性为:
G ( jw) H ( jw) G1 ( jw)G2 ( jw) Gr ( jw) A1 ( w)e
j1 ( w )
A2 ( w)e k ( w )
k 1 r
A A A ( s j ) s j G( j ) ( s j ) s j G( j ) ( s j )(s j ) 2j s2 2
a G( s)
A A A ( s j ) s j G( j ) ( s j ) s j G( j ) s2 2 ( s j )(s j ) 2j
幅频特性 相频特性
线性系统的稳态输出是和输入具有相同频率的正弦信号, 其输出与输入的幅值比为 输出与输入的相位差
A() G( j)
( )
G ( j )
(1)、频率响应 在正弦输入信号作用下,系统输出的稳态值称为系统的 频率响应, 记为css(t)
(2)、频率特性
幅频特性A(): 稳态输出信号的幅值与输入信号的幅值之比: Ac A( ) G ( j ) A 相频特性(): 稳态输出信号的相角与输入信号相角之差: ( ) G ( j ) 幅相频率特性G(j) : G(j) 的幅值和相位均随输入正弦信 号角频率的变化而变化。 G( j ) A(w)e j ( ) 在系统闭环传递函数G(s)中,令s= j,即可得到系统的频率 特性。

自动控制原理第五章

自动控制原理第五章

第五章§5-1 引言§5-2频率特性§5-3 开环系统的典型环节分解和开环频率特性曲线的绘制§5-4开环和闭环系统Bode图的绘制方法§5-5 系统稳定性分析§5-6控制系统的相对稳定性分析第五章 控制系统的频率响应分析[教学目的]:掌握利用频域法进行系统分析的一般方法 ,为后面的校正及信号与系统分析打下基础。

掌握系统频率特性分析与系统幅角之间的关系,掌握Nyquist 图和Bode 图的绘制方法,根据系统的Nyquist 图和Bode 图分析系统的性质。

本章的难点是Nyquist 稳定性分析。

[主要容]:一、引言 二、 频率特性 三、 开环系统的典型环节分解和开环频率特性曲线的绘制 四、 频率域稳定判据 五、 稳定裕度 六、 闭环系统的频域性能指标[重点]: 频率特性的基本概念,各种频域特性曲线的绘制,Nyquist 稳定判据的应用,及相对稳定裕度的分析,理解三频段的概念与作用。

[难点]:时域性能指标与频域性能指标之间的相互转换。

闭环频域性能指标的理解与应用[讲授方法及技巧]:联系传递函数,微分方程等数学模型,将频率法和时域分析法、根轨迹法相比较,理解和掌握古典控制系统的完整体系。

准确理解概念,把握各种图形表示法的相互联系。

与时域法进行对比,以加深理解。

§5-1 引言1.时域分析法(特点)1)以传递函数和单位阶跃响应为分析基础构成的一整套解析法为主响应曲线图形分析法为辅的分析方法。

它具有直观、明确的物理意义,但就是运算工作量较大,参数的全局特征不明显。

2) 原始依据--数学模型,得来不易,也同实际系统得真实情况有差异,存在较多的近似、假设和忽略,有时对于未知对象,还可能要用经验法估计。

3) 对工程中普遍存在的高频噪声干扰的研究无能为力。

4) 在定性分析上存在明显的不足。

5) 属于以“点”为工作方式的分析方法。

2.根轨迹法(特点)1)根轨迹法弥补了时域分析法中参数全局变化时特征不明显的不足,在研究单一指定参数对整个系统的影响时很有用;2)增加零极点(增加补偿器)时,是一种很好的辅助设计工具; 3)以“线”和“面”为工作方式;4)为定性分析提供了一种非常好的想象空间和辅助思维界面。

自动控制原理第5章

自动控制原理第5章

8
二、图形表示法
1.极坐标图(幅相频率特性图;奈奎斯特图) 1.极坐标图(幅相频率特性图;奈奎斯特图) 极坐标图 随着频率的变化,频率特性的矢量长度和幅角也改变。 随着频率的变化,频率特性的矢量长度和幅角也改变。 当频率ω 变化到无穷大时, 当频率ω从0变化到无穷大时,矢量的端点便在平面上画出一 条曲线,这条曲线反映出ω为参变量、模与幅角之间的关系。 条曲线,这条曲线反映出ω为参变量、模与幅角之间的关系。 通常称这条曲线叫做幅相频率特性曲线或奈奎斯特曲线。 通常称这条曲线叫做幅相频率特性曲线或奈奎斯特曲线。画 有这种曲线的图形称为极坐标图。 有这种曲线的图形称为极坐标图。
− j arctan 2 ζT ω 1−T 2ω 2
幅频特性 相频特性
A(ω ) =
ϕ (ω ) = − arctan
23
典型环节的频率特性
9
2.博德图(对数频率特性图) 博德图(对数频率特性图) 博德图 两张图构成 一张是对数幅频图 一张是对数相频图 构成: 对数幅频图, 对数相频图。 由两张图构成:一张是对数幅频图,一张是对数相频图。 两张图的横坐标都是采用了半对数坐标。 两张图的横坐标都是采用了半对数坐标。
10
对数幅频特性图的纵坐标是频率特性幅值的对数值乘20, 对数幅频特性图的纵坐标是频率特性幅值的对数值乘20, 是频率特性幅值的对数值乘20 即 L(ω ) = 20 lg A(ω ) 表示,均匀分度,单位为db。 表示,均匀分度,单位为db db。 对数相频特性图的纵坐标是相移角φ(ω),均匀分度,单 对数相频特性图的纵坐标是相移角φ 是相移角 均匀分度, 位为“ 位为“度”。 对数幅频特性图绘的是对数幅频特性曲线, 对数幅频特性图绘的是对数幅频特性曲线, 对数相频特性图绘的是对数相频特性曲线。 对数相频特性图绘的是对数相频特性曲线。

自动控制原理自控第五章

自动控制原理自控第五章

【授课时间】:、11.20上午三四节【授课形式】:多媒体【授课地点】:4306 4114 【授课时数】:2【授课题目】:频率特性及典型环节的频率特性【教学目标】1、正确理解频率特性的概念;2、熟练掌握典型环节的频率特性,熟记其幅相特性曲线及对数频率特性曲线。

【教学重难点】重点:典型环节的频率特性难点:典型环节的幅相特性曲线及对数频率特性曲线【教学内容】复数的表示形式:(1) 代数式:A=a+bj(2) 三角式:A=R(cosφ+j sinφ)(3) 指数式:A=Re jφ(4) 极坐标式:A=R∠φ5.1 频率特性一、频率特性定义频率特性是控制系统在频域中的一种数学模型,是研究自动控制系统的一种工程求解方法。

系统频率特性能间接地揭示系统的动态特性和稳态特性,可简单迅速地判断某些环节或参数对系统性能的影响,指出系统改进方向。

频率特性的定义(1)频率响应: 在正弦输入作用下,系统输出的稳态值称为频率响应。

(2)频率特性: 频率响应c(t)与输入正弦函数r(t)的复数比。

幅频特性:输出响应中与输入同频率的谐波分量与谐波输入的幅值之比A(ω)为幅频特性相频特性:输出响应中与输入同频率的谐波分量与谐波输入的相位之差φ(ω)为相频特性实频特性:虚频特性:例5-1 已知u i (t )=A ·sin ωt 。

1()()()()Q G j tg P ωϕωωω-=∠=()()cos ()P A ωωϕω=()()sin ()Q A ωωϕω=其中,T =RC ()22ωω+=s A s U i 零初始条件())arctan sin(112222T t T Ae AT u T tt c ωωωωτω-+++=-上式表明:对于正弦输入,其输出的稳态响应仍然是一个同频率正弦信号。

但幅值降低,相角滞后。

Tj j G ωω+=11)(幅频特性和相频特性数据频率特性的性质1)与传递函数一样,频率特性也是一种数学模型。

自动控制原理参考答案-第5章

自动控制原理参考答案-第5章

第五章题5-1:试绘制下列开环传递函数的幅相频率特性曲线。

(1) 10G(s)H(s)(s 1)(0.2s 1)=++ (2) 25(s 1)G(s)H(s)(s 3)(s 2s 2)+=+++(3) 100G(s)H(s)(s 1)(s 3)(s 4)=+++ 题5-6:试绘制题5-1各开环传递函数的对数幅频特性渐近线和半对数相频特性曲线。

(1) 2221010122()()(1)(0.21)(1)(10.04)j G j H j j j ωωωωωωωω--==++++实频特性:)04.01)(1(210)(222ωωωω++-=P虚频特性:)04.01)(1(12)(22ωωωω++-=Q 相频特性:()arctan arctan 0.2ϕωωω=-- Nyqist 曲线:起点:0ω=(0)10P ⇒=,(0)0Q =,(0)0ϕ=终点:ω=∞()0P ⇒∞=,()0Q ∞=,()180ϕ∞=- 与虚轴交点:()0P ω= 2.236ω⇒=() 3.73Q ω⇒=- Nyqist 曲线如下:转折频率1:111T ω==;转折频率2:215T ω==对数幅频特性:()20lg ()20lg10L A ωω==-半对数相频特性:()arctan arctan 0.2ϕωωω=-- Bode 图如下:(2) 25(1)()()(3)(22)j G j H j j j ωωωωωω+=+-+ 222222225(3)(2)202(12)(9)[(2)4]j ωωωωωωωω+-+-+=+-+ 实频特性:]4)2)[(9(20)2)(3(5)(2222222ωωωωωωω+-++-+=P 虚频特性:]4)2)[(9()21(10)(22222ωωωωωω+-++-=Q相频特性:2()arctan arctan arctan 310.5ωωϕωωω=--- Nyqist 曲线:起点:0ω=5(0)6P ⇒=,(0)0Q =,(0)0ϕ=终点:ω=∞()0P ⇒∞=,()0Q ∞=,()180ϕ∞=-与虚轴交点:()0P ω= 2.09ω⇒=()0.66Q ω⇒=- Nyqist 曲线如下:225(1)0.83(1)()()(3)(22)(0.331)[(0.7)1]j j G j H j j j j j j ωωωωωωωωωω++==+-++++ 转折频率1:11 1.414T ω==;转折频率2:213T ω==对数幅频特性:5()20lg ()20lg 6L A ωω==+半对数相频特性:2()arctan arctanarctan310.5ωωϕωωω=---Bode 图如下:(3) 23222100100[128(19)]()()(1)(3)(4)(1)(3)(4)j G j H j j j j ωωωωωωωωωωω-+-==++++++实频特性:)4)(3)(1()812(100)(2222ωωωωω+++-=P虚频特性:)4)(3)(1()19(100)(2223ωωωωωω+++-=Q 相频特性:()arctan arctan 0.33arctan 0.25ϕωωωω=--- Nyqist 曲线:起点:0ω=(0)8.33P ⇒=,(0)0Q =,(0)0ϕ= 终点:ω=∞()0P ⇒∞=,()0Q ∞=,()270ϕ∞=- 与虚轴交点:()0P ω= 1.22ω⇒=() 4.77Q ω⇒=- 与实轴交点:()0Q ω= 4.36ω⇒=()0.71P ω⇒=- Nyqist 曲线如下:8.33()()(1)(0.331)(0.251)G j H j j j j ωωωωω=+++转折频率1:111T ω==;转折频率2:213T ω==;转折频率3:314T ω==对数幅频特性:()20lg ()18.4L A ωω==-半对数相频特性:()arctan arctan 0.33arctan 0.25ϕωωωω=--- Bode 图如下:题5-2:已知某一控制系统的单位阶跃响应为4t 9t c(t)1 1.8e 0.8e --=-+试求该系统的开环频率特性。

自动控制原理_第5章

自动控制原理_第5章
通信技术研究所
:0 ( ): 0
dB
24
对数幅频曲线近似作法:
通信技术研究所
25
九.一阶不稳定环节 1 1 G( s) 特征根s= Ts 1 T
1 G ( j ) 1 T j
A( )
1 T 2 2 1
:0
一阶不稳: 惯性环节: 0
Im

0 n
1
1
0

Re
n
2

n
3 1 2 3

通信技术研究所
21
七.二阶微分环节
G( s) s2

2 n

2
n
s 1
G( j ) 1
( j )2

2 n

2
n
( j)
2 n arctan , n 1 ( )2 n ( ) G ( j ) 2 n arctan , n 1 ( )2 n
——幅频特性 ——相频特性
( ) ( j )
r (t ) Ar sin(t r ) 4. 稳态输出 cs (t ) ( j) Ar sin[t r ( j)]
通信技术研究所
3
三.频域性能指标 1.峰值Am : A(ω)的最大值 2.频带宽 b: A()下降到0.707 A(0)对应的频率 3.相频宽 b : ( ) 时对应的频率 2 4.零频振幅比A(0):ω=0时输出输入振幅比
dB
0
( ) 90
0.1 0. 2 0.3 0. 7
1
180 0.707 A( )无峰值 0.1 0.2 0.4 0.6 0.8 1 6 8 2 4 / 0.707 Am 1 m =0 0.707 Am 1 m 0 m , =0 Am m (共振) 0 m n (最大值) n

5第五章自动控制原理(胡寿松)第五版(共179张)

5第五章自动控制原理(胡寿松)第五版(共179张)

EXIT 第9页,共179页。
第5章第9页
在零初始条件下,当输入信号为一正弦信号,即
ui(t)=Uisin t
Ui与分别为输入信号的振幅与角频率,可以(kěyǐ)运用时域法 求电路的输出。
输出的拉氏变换为:
Uo(s)=
1 Uiω Ts +1 s2 + ω2
对上式进行拉氏反变换可得输出的时域表达式:
2021年12月25日
EXIT 第5页,共179页。
第5章第5页
③具有(jùyǒu)明确的物理意义,它可以通过实验的方法,借助频率特性 分析仪等测试手段直接求得元件或系统的频率特性,建立数学模型作 为分析与设计系统的依据,这对难于用理论分析的方法去建立数学模 型的系统尤其有利。
④频率分析法使得控制系统的分析十分方便、直观,并且可 以拓展应用到某些非线性系统中。
系统的输出分为两部分,第一部分为瞬态分量,对应特征根; 第二部分为稳态分量,它取决于输入信号的形式。对于一个稳定 系统,系统所有的特征根的实部均为负,瞬态分量必将随时间趋 于无穷大而衰减到零。因此,系统响应正弦信号的稳态分量必为 同频率的正弦信号。
2021年12月25日
EXIT 第21页,共179页。
sint
线性定常 系统
Asin(ωt+)
r(t) Css(t)
t
线性系统及频率响应示意图
2021年12月25日
EXIT 第12页,共179页。
第5章第12页
5.1.2 频率特性
1、基本概念
对系统的频率响应作进一步的分析,稳态输出与输入的幅值比A与相位差 只与系统的结构、参数及输入正弦信号的频率ω有关。在系统结构、参数给定的
= K1 + K2 + ...+ Kn + Kc + K-c

自动控制原理第5章 部分题解

自动控制原理第5章 部分题解

K 12 T 1
5-3 RLC无源网络如图E5.1所示。当=10弧度/秒时, 其A()=1,()=-90°,求其传递函数。
L + ur – i C R + u0 –
图E5.1 题5.3图
4
L + ur –
R + i C u0 –
图E5.1 题5.3图
解:画出系统的动态结构图如下
180
系统闭环稳定
对数相频特性曲线
幅相频率特性曲线
15
b) 系统开环传递函数为
G (s) 1000 1 1 ( s 1)( s 1)( s 1) 10 200
L dB
60 0
–20 –40 200 1 10 100 (b) –60
20lg K 60dB
( )
Ur
1 Ls R
1 Cs
Uc
Uc( s) 1 则 ( s) Ur( s) LCs 2 RCs 1
5
Uc( s) 1 则G ( s) Ur( s ) LCs 2 RCs 1
系统的频率特性为:
1 G ( j ) LC 2 jRC 1 1 RC 1 tg 2 2 2 2 1 LC (1 LC ) ( RC )
则 G ( s)
Ks
1 ( s 1) 20
由最低频段对数幅频近似公式,可求得
L( ) 20lg K
L() 10 20lg10K 0
0.1s G (s) 1 ( s 1) 20
K 0.1
10
(c) 由Bode图(后页)可知,系统的开环传函由比例和 二阶振荡环节构成。
(1).当=1时,

自动控制原理第五章--频率法

自动控制原理第五章--频率法
G(s) s G(s) 1 Ts
G(s) T 2s2 2Ts 1
频率特性分别为:
G( j ) j G( j ) 1 jT G( j ) 1 T 2 2 j2T
① 纯微分环节: G( j ) j
A() , ()
2
P() 0, Q()
微分环节的极坐标图为 正虚轴。频率从0→∞ 特性曲线由原点趋向虚 轴的+∞。
当 o 时,误差为:2 20lg 1 T 22 20lgT
T L(),dB 渐近线,dB0.1 0.2来自0.5 1 2 510
-0.04 -0.2 -1 -3 -7 -14.2 -20.04
0
0
0 0 -6 -14
-20
最大误差发生在
o
处,为
1 T
误差,dB
0 -1
-0.04 -0.2 -1 -3 -1 -0.2
时:A() 0,() 90
P() 0,Q() 0
2. 对数频率特性
A( ) K 1 T 2 2
G(s) K Ts 1
G( j ) K jT 1
( ) tg1T
①对数幅频特性:L() 20lg A() 20lg K 20lg 1 T 2 2
为了图示简单,采用分段直线近似表示。
二、频率特性的表示方法:
工程上常用图形来表示频率特性,常用的有:
1.幅相频率特性图,极坐标图,也称乃奎斯特(Nyquist) 图。是以开环频率特性的实部为直角坐标横坐标,以其
虚部为纵坐标,以 为参变量的幅值与相位的图解表示
法。
它是在复平面上用一条曲线表示 由 0 时的频
率特性。即用矢量 G( j)的端点轨迹形成的图形。 是
R Ar0o ,C Ac
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

19
三种数学模型的“三角”关系
传递函数 G ( s)
s j
频率特性 G ( j )
L
F
L
1
F
单位脉 冲响应
1
k (t )
20
[例5-1] 设单位反馈系统的方块图如下,
R( s )
-
E (s)
100 s (0.1s 1)
Y ( s)
若输入信号 r (t ) sin 5t ,试求系统的稳态误差。
Y G ( j ) ,是频率 的函数; A
G( j ) ,也是频率 的函数。
yss (t ) 的相位与输入信号的相位之差为
9
5.2.2 频率特性(频率响应)
根据前面的分析可知: 复变量 G ( j ) 可以反映
系统(元件)在不同频率正弦信号作用下,输出信号
的稳态分量与输入信号之间的关系。
j
G ( j ) G ( s ) s j
17
7
频率特性实际上是系统单位脉冲响应的富里叶 变换。
单位脉 冲信号
r (t ) (t )
G ( s)
y (t ) k (t )
jt
单位脉 冲响应
K ( j ) G( j ) ( j )




的函数;
12
3
线性定常系统在频率为 的正弦信号作用下,
频率特性反映了输出信号稳态分量和输入信号 的关系:
G( j)
输出稳态分量的幅值
输入信号的幅值
G( j ) 输出稳态分量的相角-输入信号的相角
频率特性也可以按照上述两式进行实际测定,
这就提供了用实验测试频率特性的方法。
13
4
在频率特性中, 所用的频率均为角频率 , rad/s 或 1/s 。 其单位是:


信号的拉氏变换如下:
s j
L y(t )


y(t )est dt Y (s)
L r (t ) r (t )est dt R( s)

16
所以,可通过传递函数直接写出频率特性:
Y (s) G(s) R( s)
令s
输出信号 拉氏变换 输入信号 拉氏变换
0
-50
-100
-150 0
-90
-180
-270
10
0
10
1
10
2
10
3
30
10
4
Frequency (rad/sec)
3
对数幅相特性图——Nichols图
Nichols图采用直角坐标系。
纵坐标表示对数幅频特性—— 20lg G( j) ,
单位:分贝(dB);
横坐标表示相频特性—— G ( j ) , 单位:度或弧度。
如果需要画出 从 0 时的频率特性, 只需将 从 0 时的曲线 G ( j ) 以实轴为对 称轴翻折, 画出其对称曲线 G( j ) 即可。
理由
G ( j )
共轭
G( j )
26
当频率特性 G ( j ) 乘以一个常数 K 时, 频率特性
KG ( j ) 只是原曲线上各点的模都增大为原来的
其中 N (s) sn an1s n1 a1s a0
(s s1 )(s s2 )(s sn )
M (s) bm sm bm1sm1 b1s b0
6
系统的输入信号为
r (t ) A sin t
对于稳定的系统 G ( s ) 而言, 可以导出输出信号
5
在频率特性中, 一般讨论的频率范围是:
(0, )
则有 如果 (,0) ,
G( j) G( j)
G( j ) G( j )
14
或者
Re G( j ) Re G( j ) Im G( j ) Im G( j )
6 频率特性的另一种定义: 频率特性是输出信号 的富里叶变换与输入信号的富里叶变换之比。
21
5.2.3 频率特性的几种形式
频率特性 G ( j ) 是一个复变量, 它是 的函数。 对应 的某一个值,G ( j ) 是复平面上的一个点; 当 连续变化时,G ( j ) 是复平面上的一条曲线。
22
频率特性有以下几种表达形式 1
极坐标形式的频率特性——Nyquist图
G( j) G( j) cos G( j) j sin G( j)
并且由 G ( j ) 可直接求出输出信号 y(t ) 的稳态
分量 yss (t ) Y sin t 其中
Y A G( j)
arg G( j ) G( j )
10
频率特性的定义 定义G ( j ) 为线性系统(或元件)的频率特性, 又称为频率响应。
G ( j ) G ( s ) s j
第五章
5.1 引言
正弦信号
频率法
线性控 制系统
正弦信号
正弦信号具有无穷阶的导数;
正弦信号包含了位置、速度和加速度等各种作用;
控制系统中的各个信号均可分解为许多不同频率的 正弦信号。 1
控制系统对不同频率正弦信号的响应可以全面 地反映系统的各种性质。 频率法是控制理论中的一项非常重要的基本内 容。
2
Y ( j ) F y(t ) G ( j ) R( j ) F r (t )
15
其中信号的富氏变换如下:
F y(t )


y(t )e jt dt Y ( j )
jt
F r (t ) r (t )e dt R( j )
K 倍, 而每一个点的辐角不变。
27
2
对数频率特性图——Bode图
横坐标为角频率 (1)把幅频特性与相频特性分开画,
,纵坐标分别为频率特性的幅值和相角,画出
两条曲线。
(2)横坐标按照 的常用对数
lg 来划分刻度。
在横轴上, 每10个频程之间的距离为1个长度单位, 称为10倍频程(dec)。
28
(3)在幅频特性图中, 纵坐标用
L() 20lg G( j)
单位:分贝(dB), 因此也叫做对数幅频特性。
(4)在相频特性图中,纵坐标是角度 G ( j ) 本身, 一般使用角度制,也可以用弧度制。
29
(5)对数频率特性一般画在半对数坐标纸上。
Bode Diagram
50
Magnitude (dB) Phase (deg)
31
Nichols图举例
20lg G /dB
30 20 10
-180 0
-90 0
0 0 -10 -20
90 0
G /deg


-30
32
本次课内容总结
频率特性的基本概念
频率特性的基本性质
频率特性的几种表达形式
Nyquist图 Bode图 Nichols图
33
yss (t ) 的幅值是输入信号幅值的 G( j) 倍;
yss (t ) 的相位与输入信号的相位差为 G ( j ) 。
8
这个结论的另一种说法 对于一个稳定的线性系统而言, 在正弦信号的 作用下, 其稳态输出信号 yss (t ) 是和输入信号同频 率的正弦信号。
yss (t ) 的幅值 Y 与输入信号的幅值 A 之比为
频率法的优点 频率法所用的数学模型是“频率特性”,它具有 明显的物理意义; 对于难以机理建模的系统或元件,可以用实验的 方法测出它的数学模型——频率特性。具有较大 的工程实用价值; 频率特性的计算简单,运算量较小,辅以作图 就可以完成分析与综合工作; 频率法的设计已有完整的软件。
3
频率法的缺点 频率法只适用于线性定常系统; 频率法在简化运算的过程中应用了很多近似公式, 所得到的设计结果不是十分准确,常常需要通过 调试或仿真作适当的调整。
G( j) e
jG ( j )
当 从 0 时,G ( j ) 在复平面上的轨迹 称为Nyquist图。
23
[例5-2]
设系统的传递函数为
1 G(s) Ts 1
画出Nyquist图形式的频率特性。
24
Im
0
0.5
1

450Байду номын сангаас
0
Re

1 T
25
说明
G( j) cos G( j) j sin G( j)
G( j) e
jG ( j )
复数的Euler公式
11
频率特性的性质
1
频率特性是描述线性定常系统的一种数学模型, 只有线性定常系统才有频率特性;
2
频率特性 G ( j ) 是一个复变量,它的幅值(模)
G( j) 和辐角(相角)G ( j ) 都是频率
k (t )e dt

(t )e dt
jt



k (t )e jt dt 1
k (t )e jt dt

18
结论
上述第7条性质提供了测试频率特性的另一种方法。 给系统或元件输入一个单位脉冲信号(或近似单位 脉冲信号),记录系统(或元件)的脉冲响应序列, 对该响应序列作富里叶变换,即得频率特性。
4
5.2 频率特性
5.2.1 正弦信号作用下的稳态输出
研究系统在正弦输入信号作用下,其输出信号与 输入信号之间的关系。
G ( s)
r (t )
y(t )
Y (s) G(s) R( s)
5
传递函数 G ( s ) 可以写成分式有理函数的形式:
相关文档
最新文档