集合试题及答案
集合考试题及答案

集合考试题及答案集合是数学中的一个基本概念,它在各个领域都有着广泛的应用。
以下是一些集合考试题及其答案,供参考:题目一:定义集合A={x | x是自然数,且1≤x≤10},集合B={y |y是偶数}。
求A∩B。
答案:集合A包含自然数1到10,即A={1, 2, 3, 4, 5, 6, 7, 8, 9, 10}。
集合B包含所有的偶数。
A与B的交集是同时属于A和B的元素,即A∩B={2, 4, 6, 8, 10}。
题目二:集合C={x | x是整数,且-5≤x≤5},集合D={y | y是正整数}。
求C∪D。
答案:集合C包含从-5到5的所有整数,即C={-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}。
集合D包含所有的正整数,即D={1, 2, 3, ...}。
C与D的并集是包含C和D所有元素的集合,但去除重复元素。
因此,C∪D包含了从-5到无穷大的所有整数,由于题目限制,我们只列出到5,即C∪D={-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}。
题目三:集合E={x | x是奇数},集合F={y | y是3的倍数}。
求E∩F。
答案:集合E包含所有的奇数,集合F包含所有3的倍数。
E与F的交集是同时满足奇数和3的倍数的元素。
这些元素是3的奇数倍,即E∩F={3, 9, 15, ...},但题目中没有指定范围,我们只列出前三个元素。
题目四:集合G={x | x²=1},求G。
答案:集合G包含满足x²=1的所有x值。
解这个方程,我们得到x=1或x=-1。
因此,G={1, -1}。
题目五:集合H={x | x²-4=0},求H。
答案:集合H包含满足x²-4=0的所有x值。
解这个方程,我们得到x²=4,所以x=2或x=-2。
因此,H={2, -2}。
总结:集合论是数学的基础之一,它涉及到元素与集合之间的关系,包括交集、并集、补集等概念。
集合测试题及答案

集合测试题及答案一、选择题(每题2分,共10分)1. 集合A={1, 2, 3},B={2, 3, 4},那么A∩B(A与B的交集)是什么?A. {1}B. {2, 3}C. {4}D. {1, 2, 3}2. 如果集合C={x | x是偶数},那么5属于C吗?A. 是B. 否3. 集合D={x | x是小于10的自然数},D的元素个数是多少?A. 5B. 9C. 10D. 无穷多4. 集合E={x | x^2 - 5x + 6 = 0},E中元素的个数是?A. 0B. 1C. 2D. 35. 对于集合F={1, 2, 3},其幂集P(F)包含多少个元素?A. 3B. 4C. 7D. 8二、填空题(每题3分,共15分)6. 集合A={x | x是小于5的正整数},用描述法表示A为________。
7. 集合G={1, 2, 3},那么G的补集(相对于自然数集N)是________。
8. 若集合H={x | x是大于1且小于10的整数},H的并集(与集合G={2, 3, 4, 5})是________。
三、解答题(每题5分,共20分)9. 给定集合I={1, 2, 3, 4, 5},J={4, 5, 6, 7},求I∪J(I与J的并集)。
10. 集合K={x | x是偶数且x<10},L={x | x是3的倍数且x<10},求K∩L(K与L的交集)。
11. 如果集合M={x | x是大于0且小于10的整数},求M的子集个数。
12. 集合N={x | x是2的幂次方},求N的前5个元素。
答案一、选择题1. B. {2, 3}2. B. 否3. C. 104. C. 25. D. 8二、填空题6. A={1, 2, 3, 4}7. G的补集是{x | x属于自然数集N且x≠1, 2, 3}8. H∪G={1, 2, 3, 4, 5}三、解答题9. I∪J={1, 2, 3, 4, 5, 6, 7}10. K∩L={6}11. M的子集个数是2^5=3212. N的前5个元素是{1, 2, 4, 8, 16}这份测试题覆盖了集合的基本操作,包括交集、并集、补集、子集和幂集等概念,适合作为集合理论的复习材料。
集合测试题及答案

集合测试题及答案一、选择题1. 集合A和集合B的并集表示为:A. A∪BB. A∩BC. A-BD. A∪B答案:A2. 集合A中所有元素都属于集合B,则称集合A是集合B的:A. 子集B. 并集C. 交集D. 补集答案:A3. 若集合A={1, 2, 3},集合B={2, 3, 4},则A∩B的元素个数为:A. 1B. 2C. 3D. 4答案:B二、填空题1. 集合{1, 2, 3}的补集(相对于全集U={1, 2, 3, 4, 5})是________。
答案:{4, 5}2. 若A={x | x是偶数},B={x | x是3的倍数},则A∩B的元素包括所有________。
答案:6的倍数三、简答题1. 描述什么是集合的幂集,并给出一个具体的例子。
答案:集合的幂集是指一个集合的所有子集构成的集合,包括空集和该集合本身。
例如,集合A={1, 2}的幂集是{∅, {1}, {2}, {1, 2}}。
2. 解释什么是集合的差集,并给出一个例子。
答案:集合的差集是指属于集合A但不属于集合B的所有元素组成的集合。
例如,如果A={1, 2, 3},B={2, 3, 4},则A-B={1}。
四、计算题1. 给定集合A={1, 2, 3, 4}和集合B={3, 4, 5, 6},求A∪B,A∩B,A-B。
答案:A∪B = {1, 2, 3, 4, 5, 6}A∩B = {3, 4}A-B = {1, 2}2. 如果集合C={x | x是小于10的正整数},求C的幂集。
答案:C的幂集包含从空集到C本身的所有子集,即{∅, {1},{2}, ..., {1, 2, ..., 9}}。
五、论述题1. 讨论集合论在数学中的重要性,并给出至少两个应用领域的例子。
答案:集合论是现代数学的基础,它提供了一种形式化的方法来描述数学对象和它们之间的关系。
例如,在逻辑学中,集合论用于定义命题的真值;在计算机科学中,集合论的概念被用来设计数据结构和算法。
高中数学集合测试题(附答案和解析)

高中数学集合测试题(附答案和解析)一、单选题1.已知全集{}1,2,3,4,5U =,集合{}3,4,5A =,{}2,3,4B =,则()U AB =( )A .{}1,3,5B .{}1,2,5C .{}1,5D .{}2,5 2.设集合{}22M x Z x =∈-<,则集合M 的真子集个数为( )A .16B .15C .8D .7 3.如图,已知集合{A =1-,0,1,2},{|128}x B x N +=∈<≤,则图中的阴影部分表示的集合为( )A .{1,2}B .{1-,0,3}C .{1-,3}D .{0,1,2} 4.已知集合{}1,2,3A =,{}20B x x =-<,则A B =( )A .{}1B .{}1,2C .{}0,1,2D .{}1,2,3 5.设集合{}|3,A x x x R =<∈,{}1,2,3B =,则A B =( )A .{}1B .{}1,2,3C .{}1,2D .{}1,0,1-6.已知集合{}20A x x =-≤≤,{}21B x x =>,则A B ⋃=( ) A .[)2,1--B .[]()2,01,-⋃+∞C .(](),01,-∞⋃+∞D .[)2,1-7.已知集合{}21A x x =<,{}e 2x B x =<,则A B =( ) A .()1,1- B .()1,ln 2- C .()0,ln 2 D .()ln 2,1 8.已知集合(){}30A x x x =-<,{}0,1,2,3B =,则A B ( )A .{}0,1,2,3B .{}0,1,2C .{}1,2,3D .{}1,2 9.已知集合11A x x x ⎧⎫-=<⎨⎬+⎩⎭,{}log 4x y x =-,则A B =( ) A .{}41xx -<<∣ B .{}14x x -<< C .{}14x x << D .{}1x x ≥-10.已知集合{}21A x x =-<<,{}03B x x =≤≤,则A B ⋃=( )A .{}01x x ≤<B .{}23x x -<≤C .{}13x x <≤D .{}01x x <<11.已知集合1144A x x ⎧⎫=-<⎨⎬⎩⎭,12B x a x ⎧⎫=<<⎨⎬⎩⎭,若B A ⊆,则实数a 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .10,2⎛⎤ ⎥⎝⎦C .[)0,∞+D .[)1,+∞12.已知集合{}22280,03x A x x x B x x -⎧⎫=--≤=≤⎨⎬+⎩⎭,则A B ⋃=( ) A .{}42x x -≤≤B .{42x x -≤≤且3}x ≠-C .{}34x x -≤≤ D .{34}x x -<≤ 13.已知全集{}0,1,2,3,4,5U A B ==,(){}1,2,4U AB =,B =( ) A .{}0B .{}3,5C .{}0,3,5D .{}1,2,4 14.已知集合{|13}A x x =-<<,1,{}1,2B =-,则A B =( ) A .{}1,2B .{}1,1,2-C .{}0,1,2D .{}1,0,1,2,3- 15.下面给出的四类对象中,构成集合的是( ) A .某班视力较好的同学B .长寿的人C .π的近似值D .倒数等于它本身的数二、填空题16.已知(){}22,1,01M x y x y y =+=<≤,(){},,N x y y x b b R ==+∈,如果M N ≠∅,那么b 的取值范围是______.17.集合*83A x N N x ⎧⎫=∈∈⎨⎬-⎩⎭,用列举法可以表示为A =_________. 18.已知集合(){}(){},24,,5A x y x y B x y x y =-==+=∣∣,则A B 中元素个数为__________.19.某班有学生45人,参加了数学小组的学生有31人,参加了英语小组的学生有26人.已知该班每个学生都至少参加了这两个小组中的一个小组,则该班学生中既参加了数学小组,又参加了英语小组的学生有___________人.20.若集合{}2210A x x x =-+=,{}210B x x =-=,则A ______B .(用符号“⊂”“=”或“⊃”连接)21.若集合{}3cos23,x A x x x R π==∈,{}21,B y y y R ==∈,则A B ⋂=_______. 22.设α:()124R m x m m +≤≤+∈;β:13x ≤≤.若β是α的充分条件,则实数m 的取值范围为______.23.某学校开设校本课程,高一(2110)班确定了数学类、英语类、历史类三个类别校本课程供班上的40名学生选择参加,且40名学生全部参与选择.其中只选数学类的有8人,只选英语类的有8人,只选历史类的有8人,既选数学类又选英语类的有7人,既选数学类又选历史类的有11人,既选英语类又选历史类的有8人,则三类课程都选择参加的有___________人.24.若全集{}0,1,2,3,4U =,{}0,1,2,3A =,{}2,3,4B =,则A B ⋃=______.25.判断下列命题的真假:(1)集合{}1,2,3是集合{}1,2,3的真子集;( )(2){}1是集合{}1,2,3的元素;( )(3)2是集合{}1,2,3的子集;( )(4)满足{}{}00,1,2,3A 的集合A 的个数是322-个.( )三、解答题26.已知{}28200P x x x =--≤,非空集合{}11S x m x m =-≤≤+.若x P ∈是x S ∈的必要不充分条件,求实数m 的取值范围.27.已知集合{}26A x x =-≤≤,{}11,0B x m x m m =-≤≤+>.(1)若A B A ⋃=,求实数m 的取值范围;(2)若x A ∈是x B ∈的充分条件,求m 的取值范围.28.已知函数2()327mx n h x x +=+为奇函数,||1)3x m k x ﹣()=( ,其中R m n ∈、 . (1)若函数h (x )的图象过点A (1,1),求实数m 和n 的值;(2)若m =3,试判断函数11()+()()f x h x k x =在[3x ∈+∞,)上的单调性并证明; (3)设函数()()(),39,3h x x g x k x x ⎧≥⎪=⎨<⎪⎩,若对每一个不小于3的实数1x ,都恰有一个小于3的实数2x ,使得12g x g x ()=() 成立,求实数m 的取值范围.29.已知集合{}3A x a x a =≤≤+,{1B x x =<-或5}x >.(1)若A B =∅,求a 的取值范围;(2)若A B A =,求a 的取值范围.30.已知U =R ,{}2=160A x x -<,{}2=3180B x x x -++>,求A B ,A B .【参考答案】一、单选题1.B【解析】【分析】根据给定条件,利用交集、补集的定义直接计算作答.【详解】集合{}3,4,5A =,{}2,3,4B =,则{3,4}A B =,而全集{}1,2,3,4,5U =,所以(){1,2,5}U A B ⋂=. 故选:B2.D【解析】【分析】求出集合M 中的元素,再由子集的定义求解.【详解】由题意{|04}{1,2,3}M x Z x =∈<<=,因此其真子集个数为3217-=.故选:D .3.B【解析】【分析】由题知{}1,2,3B =,进而得{}1,2A B =,再求阴影部分表示的集合即可.【详解】解:解不等式128x <≤得03x <≤,所以{}1,2,3B =,因为{A =1-,0,1,2},所以{}1,2A B =所以,图中的阴影部分表示的集合为{}1,0,3-.故选:B4.A【解析】【分析】根据集合交集的概念及运算,即可求解.【详解】 由题意,集合{}{}202B x x x x =-<=<,又由{}1,2,3A =,根据集合交集的概念及运算,可得{}1A B ⋂=.故选:A.5.C【解析】【分析】求出集合A 的解集,取交集运算即可.【详解】因为{}|33A x x =-<<,{}1,2,3B =,所以{}1,2A B =.故选:C.6.C【解析】【分析】解不等式求得集合B ,由此求得A B .【详解】()()21,110x x x >+->,解得1x <-或1x >,所以()(),11,B =-∞-⋃+∞,所以(](),01,A B ⋃=-∞⋃+∞.故选:C7.B【解析】【分析】由已知,分别求解出集合A 、集合B 的范围,然后直接求解交集即可.【详解】 由已知,集合{}21A x x =<,即集合{}11A x x =-<<, 集合{}2x B x e =<,即集合{}ln 2B x x =<, 因为11ln ln 21ln e e-=<<=,所以A B ={}1ln 2x x -<<.故选:B.8.D【解析】【分析】先化简集合A ,继而求出A B .【详解】解:(){}{}30=03A x x x x x =-<<<,{}0,1,2,3B =,则A B ={}1,2.故选:D.9.B【解析】【分析】先求出集合A ,B ,再求两集合的交集即可【详解】 解:由11x x -<+得2101x x x ++>+, 因为210x x ++>恒成立,所以1x >-,即{}1A x x =>-.由函数2log y =4x <,即{}4B x x =<. 所以{}14A B x x ⋂=-<<.故选:B10.B【解析】【分析】根据集合的并集计算即可.【详解】{}21A x x =-<<,{}03B x x =≤≤{}|23A B x x ∴=-<≤,故选:B11.C【解析】【分析】解不等式求得集合A ,对a 进行分类讨论,根据B 是A 的子集列不等式,从而求得a 的取值范围. 【详解】1111111,,0,0,4444422x x x A ⎛⎫-<-<-<<<= ⎪⎝⎭,当12a ≥时,B =∅,满足B A ⊆. 当12a <时,由于B A ⊆,所以102a ≤<. 综上所述,a 的取值范围是[)0,∞+.故选:C12.D【解析】【分析】分别解一元二次不等式以及分式不等式得集合A ,B ,再进行并集运算即可.【详解】 因为{}{}228024A x x x x x =--≤=-≤≤,{}20323x B x x x x -⎧⎫=≤=-<≤⎨⎬+⎩⎭, 所以{}34A B x x ⋃=-<≤,故选:D.13.C【解析】【分析】根据条件可得1,2,4∈U B ,则1,2,4B ∉,结合条件即可得答案. 【详解】因为(){}1,2,4U A B =,所以1,2,4∈U B ,则1,2,4B ∉,又{}0,1,2,3,4,5U A B ==,所以0,3,5B ∈,即{}0,3,5B =.故选:C14.A【解析】【分析】根据交集运算求A B【详解】{|13}A x x =-<<,1,{}1,2B =-,{1,2}A B ∴=,故选:A15.D【解析】【分析】根据集合的定义分析判断即可.【详解】对于A ,视力较好不是一个明确的定义,故不能构成集合;对于B ,长寿也不是一个明确的定义,故不能构成集合;对于C ,π 的近似值没有明确近似到小数点后面几位,不是明确的定义,故不能构成集合;对于D ,倒数等于自身的数很明确,只有1和-1,故可以构成集合;故选:D.二、填空题16.(1,2⎤-⎦【解析】【分析】数形结合,进行求解.【详解】M 是以原点为圆心,1为半径的圆位于x 轴上方部分上的点,N 为直线y x b =+上的点,如图,当直线过点()1,0时,此时11b =-,当直线与半圆相切时,此时圆心到直线距离111bd ==+,解得:22b =±,因为直线与y 轴交点在y 轴正半轴,故22b =,由图可知:b 的取值范围是(1,2⎤-⎦.故答案为:(2-17.{1,2}##{2,1}【解析】【分析】根据集合元素属性特征进行求解即可.【详解】因为83N x *∈-,所以31,2,4,8-=x ,可得2,1,1,5=--x ,因为x N ∈,所以1,2x =,集合{1,2}A =.故答案为:{1,2}18.1【分析】利用交集的定义直接求解.【详解】∵集合(){},24A x y x y =-=∣,(){},5B x y x y =+=∣, ∴()(){}24,3,25x y A B x y x y ⎧⎫-=⎧⎪⎪⋂==⎨⎨⎬+=⎩⎪⎪⎩⎭, ∴A B 中元素个数为1.故答案为:1.19.12【解析】【分析】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,列方程求解即可.【详解】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,则31264512x =+-=. 故答案为:12.20.⊂【解析】【分析】先化简集合A 、B ,再去判断集合A 、B 间的关系即可解决.【详解】{}{}22101A x x x =-+==,{}{}2101,1B x x =-==-,则A B ⊂ 故答案为:⊂21.{}1【解析】【分析】易知{}1,1B =-,分别验证1,1-和集合A 的关系即可得结果.【详解】 因为{}{}21,1,1B y y y R ==∈=-,13cos 23π=,()13cos 23π--≠,即1A ∈,1A -∉, 所以{}1A B ⋂=,故答案为:{}1.22.102m -≤≤【解析】【分析】根据给定条件可得β所对集合包含于α所对集合,再利用集合的包含关系列式作答.令α所对集合为:{|124(R)}x m x m m +≤≤+∈,β所对集合为:{|13}x x ≤≤, 因β是α的充分条件,则必有{|13}{|124(R)}x x x m x m m ≤≤⊆+≤≤+∈,于是得11243m m +≤⎧⎨+≥⎩,解得102m -≤≤, 所以实数m 的取值范围为102m -≤≤. 故答案为:102m -≤≤ 23.5【解析】【分析】设三类课程都选择参加的学生有x 人,由题意得()()()83711840x x x x ⨯+-+-+-+=,解方程可求得结果【详解】设三类课程都选择参加的学生有x 人,由题意得()()()83711840x x x x ⨯+-+-+-+=,解得5x =.故答案为:524.{}0,1,4【解析】【分析】根据集合的运算法则计算.【详解】 由已知{4}A =,{0,1}B =,所以{0,1,4}A B =.故答案为:{0,1,4}.25. 假 假 假 真【解析】【分析】(1)利用真子集的定义即可判断.(2)由集合与集合的关系即可判断真假.(3)由元素与集合的关系即可判断真假.(4)由真子集的定义即可找到满足条件集合A 的个数.【详解】(1)因为{}1,2,3的真子集有{}{}{}{}{}{},1,2,3,1,2,1,3,2,3∅,所以{}1,2,3不是{}1,2,3真子集,命题为假命题.(2){}1是集合,因此不是{}1,2,3的元素,命题为假命题.(3)因为2是元素,因此不是{}1,2,3的子集,命题为假命题.(4)若{}0A ,所以集合A 中至少含有两个元素且其中一个必须为0,又因为{}0,1,2,3A ,所以集合A 可以从1,2,3中再选取一个元素、或者两个元素,所以满足条件的集合A 把∅和{}0,1,2,3去掉,所以满足条件集合A 的个数为322-个,命题为真命题. 故答案为:假;假;假;真三、解答题26.[]0,3.【解析】【分析】先解出集合P ,由x P ∈是x S ∈的必要不充分条件得出S P ,又S 为非空集合,解不等式求出m 的取值范围即可.【详解】由28200x x --≤,得210x -≤≤,∴{}210P x x =-≤≤.∵S 为非空集合,∴11m m -≤+,解得0m ≥. 又∵x P ∈是x S ∈的必要不充分条件,则S P , ∴12,110,m m -≥-⎧⎨+≤⎩且不能同时取等,解得3m ≤. 综上,m 的取值范围是[]0,3.27.(1)(0,3](2)[5,)+∞【解析】【分析】(1)根据A B A ⋃=,由B A 求解;(2)根据x A ∈是x B ∈的充分条件,由A B 求解.(1) 解:因为{}26A x x =-≤≤,{}11,0B x m x m m =-≤≤+>,且 A B A ⋃=,所以B A ,则01216m m m >⎧⎪-≥-⎨⎪+≤⎩, 解得03m <≤,所以实数m 的取值范围是(0,3];(2)因为x A ∈是x B ∈的充分条件,所以A B ,则01216m m m >⎧⎪-≤-⎨⎪+≥⎩, 解得5m ≥,所以m 的取值范围是 [5,)+∞.28.(1)30,0m n ==(2)单调递增,证明见解析(3)(0,6)【解析】【分析】(1)运用奇函数的定义可得0n =,再由()h x 图象经过点(1,1),解方程可得m ; (2)39()3x f x x x-=++在[3,)∞+递增.运用单调性的定义,结合因式分解和指数函数的单调性,即可得证;(3)求得当3x 时,2()()273273mx m g x h x x x x ===++;当3x <时,||1()9()9()3x m g x k x -==⋅;分别讨论0m ,03m <<,3m ,运用基本不等式和函数的单调性,求得m 的范围.(1) 函数2()327mx n h x x +=+为奇函数, 可得()()h x h x -=-,即22327327mx n mx n x x -++=-++,则0n =, 由()h x 的图象过(1,1)A ,可得h (1)1=,即130m n +=, 解得30m =,故30,0m n ==;(2)3m =,可得39()3x f x x x -=++,[3,)x ∈+∞,()f x 在[3,)+∞ 上递增.证明:设123x x <,则123312121299()()33x x f x f x x x x x ---=++--- 12331221129()33x x x x x x x x ---=-⋅+-, 由123x x <,可得210x x ->,129x x >,1233330x x ---<,则12())0(f x f x -<,即12()()f x f x <,可得()f x 在[3,)∞+递增;(3)当3x 时,2()()273273mx m g x h x x x x===++;当3x <时,||1()9()9()3x m g x k x -==⋅.①0m 时,13x ∀时,1111()()0273m g x h x x x ==+;23x ∀<时,2||221()9()9)30(x m g x k x -==>⋅不满足条件,舍去;②当03m <<时,13x ∀≥时,1111()()(0273mg x h x x x ==∈+,]18m , 23x ∀<时,2||0x m -≥,2||221()9()9()(03x m g x k x -==⋅∈,9], 由题意可得(0,](018m ⊆,9],可得918m ,即162m ; 综上可得03m <<; ③当3m 时,13x ∀≥时,1111()()(0273mg x h x x x ==∈+,]18m , 23x ∀<时,2||30x m m ->-,2||221()9()9()(03x m g x k x -==⋅∈,319())3m -⋅, 由题意可得(0,](018m ⊆,319())3m -⋅, 可得5318m m -<,可令5()318x x H x -=-,则()H x 在R 上递减,(6)0H =, 故由5318m m -<,可得6m <,即36m <, 综上可得06m <<,所以m 的取值范围是(0,6).【点睛】本题考查函数的奇偶性和单调性的定义和运用,考查分类讨论思想方法和化简整理的运算能力,属于难题.29.(1)[]1,2-(2)()(),45,-∞-+∞【解析】【分析】(1)根据交集的定义,列出关于a 的不等式组即可求解;(2)由题意,A B ⊆,根据集合的包含关系列出关于a 的不等式组即可求解;(1) 解:∵{}3,{1A x a x a B x x =≤≤+=<-或5}x >,且A B =∅, ∴135a a ≥-⎧⎨+≤⎩,解得12a -≤≤, ∴a 的取值范围为[]1,2-;(2) 解:∵{}3,{1A x a x a B x x =≤≤+=<-或5}x >,且A B A =,∴A B ⊆,∴31a +<-或5a >,即4a或5a >, ∴a 的取值范围是()(),45,-∞-+∞.30.{}=34A B x x ⋂-<<,{}=46A B x x ⋃-<<【解析】【分析】先化简集合A 、B ,再去求A B 、A B 即可解决.【详解】{}{}2=16044A x x x x -<=-<< {}{}2=318036B x x x x x -++>=-<< 则{}{}{}=443634A B x x x x x x ⋂-<<⋂-<<=-<< {}{}{}=443646A B x x x x x x ⋃-<<⋃-<<=-<<。
集合测试题及答案

集合测试题及答案一、选择题1. 以下哪个选项不是集合的基本概念?A. 元素B. 子集C. 并集D. 函数2. 集合A={1, 2, 3},集合B={2, 3, 4},A与B的交集是什么?A. {1}B. {2, 3}C. {1, 2, 3}D. {2, 3, 4}3. 如果集合A={1, 2, 3},那么A的幂集有多少个元素?A. 3B. 4C. 7D. 84. 集合A={1, 2, 3},集合B={3, 4, 5},A与B的差集是什么?A. {1, 2}B. {1, 2, 3}C. {3, 4, 5}D. {4, 5}5. 对于任意集合A,以下哪个命题是正确的?A. A是A的子集。
B. A是A的真子集。
C. A是A的交集。
D. A是A的并集。
二、填空题6. 集合的三要素包括:________、________、________。
7. 如果集合A={x | x > 0},那么A的补集在实数集R中表示为________。
8. 集合A={1, 2, 3},集合B={2, 3, 4},A与B的并集是________。
三、简答题9. 请解释什么是集合的笛卡尔积,并给出两个集合A={1, 2}和B={a, b}的笛卡尔积。
10. 请描述如何确定一个元素是否属于一个集合。
四、计算题11. 给定集合A={1, 2, 3},B={2, 3, 4},C={3, 4, 5},请计算A∪B∩C。
12. 如果集合D={x | x^2 - 5x + 6 = 0},请找出D的所有元素。
答案:一、选择题1. D2. B3. D4. A5. A二、填空题6. 确定性、无序性、互异性7. R - A = {x | x ≤ 0 或 x > 0 且x ≠ 1, 2, 3}8. {1, 2, 3, 4}三、简答题9. 集合的笛卡尔积是指两个集合中元素的有序对的集合。
对于A和B,笛卡尔积是A×B = {(1, a), (1, b), (2, a), (2, b)}。
高中数学集合测试题(附答案和解析)

高中数学集合测试题(附答案和解析)一、单选题1.已知集合U =R ,则正确表示集合U ,1{}1M =-,,{}²|0N x x x =+=之间关系的维恩图是( )A .B .C .D .2.设集合{}1,0,2,3A =-,139xB x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( )A .{}2,3B .{}0,2C .{}0,2,3D .{}1,0,2,3- 3.已知复数a 、b 满足0ab ≠,集合{}{}22,,a b a b =,则a b +的值为( ) A .2 B .1 C .0 D .-14.已知集合A 是集合B 的真子集,下列关于非空集合A 、B 的四个命题:①若任取x A ∈,则x B ∈是必然事件.②若任取x A ∉,则x B ∈是不可能事件. ③若任取x B ∈,则x A ∈是随机事件.④若任取x B ∉,则x A ∉是必然事件. 其中正确的命题有( ).A .0个;B .1个;C .2个;D .3个. 5.已知集合{}35A x x =-≤<,{}42B x y x ==+,则()R A B ⋂=( ) A .13,2⎡⎫--⎪⎢⎣⎭ B .1,52⎛⎫- ⎪⎝⎭ C .[)3,2-- D .()2,5-6.已知R 为实数集,集合{}{}2340,ln(1)A x x x B x y x =--≤==-,则R A B ⋃=( )A .{}14x x <≤B .{}11x x -≤≤C .{}1x x ≥-D .{}4x x ≤ 7.已知集合{}1,2,3A =,{}20B x x =-<,则A B =( )A .{}1B .{}1,2C .{}0,1,2D .{}1,2,3 8.已知集合(){}2log 2A x y x ==-,{}2xB y y ==,则A B =( )A .()0,2B .()1,2C .[)1,2D .(),2-∞ 9.已知全集{}1,2,3,4,5U =,{}2,3,4A =,{}3,5B =,则()U A B =( ) A .{}1 B .{}3 C .{}2,4 D .{}1,2,4,5 10.正确表示图中阴影部分的是( )A .R M ∪NB .R M ∩NC .R (M ∪N )D .R (M ∩N )11.已知集合{},,A a b c =的所有非空真子集的元素之和等于12,则a b c ++的值为( )A .1B .2C .3D .412.已知集合*1|2cos ,,|2232x n A x x n B x π⎧⎫⎧==∈=≤≤⎨⎬⎨⎩⎭⎩N ,则A B =( ) A .{}1,1- B .{}0,1,2 C .{}1,1,2- D .1,0,1,213.已知集合{}82A xx =-<<∣,{}1B x x =≤-,则()R A B ⋂=( ) A .{}1x x <-B .{}12x x -<<C .{}8x x >-D .{}28x x <≤14.已知集合{}2log 1M x x =<,{}21N x x =≤,则M N ⋃=( ) A .(],1-∞B .(),2-∞C .[)1,2-D .(]0,115.设集合{}260A x x x =--≤,{}15B x x =≤<,则A B =( ) A .{}23x x -<<B .{}13x x ≤≤C .{}13x x ≤<D .{}23x x -≤≤二、填空题16.已知集合{}2430A x x x =-+=,{}30B x mx =-=,且B A ⊆,则实数m 的取值集合为___________.17.集合*83A x N N x ⎧⎫=∈∈⎨⎬-⎩⎭,用列举法可以表示为A =_________. 18.已知{}12A x x =-<≤,{}20B x x =-≤<,A B =________________.19.设函数()1ln12mx f x x+=-是定义在区间(),n n -上的奇函数(0m >,0n >),则实数n 取值范围为______.20.已知集合{}N 4sin ,02A x x θθπ=∈<≤≤,若集合A 中至少有3个元素,则实数θ取值范围为________21.若不等式x a <的一个充分条件为20x -<<,则实数a 的取值范围是___________.22.已知(1,2)A =-,(1,3)B =,则A B =________23.从集合M={}1,2,3,4,,2021中去掉所有3的倍数和5的倍数,则剩下的元素个数为______24.若a 、b 、R x ∈且a 、0b ≠,集合b a B x x a b ⎧⎫⎪⎪==+⎨⎬⎪⎪⎩⎭,则用列举法可表示为______. 25.当x A ∈时,若有1x A -∉且1x A +∉,则称x 是集合A 的一个“孤元”,由A 的所有孤元组成的集合称为A 的“孤星集”,若集合{}1,2,3M =的孤星集是M ',集合{}1,3,4P =的孤星集是P ',则M P ''⋂=______.三、解答题26.已知集合{}1|43280x x A x +=-⋅+,{}|2.B x x a =+< (1)当1a =时,求A B ;(2)若“x B ∈”是“x A ∈”的必要条件,求实数a 的取值范围.27.已知函数()f x =的定义域为集合A ,{|}B x x a =<. (1)求集合A ;(2)若“x ∈A ”是“x ∈B ”的充分条件,求a 的取值范围.28.已知集合{}12,,,n A a a a =⋅⋅⋅(120n a a a ≤<<⋅⋅⋅<,*n ∈N ,3n ≥)具有性质P :对任意,i j (1i j m ≤≤≤),i j a a +与j i a a -至少一个属于A .(1)分别判断集合{}0,2,4M =,与{}1,2,3N =是否具有性质P ,并说明理由;(2){}123,,A a a a =具有性质P ,当24a =时,求集合A ;(3)①求证:0A ∈;②求证:1232n n n a a a a a +++⋅⋅⋅+=.29.设p :()224300x ax a a -+<>,q :211180x x -+≤.(1)若命题“()1,2x ∀∈,p 是真命题”,求a 的取值范围;(2)若p 是q 的充分不必要条件,求a 的取值范围.30.已知函数()f x A ,关于x 的不等式2()(21)0x m x m --+≤的解集为B .(1)当m =2时,求()A B R ; (2)若x ∈A 是x ∈B 的充分条件,求实数m 的取值范围.【参考答案】一、单选题1.A【解析】【分析】先求得集合N ,判断出,M N 的关系,由此确定正确选项.【详解】∵{}{}2|1,00N x x x =-=+=,1{}1M =-,, ∴{1}M N ⋂=-,故A 正确,BCD 错误.故选:A.2.C【解析】【分析】先解指数不等式得集合B ,然后由交集定义可得.【详解】 由2139x x -=⎛⎪3⎫ ⎭<⎝,得12x >-,所以12B x x ⎧⎫=>-⎨⎬⎩⎭,所以{}0,2,3A B =. 故选:C .3.D【解析】【分析】由集合的性质可知a b ,22a a b b ⎧=⎨=⎩或22a b b a ⎧=⎨=⎩,且0ab ≠,进而求解即可. 【详解】 由题意,22a a b b ⎧=⎨=⎩或22a b b a ⎧=⎨=⎩, 因为0ab ≠,解得1212a b ⎧=-⎪⎪⎨⎪=-⎪⎩或1212b a ⎧=-⎪⎪⎨⎪=-⎪⎩, 所以1a b +=-,故选:D.4.D【解析】【分析】由随机事件、不可能事件、必然事件的定义逐一判断即可得出答案.【详解】因集合A 是集合B 的真子集,故A 中的任意一个元素都是B 中的元素,而B 中至少有一个元素不在A 中,因此①正确,②错误,③正确,④正确.故选:D .5.A【解析】【分析】先求出集合B ,得出其补集,再由交集运算得出答案.【详解】由420x +≥,得21x ≥-,即集合1,2B ⎡⎫=-+∞⎪⎢⎣⎭, 所以R 1,2B ∞⎛⎫=-- ⎪⎝⎭.所以()R 13,2A B ⎡⎫=--⎪⎢⎣⎭. 故选:A6.D【解析】【分析】首先解一元二次不等式求出集合A ,再根据对数型函数的定义域求出集合B ,最后根据补集、并集的定义计算可得;【详解】解:由2340x x --≤,即410x x ,解得14x -≤≤,即{}{}234014A x x x x x =--≤=-≤≤,又(){}{}ln 11B x y x x x ==-=,所以{}|1R B x x =≤,所以{}4R A B x x ⋃=≤; 故选:D7.A【解析】【分析】根据集合交集的概念及运算,即可求解.【详解】由题意,集合{}{}202B x x x x =-<=<,又由{}1,2,3A =,根据集合交集的概念及运算,可得{}1A B ⋂=.故选:A.8.C【解析】【分析】求出集合A 、B ,利用交集的定义可求得结果.【详解】对于函数2x y =,0x ≥,则0221x y =≥=,故[)1,B =+∞, (){}{}()2log 220,2A x y x x x ∞==-=->=-,因此,[)1,2A B =.故选:C.9.D【解析】【分析】利用交集和补集的定义可求得结果.【详解】由已知可得{}3A B ⋂=,所以,(){}1,2,4,5U A B ⋂=.故选:D.10.B【解析】【分析】根据韦恩图直接分析即可【详解】图中阴影部分为M 的补集与集合N 相交的部分,即 R M N ⋂,故选:B.【点睛】本题主要考查了韦恩图分析交并补集的问题,属于基础题11.D【解析】【分析】根据真子集的定义进行求解即可.【详解】因为集合{},,A a b c =的所有非空真子集为:{}{}{}{}{}{},,,,,,,,a b c a b a c b c ,所以有123()124a b c a b a c b c a b c a b c ++++++++=⇒++=⇒++=,故选:D12.C【解析】【分析】首先根据余弦函数的性质求出集合A ,再根据指数函数的性质求出集合B ,最后根据交集的定义计算可得;【详解】 解:因为2cos 3y x π=的最小正周期263T ππ==且1cos 32π=, 21coscos cos 3332ππππ⎛⎫=-=-=- ⎪⎝⎭,3cos 13π=-, 41coscos cos 3332ππππ⎛⎫=+=-=- ⎪⎝⎭,51cos cos 2cos 3332ππππ⎛⎫=-== ⎪⎝⎭, 6cos 13π=,71cos cos 2cos 3332ππππ⎛⎫=+== ⎪⎝⎭,, 所以{}*|2cos ,1,1,2,23n A x x n π⎧⎫==∈=--⎨⎬⎩⎭N ,由122x ≤≤512222x -≤≤,所以512x -≤≤,所以15|2|122x B x x x ⎧⎧⎫=≤≤=-≤≤⎨⎨⎬⎩⎩⎭,所以{}1,1,2A B =-; 故选:C13.B【解析】【分析】根据补集的运算,求得{}R |1B x x =>-,结合交集的概念及运算,即可求解.【详解】 由题意,集合{}1B x x =≤-,可得{}R |1B x x =>-又由{}82A xx =-<<∣,所以(){}R 12A B x x ⋂=-<<. 故选:B.14.C【解析】【分析】求出集合M ,N ,然后进行并集的运算即可.∵{}02M x x =<<,{}11N x x =-≤≤,∴[1,2)M N ⋃=-.故选:C .15.B【解析】【分析】先求出集合A 的解集,然后进行交集运算即可.【详解】 因为{}23A x x =-≤≤,{}15B x x =≤<,所以{}13A B x x ⋂=≤≤.故选:B.二、填空题16.{}0,1,3【解析】【分析】讨论0m =和0m ≠两种情况,根据包含关系得出实数m 的取值集合.【详解】{}{}24301,3A x x x =-+==∣当0m =时,B =∅,满足B A ⊆; 当0m ≠时,3B m ⎧⎫=⎨⎬⎩⎭,因为B A ⊆,所以31m =或33m =,解得3m =或1m = 即实数m 的取值集合为{}0,1,3.故答案为:{}0,1,317.{1,2}##{2,1}【解析】【分析】根据集合元素属性特征进行求解即可.【详解】 因为83N x*∈-,所以31,2,4,8-=x ,可得2,1,1,5=--x ,因为x N ∈,所以1,2x =,集合{1,2}A =.故答案为:{1,2}18.{}10x x -<<【解析】【分析】由交集运算求解即可.A B ={}{}{}122010x x x x x x -<≤⋂-≤<=-<< 故答案为:{}10x x -<<19.10,2⎛⎤ ⎥⎝⎦【解析】【分析】由奇函数的定义和对数的运算性质,解方程可得m ,再由对数的真数大于0解不等式,然后利用集合的包含关系即可求解.【详解】 解:因为函数1()ln 12mx f x x+=-是定义在区间(,)n n -上的奇函数(0,0)m n >>, 所以()()f x f x -=-,即1112lnln ln 12121mx mx x x x mx -+-=-=+-+, 所以112121mx x x mx--=++,即222114m x x -=-, 所以24m =,解得2m =±,又0m >, 所以2m =,此时,21()ln12x f x x +=-, 由21012x x +>-,解得1122x -<<, 所以()11,22,n n ⎛-⎫⊆- ⎪⎝⎭,又0n >, 所以实数n 取值范围为10,2⎛⎤ ⎥⎝⎦. 故答案为:10,2⎛⎤ ⎥⎝⎦. 20.5,66ππ⎛⎫ ⎪⎝⎭【解析】【分析】分析可知元素0、1、2必属于集合A ,可得出1sin 2θ>,由[]0,2θπ∈可求得θ的取值范围. 【详解】要使集合A 中至少有3个元素,则元素0、1、2必属于集合A ,所以只需4sin 2θ>,即1sin 2θ>, 又[]0,2θπ∈,解得5,66ππθ⎛⎫∈ ⎪⎝⎭. 故答案为:5,66ππ⎛⎫ ⎪⎝⎭.21.2a ≥【解析】【分析】根据含绝对值不等式的解法,求解不等式的解集,结合充分条件,列出关系式,即可求解.【详解】由不等式||x a <,当0a ≤时,不等式||x a <的解集为空集,显然不成立;当0a >时,不等式||x a <,可得a x a -<<,要使得不等式||x a <的一个充分条件为20x -<<,则满足{|20}{|}x x x a x a -<<⊆-<<, 所以2a -≥-,即2a ≥∴实数a 的取值范围是2a ≥.故答案为:2a ≥.22.(1,2)##{}12,x x x R <<∈【解析】【分析】根据集合交集的定义可得解.【详解】由(1,2)A =-,(1,3)B =根据集合交集的定义,()1,2A B ⋂=.故答案为:(1,2)23.1078【解析】【分析】剔除集合中是3的倍数,5的倍数的元素,即可得出结果.【详解】集合M 中,3的倍数有20216733⎡⎤=⎢⎥⎣⎦个,5的倍数有20214045⎡⎤=⎢⎥⎣⎦个,15的倍数有202113415⎡⎤=⎢⎥⎣⎦个, 则剩下的元素个数为2021(673404134)1078-+-=个.故答案为:1078.24.2,0,2【解析】【分析】分别讨论,a b 正负即可求出.【详解】当0,0a b <<时,112b a x a b =+=--=-,当0,0a b <>时,110b a x a b =+=-+=, 当0,0a b ><时,110b a x a b =+=-=, 当0,0a b >>时,112b a x a b=+=+=, 所以用列举法可表示为2,0,2. 故答案为:2,0,2.25.∅【解析】【分析】根据集合的新定义求解出集合M '和P ',再求解交集可得出答案.【详解】根据“孤星集”的定义,1,112,2A A ∈+=∈ 所以1不是集合M '的元素同理2,3也都不是集合M '的元素M ∴'=∅,同理可得 {}1P '=所以M P '⋂'=∅.故答案为:∅.三、解答题26.(1)(]3,2-(2)()3,0.-【解析】【分析】(1)化简集合A ,B ,再由并集的定义求解即可;(2)列出实数a 的不等式组,解之即可得出实数a 的取值范围.(1)由143280x x +-⋅+,得()()22240x x --,则224x ,则12x ,所以[]1,2A =, 由12x +<,可得31x -<<,则()3,1B =-,所以[]()(]=1,23,13,2A B ⋃⋃-=-(2)()2,2B a a =---,因为“x B ∈”是“x A ∈”的必要条件,所以A B ⊆ ,所以2122a a --<⎧⎨->⎩, 所以()3,0.a ∈-27.(1)A ={x |-2<x ≤3};(2)3a >.【解析】【分析】(1)由算术平方根的被开方数大于等于0,分式的分母不等于0可求得集合A ; (2)由已知得A ⊆B ,由此可得a 的取值范围.(1)解:函数()f x =3020x x -≥⎧⎨+>⎩, 解得23x -<≤,即A ={x |-2<x ≤3}.(2)解:因为A ={x |-2<x ≤3},B ={x |x <a },且“x ∈A ”是“x ∈B ”的充分条件,所以A ⊆B , 所以3a >.28.(1)集合M 具有,集合N 不具有,理由见详解(2)A {0,4,8}=(3)证明见详解【解析】【分析】(1)利用性质P 的定义判断即可;(2)利用33a a A +∉,330a A a -=∈可得10a =,又23a a A +∉,32a a A -∈,分析可得322a a a -=,即得解;(3)① 由 n n a a A +∉,0n n a A a -=∈,可证明;② 由110n n n n n a a a a a a -≤<<⋅⋅⋅<---,以及n n i a a A -+∉,n n i a a A --∈可得121321,,,...,n n n n n n n n a a a a a a a a a a a a --=-=-=-=-,将等式左右两边相加可证明.(1)集合{}0,2,4M =具有性质P ,集合{}1,2,3N =不具有性质P理由如下:对集合{}0,2,4M =,由于202,422,404,000,220,440M -=-=-=-=-=-=∈ 所以集合M 具有性质P ;对集合{}1,2,3N =,由于224N +=∉,故集合N 不具有性质P .(2)由于33333A a a a a a +>∴+∉,故330a A a -=∈10a ∴=又23323,a a a A a a +>∴+∉,故32a a A -∈又3230<a a a -<,故322a a a -=322=8a a =∴因此集合A {0,4,8}=(3)①由于n n n n n A a a a a a +>∴+∉,故0n n a A a -=∈10a ∴=0A ∴∈,故得证②由于120n a a a ≤<<⋅⋅⋅<故110n n n n n a a a a a a -≤<<⋅⋅⋅<---又(1,2,...,1)n n i n n n i a a a i n a a A --+>=-∴+∉n n i a a A -∴-∈121321,,,...,n n n n n n n n a a a a a a a a a a a a --∴=-=-=-=- 将各个式子左右两边相加可得:1232n n n a a a a a +++⋅⋅⋅+=故得证29.(1)2,13⎡⎤⎢⎥⎣⎦ (2)[]2,3【解析】【分析】(1)解不等式得到解集,根据题意列出不等式组,求出a 的取值范围;(2)先解不等式,再根据充分不必要条件得到(,3)a a 是[]2,9的真子集,进而求出a 的取值范围.(1)因为0a >,由22430x ax a -+<可得:3a x a <<,因为“()1,2x ∀∈,22430x ax a -+<”为真命题,所以()()1,2,3a a ⊆,即1,32,a a ≤⎧⎨≥⎩,解得:213a ≤≤. 即a 的取值范围是2,13⎡⎤⎢⎥⎣⎦. (2)因为0a >,由22430x ax a -+<可得:3a x a <<,21118029x x x -+≤⇔≤≤,因为p 是q 的充分不必要条件,所以(,3)a a 是[]2,9的真子集,所以2,39,a a ≥⎧⎨≤⎩(等号不同时取),解得:23a ≤≤, 即a 的取值范围是[]2,3.30.(1)1(,][3,)2-∞-⋃+∞; (2)(,2]-∞-.【解析】【分析】(1)求对数复合函数定义域、解一元二次不等式求出集合A 和B ,利用集合的并补运算求()A B R .(2)解含参一元二次不等式求集合B ,根据充分条件有A ⊆B ,列不等式求m 的范围即可.(1)由题设40210x x ->⎧⎨+>⎩得:142x -<<,即函数的定义域A =1(,4)2-,则R 1(,][4,)2A =-∞-⋃+∞, 当m =2时,不等式(4)(3)0x x --≤得:34x ≤≤,即B =[3,4],所以()A B R =1(,][3,)2-∞-⋃+∞. (2)由2()(21)0x m x m --+=得: x =m 2或x =21m -,又2221(1)0m m m -+=-≥,即221m m ≥-,综上,2()(21)0x m x m --+≤的解集为B =2[21,]m m -, 若x ∈A 是x ∈B 的充分条件,则A ⊆B ,即241212m m ⎧≥⎪⎨-≤-⎪⎩,得:2m ≤-, 所以实数m 的取值范围是(,2]-∞-.。
高中数学集合测试题(含答案和解析)

集合测试题请认真审题,仔细作答,发挥出自己的真实水平!一、单项选择题:1.设集合,则()A .{75}x x ∣B .{35}x x∣C .{53}x x∣D .{|75}x x【答案】C 【解析】考点:其他不等式的解法;交集及其运算.分析:由绝对值的意义解出集合S ,再解出集合T ,求交集即可.解答:由{|55}S x x ,{|73}Tx x故{|53}STx x,故选 C2.已知集合,则集合等于()A .{-1,1}B .{-1,0,1}C .{0,1}D .{-1,0}【答案】A3.若集合,且,则实数m 的可取值组成的集合是()A .B .C .D .5,730S x x T x x x ST Z n n x x N xx M ,12,042N M 260,10P x xx T x mx T P 11,321311,,03212【答案】C4.若{1,2}A{1,2,3,4,5}则满足条件的集合A的个数是()A.6 B.7 C.8 D.9【答案】C615.设P={x|x≤8},a=,则下列关系式中正确的是().A.a P B.a PC.{a}P D.{a}P【答案】D6.已知集合1,2,3,4,5,,,,A B x y x A y A x y A,则B中所含元素的个数为()A.3 B.6 C.8 D.10【答案】D【解析】考点:元素与集合关系的判断.专题:计算题.分析:由题意,根据集合B中的元素属性对x,y进行赋值得出B中所有元素,即可得出B 中所含有的元素个数,得出正确选项解答:解:由题意,x=5时,y=1,2,3,4,x=4时,y=1,2,3,x=3时,y=1,2,x=2时,y=1综上知,B中的元素个数为10个故选 D点评:本题考查元素与集合的关系的判断,解题的关键是理解题意,领会集合B中元素的属性,用分类列举的方法得出集合B中的元素的个数7.已知集合A={x|x2-x-2<0},B={x|-1<x<1},则()A.A B B.B A C.A=B D.A∩B=【答案】B【解析】考点:集合的包含关系判断及应用.专题:计算题.分析:先求出集合A,然后根据集合之间的关系可判断解答:解:由题意可得,A={x|-1<x<2} ∵B={x|-1<x<1}在集合B中的元素都属于集合A,但是在集合A中的元素不一定在集合B中,例如x=3/2∴B A故选 B点评:本题主要考查了集合之间关系的判断,属于基础试题8.不等式﹣x2﹣5x+6≤0的解集为()A.{x|x≥6或x≤﹣1} B.{x|﹣1≤x≤6} C.{x|﹣6≤x≤1} D.{x|x≤﹣6或x≥1} 【答案】D【解析】考点:一元二次不等式的解法。
高中数学集合测试题(附答案和解析)

高中数学集合测试题(附答案和解析)一、单选题1.已知集合{}1,2,3,4A =,2{|log ,}B y y x x x A ==-∈,则A B =( ) A .{}1,2B .{}1,3C .{}1,2,3D .{}1,3,42.已知集合{A xy =∣,{}0,1,2,3B =,则A B =( ) A .{3} B .{2,3} C .{1,2,3} D .{0,1,2,3}3.已知集合{}1,2,3A =,{}21,B y y x x A ==-∈,则A B =( ) A .{}1,2 B .{}1,2,3 C .{}1,3D .{}1,2,3,54.已知集合{}2|8120A x x x =-+<,{|14}B x Z x =∈<<,则A B =( )A .{1,2}B .{}2,4C .{3}D .∅5.已知集合{}N 15A x x =∈≤≤,{}05B x x =<<,则A B =( ) A .{}2,3,4B .{}1,2,3,4C .{}15x x ≤≤D .{}15x x ≤<6.已知R 为实数集,集合{}{}2340,ln(1)A x x x B x y x =--≤==-,则R A B ⋃=( )A .{}14x x <≤B .{}11x x -≤≤C .{}1x x ≥-D .{}4x x ≤7.已知集合{}{}2230,1A x x x B x x =--<=≤,则R()A B ⋂=( )A .(,1][1,)∞∞--⋃+B .(,1](1,)-∞-⋃+∞C .(]1,1-D .[1,1)- 8.已知集合{}{}|2,|(1)0A x x B x x x =>=->,则A B ⋃=( ) A .(-∞,0) B .()(),01,-∞⋃+∞ C .()(),02,-∞⋃+∞D .(2,+∞)9.设集合(){}ln 2A x y x ==-,{}13B x x =≤≤,则A B ⋃=( ) A .(]2,3 B .[)1,+∞ C .()2,+∞D .(],3-∞10.已知集合{|12}A x x =-<≤,{}2,1,0,2,4B =--,则()R A B ⋂=( ) A .∅B .{}1,2-C .{}2,4-D .{}2,1,4--11.已知函数()2log f x x =,()2g x a x =-,若存在[]12,1,2x x ∈,使得()()12f x g x =,则实数a 的取值范围是( ) A .()(),25,-∞⋃+∞ B .(][),25,-∞⋃+∞ C .()2,5D .[]2,512.已知集合(){},M x y y x ==,(){}22,|1N x y xy =+=,M N A ⋂=,则A 中元素个数为( )个. A .1B .2C .3D .4 13.设全集{}0,1,2,3,4U =,集合{}1,2,4A =,{}2,3B =,则()U A B ⋂=( ) A .{}2B .{}2,3C .{}0,3D .{}314.集合N A x x ⎧⎫=∈⎨⎬⎭⎩31,()}{N log B x x =∈+≤211,S A ⊆,S B ⋂≠∅,则集合S 的个数为( ) A .0B .2C .4D .815.设集合{}260A x x x =--≤,{}20B x x a =+≤,且{}21A B x x ⋂=-≤≤,则=a ( ) A .4-B .2-C .2D .4二、填空题16.如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,()1,2,,8i P i =是上底面上其余的八个点,()1,2,,8i i x AB AP i =⋅=则用集合列举法表示i x 组成的集合______.17.如图,用集合符号表述下列点、直线与平面之间的关系.(1)点C 与平面β:___________; (2)点A 与平面α:___________;(3)直线AB 与平面α:___________; (4)直线CD 与平面α:___________.18.若集合{}{}1,2,3,4,|23A B x x ==≤≤﹐则A B =_________. 19.已知集合{}1,2,3,4,A =,{}1,4,7,10,B =,下有命题:①{} 2,3,5,6,8,9,AB =;②若f 表示对二个数乘以3减去2的运算,则对应:f A B →表示一个函数; ③A 、B 两个集合元素个数相等; ④n A ∀∈,22n n ≥. 其中真命题序号是______.20.已知{}3A x a x a =≤≤+,{}15b x x =-<<,A B =∅,则实数a 的取值范围是______ 21.集合(){},A x y y a x ==,(){},B x y y x a ==+,C AB =,且集合C 为单元素集合,则实数a 的取值范围是________.22.已知[]x 表示不超过x 的最大整数.例如[2.1]2=,[ 1.3]2-=-,[0]0=,若{[]}A y y x x ==-∣,{0}∣=≤≤B y y m ,yA 是yB ∈的充分不必要条件,则m 的取值范围是______.23.已知集合{1,2,3}A =,则满足A B A ⋃=的非空集合B 有_________个.24.已知集合{}1,0,1A =-,{}220B x x x =-=,则A B ⋃=______.25.写出集合{1,1}-的所有子集______.三、解答题26.(1)已知全集{}|510,Z U x x x =-≤≤∈,集合M ={|07,Z x x x ≤≤∈},N ={|24,Z x x x -<∈≤},求()U N M (分别用描述法和列举法表示结果);(2)已知全集{}0,1,2,3,4,5,6,7,8,9,10U A B =⋃=,若集合{}2,4,6,8UA B =,求集合B ;(3)已知集合2{|210,R,R}P x ax ax a x =++=∈∈,当集合P 只有一个元素时,求实数a 的值,并求出这个元素.27.函数()()sin 22sin cos 1a x f x a x x +=+-.(1)若1a =,,02x π⎡⎫∈-⎪⎢⎣⎭,求函数()f x 的值域;(2)当,02x ⎡⎤∈-⎢⎥⎣⎦π,且()f x 有意义时,①若(){}0y y f x ∈=,求正数a 的取值范围; ②当12a <<时,求()f x 的最小值N .28.已知集合2111x A x x +⎧⎫=<⎨⎬-⎩⎭,{(1)(2)0}B x x x m =-+<. (1)当1m =时,求A B ;(2)已知“x A ∈”是“x B ∈”的必要条件,求实数m 的取值范围.29.已知集合{|lg(3)A x y x ==-,2{|9200}B x x x =-+≤,{|121}C x a x a =+≤<-.若()C A B ⊆,求实数a 的取值范围.30.已知U =R ,{}2=160A x x -<,{}2=3180B x x x -++>,求A B ,A B .【参考答案】一、单选题 1.A 【解析】 【分析】根据对数的运算求出集合B ,再根据交集的定义可求出结果. 【详解】当1x =时,21log 11y =-=, 当2x =时,22log 21y =-=, 当3x =时,23log 3y =-, 当4x =时,24log 42y =-=, 所以2{1,2,log 3}B =, 所以A B ={1,2}. 故选:A 2.C 【解析】 【分析】先由y =A ,再根据集合交集的原则即可求解.【详解】对于集合A ,10x -≥,即1≥x ,则{}1A x x =≥, 所以{}1,2,3A B =, 故选:C 3.C 【解析】 【分析】根据题意求出集合B ,在和集合A 取交集即可. 【详解】因为集合{}1,2,3A =,{}21,B y y x x A ==-∈, 所以{}1,3,5B =,所以{}1,3A B =, 故选:C. 4.C 【解析】 【分析】解出不等式28120x x -+<,然后可得答案. 【详解】因为{}{}2|8120|26A x x x x x =-+<=<<,{}{}142,3B x Z x =∈<<=所以{}3⋂=A B , 故选:C 5.B 【解析】 【分析】由集合的交运算求A B 即可. 【详解】由题设,集合{}1,2,3,4,5A =,{}05B x x =<<, 所以{}1,2,3,4A B ⋂=. 故选:B 6.D 【解析】 【分析】首先解一元二次不等式求出集合A ,再根据对数型函数的定义域求出集合B ,最后根据补集、并集的定义计算可得; 【详解】解:由2340x x --≤,即410x x ,解得14x -≤≤,即{}{}234014A x x x x x =--≤=-≤≤,又(){}{}ln 11B x y x x x ==-=,所以{}|1R B x x =≤,所以{}4R A B x x ⋃=≤; 故选:D 7.B 【解析】 【分析】解一元二次不等式求集合A 、解绝对值不等式求集合B ,再应用集合的交补运算求R()A B .【详解】由题设,{|13},{|11}A x x B x x =-<<=-≤≤, 所以1{|1}A B x x =-<≤,则R(){|1A B x x ⋂=≤-或1}x >.故选:B 8.B 【解析】 【分析】首先解一元二次不等式求出集合B ,再根据并集的定义计算可得; 【详解】解:由(1)0x x ->,解得1x >或0x <,所以{}|(1)0{|1B x x x x x =->=>或0}x <,又{}|2A x x =>,所以()(),01,A B ⋃=-∞⋃+∞;故选:B 9.B 【解析】 【分析】根据对数型函数的性质,结合集合并集的定义进行求解即可. 【详解】因为(2,)A =+∞,{}13B x x =≤≤, 所以A B ⋃=[)1,+∞, 故选:B 10.D 【解析】 【分析】 利用补集定义求出A R,利用交集定义能求出()A B R .【详解】解:集合{|12}A x x =-<≤,{}2,1,0,2,4B =--, 则R{|1A x x =≤-或2}x >,(){}R 2,1,4A B ∴⋂=--. 故选:D 11.D【分析】根据条件求出两个函数在[1,2]上的值域,结合若存在[]12,1,2x x ∈,使得12()()f x g x =,等价为两个集合有公共元素,然后根据集合关系进行求解即可. 【详解】当12x ≤≤时,22log 1()log 2f x ≤≤,即0()1f x ≤≤,则()f x 的值域为[0,1], 当12x ≤≤时,4()2a g x a -≤≤-,则()g x 的值域为[4,2]a a --, 因为存在[]12,1,2x x ∈,使得12()()f x g x =, 则[4,2][0,1]a a --≠∅ 若[4,2][0,1]a a --=∅, 则14a <-或02a >-, 得5a >或2a <,则当[4,2][0,1]a a --≠∅时,25a ≤≤, 即实数a 的取值范围是[2,5],A ,B ,C 错,D 对. 故选:D . 12.B 【解析】 【分析】联立方程,解方程组,考察方程组的解的组数,即为集合A 的元素个数; 【详解】联立方程得221y x x y =⎧⎨+=⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩x y ⎧=⎪⎪⎨⎪=⎪⎩所以集合M 与N 的交集A 中的元素个数为2个; 故选:B. 13.D 【解析】 【分析】利用补集和交集的定义可求得结果. 【详解】 由已知可得{}0,3UA =,因此,(){}U 3AB ⋂=,故选:D. 14.C 【解析】 【分析】根据分式不等式和对数不等式求出集合A 和B ,利用交集的定义 和集合的包含关系即可求解.由x31,得03x <≤, 所以}{N,,A x x ⎧⎫=∈=⎨⎬⎭⎩31123. 由()log x +≤211,得11x -<≤. 所以()}{}{N log ,B x x =∈+≤=21101.由S A ⊆,S B ⋂≠∅,知S 中必含有元素1,可以有元素2,3.所以S 只有{}1,{}12,,{}13,,{}123,,,即集合S 的个数共4个. 故选:C. 15.B 【解析】 【分析】先求出集合,A B ,再根据交集的结果求出a 即可. 【详解】由已知可得{}23A x x =-≤≤,2a B x x ⎧⎫=≤-⎨⎬⎩⎭又∵{}21A B x x ⋂=-≤≤,∴12a-=, ∴2a =-. 故选:B .二、填空题 16.{}1【解析】 【分析】由空间向量的加法得:i i AP AB BP =+,根据向量的垂直和数量积得221AB AB ==,0i AB BP ⋅=计算即可.【详解】由题意得,()2i i i i x AB AP AB AB BP AB AB BP =⋅=⋅+=+⋅又AB ⊥平面286BP P P ,i AB BP ∴⊥,则0i AB BP ⋅=,所以221i i x AB AB BP AB =+⋅==, 则()1,2,,81i i x AB AP i =⋅==,故答案为:{}117. C β∉ A α AB B α⋂= CD α⊂【分析】根据元素与集合,集合与集合之间的关系,由图可写出答案 【详解】(1)C 为元素,平面β为集合,所以,由图可得C β∉.(2)A 为元素,平面α为集合,所以,由图可得A α.(3)直线AB 为集合,平面α为集合,所以,由图可得AB B α⋂=. (4)直线CD 为集合,平面α为集合,所以,CD α⊂.故答案为:①C β∉;②A α;③AB B α⋂=;④CD α⊂; 18.{2,3}##{3,2} 【解析】 【分析】 由交集的运算求解 【详解】{}{}1,2,3,4,|23A B x x ==≤≤,则{2,3}A B =故答案为:{2,3} 19.①②③ 【解析】 【分析】①由补集定义直接判断;②按照函数定义进行判断;③元素一一对应即可判断;④3n =时,不成立. 【详解】因为{}{}**,32,A n n N B n n k k N =∈==-∈,故②正确,又{ 31AB n n k ==-或}*3,n k k N =∈,故①正确;A 、B 两个集合元素一一对应,元素个数相等,故③正确;当3n =时,3223<,故④错误. 故答案为:①②③. 20.4a ≤-或5a ≥ 【解析】 【分析】由3a a <+可得A ≠∅,根据题意可得到端点的大小关系,得到不等式,从而可得答案. 【详解】由题意 3a a <+,则A ≠∅要使得A B =∅,则31a +≤-或5a ≥ 解得4a ≤-或5a ≥ 故答案为:4a ≤-或5a ≥21.[1,1]-【解析】 【分析】由题意可得集合A ,B 表示的曲线有一个交点,可得a x x a =+有一个根,当0a =时,符合题意,当0a ≠时,1x x a =+,分别作出y x =与1xy a=+的图象,根图象求解即可 【详解】因为C A B =,且集合C 为单元素集合, 所以集合A ,B 表示的曲线有一个交点, 所以a x x a =+有一个根 当0a =时,符合题意, 当0a ≠时,1x x a =+,分别作出y x =与1xy a=+的图象, 由图象可知11a ≥或11a≤-时,两函数图象只有一个交点, 解得01a <≤或10a -≤<, 综上,实数a 的取值范围是[1,1]-, 故答案为:[1,1]-22.[)1,+∞【解析】 【分析】由题可得{[]}[0,1)A yy x x ==-=∣,然后利用充分不必要条件的定义及集合的包含关系即求. 【详解】∵[]x 表示不超过x 的最大整数,∴[]x x ≤,[]01x x ≤-<,即{[]}[0,1)A yy x x ==-=∣, 又y A 是y B ∈的充分不必要条件,{0}∣=≤≤B y y m ,∴A B ,故m 1≥,即m 的取值范围是[)1,+∞. 故答案为:[)1,+∞.23.7 【解析】 【分析】由A B A ⋃=可得B A ⊆,所以求出集合B 的所有非空子集即可 【详解】因为A B A ⋃=,所以B A ⊆, 因为{1,2,3}A =,所以非空集合{}1B =,{}2,{}3,{}1,2,{}1,3,{}2,3,{}1,2,3, 所以非空集合B 有7个, 故答案为:724.{1,0,1,2}-【解析】 【分析】根据给定条件求出集合B ,再利用并集的定义直接计算作答. 【详解】解方程220x x -=得:0x =或2x =,则{}0,2B =,而{}1,0,1A =-, 所以{1,0,1,2}A B =-. 故答案为:{1,0,1,2}- 25.∅,{}1-,{1},{1,1}- 【解析】 【分析】利用子集的定义写出所有子集即可. 【详解】由子集的定义,得集合{1,1}-的所有子集有:∅,{}1-,{1},{1,1}-.故答案为:∅,{}1-,{1},{1,1}-.三、解答题26.(1){}|47,Z x x x ≤≤∈,{}4,5,6,7;(2){}0,1,3,5,7,9,10;(3)1a =,元素为1-. 【解析】 【分析】(1)根据补集和交集的定义直接计算作答. (2)利用补集的定义直接计算作答. (3)利用元素与集合的关系推理计算作答. 【详解】(1)由{}|510,Z U x x x =-≤≤∈,N ={|24,Z x x x -<∈≤}, 得:{|52U N x x =-≤<-或410,Z}x x ≤≤∈,而{|07,Z}M x x x =≤≤∈, 所以{}()|47,Z U N M x x x =≤≤∈{}4,5,6,7=.(2)由{}0,1,2,3,4,5,6,7,8,9,10U A B =⋃=,{}2,4,6,8UA B =,得{2,4,6,8}UB =,所以{}()0,1,3,5,7,9,10U U B B ==. (3)当0a =时,P =∅,不符合题意,当0a ≠时,因集合P 只有一个元素,则方程2210ax ax ++=有等根,2440a a ∆=-=, 此时1a =,集合P 中的元素为1-, 所以1a =,这个元素是1-.27.(1)(,2-∞-(2)①2a ≥;②)21N a=【解析】 【分析】(1)当1a =时,求得()sin 22sin cos 1x f x x x +=+-,令[)sin cos 1,1t x x =+∈-,令[)12,0m t =-∈-,()()22h m f x m m==++,利用双勾函数的单调性可得出函数()h m 在[)2,0-上的值域,即可得解;(2)①分析可知210a a --≤≤,可得出2a ≥,分1a =、1a ≠两种情况讨论,化简函数()221at ap t at +-=-的函数解析式或求出函数()f x 的最小值,综合可得出正实数a 的取值范围;②令[]11,1n at a a =-∈---,则1n t a +=,可得出()()21122a a p t n n a n ϕ⎡⎤+-=++=⎢⎥⎣⎦,分析可得出101a a --<<-<法可求得N . (1)解:当1a =时,()sin 22sin cos 1x f x x x +=+-,因为,02x π⎡⎫∈-⎪⎢⎣⎭,则,444x πππ⎡⎫+∈-⎪⎢⎣⎭,令[)sin cos 1,14t x x x π⎛⎫=+=+∈- ⎪⎝⎭,则212sin cos 1sin 2t x x x =+=+,可得2sin 21x t =-, 设()()211t g t f x t +==-,其中11t -≤<,令1m t =-,则()22111221m t m t m m+++==++-,令()22h m m m=++,其中20m -≤<,下面证明函数()h m 在2,⎡-⎣上单调递增,在()上单调递减,任取1m 、[)22,0m ∈-且12m m <,则()()1212122222h m h m m m m m ⎛⎫⎛⎫-=++-++ ⎪ ⎪⎝⎭⎝⎭()()()()12121212121222m m m m m m m m m m m m ---=--=,当122m m -≤<<122m m >,此时()()12h m h m <,当120m m <<,则1202m m <<,此时()()12h m h m >, 所以,函数()h m在2,⎡-⎣上单调递增,在()上单调递减,则()(max 2h m h ==-因此,函数()f x 在,02π⎡⎫-⎪⎢⎣⎭上的值域为(,2-∞-. (2)解:因为,02x ⎡⎤∈-⎢⎥⎣⎦π,则,444x πππ⎡⎤+∈-⎢⎥⎣⎦,令[]sin cos 1,14t x x x π⎛⎫=+=+∈- ⎪⎝⎭,设()()222211a a t at a a f x p t at at -⎛⎫+ ⎪+-⎝⎭===--, ①若(){}0y y f x ∈=,必有210aa--≤≤,因为0a >,则2a ≥,当1a =时,即当1a =()110p t t t a =+==,可得1t =,合乎题意;当1a≠2a ≥且1a ≠()min 0p t =,合乎题意. 综上所述,2a ≥;②令[]11,1n at a a =-∈---,则1n t a+=, 则()()22121122n a a a a a a p t n n n a n ϕ⎡⎤+-⎛⎫+⎢⎥ ⎪⎝⎭⎡⎤+-⎢⎥⎣⎦==++=⎢⎥⎣⎦, 令()()20qs x x q x=++>,下面证明函数()s x在(上单调递减,在)+∞上为增函数,任取1x、(2x ∈且12x x <,则120x x -<,120x x q <<, 所以,()()()()()()121212121212121212220q x x x x x x q q qs x s x x x x x x x x x x x ---⎛⎫⎛⎫-=++-++=--=> ⎪ ⎪⎝⎭⎝⎭,所以,()()12s x s x >,故函数()s x在(上单调递减, 同理可证函数()s x在)+∞上为增函数,在(,-∞上为增函数,在()上为减函数,因为12a <<,则()()2212121,2a a a +-=--+∈,且()()22121220a a a a a +---=->10a >->, 又()22212120a a a a +----=-<,1a ∴--<,101a a ∴--<<-由双勾函数的单调性可知,函数()n ϕ在1,a ⎡--⎣上为增函数,在()上为减函数,在(]0,1a -上为减函数, 当[)1,0x a ∈--时,()((max 120n aϕϕ==-<, ()2101a a ϕ-=>-,()((22111a a a ϕϕ⎡⎤---=+⎢⎥⎣⎦- (())())()21142214210111a a a a a a a a a a +------=≥=>---,由双勾函数性质可得()()min 21f x a ϕ=-=,综上所述())min 21f x N a==.【点睛】关键点点睛:在求解本题第二问第2小问中,要通过不断地换元,将问题转化为双勾函数的最值,结合比较法可得出结果. 28.(1){21}x x -<<; (2)[2,4]∈-m . 【解析】 【分析】(1)当1m =时,解分式不等式化简集合A ,解一元二次不等式化简集合B ,再利用并集的定义计算作答.(2)由给定条件可得B A ⊆,再借助集合包含关系列式计算作答. (1) 由2111x x +<-,得201x x +<-,解得21x -<<,则{21}A x x =-<<, 当1m =时,()()1{1210}12B x x x x x ⎧⎫=-+<=-<<⎨⎬⎩⎭,所以{21}A B x x ⋃=-<<. (2)因为“x A ∈”是“x B ∈”的必要条件,则B A ⊆, 当12m ->,即2m <-时,{1}2mB x x =<<-,B A ⊄,不符合题意,当12m-=,即2m =-时,B =∅,符合题意, 当12m -<,即2m >-时,12m B x x ⎧⎫=-<<⎨⎬⎩⎭,则212m -≤-<,解得24m -<≤,综上得:24m -≤≤,所以实数m 的取值范围[2,4]∈-m .29.(,3]-∞【解析】 【分析】求函数定义域得93,2A ⎛⎤= ⎥⎝⎦,解不等式得[4,5]B =,进而得(3,5]A B =,再结合题意,分C =∅和C ≠∅两种情况求解即可.【详解】解:由30920x x ->⎧⎨-≥⎩,解得932x <≤,所以93,2A ⎛⎤= ⎥⎝⎦,因为()()2920450x x x x -+=--≤,解得45x ≤≤,所以[4,5]B =所以(3,5]A B = 因为()C A B ⊆,所以,当C =∅时,121a a +≥-,解得2a ≤C ≠∅时,可得12113215a a a a +<-⎧⎪+>⎨⎪-≤⎩,解得:23a <≤综上可得:实数a 的取值范围是(,3]-∞ 30.{}=34A B x x ⋂-<<,{}=46A B x x ⋃-<< 【解析】 【分析】先化简集合A 、B ,再去求A B 、A B 即可解决. 【详解】{}{}2=16044A x x x x -<=-<<{}{}2=318036B x xx x x -++>=-<<则{}{}{}=443634A B x x x x x x ⋂-<<⋂-<<=-<<{}{}{}=443646A B x x x x x x ⋃-<<⋃-<<=-<<。
集合测试题(带答案)

集合 单元检测一、选择题(每题5分,共50分)1 .已知集合{0,1,2,3,4}M =,{1,3,5}N =,P MN =,则P 的子集共有( )A .2个B .4个C .6个D .8个2 .若{|1},{|1}P x x Q x x =<=>-,则( )A .P Q ⊆B .Q P ⊆C .R C P Q ⊆D .R Q C P ⊆3 .若集合{}20A x x x =-<,{}03B x x =<<,则AB 等于( )A .{}01x x <<B .{}03x x <<C .{}13x x <<D .∅4 .设全集R U =,集合}33|{≤≤-=x x A ,}52|{>-<=x x x B 或,那么,集合)(B C A U 等于( )A .}53|{<≤-x xB .}53|{≥≤x x x 或C .}23|{-<≤-x xD .{|23}x x -≤≤5 .设集合{}1,2,3,4U =,{}1,2,3,M ={}2,3,4,N =则()U MN =ð( )A .{}12,B .{}23,C .{}2,4D .{}1,46 .若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于( )A .MN B.MN C .()()U U C M C N D .()()U U C M C N7 .已知集合{0,1}A =,{1,0,3}B a =-+,且A B ⊆,则a 等于( )A .1B .0C .2-D .3-8 .已知集合{1,2,1}A a =-,2{0,3,1}B a =+,若{2}A B ⋂=,则实数a 的值是 ( )A .1±B .1C .1-D .09 .设集合N N M ax x N x x x M =⋂=-==+-若},01|{},0158|{2,则实数a 的组成的集合Q是( )A .{3,5}B .{0,3,5}C .}5131{,D .}51310{,,10.设A={x|—1<x≤3},B={x|x>a},若B A ⊆则a 的取值范围是 ( )A .a≥3B .a≤-1C .a>3D .a<-1二、填空题(每题5分,共25分)11.集合{1,0,1}-的所有子集个数为_________.12.已知集合A={1,2,3,},B={2,m,4},A∩B={2,3},则m=____________13.设U={}0,1,2,3,A={}20x U x mx ∈+=,若}21{,A C U =,则实数m=_________.14.已知集合A={x|x=2n —l ,n∈Z},B={x|x 2一4x<0},则A ∩B=_____________.15.已知集合{}|1A x x =≤,{}|B x x a =≥,且A B R ⋃=,则实数a 的取值范围是______________________ . 三、解答题(共75分)16.已知 }{}{ ,32|,1|,<<-=<==x x B x x A R UA B C B A C B A B A U U )( ,)( , ,求17.设全集{010,}U x x x N +=<<∈,若{3}A B ⋂=,{1,5,7}U A C B ⋂=,()U C A ⋂()U C B{9}=,求A 、B .18.设集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,若B A ⊆,求实数m 的取值范围.19.已知{}d d A 21,1,1++=,{}2,,1q q B =,若B A =,求d 与q 的值,并求集合A20.已知集合A={}3|+≤≤a x a x ,B={}5.,1|>-<x x x 或(1)若φ=B A ,求实数a 的取值范围; (2)若B B A = ,求实数a 的取值范围。
集合章节测试题(含答案)

一、选择题1.下列四个集合中,是空集的是()A.{x|x+3=3} B.{(x,y)|y=-x2,x,y∈R} C.{x|x2≤0} D.{x|x2-x+1=0,x∈R}2.已知集合A={x∈N|x<6},则下列关系式错误的是()A.0∈A B.1.5∉A C.-1∉A D.6∈A3.已知集合U={1,3,5,7,9},A={1,5,7},则∁U A=()A.{1,3} B.{3,7,9} C.{3,5,9} D.{3,9}4.设集合A={1,2},B={1,2,3},C={2,3,4},则(A∩B)∪C=() A.{1,2,3} B.{1,2,4} C.{2,3,4} D.{1,2,3,4}5.满足条件{1,2}∪A={1,2}的所有非空集合A的个数是()A.1个B.2个C.3个D.4个6.若集合A={1,4,x},B={1,x2},A∪B={1,4,x},则满足条件的实数x有()A.1个B.2个C.3个D.4个7.已知集合M={y|x+y=2},N={(x,y)|x-y=4},那么集合M∩N 为()A.{x=3,y=-1} B.{(x,y)|x=3或y=-1}C.∅D.{(3,-1)}8.已知集合A={0,1,2,3},B={1,3,4},则A∩B的子集个数为() A.2 B.3 C.4 D.169.设全集U是实数集R,M={x|x>2或x<-2},N={x|x≥3或x<1}都是U的子集,则图中阴影部分所表示的集合是()A .{x |-2≤x <1}B .{x |-2≤x ≤2}C .{x |1<x ≤2}D .{x |x <2}10.如果集合A ={x |ax 2+2x +1=0}中只有一个元素,则a 的值是( )A .0B .0或1C .1D .不能确定11.集合⎩⎨⎧⎭⎬⎫x ∈N *⎪⎪⎪12x ∈Z 中含有的元素个数为( )A .4B .6C .8D .1212.设a ,b 都是非零实数,则y =a |a |+b |b |+ab|ab |可能取的值组成的集合为( )A .{3}B .{3,2,1}C .{3,-2,1}D .{3,-1}二、填空题13.若集合A ={x |-1≤x <2},B ={x |x ≤a },若A ∩B ≠∅,则实数a 的取值范围是________.14.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x =a +16,a ∈Z ,B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =b 2-13,b ∈Z ,C =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =c 2+16,c ∈Z ,则A ,B ,C 之间的关系是________.15.若集合A ={x |x 2+x -6=0},B ={x |mx +1=0},且B ⊆A ,则m 的取值集合为________.16.若三个非零且互不相等的实数a ,b ,c ,满足1a +1b =2c ,则称a,b,c是调和的;若满足a+c=2b,则称a,b,c是等差的.若集合P中元素a,b,c既是调和的,又是等差的,则称集合P为“好集”.若集合M={x||x|≤2014,x∈Z},集合P={a,b,c}⊆M,则“好集”P 的个数为________.三、解答题17.设全集为R,A={x|3≤x<7},B={x|2<x<10}.求:A∪B,∁R(A∩B),(∁R A)∩B.18.(1)已知全集U=R,集合M={x|x+3≤0},N={x|x2=x+12},求(∁U M)∩N;(2)已知全集U=R,集合A={x|x<-1或x>1},B={x|-1≤x<0},求A∪(∁U B).19.已知集合A={x|-2<x<-1或x>1},B={x|a≤x<b},A∪B={x|x>-2},A∩B={x|1<x<3},求实数a,b的值.20.已知集合A ={x |x ≤a +3},B ={x |x <-1或x >5}. (1)若a =-2,求A ∩∁R B ; (2)若A ⊆B ,求a 的取值范围.21.设集合A ={x |x 2-8x +15=0},B ={x |ax -1=0}. (1)若a =15,判断集合A 与B 的关系;(2)若A∩B=B,求实数a组成的集合C.22.已知集合A={x|(a-1)x2+3x-2=0},B={x|x2-3x+2=0}.(1)若A≠∅,求实数a的取值范围;(2)若A∩B=A,求实数a的取值范围.答案解析1.D解析:选项D中Δ=(-1)2-4×1×1=-3<0,所以方程x2-x+1=0无实数根.2.D解析:∵集合A={x∈N|x<6}={0,1,2,3,4,5},∴6∉A.故选D.3.D解析:∵U={1,3,5,7,9},A={1,5,7},∴∁U A={3,9}.故选D.4.D解析:∵A∩B={1,2},C={2,3,4},∴(A∩B)∪C={1,2,3,4}.5.C解析:∵{1,2}∪A={1,2}∴集合A可取集合{1,2}的非空子集.∴集合A有3个.故选C.6.C解析:∵A∪B={1,4,x},∴x2=4或x2=x.解得x=±2或x=1或x=0.检验当x=1时,A={1,4,1}不符合集合的性质,∴x=2或x=-2或x=0.故选C.7.C解析:∵集合M的代表元素是实数,集合N的代表元素是点,∴M∩N=∅.故选C.8.C解析:∵A∩B={1,3},∴A∩B的子集分别是∅,{1},{3},{1,3}.故选C.解题技巧:本题主要考查了列举法表示两个集合的交集,考查了子集的求法,解决本题的关键是确定出A∩B所含元素的个数n,因此所有子集的个数为2n个.9.A解析:∵图中阴影部分表示:x∈N且x∉M,∴x∈N∩∁U M.∴∁U M={x|-2≤x≤2},∴N∩∁U M={x|-2≤x<1}.故选A.10.B解析:∵集合A={x|ax2+2x+1=0}中只有一个元素,∴①当a=0时,集合A={x|2x+1=0}只有一个元素,符合题意;②当a≠0时,一元二次方程ax2+2x+1=0只有一解,∴Δ=0,即4-4a=0,∴a=1.故选B.11.B解析:∵x∈N*,12x∈Z,∴x=1时,12x=12∈Z;x=2时,12x =6∈Z ;x =3时,12x =4∈Z ;x =4时,12x =3∈Z ;x =6时,12x =2∈Z ;x =12时,12x =1∈Z .12.D 解析:①当a >0,b >0时,y =3;②当a >0,b <0时,y =-1;③当a <0,b >0时,y =-1;④当a <0,b <0时,y =-1.13.a ≥-1 解析:如图:∵A ∩B ≠∅,且A ={x |-1≤x <2},B ={x |x ≤a },∴a ≥-1. 14.AB =C 解析:A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =a +16,a ∈Z=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x =16(6a +1),a ∈Z ,B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =b 2-13,b ∈Z =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x =16(3b -2),b ∈Z =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x =16[3(b +1)-2],b ∈Z ,C =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x =c 2+16,c ∈Z =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x =16(3c +1),c ∈Z .∴A B =C .15.m =⎩⎨⎧⎭⎬⎫0,-12,13 解析:集合A ={2,-3},又∵B ⊆A ,∴B =∅,{-3},{2}.∴m =0或m =-12或m =13.16.1 006 解析:因为若集合P 中元素a ,b ,c 既是调和的,又是等差的,则1a +1b =2c 且a +c =2b ,则a =-2b ,c =4b ,因此满足条件的“好集”为形如{-2b ,b,4b }(b ≠0)的形式,则-2 014≤4b ≤2 014,解得-503≤b ≤503,且b ≠0,符合条件的b 的值可取1 006个,故“好集”P 的个数为1 006个.解题技巧:本题主要考查了以集合为背景的新概念题,解决本题的关键是弄清楚新概念、新运算、新方法的含义,转化为集合问题求解.17.解:∵全集为R,A={x|3≤x<7},B={x|2<x<10},∴A∪B={x|2<x<10},A∩B={x|3≤x<7},∴∁R(A∩B)={x|x≥7或x<3}.∵∁R A={x|x≥7或x<3},∴(∁R A)∩B={x|2<x<3或7≤x<10}.18.解:(1)M={x|x+3=0}={-3},N={x|x2=x+12}={-3,4},∴(∁U M)∩N={4}.(2)∵A={x|x<-1或x>1},B={x|-1≤x<0},∴∁U B={x|x<-1或x≥0}.∴A∪(∁U B)={x|x<-1或x≥0}.19.解:∵A∩B={x|1<x<3},∴b=3,又A∪B={x|x>-2},∴-2<a≤-1,又A∩B={x|1<x<3},∴-1≤a<1,∴a=-1.20.解:(1)当a=-2时,集合A={x|x≤1},∁R B={x|-1≤x≤5},∴A∩∁R B={x|-1≤x≤1}.(2)∵A={x|x≤a+3},B={x|x<-1或x>5},A⊆B,∴a+3<-1,∴a<-4.解题技巧:本题主要考查了描述法表示的集合的运算,集合间的关系,解决本题的关键是借助于数轴求出符合题意的值.在解决(2)时,特别注意参数a 是否取到不等式的端点值.21.解:A ={x |x 2-8x +15=0}={3,5}. (1)若a =15,则B ={5},所以B A . (2)若A ∩B =B ,则B ⊆A . 当a =0时,B =∅,满足B ⊆A ;当a ≠0时,B =⎩⎨⎧⎭⎬⎫1a ,因为B ⊆A ,所以1a =3或1a =5, 即a =13或a =15;综上所述,实数a 组成的集合C 为⎩⎨⎧⎭⎬⎫0,13,15. 22.解:(1)①当a =1时,A =⎩⎨⎧⎭⎬⎫23≠∅;②当a ≠1时,Δ≥0,即a ≥-18且a ≠1, 综上,a ≥-18;(2)∵B ={1,2},A ∩B =A ,∴A =∅或{1}或{2}或{1,2}. ①A =∅,Δ<0,即a <-18;②当A ={1}或{2}时,Δ=0,即a =0且a =-18,不存在这样的实数;③当A ={1,2},Δ>0,即a >-18且a ≠1,解得a =0. 综上,a <-18或a =0.。
高中数学集合测试题(含答案和解析)

高中数学集合测试题(含答案和解析)一、单选题1.定义集合,A B 的一种运算:2{|,,}A B x x a b a A b B ⊗==-∈∈,若{}1,0A =-,{}1,2B =,则A B ⊗中的元素个数为( )A .1B .2C .3D .42.设集合104x A x x ⎧⎫+=≤⎨⎬-⎩⎭,{}1e ,R x B y y x ==-∈,R 为实数集,则()R A B ⋃=( )A .{1x x <-或}1x ≥B .{1x x ≤-或}1x >C .{}4x x ≥D .{}4x x > 3.已知集合{1A x x =≤-或}2x >,则R A =( ). A .{}12x x -≤<B .{}12x x -<≤C .{}12x x -<<D .{1A x x =<-或}2x ≥4.设全集{2,1,0,1,2}U =--,集合{}{}1,0,1sin ,cos0M N π=-=,,则{1}-=( ) A .M N ⋂B .()U M NC .()U N M ⋂D .()()U U M N5.设S 是整数集Z 的非空子集,如果任意的,a b S ∈,有ab S ∈,则称S 关于数的乘法是封闭的.若T 、V 是Z 的两个没有公共元素的非空子集,T V ⋃=Z .若任意的,,a b c T ∈,有abc T ∈,同时,任意的,,x y z V ∈,有xyz V ∈,则下列结论恒成立的是( ) A .T 、V 中至少有一个关于乘法是封闭的B .T 、V 中至多有一个关于乘法是封闭的C .T 、V 中有且只有一个关于乘法是封闭的D .T 、V 中每一个关于乘法都是封闭的6.非空集合{|03}A x N x =∈<<,2{|10,}B y N y my m R =∈-+<∈,A B A B =,则实数m 的取值范围为( )A .510,23⎛⎤ ⎥⎝⎦B .170,4⎛⎤ ⎥⎝⎦C .102,3⎛⎤ ⎥⎝⎦D .517,24⎛⎤ ⎥⎝⎦7.已知集合{1,1},{0,1}A B =-=,设集合{,,}C z z x y x A y B ==+∈∈∣,则下列结论中正确的是( )A .A C ⋂=∅B .AC A ⋃= C .B C B =D .A B C =8.已知集合{}{}1,(2)0A x x B x x x =<=-<,则A B ⋃=( )A .(0,1)B .(1,2)C .(,2)-∞D .(0,)+∞9.已知集合{}220A x x x =->,{}0,1B =,则()R A B ⋂=( ) A .[]0,1 B .{}0,1 C .[]0,2 D .{}0,1,210.已知集合{|4}A x x =<,{0,1,2,3,4}B =,则A B =( )A .{0,1,2}B .{1,2,3}C .{2,3}D .{0,1,2,3}11.已知集合{}2,3,4A =,{}28120B x Z x x =∈-+<,则A B 中元素的个数是( ) A .4 B .5 C .6 D .712.已知集合{}220M x x x =∈-≤Z ,{}N x x a =≥,若M N ⋂有且只有2个元素,则a 的取值范围是( )A .(]0,1B .[]0,1C .(]0,2D .(,1]-∞13.设全集U =R .集合{A x y ==∣,则U A ( ) A .()(),12,-∞-+∞ B .[]1,2-C .(][),12,-∞-⋃+∞D .()1,2- 14.若集合{}{}22,3,|560,A B x x x ==-+=则A B =( )A .{2,3}B .∅C .2D .2,315.已知集合1|2,[,4]2x A x B a a ⎧⎫=>=+⎨⎬⎩⎭,若(]1,2A B =-,则=a ( ) A .2 B .1- C .2- D .5-二、填空题16.某班有39名同学参加数学、物理、化学课外研究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参见数学和化学小组有多少人__________.17.若A ={}(,)21x y y x =-,B ={}2(,)x y y x =,则A B =____________ 18.设全集{}0,1,2U =,集合{}0,1A =,在U A ______19.已知A ,B 为非空集,I 为全集,且A B ≠,用适当的符号填空:(1)A B ______A B ; (2)A ______()I A A ⋃;(3)A B ______A ; (4)∅______A B ;(5)A A ⋂______A A ⋃; (6)A ∅______A ;(7)A ∅____()I A A ⋂____∅; (8)A B ____A ____A B .20.已知集合(){}(){},24,,5A x y x y B x y x y =-==+=∣∣,则A B 中元素个数为__________.21.立德中学有35人参加“学党史知识竞赛”若答对第一题的有20人,答对第二题的有16人,两题都答对的有6人,则第一、二题都没答对的有___人.22.设集合21|,|32A x m x m B x n x n ⎧⎫⎧⎫=≤≤+=-≤≤⎨⎬⎨⎬⎩⎭⎩⎭,且,A B 都是集合{}|01x x ≤≤的子集,如果把b a -叫作集合{}|≤≤x a x b 的“长度”,那么集合A B 的“长度”的最小值是___________.23.若集合{}|23A x x =-<<,{}|2B x x =>,则A B =______.24.若实数2a =,集合{}|13B x x =-<<,则a 与B 的关系是______.25.若集合{}|21A x x =-<≤,{}|13B x x =<≤,{}|2C x x =>,则()A B C =______.三、解答题26.对于任意的*n N ∈,记集合{1,2,3,,}n E n =,,n n n P x x a E b E ⎧⎫==∈∈⎨⎬⎩⎭,若集合A 满足下列条件:①n A P ⊆;②12,x x A ∀∈,且12x x ≠,不存在*N k ∈,使212x x k +=,则称A 具有性质Ω.如当2n =时,2{1,2}E =,2P ⎧=⎨⎩,112,x x P ∀∈,且12x x ≠,不存在*N k ∈,使212x x k +=,所以2P 具有性质Ω.(1)写出集合3P ,4P 中的元素个数,并判断3P 是否具有性质Ω.(2)证明:不存在A 、B 具有性质Ω,且A B =∅,使15E A B =⋃.(3)若存在A 、B 具有性质Ω,且A B =∅,使n P A B =⋃,求n 的最大值.27.已知:20,:40p x q ax ->->其中R a ∈.(1)若p 是q 的充分不必要条件,求实数a 的取值范围;(2)若p 是q 的必要不充分条件,求实数a 的取值范围.28.记函数()()2lg 4f x x x =-的定义域为集合M ,函数()()213x g x x =<<的值域为N .求:(1)M ,N ;(2)M N ⋂,M N ⋃.29.已知集合{}22A x a x a =-≤≤+,{|1B x x =≤或4}x ≥,U =R .(1)当3a =时,求A B ,()U A B ⋃;(2)若A B =∅,求实数a 的取值范围.30.已知集合{}2,12x A y y x ==-≤≤,集合{}1ln 2B x x =<≤,集合{}22320,0C x x ax a a =-+≤>. (1)求A B ;(2)若C A ⊆,求实数a 的取值范围.【参考答案】一、单选题1.C【解析】【分析】根据集合的新定义确定集合中的元素.【详解】因为2{|,,}A B x x a b a A b B ⊗==-∈∈,{}1,0A =-,{}1,2B =,所以{0,1,2}A B ⊗=--,故集合A B ⊗中的元素个数为3,故选:C.2.C【解析】【分析】先求出集合A ,B ,再求两集合的并集,然后再求其补集【详解】 由104x x +≤-,得(1)(4)040x x x +-≤⎧⎨-≠⎩,解得14x -≤<, 所以{}14A x x =-≤<,因为当R x ∈时,e 0x >,所以1e 1x -<,所以{}1B y y =<, 所以{}4A B x x ⋃=<,所以(){}R 4A B x x ⋃=≥,故选:C3.B【解析】【分析】利用补集的概念求解R A . 【详解】 因为{1A x x =≤-或}2x >,所以R A ={}12x x -<≤,故选:B4.B【解析】【分析】化简集合N ,然后由集合的运算可得.【详解】 {}sin ,cos0}0,1 {N π==,{}2,1,2,U N ∴=--{}()1U MN ∴=- 故选:B.5.A【解析】【分析】本题从正面解比较困难,可运用排除法进行作答.考虑把整数集Z 拆分成两个互不相交的非空子集T 、V 的并集,如T 为奇数集,V 为偶数集,或T 为负整数集,V 为非负整数集进行分析排除即可.【详解】若T 为奇数集,V 为偶数集,满足题意,此时T 与V 关于乘法都是封闭的,排除B 、C ; 若T 为负整数集,V 为非负整数集,也满足题意,此时只有V 关于乘法是封闭的,排除D ;从而可得T 、V 中至少有一个关于乘法是封闭的,A 正确.故选:A .6.A【解析】【分析】由题知{}1,2A B ==,进而构造函数()21f x x mx =-+,再根据零点存在性定理得()()()302010f f f ⎧≥⎪<⎨⎪<⎩,解不等式即可得答案. 【详解】解:由题知{}0{|}13,2A x N x =∈<=<,因为A B A B =,所以A B =,所以{}2{|10,}1,2B y N y my m R =∈-+<∈=,故令函数()21f x x mx =-+,所以,如图,结合二次函数的图像性质与零点的存在性定理得:()()()302010f f f ⎧≥⎪<⎨⎪<⎩,即103052020m m m -≥⎧⎪-<⎨⎪-<⎩,解得51023m <≤, 所以,实数m 的取值范围为510,23⎛⎤ ⎥⎝⎦. 故选:A7.C【解析】【分析】由题意得{1,0,1,2}C =-,再由交集和并集运算求解即可.【详解】由题意可知,{1,0,1,2}C =-,{1,1}A C ⋂=-,{}1,0,1,2A C C ⋃=-=,{0,1},{1,0,1}B C B A B C ⋂==⋃=-≠.故选:C8.C【解析】【分析】求出集合B ,由并集的定义即可求出答案.【详解】因为{}{}(2)002B x x x x x =-<=<<,则}{2A B x x ⋃=<.故选:C.9.B【解析】【分析】化简集合A ,求出R A 后,再根据交集的概念运算可得解. 【详解】{}220A x x x =->{|0x x =<或2}x >,R {|02}A x x =≤≤,所以()R {0,1}A B =.故选:B10.D【解析】【分析】根据集合交集运算方法计算即可.【详解】因为{|4}A x x =<,{0,1,2,3,4}B =,∴A B ={0,1,2,3}.故选:D.11.A【解析】【分析】求出集合B ,再根据并集的定义即可求出答案.【详解】{}()(){}{}{}28120260263,4,5B x Z x x x Z x x x Z x =∈-+<=∈--<=∈<<=, 所以{}2,3,4,5A B ⋃=.所以A B 中元素的个数是4.故选:A.12.A【解析】【分析】求出集合M ,根据M N ⋂有且只有2个元素即可求出a 的范围.【详解】{}(){}{}220|200,1,2M x x x x x x =∈-≤=∈-≤=Z Z , ∵M N ⋂有且只有2个元素,∴0<a ≤1.故选:A.13.D【解析】【分析】根据二次根式的性质,结合一元二次不等式的解法、补集的定义进行求解即可.【详解】因为{[2,)(,1]A x y ===+∞-∞-∣,所以U A ()1,2-,故选:D14.A【解析】【分析】依据交集定义去求A B 即可.【详解】{}{}2|560=2,3B x x x =-+=则{}{}{}2,32,32,3A B ⋂=⋂=,故选:A .15.C【解析】【分析】求出集合A 的解集,由(]1,2A B =-,列出满足题意的关系式求解即可得答案.【详解】 解:因为{}{}11|2|22|1(1,)2x x A x x x x -⎧⎫=>=>=>-=-+∞⎨⎬⎩⎭,[,4]B a a =+, 又(1,2]A B ⋂=-,所以421a a +=⎧⎨≤-⎩,即2a =-, 故选:C.二、填空题16.5【解析】【分析】设参加数学、物理、化学小组的同学组成的集合分别为A ,B 、C ,根据容斥原理可求出结果.【详解】设参加数学、物理、化学小组的同学组成的集合分别为A ,B 、C ,同时参加数学和化学小组的人数为x ,因为每名同学至多参加两个小组,所以同时参加三个小组的同学的人数为0,如图所示:由图可知:20654939x x x -+++++-=,解得5x =,所以同时参加数学和化学小组有5人.故答案为:5.17.{(1,1)}【解析】【分析】由集合中的条件组成方程组求解可得.【详解】将21y x =-代入2y x ,得2210x x -+=,解得1x =,则211y =-=,所以{(1,1)}A B =.故答案为:{(1,1)} 18.{2}【解析】【分析】利用集合的补运算求U A 即可. 【详解】由{}0,1,2U =,{}0,1A =,则{2}U A =.故答案为:{2}.19. ⊆ ⊆ ⊆ ⊆ = = = = ⊆ ⊆【解析】【分析】根据集合的交集,并集,补集的性质及子集、集合相等的概念求解.【详解】由交集,并集,补集的运算及性质,结合子集、集合相等求解,直接写出答案即可. 故答案为:⊆,⊆,⊆,⊆,=,=,=,=,⊆,⊆ 20.1【解析】【分析】利用交集的定义直接求解.【详解】∵集合(){},24A x y x y =-=∣,(){},5B x y x y =+=∣, ∴()(){}24,3,25x y A B x y x y ⎧⎫-=⎧⎪⎪⋂==⎨⎨⎬+=⎩⎪⎪⎩⎭, ∴A B 中元素个数为1.故答案为:1.21.5【解析】【分析】集合元素计算,只对第一题,只对第二题,二题都答对和二题都不对,总数为35人.【详解】设第一、二题都没答对的有x 人,则()()206166635x -+-++= ,所以5x =故答案为:522.16【解析】【分析】根据“长度”定义确定集合,A B 的“长度”,由A B “长度”最小时,两集合位于集合[]0,1左右两端即可确定结果.【详解】由题可知,A 的长度为23 ,B 的长度为12, ,A B 都是集合{|01}x x ≤≤的子集, 当A B 的长度的最小值时,m 与n 应分别在区间[]0,1的左右两端,即0,1m n ==,则|0,213|12A x x B x x ⎧⎫⎧⎫=≤≤=≤≤⎨⎬⎨⎬⎩⎭⎩⎭, 故此时1223A B x x ⎧⎫⋂=≤≤⎨⎬⎩⎭的长度的最小值是:211326-=. 故答案为:16 23.{}|23x x <<##()2,3【解析】【分析】由交集运算可直接求解.【详解】因为{}|23A x x =-<<,{}|2B x x =>,则{}|23A B x x =<<.故答案为:{}|23x x <<24.a B ∈【解析】【分析】根据元素与集合关系即可判断.【详解】因为2a =,满足123-<<,所以a B ∈.故答案为:a B ∈.25.{}|23x x <≤【解析】【分析】先求得A B ,然后求得()A B C .【详解】{}23A B x x =|-<≤,()A B C ={}|23x x <≤.故答案为:{}|23x x <≤三、解答题26.(1)3P ,4P 中的元素个数分别为9,14,3P 不具有性质Ω.(2)证明见解析(3)14【解析】【分析】(1)由已知条件能求出集合3P ,4P 中的元素个数,并判断出3P 不具有性质Ω. (2)假设存在A ,B 具有性质Ω,且A B =∅,使15E A B =.其中15{1E =,2,3,⋯,15},从而1A B ∈,由此推导出与A 具有性质Ω矛盾.从而假设不成立,即不存在A ,B 具有性质Ω,且A B =∅,使15E A B =.(3)当15n 时,不存在A ,B 具有性质Ω,且A B =∅,使n P A B =.14n =,根据1b =、4b =、9b =分类讨论,能求出n 的最大值为14.(1)解: 对于任意的*n N ∈,记集合{1n E =,2,3,⋯,}n ,,n n n P x x a E b E ⎧⎫=∈∈⎨⎬⎩⎭.当3n =时{}31,2,3E =,3P ⎧=⎨⎩; 当4n =时{}41,2,3,4E =,413,22P ⎧⎫=⎨⎬⎩⎭,∴集合3P ,4P 中的元素个数分别为9,14,集合A 满足下列条件:①n A P ⊆;②1x ∀,2x A ∈,且12x x ≠,不存在*k N ∈,使212x x k +=,则称A 具有性质Ω,因为31P ∈,33P ∈,2132+=,*2∈N ,不符合题意,3P ∴不具有性质Ω.(2)证明:假设存在A ,B 具有性质Ω,且A B =∅,使15E A B =.其中15{1E =,2,3,⋯,15}.因为151E ∈,所以1A B ∈,不妨设1A ∈.因为2132+=,所以3A ∉,3B ∈.同理6A ∈,10B ∈,15A ∈.因为21154+=,这与A 具有性质Ω矛盾.所以假设不成立,即不存在A ,B 具有性质Ω,且A B =∅,使15E A B =.(3)解:因为当15n 时,15n E P ⊆,由(2)知,不存在A ,B 具有性质Ω,且A B =∅,使n P A B =.若14n =,当1b =时,1414x x a E E ⎧⎫∈=⎨⎬⎩⎭, 取1{1A =,2,4,6,9,11,13},1{3B =,5,7,8,10,12,14},则1A ,1B 具有性质Ω,且11A B =∅,使1411E A B =.当4b =时,集合14x x a E ⎧⎫=∈⎨⎬⎩⎭中除整数外,其余的数组成集合为13513{,,,,}2222⋯, 令215911{,,,}2222A =,23713{,,}222B =, 则2A ,2B 具有性质Ω,且22A B =∅,使2213513{,,,,}2222A B ⋯=. 当9b =时,集14x x a E ⎧⎫=∈⎨⎬⎩⎭中除整数外,其余的数组成集合12457810111314{,,,,,,,,,}3333333333, 令31451013{,,,,}33333A =,32781114{,,,,}33333B =. 则3A ,3B 具有性质Ω,且33A B =∅,使3312457810111314{,,,,,,,,,}3333333333A B =. 集合1414,,1,4,9C x x a E b E b ⎧⎫==∈∈≠⎨⎬⎩⎭中的数均为无理数, 它与14P 中的任何其他数之和都不是整数,因此,令123A A A A C =,123B B B B =,则A B =∅,且14P A B =. 综上,所求n 的最大值为14.27.(1)(2,)+∞(2)[0,2)【分析】(1)由题意可得A ⫋B ,所以0,42,a a>⎧⎪⎨<⎪⎩从而可求出实数a 的取值范围, (2)由题意可得B ⫋A ,然后分a =0,a >0和a <0三种情况求解即可(1)设命题p :A ={x |x -2>0},即p :A ={x |x >2},命题q :B ={x |ax -4>0},因为p 是q 的充分不必要条件,所以A ⫋B ,. 即0,42,a a>⎧⎪⎨<⎪⎩解得a >2 所以实数a 的取值范围为(2,)+∞(2)由(1)得p :A ={x |x >2},q :B ={x |ax -4>0},因为p 是q 的必要不充分条件,所以B ⫋A ,①当a =0时,B =∅,满足题意;②当a >0时,由B ⫋A ,得4a .>2,即0<a <2;.③当a <0时,显然不满足题意.综合①②③得,实数a 的取值范围为[0,2)28.(1)()0,4M =,()2,8N =(2)(2,4)M N ⋂=,(0,8)M N ⋃=【解析】【分析】(1)根据函数的解析式结合对数函数的性质,可求得集合 M ,利用指数函数的单调性,可求得集合N ;(2)根据集合的交集以及并集运算,可求得答案.(1)由函数()()2lg 4f x x x =-可得240x x -> , 即04x << ,故(0,4)M =,由函数()()213x g x x =<< 可得28y << ,即(2,8)N =;(2)由(1)可知:(0,4)(2,8)(2,4)M N ==,(0,4)(2,8)(0,8)M N ==.29.(1){11A B x x ⋂=-≤≤或}45x ≤≤,(){}15U A B x x ⋃=-≤≤(2)(),1-∞【分析】(1)将3a =代入集合A 中确定出A ,求出A 与B 的交集,求出B 的补集,求出A 与B 补集的并集即可;(2)由A 与B 以及两集合的交集为空集,对a 进行分类讨论,把分类结果求并集,即可求出结果.(1)将3a =代入集合A 中的不等式得:{}15A x x =-≤≤, ∵{|1B x x =≤或4}x ≥, ∴{11A B x x ⋂=-≤≤或}45x ≤≤,{}14U B x x =<<, 则(){}15U A B x x ⋃=-≤≤;(2)∵{}22A x a x a =-≤≤+,{|1B x x =≤或4}x ≥,当0a <时,A =∅;此时满足A B =∅,当0a =时,{}2A =,此时也满足A B =∅,当0a >时,A ≠∅,若A B =∅,则2124a a ->⎧⎨+<⎩,解得:01a <<; 综上所述,实数a 的取值范围为(),1-∞ 30.(1)(],4e(2)1,22⎡⎤⎢⎥⎣⎦【解析】【分析】(1)先化简集合A ,B ,再利用交集运算求解;(2)根据0a >,化简集合[],2C a a =,再根据C A ⊆求解.(1)解:∵12x -≤≤,∴1242x ≤≤, ∴集合1,42A ⎡⎤=⎢⎥⎣⎦. ∵1ln 2x <≤,∴2e x e <≤,∴集合(2,B e e ⎤=⎦. ∴(],4A B e ⋂=.(2)∵0a >,∴{}()(){}[]2232020,2C x x ax a x x a x a a a =-+≤=--≤=. ∵C A ⊆, ∴01224a a a >⎧⎪⎪≥⎨⎪≤⎪⎩,解得122a ≤≤. ∴实数a 的取值范围是1,22⎡⎤⎢⎥⎣⎦.。
集合试题及答案

集 合 专 题1.判断下列结论正误(在括号内打“√”或“×”) (1)任何一个集合都至少有两个子集.( )(2){x |y =x 2+1}={y |y =x 2+1}={(x ,y )|y =x 2+1}.( ) (3)若{x 2,1}={0,1},则x =0,1.( )(4)对于任意两个集合A ,B ,关系(A ∩B )⊆(A ∪B )恒成立.( )2. 若集合P ={x ∈N|x ≤ 2 021},a =22,则( )A.a ∈PB.{a }∈PC.{a }⊆PD.a ∉P3. 已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|x ,y ∈R 且y =x },则A ∩B 中元素的个数为________.4. 已知集合A ={-1,0,1,2},B ={x |x 2≤1},则A ∩B =( ) A.{-1,0,1} B.{0,1} C.{-1,1} D.{0,1,2}5. 已知集合A ={x |x >-1},B ={x |x <2},全集U =R ,则(∁U A )∪B =( ) A.(-1,+∞) B.(-∞,2) C.(-1,2) D.∅6. 已知集合M ={x |0<x <5},N ={x |m <x <6},若M ∩N ={x |3<x <n },则m +n 等于( )A.9B.8C.7D.6考点一 集合的基本概念【例1】 (1)定义P ⊙Q =⎩⎨⎧⎭⎬⎫z |z =y x +xy ,x ∈P ,y ∈Q ,已知P ={0,-2},Q ={1,2},则P ⊙Q =( )A.{1,-1}B.{1,-1,0}C.⎩⎨⎧⎭⎬⎫1,-1,-34D.⎩⎨⎧⎭⎬⎫-1,-34 (2)设集合A ={x |(x -a )2<1},且2∈A ,3∉A ,则实数a 的取值范围为________.【训练1】(1) 已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( )A.9B.8C.5D.4(2)若x∈A,则1x∈A,就称A是伙伴关系集合,集合M=⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是( )A.1B.3C.7D.31考点二集合间的基本关系【例2】(1)已知集合A={x|y=1-x2,x∈R},B={x|x=m2,m∈A},则A、B 关系()(2) 设集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22}.若A⊆(A∩B),则实数a的取值范围为________.【训练2】(1)若集合M={x||x|≤1},N={y|y=x2,|x|≤1},则( )A.M=NB.M⊆NC.M∩N=∅D.N⊆M(2) 已知集合A={x|log2(x-1)<1},B={x||x-a|<2},若A⊆B,则实数a的取值范围为( )A.(1,3)B.[1,3]C.[1,+∞)D.(-∞,3]考点三集合的运算角度1 集合的基本运算【例3-1】(1) 已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩(∁U A)=( )A.{1,6}B.{1,7}C.{6,7}D.{1,6,7}(2) 已知全集U=R,集合A={x|x-4≤0},B={x|ln x<2},则∁U(A∩B)=( )A.{x|x>4}B.{x|x≤0或x>4}C.{x|0<x≤4}D.{x|x<4或x≥e2}角度2 抽象集合的运算【例3-2】设U为全集,A,B是其两个子集,则“存在集合C,使得A⊆C,B⊆∁U C”是“A∩B=∅”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【训练3】(1)(角度1)(2019·天津卷)设集合A={-1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=( )A.{2}B.{2,3}C.{-1,2,3}D.{1,2,3,4}(2) 已知集合A={x|x2-x≤0},B={x|a-1≤x<a},若A∩B只有一个元素,则a=( )A.0B.1C.2D.1或2(3)(角度2)若全集U={-2,-1,0,1,2},A={-2,2},B={x|x2-1=0},则图中阴影部分所表示的集合为()A.{-1,0,1}B.{-1,0}C.{-1,1}D.{0}一、选择题1. 已知集合A={x|-1<x<2},B={x|x>1},则A∪B=()A.(-1,1)B.(1,2)C.(-1,+∞)D.(1,+∞)2. 已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(∁U A)∩B=()A.{-1}B.{0,1}C.{-1,2,3}D.{-1,0,1,3}3. 已知集合A={0,1,2,3,4,6},B={x|x=2n,n∈N},则A∩B的元素个数是()A.0B.1C.2D.34.设集合M ={x |x 2-x >0},N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1x <1,则()A.M NB.N MC.M =ND.M ∪N =R5.设集合A ={x |-1<x ≤2},B ={x |x <0},则下列结论正确的是( ) A.( ∁R A )∩B ={x |x <-1} B.A ∩B ={x |-1<x <0} C.A ∪(∁R B )={x |x ≥0} D.A ∪B ={x |x <0}6.已知集合M ={x |y =x -1},N ={x |y =log 2(2-x )},则∁R (M ∩N )=( ) A.[1,2) B.(-∞,1)∪[2,+∞) C.[0,1]D.(-∞,0)∪[2,+∞)7. 已知A =[1,+∞),B =[0,3a -1],若A ∩B ≠∅,则实数a 的取值范围是( ) A.[1,+∞) B.⎣⎢⎡⎦⎥⎤12,1 C.⎣⎢⎡⎭⎪⎫23,+∞D.(1,+∞)8.设集合A ={(x ,y )|x +y =1},B ={(x ,y )|x -y =3},则满足M ⊆(A ∩B )的集合M 的个数是( ) A.0 B.1 C.2 D.3二、填空题9.(2019·江苏卷)已知集合A ={-1,0,1,6},B ={x |x >0,x ∈R},则A ∩B =________.10.已知集合A ={1,3,4,7},B ={x |x =2k +1,k ∈A },则集合A ∪B 中元素的个数为________.11.已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是________.12.若全集U=R,集合A={x|x2-x-2≥0},B={x|log3(2-x)≤1},则A∩(∁U B)=________.13. 已知集合A={x|x2-16<0},B={x|3x2+6x=1},则( )A.A∪B=∅B.B⊆AC.A∩B={0}D.A⊆B14.已知集合A={x|y=4-x2},B={x|a≤x≤a+1},若A∪B=A,则实数a的取值范围为( )A.(-∞,-3]∪[2,+∞)B.[-1,2]C.[-2,1]D.[2,+∞)15.(多填题)已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-m)(x-2)<0},且A∩B =(-1,n),则m=________,n=________.16.集合U=R,A={x|x2-x-2<0},B={x|y=ln(1-x)},则图中阴影部分所表示的集合是________.17.(多填题)对于任意两集合A,B,定义A-B={x|x∈A且x∉B},A*B=(A-B)∪(B -A),记A={y|y≥0},B={x|y=lg(9-x2)},则B-A=________,A*B=________.答案集合1.判断下列结论正误(在括号内打“√”或“×”)(1)任何一个集合都至少有两个子集.( )(2){x |y =x 2+1}={y |y =x 2+1}={(x ,y )|y =x 2+1}.( ) (3)若{x 2,1}={0,1},则x =0,1.( )(4)对于任意两个集合A ,B ,关系(A ∩B )⊆(A ∪B )恒成立.( ) 解析 (1)错误.空集只有一个子集.(2)错误.{x |y =x 2+1}=R ,{y |y =x 2+1}=[1,+∞),{(x ,y )|y =x 2+1}是抛物线y =x 2+1上的点集.(3)错误.当x =1时,不满足集合中元素的互异性. 答案 (1)× (2)× (3)× (4)√2. 若集合P ={x ∈N|x ≤ 2 021},a =22,则( )A.a ∈PB.{a }∈PC.{a }⊆PD.a ∉P解析 因为a =22不是自然数,而集合P 是不大于 2 021的自然数构成的集合,所以a ∉P ,只有D 正确. 答案 D3. 已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|x ,y ∈R 且y =x },则A ∩B 中元素的个数为________.解析 集合A 表示以(0,0)为圆心,1为半径的单位圆上的点,集合B 表示直线y =x 上的点,圆x 2+y 2=1与直线y =x 相交于两点⎝ ⎛⎭⎪⎫22,22,⎝ ⎛⎭⎪⎫-22,-22,则A ∩B 中有两个元素. 答案 24. 已知集合A ={-1,0,1,2},B ={x |x 2≤1},则A ∩B =( ) A.{-1,0,1} B.{0,1} C.{-1,1} D.{0,1,2}解析 因为B ={x |x 2≤1|}={x |-1≤x ≤1},又A ={-1,0,1,2},所以A ∩B ={-1,0,1}. 答案 A5. 已知集合A ={x |x >-1},B ={x |x <2},全集U =R ,则(∁U A )∪B =( ) A.(-1,+∞) B.(-∞,2) C.(-1,2) D.∅解析 易知∁U A ={x |x ≤-1},B ={x |x <2}. ∴(∁U A )∪B ={x |x <2}. 答案 B6. 已知集合M ={x |0<x <5},N ={x |m <x <6},若M ∩N ={x |3<x <n },则m +n 等于( )A.9B.8C.7D.6解析 因为M ∩N ={x |0<x <5}∩{x |m <x <6}={x |3<x <n },所以m =3,n =5,因此m +n =8. 答案 B考点一 集合的基本概念【例1】 (1)定义P ⊙Q =⎩⎨⎧⎭⎬⎫z |z =y x +xy ,x ∈P ,y ∈Q ,已知P ={0,-2},Q ={1,2},则P ⊙Q =( )A.{1,-1}B.{1,-1,0}C.⎩⎨⎧⎭⎬⎫1,-1,-34D.⎩⎨⎧⎭⎬⎫-1,-34 (2)设集合A ={x |(x -a )2<1},且2∈A ,3∉A ,则实数a 的取值范围为________. 解析 (1)由定义,当x =0时,z =1,当x =-2时,z =1-2+-21=-1或z =2-2-1=-34. 因此P ⊙Q =⎩⎨⎧⎭⎬⎫1,-1,-34. (2)由题意得⎩⎨⎧(2-a )2<1,(3-a )2≥1,解得⎩⎨⎧1<a <3,a ≤2或a ≥4. 所以1<a ≤2.答案 (1)C (2)(1,2]规律方法 1.研究集合问题时,首先要明确构成集合的元素是什么,即弄清该集合是数集、点集,还是其他集合;然后再看集合的构成元素满足的限制条件是什么,从而准确把握集合的含义.2.利用集合元素的限制条件求参数的值或确定集合中元素的个数时,要注意检验集合中的元素是否满足互异性.【训练1】 (1) 已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z},则A 中元素的个数为( )A.9B.8C.5D.4(2)若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是( )A.1B.3C.7D.31解析 (1)由题意知A ={(-1,0),(0,0),(1,0),(0,-1),(0,1), (-1,-1),(-1,1),(1,-1),(1,1)},故集合A 中共有9个元素.(2)具有伙伴关系的元素组是-1,12,2,所以具有伙伴关系的集合有3个:{-1},⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫-1,12,2.答案 (1)A (2)B考点二 集合间的基本关系【例2】 (1)已知集合A ={x |y =1-x 2,x ∈R},B ={x |x =m 2,m ∈A },则A 、B 关系 ( )(2) 设集合A ={x |2a +1≤x ≤3a -5},B ={x |3≤x ≤22}.若A ⊆(A ∩B ),则实数a 的取值范围为________.解析 (1)易知A ={x |-1≤x ≤1}, 所以B ={x |x =m 2,m ∈A }={x |0≤x ≤1}. 因此B A .(2)由A ⊆(A ∩B ),得A ⊆B ,则①当A =∅时,2a +1>3a -5,解得a <6;②当A ≠∅时,⎩⎨⎧2a +1≤3a -5,2a +1≥3,3a -5≤22,解得6≤a ≤9.综上可知,使A ⊆(A ∩B )成立的实数a 的取值范围为(-∞,9]. 答案 (1)B (2)(-∞,9]规律方法 1.若B ⊆A ,应分B =∅和B ≠∅两种情况讨论.2.已知两个集合间的关系求参数时,关键是将两个集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系.解决这类问题常常要合理利用数轴、Venn 图,化抽象为直观进行求解.确定参数所满足的条件时,一定要把端点值代入进行验证,否则易增解或漏解.【训练2】 (1)若集合M ={x ||x |≤1},N ={y |y =x 2,|x |≤1},则( ) A.M =N B.M ⊆N C.M ∩N =∅ D.N ⊆M(2) 已知集合A ={x |log 2(x -1)<1},B ={x ||x -a |<2},若A ⊆B ,则实数a 的取值范围为( )A.(1,3)B.[1,3]C.[1,+∞)D.(-∞,3] 解析 (1)易知M ={x |-1≤x ≤1},N ={y |y =x 2,|x |≤1}={y |0≤y ≤1},∴N ⊆M . (2)由log 2(x -1)<1,得0<x -1<2,所以A =(1,3). 由|x -a |<2得a -2<x <a +2,即B =(a -2,a +2). 因为A ⊆B ,所以⎩⎨⎧a -2≤1,a +2≥3,解得1≤a ≤3.所以实数a 的取值范围为[1,3]. 答案 (1)D (2)B 考点三 集合的运算 角度1 集合的基本运算【例3-1】 (1) 已知集合U ={1,2,3,4,5,6,7},A ={2,3,4,5},B ={2,3,6,7},则B ∩(∁U A )=( )A.{1,6}B.{1,7}C.{6,7}D.{1,6,7}(2) 已知全集U =R ,集合A ={x |x -4≤0},B ={x |ln x <2},则∁U (A ∩B )=( ) A.{x |x >4} B.{x |x ≤0或x >4} C.{x |0<x ≤4} D.{x |x <4或x ≥e 2} 解析 (1)由题意知∁U A ={1,6,7}.又B ={2,3,6,7}, ∴B ∩(∁U A )={6,7}.(2)易知A ={x |x ≤4},B ={x |0<x <e 2},则A ∩B ={x |0<x ≤4},故∁U (A ∩B )={x |x ≤0或x >4}.答案 (1)C (2)B 角度2 抽象集合的运算【例3-2】 设U 为全集,A ,B 是其两个子集,则“存在集合C ,使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析由图可知,若“存在集合C,使得A⊆C,B⊆∁U C”,则一定有“A∩B=∅”;反过来,若“A∩B=∅”,则一定能找到集合C,使A⊆C且B⊆∁U C.答案 C规律方法 1.进行集合运算时,首先看集合能否化简,能化简的先化简,再研究其关系并进行运算.2.数形结合思想的应用:(1)离散型数集或抽象集合间的运算,常借助Venn图求解;(2)连续型数集的运算,常借助数轴求解,运用数轴时要特别注意端点是实心还是空心.【训练3】(1)(角度1)(2019·天津卷)设集合A={-1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=()A.{2}B.{2,3}C.{-1,2,3}D.{1,2,3,4}(2)(角度1)已知集合A={x|x2-x≤0},B={x|a-1≤x<a},若A∩B只有一个元素,则a=()A.0B.1C.2D.1或2(3)(角度2)若全集U={-2,-1,0,1,2},A={-2,2},B={x|x2-1=0},则图中阴影部分所表示的集合为()A.{-1,0,1}B.{-1,0}C.{-1,1}D.{0}解析(1)由题意A∩C={1,2},则(A∩C)∪B={1,2,3,4}.故选D.(2)易知A=[0,1],且A∩B只有一个元素,因此a-1=1,解得a=2.(3)B={x|x2-1=0}={-1,1},阴影部分所表示的集合为∁U(A∪B).又A∪B={-2,-1,1,2},全集U ={-2,-1,0,1,2},所以∁U (A ∪B )={0}. 答案 (1)D (2)C (3)D一、选择题1.(2019·北京卷)已知集合A ={x |-1<x <2},B ={x |x >1},则A ∪B =( ) A.(-1,1) B.(1,2) C.(-1,+∞)D.(1,+∞)解析 将集合A ,B 在数轴上表示出来,如图所示.由图可得A ∪B ={x |x >-1}.故选C. 答案 C2.(2019·浙江卷)已知全集U ={-1,0,1,2,3},集合A ={0,1,2},B ={-1,0,1},则(∁U A )∩B =( ) A.{-1} B.{0,1}C.{-1,2,3}D.{-1,0,1,3}解析 由题意,得∁U A ={-1,3},∴(∁U A )∩B ={-1}. 答案 A3.(2019·郴州模拟)已知集合A ={0,1,2,3,4,6},B ={x |x =2n ,n ∈N},则A ∩B 的元素个数是( ) A.0B.1C.2D.3解析 ∵集合A ={0,1,2,3,4,6},B ={x |x =2n ,n ∈N}={1,2,4,8,…},∴A ∩B ={1,2,4},∴A ∩B 的元素个数是3. 答案 D4.设集合M ={x |x 2-x >0},N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1x <1,则( )A.M NB.N MC.M =ND.M ∪N =R解析 集合M ={x |x 2-x >0}={x |x >1或x <0},N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1x <1={x |x >1或x <0},所以M =N .答案 C5.设集合A ={x |-1<x ≤2},B ={x |x <0},则下列结论正确的是( ) A.( ∁R A )∩B ={x |x <-1} B.A ∩B ={x |-1<x <0} C.A ∪(∁R B )={x |x ≥0} D.A ∪B ={x |x <0}解析 易求∁R A ={x |x ≤-1或x >2},∁R B ={x |x ≥0}, ∴(∁R A )∩B ={x |x ≤-1},A 项不正确.A ∩B ={x |-1<x <0},B 项正确,检验C 、D 错误. 答案 B6.已知集合M ={x |y =x -1},N ={x |y =log 2(2-x )},则∁R (M ∩N )=( ) A.[1,2) B.(-∞,1)∪[2,+∞) C.[0,1]D.(-∞,0)∪[2,+∞)解析 由题意可得M ={x |x ≥1},N ={x |x <2},∴M ∩N ={x |1≤x <2},∴∁R (M ∩N )={x |x <1或x ≥2}. 答案 B7.(2020·日照一中月考)已知A =[1,+∞),B =[0,3a -1],若A ∩B ≠∅,则实数a 的取值范围是( ) A.[1,+∞) B.⎣⎢⎡⎦⎥⎤12,1 C.⎣⎢⎡⎭⎪⎫23,+∞D.(1,+∞)解析 由题意可得3a -1≥1,解得a ≥23,∴实数a 的取值范围是⎣⎢⎡⎭⎪⎫23,+∞.答案 C8.设集合A ={(x ,y )|x +y =1},B ={(x ,y )|x -y =3},则满足M ⊆(A ∩B )的集合M 的个数是( ) A.0B.1C.2D.3解析 由⎩⎨⎧x +y =1,x -y =3,得⎩⎨⎧x =2,y =-1,∴A ∩B ={(2,-1)}.由M⊆(A∩B),知M=∅或M={(2,-1)}.答案 C二、填空题9.(2019·江苏卷)已知集合A={-1,0,1,6},B={x|x>0,x∈R},则A∩B=________. 解析由交集定义可得A∩B={1,6}.答案{1,6}10.已知集合A={1,3,4,7},B={x|x=2k+1,k∈A},则集合A∪B中元素的个数为________.解析由已知得B={3,7,9,15},所以A∪B={1,3,4,7,9,15},故集合A∪B中元素的个数为6.答案 611.已知集合A={x|y=lg(x-x2)},B={x|x2-cx<0,c>0},若A⊆B,则实数c的取值范围是________.解析由题意知,A={x|y=lg(x-x2)}={x|x-x2>0}=(0,1),B={x|x2-cx<0,c>0}=(0,c).由A⊆B,画出数轴,如图所示,得c≥1.答案[1,+∞)12.若全集U=R,集合A={x|x2-x-2≥0},B={x|log3(2-x)≤1},则A∩(∁U B)=________.解析由题意,得集合A={x|x2-x-2≥0}={x|x≤-1或x≥2},因为log3(2-x)≤1=log33,所以0<2-x≤3,解得-1≤x<2,所以B={x|-1≤x<2},从而∁U B={x|x<-1或x≥2},故A∩(∁U B)={x|x<-1或x≥2}.答案{x|x<-1或x≥2}B级能力提升13.(2020·福州检测)已知集合A={x|x2-16<0},B={x|3x2+6x=1},则()A.A∪B=∅B.B⊆AC.A ∩B ={0}D.A ⊆B解析 由题意,得A ={x |x 2-16<0}={x |-4<x <4},B ={x |3x 2+6x =1}={0,-6},A ∪B ={x |x =-6或-4<x <4},A ∩B ={0},故A 错误,显然B 、D 错误,故C 正确. 答案 C14.已知集合A ={x |y =4-x 2},B ={x |a ≤x ≤a +1},若A ∪B =A ,则实数a 的取值范围为( )A.(-∞,-3]∪[2,+∞)B.[-1,2]C.[-2,1]D.[2,+∞)解析 集合A ={x |y =4-x 2}={x |-2≤x ≤2}, 因A ∪B =A ,则B ⊆A .又B ≠∅,所以有⎩⎨⎧a ≥-2,a +1≤2,所以-2≤a ≤1.答案 C15.(多填题)已知集合A ={x ∈R||x +2|<3},集合B ={x ∈R|(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =________,n =________. 解析 A ={x ∈R||x +2|<3}={x ∈R|-5<x <1}, 由A ∩B =(-1,n ),可知m <1,则B ={x |m <x <2},画出数轴,可得m =-1,n =1.答案 -1 116.集合U =R ,A ={x |x 2-x -2<0},B ={x |y =ln(1-x )},则图中阴影部分所表示的集合是________.解析 易知A =(-1,2),B =(-∞,1),∴∁U B =[1,+∞),A ∩(∁U B )=[1,2).因此阴影部分表示的集合为A ∩(∁U B )={x |1≤x <2}. 答案 [1,2)C级创新猜想17.(多填题)对于任意两集合A,B,定义A-B={x|x∈A且x∉B},A*B=(A-B)∪(B -A),记A={y|y≥0},B={x|y=lg(9-x2)},则B-A=________,A*B=________. 解析由题意,得A={y|y≥0},B={x|-3<x<3},∴A-B={x|x≥3},B-A={x|-3<x<0}.因此A*B={x|x≥3}∪{x|-3<x<0}={x|-3<x<0或x≥3}.答案{x|-3<x<0}{x|-3<x<0或x≥3}。
高中数学集合测试题(含答案和解析)

高中数学集合测试题(含答案和解析)一、单选题1.已知集合{}1,2A =,{}2,3,4B =,则A B =( )A .{}2B .{}3C .{}1,3D .{}1,22.已知集合{}260A x R x x =∈+-<,集合1133x B x R -⎧⎫=∈≥⎨⎬⎩⎭,则A B =( ) A .{}32x x -<<B .{}02x x <≤C .{}02x x ≤<D .{}3x x >-3.设M ,N ,U 均为非空集合,且满足M ⫋N ⫋U ,则()()U U M N ⋂=( ) A .MB .NC .u MD .u N 4.已知集合{|04,}P x x x Z =<<∈,且M P ⊆,则M 可以是( ) A .{1,2} B .{2,4} C .{0,2} D .{3,4} 5.设集合{}1A x x =>,{}2B x x =≤,则A B =( )A .∅B .{}12x x <≤C .{}12x x x ≤>或D .R6.已知集合2cos ,3n A x x n N π*⎧⎫==∈⎨⎬⎩⎭,{}2230B x x x =--<,则A B =( ) A .{}2,1-- B .{}2,1,1-- C .{}1,2 D .{}1,1,2- 7.已知集合{}2,3,6,8U =,{}2,3A =,{}2,6,8B =,则()U A B =( ) A .{6,8} B .{2,3,6,8} C .{2} D .{2,6,8} 8.已知集合{}1,2,3A =,{}20B x x =-<,则A B =( )A .{}1B .{}1,2C .{}0,1,2D .{}1,2,3 9.设集合{}2,3,4,5A =,{}3,4,6B =,则A B =( ).A .{}2B .{}2,3C .{}3,4D .{}2,3,410.设集合{}{}13,33A xx B x x =≤≤=-≤≤∣∣,则A B =( ) A .[]1,3 B .[]3,3- C .(]1,3 D .[]3,1-11.已知集合{}2{63},3100S x x T x x x =∈-<<=--<Z ∣∣,则S T ( )A .{23}x x -<<∣B .{1,0,1,2}-C .{52}xx -<<∣ D .{2,1,0,1,2}-- 12.已知集合{}1,0,1,2M =-,{}21x N x =>,则()R M N ⋂=( ) A .{}1-B .{}0x x ≤C .{}10x x -<≤D .{}1,0-13.已知集合{|12}A x x =-<≤,{}2,1,0,2,4B =--,则()R A B ⋂=( )A .∅B .{}1,2-C .{}2,4-D .{}2,1,4--14.若集合{}{}22,3,|560,A B x x x ==-+=则A B =( )A .{2,3}B .∅C .2D .2,315.给出下列关系:①13∈R ;Q ;③-3∉Z ;④∉N ,其中正确的个数为( )A .1B .2C .3D .4二、填空题16.设{1,2}{1,2,3,4}A =,则满足条件的集合A 共有________个.17.已知全集{1,2,3,4,5,6,7}U =,集合{}1,3,5,7A =,则U A ____________.18.已知(){},21A x y y x ==+,(){},3B x y y x ==+,则A B =___________.19.集合{}14A x x =-<≤,{}1,1,3B =-,则A B 等于_________.20.若集合(){}21420A x a x x =-+-=有且仅有两个子集,则实数a 的值是____. 21.已知全集为R ,集合()1,A =+∞,则A =__________.22.若集合{}|23A x x =-<<,{}|2B x x =>,则A B =______.23.若实数2a =,集合{}|13B x x =-<<,则a 与B 的关系是______.24.对于数集M 、N ,定义{},,M N x x a b a M b N +==+∈∈,,,a M N x x a M b N b ⎧⎫÷==∈∈⎨⎬⎩⎭,若集合{}1,2P =,则集合()P P P +÷中所有元素之和为___________.25.若集合{}3A x x =>,集合{}B x x a =≥,且B A ,则实数a 的取值范围是______. 三、解答题26.已知集合{}1|43280x x A x +=-⋅+,{}|2.B x x a =+< (1)当1a =时,求A B ;(2)若“x B ∈”是“x A ∈”的必要条件,求实数a 的取值范围.27.在①{}{}21,22,1,0a a a a ⊆-+-;②关于x 的不等式13ax b <+≤的解集是{}34x x <≤这两个条件中任选一个,补充在下面的问题(1)中并解答,若同时选择两个条件作答,以第一个作答计分.(1)已知______,求关于x 的不等式230ax x a -->的解集A ;(2)在(1)的条件下,若非空集合{}22B x k x k =<≤+,A B A ⋃=,求实数k 的取值范围.28.已知集合{}17U x x =≤≤,{}25A x x =≤<,{}37B x x =<≤.(1)求A B ;(2)求()U A B .29.设全集{2}U x x =≥-∣,{210}A x x =<<∣,{28}B x x =≤≤∣.求U A ,()U A B ⋂,A B ,()U A B30.已知集合{}4222x A x =<≤,{}122B x a x a =-<≤+(1)当0a =,求A B ;(2)若A B =∅,求a 的取值范围.【参考答案】一、单选题1.A【解析】【分析】根据集合的交集运算,即可求得答案.【详解】集合{}1,2A =,{}2,3,4B =,则{2}A B =,故选:A2.C【解析】【分析】本题首先通过解不等式260x x +-<得出{}32A x x =-<<,然后通过解不等式1133x -≥得出{}0B x x =≥,最后通过交集的相关性质即可得出结果.【详解】260x x +-<,()()320x x +-<,32x -<<,{}32A x x =-<<,1133x -≥,11x -≥-,0x ≥,{}0B x x =≥, 则{}02A B x x ⋂=≤<,故选:C.3.D【解析】【分析】利用()()()U U u M N M N ⋂=⋃,判断相互之间的关系.【详解】 ()()()U U u M N M N ⋂=⋃,M N N ⋃=,()u u M N N ⋃=.故选D.4.A【解析】【分析】化简集合P ,根据集合的包含关系确定M .【详解】因为{|04,}={1,2,3}P x x x Z =<<∈,又M P ⊆,所以任取x M ∈,则{1,2,3}x ∈, 所以M 可能为{2,3},A 对,又 0M ∉,4M ∉,∴ M 不可能为{2,4},{0,2},{3,4},B ,C ,D 错,故选:A.5.B【解析】【分析】根据交集的定义计算可得;【详解】 解:因为{}1A x x =>,{}2B x x =≤,所以{}12A B x x ⋂=<≤;故选:B6.C【解析】【分析】结合余弦型函数的周期性可得到{}1,1,2,2A =--,再得到2230x x --<的解集,进而求解.【详解】 因为2cos 3y x π=的最小正周期263T ππ==且1cos 32π=, 21coscos cos 3332ππππ⎛⎫=-=-=- ⎪⎝⎭,3cos 13π=-, 41coscos cos 3332ππππ⎛⎫=+=-=- ⎪⎝⎭,51cos cos 2cos 3332ππππ⎛⎫=-== ⎪⎝⎭, 6cos 13π=,71cos cos 2cos 3332ππππ⎛⎫=+== ⎪⎝⎭,, 所以{}*|2cos ,1,1,2,23n A x x n N π⎧⎫==∈=--⎨⎬⎩⎭, 又{}{}223013B x x x x x =--<=-<<, 所以{}1,2A B =,故选:C7.A【解析】【分析】由已知,先有集合U 和集合A 求解出U A ,再根据集合B 求解出()U A B ⋂即可. 【详解】因为{}2,3,6,8U =,{}2,3A =,所以{}6,8U A =,又因为{}2,6,8B =,所以(){}6,8U A B =.故选:A.8.A【解析】【分析】根据集合交集的概念及运算,即可求解.【详解】 由题意,集合{}{}202B x x x x =-<=<,又由{}1,2,3A =,根据集合交集的概念及运算,可得{}1A B ⋂=.故选:A.9.C【解析】【分析】依据交集定义即可求得A B【详解】{}{}{}2,3,4,53,4,63,4A B ⋂=⋂=故选:C10.A【解析】【分析】利用集合交集定义计算即可【详解】[1,3],[3,3],[1,3]A B A B ==-⋂=故选 :A11.B【解析】【分析】求解一元二次不等式解得集合T ,再求S T 即可.【详解】因为{63}S x x =∈-<<Z∣{}5,4,3,2,1,0,1,2=-----, {}23100T x x x =--<∣()(){}|520{|25}x x x x x =-+<=-<<,故S T {}1,0,1,2=-.故选:B.12.D【解析】【分析】先求出R N ,再结合交集定义即可求解.【详解】 由{}{}R 210x N x x x =≤=≤,得()R M N ⋂={}1,0- 故选:D13.D【解析】 【分析】利用补集定义求出A R ,利用交集定义能求出()AB R . 【详解】解:集合{|12}A x x =-<≤,{}2,1,0,2,4B =--,则R {|1A x x =≤-或2}x >,(){}R 2,1,4A B ∴⋂=--.故选:D14.A【解析】【分析】依据交集定义去求A B 即可.【详解】{}{}2|560=2,3B x x x =-+=则{}{}{}2,32,32,3A B ⋂=⋂=,故选:A .15.B【解析】【分析】根据数集的定义,即可得答案;【详解】13是实数,①②错误;-3是整数,③④正确.所以正确的个数为2.故选:B.二、填空题16.4【解析】【分析】根据并集的定义,列举集合A .【详解】由并集定义可知,集合A 中有元素3和4,所以满足条件的集合{}{}{}{}3,4,1,3,4,2,3,4,1,2,3,4A =共4个.故答案为:417.{}2,4,6【解析】【分析】由补集的定义即可求解.【详解】解:因为全集{1,2,3,4,5,6,7}U =,集合{}1,3,5,7A =,所以{}2,4,6U A =.故答案为:{}2,4,618.(){}2,5【解析】【分析】由方程组可求得交点坐标,由此可得交集.【详解】由213y x y x =+⎧⎨=+⎩得:25x y =⎧⎨=⎩,(){}2,5A B ∴=. 故答案为:(){}2,5.19.{}1,3【解析】【分析】由交集定义直接得到结果.【详解】由交集定义知:{}1,3A B =.故答案为:{}1,320.±1【解析】【分析】分析出集合A 有1个元素,对a 讨论方程解的情况即可.【详解】因为集合(){}21420A x a x x =-+-=有且仅有两个子集, 所以集合A 有1个元素.当a =1时,{}1|4202A x x ⎧⎫=-==⎨⎬⎩⎭,符合题意; 当a ≠1时,要使集合A 只有一个元素,只需()()244120a ∆=--⨯-=,解得:1a =-;综上所述: 实数a 的值是1或-1.故答案为:±1.21.(],1-∞【解析】【分析】直接利用补集的定义求解即可【详解】因为全集为R ,集合()1,A =+∞, 所以A =(],1-∞,故答案为:(],1-∞22.{}|23x x <<##()2,3【解析】【分析】由交集运算可直接求解.【详解】因为{}|23A x x =-<<,{}|2B x x =>,则{}|23A B x x =<<.故答案为:{}|23x x <<23.a B ∈【解析】【分析】根据元素与集合关系即可判断.【详解】因为2a =,满足123-<<,所以a B ∈.故答案为:a B ∈.24.232##11.5 【解析】【分析】根据定义分别求出()P P P +÷中对应的集合的元素即可得到结论.【详解】{1P =,2},{|P P x x a b ∴+==+,a P ,}{2b P ∈=,3,4},(){|2P P P x x ∴+÷==,3,4,1,3}2, ∴元素之和为323234122++++=, 故答案为:232. 25.3a >【解析】【分析】解不等式求得结合A ,根据B A 列不等式来求得a 的取值范围.【详解】3x >⇔3x <-或3x >,所以{|3A x x =<-或}3x >.由于B A ,所以3a >.故答案为:3a >三、解答题26.(1)(]3,2-(2)()3,0.-【解析】【分析】(1)化简集合A ,B ,再由并集的定义求解即可;(2)列出实数a 的不等式组,解之即可得出实数a 的取值范围.(1)由143280x x +-⋅+,得()()22240x x --,则224x ,则12x ,所以[]1,2A =, 由12x +<,可得31x -<<,则()3,1B =-,所以[]()(]=1,23,13,2A B ⋃⋃-=-(2)()2,2B a a =---,因为“x B ∈”是“x A ∈”的必要条件,所以A B ⊆ ,所以2122a a --<⎧⎨->⎩, 所以()3,0.a ∈-27.(1)条件选择见解析,12A x x ⎧=<-⎨⎩或}2x > (2)[)5,1,22∞⎛⎫--⋃ ⎪⎝⎭ 【解析】【分析】(1)若选①,分2122a a =-+和11a =-,求得a ,再利用一元二次不等式的解法求解; 若选②,根据不等式13ax b <+≤的解集为{}34x x <≤,求得a ,b ,再利用一元二次不等式的解法求解;(2)由A B A ⋃=,得到B A ⊆求解;(1)解:若选①,若2122a a =-+,解得1a =,不符合条件.若11a =-,解得2a =,则2222a a -+=符合条件.将2a =代入不等式230ax x a -->并整理得()()2210x x -+>,解得2x >或12x <-,故12A x x ⎧=<-⎨⎩或}2x >. 若选②,因为不等式13ax b <+≤的解集为{}34x x <≤,所以3143a b a b +=⎧⎨+=⎩,解得25a b =⎧⎨=-⎩. 将2a =代入不等式整理得()()2210x x -+>,解得2x >或12x <-.故12A x x ⎧=<-⎨⎩或}2x >. (2)∵A B A ⋃=,∴B A ⊆,又∵B ≠∅, ∴22122k k k +>⎧⎪⎨+<-⎪⎩或2222k k k +>⎧⎨≥⎩, ∴52k <-或12k ≤<, ∴[)5,1,22k ⎛⎫∈-∞-⋃ ⎪⎝⎭. 28.(1){}35x x << (2){12x x ≤<或}37x <≤【解析】【分析】根据集合间的运算直接得解.(1) 由{}25A x x =≤<,{}37B x x =<≤,得{}35A B x x ⋂=<<;(2) 由{}17U x x =≤≤,{}25A x x =≤<,得{12U A x x =≤<或}57x ≤≤, 故(){12U A B x x ⋃=≤<或}37x <≤.29.{22U A x x =-≤≤∣或10}x ≥,(){2}U A B =,{28}A B x x ⋂=<≤∣,(){22U A B x x ⋂=-≤≤∣或8}x >【解析】【分析】依据补集定义求得U A ,再依据交集定义求得()U A B ⋂;依据交集定义求得A B ,再依据补集定义求得()U A B . 【详解】{2}U x x =≥-∣,{210}A x x =<<∣,{28}B x x =≤≤∣,则{22U A x x =-≤≤∣或10}x ≥,则(){2}U A B = {28}A B x x ⋂=<≤∣,则(){22U A B x x ⋂=-≤≤∣或8}x > 30.(1){12}A B xx ⋂=<≤∣ (2)1,[5,)2⎛⎤-∞-⋃+∞ ⎥⎝⎦ 【解析】【分析】(1)首先求出集合,A B ,然后根据集合的交集运算可得答案; (2)分B =∅、B ≠∅两种情况讨论求解即可.(1)因为0a =,所以{12}B xx =-<≤∣ 因为{}4222{14}x A x x x =<≤=<≤∣, 所以{12}A B xx ⋂=<≤∣. (2)当B =∅,即122a a -≥+,3a ≤-时,符合题意当B ≠∅时可得12214a a a -<+⎧⎨-≥⎩或122221a a a -<+⎧⎨+≤⎩, 解得5a ≥或132a -<≤-. 综上,a 的取值范围为1,[5,)2⎛⎤-∞-⋃+∞ ⎥⎝⎦.。
高中数学集合测试题(含答案和解析)

高中数学集合测试题(含答案和解析)一、单选题1.已知集合{}{}22,1,0,2,3,4,|340A B x x x =--=--<,则A B =( )A .{}1,0,2,3,4-B .{}0,2,3,4C .{}0,2,3D .{}2,32.已知集合{}0,1,2,3,4A =,集合{}R 326xB x =∈<,则A B =( )A .{}0,1,2B .{}0,1,2,3C .{}0,1,2,3,4D .{}1,2,33.设集合{}1A x x =>,{}2B x x =≤,则A B =( ) A .∅B .{}12x x <≤C .{}12x x x ≤>或D .R4.若集合{}220A x x x =--<,{}21B x x =<,则A B =( )A .AB .BC .()1,0-D .()0,25.设集合{}0,1S =,{}0,3T =,则S T ⋃=( ) A .{}0 B .{}1,3 C .{}0,1,3D .{}0,1,0,36.已知R 为实数集,集合{}{}2340,ln(1)A x x x B x y x =--≤==-,则R A B ⋃=( )A .{}14x x <≤B .{}11x x -≤≤C .{}1x x ≥-D .{}4x x ≤7.已知集合{}{}234014P x x x Q x N x =--<=∈≤≤,,则=P Q ( )A .{1,2,3,4}B .{1,2,3}C .{1,2}D .{2,3,4}8.设全集U =R ,已知集合2|4A x x x >={},|B x y =={,则()UA B ⋂=( )A .[0,4]B .(,4]-∞C .(,0)-∞D .[0,)+∞9.设集合1|05x A x x -⎧⎫=>⎨⎬-⎩⎭,{}|13B x x =-≤≤,则()A B =R ( ) A .{}|35x x ≤< B .{}|15x x ≤< C .{}|15x x -≤<D .{}|13x x ≤≤10.已知集合{}1A x x =≤,B ={}02x x <<,则A B =( ) A .(]0,1B .[)1,2C .()0,1D .()0,211.已知集合50{|}A x x =<<-,{}41B x x =-≤≤,则A B ⋃=( ) A .AB .BC .(5,1]-D .[4,0)-12.已知集合{}13A x x =≤≤,集合{}24B x x =≤≤,则A B =( ) A .{}23x x ≤≤B .{}34x x <≤C .{}12x x <≤D .{|1x x <或}2x ≥13.若集合{}{}22,3,|560,A B x x x ==-+=则A B =( )A .{2,3}B .∅C .2D .2,314.设集合{}123A =,,,{}2|0B x R x x =∈-=,则A B ⋃=( ) A .{}1B .{}01,C .{}123,,D .{}0123,,,15.已知集合1|2,[,4]2xA xB a a ⎧⎫=>=+⎨⎬⎩⎭,若(]1,2A B =-,则=a ( )A .2B .1-C .2-D .5-二、填空题16.网络流行词“新四大发明’’是指移动支付、高铁、网购与共享单车.某中学为了解本校学生中“新四大发明”的普及情况,随机调查了100名学生,其中使用过移动支付或共享单车的学生共90名,使用过移动支付的学生共有80名,使用过共享单车的学生且使用过移动支付的学生共有60名,则该校使用共享单车的学生人数与该校学生总数比值的估计值为___________.17.设集合{}13A x x =<<,{}B x x a =<,若A B ⊆,则a 的取值范围是_________. 18.集合A ={2|x x -ax +2=0}的子集有两个,则实数a =______. 19.已知集合{}2,1,2A =-,{}1,B a a =+,且B A ⊆,则实数a 的值是___________.20.设全集{}0,1,2U =,集合{}0,1A =,在UA______21.方程组13x y x y -=⎧⎨+=⎩的解集..为_____. 22.已知集合A 与B 的关系如下图,则图中所示的阴影部分用集合表示为________.(要求用集合A 与B 的符号关系表示)23.已知集合(){}2,2A x y y xx ==-,()(){},21B x y y x ==+,则AB =___________.24.(1)已知集合{}2230A x x x =--=,{}20B x ax =-=,且B A ⊆,则实数a 的值为______.(2)若不等式23208kx kx +-<对一切实数x 都成立,则k 的取值范围为______.25.当x A ∈时,若有1x A -∉且1x A +∉,则称x 是集合A 的一个“孤元”,由A 的所有孤元组成的集合称为A 的“孤星集”,若集合{}1,2,3M =的孤星集是M ',集合{}1,3,4P =的孤星集是P ',则M P ''⋂=______.三、解答题26.已知集合A ={x |24x >},B ={x ||x -a |<2},其中a >0且a ≠1. (1)当a =2时,求A ∪B 及A ∩B ;(2)若集合C ={x |log ax <0}且C ⊆B ,求a 的取值范围.27.已知全集U R =,集合{|A x =213x -<,123}3x x -≤-,{|13}B x x =-≤≤.(1)求A ,A B ⋃,UB(2)如图①,阴影部分表示集合M ,求M . (3)如图②,阴影部分表示集合N ,求N .28.已知函数()()4log 526f x x x =--()g x x α=(α为常数),且()g x 的图象经过点(8,22P .(1)求()f x 的定义域和()g x 的解析式;(2)记()f x 的定义域为集合A ,()g x 的值域为集合B ,求()A B ⋂R .29.集合{}{}3621A x x B x m x m =<≤=≤≤+,. (1)若2m =,求,A B A B ;(2)若x B ∈是x A ∈的必要条件,求实数m 的取值范围.30.设集合{}4U x x =≤,{}12A x x =-≤≤,{}13B x x =≤≤.求:(1)A B ; (2)()U A B ; (3)()()U U A B ⋂.【参考答案】一、单选题 1.C 【解析】 【分析】先求出集合B ,再求两集合的交集即可 【详解】由2340x x --<,得(1)(4)0x x +-<,解得14x -<<, 所以{}14B x x =-<<, 因为{}2,1,0,2,3,4A =--, 所以A B ={}0,2,3, 故选:C 2.A 【解析】 【分析】根据指数函数的单调性,结合集合交集的定义进行求解即可. 【详解】由333262log 26log 273xx <⇒<<<=,因此A B ={}0,1,2, 故选:A 3.B 【解析】 【分析】根据交集的定义计算可得; 【详解】解:因为{}1A x x =>,{}2B x x =≤,所以{}12A B x x ⋂=<≤; 故选:B 4.B 【解析】 【分析】由题知{}12A x x =-<<,{}11B x x =-<<,再求交集即可. 【详解】解:解不等式220x x --<得12x -<<,故{}12A x x =-<<, 解不等式21x <得11x -<<,故{}11B x x =-<<, 所以A B ={}11x x B -<<=. 故选:B 5.C 【解析】 【分析】 由并集的概念运算 【详解】 S T ⋃={}0,1,3故选:C 6.D 【解析】 【分析】首先解一元二次不等式求出集合A ,再根据对数型函数的定义域求出集合B ,最后根据补集、并集的定义计算可得; 【详解】解:由2340x x --≤,即410x x ,解得14x -≤≤,即{}{}234014A x x x x x =--≤=-≤≤,又(){}{}ln 11B x y x x x ==-=,所以{}|1RB x x =≤,所以{}4R A B x x ⋃=≤;故选:D 7.B 【解析】 【分析】解不等式得到14{|}P x x =-<<,根据题意得到{1,2,3,4}Q =,再由集合交集的概念得到结果. 【详解】由集合{}234|0P x x x =--<,解不等式得到:14{|}P x x =-<<,又因为{1,2,3,4}Q =,根据集合交集的概念得到:{}1,2,3P Q ⋂=.8.D 【解析】 【分析】化简集合,A B ,先求出A B ,再求出其补集即可得解. 【详解】2|4A x x x >={}{|0x x =<或4}x >,|B x y ={{|4}x x =≤,所以{|0}A B x x =<, 所以()UA B ⋂={|0}x x ≥,即()UA B ⋂[0,)=+∞.故选:D9.D 【解析】 【分析】求解分式不等式的解集,再由补集的定义求解出A R,再由交集的定义去求解得答案.【详解】1015x x x ->⇒<-或5x >,所以{}15A x x =≤≤R , 所以得(){}13A B x x ⋂=≤≤R . 故选:D 10.A 【解析】 【分析】根据集合的交集概念即可计算. 【详解】∵{}1A x x =≤,B ={}02x x <<,∴A B =(]0,1. 故选:A ﹒ 11.C 【解析】 【分析】根据集合并集的概念及运算,正确运算,即可求解. 【详解】由题意,集合50{|}A x x =<<-,{}41B x x =-≤≤,根据集合并集的概念及运算,可得{|51}(5,1]A B x x =-<≤=-. 故选:C. 12.A 【解析】 【分析】由交集运算直接求出两集合的交集即可.由集合{}13A x x =≤≤,集合{}24B x x =≤≤ 则{}|23A B x x =≤≤ 故选:A 13.A 【解析】 【分析】依据交集定义去求A B 即可. 【详解】{}{}2|560=2,3B x x x =-+=则{}{}{}2,32,32,3A B ⋂=⋂=, 故选:A . 14.D 【解析】 【分析】先求出集合B ,再由并集运算得出答案. 【详解】由{}2|0B x R x x =∈-=可得{}0,1B =则{}0,1,2,3A B ⋃= 故选:D 15.C 【解析】 【分析】求出集合A 的解集,由(]1,2A B =-,列出满足题意的关系式求解即可得答案. 【详解】解:因为{}{}11|2|22|1(1,)2x x A x x x x -⎧⎫=>=>=>-=-+∞⎨⎬⎩⎭,[,4]B a a =+,又(1,2]A B ⋂=-,所以421a a +=⎧⎨≤-⎩,即2a =-,故选:C.二、填空题16.710##0.7 【解析】 【分析】利用韦恩图,根据题中的信息得出样本中使用共享单车和移动支付的学生人数,将人数除以100可得出所求结果. 【详解】根据题意,将使用过移动支付、共享单车的人数用如图所示的韦恩图表示,所以该校使用共享单车的学生人数与该校学生总数比值的估计值为6010710010+=. 故答案为:710. 17.[)3,+∞【解析】 【分析】根据A B ⊆列出不等式即可求解. 【详解】因为{}13A x x =<<,{}B x x a =<,A B ⊆,故只需3a ≥即可满足题意. 故答案为:[)3,+∞.18.22±【解析】 【分析】根据题意可得集合A 中仅有一个元素,则方程220x ax -+=只有一个解,从而有0∆=,即可得出答案. 【详解】解:因为A ={2|x x -ax +2=0}的子集有两个, 所以集合A 中仅有一个元素, 所以方程220x ax -+=只有一个解, 所以280a ∆=-=,解得22a =± 故答案为:22± 19.1 【解析】 【分析】由子集定义分类讨论即可. 【详解】因为B A ⊆,所以a A ∈1a A ∈, 当2a =-1a 无意义,不满足题意;当1a =12=,满足题意; 当2a =11=,不满足题意. 综上,实数a 的值1. 故答案为:120.{2}【解析】 【分析】利用集合的补运算求UA 即可.【详解】由{}0,1,2U =,{}0,1A =,则{2}UA =.故答案为:{2}.21.{(2,1)}【解析】 【分析】利用加减消元法求得方程组的解集. 【详解】依题意13x y x y -=⎧⎨+=⎩,两式相加得24,21x x y ==⇒=, 所以方程组的解集为{(2,1)}. 故答案为:{(2,1)}22.()A BAB ⋃【解析】 【分析】由集合的交并补运算求解即可. 【详解】设全集为A B ,则阴影部分表示集合A 与B 交集的补集,即()A BAB ⋃故答案为:()A BAB ⋃23.()1,1,2,62⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭【解析】 【分析】解方程组直接求解即可 【详解】由()2221y x x y x ⎧=-⎪⎨=+⎪⎩得121x y ⎧=-⎪⎨⎪=⎩或26x y =⎧⎨=⎩,∴()1,1,2,62A B ⎧⎫⎛⎫⋂=-⎨⎬ ⎪⎝⎭⎩⎭.故答案为:()1,1,2,62⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭24. 2a =-或23a =或0 30k -<≤ 【解析】 【分析】(1)分情况讨论,0,a B ==∅满足题意;当0a ≠时,{}220B x ax a ⎧⎫=-==⎨⎬⎩⎭,因为B A ⊆,故得到21a =-或23a=,解出即可;(2)分情况讨论,当0k =时,满足题意;当0k ≠时,只需要满足23Δ808k k k <⎧⎪⎨⎛⎫=-⨯-< ⎪⎪⎝⎭⎩解不等式组即可. 【详解】已知集合{}{}22301,3A x x x =--==-,{}20B x ax =-=当0,a B ==∅,满足B A ⊆; 当0a ≠时,{}220B x ax a ⎧⎫=-==⎨⎬⎩⎭,因为B A ⊆,故得到21a =-或23a= 解得2a =-或23a =; 不等式23208kx kx +-<对一切实数x 都成立,当0k =时,满足题意;当0k ≠时,只需要满足203Δ808k k k <⎧⎪⎨⎛⎫=-⨯-< ⎪⎪⎝⎭⎩解得30k -<< 综上结果为:30k -<≤. 故答案为:2a =-或23a =或0;30k -<≤ 25.∅【解析】 【分析】根据集合的新定义求解出集合M '和P ',再求解交集可得出答案. 【详解】根据“孤星集”的定义,1,112,2A A ∈+=∈ 所以1不是集合M '的元素同理2,3也都不是集合M '的元素M ∴'=∅,同理可得 {}1P '=所以M P '⋂'=∅.故答案为:∅.三、解答题26.(1)A ∪B ={x |x >0},A ∩B ={x |2<x <4};(2){a |1<a ≤2},【解析】【分析】(1)化简集合A ,B ,利用并集及交集的概念运算即得;(2)分a >1,0<a <1讨论,利用条件列出不等式即得.(1)∵A ={x |2x >4}={x |x >2},B ={x ||x -a |<2}={x |a -2<x <a +2},∴当a =2时,B ={x |0<x <4},所以A ∪B ={x | x >0},A ∩B ={x |2<x <4};(2)当a >1时,C ={x |log ax <0}={x |0<x <1},因为C ⊆B ,所以2021a a -≤⎧⎨+≥⎩,解得-1≤ a ≤2, 因为a >1,此时1<a ≤2,当0<a <1时,C ={x |log ax <0}={x |x >1},此时不满足C ⊆B ,综上,a 的取值范围为{a |1<a ≤2}.27.(1)3{|2}2A x x =≤<,{|13}AB x x ⋃=-≤≤,U B {|1x x =<-或3}x >; (2)3{|12M x x =-≤<或23}x ≤≤; (3){|1M x x =<-或3}x >.【解析】【分析】(1)求解不等式组解得集合A ,再根据集合的并运算和补运算即可求得结果; (2)根据阴影部分可知M =()B A B ⋂,根据已知集合求解即可; (3)根据阴影部分可知M =()U A B ,根据已知集合求解即可. (1){|A x =213x -<,1323}{|2}32x x x x -≤-=≤<, {|13}A B x x ⋃=-≤≤,U B {|1x x =<-或3}x >.(2)因为3{|2}2A B x x ⋂=≤< 根据题意可得M =()B A B ⋂3{|12x x =-≤<或23}x ≤≤. (3) 因为{|13}A B x x ⋃=-≤≤,根据题意可得M =()U A B {|1x x =<-或3}x >. 28.(1)()3,5;()12g x x =;(2)][)0,35,∞⎡⋃+⎣.【解析】【分析】(1)根据f (x )解析式即可求其定义域,根据()g x x α=过P 求出α即可求出g (x )解析式; (2)根据幂函数的性质求g (x )值域即B ,根据集合的补集和交集的运算方法求解即可.(1)5052603x x x x ⎧-><⎧⇒⎨⎨->>⎩⎩, ∴f (x )定义域为()3,5;∵()g x x α=过(P ,则()3132218222g x x ααα==⇒=⇒=; (2)()3,5A =,[)0,B ∞=+,][(),35,A ∞∞=-⋃+R ,()][)0,35,A B ∞⎡⋂=⋃+⎣R .29.(1){}35A B x x ⋂=<≤,{|26}x x AB ≤≤=; (2)5,32⎡⎤⎢⎥⎣⎦【解析】【分析】(1)将m 的值代入集合B ,然后根据交集与并集的定义即可求解;(2)由题意,可得A B ⊆,根据集合的包含关系列不等式组求解即可得答案.(1)解:当2m =时,{|25}B x x =≤≤,又{}36A x x =<≤, 所以{}35A B x x ⋂=<≤,{|26}x x AB ≤≤=;(2)解:因为x B ∈是x A ∈的必要条件,所以A B ⊆,即(3,6][,21]m m ⊆+,所以有3216m m ≤⎧⎨+≥⎩,解得532≤≤m , 所以实数m 的取值范围为5,32⎡⎤⎢⎥⎣⎦. 30.(1){|12}A B x x =≤≤;(2)(){|1U B x A x ⋃=<-或14}x ≤≤;(3)()(){|1U U x B x A ⋂=<-或34}x <≤.【解析】【分析】(1)由集合的交集运算可求得答案; (2)先算出U A ,再求()U A B ⋃; (3)先求U B ,再求()()U U A B ⋂. (1)解:∵{|12}A x x =-≤≤,{|13}B x x =≤≤, ∴{|12}A B x x =≤≤;(2)解:{|4}U x x =≤,{}12A x x =-≤≤,所以{|1U A x x =<-或24}x <≤. 又∵{|13}B x x =≤≤,∴(){|1U B x A x ⋃=<-或14}x ≤≤.(3)∵{|4}U x x =≤,{|13}B x x =≤≤,∴{|1U B x x =<或34}x <≤, ∴()(){|1U U x B x A ⋂=<-或34}x <≤.。
高中数学集合测试题(含答案和解析)

高中数学集合测试题(含答案和解析)一、单选题1.已知集合{}2|4A x x =≤,{}2|log 1B x x =≥,则A B ⋃=( ) A .[]22-,B .{}2C .[)2+∞,D .[)2+-∞,2.已知集合{A x y =∣,{}0,1,2,3B =,则A B =( ) A .{3} B .{2,3} C .{1,2,3} D .{0,1,2,3}3.已知{}{||2},0A x Z xB x x N x =∈<=∈>∣∣∣,则A B =( ) A .{1} B .{0,1}C .{0,1,2}D .∅4.若集合{A y y ==,{}3log 2B x x =≤,则A B =( )A .(]0,9B .[)4,9C .[]4,6D .[]0,9 5.已知集合{}24A x N x =∈≤,{}1,B a =,B A ⊆,则实数a 的取值集合为( ) A .{}0,1,2 B .{}1,2 C .{}0,2 D .{}2 6.已知集合{}22A x x =-≤,{}1,2,3,4,5B =,则A B =( )A .{}1,2,3,4B .{}2,3,4,5C .{}1,2,3D .{}2,3,4 7.已知集合{1,1},{0,1}A B =-=,设集合{,,}C z z x y x A y B ==+∈∈∣,则下列结论中正确的是( )A .A C ⋂=∅B .AC A ⋃= C .B C B =D .A B C = 8.已知集合{}1,2,3A =,{}20B x x =-<,则A B =( )A .{}1B .{}1,2C .{}0,1,2D .{}1,2,39.已知集合{}2,3,4A =,{}28120B x Z x x =∈-+<,则A B 中元素的个数是( ) A .4B .5C .6D .7 10.已知集合2{|30}A x x x =-≥,集合{1234}B =,,,,则A B =( ) A .{01234},,,, B .{123},, C .[0,4] D .[1,3] 11.已知集合{}24A x x =≤,{}2,B y y x x ==∈R ,则A B =( ) A .[0,2] B .[0,4] C .[2,2]- D .∅ 12.已知集合{}1A x x =≤,B ={}02x x <<,则A B =( )A .(]0,1B .[)1,2C .()0,1D .()0,2 13.已知集合()(){}{}1460,7524||A x x x B x x =+--≤=-≤-≤,则A B ⋃=( ) A .1|12x x ⎧⎫⎨⎬⎩⎭≤≤ B .{}|26x x -≤≤C .1|52x x ⎧≤≤⎫⎨⎬⎩⎭D .{}|14x x ≤≤14.设全集{}{}{}10,2,3,5,0,3,5,9U n N n A B =∈≤==,则()U A B =( ) A .{2,6} B .{0,9} C .{1,9} D .∅15.设(){}2log 1A x y x ==+,{}24B x x =≥,则()R A B =( )A .()1,2-B .[)1,2-C .()2,+∞D .()1,-+∞二、填空题16.设集合A 为空间中两条异面直线所成角的取值范围,集合B 为空间中直线与平面所成角的取值范围,集合C 为二面角的平面角的取值范围,则集合A 、B 、C 的真包含关系是___________.17.集合{}{}23,12,1A B m m ==+,,且A B =,则实数m =________.18.将集合{220s t A t s =-≤<且,}s t Z ∈中所有的元素从小到大排列得到的数列记为{}n a ,则50a =___________(填数值).19.若集合(){}2381x A x ==,集合(){}23log 1B x x ==,则A B =_________. 20.已知{}12A x x =-<≤,{}20B x x =-≤<,A B =________________.21.若集合{}2210A x x x =-+=,{}210B x x =-=,则A ______B .(用符号“⊂”“=”或“⊃”连接)22.已知集合{}2280A x x x =--<,非空集合{}23B x x m =-<<+,若x B ∈是x A ∈成立的一个充分而不必要条件,则实数m 的取值范围是___________.23.已知集合{}1,2A =,{}21,B x =-.若{}1A B ⋂=,则x =___________. 24.已知集合{}1,2,4,8A =,集合B ={x x 是6的正因数},则A B ⋃=__________. 25.若集合A ={x ∈R|ax 2+ax +1=0}中只有一个元素,则a =________.三、解答题26.设全集U =R ,集合{}14A x x =-<≤,{}2log 1B x x =>(1)求()U A B ;(2)若集合{}123C x a x a =-<<+,满足B C B ⋃=,求实数a 的取值范围.27.已知p :|m -1|>a (a >0),q :方程22152x y m m +=--表示双曲线. (1)若q 是真命题,求m 的取值范围;(2)若p 是q 的充分不必要条件,求a 的取值范围28.已知集合{}3A x a x a =≤≤+,{1B x x =<-或5}x >.(1)若A B =∅,求a 的取值范围;(2)若A B A =,求a 的取值范围.29.已知集合{}2560A xx x =--≤∣,集合{}26510B x x x =-+>∣,集合09x m C x x m -⎧⎫=≤⎨⎬--⎩⎭∣. (1)求A B ;(2)若A C C =,求实数m 的值取范围.30.(1)已知全集U =R ,集合{}2A x x =≤,{}2|60B x x x =--<,求()U A B ⋂. (2)已知0a >,0b >,且21a b +=,若不等式21m a b+≥恒成立,求实数m 的最大值.【参考答案】一、单选题1.D【解析】【分析】先化简集合A 、B ,再去求A B【详解】{}{}2|4|22A x x x x =≤=-≤≤,{}{}2|log 1|2B x x x x =≥=≥ 则{}{}{}|22|2|2x x x B x A x x -≤≤⋃≥==≥-⋃故选:D2.C【解析】【分析】先由y =A ,再根据集合交集的原则即可求解.【详解】对于集合A ,10x -≥,即1≥x ,则{}1A x x =≥,所以{}1,2,3A B =,故选:C3.A【解析】【分析】首先列举表示集合A ,再求A B .【详解】由条件可知{}1,0,1A =-,{}0B x x N x =∈>,所以{}1A B ⋂=.故选:A4.A【解析】【分析】先解出集合A 、B,再求A B .【详解】因为{{}0A y y y y ===≥,{}{}3log 209B x x x x =≤=<≤,所以{}09A B x x ⋂=<≤.故选:A .5.C【解析】【分析】化简集合A ,根据B A ⊆求实数a 的可能取值,由此可得结果.【详解】 因为集合{}24A x N x =∈≤化简可得{0,1,2}A = 又{}1,B a =,B A ⊆,所以0a =或2a =,故实数a 的取值集合为{0,2},故选:C.6.A【解析】【分析】首先解绝对值不等式求出集合A ,再根据交集的定义计算可得;【详解】 解:由22x -≤,即222x -≤-≤,解得04x ≤≤,所以{}[]220,4A x x =-≤=, 又{}1,2,3,4,5B =,所以{}1,2,3,4A B =.故选:A7.C【解析】【分析】由题意得{1,0,1,2}C =-,再由交集和并集运算求解即可.【详解】由题意可知,{1,0,1,2}C =-,{1,1}A C ⋂=-,{}1,0,1,2A C C ⋃=-=,{0,1},{1,0,1}B C B A B C ⋂==⋃=-≠.故选:C8.A【解析】【分析】根据集合交集的概念及运算,即可求解.【详解】 由题意,集合{}{}202B x x x x =-<=<,又由{}1,2,3A =,根据集合交集的概念及运算,可得{}1A B ⋂=.故选:A.9.A【解析】【分析】求出集合B ,再根据并集的定义即可求出答案.【详解】{}()(){}{}{}28120260263,4,5B x Z x x x Z x x x Z x =∈-+<=∈--<=∈<<=, 所以{}2,3,4,5A B ⋃=.所以A B 中元素的个数是4.故选:A.10.B【解析】【分析】先求得{|03}A x x =≤≤,再根据交集的运算可求解.【详解】由已知{|03}A x x =≤≤,所以{}1,2,3A B =.故选:B .11.A【解析】【分析】解不等式得集合A ,求二次函数值域得集合B ,然后由集合的交集运算可得.【详解】由24x ≤解得22x -≤≤,即{}22A x x =-≤≤,易知20y x =≥,即{|0}B y y =≥则{|02}A B x x =≤≤.故选:A12.A【解析】【分析】根据集合的交集概念即可计算.【详解】 ∵{}1A x x =≤,B ={}02x x <<,∴A B =(]0,1.故选:A ﹒13.B【解析】【分析】化简集合A 和B ,根据集合并集定义,即可求得答案.【详解】()(){}140|6A x x x =+--≤{}{}2=|310=|(5)(02)0x x x x x x ---+≤≤∴{}|25A x x =-≤≤{}{}|=75241221|B x x x x =-≤-≤-≤-≤-∴1|62x x B ⎧⎫=≤⎨⎩≤⎬⎭∴{}{}1|25|6=|262A B x x x x x x ⎧⎫-≤⎨⎬⋃=≤≤⋃≤-≤⎩≤⎭故选:B.14.B【解析】【分析】根据集合的交运算和补运算求解即可.因为{}{}100,1,2,3,4,5,6,7,8,9,10U n N n =∈≤=,{2,3,5}A ,则{0,1,4,6,7,8,9,10},{0,3,5,9}U A B ==,故(){0,9}U A B =. 故选:B .15.A【解析】【分析】 根据函数定义域的求解,以及简单二次不等式的求解,解得集合,A B ,再根据集合的补运算和交运算,即可求得结果.【详解】 因为(){}2log 1A x y x ==+{}{}|101x x x x =+>=-,{}24B x x =≥{|2x x =≤-或2}x ≥,故B R {|22}x x =-<<,则()R A B ={}()|121,2x x -<<=-.故选:A.二、填空题16.A B C ##C B A【解析】【分析】根据空间中两条异面直线所成角的范围求出A ,根据空间中直线与平面所成角的取值范围求出B ,根据二面角的平面角的取值范围求出C ,根据A 、B 、C 角的范围即可判断它们的包含关系.【详解】集合A 为空间中两条异面直线所成角的取值范围,π(0,]2A ∴=, 集合B 为空间中直线与平面所成角的取值范围,π[0,]2B ∴=, 集合C 为直角坐标平面上直线的倾斜角的取值范围,[0,π]C ∴=,∴集合A 、B 、C 的真包含关系为:A B C .故答案为:A B C .17.1或3-##3-或1【解析】由题意可得223m m +=,求出m ,【详解】因为{}{}23,12,1A B m m ==+,,且A B =,所以223m m +=,由223m m +=,得2230m m +-=,解得1m =或3-故答案为:1或3-18.992【解析】【分析】列举数列的前几项,观察特征,可得出50a .【详解】由题意得10212032313012345622,22,22,22,22,22,,a a a a a a =-=-=-=-=-=-观察规律可得22s t -中,以2s 为被减数的项共有s 个,因为123945++++=,所以50a 是1022t -中的第5项,所以1055022992a =-=.故答案为:992.19.{1,2,33} 【解析】【分析】求解集合,根据集合的并集运算即可.【详解】(){}{}23812x A x ===,(){}231log 13,3B x x ⎧⎫===⎨⎬⎩⎭,则A B ={1,2,33}. 故答案为:{1,2,33}. 20.{}10x x -<<【解析】【分析】由交集运算求解即可.【详解】A B ={}{}{}122010x x x x x x -<≤⋂-≤<=-<< 故答案为:{}10x x -<<21.⊂【解析】【分析】先化简集合A 、B ,再去判断集合A 、B 间的关系即可解决.{}{}22101A x x x =-+==,{}{}2101,1B x x =-==-,则A B ⊂ 故答案为:⊂22.()5,1-【解析】【分析】根据逻辑条件关系与集合间的关系、一元二次不等式的解法即可求解.【详解】 由题意得,{}{}228024A x x x x x =--<=-<<,由x B ∈是x A ∈成立的一个充分而不必要条件,得B A , 即2334m m -<+⎧⎨+<⎩解得,51m -<<, 故答案为:()5,1-.23.±1【解析】【分析】根据给定条件可得1B ∈,由此列式计算作答.【详解】因集合{}1,2A =,{}21,B x =-,且{}1A B ⋂=,于是得1B ∈,即21x =,解得1x =±,所以1x =±.故答案为:±124.{1,2,3,4,6,8}【解析】【分析】先化简集合B ,再求两集合的并集.【详解】因为B ={x x 是6的正因数}{1,2,3,6}=,所以{1,2,3,4,6,8}A B =.故答案为:{1,2,3,4,6,8}.25.4【解析】【分析】集合A 只有一个元素,分别讨论当0a =和0a ≠时对应的等价条件即可【详解】解:2{|10}A x R ax ax =∈++=中只有一个元素,∴若0a =,方程等价为10=,等式不成立,不满足条件. 若0a ≠,则方程满足0∆=,即240a a -=,解得4a =或0a =(舍去).故答案为:4三、解答题26.(1)(4,)(,2]+∞-∞;(2)[3,)(,4]+∞-∞-.【解析】【分析】(1)利用对数函数的单调性化简集合B ,根据集合交集和补集的定义进行求解即可; (2)根据集合并集的运算性质进行求解即可.(1) 因为{}{}2log 12B x x x x =>=>,所以(2,4]A B ⋂=,因此()(4,)(,2]U A B =+∞-∞;(2)因为B C B ⋃=,所以C B ⊆,当123a a -≥+时,即4a ≤-时,C =∅,符合C B ⊆; 当123a a -<+时,即4a >-时,要想C B ⊆,只需:123a a -≥⇒≥,因为4a >-,所以3a ≥, 综上所述:实数a 的取值范围为:[3,)(,4]+∞-∞-. 27.(1)(-∞,2)(5⋃,)∞+;(2)[4,)∞+.【解析】【分析】(1)解不等式(5)(2)0m m --<即得解; (2)由题意可得:1p m a >+或1m a <-+,解不等式组12150a a a -+⎧⎪+⎨⎪>⎩即得解. (1)解:由题意可得(5)(2)0m m --<,解得2m <或5m >.故m 的取值范围为(-∞,2)(5⋃,)∞+.(2)解:由题意可得:1p m a >+或1m a <-+. 因为p 是q 的充分不必要条件,所以(-∞,1)(1a a -++⋃,)(+∞-∞,2)(5⋃,)∞+.所以12150a a a -+⎧⎪+⎨⎪>⎩,解得4a . 故a 的取值范围为[4,)∞+.28.(1)[]1,2-(2)()(),45,-∞-+∞ 【解析】【分析】(1)根据交集的定义,列出关于a 的不等式组即可求解; (2)由题意,A B ⊆,根据集合的包含关系列出关于a 的不等式组即可求解;(1) 解:∵{}3,{1A x a x a B x x =≤≤+=<-或5}x >,且A B =∅, ∴135a a ≥-⎧⎨+≤⎩,解得12a -≤≤, ∴a 的取值范围为[]1,2-;(2) 解:∵{}3,{1A x a x a B x x =≤≤+=<-或5}x >,且A B A =, ∴A B ⊆,∴31a +<-或5a >,即4a或5a >, ∴a 的取值范围是()(),45,-∞-+∞.29.(1)1|13x x ⎧-≤<⎨⎩或162x ⎫<≤⎬⎭; (2)(]3,1--.【解析】【分析】(1)根据一元二次不等式的解法求出集合A 、B ,即可求出A B ; (2)由A C C =,可知A C ⊆,得到不等式组,即得.(1)∵{}2560A xx x =--≤∣,{}26510B x x x =-+>∣, {|16}A x x ∴=-≤≤,1|3B x x ⎧=<⎨⎩或12x ⎫>⎬⎭, ∴1|13A B x x ⎧⋂=-≤<⎨⎩或162x ⎫<≤⎬⎭; (2)∵{|16}A x x =-≤≤,0{|9}9x m C x x m x m x m -⎧⎫=≤=≤<+⎨⎬--⎩⎭∣, 由A C C =,得A C ⊆,961m m +>⎧∴⎨≤-⎩,解得31m -<≤-, ∴实数m 的值取范围为(]3,1--.30.(1)()2,3U A B ⋂=;(2)9.【解析】【分析】(1)先求不等式解集,再利用集合的补集、交集运算即可 (2)转化为最值问题,由基本不等式求解【详解】(1)由已知{}()2602,3B x x x =--<=- ()2,U A =+∞,所以()()2,3U A B ⋂=,(2)()2121222559b a a b a b a b a b ⎛⎫+=+⋅+=++≥= ⎪⎝⎭, 且仅当13a b ==时取等号, 不等式21m a b +≥恒成立,则9m ≤,故m 的最大值为9.。
集合测试题及答案

集合测试题及答案一、选择题1. 集合A={1, 2, 3, 4, 5},集合B={4, 5, 6, 7, 8},则A与B的交集A∩B是:A. {1, 2, 3}B. {4, 5}C. {6, 7, 8}D. ∅2. 设集合C={x | x是质数},集合D={x | x是偶数},则C与D的并集C∪D是:A. {2, 3, 5, 7}B. {1, 2, 3, 4, 5}C. {2, 3, 5, 7, 9}D. ∅3. 若集合E={x | x是小于8的正整数},集合F={x | x是3的倍数},则E与F的补集∁_{U}(E∩F)在全集U={1, 2, 3, 4, 5, 6, 7, 8, 9}中表示为:A. {1, 2, 4, 5, 6, 7}B. {3, 6, 9}C. {1, 2, 4, 5, 6, 7, 8}D. {2, 4, 6, 8}二、填空题4. 设集合G={0, 1, 2},集合H={1, 3, 4},求G与H的对称差,即G△H = ______。
5. 集合K={x | x是小于10的正整数},集合L={x | x是2的整数幂},则K与L的交集不包括的元素是 ______。
6. 给定集合M={x | x是4的倍数},集合N={x | x是5的倍数},求M与N的差集,即M\N = ______。
三、简答题7. 描述集合的运算性质,并给出两个例子说明。
答:集合的运算性质包括交换律、结合律、分配律和德摩根律。
例如,交换律指的是集合的并集和交集不依赖于集合的顺序,如A∪B = B∪A,A∩B = B∩A。
结合律意味着并集和交集的运算可以分步进行,如(A∪B)∪C = A∪(B∪C),(A∩B)∩C = A∩(B∩C)。
德摩根律指的是补集的补集是原集合,如∁_{U}(∁_{U}(A)) = A。
8. 解释什么是集合的幂集,并给出一个例子。
答:集合的幂集是指原集合所有子集构成的集合。
例如,集合P={a, b}的幂集是{{a}, {b}, {a, b}, ∅},它包含了P的所有可能子集。
必修一集合测试题及答案

必修一集合测试题及答案一、选择题(每题5分,共20分)1. 集合A={1,2,3},集合B={3,4,5},则A∩B的元素个数为:A. 1B. 2C. 3D. 4答案:A2. 若集合A={x|x^2-3x+2=0},则A的元素为:A. {1, 2}B. {-1, 2}C. {1, -2}D. {-1, 1}答案:A3. 已知全集U={1,2,3,4,5},集合A={1,2},B={3,4},则A∪B的补集为:A. {5}B. {1,2,3,4}C. {1,2,3,4,5}D. {3,4,5}答案:A4. 若集合A={x|x>0},B={x|x<0},则A∩B的元素为:A. 空集B. {0}C. {1, -1}D. {-1, 0, 1}答案:A二、填空题(每题5分,共20分)1. 集合{1,2,3}的子集个数为______。
答案:82. 若A={x|x^2-5x+6=0},则A的元素为______。
答案:{2, 3}3. 已知全集U={1,2,3,4,5},集合A={1,2},B={2,3,4},则A∩B的元素为______。
答案:{2}4. 若集合A={x|x^2-4x+4=0},则A的元素为______。
答案:{2}三、解答题(每题10分,共20分)1. 已知集合A={x|x^2-2x-3=0},B={x|x^2-x-2=0},求A∪B。
答案:A∪B={-1, 2, 3}2. 若集合A={x|x^2-6x+8=0},B={x|x^2-7x+12=0},求A∩B。
答案:A∩B={2, 3}四、证明题(每题10分,共20分)1. 证明:若A⊆B,B⊆C,则A⊆C。
证明:设x∈A,由A⊆B,得x∈B;由B⊆C,得x∈C。
因此,A⊆C。
2. 证明:若A∩B=A,则A⊆B。
证明:设x∈A,由A∩B=A,得x∈A∩B,即x∈B。
因此,A⊆B。
五、应用题(每题20分,共20分)1. 已知全集U={1,2,3,4,5,6,7,8,9},集合A={1,2,3},B={4,5,6},C={7,8,9},求(A∪B)∩C。
高中数学集合测试题(含答案和解析)

高中数学集合测试题(含答案和解析)一、单选题1.已知集合{}{}0,11,A xx B x x x =≥=-≤≤∈Z ∣∣,则A B =( ) A .[]0,1B .{}1,2C .{}0,1D .[]1,22.设全集U =R ,集合302x A xx ⎧⎫-=≤⎨⎬+⎩⎭,集合{}ln 1B x x =≥,则()UA B =( )A .()e,3B .[]e,3C .[)2,e -D .()2,e -3.设集合{}22A x x =≤,Z 为整数集,则集合A ⋂Z 子集的个数是( )A .3B .6C .7D .84.已知全集U =R ,集合{}1,2,3,4,5A =,{}04B x x =<<,则图中阴影部分表示的集合为( )A .{}1,2,3,4B .{}1,2,3C .{}4,5D .{}55.集合{}220A x x x =--≤,{}10B x x =-<,则A B =( )A .{}1x x ≥B .{}11x x -≤<C .{}1x x <-D .{}21x x -≤<6.已知全集,集合{|(2)0}A x x x =+<,{|||1}B x x ,则如图所示的阴影部分表示的集合是( )A .(2,1)-B .[1,0)[1,2)-⋃C .(2,1)[0,1]--D .[0,1]7.已知集合2,1,0,1,2U ,{}1,2A =,{}1,1B =-,则()U A B ⋂=( )A .{}1B .{}2C .{}1,2D .{}1,1,2-8.已知集合{}24A x x =≤,{}42xB y y ==-,则A B =( )A .∅B .[]22-,C .[)0,2D .[)2,2- 9.已知集合{1,3}A =,{(3)()0}B xx x a =--=∣,若A B A ⋃=,则=a ( ) A .1B .1-或1C .1或3D .3 10.已知集合{}1,0,1,2A =-,{}0,1,3B =,则A B =( ) A .{}1,0,1-B .{}0,1,2C .{}0,1D .{}1,211.设集合{}10M x x =-<,{}12,N y y x x M ==-∈,则M N =( )A .∅B .(,1)-∞-C .(,1)-∞D .(1,1)-12.已知集{}23A x x =+≥合,{}3,1,1,3B =--,则A B =( ) A .{}3B .{}1,3C .{}3,1--D .{}1,1,3-13.已知集合{}1,2,3,4,5U =,{}1,2A =,{}2,3,4B =,则集合()UA B =( )A .{}1B .{}2C .{}1,2,5D .{}1,2,3,414.已知集合{}2230A x x x =--<,{}15B x x =≤≤,则A B =( )A .(]1,3-B .[)1,3C .(]1,5-D .(]3,515.设全集2,1,0,1,2U ,{}2,1,2A =--,{}2,1,0,1B =--,则()U A B =( )A .{}2,1-B .{}0,1C .{}1,0,1-D .{}2,1,0,1--二、填空题16.从集合{}123,,,,n U a a a a =⋅⋅⋅的子集中选出4个不同的子集,需同时满足以下两个条件:①∅、U 都要选出;②对选出的任意两个子集A 和B ,必有A B ⊆或A B ⊇.则选法有___________种.17.若{}}{1020x ax x x +=⊆-=,则=a __________. 18.设集合{1,2,}A a =,{2,3}B =.若B A ⊆,则=a _______. 19.如图,用集合符号表述下列点、直线与平面之间的关系.(1)点C 与平面β:___________; (2)点A 与平面α:___________; (3)直线AB 与平面α:___________; (4)直线CD 与平面α:___________.20.已知集合[)[)2,6,1,4A B ==-,则A B ⋃=__________. 21.已知全集为R ,集合()1,A =+∞,则A =__________.22.已知全集{}1,2,345U =,,,集合{}123A =,,,则A =_____________.23.从集合M={}1,2,3,4,,2021中去掉所有3的倍数和5的倍数,则剩下的元素个数为______24.已知集合{}()216,xA xB a ∞=≤=-,,若A B ⊆则实数a 的取值范围是____.25.对于数集M 、N ,定义{},,M N x x a b a M b N +==+∈∈,,,aM N x x a M b N b ⎧⎫÷==∈∈⎨⎬⎩⎭,若集合{}1,2P =,则集合()P P P +÷中所有元素之和为___________.三、解答题26.已知{}1,{|A x x a B x y =->==(1)若a =2,求A B(2)已知全集U =R ,若()()U U A B ⊆,求实数a 的取值范围27.已知集合{}2,1,0,1,2A =--,{}0,1B =,{}1,2C =. (1)求B C ⋃; (2)求()AB C .28.立德中学高一年级共有200名学生,报名参加学校团委与学生会组织的社团组织,据统计,参加艺术社团组织的学生有103人,参加体育社团组织的学生有120人(并非每个学生必须参加某个社团).求在高一年级的报名学生中,同时参加这2个社团的最多有多少人?最少有有多少人?29.记函数()()2lg 4f x x x =-的定义域为集合M ,函数()()213xg x x =<<的值域为N .求: (1)M ,N ; (2)M N ⋂,M N ⋃.30.已知集合401x A xx ⎧⎫-=≤⎨⎬-⎩⎭,{}12B x a x a =+≤≤. (1)当2a =时,求A B ; (2)若B A ⋂=∅R,求实数a 的取值范围.【参考答案】一、单选题 1.C 【解析】 【分析】根据交集的定义和运算直接得出结果. 【详解】 由题意得,{1,0,1}B =-,又{}0A x x =≥,所以{0,1}A B =. 故选:C. 2.D 【解析】 【分析】求出集合A 、B ,利用交集和补集的定义可求得集合()U A B ∩. 【详解】因为{}30232x A xx x x ⎧⎫-=≤=-<≤⎨⎬+⎩⎭,{}{}ln 1e B x x x x =≥=≥, 所以,{}e UB x x =<,因此,()()2,e UA B =-.故选:D. 3.D 【解析】 【分析】解不等式求得A ,然后求得A ⋂Z ,进而求得正确答案.【详解】222x x ≤⇒≤,所以A ⎡=⎣,所以{}1,0,1A ⋂=-Z , 所以A ⋂Z 子集的个数是328=. 故选:D 4.C 【解析】 【分析】根据韦恩图中阴影部分所表示的含义,由集合的补集和交集定义可得. 【详解】集合{}1,2,3,4,5A =,{}04B x x =<<,图中阴影部分表示UA B ,又{|4,UB x x =≥或0}x ≤,所以{}4,5UAB =.故选:C 5.B 【解析】 【分析】解不等式可求得集合,A B ,由交集定义可得结果. 【详解】{}{}22012A x x x x x =--≤=-≤≤,{}{}101B x x x x =-<=<, {}11A B x x ∴⋂=-≤<.故选:B. 6.C 【解析】 【分析】首先解一元二次不等式求出集合A ,再解绝对值不等式求出集合B ,阴影部分表示的集合为()A BAB ⋃,根据交集、并集、补集的定义计算可得;【详解】解:由(2)0x x +<,解得20x -<<,所以}{|(2)0{|20}A x x x x x <-=<<+=, 又{|||1}{|11}B x x x x =-≤≤=≤,所以(2,1]A B =-,[1,0)A B =-, 所以阴影部分表示的集合为()(2,1)[0,1]A BA B ⋃=--,故选:C. 7.B 【解析】 【分析】根据集合补集和交集的定义进行求解即可. 【详解】 因为2,1,0,1,2U,{}1,1B =-,所以{}2,0,2UB =-,又因为{}1,2A =,所以()U A B ⋂={}2, 故选:B 8.C 【解析】 【分析】根据一元二次不等式的解法求出集合A ,根据函数值域的求法求出集合B , 进而求出A B 即可. 【详解】对于集合{}24A x x =≤求的是x 的取值范围,{}22A x x ∴=-≤≤对于集合{B y y ==求的是y20x >,20x ∴-<,424x ∴-<,02∴≤{}02B y y ∴=≤<[)0,2A B ∴=故选:C . 9.C 【解析】 【分析】由A B A ⋃=得到B A ⊆,直接求解即可. 【详解】因为A B A ⋃=,所以B A ⊆.由题可知,1a =或3. 故选:C. 10.C 【解析】 【分析】根据交集的定义计算可得; 【详解】解:因为{}1,0,1,2A =-,{}0,1,3B =,所以{}0,1A B =; 故选:C 11.D 【解析】 【分析】解一元一次不等式求集合M ,求一次函数值域求集合N ,再应用集合的交运算求M N ⋂. 【详解】由题设,{|1}M x x =<,{|1}N y y =>-, 所以(1,1)MN =-.故选:D 12.B 【解析】 【分析】化简集合A ,由交集定义直接计算可得结果. 【详解】化简可得{|1}A x x =≥,又{}3,1,1,3B =-- 所以{1,3}A B =. 故选:B. 13.A 【解析】 【分析】 求出UB ,计算求解即可.【详解】根据题意得,{}1,5U B =,所以(){}1UA B =.故选:A. 14.B 【解析】 【分析】求出集合{}2230A x x x =--<,再根据集合的交集运算求得答案.【详解】由题意,{}2230{|13}A x x x x x =--<=-<<,故{}{|13}15{|13}A B x x x x x x ⋂=-<<⋂≤≤=≤<, 故选:B 15.B 【解析】 【分析】 先求UA ,再求()UA B ⋂即可. 【详解】UA ={0,1},()U A B ={0,1}.故选:B.二、填空题16.3323n n -⋅+【解析】 【分析】分析出当一个子集只含有m 个元素时,另外一个子集可以包含()1m +,()2m +,(),1n -个元素,所以共有()()121C C C C C 22n mm n m m n n m n m n m n ------⨯+++=⨯-种选法;再进行求和即可. 【详解】因为∅、U 都要选出;故再选出两个不同的子集,即为M ,N , 因为选出的任意两个子集A 和B ,必有A B ⊆或A B ⊇,故各个子集所包含的元素个数必须依次增加,且元素个数多的子集包含元素个数少的子集,当一个子集只含有1个元素时,另外一个子集可以包含2,3,4()1n -个元素,所以共有()()111221111C C C C C 22n n n n n n n -----⨯+++=⨯-种选法; 当一个子集只含有2个元素时,另外一个子集可以包含3,4,()1n -个元素,所以共有()()221232222C C C C C 22n n n n n n n -----⨯+++=⨯-种选法;当一个子集只含有3个元素时,另外一个子集包含4,5,()1n -个元素,所以共有()()331243333C C C C C 22n n n n n n n -----⨯+++=⨯-种选法;……当一个子集只含有m 个元素时,另外一个子集可以包含()1m +,()2m +,(),1n -个元素,所以共有()()121C C C C C 22n mm n m m n n m n m n m n ------⨯+++=⨯-种选法;……当一个子集有()2n -个元素时,另外一个子集包含()1n -个元素,所以共有()22C 22n n -⨯-种选法;当一个子集有()1n -个元素时,另外一个子集包含有n 个元素,即为U ,不合题意,舍去;故共有()()()()122122C 22C 22C 22C 22n n n mm n n n n n ----⨯-+⨯-++⨯-++⨯-()1122122C 2C 22C C C n n n n n n n n ---=⋅++⋅-+++()()122212223323nn n n n n n =+------=-⋅+. 故答案为:3323n n -⋅+ 【点睛】对于集合与排列组合相结合的题目,要能通过分析,求出通项公式,再结合排列或组合的常用公式进行化简求解. 17.0或12-##12-或0【解析】 【分析】由题,先求出}{20x x -=所代表集合,再分别讨论{}10x ax +=作为子集的可能情况即可.【详解】由}{20x x -=得集合为{}2,故{}10x ax +=为空集或{}2,当{}10x ax +=为{}2时,可得12a =-;当{}10x ax +=为空集时,可得0a =, 故答案为:0或12-18.3【解析】 【分析】由题意可知集合B 是集合A 的子集,进而求出答案. 【详解】由B A ⊆知集合B 是集合A 的子集, 所以33A a ∈⇒=, 故答案为:3.19. C β∉ A α AB B α⋂= CD α⊂ 【解析】 【分析】根据元素与集合,集合与集合之间的关系,由图可写出答案 【详解】(1)C 为元素,平面β为集合,所以,由图可得C β∉.(2)A 为元素,平面α为集合,所以,由图可得A α.(3)直线AB 为集合,平面α为集合,所以,由图可得AB B α⋂=. (4)直线CD 为集合,平面α为集合,所以,CD α⊂.故答案为:①C β∉;②A α;③AB B α⋂=;④CD α⊂; 20.[1-,6) 【解析】 【分析】直接利用并集运算得答案. 【详解】[2A =,6),[1B =-,4), [2AB ∴=,6)[1-,4)[1=-,6).故答案为:[1-,6).21.(],1-∞【解析】 【分析】直接利用补集的定义求解即可 【详解】因为全集为R ,集合()1,A =+∞, 所以A =(],1-∞, 故答案为:(],1-∞22.{}45,## {}5,4 【解析】 【分析】根据补集运算得到答案即可. 【详解】因为全集{}1,2,345U =,,,集合{}123A =,,,所以A = {}45, 故答案为:{}45,23.1078 【解析】 【分析】剔除集合中是3的倍数,5的倍数的元素,即可得出结果. 【详解】集合M 中,3的倍数有20216733⎡⎤=⎢⎥⎣⎦个,5的倍数有20214045⎡⎤=⎢⎥⎣⎦个,15的倍数有202113415⎡⎤=⎢⎥⎣⎦个, 则剩下的元素个数为2021(673404134)1078-+-=个. 故答案为:1078.24.4a >【解析】 【分析】根据指数函数的单调性求出集合A ,再根据A B ⊆列出不等式,即可的解. 【详解】解:{}(]216,4xA x ∞=≤=-,因为A B ⊆, 所以4a >. 故答案为:4a >. 25.232##11.5 【解析】 【分析】根据定义分别求出()P P P +÷中对应的集合的元素即可得到结论. 【详解】{1P =,2},{|P P x x a b ∴+==+,a P ,}{2b P ∈=,3,4},(){|2P P P x x ∴+÷==,3,4,1,3}2, ∴元素之和为323234122++++=, 故答案为:232. 三、解答题26.(1)(3,4][1,1)-;(2)(5,)(,2)+∞-∞-.【解析】【分析】(1)根据解绝对值不等式的方法,结合二次根式的性质、集合交集的定义进行求解即可; (2)根据解绝对值不等式的方法、集合补集的定义,结合子集的性质进行求解即可.(1)当a =2时,因为(3,)(,1)A =+∞-∞,[1,4]B =-,所以(3,4][1,1)A B =-;(2)(1,)(,1)A a a =++∞-∞-,[1,4]B =-因为()()U U A B ⊆,所以B A ⊆,因此有11a +<-或14a ->,解得2a <-或5a >,因此实数a 的取值范围为(5,)(,2)+∞-∞-.27.(1){0,1,2}(2){2,1,0,2}--【解析】【分析】(1)利用并集的概念即可求解;(2)利用交集及补集的运算即可求解.(1){}0,1B =,{}1,2C =,{0,1,2}B C ∴=(2)∵{}0,1B =,{}1,2C =,∴{1}B C =,又{}2,1,0,1,2A =--故(){2,1,0,2}A B C =--.28.103;23.【解析】【分析】由题可知当艺术社团组织的学生都参加体育社团组织时,同时参加这2个社团的人数最多,当每个学生都参加某个社团时,同时参加这2个社团的学生最少.【详解】由题意:当艺术社团组织的103名学生都参加体育社团组织时,同时参加这2个社团的学生最多,且有103人;当每个学生都参加某个社团时,同时参加这2个社团的学生最少,且有10312020023+-=人,所以同时参加这2个社团的最多有103名学生,最少有23名学生.29.(1)()0,4M =,()2,8N =(2)(2,4)M N ⋂=,(0,8)M N ⋃=【解析】【分析】(1)根据函数的解析式结合对数函数的性质,可求得集合 M ,利用指数函数的单调性,可求得集合N ;(2)根据集合的交集以及并集运算,可求得答案.(1)由函数()()2lg 4f x x x =-可得240x x -> , 即04x << ,故(0,4)M =,由函数()()213x g x x =<< 可得28y << ,即(2,8)N =;(2)由(1)可知:(0,4)(2,8)(2,4)M N ==,(0,4)(2,8)(0,8)M N ==.30.(1){}|14x x <≤; (2){}2a a ≤.【解析】【分析】(1)求出集合A 和B ,根据并集的计算方法计算即可;(2)求出A R ,分B 为空集和不为空集讨论即可.(1) {}14A x x =<≤,当2a =时,{}|34B x x =≤≤,∴{}|14A B x x ⋃=<≤;(2)A =R {|1x x ≤或x >4},当B =∅时,B A ⋂=∅R ,12a a >+,解得a <1;当B ≠∅时,若B A ⋂=∅R ,则241121a a a a ≤⎧⎪⎨⎪≥⎩,+>,+,解得12a ≤≤. 综上,实数a 的取值范围为{}2a a ≤.。
高中数学集合测试题(含答案和解析)

高中数学集合测试题(含答案和解析)一、单选题1.已知集合{}2|280{|1]M x x x N y y =--<=≥-,,则M N ⋂=( )A .[-1,4)B .[-1,2)C .(-2,-1)D .∅2.集合{}22A x x =-<≤,{}2,1,0,1B =--,则A B =( )A .{}1,1,2-B .{}2,1,0,1--C .{}1,0,1-D .{}2,1,0,1,2-- 3.已知集合(){}2{|14,},1,0,1M x x x R N =-<∈=-则M N =( )A .{}0,12,B .{}0,1C .{}1,0,2,3-D .{}0,123,, 4.已知集合{}0,1,2,3,4,5,6,7A =,{}1,2,4,6B =,则A B =( )A .{}2,4B .{}1,2,4C .{}1,2,4,6D .{}2,4,65.已知集合{}0,1,2,3,4A =,集合{}R 326x B x =∈<,则A B =( ) A .{}0,1,2B .{}0,1,2,3C .{}0,1,2,3,4D .{}1,2,36.若集合{}220A x x x =--<,{}21B x x =<,则A B =( ) A .A B .B C .()1,0- D .()0,2 7.已知集合{}0,1,2,3,4,5A =,{}1,3,6,9B =,{}3,7,8C =,则 ()A B C ⋂⋃=( ) A .{}3 B .{}3,7,8 C .{}1,3,7,8 D .{}1,3,6,7,8 8.设集合{}0,1S =,{}0,3T =,则S T ⋃=( )A .{}0B .{}1,3C .{}0,1,3D .{}0,1,0,39.已知集合{}{}2230,1A x x x B x x =--<=≤,则R ()A B ⋂=( )A .(,1][1,)∞∞--⋃+B .(,1](1,)-∞-⋃+∞C .(]1,1-D .[1,1)-10.已知集合{}{}{}21,2,20,1A B xx mx A B ==+-=⋂=∣,则B =( ) A .{}1,1- B .{}2,1- C .{}1,2 D .{}1,1,2- 11.已知集合{}21M s s n n Z ==+∈,,{}41N t t n n Z ==-∈,,则M N =( )A .∅B .MC .ND .Z12.已知集合(){}lg 2A x y x ==-,{}2540B x x x =-+<,则A B =( ) A .{}12x x <<B .{}12x x <≤C .{}24x x <<D .{}24x x <≤13.设集合{}10A x x =-<,{}16B x x =-<<,则A B ⋃=( )A .(),6-∞B .()6,1-C .()1,1-D .(),1-∞14.已知集合1144A x x ⎧⎫=-<⎨⎬⎩⎭,12B x a x ⎧⎫=<<⎨⎬⎩⎭,若B A ⊆,则实数a 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .10,2⎛⎤ ⎥⎝⎦C .[)0,∞+D .[)1,+∞15.已知全集{}0,1,2,3,4,5U A B ==,(){}1,2,4U AB =,B =( ) A .{}0 B .{}3,5C .{}0,3,5D .{}1,2,4 二、填空题16.某班有39名同学参加数学、物理、化学课外研究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参见数学和化学小组有多少人__________.17.已知(){},21A x y y x ==+,(){},3B x y y x ==+,则A B =___________. 18.下列命题中正确的有________(写出全部正确的序号).①{2,4,6}⊆{2,3,4,5,6};②{菱形}⊆{矩形};③{x |x 2=0}⊆{0};④{(0,1)}⊆{0,1};⑤{1}∈{0,1,2};⑥{}|2x x ≥ {}|1x x >.19.已知集合A 与B 的关系如下图,则图中所示的阴影部分用集合表示为________.(要求用集合A 与B 的符号关系表示)20.已知平面上两个点集()(){}22,|12,R,R M x y x y x y x y =++≥+∈∈,(){},|11,R,R N x y x a y x y =-+-≤∈∈,若M N ≠∅,则实数a 的取值范围为___________..21.若集合{}|23A x x =-<<,{}|2B x x =>,则A B =______.22.若实数2a =,集合{}|13B x x =-<<,则a 与B 的关系是______.23.给出下列关系:①1R 2;2Q ;③3N ∈;④0Z ∈.其中正确的序号是______.24.用描述法表示被4除余3的自然数全体组成的集合A =______.25.若集合{}2A x x =<,101B x x ⎧⎫=>⎨⎬+⎩⎭,则A B =______. 三、解答题26.已知非空集合{}|1614P x a x a =-≤≤-,{}|25Q x x =-≤≤.(1)若3a =,求()P Q ⋂R ;(2)若“x P ∈”是“x Q ∈”的充分不必要条件,求实数a 的取值范围.27.把区间[)1,+∞看成全集,写出它的下列子集的补集:()1,A =+∞;{}1B =;{}15C x x =≤<;[)3,D =+∞.28.设Y 是由6的全体正约数组成的集合,写出Y 的所有子集.29.(1)已知全集U =R ,集合{}2A x x =≤,{}2|60B x x x =--<,求()U A B ⋂. (2)已知0a >,0b >,且21a b +=,若不等式21m a b+≥恒成立,求实数m 的最大值.30.已知集合2{|40}A x x =-≥,集合{|1}B x m x m =<<-.(1)求A .(2)求A B A ⋃=,求m 的取值范围.【参考答案】一、单选题1.A【解析】【分析】解一元二次不等式求集合M ,再根据集合的交运算求M N ⋂.【详解】由题设,{|24}M x x =-<<,而{|1}N y y ≥-,所以{|14}M N x x ⋂=-≤<.故选:A2.C【解析】【分析】利用交集的定义,直接计算即可.【详解】根据题意,A B ={}1,0,1-.故选:C .3.B【解析】【分析】先化简集合M ,再利用集合的交集运算求解.【详解】解:因为已知集合(){}{}2|14,|13M x x x R x x =-<∈=-<<,{}1,0,1N =-,所以MN ={}0,1,故选:B4.C【解析】【分析】由交集定义可直接得到结果.【详解】由交集定义知:{}1,2,4,6A B =.故选:C.5.A【解析】【分析】根据指数函数的单调性,结合集合交集的定义进行求解即可.【详解】由333262log 26log 273x x <⇒<<<=, 因此A B ={}0,1,2,故选:A6.B【解析】【分析】 由题知{}12A x x =-<<,{}11B x x =-<<,再求交集即可.【详解】解:解不等式220x x --<得12x -<<,故{}12A x x =-<<,解不等式21x <得11x -<<,故{}11B x x =-<<,所以A B ={}11x x B -<<=.故选:B7.C【解析】【分析】先求A B ,再求()A B C ⋂⋃.【详解】{}1,3A B =,(){}1,3,7,8A B C ⋂⋃=.故选:C8.C【解析】【分析】由并集的概念运算【详解】S T ⋃={}0,1,3故选:C9.B【解析】【分析】解一元二次不等式求集合A 、解绝对值不等式求集合B ,再应用集合的交补运算求R ()A B .【详解】由题设,{|13},{|11}A x x B x x =-<<=-≤≤,所以1{|1}A B x x =-<≤,则R (){|1A B x x ⋂=≤-或1}x >.故选:B10.B【解析】【分析】根据交集性质求解即可.【详解】因为{}1A B ⋂=,所以1B ∈,所以120m +-=,解得1m =.所以{}{}2|202,1B x x x =+-==-,满足{}1A B ⋂=. 故选:B11.C【解析】【分析】理解,M N 含义后运算【详解】由题意得,M 是所有奇数的集合,N 是所有被4除余3的整数集故N M ⊆,MN N = 故选:C12.C【解析】【分析】求出集合A 、B ,利用交集的定义可求得结果.【详解】 由题知:(){}{}{}lg 2202A x y x x x x x ==-=->=>,{}{}254014B x x x x x =-+<=<<,所以,{}24A B x x ⋂=<<. 故选:C .13.A【解析】【分析】解不等式10x -<,可化简集合{}1A x x =<,最后求A B 即可.【详解】由101x x -<⇒<,所以{}1A x x =<,所以(),6A B ⋃=-∞,故选:A14.C【解析】【分析】解不等式求得集合A ,对a 进行分类讨论,根据B 是A 的子集列不等式,从而求得a 的取值范围.【详解】1111111,,0,0,4444422x x x A ⎛⎫-<-<-<<<= ⎪⎝⎭,当12a ≥时,B =∅,满足B A ⊆. 当12a <时,由于B A ⊆,所以102a ≤<. 综上所述,a 的取值范围是[)0,∞+.故选:C15.C【解析】【分析】根据条件可得1,2,4∈U B ,则1,2,4B ∉,结合条件即可得答案. 【详解】因为(){}1,2,4U A B =,所以1,2,4∈U B ,则1,2,4B ∉,又{}0,1,2,3,4,5U A B ==,所以0,3,5B ∈,即{}0,3,5B =.故选:C二、填空题16.5【解析】【分析】设参加数学、物理、化学小组的同学组成的集合分别为A ,B 、C ,根据容斥原理可求出结果.【详解】设参加数学、物理、化学小组的同学组成的集合分别为A ,B 、C ,同时参加数学和化学小组的人数为x ,因为每名同学至多参加两个小组,所以同时参加三个小组的同学的人数为0,如图所示:由图可知:20654939x x x -+++++-=,解得5x =,所以同时参加数学和化学小组有5人.故答案为:5.17.(){}2,5【解析】【分析】由方程组可求得交点坐标,由此可得交集.【详解】由213y x y x =+⎧⎨=+⎩得:25x y =⎧⎨=⎩,(){}2,5A B ∴=. 故答案为:(){}2,5.18.①③⑥【解析】【分析】根据集合间的基本关系中的子集、真子集的定义及元素与集合的关系即可求解.【详解】对于①,2,4,6}{2,3,4,5,6∈,则{2,4,6}⊆{2,3,4,5,6},故①正确; 对于②,菱形不属于矩形,则{菱形} {矩形},故②不正确;对于③,由20x =,解得0x =,则{x |x 2=0}⊆{0},故③正确;对于④,()}{0,10,1∉,则{(0,1)}⊆{0,1},故④不正确;对于⑤,集合与集合不能用属于与不属于关系表示,所以{1}∈{0,1,2}不正确; 对于⑥,{}|2x x ≥ {}|1x x >,故⑥正确.故答案为:①③⑥.19.()A B A B ⋃【解析】【分析】由集合的交并补运算求解即可.【详解】设全集为A B ,则阴影部分表示集合A 与B 交集的补集,即()A B A B ⋃ 故答案为:()A B A B ⋃20.1⎡⎣【解析】【分析】根据抛物线的定义可知集合M 是以原点()0,0为焦点,以直线10x y ++=为准线的抛物线上及其凹口内侧的点集,集合N 是以(),1a 为中心的正方形内部的点,数形结合先求出M N ⋂=∅时实数a 的取值范围,再求其补集即可求解.【详解】由()2212x y x y ++≥+可得()()221002x y x y ++≥-+-, 点(),x y 到直线10x y ++=的距离大于等于点(),x y 到点()0,0的距离,所以点(),x y 的轨迹是以原点()0,0为焦点,以直线10x y ++=为准线的抛物线上及其凹口内侧的部分,即集合M 是以原点()0,0为焦点,以直线10x y ++=为准线的抛物线上及其凹口内侧的点集,由1x y +≤可得:001x y x y ≥⎧⎪≥⎨⎪+≤⎩或001x y x y <⎧⎪>⎨⎪-+≤⎩或001x y x y >⎧⎪<⎨⎪-≤⎩或001x y x y <⎧⎪<⎨⎪--≤⎩, 作出其表示的平面区域如图所示:将该图象向上平移一个单位可得11x y +-≤的图象如图:将其向左或右平移a 个单位可得11x a y -+-≤的表示的平面区域,作出()2212x y x y ++=+将1y =代入()2212x y x y ++=+2420x x --=,解得:26x = 所以26116a <=M N ⋂=∅, 将2y =代入()2212x y x y ++=+2610x x --=,解得:310x =, 当310a >时,M N ⋂=∅, 综上所述:当16310a ≤16,310a ⎡⎤∈⎣⎦时,M N ≠∅, 故答案为:16,310⎡⎤⎣⎦. 21.{}|23x x <<##()2,3【解析】【分析】由交集运算可直接求解.【详解】因为{}|23A x x =-<<,{}|2B x x =>,则{}|23A B x x =<<. 故答案为:{}|23x x <<22.a B ∈【解析】【分析】根据元素与集合关系即可判断.【详解】因为2a =,满足123-<<,所以a B ∈. 故答案为:a B ∈.23.①③④【解析】【分析】根据数的分类直接判断.【详解】 由题可得1R 2Q ,3N ∈,0Z ∈,故①③④正确.故答案为:①③④.24.{}|43,N n n k k =+∈【解析】【分析】用数学式子表示出自然语言即可.【详解】被4除余3的自然数即为4的整数倍加3,因此{|43,N}A n n k k ==+∈.故答案为:{}|43,N n n k k =+∈.25.{}12x x -<<## ()1,2-【解析】【分析】求解绝对值不等式解得集合A ,求解分式不等式求得集合B ,再求交集即可.【详解】 因为{}2A x x =<{|22}x x =-<<,101B x x ⎧⎫=>⎨⎬+⎩⎭{}1x x =-, 故可得A B ={|12}x x -<<. 故答案为:{}12x x -<<.三、解答题26.(1)[)(]2,24,5- (2)1319,56⎡⎤⎢⎥⎣⎦ 【解析】【分析】(1)根据集合的运算法则计算;(2)根据充分不必要条件的定义求解.(1)由已知{|24}P x x =≤≤,R {|2P x x =<或4}x >,所以R (){|22P Q x x =-≤<或45}x <≤=[)(]2,24,5-;(2) “x P ∈”是“x Q ∈”的充分不必要条件,则1261451614a a a a -≥-⎧⎪-≤⎨⎪-≤-⎩,解得131956a ≤≤,所以a 的范围是1319,56⎡⎤⎢⎥⎣⎦. 27.{}U 1A =,()U 1,B =+∞,[)U 5,C =+∞,[)U 1,3D =【解析】【分析】根据补集的定义计算可得;【详解】解:因为[)1,U =+∞,所以{}U 1A =,()U 1,B =+∞,[)U 5,C =+∞,[)U 1,3D = 28.答案见解析【解析】【分析】首先写出6的正约数,即可得到集合Y ,再用列举法列出Y 的所有子集;【详解】解:因为6的正约数有1、2、3、6,所以{}1,2,3,6Y =,所以Y 的子集有:∅、{}1、{}2、{}3、{}6、{}1,2、{}1,3、{}1,6、{}2,3、{}2,6、{}3,6、{}1,2,3、{}1,2,6、{}1,3,6、{}2,3,6、{}1,2,3,6共16个;29.(1)()2,3U A B ⋂=;(2)9. 【解析】【分析】(1)先求不等式解集,再利用集合的补集、交集运算即可(2)转化为最值问题,由基本不等式求解【详解】(1)由已知{}()2602,3B x x x =--<=- ()2,U A =+∞,所以()()2,3U A B ⋂=,(2)()2121222559b a a b a b a b a b ⎛⎫+=+⋅+=++≥= ⎪⎝⎭, 且仅当13a b ==时取等号, 不等式21m a b+≥恒成立,则9m ≤,故m 的最大值为9. 30.(1){|22}A x x =-≤≤ (2)[1,)-+∞【解析】【分析】(1)由不等式240x -≥,求得22x -≤≤,即可求解;(2)由A B A ⋃=,得到B A ⊆,列出不等式组,即可求解.(1)解:由240x -≥,即24x ≤,可得22x -≤≤,可得集合{|22}A x x =-≤≤.(2)解:因为{|22}A x x =-≤≤,且集合{|1}B x m x m =<<-, 又因为A B A ⋃=,即B A ⊆,当B =∅时,即1m m ≥-,可得12m ≥,此时满足B A ⊆; 当B ≠∅时,则满足2121m m m m ≥-⎧⎪-≤⎨⎪<-⎩,解得112m -≤<, 综上可得,1m ≥-,即实数m 的取值范围[1,)-+∞.。
集合试题及答案

集合试题及答案### 集合试题及答案#### 一、选择题1. 集合A={1, 2, 3},B={2, 3, 4},求A∩B的值。
- A. {1}- B. {2, 3}- C. {4}- D. {2, 3}2. 如果A={x | x是自然数,1≤x≤5},B={x | x是奇数},那么A∪B是什么?- A. {1, 2, 3, 4, 5}- B. {1, 3, 5}- C. {1, 2, 3, 4, 5, 6, 7, 8, 9}- D. 所有自然数3. 集合C={x | x是偶数},D={x | x是3的倍数},求C∪D的值。
- A. {所有偶数}- B. {所有3的倍数}- C. {所有6的倍数}- D. 所有偶数和3的倍数#### 二、填空题1. 集合P={x | x是小于10的质数},那么P的元素个数是______。
- 答案:42. 如果Q={x | x是大于10且小于20的整数},那么Q的元素个数是______。
- 答案:93. 集合R={x | x是正整数,且x²<100},那么R的元素个数是______。
- 答案:9#### 三、简答题1. 解释什么是子集,并给出一个例子。
- 答案:子集是指一个集合的所有元素都是另一个集合的元素。
例如,集合{1, 2}是集合{1, 2, 3}的子集。
2. 描述什么是并集,并给出一个例子。
- 答案:并集是指两个集合中所有元素的集合,但不包括重复元素。
例如,集合A={1, 2}和集合B={2, 3}的并集是A∪B={1, 2, 3}。
3. 解释什么是交集,并给出一个例子。
- 答案:交集是指两个集合共有的元素组成的集合。
例如,集合A={1, 2, 3}和集合B={2, 3, 4}的交集是A∩B={2, 3}。
#### 四、计算题1. 给定集合M={1, 4, 7}和N={2, 4, 6, 8},求M∪N和M∩N。
- 答案:M∪N={1, 2, 4, 6, 7, 8},M∩N={4}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学·单元测试卷(一)第一单元 集合与简易逻辑(时量:120分钟 150分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合P ={3,4,5},Q ={4,5,6,7},定义P ※Q ={(a ,b )|a ∈P ,b ∈Q},则P ※Q中元素的个数为 A .3 B .4 C .7 D .12 2.设A 、B 是两个集合,定义A -B ={x |x ∈A ,且x B},若M ={x ||x +1|≤2},N ={x |x =|sinα|,α∈R},则M -N = A .[-3,1]B .[-3,0]C .[0,1]D .[-3,0]3.映射f :A→B ,如果满足集合B 中的任意一个元素在A中都有原象,则称为“满射”.已知集合A 中有4个元素,集合B 中有3个元素,那么从A 到B 的不同满射的个数为 A .24B .6C . 36D .724.若lg a +lg b =0(其中a ≠1,b ≠1),则函数f (x )=a x 与g (x )=b x 的图象A .关于直线y =x 对称B .关于x 轴对称C .关于y 轴对称D .关于原点对称5.若任取x 1、x 2∈[a ,b ],且x 1≠x 2,都有f (x 1+x 22)>f (x 1)+f (x 2)2成立,则称f (x ) 是[a ,b ]上的凸函数.试问:在下列图像中,是凸函数图像的为6.若函数f (x )=x - p x +p2在(1,+∞)上是增函数,则实数p 的取值范围是A .[-1,+∞)B .[1,+∞)C .(-∞,-1]D .(-∞,1]7.设函数f (x )=x |x |+bx +c ,给出下列四个命题: ①c =0时,f (x )是奇函数 ②b =0,c >0时,方程f (x )=0只有一个实根 ③f (x )的图象关于(0,c )对称 ④方程f (x )=0至多两个实根其中正确的命题是A .①④B .①③C .①②③D .①②④8.函数y =e x +1e x -1,x ∈(0,+∞)的反函数是A .y =lnx -1x +1,x ∈(-∞,1) B .y =ln x +1x -1,x ∈(-∞,1)ya B xb ya Cxb ya Dxb y a Axbxy O1 3。
2 . C .y =ln x -1x +1,x ∈(1,+∞)D .y =ln x +1x -1,x ∈(1,+∞)9.如果命题P :{}∅∈∅,命题Q :{}∅⊂∅,那么下列结论不正确的是 A .“P 或Q”为真B .“P 且Q”为假C .“非P”为假D .“非Q”为假10.函数y =x 2-2x 在区间[a ,b ]上的值域是[-1,3],则点(a ,b )的轨迹是图中的 A .线段AB 和线段AD B .线段AB 和线段CD C .线段AD 和线段BC D .线段AC 和线段BD二、填空题:本大题共5小题,每小题4分,共20分.把答案填在横线上. 11.已知函数f (x )是定义在(-3,3)上的奇函数,当0<x <3时,f (x )的图象如图所示,则不等式f (x )cos x <0的解集是 .12.国家规定个人稿费纳税办法是:不超过800元的不纳税;超过800 元而不超过4000元的按超过800元部分的14%纳税;超过4000元的按全部稿酬的11%纳税.已知某人出版一本书,共纳税420元时,这个人应得稿费(扣税前)为 元.13.已知函数f (x )=,2))((.0,cos 2,0,)(02=⎩⎨⎧<<≤=x f f x x x x x f 若π则x 0= . 14.若对于任意a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零,则x 的取值范围是 . 15.如果函数f (x )的定义域为R ,对于m ,n ∈R ,恒有f (m +n )=f (m )+f (n )-6,且f (-1)是不大于5的正整数,当x >-1时,f (x )>0.那么具有这种性质的函数f (x )= .(注:填上你认为正确的一个函数即可) 三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)二次函数f (x )满足f (x +1)-f (x )=2x 且f (0)=1. ⑴求f (x )的解析式; ⑵在区间[-1,1]上,y =f (x )的图象恒在y =2x +m 的图象上方,试确定实数m 的范围.17.(本小题满分12分)已知集合A ={|(2)[(31)]0}x x x a --+<,B =22{|0}(1)x ax x a -<-+.⑴当a =2时,求A B ; ⑵求使B ⊆A 的实数a 的取值范围.18.(本小题满分14分)已知命题p :方程0222=-+ax x a 在[-1,1]上有解;命题q :只有一个实数x 满足不等式2220x ax a ++≤,若命题“p 或q ”是假命题,求实数a 的取值范围. 19.(本小题满分14分)设函数()221xxf x a -=+⋅-(a 为实数).⑴若a <0,用函数单调性定义证明:()y f x =在(,)-∞+∞上是增函数;⑵若a =0,()y g x =的图象与()y f x =的图象关于直线y =x 对称,求函数()y g x = 的解析式.20.(本小题满分14分)函数xax x f -=2)(的定义域为(0,1](a 为实数). ⑴当1-=a 时,求函数)(x f y =的值域;⑵若函数)(x f y =在定义域上是减函数,求a 的取值范围;⑶求函数)(x f y =在x ∈(0,1]上的最大值及最小值,并求出函数取最值时x 的值.21.(本小题满分14分)对于函数)0(2)1()(2≠-+++=a b x b ax x f ,若存在实数0x ,使00)(x x f =成立,则称0x 为)(x f 的不动点.⑴当a =2,b =-2时,求)(x f 的不动点;⑵若对于任何实数b ,函数)(x f 恒有两相异的不动点,求实数a 的取值范围; ⑶在⑵的条件下,若)(x f y =的图象上A 、B 两点的横坐标是函数)(x f 的不动点,且直线1212++=a kx y 是线段AB 的垂直平分线,求实数b 的取值范围.集合与简易逻辑参考答案一、选择题(每小题5分,共50分) 题次 1 2 3 4 5 6 7 8 9 10 答案DBCCDACDBA二、填空题(每小题4分,共20分)11.⎝⎛⎭⎫π2,-1∪(0,1)∪⎝⎛⎭⎫π2,3;12.3800;13. 3π4;14. (-∞‚1)∪(3,+∞);15.x+6或2x +6或3x +6或4x +6或5x +6三、解答题(共80分)16.解: (1)设f (x )=ax 2+bx +c ,由f (0)=1得c =1,故f (x )=ax 2+bx +1.∵f(x +1)-f(x)=2x ,∴a(x +1)2+b(x +1)+1-(ax 2+bx +1)=2x . 即2ax +a +b =2x ,所以221,01a a ab b ==⎧⎧∴⎨⎨+==-⎩⎩,∴f(x)=x 2-x +1. (2)由题意得x 2-x +1>2x +m 在[-1,1]上恒成立.即x 2-3x +1-m>0在[-1,1]上恒成立.设g(x)= x 2-3x +1-m ,其图象的对称轴为直线x =32 ,所以g(x) 在[-1,1]上递减.故只需g(1)>0,即12-3×1+1-m>0,解得m<-1. 17. 解:(1)当a =2时,A =(2,7),B =(4,5)∴ A B =(4,5). (2)∵ B =(2a ,a 2+1), 当a <13时,A =(3a +1,2) 要使B ⊆A ,必须223112a a a ≥+⎧⎨+≤⎩,此时a =-1;当a =13时,A =Φ,使B ⊆A 的a 不存在; 当a >13时,A =(2,3a +1)要使B ⊆A ,必须222131a a a ≥⎧⎨+≤+⎩,此时1≤a ≤3.综上可知,使B ⊆A 的实数a 的取值范围为[1,3]∪{-1} 18.]22222:20(2)(1)0210211,1,||1||1,||1220.22480.02,""||10"""|100a x ax ax ax a x x a a x a a ax ax a y x ax a x a a a p q a a P Q a a a a +-=+-=≠∴=-=⎡∈-≤≤∴≥⎣++≤=++∴∆=-=∴=∴≥=∴-<<< 解由,得,显然或故或“只有一个实数满足”即抛物线与轴只有一个交点,或命题或为真命题"时或命题或为假命题的取值范围为或}{1< 19.解: (1)设任意实数x 1<x 2,则f(x 1)- f(x 2)=1122(221)(221)xx x x a a --+⋅--+⋅-=1212(22)(22)x x x x a ---+-=1212122(22)2x x x x x x a++--⋅121212,22,220;xx x xx x <∴<∴-< 120,20x x a a +<∴-> .又1220x x +>,∴f(x 1)- f(x 2)<0,所以f(x)是增函数.(2)当a =0时,y =f(x)=2x -1,∴2x =y +1, ∴x =log 2(y +1), y =g(x)= log 2(x +1). 20.解:(1)显然函数)(x f y =的值域为),22[∞+; (2)若函数)(x f y =在定义域上是减函数,则任取∈21,x x ]1.0(且21x x <都有)()(21x f x f > 成立, 即0)2)((2121>+-xx ax x 只要212x x a -<即可,由∈21,x x ]1.0(,故)0,2(221-∈-x x ,所以2-≤a , 故a 的取值范围是]2,(--∞;(3)当0≥a 时,函数)(x f y =在]1.0(上单调增,无最小值, 当1=x 时取得最大值a -2;由(2)得当2-≤a 时,函数)(x f y =在]1.0(上单调减,无最大值, 当x =1时取得最小值2-a ;当02<<-a 时,函数)(x f y =在].0(22a -上单调减,在]1,[22a-上单调增,无最大值, 当22ax -=时取得最小值a 22-.21.解),0(2)1()(2≠-+++=a b x b ax x f(1)当a =2,b =-2时, .42)(2--=x x x f 设x 为其不动点,即.422x x x =--则.04222=--x x )(.2,121x f x x 即=-=∴的不动点是-1,2. (2)由x x f =)(得:022=-++b bx ax . 由已知,此方程有相异二实根,0>∆x 恒成立,即.0)2(42>--b a b 即0842>+-a ab b 对任意R b ∈恒成立..2003216.02<<∴<-∴<∆∴a a a b (3)设),(),,(2211x x B x x A ,直线1212++=a kx y 是线段AB 的垂直平分线, 1-=∴k 记AB 的中点).,(00x x M 由(2)知,20ab x -= .12122,12122++=-∴++=a a b a b a kx y M 上在化简得:22(421221121122=-=⋅-≥+-=+-=a aa aa a ab 当时,等号成立). 即.42-≥b。