初中数学知识点总结:掌握五种基本作图

合集下载

2024年中考福建专用数学一轮知识点训练复习4.6 五类基本尺规作图

2024年中考福建专用数学一轮知识点训练复习4.6 五类基本尺规作图
∴∠B'PO=90°,∴∠AC'B'=∠B'PO=90°,又∵∠PB'O=∠C'B'A,
∴△PB'O∽△C'B'A,
∴,即,∴PO=,∴OA=
= .
11.如图,已知在△ABC中,∠C=90°,
(1)已知点O在边BC上,请用圆规和直尺作出☉O,使☉O
经过点C,且与AB相切(保留作图痕迹,不写作法和证明).
,∴△BAP≌△BAC(SAS),∴∠APB=
∠ACB,∵∠ACB=90°,∴∠APB=90°,∴BP与☉A相切;
②∵在△ABC中,∠ACB=90°,CA=5,CB=12,∴AB
==13,由旋转可知:AB'=AB=13,AP=AC'=AC=5,B'C'=
CB=12,∠AC'B'=∠ACB=90°,∴PB'=AB'-AP=13-5=8,由①可知,∠APB=90°,
图②
(3)求出阴影部分的面积;
解:(3)连接AO并延长交☉O于F,连接BF,
OB,如图③,PC是∠APB的平分线,∠APC=
∠BPC,,AC=BC,∠ABC=∠BAC
=30°,∴∠AOC=∠BOC=60°,∴∠FOB=
180°-∠AOC-∠BOC=180°-60°-60°=60°,
∴∠FAB=∠FOC=30°,∴∠FAB=∠ABC=
解析(2)图
6.如图,在△ABC中:(1)求作△ABC内心E;(要求:尺规作
图,不写作法,保留作图痕迹)
解:(1)如图:
解析(1)图
(2)在(1)的条件下,∠C=78°.求∠AEB的值.
解:(2)连接AE,如图:∵∠CAB+∠CBA+

初中数学知识点总结

初中数学知识点总结

初中数学知识点总结1、基本概念线是由点连成的连续图形,可以分为直线、射线和线段。

直线没有端点,用一个字母或两个点表示;射线有一个端点,用一个字母和一个点表示;线段有两个端点,用两个字母或一个字母和一个点表示。

2、直线的性质两点确定一条直线,且经过两点有且只有一条直线。

3、画一条线段等于已知线段可以使用度量法或尺规作图法。

4、线段的大小比较方法可以使用度量法或叠合法。

5、线段的中点、三等分点、四等分点等线段的中点是把线段平均分成两条相等线段的点,用符号表示为若点M是线段AB的中点,则AM=BM=AB/2.6、线段的性质两点之间,线段最短。

7、两点的距离连接两点的线段长度叫做两点的距离。

8、点与直线的位置关系一个点可以在直线上或直线外。

9、直线相关定理过两点有且只有一条直线;两点之间线段最短;过一点有且只有一条直线和已知直线垂直;直线外一点与直线上各点连接的所有线段中,垂线段最短;平行公理经过直线外一点,有且只有一条直线与这条直线平行;如果两条直线都和第三条直线平行,这两条直线也互相平行;线段垂直平分线上的点和这条线段两个端点的距离相等;和一条线段两个端点距离相等的点,在这条线段的垂直平分线上;线段的垂直平分线可看作和线段两端点距离相等的所有点的集合。

10、等边三角形和等腰三角形等边三角形的各角都相等,并且每一个角都等于60°;三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形;等腰三角形的两个底角相等,顶角的平分线平分底边并且垂直于底边,顶角平分线、底边上的中线和底边上的高互相重合;如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。

11、角由公共端点的两条射线所组成的图形叫做角,可以用四种表示法:用三个字母及角的符号表示,用表示顶点的字母表示,用一个数字表示,或直接用符号表示。

2.角的分类角可以分为五种类型:锐角、直角、钝角、平角和周角。

初中数学五种作图基本概念及技巧

初中数学五种作图基本概念及技巧

初中数学五种作图基本概念及技巧一、基本概念1.尺规作图:在几何里,用没有刻度的直尺和圆规来画图,叫做尺规作图.2.基本作图:最基本、最常用的尺规作图,通常称基本作图.3.五种常用的基本作图:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)平分已知角;(4)作线段的垂直平分线.(5)经过一点作已知直线的垂线4.掌握以下几何作图语句:(1)过点×、点×作直线××;或作直线××,或作射线××;(2)连结两点×、×;或连结××;(3)在××上截取××=××;(4)以点×为圆心,××为半径作圆(或弧);(5)以点×为圆心,××为半径作弧,交××于点×;(6)分别以点×、点×为圆心,以××、××为半径作弧,两弧相交于点××;(7)延长××到点×,或延长××到点×,使××=××.5.学过基本作图后,在以后的作图中,遇到属于基本作图的地方,只须用一句话概括叙述就可以了。

如:(1)作线段××=××;(2)作∠×××=∠×××;(3)作××(射线)平分∠×××;(4)过点×作××⊥××,垂足为×;(5)作线段××的垂直平分线××.二、尺规作图基本步骤和作图语言1、作线段等于已知线段已知:线段a 求作:线段AB,使AB=a 作法:(1)作射线AC (2)在射线AC上截取AB=a ,则线段AB就是所要求作的线段2、作角等于已知角已知:∠AOB求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)作射线O′A′.(2)以点O为圆心,以任意长为半径画弧,交OA于点C,交OB 于点D.(3)以点O′为圆心,以OC长为半径画弧,交O′A′于点C′.(4)以点C′为圆心,以CD长为半径画弧,交前面的弧于点D′.(5)过点D′作射线O′B′.∠A′O′B′就是所求作的角.3、作角的平分线已知:∠AOB, 求作:∠AOB内部射线OC,使:∠AOC=∠BOC,作法:(1)在OA和OB上,分别截取OD、OE,使OD=OE.(2)分别以D、E为圆心,大于1/2DE的长为半径作弧,在∠AOB内,两弧交于点C.(3)作射线OC.OC就是所求作的射线.4、作线段的垂直平分线(中垂线)或中点已知:线段AB求作:线段AB的垂直平分线作法:(1)分别以A、B为圆心,以大于AB的一半为半径在AB两侧画弧,分别相交于E、F两点。

最完整初中数学知识点总结及公式大全

最完整初中数学知识点总结及公式大全

最完整初中数学知识点总结及公式大全1.整数和有理数-整数的加减乘除运算规则:同号相加取共同的符号,异号相加取绝对值大的符号;乘法规则:同号得正,异号得负;除法规则:除数不为零,同号得正,异号得负。

-有理数的加减乘除运算规则:同号相加取共同的符号,异号相加取绝对值大的符号;乘法规则:同号得正,异号得负;除法规则:除数不为零,同号得正,异号得负。

2.平面图形-平面图形的性质与计算:正方形的面积等于边长的平方;矩形的面积等于长乘以宽;三角形的面积等于底乘以高的一半;梯形的面积等于上底加下底乘以高的一半。

3.线的关系与方程-平行线和垂直线的特征:平行线具有相同的斜率,垂直线具有互为倒数的斜率。

-直线的方程:一般式方程、斜截式方程、截距式方程、点斜式方程。

4.相似与全等-相似的概念和判定条件:对应角相等,对应边成比例。

-全等三角形的判定条件:边-边-边、边-角-边、角-边-角、角-角-角。

5.几何作图-通过已知条件作出各种形状:平分线、垂直线、平行线、三等分线等。

6.算式计算-四则运算:加法、减法、乘法、除法。

-分数的加减乘除运算:通分、约分、分数的加减乘除运算规则。

7.比例与百分数-比例的概念和性质:比例的定义、比例的性质、比例的延长线、反比例。

-百分数的计算:百分数与小数的相互转换、百分数之间的比较、百分数与分数的相互转换。

8.数据与概率-数据整理与分析:表格、条形图、折线图、饼图等。

-概率的计算:事件的概率等于事件发生次数除以总次数。

9.代数基础知识-代数式的加减乘除:同类项的加减法、乘法运算法则、除法运算法则。

-代数式的值:给定变量值计算代数式的值。

10.一元一次方程与一元一次不等式-一元一次方程的解:解方程的基本步骤、等式的等价性质。

-一元一次不等式的解:解不等式的基本步骤、不等式的性质。

11.二次根式与二次方程-二次根式的化简:完全平方、配方法。

-二次方程的解:因式分解法、配方法、求根公式。

12.几何证明-各种定理的证明:三角形的中位线定理、三角形的角平分线定理、圆的性质等。

初中数学作图知识点总结

初中数学作图知识点总结

初中数学作图知识点总结一、几何画法1. 直线的画法(1)用尺规作线(2)用圆规作线(3)用直尺作线2. 角的画法(1)用圆规作角(2)用直尺作角3. 圆的画法(1)用尺规画圆(2)用圆规画圆二、图形的绘制1. 直线(1)知道直线的特点和方程(2)了解不同直线的特征和性质,如平行直线、垂直直线等(3)使用直尺和圆规来画出直线2. 角(1)知道角的定义和性质(2)了解不同角的种类,如锐角、直角、钝角等(3)使用圆规和直尺来画出角3. 三角形(1)知道三角形的特点和性质(2)了解不同种类的三角形,如等边三角形、等腰三角形、直角三角形等(3)使用尺规和圆规来画出三角形4. 四边形(1)知道四边形的特点和性质(2)了解不同种类的四边形,如矩形、正方形、平行四边形、菱形等(3)使用尺规和圆规来画出四边形5. 圆(1)知道圆的定义和性质(2)了解圆的直径、半径、弧长、面积等相关概念(3)使用圆规和尺规来画出圆6. 折线(1)知道折线的定义和性质(2)了解不同种类的折线,如封闭折线、开放折线等(3)使用直尺和圆规来画出折线三、作图的应用1. 利用作图求解问题(1)通过作图求解平面几何问题,如证明等腰三角形、平行四边形等的性质(2)通过作图求解空间几何问题,如证明三棱锥的性质、证明平面与立体的位置关系等2. 利用作图辅助解答(1)通过作图辅助解答数学题目,如求解平面几何问题、解答空间几何问题等3. 绘制图形解决实际问题(1)通过绘制图形来解决实际问题,如绘制地图、图表等四、注意事项1. 作图要仔细、准确,尺规和圆规要使用得当,直尺和圆规要放置得稳,保证作图的准确性。

2. 作图时要注意标注,给出必要的标注,如角的度数、直线的长度等,让别人能够清晰地理解你的作图意图。

3. 作图时要注意审题,根据问题要求来选择合适的作图方法和步骤,保证作图的正确性和有效性。

通过对初中数学作图知识点的总结,我们可以更全面、系统地理解和掌握作图的方法和技巧,提高我们的空间想象能力和几何问题的解决能力。

初中数学知识点总结:掌握五种基本作图

初中数学知识点总结:掌握五种基本作图

初中数学知识点总结:掌握五种基本作图知识点总结
一、基本作图的有关概念:
1.尺规作图:用没有刻度的直尺和圆规来作图的方法,叫做尺规作图。

2.五种基本作图:五种基本作图是尺规作图的基础,数学中的五种基本作图是指作一条线段等于已知线段、作一个角等于已知角、作一个角的角平分线、过定点作已知直线的垂线、作线段的垂直平分线。

二、基本作图的原理和步骤:
1.原理:边边边公理
2.步骤:作图题的方法与证明题解法不相同,对于作图题首先将文字叙述转化为数学语言,即要写出题目的已知、求作、作法、证明。

三、尺规作图的优点:尺规作图只能使用圆规和无刻度的直尺这两种工具。

工具虽少但能正确地画出的图形,比度量法画出的图形更精确。

常见考法
(1)考查五种基本作图中的一种,要求写出已知、求证、作法、证明过程。

有时考题不要求写作法,但要求保留作图痕迹;(2)利用尺规作图和勾股定理画出数轴上的无理
数点;(3)利用尺规作图作一些正多边形(如正三角形、正六
边形等)。

误区提醒。

2020届人教版中考数学一轮复习-第17讲 尺规作图(有答案)

2020届人教版中考数学一轮复习-第17讲 尺规作图(有答案)

第十七节尺规作图【知识点梳理】一)尺规作图1.定义只用没有刻度的直尺和圆规作图叫做尺规作图.2.步骤①根据给出的条件和求作的图形,写出已知和求作部分;②分析作图的方法和过程;③用直尺和圆规进行作图;④写出作法步骤,即作法.二)五种基本作图1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知角的平分线;4.过一点作已知直线的垂线;5.作已知线段的垂直平分线.三)基本作图的应用1.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆).(2)作三角形的内切圆.【课堂练习】一.选择题(共8小题)1.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是()A.6 B.8 C.10 D.12【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】连接EG,由作图可知AD=AE,根据等腰三角形的性质可知AG是DE的垂直平分线,由平行四边形的性质可得出CD∥AB,故可得出∠2=∠3,据此可知AD=DG,由等腰三角形的性质可知OA=AG,利用勾股定理求出OA的长即可.【解答】解:连接EG,∵由作图可知AD=AE,AG是∠BAD的平分线,∴∠1=∠2,∴AG⊥DE,OD=DE=3.∵四边形ABCD是平行四边形,∴CD∥AB,∴∠2=∠3,∴∠1=∠3,∴AD=DG.∵AG⊥DE,∴OA=AG.在Rt△AOD中,OA===4,∴AG=2AO=8.故选B.2.如图,在△AEF中,尺规作图如下:分别以点E,点F为圆心,大于12EF的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF于点O,连接AO,则下列结论正确的是()A.AO平分∠EAF B.AO垂直平分EF C.GH垂直平分EF D.GH平分AF 【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】直接根据线段垂直平分线的作法即可得出结论.【解答】解:由题意可得,GH垂直平分线段EF.故选C.3.如图,已知线段AB,分别以A、B为圆心,大于12AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】根据作法可知直线l是线段AB的垂直平分线,故可得出AC=BC,再由三角形外角的性质即可得出结论.【解答】解:∵由作法可知直线l是线段AB的垂直平分线,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选B.4.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误的是()A.①B.②C.③D.④【考点】N2:作图—基本作图.【分析】利用作一个角等于已知角;作一个角的平分线;作一条线段的垂直平分线;过直线外一点P作已知直线的垂线的作法进而判断得出答案.【解答】解:①作一个角等于已知角的方法正确;②作一个角的平分线的作法正确;③作一条线段的垂直平分线缺少另一个交点,作法错误;④过直线外一点P作已知直线的垂线的作法正确.故选:C.5.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于12BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为()A.5 B.6 C.7 D.8【考点】N2:作图—基本作图;KO:含30度角的直角三角形.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC=4可知AB=2BC=8,再由作法可知BC=CD=4,CE 是线段BD的垂直平分线,故CD是斜边AB的中线,据此可得出BD的长,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8.∵作法可知BC=CD=4,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=6.故选B.6.如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是()A.以点F为圆心,OE长为半径画弧B.以点F为圆心,EF长为半径画弧C.以点E为圆心,OE长为半径画弧D.以点E为圆心,EF长为半径画弧【考点】N2:作图—基本作图.【分析】根据作一个角等于一直角的作法即可得出结论.【解答】解:用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,第二步的作图痕迹②的作法是以点E为圆心,EF长为半径画弧.故选D.7.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC•AH D.AB=AD【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】根据已知条件可知直线BC是线段AD的垂直平分线,由此一一判定即可.【解答】解:A、正确.如图连接CD、BD,∵CA=CD,BA=BD,∴点C、点B在线段AD的垂直平分线上,∴直线BC是线段AD的垂直平分线,故A正确.B、错误.CA不一定平分∠BDA.C、错误.应该是S△ABC=•BC•AH.D、错误.根据条件AB不一定等于AD.故选A.8.下列尺规作图,能判断AD是△ABC边上的高是()A.B.C.D.【考点】N2:作图—基本作图.【分析】过点A作BC的垂线,垂足为D,则AD即为所求.【解答】解:过点A作BC的垂线,垂足为D,故选B.二.填空题(共5小题)9.如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于12MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为.【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】根据角平分线的性质可知∠DAQ=∠BAQ,再由平行四边形的性质得出CD∥AB,BC=AD=3,∠BAQ=∠DQA,故可得出△AQD是等腰三角形,据此可得出DQ=AD,进而可得出结论.【解答】解:∵由题意可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=3,∠BAQ=∠DQA,∴∠DAQ=∠DQA,∴△AQD是等腰三角形,∴DQ=AD=3.∵DQ=2QC,∴QC=DQ=,∴CD=DQ+CQ=3+=,∴平行四边形ABCD周长=2(DC+AD)=2×(+3)=15.故答案为:15.10.如图所示,已知∠AOB=40°,现按照以下步骤作图:①在OA,OB上分别截取线段OD,OE,使OD=OE;②分别以D,E为圆心,以大于12DE的长为半径画弧,在∠AOB内两弧交于点C;③作射线OC.则∠AOC的大小为.【考点】N2:作图—基本作图.【分析】直接根据角平分线的作法即可得出结论.【解答】解:∵由作法可知,OC是∠AOB的平分线,∴∠AOC=∠AOB=20°.故答案为:20°.11.如图,依据尺规作图的痕迹,计算∠α=°.【考点】N2:作图—基本作图.【分析】先根据矩形的性质得出AD∥BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF的度数,再由EF 是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE的度数,进而可得出结论.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分线,∴∠EAF=∠DAC=34°.∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°﹣34°=56°,∴∠α=56°.故答案为:56.12.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是.【考点】N2:作图—基本作图;D5:坐标与图形性质;J5:点到直线的距离.【分析】根据作图方法可得点P在第二象限的角平分线上,根据角平分线的性质和第二象限内点的坐标符号,可得a与b的数量关系为互为相反数.【解答】解:根据作图方法可得,点P在第二象限角平分线上,∴点P到x轴、y轴的距离相等,即|b|=|a|,又∵点P(a,b)第二象限内,∴b=﹣a,即a+b=0,故答案为:a+b=0.13.图1是“作已知直角三角形的外接圆”的尺规作图过程已知:Rt△ABC,∠C=90°,求作Rt△ABC的外接圆.作法:如图2.(1)分别以点A和点B为圆心,大于12AB的长为半径作弧,两弧相交于P,Q两点;(2)作直线PQ,交AB于点O;(3)以O为圆心,OA为半径作⊙O.⊙O即为所求作的圆.请回答:该尺规作图的依据是.【考点】N3:作图—复杂作图;MA:三角形的外接圆与外心.【分析】由于90°的圆周角所对的弦是直径,所以Rt△ABC的外接圆的圆心为AB的中点,然后作AB的中垂线得到圆心后即可得到Rt△ABC的外接圆.【解答】解:该尺规作图的依据是到线段两端点的距离相等的点在这条线段的垂直平分线上;90°的圆周角所对的弦是直径.故答案为到线段两端点的距离相等的点在这条线段的垂直平分线上;两点确定一直线;90°的圆周角所对的弦是直径;圆的定义.三.解答题(共8小题)14.如图,△ABC中,∠ACB>∠ABC.(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹);(2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.【考点】N2:作图—基本作图;S9:相似三角形的判定与性质.【分析】(1)根据尺规作图的方法,以AC为一边,在∠ACB的内部作∠ACM=∠ABC即可;(2)根据△ACD与△ABC相似,运用相似三角形的对应边成比例进行计算即可.【解答】解:(1)如图所示,射线CM即为所求;(2)∵∠ACD=∠ABC,∠CAD=∠BAC,∴△ACD∽△ABC,∴=,即=,∴AD=4.15.如图,在Rt△ABC中,∠B=90°,∠A=30°,AC=2.(1)利用尺规作线段AC的垂直平分线DE,垂足为E,交AB于点D,(保留作图痕迹,不写作法)(2)若△ADE的周长为a,先化简T=(a+1)2﹣a(a﹣1),再求T的值.【考点】N2:作图—基本作图;KO:含30度角的直角三角形.【分析】(1)根据作已知线段的垂直平分线的方法,即可得到线段AC的垂直平分线DE;(2)根据Rt△ADE中,∠A=30°,AE=,即可求得a的值,最后化简T=(a+1)2﹣a(a﹣1),再求T的值.【解答】解:(1)如图所示,DE即为所求;(2)由题可得,AE=AC=,∠A=30°,∴Rt△ADE中,DE=AD,设DE=x,则AD=2x,∴Rt△ADE中,x2+()2=(2x)2,解得x=1,∴△ADE的周长a=1+2+=3+,∵T=(a+1)2﹣a(a﹣1)=3a+1,∴当a=3+时,T=3(3+)+1=10+3.16.如图,已知△ABC,请用圆规和直尺作出△ABC的一条中位线EF(不写作法,保留作图痕迹).【考点】N3:作图—复杂作图;KX:三角形中位线定理.【分析】作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF即为所求.【解答】解:如图,△ABC的一条中位线EF如图所示,方法:作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF即为所求.17.如图,已知△ABC,∠B=40°.(1)在图中,用尺规作出△ABC的内切圆O,并标出⊙O与边AB,BC,AC的切点D,E,F(保留痕迹,不必写作法);(2)连接EF,DF,求∠EFD的度数.【考点】N3:作图—复杂作图;MI:三角形的内切圆与内心.【分析】(1)直接利用基本作图即可得出结论;(2)利用四边形的性质,三角形的内切圆的性质即可得出结论.【解答】解:(1)如图1,⊙O即为所求.(2)如图2,连接OD,OE,∴OD⊥AB,OE⊥BC,∴∠ODB=∠OEB=90°,∵∠B=40°,∴∠DOE=140°,∴∠EFD=70°.18.在数学课本上,同学们已经探究过“经过已知直线外一点作这条直线的垂线“的尺规作图过程:已知:直线l和l外一点P求作:直线l的垂线,使它经过点P.作法:如图:(1)在直线l上任取两点A、B;(2)分别以点A、B为圆心,AP,BP长为半径画弧,两弧相交于点Q;(3)作直线PQ.参考以上材料作图的方法,解决以下问题:(1)以上材料作图的依据是:(3)已知,直线l和l外一点P,求作:⊙P,使它与直线l相切.(尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)【考点】N3:作图—复杂作图;MD:切线的判定.【分析】(1)根据线段垂直平分线的性质,可得答案;(2)根据线段垂直平分线的性质,切线的性质,可得答案.【解答】解:(1)以上材料作图的依据是:线段垂直平分线上的点到线段两端点的距离相等,故答案为:线段垂直平分线上的点到线段两端点的距离相等;(2)如图.19.“直角”在初中几何学习中无处不在.如图,已知∠AOB,请仿照小丽的方式,再用两种不同的方法判断∠AOB是否为直角(仅限用直尺和圆规).【考点】N3:作图—复杂作图;KS:勾股定理的逆定理;M5:圆周角定理.【分析】(1)根据勾股定理的逆定理,可得答案;(2)根据圆周角定理,可得答案.【解答】解:(1)如图1,在OA,OB上分别,截取OC=4,OD=3,若CD的长为5,则∠AOB=90°(2)如图2,在OA,OB上分别取点C,D,以CD为直径画圆,若点O在圆上,则∠AOB=90°.20.如图,已知正七边形ABCDEFG,请仅用无刻度的直尺,分别按下列要求画图.(1)在图1中,画出一个以AB为边的平行四边形;(2)在图2中,画出一个以AF为边的菱形.【考点】N3:作图—复杂作图;L5:平行四边形的性质;L8:菱形的性质.【分析】(1)连接AF、BE、CG,CG交AF于M,交BE于N.四边形ABNM是平行四边形.(2)连接AF、DF,延长DC交AB的延长线于M,四边形AFDM是菱形.【解答】解:(1)连接AF、BE、CG,CG交AF于M,交BE于N.四边形ABNM是平行四边形.(2)连接AF、DF,∠延长DC交AB的延长线于M,四边形AFDM是菱形.21.图①、图②、图③都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点.线段AB的端点在格点上.(1)在图①、图2中,以AB为边各画一个等腰三角形,且第三个顶点在格点上;(所画图形不全等)(2)在图③中,以AB为边画一个平行四边形,且另外两个顶点在格点上.【考点】N4:作图—应用与设计作图;KI:等腰三角形的判定;KK:等边三角形的性质;L6:平行四边形的判定.【分析】(1)根据等腰三角形的定义作图可得;(2)根据平行四边形的判定作图可得.【解答】解:(1)如图①、②所示,△ABC和△ABD即为所求;(2)如图③所示,▱ABCD即为所求.。

初一下册几何知识点总结归纳

初一下册几何知识点总结归纳

初一下册几何知识点总结归纳一、初中数学几何知识点1、三角形内角定理定理:三角形两边的和大于第三边推论:三角形两边的差小于第三边三角形内角和定理:三角形三个内角的和等于180°2、几何平行平行定理:经过直线外一点,有且只有一条直线与这条直线平行推论:如果两条直线都和第三条直线平行,这两条直线也互相平行证明两直线平行定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行两直线平行推论:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补3、点、线、角点的定理:过两点有且只有一条直线点的定理:两点之间线段最短角的定理:同角或等角的补角相等角的定理:同角或等角的余角相等直线定理:过一点有且只有一条直线和已知直线垂直直线定理:直线外一点与直线上各点连接的所有线段中,垂线段最短4、全等三角形判定定理:全等三角形的对应边、对应角相等边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等角边角定理(ASA):有两角和它们的夹边对应相等的两个三角形全等推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等边边边定理(SSS):有三边对应相等的两个三角形全等斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等5、角的平分线定理1:在角的平分线上的点到这个角的两边的距离相等定理2:到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合6、等腰三角形性质等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)推论1:等腰三角形顶角的平分线平分底边并且垂直于底边等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)7、对称定理定理:线段垂直平分线上的点和这条线段两个端点的距离相等逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上线段的垂直平分线可看作和线段两端点距离相等的所有点的集合定理1:关于某条直线对称的两个图形是全等形定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称8、直角三角形定理定理:在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半判定定理:直角三角形斜边上的中线等于斜边上的一半勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2勾股定理的逆定理:如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形9、多边形内角和定理定理:四边形的内角和等于360°;四边形的外角和等于360°多边形内角和定理:n边形的内角和等于(n-2)×180°推论:任意多边的外角和等于360°10、平行四边形定理平行四边形性质定理:1.平行四边形的对角相等2.平行四边形的对边相等3.平行四边形的对角线互相平分推论:夹在两条平行线间的平行线段相等平行四边形判定定理:1.两组对角分别相等的四边形是平行四边形2.两组对边分别相等的四边形是平行四边形3.对角线互相平分的四边形是平行四边形4.一组对边平行相等的四边形是平行四边形11、矩形定理矩形性质定理1:矩形的四个角都是直角矩形性质定理2:矩形的对角线相等矩形判定定理1:有三个角是直角的四边形是矩形矩形判定定理2:对角线相等的平行四边形是矩形12、菱形定理菱形性质定理1:菱形的四条边都相等菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角菱形面积=对角线乘积的一半,即S=(a×b)÷2菱形判定定理1:四边都相等的四边形是菱形菱形判定定理2:对角线互相垂直的平行四边形是菱形13、正方形定理正方形性质定理1:正方形的四个角都是直角,四条边都相等正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角14、中心对称定理定理1:关于中心对称的两个图形是全等的定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称15、等腰梯形性质定理等腰梯形性质定理:1.等腰梯形在同一底上的两个角相等2.等腰梯形的两条对角线相等等腰梯形判定定理:1.在同一底上的两个角相等的梯形是等腰梯形2.对角线相等的梯形是等腰梯形平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边16、中位线定理三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h17、相似三角形定理相似三角形定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似相似三角形判定定理:1.两角对应相等,两三角形相似(ASA)2.两边对应成比例且夹角相等,两三角形相似(SAS)直角三角形被斜边上的高分成的两个直角三角形和原三角形相似判定定理3:三边对应成比例,两三角形相似(SSS)相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似性质定理:1.相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比2.相似三角形周长的比等于相似比3.相似三角形面积的比等于相似比的平方18、三角函数定理任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值19、圆的定理定理:过不共线的三个点,可以作且只可以作一个圆定理:垂直于弦的直径平分这条弦,并且评分弦所对的两条弧推论1:平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧推论2:弦的垂直平分弦经过圆心,并且平分弦所对的两条弧推论3:平分弦所对的一条弧的直径,垂直评分弦,并且平分弦所对的另一条弧定理:1.在同圆或等圆中,相等的弧所对的弦相等,所对的弦的弦心距相等2.经过圆的半径外端点,并且垂直于这条半径的直线是这个圆的切线3.圆的切线垂直经过切点的半径4.三角形的三个内角平分线交于一点,这点是三角形的内心5.从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角6.圆的外切四边形的两组对边的和相等7.如果四边形两组对边的和相等,那么它必有内切圆8.两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等20、比例性质定理比例的基本性质:如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b二、数学知识点总结热冰时间在学习中流逝着,不觉间又一学期走了一半,七下数学的几何部分也告一段落,故将一些重要的和易错的知识点总结于此,供日后学习完善!此内容仅限于人教版内容顺序平行线与相交线部分1过两点有且只有一条直线(强调唯一性和存在性)2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补尺规作图(这是重难点)作线段等于已知线段和作角等于已知角(1)理解尺规作图的含义①只用没有刻度的直尺和圆规作图称为尺规作图.显然,尺规作图的工具只能是直尺和圆规.其中直尺用来作直线、线段、射线或延长线段等;圆规用来作圆或圆弧等.值得注意的是直尺是没有刻度的或不考虑刻度的存在.②基本作图:a.用尺规作一条线段等于已知线段;b.用尺规作一个角等于已知角.利用这两个基本作图,可以作两条线段或两个角的和或差.(2)熟练掌握尺规作图题的规范语言Ⅰ.用直尺作图的几何语言:①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;Ⅱ.用圆规作图的几何语言:①在××上截取××=××;②以点×为圆心,××的长为半径作圆(或弧);③以点×为圆心,××的长为半径作弧,交××于点×;④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×.(3)尺规作图题的步骤:①已知:当题目是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;②求作:能根据题目写出要求作出的图形及此图形应满足的条件;③作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要.15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°(掌握证明此定理的两种方法)附加:画三角形的高时,只需向对边或对边的延长线作垂线,连接顶点与垂足的线段就是该边上的高.(易错点)注意:(1)三角形的高是线段,垂线段.(2)锐角三角形的高都在三角形内部;直角三角形仅斜边上的高在三角形内部,另两边上的高为三角形的两条直角边;钝角三角形仅一条高在三角形内部,另两条高在三角形外部.(3)三角形三条高所在直线交于一点.且这点叫做三角形的垂心.三角形的三条中线交于三角形内部,这一点叫做三角形的重心.三角形三条角平分线交于三角形内部,这一点叫做三角形的内心.四边形内容部分18定理四边形的内角和等于360°19四边形的外角和等于360°20多边形内角和定理 n边形的内角的和等于(n-2)×180°21推论任意多边的外角和等于360°22多边形对角线公式n (n-3)/21点、线、面、体知识点三、几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。

版北师版初中数学知识点总结

版北师版初中数学知识点总结

版北师版初中数学知识点总结数学作为一门基础学科,不仅是认知世界的工具,也是培养逻辑思维和解决问题能力的重要途径。

下面是对版北师版初中数学知识点的总结,帮助同学们系统地掌握初中数学的核心内容。

一、集合与函数1.集合的基本概念:元素、全集、子集、空集等。

2.集合的运算:并集、交集、差集、并排等。

3.集合的关系:相等关系、包含关系等。

4.函数的概念与性质:定义域、值域、奇偶性、单调性等。

5.函数的图像与表示:平面直角坐标系、函数图象的性质等。

二、分式与整式1.分式的基本概念:分子、分母、约分、通分等。

2.分式的运算:四则运算、倒数、整数幂、乘法法则等。

3.整式的基本概念:项、同类项、表达式等。

4.整式的加减法与乘法:合并同类项、乘法公式等。

5.因式分解:公因式提出、差平方公式等。

三、方程与不等式1.一元一次方程:解方程、检验、实际问题等。

2.一元一次不等式:解不等式、解集表示等。

3.一元一次方程组:解方程、实际问题等。

4.一元一次不等式组:解不等式组、解集表示等。

5.二次根式与二次方程:二次方程的解法、实际问题等。

四、函数与方程1.二元一次方程组:解方程组、实际问题等。

2.一元二次方程:判别式、根的关系等。

3.一元二次函数:二次函数的图像、性质等。

4.二次函数的应用:最值问题、平移、缩放等。

5.分式方程:解方程、实际问题等。

五、平面图形的认识1.直线、射线、线段:基本概念、表示法等。

2.平行线与垂直线:性质、判定方法等。

3.角的概念与分类:度量单位、角的大小、角的分类等。

4.三角形:定义、性质、分类等。

5.四边形:定义、性质、分类等。

六、平面图形的性质1.三角形的性质:内角和、外角和、中线等。

2.相似三角形:相似判定、比例关系等。

3.等腰三角形与等边三角形:性质与判定等。

4.平行四边形:性质与判定、面积计算等。

5.梯形与矩形:定义、性质、面积计算等。

七、平面几何的证明1.三角形的证明:三角形全等、相似、共线等。

初中数学几何图形知识点掌握归纳

初中数学几何图形知识点掌握归纳

初中数学几何图形知识点掌握归纳初一上册数学几何图形初步知识点归纳1.几何图形:点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形。

从实物中抽象出的各种图形统称为几何图形。

有些几何图形的各部分不在同一平面内,叫做立体图形。

有些几何图形的各部分都在同一平面内,叫做平面图形。

虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。

2.几何图形的分类:几何图形一般分为立体图形和平面图形。

3.直线:几何学基本概念,是点在空间内沿相同或相反方向运动的轨迹。

从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。

求两条直线的.交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,二直线平行;有无穷多解时,二直线重合;只有一解时,二直线相交于一点。

常用直线与X轴正向的夹角(叫直线的倾斜角)或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。

4.射线:在欧几里德几何学中,直线上的一点和它一旁的部分所组成的图形称为射线或半直线。

5.线段:指一个或一个以上不同线素组成一段连续的或不连续的图线,如实线的线段或由“长划、短间隔、点、短间隔、点、短间隔”组成的双点长划线的线段。

线段有如下性质:两点之间线段最短。

6. 两点间的距离:连接两点间线段的长度叫做这两点间的距离。

7. 端点:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。

线段用表示它两个端点的字母或一个小写字母表示,有时这些字母也表示线段长度,记作线段AB或线段BA,线段a。

其中AB表示直线上的任意两点。

8.直线、射线、线段区别:直线没有距离。

射线也没有距离。

因为直线没有端点,射线只有一个端点,可以无限延长。

9.角:具有公共端点的两条不重合的射线组成的图形叫做角。

这个公共端点叫做角的顶点,这两条射线叫做角的两条边。

一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。

最新北师大版数学(七年级下册)章知识点总结及尺规作图

最新北师大版数学(七年级下册)章知识点总结及尺规作图

北师大版《数学》(七年级下册)知识点总结第一章整式的运算一、单项式、单项式的次数:只含有数字与字母的积的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

二、多项式1、多项式、多项式的次数、项几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

三、整式:单项式和多项式统称为整式。

四、整式的加减法:整式加减法的一般步骤:(1)去括号;(2)合并同类项。

五、幂的运算性质:(1)同底数幂的乘法:a m ﹒a n =a m+n (同底,幂乘,指加)逆用: a m+n =a m ﹒a n (指加,幂乘,同底)(2)同底数幂的除法:a m ÷a n =a m-n (a ≠0)。

(同底,幂除,指减)逆用:a m-n = a m ÷a n (a ≠0)(指减,幂除,同底)(3)幂的乘方:(a m )n =a mn (底数不变,指数相乘)逆用:a mn =(a m )n(4)积的乘方:(ab )n =a n b n 推广:逆用, a n b n =(ab )n (当ab=1或-1时常逆用)(5)零指数幂:a 0=1(注意考底数范围a ≠0)。

(6)负指数幂:11()(0)pppa aa a-==≠(底倒,指反)六、整式的乘除法:1、单项式乘以单项式:法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。

2、单项式乘以多项式:m(a+b+c)=ma+mb+mc 。

法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

3、多项式乘以多项式:(m+n)(a+b)=ma+mb+na+nb 。

多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

七年级数学几何知识点梳理

七年级数学几何知识点梳理

七年级数学几何知识点梳理数学几何是初中数学的重要组成部分之一。

在初中阶段,学生们需要学习并掌握基本的几何知识和技能,为高中和大学学习打下坚实基础。

本文将为大家梳理七年级数学几何知识点,帮助同学们更好地学习和掌握数学几何。

一、点、线、面的基本概念点是几何的基本要素,它是没有长、宽、高的,用大写字母表示。

线是由无数个点在同一方向上依次排列组成,用小写字母表示。

面是由无数个点和线在同一平面上组成的,用大写字母表示。

二、角的概念和性质角是由两条射线公共端点组成的图形,用小写希腊字母表示。

角是几何中的重要概念,学习角的概念和性质是初中几何学习的重点之一。

(1)角的度量单位是度,在逆时针方向旋转一度可以使一条线段的一端向前移动约0.0015个单位长度。

(2)对顶角的度数相等,即∠ABC=∠DEF。

(3)平分线所分割的角相等,即∠ABD=∠CBD。

(4)相邻角互补,即∠ABC和∠CBD互补,它们的和为90度。

(5)邻补角相等,即∠ABC和∠CBD邻补,它们的和为180度。

三、三角形的性质三角形的性质是初中几何的重点之一,它是几何中最基本的图形之一。

根据三角形内角和定理,三角形的三个内角和为180度,可以推出以下性质:(1)等腰三角形的两个底角相等。

(2)等边三角形的三个内角相等。

(3)直角三角形的两条直角边上的直角角平分三角形的直角角。

(4)全等三角形对应的边和角相等。

(5)相似三角形对应的角相等。

四、正方形、长方形和平行四边形的性质正方形、长方形和平行四边形是初中几何中的基本图形,学习它们的性质对于初中学生而言非常重要。

(1)正方形的特点是四条边相等、四个角相等、对角线相等垂直相交。

(2)长方形的特点是两对相等的边、四个角都是直角。

(3)平行四边形的特点是两组对边分别平行、对边相等、对角线互相平分。

五、圆的性质圆是初中几何中的另一个重要图形,学习圆的性质可以帮助初中学生更好地理解圆的概念。

(1)圆的直径是圆上任意两个点之间的最长线段,其长度等于圆的半径的两倍。

八年级上数学知识点总结

八年级上数学知识点总结

1.小数与分数:小数与分数之间的互相转化是八年级数学的基础内容之一、需要掌握小数和分数的定义、性质,以及它们之间的转换方法。

2.整数:整数的加法、减法、乘法和除法是八年级数学的重要内容。

需要掌握整数的加减乘除的计算法则,以及应用到实际问题中的解决方法。

3.代数与方程:代数是数学的重要分支,在八年级数学中,代数的基本概念和运算是必不可少的。

代数的知识包括变量、常数、系数、项、代数式等方面的内容。

方程是代数的重要应用,需要掌握一元一次方程的解法以及应用到实际问题中。

4.三角形与平行四边形:三角形是平面图形的重要一类,八年级数学中主要学习三角形的定义、分类、性质,以及三角形的内角和外角等内容。

平行四边形也是八年级数学中重要的几何图形之一,需要掌握平行四边形的定义、性质,以及平行四边形的面积计算方法。

5.初中数学常用几何工具:尺规作图、直尺、圆规、量角器等是八年级数学中常用的几何工具。

需要掌握使用这些几何工具进行正交、平行、相等等几何构造的方法。

6.百分数与实际应用:百分数是数学中常见的一种表示方法,八年级数学中需要掌握百分数的定义、性质,以及百分数在实际应用中的计算方法。

7.数据与统计:数据与统计是数学的一个分支,八年级数学中需要学习数据的收集、整理、展示以及数据的平均数、中位数等统计指标的计算方法。

8.函数与图像:函数是数学中的重要概念,八年级数学中主要学习函数的定义、性质,以及函数的图像、增减性等内容。

9.平方根与立方根:平方根和立方根是数学中常见的开方运算,八年级数学中需要掌握平方根和立方根的定义、性质,以及在实际应用中的计算方法。

10.综合应用题:综合应用题是八年级数学的重点和难点,需要综合运用以上的知识点进行解答。

这些应用题通常与日常生活、实际问题、几何问题等密切相关,需要动脑筋解决。

以上是八年级上学期数学的主要知识点总结,掌握这些知识点可以帮助同学们更好地理解和应用数学知识,提高数学学习的效果。

中考数学知识点复习:尺规作图全面版

中考数学知识点复习:尺规作图全面版

如何利用尺规作图解决最值问题?
最值问题的求解
最值问题是一类求解最优解的问题,可以利用尺规作图来解决。例如,在几何、代数等领域中,经常需要使用尺规作 图来求解最值问题。
作图方法
利用尺规作图求解最值问题,需要先了解问题的具体内容,然后根据问题内容进行尺规作图。在作图过程中,需要注 意图形绘制的准确性和规范性,以保证求解的准确性。
03
多边形的尺规作图
作已知线段的垂线
01
总结词:通过一个已知点,作 已知线段的垂线,是尺规作图
的基础。
02
详细描述
03
04
1. 分别以线段的两个端点为 圆心,以大于线段的一半为半 径画圆弧,得到两个交点。
2. 连接两个交点,得到的直 线即为已知线段的垂线。
已知二线段平行的垂线段的中垂线
总结词:找到一个已知的平行线段的中垂线,是尺规作 图的进阶技能。
1. 以平行线段的一个端点为圆心,以适当长度为半径画 圆弧,与平行线段相交于两点。
详细描述
2. 连接这两个交点得到的直线即为已知平行线段的中垂 线。
作已知直线的平行线
01
总结词:通过一个已知点,作已知直线的平行线,是尺规作图的基本 技能之一。
02
详细描述
03
1. 以已知点为圆心,以适当长度为半径画圆弧,与直线相交于两点。
04
2. 连接这两个交点得到的直线即为已知直线的平行线。
作已知二线段的中垂线
01 总结词:通过两个已知点,作已知二线段 的中垂线,是尺规作图的高级技能。
02
详细描述
Hale Waihona Puke 031. 以两个已知点为圆心,以适当长度为半 径画圆弧,得到两个交点。
04

(完整版)最新华东师大版八年级数学上册知识点总结

(完整版)最新华东师大版八年级数学上册知识点总结
华师版八年级上册知识点总结
第十一章:数的开方
知识点
内容
概念:如果一个数的平方等于 a,那
么这个数叫做 a 的平方根
算术平方根:正数 a 的正的平方根
平方根
立方根
实数
记作:√a
性质:正数有两个平方根,它们互
为相反数,0 的平方根是 0,负数
没有平方根
概念:如果一个数的立方等于 a,
那么这个数叫做 a 的立方根
= ( + )( − )
第十三章:全等三角形
知识点
全等三角形
内容
备注
性质:全等三角形的对应边和对应角相等
三角形全等的判定:
1. (边边边)S.S.S.:如果两个三角形的三条
边都对应地相等,那么这两个三角形全等。
2.(边、角、边)S.A.S.:如果两个三角形的其
中两条边都对应地相等,且两条边夹着的角都
第一个命题的结论是第二个命题的条件,那么
这两个命题叫做互逆命题
考点:判断一个命题或定理
的逆命题为真为假
五个基本的作图方法:
考点:综合考察,例如用尺
规作图画直角三角形,等腰
三角形等等
①作一条线段等于已知线段
②作一个角等于已知角③作已知角的平分线
④过一点作已知线段的垂线
⑤作已知线段的垂直平分线
D
A
性质:①是特殊的等腰三角形,因此具有等腰
对应地相等,那么这两个三角形全等。
3.(角、边、角)A.S.A.:如果两个三角形的其
中两个角都对应地相等,且两个角夹着的边都
对应地相等的话,那么这两个三角形全等。
4.(角、角、边)A.A.S.:如果两个三角形的其
中两个角都对应地相等,且对应相等的角所对

初中数学五种作图基本概念及技巧

初中数学五种作图基本概念及技巧

初中数学五种作图基本概念及技巧一、基本概念1.尺规作图:在几何里,用没有刻度的直尺和圆规来画图,叫做尺规作图.2.基本作图:最基本、最常用的尺规作图,通常称基本作图.3.五种常用的基本作图:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)平分已知角;(4)作线段的垂直平分线.(5)经过一点作已知直线的垂线4.掌握以下几何作图语句:(1)过点×、点×作直线××;或作直线××,或作射线××;(2)连结两点×、×;或连结××;(3)在××上截取××=××;(4)以点×为圆心,××为半径作圆(或弧);(5)以点×为圆心,××为半径作弧,交××于点×;(6)分别以点×、点×为圆心,以××、××为半径作弧,两弧相交于点××;(7)延长××到点×,或延长××到点×,使××=××.5.学过基本作图后,在以后的作图中,遇到属于基本作图的地方,只须用一句话概括叙述就可以了。

如:(1)作线段××=××;(2)作∠×××=∠×××;(3)作××(射线)平分∠×××;(4)过点×作××⊥××,垂足为×;(5)作线段××的垂直平分线××.二、尺规作图基本步骤和作图语言1、作线段等于已知线段已知:线段a 求作:线段AB,使AB=a 作法:(1)作射线AC (2)在射线AC上截取AB=a ,则线段AB就是所要求作的线段2、作角等于已知角已知:∠AOB求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)作射线O′A′.(2)以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D.(3)以点O′为圆心,以OC长为半径画弧,交O′A′于点C′.(4)以点C′为圆心,以CD长为半径画弧,交前面的弧于点D′.(5)过点D′作射线O′B′.∠A′O′B′就是所求作的角.3、作角的平分线已知:∠AOB, 求作:∠AOB内部射线OC,使:∠AOC=∠BOC,作法:(1)在OA和OB上,分别截取OD、OE,使OD=OE.(2)分别以D、E为圆心,大于1/2DE的长为半径作弧,在∠AOB内,两弧交于点C.(3)作射线OC.OC就是所求作的射线.4、作线段的垂直平分线(中垂线)或中点已知:线段AB求作:线段AB的垂直平分线作法:(1)分别以A、B为圆心,以大于AB的一半为半径在AB两侧画弧,分别相交于E、F两点。

初一数学下册全部知识点归纳

初一数学下册全部知识点归纳

尺规作图
一、平行线与相交线 平行线:在同一平面内,不相交的两条直线叫做平行线。 若两条直线只有一个公共点,我们称这两条直线为相交线。
二、余角与补角 1、如果两个角的和是直角,那么称这两个角互为余角,简称为互余,称其中一个角是另一个角的余角。 2、如果两个角的和是平角,那么称这两个角互为补角,简称为互补,称其中一个角是另一个角的补角。 3、互余和互补是指两角和为直角或两角和为平角,它们只与角的度数有关,与角的位置无关。 4、余角和补角的性质:同角或等角的余角相等,同角或等角的补角相等。 5、余角和补角的性质用数学语言可表示为:
四、垂线及其性质 1、垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。 2、垂线的性质: 性质 1:过一点有且只有一条直线与已知直线垂直。 性质 2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
五、同位角、内错角、同旁内角 1、两条直线被第三条直线所截,形成了 8 个角。 2、同位角:两个角都在两条直线的同侧,并且在第三条直线(截线)的同旁,这样的一对角叫做同位角。
(1)列出代数式:用括号把每个整式括起来,再用加减号连接。 (2)按去括号法则去括号。 (3)合并同类项。 4、代数式求值的一般步骤: (1)代数式化简。 (2)代入计算 (3)对于某些特殊的代数式,可采用“整体代入”进行计算。 五、同底数幂的乘法 1、n 个相同因式(或因数)a 相乘,记作 an,读作 a 的 n 次方(幂),其中 a 为底数,n 为指数,an 的结 果叫做幂。 2、底数相同的幂叫做同底数幂。 3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。 4、此法则也可以逆用,即:am+n = am﹒an。 5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。 六、幂的乘方 1、幂的乘方是指几个相同的幂相乘。(am)n 表示 n 个 am 相乘。 2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n =amn。 3、此法则也可以逆用,即:amn =(am)n=(an)m。 七、积的乘方 1、积的乘方是指底数是乘积形式的乘方。 2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab) n=anbn。 3、此法则也可以逆用,即:anbn =(ab)n。 八、三种“幂的运算法则”异同点 1、共同点: (1)法则中的底数不变,只对指数做运算。 (2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式)。 (3)对于含有 3 个或 3 个以上的运算,法则仍然成立。 2、不同点: (1)同底数幂相乘是指数相加。 (2)幂的乘方是指数相乘。 (3)积的乘方是每个因式分别乘方,再将结果相乘。 九、同底数幂的除法 1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:am÷an=am-n(a≠0)。 2、此法则也可以逆用,即:am-n = am÷an(a≠0)。 十、零指数幂 1、零指数幂的意义:任何不等于 0 的数的 0 次幂都等于 1,即:a0=1(a≠0)。 十一、负指数幂

初中数学五种作图基本概念及技巧

初中数学五种作图基本概念及技巧

初中数学五种作图基本概念及技巧一、基本概念1.尺规作图:在几何里,用没有刻度的直尺和圆规来画图,叫做尺规作图.2.基本作图:最基本、最常用的尺规作图,通常称基本作图.3.五种常用的基本作图:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)平分已知角;(4)作线段的垂直平分线.(5)经过一点作已知直线的垂线4.掌握以下几何作图语句:(1)过点×、点×作直线××;或作直线××,或作射线××;(2)连结两点×、×;或连结××;(3)在××上截取××=××;(4)以点×为圆心,××为半径作圆(或弧);(5)以点×为圆心,××为半径作弧,交××于点×;(6)分别以点×、点×为圆心,以××、××为半径作弧,两弧相交于点××;(7)延长××到点×,或延长××到点×,使××=××.5.学过基本作图后,在以后的作图中,遇到属于基本作图的地方,只须用一句话概括叙述就可以了.如:(1)作线段××=××;(2)作∠×××=∠×××;(3)作××(射线)平分∠×××;(4)过点×作××⊥××,垂足为×;(5)作线段××的垂直平分线××.二、尺规作图基本步骤和作图语言1、作线段等于已知线段已知:线段a 求作:线段AB,使AB=a 作法:(1)作射线AC (2)在射线AC上截取AB=a ,则线段AB就是所要求作的线段2、作角等于已知角已知:∠AOB求作:∠A′O′B′,使∠A′O′B′=∠AOB。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学知识点总结:掌握五种基本作图
知识点总结
【一】基本作图的有关概念:
1.尺规作图:用没有刻度的直尺和圆规来作图的方法,
叫做尺规作图。

2.五种基本作图:五种基本作图是尺规作图的基础,数
学中的五种基本作图是指作一条线段等于线段、作一个角等于角、作一个角的角平分线、过定点作直线的垂线、作线段的垂直平分线。

【二】基本作图的原理和步骤:
1.原理:边边边公理
2.步骤:作图题的方法与证明题解法不相同,对于作图
题首先将文字表达转化为数学语言,即要写出题目的、求作、作法、证明。

【三】尺规作图的优点:尺规作图只能使用圆规和无刻
度的直尺这两种工具。

工具虽少但能正确地画出的图形,比度量法画出的图形更精确。

常见考法
(1)考查五种基本作图中的一种,要求写出、求证、作法、证明过程。

有时考题不要求写作法,但要求保留作图痕迹;(2)利用尺规作图和勾股定理画出数轴上的无理数点;(3)利用尺规作图作一些正多边形(如正三角形、正六边形等)。

误区提醒 。

相关文档
最新文档